Science.gov

Sample records for ache activity inhibition

  1. Downregulated expression of microRNA-124 in pediatric intestinal failure patients modulates macrophages activation by inhibiting STAT3 and AChE

    PubMed Central

    Xiao, Yong-Tao; Wang, Jun; Lu, Wei; Cao, Yi; Cai, Wei

    2016-01-01

    Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation. PMID:27977009

  2. AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure.

    PubMed

    Ren, Zongming; Zhang, Xu; Wang, Xiaoguang; Qi, Pingping; Zhang, Biao; Zeng, Yang; Fu, Rongshu; Miao, Mingsheng

    2015-02-01

    As a key enzyme that hydrolyzes the neurotransmitter acetylcholine in cholinergic synapses of both vertebrates and invertebrates, acetylcholinesterase (AChE) is strongly inhibited by organophosphates. AChE inhibition may induce the decrease of swimming ability. According to previous research, swimming behavior of different aquatic organisms could be affected by different chemicals, and there is a shortage of research on direct correlation analysis between swimming behavior and biochemical indicators. Therefore, swimming behavior and whole-body AChE activity of Daphnia magna under dichlorvos (DDVP) exposure were identified in order to clarify the relationship between behavioral responses and AChE inhibition in this study. In the beginning, AChE activity was similar in all treatments with the control. During all exposures, the tendency of AChE activity inhibition was the same as the behavioral responses of D. magna. The AChE activity of individuals without movement would decrease to about zero in several minutes. The correlation analysis between swimming behavior of D. magna and AChE activity showed that the stepwise behavioral response was mainly decided by AChE activity. All of these results suggested that the toxicity characteristics of DDVP as an inhibitor of AChE on the swimming behavior of organisms were the same, and the AChE activity inhibition could induce loss of the nerve conduction ability, causing hyperactivity, loss of coordination, convulsions, paralysis and other kinds of behavioral changes, which was illustrated by the stepwise behavioral responses under different environmental stresses.

  3. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration.

  4. The acetylcholinesterase (AChE) inhibition analysis of medaka (Oryzias latipes) in the exposure of three insecticides.

    PubMed

    Zhu, Jianping; Huan, Cheng; Si, Guiyun; Yang, Haitang; Yin, Li; Ren, Qing; Ren, Baixiang; Fu, Rongshu; Miao, Mingsheng; Ren, Zongming

    2015-03-01

    The continuous effects on Acetylcholinesterase (AChE) activity of medaka (Oryzias latipes) caused by dichlorvos, methomyl and deltamethrin in vivo were investigated, and the trends of AChE activity inhibition due to the influence of these insecticides were discussed. The LC50-24h of dichlorvos, methomyl and deltamethrin on medaka were 2.3 mg/L, 0.2 mg/L, and 2.9×10(-3) mg/L respectively. The result suggested that at the beginning of the exposure, the AChE activity might increase, and the AChE activity in dead individuals was obviously lower than the live individuals. Though the de novo synthesis of AChE in medaka might help the AChE activity recover, the trends during the exposure in different treatments were downward, and it showed both exposure time and concentration dependent. Meanwhile, higher temperature might cause the AChE inhibition earlier due to the higher metabolic rate. Therefore, as a specific biomarker for organophosphate, carbamate pesticides and pyrethroids, the degree of the AChE inhibition with in vivo conditions is a good tool in continuous monitoring of insecticides, which may induce the nerve conduction disorders.

  5. Inhibition of AChE by malathion and some structurally similar compounds.

    PubMed

    Krstić, Danijela Z; Colović, Mirjana; Kralj, Mojca Bavcon; Franko, Mladen; Krinulović, Katarina; Trebse, Polonca; Vasić, Vesna

    2008-08-01

    Inhibition of bovine erythrocyte acetylcholinesterase (free and immobilized on controlled pore glass) by separate and simultaneous exposure to malathion and malathion transformation products which are generally formed during storage or through natural or photochemical degradation was investigated. Increasing concentrations of malathion, its oxidation product malaoxon, and its isomerisation product isomalathion inhibited free and immobilized AChE in a concentration-dependent manner. KI, the dissociation constant for the initial reversible enzyme inhibitor-complex, and k3, the first order rate constant for the conversion of the reversible complex into the irreversibly inhibited enzyme, were determined from the progressive development of inhibition produced by reaction of native AChE with malathion, malaoxon and isomalathion. KI values of 1.3 x 10(-4) M(-1), 5.6 x 10(-6) M(-1) and 7.2 x 10(-6)M(-1) were obtained for malathion, malaoxon and isomalathion, respectively. The IC50 values for free/immobilized AChE, (3.7 +/- 0.2) x 10(-4) M/(1.6 +/-0.1) x 10(-4), (2.4 +/- 0.3) x 10(-6)/(3.4 +/- 0.1) x 10(-6)M and (3.2 +/- 0.3) x 10(-6) M/(2.7 +/- 0.2) x 10(-6) M, were obtained from the inhibition curves induced by malathion, malaoxon and isomalathion, respectively. However, the products formed due to photoinduced degradation, phosphorodithioic O,O,S-trimethyl ester and O,O-dimethyl thiophosphate, did not noticeably affect enzymatic activity, while diethyl maleate inhibited AChE activity at concentrations > 10mM. Inhibition of acetylcholinesterase increased with the time of exposure to malathion and its inhibiting by-products within the interval from 0 to 5 minutes. Through simultaneous exposure of the enzyme to malaoxon and isomalathion, an additive effect was achieved for lower concentrations of the inhibitors (in the presence of malaoxon/isomalathion at concentrations 2 x 10(-7) M/2 x 10(-7) M, 2 x 10(-7) M/3 x 10(-7)M and 2 x 10(-7) M/4.5 x 109-7) M), while an

  6. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity.

  7. Effect of metoclopramide and ranitidine on the inhibition of human AChE by VX in vitro.

    PubMed

    Bartling, A; Thiermann, H; Szinicz, L; Worek, F

    2005-01-01

    The repeated misuse of highly toxic organophosphorus-type (OP) chemical warfare agents ('nerve agents') emphasizes the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators ('oximes') is considered to be ineffective with certain nerve agents due to low oxime efficacy. Therefore, pretreatment with carbamate-type compounds, e.g. pyridostigmine, was recommended to improve antidotal efficacy. Recently, the clinically used reversible AChE inhibitors metoclopramide (MCP) and ranitidine (RAN) were shown to exhibit some protective effect against the OP pesticide paraoxon in vitro and in vivo. The present study was undertaken to investigate a potential protective effect of MCP and RAN against inhibition of human AChE by the nerve agent VX (O-ethyl S-[2-(diisopropylamino)ethyl)methylphosphonothioate). Hemoglobin-free human erythrocyte membranes were incubated with various, human relevant MCP (0.5-2 microm) and RAN (0.5-5 microm) concentrations starting 1 min before addition of VX (1-40 nm). Both compounds failed to increase VX IC(50) values. In addition, human AChE was incubated with higher than human relevant therapeutic concentrations of MCP (1 microm-1 mm) and RAN (1 microm-2.0 mm) and inhibited by 40 nm VX. At concentrations higher than 100 microm MCP and RAN caused a concentration dependent increase of residual AChE activity 15 min after addition of VX. These data indicate that MCP and RAN may be ineffective in protecting human AChE against inhibition by the nerve agent VX at human relevant doses.

  8. Does time difference of the acetylcholinesterase (AChE) inhibition in different tissues exist? A case study of zebra fish (Danio rerio) exposed to cadmium chloride and deltamethrin.

    PubMed

    Zhang, Tingting; Yang, Meiyi; Pan, Hongwei; Li, Shangge; Ren, Baigang; Ren, Zongming; Xing, Na; Qi, Luhuizi; Ren, Qing; Xu, Shiguo; Song, Jie; Ma, Jingchun

    2017-02-01

    In order to illustrate time difference in toxic effects of cadmium chloride (CdCl2) and deltamethrin (DM), AChE activities were measured in different tissues, liver, muscle, brain, and gill, of Zebra fish (Danio rerio) across different concentrations in this research. The average AChE activity decreased comparing to 0.0 TU with DM (82.81% in 0.1 TU, 56.14% in 1.0 TU and 44.68% in 2.0 TU) and with CdCl2 (74.68% in 0.1 TU, 52.05% in 1.0 TU and 50.14% in 2.0 TU) showed an overall decrease with the increase of exposure concentrations. According to Self-Organizing Map (SOM), the AChE activities were characterized in relation with experimental conditions, showing an inverse relationship with exposure time. As the exposure time was longer, the AChE activities were correspondingly lower. The AChE inhibition showed time delay in sublethal treatments (0.1 TU) in different tissues: the AChE was first inhibited in brain by chemicals followed by gill, muscle and liver (brain > gill > muscle > liver). The AChE activity was almost inhibited synchronously in higher environmental stress (1.0 TU and 2.0 TU). As the AChE inhibition can induce abnormal of behavior movement, these results will be helpful to the mechanism of stepwise behavior responses according to the time difference in different tissues rather than the whole body AChE activity.

  9. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    PubMed

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  10. Integrative Characterization of Toxic Response of Zebra Fish (Danio rerio) to Deltamethrin Based on AChE Activity and Behavior Strength

    PubMed Central

    Ren, Qing; Zhang, Tingting; Li, Shangge; Yang, Meiyi; Pan, Hongwei; Xu, Shiguo; Qi, Li; Chon, Tae-Soo

    2016-01-01

    In order to characterize the toxic response of zebra fish (Danio rerio) to Deltamethrin (DM), behavior strength (BS) and muscle AChE activity of zebra fish were investigated. The results showed that the average values of both BS and AChE activity showed a similarly decreased tendency as DM concentration increased, which confirmed the dose-effect relationship, and high and low levels of AChE and BS partly matched low and high levels of exposure concentrations in self-organizing map. These indicated that AChE and BS had slight different aspects of toxicity although overall trend was similar. Behavior activity suggested a possibility of reviving circadian rhythm in test organisms after exposure to the chemical in lower concentration (0.1 TU). This type of rhythm disappeared in higher concentrations (1.0 TU and 2.0 TU). Time series trend analysis of BS and AChE showed an evident time delayed effect of AChE, and a 2 h AChE inhibition delay with higher correlation coefficients (r) in different treatments was observed. It was confirmed that muscle AChE inhibition of zebra fish is a factor for swimming behavior change, though there was a 2 h delay, and other factors should be investigated to illustrate the detailed behavior response mechanism. PMID:27999812

  11. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus.

    PubMed

    Menéndez-Helman, Renata J; Ferreyroa, Gisele V; dos Santos Afonso, Maria; Salibián, Alfredo

    2015-01-01

    The use of biomarkers as a tool to assess responses of organisms exposed to pollutants in toxicity bioassays, as well as in aquatic environmental risk assessment protocols, requires the understanding of the natural fluctuation of the particular biomarker. The aim of this study was to characterize the intrinsic variations of acetylcholinesterase (AChE) activity in tissues of a native freshwater teleost fish to be used as biomarker in toxicity tests, taking into account both seasonal influence and fish size. Specific AChE activity was measured by the method of Ellman et al. (1961) in homogenates of fish anterior section finding a seasonal variability. The highest activity was observed in summer, decreasing significantly below 40% in winter. The annual AChE activity cycle in the anterior section was fitted to a sinusoidal function with a period of 11.2 months. Moreover, an inverse relationship between enzymatic activity and the animal size was established. The results showed that both the fish length and seasonal variability affect AChE activity. AChE activity in fish posterior section showed a similar trend to that in the anterior section, while seasonal variations of the activity in midsection were observed but differences were not statistically significant. In addition, no relationship between AChE and total tissue protein was established in the anterior and posterior sections suggesting that the circannual rhythms observed are AChE-specific responses. Results highlight the importance of considering both the fish size and season variations to reach valid conclusions when AChE activity is employed as neurotoxicity biomarker.

  12. The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies.

    PubMed

    Lo, Rabindranath; Chandar, Nellore Bhanu; Ghosh, Shibaji; Ganguly, Bishwajit

    2016-04-01

    A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods. The overall study shows that after mutagenesis (Y337A), the reactivator can approach more freely towards the phosphorylated active site of serine without any significant steric hindrance in the presence of tabun compared to the wild type and double mutant. Furthermore, the poor binding of Ortho-7 with the peripheral residues of mAChE in the case of the single mutant compared to that of the wild-type and double mutant (Y337A/F338A) can contribute to better efficacy in the former case. Ortho-7 has formed a greater number of hydrogen bonds with the active site surrounding residues His447 and Phe295 in the case of the single mutant (Y337A), and that stabilizes the drug molecule for an effective reactivation process. The DFT M05-2X/6-31+G(d) level of theory shows that the binding energy of Ortho-7 with the single mutant (Y337A) is energetically more preferred (-19.8 kcal mol(-1)) than the wild-type (-8.1 kcal mol(-1)) and double mutant (Y337A/F338A) (-16.0 kcal mol(-1)). The study reveals that both the orientation of the oxime reactivator for nucleophilic attack and the stabilization of the reactivator at the active site would be crucial for the design of an efficient reactivator.

  13. In silico studies in probing the role of kinetic and structural effects of different drugs for the reactivation of tabun-inhibited AChE.

    PubMed

    Lo, Rabindranath; Chandar, Nellore Bhanu; Kesharwani, Manoj K; Jain, Aastha; Ganguly, Bishwajit

    2013-01-01

    We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong O(…)H and N(…)H hydrogen bonding and C-H(…)π non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun-inhibited

  14. In Silico Studies in Probing the Role of Kinetic and Structural Effects of Different Drugs for the Reactivation of Tabun-Inhibited AChE

    PubMed Central

    Lo, Rabindranath; Chandar, Nellore Bhanu; Kesharwani, Manoj K.; Jain, Aastha; Ganguly, Bishwajit

    2013-01-01

    We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong O…H and N…H hydrogen bonding and C-H…π non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun-inhibited enzyme

  15. Design, synthesis, and AChE inhibitory activity of new benzothiazole-piperazines.

    PubMed

    Demir Özkay, Ümide; Can, Özgür Devrim; Sağlık, Begüm Nurpelin; Acar Çevik, Ulviye; Levent, Serkan; Özkay, Yusuf; Ilgın, Sinem; Atlı, Özlem

    2016-11-15

    In the current study, 14 new benzothiazole-piperazine compounds were designed to meet the structural requirements of acetylcholine esterase (AChE) inhibitors. The target compounds were synthesised in three steps. Structures of the newly synthesised compounds (7-20) were confirmed using IR, (1)H NMR, (13)C NMR, and HRMS methods. The inhibitory potential of the compounds on AChE (E.C.3.1.1.7, from electric eel) was then investigated. Among the compounds, 19 and 20 showed very good activity on AChE enzyme. Kinetics studies were performed to observe the effects of the most active compounds on the substrate-enzyme relationship. Cytotoxicity studies, genotoxicity studies, and theoretical calculation of pharmacokinetics properties were also carried out. The compounds 19 and 20 were found to be nontoxic in both of the toxicity assays. A good pharmacokinetics profile was predicted for the synthesised compounds. Molecular docking studies were performed for the most active compounds, 19 and 20, and interaction modes with enzyme active sites were determined. Docking studies indicated a strong interaction between the active sites of AChE enzyme and the analysed compounds.

  16. AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer's Disease

    PubMed Central

    Wang, Yu; Wang, Hao; Chen, Hong-zhuan

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in elder people, characterised by a progressive decline in memory as a result of an impairment of cholinergic neurotransmission. To date acetylcholinesterase inhibitors (AChEIs) have become the most prescribed drugs for the symptomatic treatment of mild to moderate AD. However, the traditional “one molecule-one target” paradigm is not sufficient and appropriate to yield the desired therapeutic efficacy since multiple factors, such as amyloid-β (Aβ) deposits, neuroinflammation, oxidative stress, and decreased levels of acetylcholine (ACh) have been thought to play significant roles in the AD pathogenesis. New generation of multi-target drugs is earnestly demanded not only for ameliorating symptoms but also for modifying the disease. Herein, we delineated the catalytic and non-catalytic functions of AChE, and summarized the works of our group and others in research and development of novel AChEI-based multi-target-directed ligands (MTDLs), such as dual binding site AChEIs and multi-target AChEIs inhibiting Aβ aggregation, regulating Aβ procession, antagonizing platelet-activating factor (PAF) receptor, scavenging oxygen radical, chelating metal ions, inhibiting monoamine oxidase B (MAO-B), blocking N-methyl-D-aspartic acid (NMDA) receptor and others. PMID:26786145

  17. Cholinesterases in development: AChE as a firewall to inhibit cell proliferation and support differentiation.

    PubMed

    Layer, Paul G; Klaczinski, Janine; Salfelder, Anika; Sperling, Laura E; Thangaraj, Gopenath; Tuschl, Corina; Vogel-Höpker, Astrid

    2013-03-25

    Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically. Here, we review briefly some of the major ideas and advances of this field, and report on some recent progress from our own experimental work, e.g. that (i) non-neural ChEs have pronounced, predominantly enzymatic effects on early embryonic (limb) development in chick and mouse, that (ii) retinal R28 cells of the rat overexpressing synaptic AChE present a significantly decreased cell proliferation, and that (iii) in developing chick retina ACh-synthesizing and ACh-degrading cells originate from the same postmitotic precursor cells, which later form two locally opposing cell populations. We suggest that such distinct distributions of ChAT(+) vs. AChE(+) cells in the inner half retina provide graded distributions of ACh, which can direct cell differentiation and network formation. Thus, as corroborated by works from many labs, AChE can be considered a highly co-opting protein, which can combine enzymatic and non-enzymatic functions within one molecule.

  18. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE.

  19. Reactivation of organophosphate-inhibited human AChE by combinations of obidoxime and HI 6 in vitro.

    PubMed

    Worek, F; Aurbek, N; Thiermann, H

    2007-01-01

    Highly toxic organophosphorus-type (OP) chemical warfare agents (nerve agents) and OP pesticides may be used by terrorists and during military conflicts emphasizing the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators (oximes) is considered to be ineffective with certain nerve agents due to low oxime efficacy. Despite research over decades none of the oximes has turned out to be a broad spectrum reactivator to cover the whole range of potential threat agents. The prospective oxime HI 6 is a weak reactivator of tabun- and pesticide-inhibited AChE, while the established oxime obidoxime mainly lacks efficacy with cyclosarin-inhibited enzyme. In order to investigate the feasibility of combining obidoxime and HI 6, human AChE inhibited by sarin, cyclosarin, VX, tabun and paraoxon was reactivated by these oximes either alone or in combination. Two major findings of this study were that a combination of HI 6 and obidoxime did not impair reactivation, compared with HI 6 or obidoxime alone, but broadened the spectrum compared with the individual oximes. By using different oxime concentrations a combination of oxime doses may be suggested which could be an alternative to individual obidoxime or HI 6 autoinjectors.

  20. Novel assay utilizing fluorochrome-tagged physostigmine (Ph-F) to in situ detect active acetylcholinesterase (AChE) induced during apoptosis.

    PubMed

    Huang, Xuan; Lee, Brian; Johnson, Gary; Naleway, John; Guzikowski, Anthony; Dai, Wei; Darzynkiewicz, Zbigniew

    2005-01-01

    It was recently reported that acetylcholinesterase (AChE) is expressed in cells undergoing apoptosis and that its presence is essential for assembly of the apoptosome and subsequent caspase-9 activation. To obtain a marker of active AChE that could assay this enzyme in live intact cells and be applicable to fluorescence microscopy and cytometry, the fluorescein-tagged physostigmine (Ph-F), high affinity ligand (inhibitor) reactive with the active center of AChE, was constructed and tested for its ability to in situ label AChE and measure its induction during apoptosis. Ph-F inhibited cholinesterase activity in vitro (IC50 = 10(-6) and 5 x 10(-6) M for equine butyrylcholinesterase and human erythrocyte AChE, respectively) and was a selective marker of cells and structures that were AChE-positive. Thus, exposure of mouse bone marrow cells to Ph-F resulted in the exclusive labeling of megakaryocytes, and of the diaphragm muscle, preferential labeling of the nerve-muscle junctions (end-plates). During apoptosis of carcinoma HeLa cells and leukemic HL-60 or Jurkat cells triggered either by the DNA topoisomerase 1 inhibitor topotecan (TPT) or by oxidative stress (H2O2), the cells become reactive with Ph-F. Their Ph-F derived fluorescence was measured by flow and laser scanning cytometry. The appearance of Ph-F binding sites during apoptosis was preceded by the loss of mitochondrial potential, was concurrent with the presence of activated caspases, and was followed by loss of membrane integrity. At a very early stage of apoptosis, when nucleolar segregation was apparent, the Ph-F binding sites were distinctly localized within the nucleolus and at later stages of apoptosis in the cytoplasm. During apoptosis triggered by TPT, Ph-F binding was preferentially induced in S-phase cells. Our data on megakaryocytes and end-plates indicate that Ph-F reacts with active sites of AChE, and can be used to reveal the presence of this enzyme in live cells and possibly to study its

  1. [Achetylcholinesterase (AChE) inhibition and serum lipokines in Alzheimer's disease: friend or foe?].

    PubMed

    Kovacs, Janos; Pakaski, Magdolna; Juhasz, Anna; Feher, Agnes; Drotos, Gergely; Fazekas, Csilla Orsike; Horvath, Tamas Laszlo; Janka, Zoltan; Kalman, Janos

    2012-03-01

    Throughout the natural progression of Alzheimer's disease (AD), the body mass index (BMI) decreases. This is believed to be brought on by the disturbance in the central lipid metabolism, but the exact mechanism is yet unknown. Adipokines (adiponectin, leptin), hormones produced by the adipose tissue, change glucose and lipid metabolism, and have an anorectic effect through increasing energy consumption in the hypothalamus. The goal of our study was to examine donepezil - an acetylcholinesterase inhibitor (AChEI) currently used in AD therapy -, and to what degree it influences the serum adipokine levels and metabolic parameters of AD patients. During the self-evaluation of 26 clinically diagnosed mild to moderate AD patients, therapy with 10 mg/day donepezil was started according to current protocols. We measured serum adiponectin, leptin, LDL, HDL, trigliceride levels, and BMI and ApoE polymorphism at the beginning of our study, and at 3 and 6-months intervals respectively. All data were analyzed with SPSS 17. In comparison with pre-donepezil therapy values, at the third month interval serum adiponectin levels showed an increasing and leptin levels a decreasing tendency. At the six month interval, adiponectin levels significantly increased (p=0.007), leptin levels decreased (p=0.013), BMI (p=0.001) and abdominal circumference (p=0.017) was significantly lower at 6 months as compared to control values. We did not observe any changes in the lipid profile, and ApoE4 allele carrying showed no association with the parameters. To our knowledge, we are the first to publish that AChEI therapy with donepezil alters lipokine levels, which positively influences the currently known pathomechanism and numerous risk factors of AD. The AChEI treatment-induced weight loss should be considered in the long-term therapy of AD patients.

  2. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  3. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes.

    PubMed

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind; Huang, Mingjun

    2013-07-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication.

  4. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  5. A facile stereoselective synthesis of dispiro-indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids and evaluation of their antimycobacterial, anticancer and AchE inhibitory activities.

    PubMed

    Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu

    2016-11-15

    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC50 <1.56μM) and 6l (IC50=2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC50 values of 1.10 and 1.16μmol/L respectively.

  6. AChE and EROD activities in two echinoderms, Holothuria leucospilota and Holoturia atra (Holothuroidea), in a coral reef (Reunion Island, South-western Indian Ocean).

    PubMed

    Kolasinski, Joanna; Taddei, Dorothée; Cuet, Pascale; Frouin, Patrick

    2010-01-01

    AChE and EROD activities were investigated in two holothurian species, Holothuria leucospilota and Holoturia atra, from a tropical coral reef. These organisms were collected from 3 back-reef stations, where temperature and salinity were homogeneous. The activity levels of both AChE and EROD varied significantly between the two species, but were in the range of values determined in other echinoderm species. AChE activity levels were higher in the longitudinal muscle than in the tentacle tegument. Among the several tissues tested, the digestive tract wall exhibited higher EROD activity levels. Sex did not influence AChE and EROD activity levels in both species. Animal biomass and EROD activity levels were only correlated in the tegument tissue of H. atra, and we hypothesize a possible influence of age. EROD activity did not show intraspecific variability. A significant relationship was found between AChE activity and Cuvierian tubules time of expulsion in Holothuria leucospilota. Individuals collected at the southern site presented both lower AChE activity levels and Cuvierian tubules time of expulsion, indicating possible neural disturbance. More information on holothurians biology and physiology is needed to further assess biomarkers in these key species. This study is the first of its kind performed in the coastal waters of Reunion Island and data obtained represent reference values.

  7. Structure-activity relationship for the reactivators of acetylcholinesterase inhibited by nerve agent VX.

    PubMed

    Kuca, Kamil; Musilek, Kamil; Jun, Daniel; Karasova, Jana; Soukup, Ondrej; Pejchal, Jaroslav; Hrabinova, Martina

    2013-08-01

    Nerve agents such as sarin, VX and tabun are organophosphorus compounds able to inhibit an enzyme acetylcholinesterase (AChE). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None from the known AChE reactivators is able to reactivate AChE inhibited by all kinds of nerve agents. In this work, reactivation potency of seventeen structurally different AChE reactivators was tested in vitro and subsequently, relationship between their chemical structure and biological activity was outlined. VX was chosen as appropriate member of the nerve agent family.

  8. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species

    PubMed Central

    2016-01-01

    Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH⁎ activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds. PMID:27803761

  9. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species.

    PubMed

    Załuski, Daniel; Kuźniewski, Rafał

    2016-01-01

    Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH(⁎) activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds.

  10. In vitro effect of H2O 2, some transition metals and hydroxyl radical produced via fenton and fenton-like reactions, on the catalytic activity of AChE and the hydrolysis of ACh.

    PubMed

    Méndez-Garrido, Armando; Hernández-Rodríguez, Maricarmen; Zamorano-Ulloa, Rafael; Correa-Basurto, José; Mendieta-Wejebe, Jessica Elena; Ramírez-Rosales, Daniel; Rosales-Hernández, Martha Cecilia

    2014-11-01

    It is well known that the principal biomolecules involved in Alzheimer's disease (AD) are acetylcholinesterase (AChE), acetylcholine (ACh) and the amyloid beta peptide of 42 amino acid residues (Aβ42). ACh plays an important role in human memory and learning, but it is susceptible to hydrolysis by AChE, while the aggregation of Aβ42 forms oligomers and fibrils, which form senile plaques in the brain. The Aβ42 oligomers are able to produce hydrogen peroxide (H2O2), which reacts with metals (Fe(2+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)) present at high concentrations in the brain of AD patients, generating the hydroxyl radical ((·)OH) via Fenton (FR) and Fenton-like (FLR) reactions. This mechanism generates high levels of free radicals and, hence, oxidative stress, which has been correlated with the generation and progression of AD. Therefore, we have studied in vitro how AChE catalytic activity and ACh levels are affected by the presence of metals (Fe(3+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)), H2O2 (without Aβ42), and (·) OH radicals produced from FR and FLR. The results showed that the H2O2 and the metals do not modify the AChE catalytic activity, but the (·)OH radical causes a decrease in it. On the other hand, metals, H2O2 and (·)OH radicals, increase the ACh hydrolysis. This finding suggests that when H2O2, the metals and the (·)OH radicals are present, both, the AChE catalytic activity and ACh levels diminish. Furthermore, in the future it may be interesting to study whether these effects are observed when H2O2 is produced directly from Aβ42.

  11. In vitro reactivation of sarin-inhibited human acetylcholinesterase (AChE) by bis-pyridinium oximes connected by xylene linkers.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Srivastava, Ashish Kumar; Raza, Syed Kalbey

    2011-02-01

    A series of bis-pyridinium oximes connected by xylene linkers were synthesized and their in vitro reactivation potential was evaluated against human acetylcholinesterase (hAChE) inhibited by nerve agent sarin and the data were compared with 2-PAM and obidoxime. Among the synthesized compounds, N,N'-p-xylene-bis-[(2,2'-hydroxyiminomethyl)pyridinium] dibromide (3c) was found to be the most potent reactivator for hAChE inhibited by sarin. The oxime 3c exhibited 45% regeneration of inhibited hAChE, in comparison to 34% and 24% regeneration by 2-PAM and obidoxime, respectively, at a concentration of 10(-3) M within 10 min. The higher reactivation efficacies of these oximes were attributed to their acid dissociation constants (pKa). The pKa values of all the oximes were determined spectrophotometrically and correlated with their observed reactivation potential. This method involving the in vitro reactivation of inhibited hAChE may be useful for the screening of new oximes as reactivators.

  12. In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048.

    PubMed

    Chandar, Nellore Bhanu; Ghosh, Shibaji; Lo, Rabindranath; Banjo, Semire; Ganguly, Bishwajit

    2015-12-05

    Organophosphorus compound (OP) tabun is resistant to reactivate by many oxime drugs after the formation of OP-conjugate with AChE. The reactivation of tabun-inhibited mAChE and site-directed mutants by bispyridinium oxime, K048 (N-[4-(4-hydroxyiminomethylpyridinio)butyl]-4-carbamoylpyridinium dibromide) showed that the mutations significantly poor the overall reactivation efficacy of K048. We have unravelled the lowered efficacy of K048 with the tabun-mutant mAChE(Y337A) using docking and steered molecular dynamics (SMD) simulations. The computed results showed some interesting features for the interaction of drug molecule K048 with tabun-mAChE(wild-type) and tabun-mutant mAChE(Y337A). The SMD simulations showed that the active pyridinium ring of K048 is directed towards the phosphorus atom conjugated to the active serine (SUN203) of tabun-mAChE(wild-type). The cradle shaped residues Tyr337-Phe338 present in the choline binding site stabilize the active pyridinium ring of K048 with π-π interaction and the residue Trp86 involved in T-shaped cation-π interaction. However, in the case of tabun-mutant mAChE(Y337A).K048 conjugate, the replacement of aromatic Tyr337 with the aliphatic alanine unit in the choline binding site, however, loses one of the π-π interaction between the active pyridinium ring of K048 and the Tyr337. The placement of aliphatic alanine unit resulted in the displacement of the side chain of Phe338 towards the His447. Such displacement is causing the inaccessibility of the drug towards the phosphorus atom conjugated to the active serine (SUN203) of tabun-mutant mAChE(Y337A). Furthermore, the unbinding of the K048 with SMD studies showed that the active pyridinium ring of the drug undergoes a complete turn along the gorge axis and is directed away from the phosphorus atom conjugated to the active serine of the tabun-mutant mAChE(Y337A). Such effects inside the gorge of tabun-mutant mAChE(Y337A) would lower the efficacy of the drug molecule (K048

  13. Neuronal GABA release and GABA inhibition of ACh release in guinea pig urinary bladder.

    PubMed

    Kusunoki, M; Taniyama, K; Tanaka, C

    1984-04-01

    gamma-Aminobutyric acid (GABA) and glutamate decarboxylase (GAD) are present in the urinary bladder of guinea pigs, and the possible correlation in regional distribution between GABA, GAD, and the number of vesical ganglion cells was studied. Electrical stimulation of the bladder strips produced an increase in the calcium-dependent and tetrodotoxin-sensitive [3H]GABA release and contractions in the strips preloaded with [3H]GABA. Nicotine, acetylcholine chloride (ACh), and hexamethonium did not significantly alter the release of [3H]GABA. Bicuculline significantly enhanced [3H]ACh release and cholinergic components of contractions evoked by electrical stimulation of the bladder strips preloaded with [3H]choline, thereby suggesting that this compound antagonizes the effect of endogenous GABA released during stimulation. GABA and muscimol but not baclofen reduced both the [3H]ACh release and contractions evoked by nicotine. These effects of GABA were antagonized by bicuculline and furosemide but not by alpha- and beta-adrenergic blockers. These findings suggest that GABA may be a noncholinergic nonadrenergic inhibitory neurotransmitter in the urinary bladder. The motility of the urinary bladder is thus inhibited by reducing the release of ACh from the postganglionic cholinergic neurons through bicuculline-sensitive GABA receptors probably associated with the chloride ion channel.

  14. Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates.

    PubMed

    Radić, Zoran; Sit, Rakesh K; Garcia, Edzna; Zhang, Limin; Berend, Suzana; Kovarik, Zrinka; Amitai, Gabriel; Fokin, Valery V; Barry Sharpless, K; Taylor, Palmer

    2013-03-25

    A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.

  15. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-01-04

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  16. Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries.

    PubMed

    Lee, Reggie Hui-Chao; Tseng, Ting-Yi; Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu

    2012-01-01

    Memantine, an NMDA receptor antagonist used for treatment of Alzheimer's disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer's disease.

  17. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction.

  18. Activation of volume-regulated Cl− channels by ACh and ATP in Xenopus follicles

    PubMed Central

    Pérez-Samartín, Alberto L; Miledi, Ricardo; Arellano, Rogelio O

    2000-01-01

    Osmolarity-dependent ionic currents from follicle-enclosed Xenopus oocytes (follicles) were studied using electrophysiological techniques. Whole follicle currents were monitored using a two-electrode voltage clamp and single-channel activity was measured using the patch-clamp technique.In follicles held at -60 mV two chloride currents were activated in external hyposmotic solutions. One was the habitual volume-regulated current elicited by external hyposmolarity (ICl,swell), and the second was a slow and smooth current (Sin) generated by ACh or ATP application.In follicles, the permeability ratios for different anions with respect to Cl− were similar for both ICl,swell and Sin, with a sequence of: SCN− > I− > Br−≥ NO3−≥ Cl− > gluconate ≥ cyclamate > acetate > SO42−.Extracellular ATP blocked the outward component of Sin. Also, extracellular pH modulated the inactivation kinetics of Sin elicited by ACh; e.g. inactivation at +80 mV was ∼100% slower at pH 8.0 compared with that at pH 6.0.Lanthanides inhibited ICl,swell and Sin. La3+ completely inhibited ICl,swell with a half-maximal inhibitory concentration (IC50) of 17 ± 1.9 μm, while Sin was blocked up to 55% with an apparent IC50 of 36 ± 2.6 μm.Patch-clamp recordings in follicular cells showed that hyposmotic challenge opened inward single-channel currents. The single channel conductance (4.7 ± 0.4 pS) had a linear current-voltage relationship with a reversal membrane potential close to −20 mV. This single-channel activity was increased by application of ACh or ATP.The ICl,swell generation was not affected by pirenzepine or metoctramine, and did not affect the purinergic activation of the chloride current named Fin. Thus, ICl,swell was not generated via neurotransmitters released during cellular swelling.All together, equal discrimination for different anions, similar modulatory effects by extracellular pH, the blocking effects by ATP and La3+, and the same single-channel activity

  19. Kynurenic acid inhibits glutamatergic transmission to CA1 pyramidal neurons via α7 nAChR-dependent and -independent mechanisms.

    PubMed

    Banerjee, Jyotirmoy; Alkondon, Manickavasagom; Albuquerque, Edson X

    2012-10-15

    Glutamatergic hypofunction and elevated levels of kynurenic acid (KYNA) in the brain are common features of patients with schizophrenia. In vivo studies indicate that in the hippocampus KYNA decreases glutamate levels, presumably via inhibition of α7 nicotinic receptors (nAChRs). Here we tested the hypothesis that basal synaptic glutamate activity in the hippocampus is regulated by tonically active α7 nAChRs and is sensitive to inhibition by KYNA. To this end, spontaneous excitatory postsynaptic currents (EPSCs), sensitive to AMPA receptor antagonist CNQX (10 μM), were recorded from CA1 pyramidal neurons at -70 mV in rat hippocampal slices. The α7 nAChR antagonists α-bungarotoxin (α-BGT, 100 nM) and methyllycaconitine (MLA, 1-50 nM), and the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV, 50 μM) reduced the frequency of EPSCs. MLA and α-BGT had no effect on miniature EPSCs (mEPSCs). The effect of MLA decreased in the presence of APV (50 μM), with 1 nM MLA becoming completely ineffective. KYNA (1-20 μM) suppressed the frequency of EPSCs, without affecting mEPSCs. The effect of KYNA decreased in the presence of MLA (1 nM) or α-BGT (100 nM), with 1 μM KYNA being devoid of any effect. In the presence of both MLA (10 nM) and APV (50 μM) higher KYNA concentrations (5-20 μM) still reduced the frequency of EPSCs. These results suggest that basal synaptic glutamate activity in CA1 pyramidal neurons is maintained in part by tonically active α7 nAChRs and NMDA receptors and is inhibited by micromolar concentrations of KYNA, acting via α7 nAChR-dependent and -independent mechanisms.

  20. Chlorpyrifos and Chlorpyrifos-Oxon Inhibit Axonal Growth by Interfering with the Morphogenic Activity of Acetylcholinesterase

    PubMed Central

    Yang, Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE−/−) versus wildtype (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE−/− DRG neurons. However, transfection of AChE−/− DRG neurons with cDNA encoding full-length AChE restored the wildtype response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs. PMID:18076960

  1. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.

    PubMed

    Vitorović-Todorović, Maja D; Koukoulitsa, Catherine; Juranić, Ivan O; Mandić, Ljuba M; Drakulić, Branko J

    2014-06-23

    Congeneric set of thirty-eight 4-aryl-4-oxo-2-(N-aryl/cycloalkyl)butanamides has been designed, synthesized and evaluated for acetyl- and butyrylcholinesterase inhibitory activity. Structural variations included cycloalkylamino group attached to C2 position of butanoyl moiety, and variation of amido moiety of molecules. Twelve compounds, mostly piperidino and imidazolo derivatives, inhibited AChE in low micromolar range, and were inactive toward BChE. Several N-methylpiperazino derivatives showed inhibition of BChE in low micromolar or submicromolar concentrations, and were inactive toward AChE. Therefore, the nature of the cycloalkylamino moiety governs the AChE/BChE selectivity profile of compounds. The most active AChE inhibitor showed mixed-type inhibition modality, indicating its binding to free enzyme and to enzyme-substrate complex. Thorough docking calculations of the seven most potent AChE inhibitors from the set, showed that the hydrogen bond can be formed between amide -NH- moiety of compounds and -OH group of Tyr 124. The 10 ns unconstrained molecular dynamic simulation of the AChE-compound 18 complex shows that this interaction is the most persistent. This is, probably, the major anchoring point for the binding.

  2. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  3. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    SciTech Connect

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-04-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.

  4. ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway

    PubMed Central

    1996-01-01

    AChR-inducing activity (ARIA)/heregulin, a ligand for erbB receptor tyrosine kinases (RTKs), is likely to be one nerve-supplied signal that induces expression of acetylcholine receptor (AChR) genes at the developing neuromuscular junction. Since some RTKs act through Ras and phosphatidylinositol 3-kinase (PI3K), we investigated the role of these pathways in ARIA signaling. Expression of activated Ras or Raf mimicked ARIA-induction of AChR epsilon subunit genes in muscle cells; whereas dominant negative Ras or Raf blocked the effect of ARIA. ARIA rapidly activated erk1 and erk2 and inhibition of both erks also abolished the effect of ARIA. ARIA stimulated association of PI3K with erbB3, expression of an activated PI3K led to ARIA-independent AChR epsilon subunit expression, and inhibition of PI3K abolished the action of ARIA. Thus, synaptic induction of AChR genes requires activation of both Ras/MAPK and PI3K signal transduction pathways. PMID:8707830

  5. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  6. Alkaloids from Habranthus tubispathus and H. jamesonii, two amaryllidaceae with acetyl- and butyrylcholinesterase inhibition activity.

    PubMed

    Cavallaro, Valeria; Alza, Natalia P; Murray, María G; Murray, Ana P

    2014-02-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. Plants of the Amaryllidaceae family are known to synthesize alkaloids, which have shown AChE inhibitory activity. Habranthus tubispathus and H. jamesonii are two Amaryllidaceae that can be found growing wild to the southwest of Buenos Aires in Argentina. Acetyl- and butyrylcholinesterase inhibition was observed for the extracts obtained from bulbs of H. tubispathus and bulbs and aerial parts of H. jamesonii. The strongest cholinesterase inhibition was observed for the alkaloid extract obtained from the aerial parts for H. jamesonii (AChE IC50 = 0.7 microg/mL; BChE IC50 = 6.7 microg/mL). The AChE inhibition observed for H. jamesonii could be explained by the presence of galanthamine and sanguinine, two potent AChE inhibitors. The levels of lycorine and hippeastidine, moderate AChE inhibitors, observed in the bulbs of H. tubispathus could be responsible for the significant AChE inhibition observed. The alkaloids present in these Amaryllidaceae were identified by means of GC-MS analysis. In the case of H. tubispathus, hippeastidine and 3-O-demethylhippeastidine, were isolated and completely characterized by 1H and 13C NMR spectroscopy.

  7. The physicochemical properties and the in vivo AChE inhibition of two potential anti-Alzheimer agents, bis(12)-hupyridone and bis(7)-tacrine.

    PubMed

    Yu, Hua; Li, Wen-Ming; Kan, Kelvin K W; Ho, Jason M K; Carlier, Paul R; Pang, Yuan-Ping; Gu, Zhe-Ming; Zhong, Zuo; Chan, Kelvin; Wang, Yi-Tao; Han, Yi-Fan

    2008-01-07

    The lipophilicity and solubility profiles of bis(12)-hupyridone (B12H) and bis(7)-tacrine (B7T), two novel acetylcholinesterase inhibitors dimerized from huperzine A fragments and tacrine, respectively, were investigated over a broad pH range. Lipophilicity was assessed by both shake flask method with 1-octanol-water system and a reverse-phase HPLC system with methanol-water as mobile phase. The former method was used for determining the lipophilicities of the ionized forms (log D) of the dimers while the latter method was used for that of the neutral forms (log P). The log P values for B12H and B7T were found to be 5.4 and 8.2, respectively, indicating that the two dimers are highly lipophilic. The solubilities of both dimers were found to be affected by pH. The solubility of B12H was >1.41 mg/ml when the pH was <7, but <0.06 mg/ml when the pH was >8. The solubility of B7T was >0.26 mg/ml when the pH was <9, but <0.005 mg/ml when the pH was >12. The ionic strength of a solution could affect the solubilities considerably (11.16 mg/ml for B12H and 12.71 mg/ml for B7T in water; 2.07 mg/ml for B12H and 0.36 mg/ml for B7T in saline). The ionization constants (pK(a)) of the two dimers were determined by UV spectrophotometry. Both dimers were found to have two pK(a) values: 7.5+/-0.1 (pK(a1)) and 10.0+/-0.2 (pK(a2)) for B12H; and 8.7+/-0.1 (pK(a1)) and 10.7+/-0.4 (pK(a2)) for B7T. Furthermore, an in vivo pharmacological assay conducted in mice showed that a maximum AChE inhibition occurred 15 min after the single-dose and intraperitoneal administration of either dimer. This indicates that the two dimers may easily cross the blood-brain barrier. In summary, these physiochemical characteristics suggest that the two dimers may be promising candidates for the development of better drugs for Alzheimer's disease.

  8. Sperm Epidermal Growth Factor Receptor (EGFR) Mediates α7 Acetylcholine Receptor (AChR) Activation to Promote Fertilization

    PubMed Central

    Jaldety, Yael; Glick, Yair; Orr-Urtreger, Avi; Ickowicz, Debby; Gerber, Doron; Breitbart, Haim

    2012-01-01

    To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca2+ influx, and the acrosome reaction. PMID:22577141

  9. Nicotine activates YAP1 through nAChRs mediated signaling in esophageal squamous cell cancer (ESCC).

    PubMed

    Zhao, Yue; Zhou, Wei; Xue, Liyan; Zhang, Weimin; Zhan, Qimin

    2014-01-01

    Cigarette smoking is an established risk factor for esophageal cancers. Yes-associated protein 1 (YAP1), the key transcription factor of the mammalian Hippo pathway, has been reported to be an oncogenic factor for many cancers. In this study, we find nicotine administration can induce nuclear translocation and activation of YAP1 in ESCC. Consistently, we observed nuclear translocation and activation of YAP1 by knockdown of CHRNA3, which is a negative regulator of nicotine signaling in bronchial and esophageal cancer cells. Nicotine administration or CHRNA3 depletion substantially increased proliferation and migration in esophageal cancer cells. Interestingly, we find that YAP1 physically interacts with nAChRs, and nAChRs-signaling dissociates YAP1 from its negative regulatory complex composed with α-catenin, β-catenin and 14-3-3 in the cytoplasm, leading to upregulation and nuclear translocation of YAP1. This process likely requires PKC activation, as PKC specific inhibitor Enzastaurin can block nicotine induced YAP1 activation. In addition, we find nicotine signaling also inhibits the interaction of YAP1 with P63, which contributes to the inhibitory effect of nicotine on apoptosis. Using immunohistochemistry analysis we observed upregulation of YAP1 in a significant portion of esophageal cancer samples. Consistently, we have found a significant association between YAP1 upregulation and cigarette smoking in the clinical esophageal cancer samples. Together, these findings suggest that the nicotine activated nAChRs signaling pathway which further activates YAP1 plays an important role in the development of esophageal cancer, and this mechanism may be of a general significance for the carcinogenesis of smoking related cancers.

  10. Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na(+), K(+)-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice.

    PubMed

    Baldissera, Matheus D; Souza, Carine F; Grando, Thirssa H; Moreira, Karen L S; Schafer, Andressa S; Cossetin, Luciana F; da Silva, Ana P T; da Veiga, Marcelo L; da Rocha, Maria Izabel U M; Stefani, Lenita M; da Silva, Aleksandro S; Monteiro, Silvia G

    2017-02-01

    The aim of this study was to investigate the effect of nerolidol-loaded nanospheres (N-NS) on the treatment of memory impairment caused by Trypanosoma evansi in mice, as well as oxidative stress, and Na(+), K(+)-ATPase and acetylcholinesterase (AChE) activities in brain tissue. Animals were submitted to behavioral tasks (inhibitory avoidance task and open-field test) 4 days postinfection (PI). Reactive oxygen species (ROS) and thiobarbituric acid-reactive substance (TBARS) levels and catalase (CAT), superoxide dismutase (SOD), Na(+), K(+)-ATPase and AChE activities were measured on the fifth-day PI. T. evansi-infected mice showed memory deficit, increased ROS and TBARS levels and SOD and AChE activities, and decreased CAT and Na(+), K(+)-ATPase activities compared to uninfected mice. N-NS prevented memory impairment and oxidative stress parameters (except SOD activity), while free nerolidol (N-F) restored only CAT activity. Also, N-NS treatment was able to prevent alterations in Na(+), K(+)-ATPase and AChE activities caused by T. evansi infection. A significantly negative correlation was observed between memory and ROS production (p < 0.001; r = -0.941), as well as between memory and AChE activity (p < 0.05; r = -0.774). On the contrary, a significantly positive correlation between memory and Na(+), K(+)-ATPase activity was observed (p < 0.01; r = 0.844). In conclusion, N-NS was able to reverse memory impairment and to prevent increased ROS and TBARS levels due to amelioration of Na(+), K(+)-ATPase and AChE activities and to activation of the antioxidant enzymes, respectively. These results suggest that N-NS treatment may be a useful strategy to treat memory dysfunction and oxidative stress caused by T. evansi infection.

  11. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO.

  12. PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting.

    PubMed

    Jayakar, Selwyn S; Pugh, Phyllis C; Dale, Zack; Starr, Eric R; Cole, Samantha; Margiotta, Joseph F

    2014-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such

  13. Inhibition kinetics of certain enzymes in the nervous tissue of vector snail Lymnaea acuminata by active molluscicidal components of Sapindus mukorossi and Terminalia chebula.

    PubMed

    Upadhyay, Aparna; Singh, Dinesh K

    2011-10-01

    Effect of active molluscicidal components of Sapindus mukorossi and Terminalia chebula on the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activity in the nervous tissue of freshwater snail Lymnaea acuminata were studied. In vivo and in vitro exposure of saponin (active component of S. mukorossi pericarp) and tannic acid (active component of T. chebula) significantly inhibited the AChE, ACP and ALP activity in the nervous tissue of L. acuminata. The inhibition kinetics of these enzymes indicate that saponin and tannic acid caused competitive and competitive-non-competitive inhibition of AChE, respectively. Saponin also caused competitive and competitive-non-competitive inhibition of ACP and ALP, respectively, whereas tannic acid caused competitive-non-competitive inhibition of ACP and ALP. Thus the inhibition of AChE, ACP and ALP by saponin and tannic acid in the nervous tissue of L. acuminata may be the cause of molluscicidal activity of S. mukorossi and T. chebula.

  14. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  15. Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro.

    PubMed

    Guo, Ava J Y; Xie, Heidi Q; Choi, Roy C Y; Zheng, Ken Y Z; Bi, Cathy W C; Xu, Sherry L; Dong, Tina T X; Tsim, Karl W K

    2010-09-06

    Acetylcholinesterase (AChE) inhibitors are widely used for the treatment of Alzheimer's disease (AD). Several AChE inhibitors, e.g. rivastigmine, galantamine and huperzine are originating from plants, suggesting that herbs could potentially serve as sources for novel AChE inhibitors. Here, we searched potential AChE inhibitors from flavonoids, a group of naturally occurring compounds in plants or traditional Chinese medicines (TCM). Twenty-one flavonoids, covered different subclasses, were tested for their potential function in inhibiting AChE activity from the brain in vitro. Among all the tested flavonoids, galangin, a flavonol isolated from Rhizoma Alpiniae Officinarum, the rhizomes of Alpiniae officinarum (Hance.) showed an inhibitory effect on AChE activity with the highest inhibition by over 55% and an IC(50) of 120 microM and an enzyme-flavonoid inhibition constant (K(i)) of 74 microM. The results suggest that flavonoids could be potential candidates for further development of new drugs against AD.

  16. Hypocretin-1 causes G protein activation and increases ACh release in rat pons.

    PubMed

    Bernard, René; Lydic, Ralph; Baghdoyan, Helen A

    2003-10-01

    The effects of the arousal-promoting peptide hypocretin on brain stem G protein activation and ACh release were examined using 16 adult Sprague-Dawley rats. In vitro[35S]GTPgammaS autoradiography was used to test the hypothesis that hypocretin-1-stimulated G protein activation is concentration-dependent and blocked by the hypocretin receptor antagonist SB-334867. Activated G proteins were quantified in dorsal raphe nucleus (DR), locus coeruleus (LC) and pontine reticular nucleus oral part (PnO) and caudal part (PnC). Concentration-response data revealed a significant (P < 0.001) effect of hypocretin-1 (2-2000 nm) in all brain regions examined. Maximal increases over control levels of [35S]GTPgammaS binding were 37% (DR), 58% (LC), 52% (PnO) and 44% (PnC). SB-334867 (2 micro m) significantly (P < 0.002) blocked hypocretin-1 (200 nm)-stimulated [35S]GTPgammaS binding in all four nuclei. This is the first autoradiographic demonstration that hypocretin-1 activates G proteins in arousal-related brain stem nuclei as a result of specific receptor interactions. This finding suggests that some hypocretin receptors in brain stem couple to inhibitory G proteins. In vivo microdialysis was used to test the hypothesis that PnO administration of hypocretin-1 increases ACh release in PnO. Dialysis delivery of hypocretin-1 (100 micro m) significantly (P < 0.002) increased (87%) ACh release. This finding is consistent with the interpretation that one mechanism by which hypocretin promotes arousal is by enhancing cholinergic neurotransmission in the pontine reticular formation.

  17. Synthesis and in vitro kinetic study of novel mono-pyridinium oximes as reactivators of organophosphorus (OP) inhibited human acetylcholinesterase (hAChE).

    PubMed

    Valiveti, Aditya Kapil; Bhalerao, Uma M; Acharya, Jyotiranjan; Karade, Hitendra N; Gundapu, Raviraju; Halve, Anand K; Kaushik, Mahabir Parshad

    2015-07-25

    A series of mono pyridinium oximes linked with arenylacetamides as side chains were synthesized and their in vitro reactivation potential was evaluated against human acetylcholinesterase (hAChE) inhibited by organophosphorus inhibitors (OP) such as sarin, VX and tabun. The reactivation data of the synthesized compounds were compared with those obtained with standard reactivators such as 2-PAM and obidoxime. The dissociation constant (KD) and specific reactivity (kr) of the oximes were also determined by performing reactivation kinetics against OP inhibited hAChE. Among the synthesized compounds, oximes 1-(2-(4-cyanophenylamino)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium chloride (12a) and 4-((hydroxyimino)methyl)-1-(2-(4-methoxyphenylamino)-2-oxoethyl)pyridinium chloride (2a) were found most potent reactivators for hAChE inhibited by sarin. In case of VX inhibited hAChE majority of the oximes have shown good reactivation efficacies. Among these oximes 1-(2-(benzylamino)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium chloride (18a), 4-((hydroxyimino)methyl)-1-(2-(4-(methoxycarbonyl)phenylamino)-2-oxoethyl)pyridinium-chloride (14a) and 12a were found to surpass the reactivation potential of 2-PAM and obidoxime. However, the synthesized oximes showed marginal reactivation efficacies in case of tabun inhibited hAChE. The pKa value of the oximes were determined and correlated with their observed reactivation potential.

  18. The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery.

    PubMed

    Papke, Roger L; Dwoskin, Linda P; Crooks, Peter A

    2007-04-01

    Cigarette smoking and other forms of tobacco use deliver an array of pharmacologically active alkaloids, including nicotine and ultimately various metabolites of these substances. While nornicotine is a significant component in tobacco as well as a minor systemic metabolite of nicotine, nornicotine appears to be N-demethylated locally in the brain where it accumulates at relatively high levels after chronic nicotine administration. We have now examined the effects of nornicotine on specific combinations of neuronal nicotinic acetylcholine receptor (nAChR) subunits expressed in Xenopus oocytes and compared these responses to those evoked by acetylcholine and nicotine. Of the nAChR subtypes studied, we have found that alpha7 receptors are very responsive to nornicotine (EC50 approximately 17 micromol/L I(max) 50%, compared with acetylcholine (ACh)). nAChRs containing the ligand-binding domain of the alpha6 subunits (in the form of an alpha6/alpha3 chimera) are also strongly responsive to nornicotine (EC50 approximately 4 micromol/L I(max) 50%, compared with ACh). Alpha7-type nAChRs have been suggested to be potential therapeutic targets for Alzheimer's disease, schizophrenia and possibly other pathologies. nAChRs containing alpha6 subunits have been suggested to have a role in nicotine-evoked dopamine release. Thus, understanding the actions of nornicotine in the brain may have significance for both emerging therapeutics and the management of nicotine dependence.

  19. In Vitro Activity of a New Isothiazoloquinolone, ACH-702, against Mycobacterium tuberculosis and Other Mycobacteria▿

    PubMed Central

    Molina-Torres, Carmen A.; Ocampo-Candiani, Jorge; Rendón, Adrian; Pucci, Michael J.; Vera-Cabrera, Lucio

    2010-01-01

    In this work, we describe the activity of ACH-702 against clinical isolates of Mycobacterium tuberculosis and six different nontuberculous mycobacteria. The MIC50 and MIC90 of both susceptible and drug-resistant M. tuberculosis strains tested were 0.0625 and 0.125 μg/ml, respectively. The MIC50 and MIC90 values for Mycobacterium fortuitum isolates were 0.0625 μg/ml in both cases; Mycobacterium avium complex isolates showed MIC50 and MIC90 values of 0.25 and 4 μg/ml, respectively. PMID:20231398

  20. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE.

    PubMed

    Kovarik, Zrinka; Maček, Nikolina; Sit, Rakesh K; Radić, Zoran; Fokin, Valery V; Barry Sharpless, K; Taylor, Palmer

    2013-03-25

    Organophosphates (OP) inhibit acetylcholinesterase (AChE, EC 3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM.

  1. Synthesis and structure-activity relationship study of tacrine-based pyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX.

    PubMed

    Pourabdi, Ladan; Khoobi, Mehdi; Nadri, Hamid; Moradi, Alireza; Moghadam, Farshad Homayouni; Emami, Saeed; Mojtahedi, Mohammad M; Haririan, Ismaeil; Forootanfar, Hamid; Ameri, Alieh; Foroumadi, Alireza; Shafiee, Abbas

    2016-11-10

    A series of tacrine-based pyrazolo[4',3':5,6]pyrano[2,3-b]quinolines and related compounds were designed and synthesized for targeting AChE, BuChE and 15-LOX enzymes in the field of Alzheimer's disease therapy. Most of compounds showed potent activity against cholinesterases and mild potency toward 15-LOX enzyme. In particular, compounds 29, 32 and 40 displayed inhibition at nano-molar level against AChE and BuChE (IC50s = 0.005-0.08 μM), being more potent than reference drug tacrine. Moreover, compound 32 with IC50 value of 31 μM was the most potent compound against 15-LOX. The cytotoxicity assay on HepG2 cells revealed that compounds 29 and 32 showed no significant cytotoxic activity even at concentration of 50 μM. The cytotoxicity of compounds 29 and 32 was significantly less than that of tacrine at higher concentrations.

  2. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme.

  3. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  4. Measurement of p-nitrophenyl acetate esterase activity (EA), total antioxidant capacity (TAC), total oxidant status (TOS) and acetylcholinesterase (AChE) in gills and digestive gland of Mytilus galloprovincialis exposed to binary mixtures of Pb, Cd and Cu.

    PubMed

    Franco-Martinez, Lorena; Romero, Diego; García-Navarro, José A; Tecles, Fernando; Teles, Mariana; Tvarijonaviciute, Asta

    2016-12-01

    The aims of the present work were (1) to evaluate oxidative stress biomarkers and AChE in two tissues of wild mussel (Mytilus galloprovincialis) of high biochemical activity and accumulation capacity (gills and digestive gland) and (2) to study the behaviour of these biomarkers in presence of heavy metals. For this, EA, TOS, TAC and AChE were measured in tissues of mussels exposed to binary combination of Pb, Cd and Cu. Mussels (n = 36) were exposed to one of the binary mixtures of Pb (1000 μg L(-1)), Cd (100 μg L(-1)) and Cu (100 μg L(-1)) for 7 days, under controlled conditions. Gills and digestive gland were extracted and frozen at -80 °C until analysis. The automatic methods employed for the measurement of EA, TAC, TOS and AChE in M. galloprovincialis revealed higher levels of these biomarkers in digestive gland than gills. Study results suggest that gills would be the tissue of election for study oxidative stress markers, whereas digestive tissue should be selected for AChE measurements in case of evaluation of combined metal toxicity in mussels.

  5. Differential effects of lysophosphatidylcholine and ACh on muscarinic K+, non-selective cation and Ca2+ currents in guinea-pig atrial cells

    PubMed Central

    Li, Libing; Matsuoka, Isao; Sakamoto, Kazuho; Kimura, Junko

    2016-01-01

    Abstract We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh). PMID:26911304

  6. Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs.

    PubMed

    Murthy, Vidya; Taranda, Julián; Elgoyhen, A Belén; Vetter, Douglas E

    2009-12-01

    Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) alpha9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR alpha9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in alpha9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the alpha9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult alpha9 null mice. Finally, by using mice expressing the nondesensitizing alpha9 L9'T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation.

  7. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production.

    PubMed

    Dong, Miao-Wu; Li, Ming; Chen, Jie; Fu, Tong-Tong; Lin, Ke-Zhi; Ye, Guang-Hua; Han, Jun-Ge; Feng, Xiang-Ping; Li, Xing-Biao; Yu, Lin-Sheng; Fan, Yan-Yan

    2016-04-01

    Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNF-α production from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNF-α production in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNF-α production from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNF-α production, which may be closely associated with the blockage of NF-κB activation in macrophages.

  8. Synthesis and in vitro kinetic evaluation of N-thiazolylacetamido monoquaternary pyridinium oximes as reactivators of sarin, O-ethylsarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Valiveti, Aditya Kapil; Bhalerao, Uma M; Acharya, Jyotiranjan; Karade, Hitendra N; Acharya, Badri Narayan; Raviraju, G; Halve, Anand K; Kaushik, Mahabir Parshad

    2015-08-01

    Presently available medications for treatment of organiphosphorus poisoning are not sufficiently effective due to various pharmacological and toxicological reasons. In this regard, herein we report the synthesis of a series of N-thiazolylacetamide monoquaternary pyridinium oximes and its analogs (1a-1b to 6a-6b) with diversely substituted thiazole ring and evaluation of their in vitro reactivation efficacies against nerve agent (sarin, O-ethylsarin and VX) inhibited human erythrocyte acetylcholinesterase (hAChE). Reactivation kinetics was performed to determine dissociation constant (KD), reactivity rate constant (kr) and the second order rate constant (kr2) for all the compounds and compared their efficacies with commercial antidotes viz. 2-PAM and obidoxime. All the newly synthesized oximes were evaluated for their physicochemical parameters (pKa) and correlated with their respective reactivation efficacies to assess the capability of the oxime reactivator. Three of these novel compounds showed promising reactivation efficacies toward OP inhibited hAChE. Molecular docking studies were performed in order to correlate the reactivation efficacies with their interactions in the active site of the AChE.

  9. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  10. Further studies on the control of ACh sensitivity by muscle activity in the rat.

    PubMed Central

    Lomo, T; Westgaard, R H

    1975-01-01

    1. Denervated rat soleus muscles were stimulated directly through chronically implanted electrodes and the influence of different amounts and patterns of stimuli on the acetylcholine (ACh) sensitivity of the muscle was studied. The number of stimuli was varied by giving similar trains of stimuli (10 Hz for 10 sec) at different intervals (0 to 12 hr). The pattern of stimulation was varied by giving different trains of stimuli (100 Hz for 1 sec, 10 Hz for 10 sec and 1 Hz continuously) as the same average frequency of stimulation (1 Hz). 2. Stimulation usually started 5 days after the denervation when ACh hypersensitivity was fully developed. Most stimulation procedures reduced extrajunctional ACh sensitivity to normal or below normal values within 5-21 days, and these levels were maintained on prolonged stimulation. 3. The rate at which ACh hypersensitivity disappeared increased with increasing amount and frequency of stimulation. However, as few as 100 stimuli given every 5-5 hr for 3 weeks caused a tenfold reduction of sensitivity. 4. The stimulation had little or no effect on the ACh sensitivity at the end plate. Along the rest of the fibre the sensitivity was reduced at approximately the same rate except near the tendons where it appeared to fall more slowly in some fibres. 5. The stimulation restored the resting membrane potential of the denervated fibres to normal. PMID:1206569

  11. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    reactivators, we conducted a QSAR analysis for oxime reactivation of AChE inhibited by OP agents and their analogues. Our objective was to identify...reactivation as tabun-inhibited AChE. QSAR analysis of oxime reactivation of AChE inhibited by these OP compounds and others suggested that the presence of...organophosphorus; QSAR , quan- titative structure–activity relationship; VR, O-isobutyl methylphosphonofluoridate. ⇑ Corresponding author. Tel.: +1 410

  12. Huperzia quadrifariata and Huperzia reflexa alkaloids inhibit acetylcholinesterase activity in vivo in mice brain.

    PubMed

    Konrath, E L; Neves, B M; Passos, C Dos S; Lunardi, P S; Ortega, M G; Cabrera, J L; Gonçalves, C A; Henriques, A T

    2012-11-15

    Huperzine A, a Lycopodium alkaloid produced by Chinese folk herb Huperzia serrata (Lycopodiaceae), has been shown to be a promising agent for the treatment of Alzheimer's disease due to its potent acetylcholinesterase (AChE) activity, as well its efficacy in the treatment of memory of aged patients. Thus, the effects of two Huperzia species of habitats in Brazil (H. quadrifariata and H. reflexa) with described in vitro AChE inhibition activities were studied and their effects on mice brain AChE inhibition were determined after a single intraperitoneal (i.p.) injection. The alkaloid extracts were administered to mice in various doses (10, 1 and 0.5mg/kg) and acetylcholinesterase activity was measured post mortem in two brain areas using the Ellman's colorimetric method. The AChE activity was found to be significantly reduced in both the cortex and hippocampus, although this activity was less potent than that of reference inhibitor huperzine A (0.5mg/kg). Thus, it appears that H. quadrifariata and H. reflexa alkaloid extracts, shown to inhibit acetylcholinesterase in vitro, also have very potent in vivo effects, suggesting that the Huperzia species may still constitute a promising source of compounds with pharmaceutical interest for Alzheimer's disease.

  13. Design, synthesis, and characterization of novel, nonquaternary reactivators of GF-inhibited human acetylcholinesterase.

    PubMed

    McHardy, Stanton F; Bohmann, Jonathan A; Corbett, Michael R; Campos, Bismarck; Tidwell, Michael W; Thompson, Paul Marty; Bemben, Chris J; Menchaca, Tony A; Reeves, Tony E; Cantrell, William R; Bauta, William E; Lopez, Ambrosio; Maxwell, Donald M; Brecht, Karen M; Sweeney, Richard E; McDonough, John

    2014-04-01

    The goal of this research was to identify structurally novel, non-quaternarypyridinium reactivators of GF (cyclosarin)-inhibited hAChE that possess the capacity to mediate in vitro reactivation of GF-inhibited human acetylcholinesterase (hAChE). New compounds were designed, synthesized and assessed in GF-inhibited hAChE assays. Structure activity relationships for AChE binding and reactivation of GF-inhibited hAChE were developed. Lead compounds from two different chemical series, represented by compounds 17 and 38, displayed proficient in vitro reactivation of GF-inhibited hAChE, while also possessing low inhibition of native enzyme.

  14. Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE).

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Sahu, Arvind Kumar; Acharya, Jyotiranjan; Satnami, Manmohan L; Ghosh, Kallol K

    2016-11-25

    Post-treatment of organophosphate (OP) poisoning involves the application of oxime reactivator as an antidote. Structurally different oximes are widely studied to examine their kinetic and mechanistic behavior against OP-inhibited cholinesterase enzyme. A series of structurally related 1,3-disubstituted-2-[(hydroxyiminomethyl)alkyl]imidazolium halides (5a-5e, 9a-9c) were synthesized and further evaluated for their in-vitro reactivation ability to reactivate sarin- and VX-inhibited human acetylcholinesterase (hAChE). The observed results were compared with the reactivation efficacy of standard reactivators; 2-PAM, obidoxime and HI-6. Amongst the synthesized oximes, 5a, 9a and 9b were found to be most potent reactivators against sarin-inhibited hAChE while in case of VX only 9a exhibited comparable reactivity with 2-PAM. Incorporation of pyridinium ring to the imidazole ring resulted in substantial increase in the reactivation strength of prepared reactivator. Physicochemical properties of synthesized reactivators have also been evaluated.

  15. Activation of Functional α7-Containing nAChRs in Hippocampal CA1 Pyramidal Neurons by Physiological Levels of Choline in the Presence of PNU-120596

    PubMed Central

    Kalappa, Bopanna I.; Gusev, Alexander G.; Uteshev, Victor V.

    2010-01-01

    Background The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. Methodology/Principal Findings An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal

  16. Functional Analysis and Molecular Docking studies of Medicinal Compounds for AChE and BChE in Alzheimer’s Disease and Type 2 Diabetes Mellitus

    PubMed Central

    Kaladhar, Dowluru SVGK; Yarla, Nagendra Sastry; Anusha, N.

    2013-01-01

    Acetylcholinesterase and Butyrylcholinesterase share unravelling link with components of metabolic syndromes that’s characterised by low levels of HDL cholesterol, obesity, high fast aldohexose levels, hyper-trigliceridaemia and high blood pressure, by regulation of cholinergic transmission and therefore the enzyme activity within a living system. The phosphomotifs associated with amino acid and tyrosine binding motifs in AChE and BChE were known to be common. Phylogenetic tree was constructed to these proteins usinf UPGMA and Maximum Likelihood methods in MEGA software has shown interaction of AChE and BChE with ageing diseases like Alzheimer’s disease and Diabetes. AChE has shown closely related to BChE, retinol dehydrogenase and β-polypeptide. The present studies is also accomplished that AChE, BChE, COLQ, HAND1, APP, NLGN2 and NGF proteins has interactions with diseases such as Alzheimer’s and D2M using Pathwaylinker and STRING. Medicinal compounds like Ortho-7, Dibucaine and HI-6 are predicted as good targets for modeled AChE and BChE proteins based on docking studies. Hence perceptive studies of cholinesterase structure and the biological mechanisms of inhibition are necessary for effective drug development. PMID:23936743

  17. Novel AChE Inhibitors for Sustainable Insecticide Resistance Management

    PubMed Central

    Alout, Haoues; Labbé, Pierrick; Berthomieu, Arnaud; Djogbénou, Luc; Leonetti, Jean-Paul; Fort, Philippe; Weill, Mylène

    2012-01-01

    Resistance to insecticides has become a critical issue in pest management and it is particularly chronic in the control of human disease vectors. The gravity of this situation is being exacerbated since there has not been a new insecticide class produced for over twenty years. Reasoned strategies have been developed to limit resistance spread but have proven difficult to implement in the field. Here we propose a new conceptual strategy based on inhibitors that preferentially target mosquitoes already resistant to a currently used insecticide. Application of such inhibitors in rotation with the insecticide against which resistance has been selected initially is expected to restore vector control efficacy and reduce the odds of neo-resistance. We validated this strategy by screening for inhibitors of the G119S mutated acetylcholinesterase-1 (AChE1), which mediates insensitivity to the widely used organophosphates (OP) and carbamates (CX) insecticides. PyrimidineTrione Furan-substituted (PTF) compounds came out as best hits, acting biochemically as reversible and competitive inhibitors of mosquito AChE1 and preferentially inhibiting the mutated form, insensitive to OP and CX. PTF application in bioassays preferentially killed OP-resistant Culex pipiens and Anopheles gambiae larvae as a consequence of AChE1 inhibition. Modeling the evolution of frequencies of wild type and OP-insensitive AChE1 alleles in PTF-treated populations using the selectivity parameters estimated from bioassays predicts a rapid rise in the wild type allele frequency. This study identifies the first compound class that preferentially targets OP-resistant mosquitoes, thus restoring OP-susceptibility, which validates a new prospect of sustainable insecticide resistance management. PMID:23056599

  18. Visible-light-activated photoelectrochemical biosensor for the study of acetylcholinesterase inhibition induced by endogenous neurotoxins.

    PubMed

    Huang, Qilin; Chen, Hua; Xu, Lili; Lu, Danqin; Tang, Linlin; Jin, Litong; Xu, Zhiai; Zhang, Wen

    2013-07-15

    In this report, a novel visible-light-activated photoelectrochemical biosensor was fabricated to study the inhibition of acetylcholinesterase (AChE) activity induced by two endogenous neurotoxins, 1(R)-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [(R)-Sal] and 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetra-hydroisoquinoline [(R)-NMSal], which have drawn much attention in the study of the pathogenesis of neurodegenerative diseases such as Parkinson's disease. The photoelectrode was prepared by three steps, as follows. At first, nitrogen and fluorine co-doped TiO2 nanotubes (TNs) were obtained by anodic oxidation of a Ti sheet. Secondly, silver nanoparticles (AgNPs) were deposited onto the TNs through a microwave-assisted heating polyol (MAHP) process. At last, AChE was immobilized on the obtained photoelectrode and the biosensor was marked as AChE/Ag/NFTNs. Due to the nitrogen and fluorine co-doping, the photoelectrochemical biosensors can produce high photocurrent under visible light irradiation. Moreover, the presence of AgNPs greatly increased the photocurrent response of the biosensor. AChE/Ag/NFTNs hybrid system was used to study AChE inhibition induced by (R)-Sal and (R)-NMSal. The result proved that both (R)-Sal and (R)-NMSal exhibited mixed and reversible inhibition against AChE. This strategy is of great significance for the development of novel photoelectrochemical biosensors in the future.

  19. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors.

    PubMed

    Herkert, Nadja M; Eckert, Saskia; Eyer, Peter; Bumm, Rudolf; Weber, Georg; Thiermann, Horst; Worek, Franz

    2008-04-18

    The efficacy of oxime treatment in soman poisoning is limited due to rapid aging of inhibited acetylcholinesterase (AChE). Pre-treatment with carbamates was shown to improve antidotal treatment substantially. Recently, by using a dynamically working in vitro model with real-time determination of membrane-bound AChE activity, we were able to demonstrate that pre-inhibition of human erythrocyte AChE with pyridostigmine or physostigmine resulted in a markedly higher residual AChE activity after inhibition by soman or paraoxon than in the absence of reversible inhibitors. The purpose of the present study was to compare the effect of carbamate pre-treatment and soman challenge with human erythrocyte and muscle homogenate AChE. Both enzyme sources were immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. AChE activity was continuously analyzed in a flow-through detector. Pre-inhibition of AChE with pyridostigmine or physostigmine resulted in a concentration-dependent increase in carbamylation, residual activity after soman inhibition and fraction of decarbamylation AChE after discontinuation of the inhibitors without differences between human erythrocyte and muscle AChE. This data support the view that human erythrocyte AChE is an adequate surrogate marker for synaptic AChE in OP poisoning.

  20. Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    PubMed

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-05-01

    We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.

  1. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  2. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  3. Synthesis, Biological Evaluation, and Computational Studies of Tri- and Tetracyclic Nitrogen-Bridgehead Compounds as Potent Dual-Acting AChE Inhibitors and hH3 Receptor Antagonists

    PubMed Central

    2014-01-01

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer’s disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure–activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R. PMID:24422467

  4. Evaluation of nine oximes on in vivo reactivation of blood, brain, and tissue cholinesterase activity inhibited by organophosphorus nerve agents at lethal dose.

    PubMed

    Shih, Tsung-Ming; Skovira, Jacob W; O'Donnell, John C; McDonough, John H

    2009-09-01

    The capability of several oximes (HI-6, HLö7, MMB-4, TMB-4, carboxime, ICD 585, ICD 692, ICD 3805, and 2-PAM) to reactivate in vivo AChE inhibited by the nerve agents sarin, cyclosarin, VX, or VR in blood, brain regions, and peripheral tissues in guinea pigs was examined and compared. Animals were injected subcutaneously with 1.0 LD(50) of sarin, cyclosarin, VR, or VX, and treated intramuscularly 5 min later with one of these compounds. Toxic signs and lethality were monitored, and tissue AChE activities were determined at 60 min after nerve agent. The animals exposed to sarin or cyclosarin, alone or with non-oxime treatment, some died within 60 min; however, when treated with an oxime, no animal died. For VR or VX, all animals survived for 60 min after exposure, with or without non-oxime or oxime therapy. These nerve agents caused differential degrees of inhibition: in whole blood sarin = cyclosarin > VR = VX; in brain regions sarin > cyclosarin > VX > VR; and in peripheral tissues sarin > VX > cyclosarin > VR. These oximes exhibited differential potency in reactivating nerve agent-inhibited AChE in various peripheral tissues, but not AChE activity in the brain regions. There was no difference in the AChE reactivating potency between the dichloride and dimethanesulfonate salts of HI-6. AChE inhibited by sarin was the most and cyclosarin the least susceptible to oxime reactivation. Overall, MMB-4 appeared to be, among all oximes tested, the most effective in vivo AChE reactivator against the broadest spectrum of nerve agents.

  5. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  6. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    SciTech Connect

    Zhang, Lin; Long, Linjuan; Zhang, Weiying; Du, Dan; Lin, Yuehe

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  7. AChE and the amyloid precursor protein (APP) - Cross-talk in Alzheimer's disease.

    PubMed

    Nalivaeva, Natalia N; Turner, Anthony J

    2016-11-25

    The amyloid precursor protein (APP) and acetylcholinesterase (AChE) are multi-faceted proteins with a wide range of vital functions, both crucially linked with the pathogenesis of Alzheimer's disease (AD). APP is the precursor of the Aβ peptide, the pathological agent in AD, while AChE is linked to its pathogenesis either by increasing cholinergic deficit or exacerbating Aβ fibril formation and toxicity. As such, both proteins are the main targets in AD therapeutics with AChE inhibitors being currently the only clinically available AD drugs. In our studies we have demonstrated an important inter-relation in functioning of these proteins. Both can be released from the cell membrane and we have shown that AChE shedding involves a metalloproteinase-mediated mechanism which, like the α-secretase dependent cleavage of APP, is stimulated by cholinergic agonists. Overexpression of the neuronal specific isoform APP695 in neuronal cells substantially decreased levels of the AChE mRNA, protein and catalytic activity accompanied by a similar decrease in mRNA levels of the AChE membrane anchor, PRiMA (proline rich membrane anchor). We further established that this regulation does not involve APP processing and its intracellular domain (AICD) but requires the E1 region of APP, specifically its copper-binding domain. On the contrary, siRNA knock-down of APP in cholinergic SN56 cells resulted in a significant upregulation of AChE mRNA levels. Hence APP may influence AChE physiology while released AChE may regulate amyloidogenesis through multiple mechanisms suggesting novel therapeutic targets.

  8. Synthesis and in vitro evaluation of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide derivatives as reactivators against sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Valiveti, Aditya Kapil; Acharya, Jyotiranjan; Kaushik, Mahabir Parshad

    2014-05-01

    A series of bis-quaternary pyridinium derivatives 3a-3i of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide (2) have been synthesized. The synthesized pyridinium compounds have an amide group in conjugation to the oxime moiety. These compounds were evaluated in vitro for their reactivation efficacy against organophosphorus (OP) nerve agents (NAs) (sarin and VX) inhibited human erythrocyte ghost acetylcholinesterase (hAChE) and compared with the reactivation efficacy of 2-PAM and obidoxime. The pKa values of the synthesized compounds were found closer to the pKa values of 2- and 4-pyridinium oxime reactivators such as 2-PAM and obidoxime. Some of the compounds have shown better reactivation efficacy than 2-PAM, and obidoxime against sarin and VX inhibited AChE.

  9. Identification of novel α4β2-nicotinic acetylcholine receptor (nAChR) agonists based on an isoxazole ether scaffold that demonstrate antidepressant-like activity.

    PubMed

    Yu, Li-Fang; Tückmantel, Werner; Eaton, J Brek; Caldarone, Barbara; Fedolak, Allison; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J; Kozikowski, Alan P

    2012-01-26

    There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening toward other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested.

  10. Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis.

    PubMed

    Artursson, Elisabet; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Ekström, Fredrik

    2009-11-30

    The nerve agent tabun inhibits the essential enzyme acetylcholinesterase (AChE) by a rapid phosphoramidation of the catalytic serine residue. Oximes, such as K027 and HLö-7, can reactivate tabun-inhibited human AChE (tabun-hAChE) whereas the activity of their close structural analogue HI-6 is notably low. To investigate HI-6, K027 and HLö-7, residues lining the active-site gorge of hAChE were substituted and the effects on kinetic parameters for reactivation were determined. None of the mutants (Asp74Asn, Asp74Glu, Tyr124Phe, Tyr337Ala, Tyr337Phe, Phe338Val and Tyr341Ala) were able to facilitate HI-6-mediated reactivation of tabun-hAChE. In contrast, Tyr124Phe and Tyr337Phe induce a 2-2.5-fold enhancement of the bimolecular rate constant for K027 and HLö-7. The largest effects on the dissociation constant (3.5-fold increase) and rate constant (20-fold decrease) were observed for Tyr341Ala and Asp74Asn, respectively. These findings demonstrate the importance of residues located distant from the conjugate during the reactivation of tabun-hAChE.

  11. Active ghrelin levels across time and associations with leptin and anthropometrics in healthy ache Amerindian women of Paraguay.

    PubMed

    Bribiescas, Richard G; Betancourt, Jaime; Torres, Angélica M; Reiches, Meredith

    2008-01-01

    Active (acylated) ghrelin is a peptide hormone secreted primarily by the stomach, positively associated with fasting, orexigenic, and promotes growth hormone secretion. It is therefore important to energy intake management. The objective of this pilot research was to (1) compare active ghrelin with previous measurements of leptin and anthropometrics; (2) assess the consistency of active ghrelin across time in this population; (3) extend our understanding of potential population variation in active ghrelin. Two serum samples separated by 10 days at the same time between meals were collected from healthy Ache women (n = 12, mean age 32.2 +/- 14.0 SD) to determine consistency over time, associations with leptin, and anthropmetric values. Mean active ghrelin was 72.9 +/- 23.0 pg/ml, highly correlated (r(2) = 0.95, P < 0.0001) between collections, and showed no paired mean differences (P < 0.18). There was no significant correlation with leptin, age, or anthropometric measures. Active ghrelin appears to be consistent over time in this population, perhaps reflecting regimented meal schedules and less interpopulation variation compared to leptin.

  12. Endogenous activation of nAChRs and NMDA receptors contributes to the excitability of CA1 stratum radiatum interneurons in rat hippocampal slices: effects of kynurenic acid.

    PubMed

    Alkondon, Manickavasagom; Pereira, Edna F R; Albuquerque, Edson X

    2011-10-15

    CA1 stratum radiatum interneurons (SRIs) express α7 nicotinic receptors (nAChRs) and receive inputs from glutamatergic neurons/axons that express α3β4β2 nAChRs. To test the hypothesis that endogenously active α7 and/or α3β4β2 nAChRs control the excitability of CA1 SRIs in the rat hippocampus, we examined the effects of selective receptor antagonists on spontaneous fast current transients (CTs) recorded from these interneurons under cell-attached configuration. The frequency of CTs, which represent action potentials, increased in the absence of extracellular Mg(2+) and decreased in the presence of the α3β4β2 nAChR antagonist mecamylamine (3 μM) or the NMDA receptor antagonist APV (50 μM). However, it was unaffected by the α7 nAChR antagonist MLA (10 nM) or the AMPA receptor antagonist CNQX (10 μM). Thus, in addition to synaptically and tonically activated NMDA receptors, α3β4β2 nAChRs that are present on glutamatergic axons/neurons synapsing onto SRIs and are activated by basal levels of acetylcholine contribute to the maintenance of the excitability of these interneurons. Kynurenic acid (KYNA), an astrocyte-derived kynurenine metabolite whose levels are increased in the brains of patients with schizophrenia, also controls the excitability of SRIs. At high micromolar concentrations, KYNA, acting primarily as an NMDA receptor antagonist, decreased the CT frequency recorded from the interneurons. At 2 μM, KYNA reduced the CA1 SRI excitability via mechanisms independent of NMDA receptor block. KYNA-induced reduction of excitability of SRIs may contribute to sensory gating deficits that have been attributed to deficient hippocampal GABAergic transmission and high levels of KYNA in the brain of patients with schizophrenia.

  13. Synthesis and in vitro reactivation study of isonicotinamide derivatives of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide as reactivators of Sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan

    2016-09-15

    Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential.

  14. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines.

    PubMed

    Falé, P L; Amaral, F; Amorim Madeira, P J; Sousa Silva, M; Florêncio, M H; Frazão, F N; Serralheiro, M L M

    2012-08-01

    This work aimed to study the inhibition on acetylcholinesterase activity (AChE), the antioxidant activity and the toxicity towards Caco-2 and HeLa cells of aqueous extracts of Peumus Boldus. An IC(50) value of 0.93 mg/mL, for AChE inhibition, and EC(50) of 18.7 μg/mL, for the antioxidant activity, was determined. This activity can be attributed to glycosylated flavonoid derivatives detected, which were the main compounds, although boldine and other aporphine derivatives were also present. No changes in the chemical composition or the biochemical activities were found after gastrointestinal digestion. Toxicity of P. boldus decoction gave an IC(50) value 0.66 mg/mL for HeLa cells, which caused significant changes in the cell proteome profile.

  15. Antioedematogenic activity, acetylcholinesterase inhibition and antimicrobial properties of Jacaranda oxyphylla.

    PubMed

    Pereira, V V; Silva, R R; Dos Santos, M H; Dias, D F; Moreira, M E C; Takahashi, J A

    2016-09-01

    Jacaranda oxyphylla Cham. (Bignoniaceae) is a shrub found in the Brazilian cerrado and used in folk medicine to treat microbial infections. The aim of this study was to carry out a phytochemical screening and evaluate antioedematogenic, antimicrobial and antiacetylcholinesterase properties of J. oxyphylla crude extracts. All extracts analysed showed presence of terpenoids, which are potentially active chemical substances. A high AChE inhibitory activity for hexane extract from leaves and for the extracts from twigs was found. Ethanol extract from leaves of J. oxyphylla showed activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli) bacteria. This extract was also effective in inhibiting the stages of inflammation evaluated. Biological investigation and phytochemical screening of J. oxyphylla extracts provided additional evidence of its traditional medicinal value.

  16. Activation of muscarinic receptors by ACh release in hippocampal CA1 depolarizes VIP but has varying effects on parvalbumin-expressing basket cells

    PubMed Central

    Bell, L Andrew; Bell, Karen A; McQuiston, A Rory

    2015-01-01

    We investigated the effect of acetylcholine release on mouse hippocampal CA1 perisomatically projecting interneurons. Acetylcholine was optogenetically released in hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated virally mediated transfection. The effect of optogenetically released acetylcholine was assessed on interneurons expressing Cre recombinase in vasoactive intestinal peptide (VIP) or parvalbumin (PV) interneurons using whole cell patch clamp methods. Acetylcholine released onto VIP interneurons that innervate pyramidal neuron perisomatic regions (basket cells, BCs) were depolarized by muscarinic receptors. Although PV BCs were also excited by muscarinic receptor activation, they more frequently responded with hyperpolarizing or biphasic responses. Muscarinic receptor activation resulting from ACh release increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in downstream hippocampal CA1 pyramidal neurons with peak instantaneous frequencies occurring in both the gamma and theta bandwidths. Both PV and VIP BCs contributed to the increased sIPSC frequency in pyramidal neurons and optogenetic suppression of PV or VIP BCs inhibited sIPSCs occurring in the gamma range. Therefore, we propose acetylcholine release in CA1 has a complex effect on CA1 pyramidal neuron output through varying effects on perisomatically projecting interneurons. PMID:25556796

  17. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  18. 3,4-Dihydroquinazoline derivatives inhibit the activities of cholinesterase enzymes.

    PubMed

    Park, Byeongyeon; Nam, Ji Hye; Kim, Jin Han; Kim, Hyoung Ja; Onnis, Valentina; Balboni, Gianfranco; Lee, Kyung-Tae; Park, Jeong Ho; Catto, Marco; Carotti, Angelo; Lee, Jae Yeol

    2017-03-01

    A series of 3,4-dihydroquinazoline derivatives consisting of the selected compounds from our chemical library on the diversity basis and the new synthetic compounds were in vitro tested for their inhibitory activities for both acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) enzymes. It was discovered that most of the compounds displayed weak AChE and strong BuChE inhibitory activities. In particular, compound 8b and 8d were the most active compounds in the series against BChE with IC50 values of 45nM and 62nM, as well as 146- and 161-fold higher affinity to BChE, respectively. To understand the excellent activity of these compounds, molecular docking simulations were performed to get better insights into the mechanism of binding of 3,4-dihydroquinazoline derivatives. As expected, compound 8b and 8d bind to both catalytic anionic site (CAS) and peripheral site (PS) of BChE with better interaction energy values than AChE, in agreement with our experimental data. Furthermore, the non-competitive/mixed-type inhibitions of both compounds further confirmed their dual binding nature in kinetic studies.

  19. Different inhibition of acetylcholinesterase in selected parts of the rat brain following intoxication with VX and Russian VX.

    PubMed

    Hajek, Petr; Bajgar, Jiri; Slizova, Dasa; Krs, Otakar; Kuca, Kamil; Capek, Lukas; Fusek, Josef

    2009-01-01

    Differences between acetylcholinesterase (AChE) inhibition in the brain structures following VX and RVX exposure are not known as well as information on the possible correlation of biochemical and histochemical methods detecting AChE activity. Therefore, inhibition of AChE in different brain parts detected by histochemical and biochemical techniques was compared in rats intoxicated with VX and RVX. AChE activities in defined brain regions 30 min after treating rats with VX and Russian VX intramuscularly (1.0 x LD(50)) were determined by using biochemical and histochemical methods. AChE inhibition was less expressed for RVX, in comparison with VX. Frontal cortex and pontomedullar areas containing ncl. reticularis has been found as the most sensitive areas for the action of VX. For RVX, these structures were determined to be frontal cortex, dorsal septum, and hippocampus, respectively. Histochemical and biochemical results were in good correlation (R(xy) = 0.8337). Determination of AChE activity in defined brain structures was a more sensitive parameter for VX or RVX exposure than the determination of AChE activity in the whole-brain homogenate. This activity represents a "mean" of the activities in different structures. Thus, AChE activity is the main parameter investigated in studies searching for target sites following nerve-agent poisoning contributing to better understanding of toxicodynamics of nerve agents.

  20. Interactions of AChE with Aβ Aggregates in Alzheimer's Brain: Therapeutic Relevance of IDN 5706.

    PubMed

    Carvajal, Francisco J; Inestrosa, Nibaldo C

    2011-01-01

    Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer's patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE activity in 7-month-old double transgenic mice (APP(SWE)-PS1) and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer's model. We concluded that early treatment with IDN 5706 decreases AChE-Aβ interaction and this effect might be of therapeutic interest in the treatment of AD.

  1. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  2. Acetylcholinesterase inhibitory activity of uleine from Himatanthus lancifolius.

    PubMed

    Seidl, Cláudia; Correia, Beatriz L; Stinghen, Andréa E M; Santos, Cid A M

    2010-01-01

    Application of acetylcholinesterase (AChE) inhibitors is the primary treatment for Alzheimer's disease. Alkaloids, such as physostigmine, galanthamine, and huperzine A, play an important role as AChE inhibitors. The aim of this work was to evaluate Himatanthus lancifolius (Muell. Arg.) Woodson, a Brazilian species of Apocynaceae, and its main indole alkaloid uleine, in order to identify new AChE inhibitors. The plant fluid extract, fractions, and uleine were tested for AChE inhibitory activity using Ellman's colorimetric method for thin-layer chromatography (TLC), 96-well microplates, and also Marston's TLC colorimetric method. Both TLC assays showed similar results. At 5 mg/mL, the fluid extract inhibited the AChE enzyme by (50.71 +/- 8.2)%. The ethyl acetate fraction exhibited the highest level of AChE inhibition, followed by the dichloromethane fraction. The isolated alkaloid uleine displayed an IC50 value of 0.45 microM.

  3. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship?

    PubMed

    Aurbek, Nadine; Herkert, Nadja M; Koller, Marianne; Thiermann, Horst; Worek, Franz

    2010-09-06

    The repeated misuse of highly toxic organophosphorus compound (OP) based chemical warfare agents in military conflicts and terrorist attacks poses a continuous threat to the military and civilian sector. The toxic symptomatology of OP poisoning is mainly caused by inhibition of acetylcholinesterase (AChE, E.C. 3.1.1.7) resulting in generalized cholinergic crisis due to accumulation of the neurotransmitter acetylcholine (ACh) in synaptic clefts. Beside atropine as competitive antagonist of ACh at muscarinic ACh receptors oximes as reactivators of OP-inhibited AChE are a mainstay of standard antidotal treatment. However, human AChE inhibited by certain OP is rather resistant to oxime-induced reactivation. The development of more effective oxime-based reactivators may fill the gaps. To get more insight into a potential structure-activity relationship between human AChE, OPs and oximes in vitro studies were conducted to investigate interactions of different tabun and sarin analogues with human AChE and the oximes obidoxime and HI 6 by determination of various kinetic constants. Rate constants for the inhibition of human AChE by OPs, spontaneous dealkylation and reactivation as well as reactivation by obidoxime and HI 6 of OP-inhibited human AChE were determined. The recorded kinetic data did not allow a general statement concerning a structure-activity relationship between human AChE, OP and oximes.

  4. Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer.

    PubMed

    Ennahar, S; Assobhel, O; Hasselmann, C

    1998-02-01

    The anti-Listeria monocytogenes activity of Lactobacillus plantarum WHE 92, a pediocin AcH producer, was investigated in Munster cheese, a smear-surface soft cheese. The appearance of L. monocytogenes in the cheese, which naturally occurs solely in the crust and never before 1 week of ripening, could be prevented by spraying a cell suspension of L. plantarum WHE 92 (ca. 10(5) CFU/ml) on the cheese surface at the beginning of the ripening period. L. monocytogenes was sometimes detected at low levels (<5.0 x 10(1) CFU/g) after 7 to 11 days of ripening. However, this pathogen not be able to grow, nor did it survive the presence of L. plantarum WHE 92 in any of the samples examined until the end of the ripening not be able to grow, nor did it survive the presence of than 10(4) CFU/g in control samples. In other respects, L. plantarum WHE 92, which exists naturally in Munster cheese, did not adversely affect the evolution of the ripening process. This procedure has allowed manufacturers to successfully put an antilisterial treatment into practice in their ripening rooms.

  5. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity.

    PubMed

    Pagliosa, L B; Monteiro, S C; Silva, K B; de Andrade, J P; Dutilh, J; Bastida, J; Cammarota, M; Zuanazzi, J A S

    2010-07-01

    The treatment of neurological disorders and neurodegenerative diseases is related to the levels of acetylcholine (ACh) through the inhibition of acetylcholinesterase (AChE). Galanthamine, an important alkaloid isolated from the Amaryllidaceae family, is approved for the pharmacological treatment of Alzheimer's disease (AD) and acts by inhibiting the acetylcholinesterase (AChE) activity. In the present study, Ellman's method was used to verify the inhibition of AChE activity of some isoquinolines alkaloids such as galanthamine, montanine, hippeastrine and pretazettine. At the concentrations 1mM, 500 microm and 100 microm, galanthamine presented an AChE inhibition higher than 90%. Montanine inhibited, in a dose-dependent manner, more than 50% of the enzyme at 1mM concentration. With the concentrations 500 microm and 100 microm, 30-45% of AChE activity inhibition was detected. The alkaloids hippeastrine and pretazettine presented no significant inhibition of the AChE activity. The results demonstrate that montanine significantly inhibits AChE activity at the tested concentrations, suggesting the necessity of further investigations on this alkaloid use in treating neurological disorders.

  6. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area.

    PubMed

    Zhang, X; Ge, X Y; Wang, J G; Wang, Y L; Wang, Y; Yu, Y; Li, P P; Lu, C B

    2015-08-20

    The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.

  7. [Cation ions modulate the ACh-sensitive current in type II vestibular hair cells of guinea pigs].

    PubMed

    Guo, Chang-Kai; Zhang, Song; Kong, Wei-Jia; Li, Qing-Tian; Li, Zhi-Wang

    2006-04-25

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-nAChR) in cochlear hair cells and frog saccular hair cells. In this study, the properties of the ACh-sensitive current were investigated by whole-cell patch clamp technique in isolated type II vestibular hair cells of guinea pigs. The direct effect of extracellular ACh was to induce a hyperpolarization effect in type II vestibular hair cells. Type II vestibular hair cells displayed a sustained outward current in response to the perfusion of ACh. It took about 60 s for the ACh-sensitive current to get a complete re-activation. The reversal potential of the ACh-sensitive current was (-66 +/- 8) mV, which indicated that potassium ion was the main carrier of this current. The blocking effect by the submillimolar concentration of tetraethylammonium (TEA) further indicated that extracellular ACh stimulated the calcium-dependent potassium current. Following replacement of the compartment of NaCl in the normal external solution with TrisCl, LiCl or saccharose respectively, the amplitude of the ACh-sensitive current was not affected. Blocking of the release of intracellular Ca(2+) stores by intracellular application of heparin failed to inhibit the ACh-sensitive current. Therefore, extracellular Na(+)and the inositol 1,4,5-trisphosphate (IP(3))-dependent intracellular Ca(2+)release were not involved in the activation of the ACh-sensitive current. However, the ACh-sensitive current was strongly affected by the concentration of the extracellular K(+), extracellular Ca(2+) and intracellular Mg(2+). The amplitude of the ACh- sensitive current was strongly inhibited by high concentration of extracellular K

  8. The characterization of a novel rigid nicotine analog with alpha7-selective nAChR agonist activity and modulation of agonist properties by boron inclusion.

    PubMed

    Papke, Roger L; Zheng, Guangrong; Horenstein, Nicole A; Dwoskin, Linda P; Crooks, Peter A

    2005-09-01

    The alpha7 nAChR subtype is of particular interest as a potential therapeutic target since it has been implicated as a mediator of both cognitive and neuroprotective activity. The rigid nicotine analog ACME and the N-cyanoborane conjugate ACME-B are selective partial agonists of rat alpha7 receptors expressed in Xenopus oocytes, with no significant activation of either alpha3beta4 or alpha4beta2 receptors. ACME-B is both more potent and efficacious than ACME. The efficacies of ACME-B and ACME are approximately 26% and 10% of the efficacy of ACh, respectively. Similar N-conjugation of S(-)nicotine with cyanoborane decreased efficacy for alpha3beta4 and alpha4beta2 receptors, as well as for alpha7 nAChR. Structural comparison of ACME with the benzylidene anabaseines, another class of previously identified alpha7-selective agonists, suggests that they share a similar structural motif that may be applicable to other alpha7-selective agonists.

  9. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP).

    PubMed

    Artali, Roberto; Bombieri, Gabriella; Meneghetti, Fiorella

    2005-04-01

    The crystal structure of Acetylcholine Binding Protein (AChBP), homolog of the ligand binding domain of nAChR, has been used as model for computational investigations on the ligand-receptor interactions of derivatives of 6-chloropyridazine substituted at C3 with 3,8-diazabicyclo[3.2.1]octane, 2,5-diazabicyclo[2.2.1]heptane and with piperazine and homopiperazine, substituted or not at N4. The ligand-receptor complexes have been analyzed by docking techniques using the binding site of HEPES complexed with AChBP as template. The good relationship between the observed binding affinity and the calculated docking energy confirms that this model provides a good starting point for understanding the binding domain of neuronal nicotinic receptors. An analysis of the possible factors significant for the ligand recognition has evidenced, besides the cation-pi interaction, the distance between the chlorine atom of the pyridazinyl group and the carbonylic oxygen of Leu B112 as an important parameter in the modulation of the binding energy.

  10. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    NASA Astrophysics Data System (ADS)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  11. Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci.

    PubMed

    Cottage, Emma L A; Gunning, Robin V

    2006-01-01

    B-biotype Bemisia tabaci is a severe insect pest worldwide in many ornamental, agricultural, and horticultural industries. Control of this insect is hampered by resistance to many acetylcholinesterase (AChE)-inhibiting insecticides, such as organophosphates and carbamates. Consequently, insect growth regulators such as buprofezin, which act by inhibiting chitin synthesis, are being investigated for use against B-biotype B. tabaci in Australia. This study discusses the effects of buprofezin on B. tabaciAChE.

  12. Analysis of AchE and LDH in mollusc, Lamellidens marginalis after exposure to chlorpyrifos.

    PubMed

    Amanullah, B; Stalin, A; Prabu, P; Dhanapal, S

    2010-07-01

    The enzymes Acetylcholinesterase (AchE) and Lactatedehydrogenase (LDH) are used as biological markers in the present study. Enzymes are highly sensitive and used to evaluate the biological effects of organophosphate pesticide chlorpyrifos in freshwater mussel Lamellidens marginalis. The test organisms were exposed to sub-lethal concentration (5 ppm) of chlorpyrifos for 30 days and allowed to recover for seven days. A distinct reduction of the enzyme AchE (34 +/- 3.3 U l(-1)) was found in the treated hepatopancreas. A significant increase in LDH activity in gill, hepatopancreas and muscle was observed. There was a significant recovery in AchE and LDH in the different tissues, after seven days recovery period.. Hence, the changes in the enzymes are found as the best biomarkering tool to evaluate the effect of organophosphate pesticide chlorpyrifos on the aquatic biota.

  13. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer's disease.

    PubMed

    Yang, Xia; Qiang, Xiaoming; Li, Yan; Luo, Li; Xu, Rui; Zheng, Yunxiaozhu; Cao, Zhongcheng; Tan, Zhenghuai; Deng, Yong

    2017-04-01

    A series of pyridoxine-resveratrol hybrids Mannich base derivatives as multifunctional agents have been designed, synthesized and evaluated for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activity. To further explore the multifunctional properties of the new derivatives, their antioxidant activities and metal-chelating properties were also tested. The results showed that most of these compounds could selectively inhibit acetylcholinesterase (AChE) and MAO-B. Among them, compounds 7d and 8b exhibited the highest potency for AChE inhibition with IC50 values of 2.11μM and 1.56μM, respectively, and compound 7e exhibited the highest MAO-B inhibition with an IC50 value of 2.68μM. The inhibition kinetic analysis revealed that compound 7d showed a mixed-type inhibition, binding simultaneously to the CAS and PAS of AChE. Molecular modeling study was also performed to investigate the binding mode of these hybrids with MAO-B. In addition, all target compounds displayed good antioxidant and metal-chelating properties. Taken together, these preliminary findings can be a new starting point for further development of multifunctional agents for Alzheimer's disease.

  14. Regeneration of acetylcholinesterase in clonal neuroblastoma-glioma hybrid NG108-15 cells after soman inhibition: Effect of glycyl-l-glutamine. (Reannouncement with new availability information)

    SciTech Connect

    Yourick, J.J.; Eklo, P.A.; McCluskey, M.P.; Ray, R.

    1991-12-31

    Acetylcholinesterase (AChE) in the clonal NG108-15 cell line has been previously characterized. This cell line represents an in vitro system to study AChE regulation and effects of chemical compounds that may alter AChE activity. Recently, glycyl-L-glutamine (GLG) was demonstrated to function as a neurotrophic factor for maintenance of AChE content in cat denervated superior cervical ganglion cells. In the present study, regeneration of AChE activity in cultures of undifferentiated NG108-15 cells after soman inhibition was investigated in the presence and absence of GLG. Cells were treated with soman (5.5 x 10-6 M) for 15 min and then washed to remove excess soman. Culture medium containing either GLG (10-6, 10-5, or 10.4 M) or glycyl-L-glutamic acid (10-6 M) was added to cultures after soman treatment and remained in the medium until cell harvest. Cells were physically detached at various times after soman treatment and specific AChE activity was determined. After soman, AChE activity dramatically decreased to less than 1% of untreated cellular activity at 1 hr. AChe activity gradually increased after 5 hr, while untreated cell AChE activity was regained 20 hr after soman.

  15. Exploration of the susceptibility of AChE from the poultry red mite Dermanyssus gallinae (Acari: Mesostigmata) to organophosphates in field isolates from France.

    PubMed

    Roy, Lise; Chauve, Claude; Delaporte, Jean; Inizan, Gilbert; Buronfosse, Thierry

    2009-06-01

    The red fowl mite Dermanyssus gallinae (De Geer, 1778) is a hematophagous mite species, which is very commonly found in layer facilities in Europe. The economic and animal health impact of this parasite is quite important. In laying hen houses, organophosphates are almost the only legally usable chemicals. Detecting a target resistance can be useful in order to limit the emergence of resistant populations. The acetylcholinesterase (AChE) activity and the enzyme sensitivity to paraoxon was investigated in 39 field samples and compared to a susceptible reference strain (SSK). Insensitivity factor values (expressed as IC50 ratio) obtained from field isolates compared to SSK revealed some polymorphism but not exceeding a 6-fold difference. The kinetic characteristics of AChE from some field samples showed some difference in KM values for acetylthiocholine and inhibition kinetics performed with diethyl paraoxon exhibited a 5.5-fold difference in the bimolecular rate constant in one field isolate. Taken together, these data suggested that differences in AChE susceptibility to organophosphates may exist in D. gallinae but no resistant population was found.

  16. Inhibition of Hageman factor activation

    PubMed Central

    Nossel, H. L.; Rubin, H.; Drillings, M.; Hsieh, R.

    1968-01-01

    A method for studying inhibitors of the contact stages of blood coagulation is described. A number of positively charged substances were shown to inhibit the contact stages. The inhibitory substances include spermine, cytochrome c, ribonuclease, and lysozyme. The inhibitory effect of these substances was neutralized by the addition of an activated plasma thromboplastin antecedent, factor XI, (PTA) fraction. Other positively charged substances including protamine, hexadimethrine, polylysine, polyornithine, methylene blue, and ortho-toluidine blue also inhibited the contact stages of coagulation, but the inhibitory effect on coagulation was not neutralized by the activated PTA fraction. Negatively charged substances such as heparin and insulin did not inhibit the contact stages of coagulation. Cytochrome c inhibited Celite adsorption of a partially purified Hageman factor fraction, and cytochrome, ribonuclease, spermine, and lysozome inhibited the adsorption of Hageman factor from PTA-deficient plasma. Very much smaller quantities of Celite completely adsorbed Hageman factor from the fraction rather than from whole plasma, which suggested the possibility that plasma contains an inhibitor or inhibitors of Hageman factor adsorption. Furthermore cytochrome c, spermine, ribonuclease, and lysozyme inhibited the coagulant activity of the following activators of the Hageman and PTA factors: Celite, kaolin, sodium stearate, ellagic acid, and skin. It is suggested that negatively charged sites on these activators are critical for adsorption and activation and that inhibition results from neutralization of the negatively charged sites by the adsorbed inhibtor. Tests with polylysine polymers indicate that inhibitory activity is directly related to molecular size over the molecular weight range of 4000 to 100,000. PMID:5645860

  17. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    SciTech Connect

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  18. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Wilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 μM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  19. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  20. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase.

    PubMed

    Musilek, Kamil; Holas, Ondrej; Kuca, Kamil; Jun, Daniel; Dohnal, Vlastimil; Opletalova, Veronika; Dolezal, Martin

    2008-02-01

    Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.

  1. Selectivity of Ca2+ channel blockers in inhibiting muscular and nerve activities in isolated colon.

    PubMed Central

    Lecchini, S.; Marcoli, M.; De Ponti, F.; Castelletti, C. A.; Frigo, G. M.

    1991-01-01

    1. Potency and efficacy of nifedipine, verapamil and diltiazem and of Bay K 8644 in modifying propulsion and nerve or smooth muscle activities have been compared in the guinea-pig isolated distal colon. Both the neuronal and muscular effects of Ca2+ channel blockers seem to develop at concentrations that are devoid of any significant effect apart from that on Ca2+ channels. 2. Nifedipine, verapamil and diltiazem were all able to impair propulsion, resting and stimulated acetylcholine (ACh) release and smooth muscle contractility in a concentration-dependent way. However, some degree of selectivity for neuronal and muscular effects could be observed. Nifedipine was more than 500 fold more potent than verapamil in relaxing musculature but less than twice as potent in reducing ACh release. On the other hand, verapamil was the most efficacious Ca2+ channel blocker tested in inhibiting ACh release, its effects being inversely correlated to the external Ca2+ concentration, and completely abolished by Bay K 8644. 3. By comparing the potencies exhibited by each drug against peristaltic reflex, smooth muscle contractility and ACh release, verapamil proved to be almost as potent in slowing the peristaltic reflex as in reducing ACh release, while nifedipine was about 100 fold more potent against the peristaltic reflex than against ACh release, but nearly equal against the peristaltic reflex and smooth muscle tone. Therefore, interference with cholinergic neurotransmission is likely to play a major role in the antipropulsive effect of verapamil, while peristaltic reflex impairment by nifedipine is likely to be dependent on inhibition of smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1285398

  2. Interactions of butane, but-2-ene or xylene-like linked bispyridinium para-aldoximes with native and tabun-inhibited human cholinesterases.

    PubMed

    Calić, Maja; Bosak, Anita; Kuca, Kamil; Kovarik, Zrinka

    2008-09-25

    Kinetic parameters were evaluated for inhibition of native and reactivation of tabun-inhibited human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7) and human plasma butyrylcholinesterase (BChE, EC 3.1.1.8) by three bispyridinium para-aldoximes with butane (K074), but-2-ene (K075) or xylene-like linker (K114). Tested aldoximes reversibly inhibited both cholinesterases with the preference for binding to the native AChE. Both cholinesterases showed the highest affinity for K114 (K(i) was 0.01 mM for AChE and 0.06 mM for BChE). The reactivation of tabun-inhibited AChE was efficient by K074 and K075. Their overall reactivation rate constants were around 2000 min(-1)M(-1), which is seven times higher than for the classical bispyridinium para-aldoxime TMB-4. The reactivation of tabun-inhibited AChE assisted by K114 was slow and reached 90% after 20 h. Since the aldoxime binding affinity of tabun-inhibited AChE was similar for all tested aldoximes (and corresponded to their K(i)), the rate of the nucleophilic displacement of the phosphoryl-moiety from the active site serine was the limiting factor for AChE reactivation. On the other hand, none of the aldoximes displayed a significant reactivation of tabun-inhibited BChE. Even after 20 h, the reactivation maximum was 60% for 1 mM K074 and K075, and only 20% for 1 mM K114. However, lower BChE affinities for K074 and K075 compared to AChE suggest that the fast tabun-inhibited AChE reactivation by these compounds would not be obstructed by their interactions with BChE in vivo.

  3. Effects of T-82, a new quinoline derivative, on cholinesterase activity and extracellular acetylcholine concentration in rat brain.

    PubMed

    Isoma, Kazuo; Ishikawa, Masago; Ohta, Megumi; Ogawa, Yoichiro; Hasegawa, Hiroshi; Kohda, Tadayuki; Kamei, Junzo

    2002-02-01

    The effects of T-82 (2-[2-(1-benzylpiperidin-4-yl)ethyl]-2,3-dihydro-9-methoxy-1H-pyrrolo [3,4-b]quinolin-1-one hemifumarate), a new quinoline derivative, on acetylcholinesterase (AChE) activity and acetylcholine (ACh) release were compared with those of the well-known cholinesterase inhibitors tacrine and E2020. T-82, tacrine and E2020 all concentration-dependently inhibited AChE in rat brain homogenate (IC50 = 109.4, 84.2 and 11.8 nM, respectively). In addition, although tacrine strongly inhibited butyrylcholinesterase (BuChE), T-82 and E2020 showed only weak activity on BuChE in human plasma. In ex vivo experiments, intraperitoneal administration of T-82 at a dose of 30 mg/kg inhibited AChE activity in the hippocampus, frontal cortex and parietal cortex of rats. The effect of T-82 on the extracellular ACh concentration in rat brain was measured using in vivo microdialysis. T-82 at doses of 10 and 30 mg/kg, i.p. increased the extracellular ACh concentration in the hippocampus and striatum in a dose-dependent manner. These findings suggest that T-82 activates the central cholinergic system by selectively inhibiting AChE activity, while weakly affecting peripheral BuChE activity, and that T-82 increases the extracellular ACh concentration in the brain, which is followed by inhibited AChE activity.

  4. Interactions of AChE with Aβ Aggregates in Alzheimer’s Brain: Therapeutic Relevance of IDN 5706

    PubMed Central

    Carvajal, Francisco J.; Inestrosa, Nibaldo C.

    2011-01-01

    Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE activity in 7-month-old double transgenic mice (APPSWE–PS1) and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We concluded that early treatment with IDN 5706 decreases AChE–Aβ interaction and this effect might be of therapeutic interest in the treatment of AD. PMID:21949501

  5. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction

    PubMed Central

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket. PMID:27152416

  6. Calcium-activated butyrylcholinesterase in human skin protects acetylcholinesterase against suicide inhibition by neurotoxic organophosphates

    SciTech Connect

    Schallreuter, Karin U.; University of Bradford ). E-mail: K.Schallreuter@bradford.ac.uk; Gibbons, Nicholas C.J.; Elwary, Souna M.; Parkin, Susan M.; Wood, John M.

    2007-04-20

    The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 x 10{sup -3}M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. {sup 45}Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H{sub 2}O{sub 2}-mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m{sup 2} surface area with its calcium gradient in the 10{sup -3}M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue.

  7. Anticancer drugs induce hypomethylation of the acetylcholinesterase promoter via a phosphorylated-p38-DNMT1-AChE pathway in apoptotic hepatocellular carcinoma cells.

    PubMed

    Xi, Qiliang; Gao, Ning; Yang, Yang; Ye, Weiyuan; Zhang, Bo; Wu, Jun; Jiang, Gening; Zhang, Xuejun

    2015-11-01

    Apoptosis, also known as programmed cell death, plays an essential role in eliminating excessive, damaged or harmful cells. Previous work has demonstrated that anticancer drugs induce cell apoptosis by inducing cytotoxicity. In recent years, several reports demonstrated modulated expression of DNA methyltransferases 1 (DNMT1) and acetylcholinesterase (AChE) in a variety of tumors. In this study, we showed that the expression of DNMT1 was decreased and the methylation of CpGs in the promoter of AChE was reduced in anticancer drugs-induced apoptotic hepatocellular carcinoma cells. Silencing of DNMT1 expression by AZA or RNA interference (RNAi) restored AChE production and inhibition of AChE expression by RNAi protected HCC cells from anticancer drugs-induced apoptosis. Furthermore, we demonstrated that the regulation of AChE by DNMT1 was involved in the phosphorylated p38 pathway in anticancer drugs-induced apoptosis. In addition, immunohistochemical staining showed that P-p38, DNMT1 and AChE were aberrantly expressed in a subset of HCC tumors. Taken together, we demonstrated the regulation of AChE by DNMT1 and further, we found that this regulation was involved in the phosphorylated p38 pathway in anticancer drugs-induced apoptosis.

  8. Methamphetamine-seeking behavior is due to inhibition of nicotinic cholinergic transmission by activation of cannabinoid CB1 receptors.

    PubMed

    Hiranita, Takato; Nawata, Yoko; Sakimura, Katsuya; Yamamoto, Tsuneyuki

    2008-12-01

    We previously reported the involvement of cannabinoid CB1 receptors (CB1Rs) and nicotinic acetylcholine receptors (nAChRs) in the reinstatement of methamphetamine (MAP)-seeking behavior (lever-pressing response for MAP reinforcement under saline infusion). The present study examined whether the reinstatement involves interactions between these receptors. Rats were trained to self-administer MAP with a light and tone (MAP-associated cues). Then, extinction sessions under saline infusion without cues were conducted. After that, a reinstatement tests were conducted by either presenting the cues or a MAP-priming injection. Systemic and intracranial administration of HU210, a cannabinoid CB1R agonist, into the nucleus accumbens core (NAC) and prelimbic cortex (PrC) reinstated MAP-seeking behavior. The reinstatement caused by the systemic HU210 treatment was attenuated by intracranial administration of AM251, a cannabinoid CB1R antagonist, into each region mentioned above. Meanwhile, reinstatement induced by the MAP-associated cues and MAP-priming injection was also attenuated by intracranial administration of AM251 in each region. In these regions, the attenuating effects of AM251 on the reinstatement induced by each stimulus were blocked by the intracranial administration of mecamylamine, a non-selective nAChR antagonist, but not by scopolamine, a muscarinic ACh receptor (mAChR) antagonist. Furthermore, the intracranial administration of DHbetaE, an alpha4beta2 nAChR antagonist, but not MLA, an alpha7 nAChR antagonist, into each region blocked the AM251-induced attenuation of the reinstatement. These findings suggest that relapses to MAP-seeking behavior may be due to two steps, first inhibition of ACh transmission by the activation of cannabinoid CB1Rs and then the inactivation of alpha4beta2 nAChRs.

  9. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    PubMed

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    . delaTorre, P. Taylor, Knockout mice with deletions of alternatively spliced exons of Acetylcholinesterase, in: N.C. Inestrosa, E.O. Campus (Eds.), VII International Meeting on Cholinesterases, Pucon-Chile Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects. P. Universidad Catholica de Chile-FONDAP Biomedicina, 2004, pp. 43-48; R.Y.Y. Chan, C. Boudreau-Larivière, L.A. Angus, F. Mankal, B.J. Jasmin, An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 96 (1999) 4627-4632], is also presented. The intronic region was floxed and then deleted by mating with Ella-cre transgenic mice. The deletion of this region produced a dramatic phenotype; a mouse with near normal AChE expression in brain and other CNS tissues, but no AChE expression in muscle. Phenotype and AChE tissue activities are compared with the total AChE knockout mouse [W. Xie, J.A. Chatonnet, P.J. Wilder, A. Rizzino, R.D. McComb, P. Taylor, S.H. Hinrichs, O. Lockridge, Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 293 (3) (2000) 896-902].

  10. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork.

    PubMed

    Woraprayote, Weerapong; Kingcha, Yutthana; Amonphanpokin, Pannawit; Kruenate, Jittiporn; Zendo, Takeshi; Sonomoto, Kenji; Benjakul, Soottawat; Visessanguan, Wonnop

    2013-10-15

    A novel poly(lactic acid) (PLA)/sawdust particle (SP) biocomposite film with anti-listeria activity was developed by incorporation of pediocin PA-1/AcH (Ped) using diffusion coating method. Sawdust particle played an important role in embedding pediocin into the hydrophobic PLA film. The anti-listeria activity of the PLA/SP biocomposite film incorporated with Ped (PLA/SP+Ped) was detected, while no activity against the tested pathogen was observed for the control PLA films (without SP and/or Ped). Dry-heat treatment of film before coating with Ped resulted in the highest Ped adsorption (11.63 ± 3.07 μg protein/cm(2)) and the highest anti-listeria activity. A model study of PLA/SP+Ped as a food-contact antimicrobial packaging on raw sliced pork suggests a potential inhibition of Listeria monocytogenes (99% of total listerial population) on raw sliced pork during the chilled storage. This study supports the feasibility of using PLA/SP+Ped film to reduce the initial load of L. monocytogenes on the surface of raw pork.

  11. Enzyme Inhibition by Molluscicidal Components of Myristica fragrans Houtt. in the Nervous Tissue of Snail Lymnaea acuminata

    PubMed Central

    Jaiswal, Preetee; Kumar, Pradeep; Singh, V. K.; Singh, D. K.

    2010-01-01

    This study was designed to investigate the effects of molluscicidal components of Myristica fragrans Houtt. (Myristicaceae) on certain enzymes in the nervous tissue of freshwater snail Lymnaea acuminata Lamarck (Lymnaeidae). In vivo and in vitro treatments of trimyristin and myristicin (active molluscicidal components of Myristica fragrans Houtt.) significantly inhibited the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activities in the nervous tissue of Lymnaea acuminata. The inhibition kinetics of these enzymes indicates that both the trimyristin and myristicin caused competitive noncompetitive inhibition of AChE. Trimyristin caused uncompetitive and competitive/noncompetitive inhibitions of ACP and ALP, respectively whereas the myristicin caused competitive and uncompetitive inhibition of ACP and ALP, respectively. Thus results from the present study suggest that inhibition of AChE, ACP, and ALP by trimyristin and myristicin in the snail Lymnaea acuminata may be the cause of the molluscicidal activity of Myristica fragrans. PMID:21048864

  12. Enzyme Inhibition by Molluscicidal Components of Myristica fragrans Houtt. in the Nervous Tissue of Snail Lymnaea acuminata.

    PubMed

    Jaiswal, Preetee; Kumar, Pradeep; Singh, V K; Singh, D K

    2010-01-01

    This study was designed to investigate the effects of molluscicidal components of Myristica fragrans Houtt. (Myristicaceae) on certain enzymes in the nervous tissue of freshwater snail Lymnaea acuminata Lamarck (Lymnaeidae). In vivo and in vitro treatments of trimyristin and myristicin (active molluscicidal components of Myristica fragrans Houtt.) significantly inhibited the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activities in the nervous tissue of Lymnaea acuminata. The inhibition kinetics of these enzymes indicates that both the trimyristin and myristicin caused competitive noncompetitive inhibition of AChE. Trimyristin caused uncompetitive and competitive/noncompetitive inhibitions of ACP and ALP, respectively whereas the myristicin caused competitive and uncompetitive inhibition of ACP and ALP, respectively. Thus results from the present study suggest that inhibition of AChE, ACP, and ALP by trimyristin and myristicin in the snail Lymnaea acuminata may be the cause of the molluscicidal activity of Myristica fragrans.

  13. In silico pharmacophore model for tabun-inhibited acetylcholinesterase reactivators: a study of their stereoelectronic properties.

    PubMed

    Bhattacharjee, Apurba K; Kuca, Kamil; Musilek, Kamil; Gordon, Richard K

    2010-01-01

    Organophosphorus (OP) nerve agents that inhibit acetylcholinesterase (AChE; EC 3.1.1.7) function in the nervous system, causing acute intoxication. If untreated, death can result. Inhibited AChE can be reactivated by oximes, antidotes for OP exposure. However, OP intoxication caused by the nerve agent tabun (GA) is particularly resistant to oximes, which poorly reactivate GA-inhibited AChE. In an attempt to develop a rational strategy for the discovery and design of novel reactivators with lower toxicity and increased efficacy in reactivating GA-inhibited AChE, we developed the first in silico pharmacophore model for binding affinity of GA-inhibited AChE from a set of 11 oximes. Oximes were analyzed for stereoelectronic profiles and three-dimensional quantitative structure-activity relationship pharmacophores using ab initio quantum chemical and pharmacophore generation methods. Quantum chemical methods were sequentially used from semiempirical AM1 to hierarchical ab initio calculations to determine the stereoelectronic properties of nine oximes exhibiting affinity for binding to GA-inhibited AChE in vivo. The calculated stereoelectronic properties led us to develop the in silico pharmacophore model using CATALYST methodology. Specific stereoelectronic profiles including the distance between bisquarternary nitrogen atoms of the pyridinium ring in the oximes, hydrophilicity, surface area, nucleophilicity of the oxime oxygen, and location of the molecular orbitals on the isosurfaces have important roles for potencies for reactivating GA-inhibited AChE. The in silico pharmacophore model of oxime affinity for binding to GA-inhibited AChE was found to require a hydrogen bond acceptor, a hydrogen bond donor at the two terminal regions, and an aromatic ring in the central region of the oximes. The model was found to be well-correlated (R = 0.9) with experimental oxime affinity for binding to GA-inhibited AChE. Additional stereoelectronic features relating activity with

  14. Effects of Anabaena spiroides (Cyanobacteria) aqueous extracts on the acetylcholinesterase activity of aquatic species.

    PubMed

    Monserrat, J M; Yunes, J S; Bianchini, A

    2001-06-01

    The effects of aqueous extracts from a cyanobacteria species, Anabaena spiroides, on fish (Odontesthes argentinensis), crab (Callinectes sapidus), and purified eel acetylcholinesterase (AChE) activity were studied. In vitro concentrations of A. spiroides aqueous extract that inhibited 50% of enzyme activity (IC50) were 23.0, 17.2, and 45.0 mg/L of lyophilized cyanobacteria for eel, fish, and crab AChE, respectively. Eel AChE inhibition follows pseudo-first-order kinetics, the same expected for organophosphorus pesticides. Inhibition of purified eel AChE using mixtures of bioxidized malathion and aqueous extract of A. spiroides showed a competitive feature (p < 0.05), suggesting that the toxin(s) could be structurally similar to an organophosphorus pesticide and that toxins present in the aqueous extract inhibit the active site of the enzyme. The inhibition recovery assays using 2-PAM (0.3 mM) showed that (1) bioxidized malathion inhibited 27.0 +/- 1.1% of crab and 36.5 +/- 0.1% of eel AChE activities; (2) with bioxidized malathion + 2-PAM the registered inhibition was 13.2 +/- 2.1% and 3.7 +/- 0.5% in crab and eel AChE, respectively; (3) the aqueous extract from A. spiroides inhibited 17.4 +/- 2.2% and 59.9 +/- 0.5% of crab and eel AChE activity, respectively; and (4) aqueous extract + 2-PAM inhibited 22.3 +/- 2.6 and 61.5 +/- 0.2% of crab and eel AChEs. The absence of enzyme activity recovery after 2-PAM exposure could imply that the enzyme aging process was extremely quick.

  15. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure.

    PubMed

    Rodríguez-Fuentes, Gabriela; Rubio-Escalante, Fernando J; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Schlenk, Daniel

    2015-01-01

    Organophosphate pesticides cause irreversible inhibition of AChE which leads to neuronal overstimulation and death. Thus, dogma indicates that the target of OP pesticides is AChE, but many authors postulate that these compounds also disturb cellular redox processes, and change the activities of antioxidant enzymes. Interestingly, it has also been reported that oxidative stress plays also a role in the regulation and activity of AChE. The aims of this study were to determine the effects of the antioxidant, vitamin C (VC), the oxidant, t-butyl hydroperoxide (tBOOH) and the organophosphate Chlorpyrifos (CPF), on AChE gene transcription and activity in zebrafish embryos after 72h exposure. In addition, oxidative stress was evaluated by measuring antioxidant enzymes activities and transcription, and quantification of total glutathione. Apical effects on the development of zebrafish embryos were also measured. With the exception of AChE inhibition and enhanced gene expression, limited effects of CPF on oxidative stress and apical endpoints were found at this developmental stage. Addition of VC had little effect on oxidative stress or AChE, but increased pericardial area and heartbeat rate through an unknown mechanism. TBOOH diminished AChE gene expression and activity, and caused oxidative stress when administered alone. However, in combination with CPF, only reductions in AChE activity were observed with no significant changes in oxidative stress suggesting the adverse apical endpoints in the embryos may have been due to AChE inhibition by CPF rather than oxidative stress. These results give additional evidence to support the role of prooxidants in AChE activity and expression.

  16. In vitro acetylcholinesterase inhibition by psoralen using molecular docking and enzymatic studies

    PubMed Central

    Somani, Gauresh; Kulkarni, Chinmay; Shinde, Prashant; Shelke, Rupesh; Laddha, Kirti; Sathaye, Sadhana

    2015-01-01

    Introduction: Alzheimer's disease (AD) has increased at an alarming rate and is now a worldwide health problem. Inhibitors of acetylcholinesterase (AChE) leading to inhibition of acetylcholine breakdown constitute the main therapeutic strategy for AD. Psoralen was investigated as inhibitor of AChE enzyme in an attempt to explore its potential for the management of AD. Materials and Methods: Psoralen was isolated from powdered Psoralea corylifolia fruits. AChE enzyme inhibitory activity of different concentrations of psoralen was investigated by use of in vitro enzymatic and molecular docking studies. Further, the enzyme kinetics were studied using Lineweaver-Burk plot. Results: Psoralen was found to inhibit AChE enzyme activity in a concentration-dependent manner. Kinetic studies showed psoralen inhibits AChE in a competitive manner. Molecular docking study revealed that psoralen binds well within the binding site of the enzyme showing interactions such as π-π stacking and hydrogen bonding with residues present therein. Conclusion: The result of AChE enzyme inhibitory activity of the psoralen in this study is promising. It could be further explored as a potential candidate for further development of new drugs against AD. PMID:25709334

  17. Gastrointestinal acetylcholinesterase activity following endotracheal microinstillation inhalation exposure to sarin in guinea pigs.

    PubMed

    Chanda, Soma; Song, Jian; Rezk, Peter; Sabnekar, Praveena; Doctor, Bhupendra P; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2010-09-06

    The goal of this study was to assess acetylcholinesterase (AChE) inhibition at different regions of the gastrointestinal (GI) tract following inhalation exposure to nerve agent sarin. Seven major regions of the GI tract were removed from saline control animals (n=3) and 677.4 mg/m(3) sarin-exposed animals at 4h (n=4) and 24h (n=4) post-exposure. AChE activity was determined in blood and homogenized tissue supernatant by specific Ellman's assay using Iso-OMPA, a BChE inhibitor, and expressed as activity/optical density of hemoglobin for blood and activity/mg protein for tissues. Our data showed that the AChE activity was significantly decreased for groups both 4h and 24h post-sarin exposure. Among the seven chosen regions of the guinea pig GI tract, duodenum showed the highest AChE activity in control animals. The AChE activity was significantly decreased in the stomach (p=0.03), duodenum (p=0.029), jejunum (p=0.006), and ileum (p=0.006) 4h following sarin exposure. At 24h post-sarin exposure the AChE activity of duodenum (p=0.029) and ileum (p=0.006) was significantly inhibited. Esophagus showed no inhibition following sarin exposure at both 4h and 24h groups. These results suggest that the AChE activity is different in different regions of the GI tract and highest levels of AChE inhibition following sarin exposure were seen in regions exhibiting higher overall AChE activity and cholinergic function.

  18. Inhibition of the hyperpolarization-activated current (if) of rabbit SA node myocytes by niflumic acid.

    PubMed

    Accili, E A; DiFrancesco, D

    1996-03-01

    The effects of the amphiphilic substance niflumic acid (NFA) were examined in myocytes isolated from the sino-atrial node of the rabbit heart. NFA (50 and 500 microM), for 30-60 s, produced a reversible negative chronotropic effect by reducing the rate of diastolic depolarization, suggesting an inhibitory effect on the hyperpolarization-activated pacemaker current (if). NFA (from 0.05 to 500 microM) inhibited if by modifying the current kinetics, without alteration of the conductance. This was shown by evidence indicating that: (1) NFA inhibited if during hyperpolarizing pulses to the mid-point of if activation but not at fully activating voltages; (2) the slope and reversal potential of the fully activated current/voltage (I/V) relation were not altered by NFA, indicating no change in slope conductance or ion selectivity; and (3) hyperpolarizing ramp protocols confirmed the lack of action of 50 microM NFA on the fully activated current and a shift of approximately -8 mV. Although similar to inhibition by acetylcholine (ACh), inhibition by NFA was only partly additive with the action of ACh and was not altered by atropine or pertussis toxin, both of which eliminated the action of ACh. The effect of NFA was present after stimulation of adenylate cyclase by forskolin and after inhibition of phosphodiesterase by isobutylmethylxanthine (IBMX). In cell-attached patch measurements, NFA applied externally did not affect if measured in the patch. Finally, application of NFA to the cytoplasmic side of excised patches did not alter the current in the absence or presence of adenosine 3',5'-cyclic monophosphate (cAMP). These results suggest an external, membrane-delimited action of NFA on if.

  19. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection.

    PubMed

    Egea, Javier; Buendia, Izaskun; Parada, Esther; Navarro, Elisa; León, Rafael; Lopez, Manuela G

    2015-10-15

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system, being expressed in neurons and non-neuronal cells, where they participate in a variety of physiological responses like memory, learning, locomotion, attention, among others. We will focus on the α7 nAChR subtype, which has been implicated in neuroprotection, synaptic plasticity and neuronal survival, and is considered as a potential therapeutic target for several neurological diseases. Oxidative stress and neuroinflammation are currently considered as two of the most important pathological mechanisms common in neurodegenerative diseases such as Alzheimer, Parkinson or Huntington diseases. In this review, we will first analysed the distribution and expression of nAChR in mammalian brain. Then, we focused on the function of the α7 nAChR subtype in neuronal and non-neuronal cells and its role in immune responses (cholinergic anti-inflammatory pathway). Finally, we will revise the anti-inflammatory pathway promoted via α7 nAChR activation that is related to recruitment and activation of Jak2/STAT3 pathway, which on the one hand inhibits NF-κB nuclear translocation, and on the other hand, activates the master regulator of oxidative stress Nrf2/HO-1. This review provides a profound insight into the role of the α7 nAChR subtype in microglia and point out to microglial α7/HO-1 pathway as an anti-inflammatory therapeutic target.

  20. In Vitro Activity of ACH-702, a New Isothiazoloquinolone, against Nocardia brasiliensis Compared with Econazole and the Carbapenems Imipenem and Meropenem Alone or in Combination with Clavulanic Acid ▿

    PubMed Central

    Vera-Cabrera, Lucio; Campos-Rivera, Mayra Paola; Escalante-Fuentes, Wendy G.; Pucci, Michael J.; Ocampo-Candiani, Jorge; Welsh, Oliverio

    2010-01-01

    The in vitro activities of ACH-702 and other antimicrobials against 30 Nocardia brasiliensis isolates were tested. The MIC50 (MIC for 50% of the strains tested) and MIC90 values of ACH-702 were 0.125 and 0.5 μg/ml. The same values for econazole were 2 and 4 μg/ml. The MIC50 and MIC90 values of imipenem and meropenem were 64 and >64 μg/ml and 2 and 8 μg/ml, respectively; the addition of clavulanic acid to the carbapenems had no effect. PMID:20308390

  1. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro.

    PubMed

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-03-25

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer's disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression.

  2. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro

    PubMed Central

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-01-01

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569

  3. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  4. Characterization of cholinesterases in marbled sole, Limanda yokohamae, and their inhibition in vitro by the fungicide iprobenfos.

    PubMed

    Jung, Jee-Hyun; Addison, R F; Shim, Won Joon

    2007-06-01

    Cholinesterases (ChEs) have been characterized in marbled sole (Limanda yokohamae) for use as a possible biomarker of pollution exposure. In brain, ChEs existed almost exclusively (>95%) as acetylcholinesterase (AChE) whereas in muscle, about 20-30% of ChE activity was in the form of butyrylcholinesterase (BChE; pseudocholinesterase). Acetylthiocholine and butyrylthiocholine (identified in mammalian studies as diagnostic substrates for AChE and BChE respectively) were hydrolyzed mainly, but not exclusively, by these enzymes. The inhibitors BW284C51 and iso-OMPA (identified in mammalian studies as diagnostic inhibitors of AChE and BChE respectively) were not specific for these enzymes in marbled sole. Brain AChE and muscle AChE and BChE were characterized in terms of their kinetic properties (KM etc.) and optimal conditions (substrate concentration, protein concentration, pH etc.) were established to allow routine assays of ChE activity to proceed under pseudo-first order conditions. The sensitivity of ChEs to a locally significant pesticide, iprobenfos (IBP; kitazin) was established in terms of IC50 concentrations. Brain AChE was relatively insensitive to IBP, but muscle AChE and BChE were sensitive to IBP concentrations in the high nM range. However, ambient IBP concentrations in Korean coastal waters are usually not high enough to cause detectable ChE inhibition in this species.

  5. [Cl-]i modulation of Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells of guinea pig.

    PubMed

    Shimamoto, Chikao; Umegaki, Eiji; Katsu, Ken-ichi; Kato, Masumi; Fujiwara, Shoko; Kubota, Takahiro; Nakahari, Takashi

    2007-10-01

    The effects of intracellular Cl- concentration ([Cl-]i) on acetylcholine (ACh)-stimulated exocytosis were studied in guinea pig antral mucous cells by video microscopy. ACh activated Ca2+-regulated exocytosis (an initial phase followed by a sustained phase). Bumetanide (20 microM) or a Cl- -free (NO3-) solution enhanced it; in contrast, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl- channel blocker) decreased it and eliminated the enhancement induced by bumetanide or NO3- solution. ACh and Ca2+ dose-response studies demonstrated that NO3- solution does not shift their dose-response curves, and ATP depletion studies by dinitrophenol or anoxia demonstrated that exposure of NO3- solution prior to ATP depletion induced an enhanced initial phase followed by a sustained phase, whereas exposure of NO3- solution after ATP depletion induced only a sustained phase. Intracellular Ca2+ concentration ([Ca2+]i) measurements showed that bumetanide and NO3- solution enhanced the ACh-stimulated [Ca2+]i increase. Measurements of [Cl-]i revealed that ACh decreases [Cl-]i and that bumetanide and NO3- solution decreased [Cl-]i and enhanced the ACh-evoked [Cl-]i decrease; in contrast, NPPB increased [Cl-]i and inhibited the [Cl-]i decrease induced by ACh, bumetanide, or NO3- solution. These suggest that [Cl-]i modulates [Ca2+]i increase and ATP-dependent priming. In conclusion, a decrease in [Cl-]i accelerates ATP-dependent priming and [Ca2+]i increase, which enhance Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells.

  6. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.

    PubMed

    Hilmas, C; Pereira, E F; Alkondon, M; Rassoulpour, A; Schwarcz, R; Albuquerque, E X

    2001-10-01

    The tryptophan metabolite kynurenic acid (KYNA) has long been recognized as an NMDA receptor antagonist. Here, interactions between KYNA and the nicotinic system in the brain were investigated using the patch-clamp technique and HPLC. In the electrophysiological studies, agonists were delivered via a U-shaped tube, and KYNA was applied in admixture with agonists and via the background perfusion. Exposure (>/=4 min) of cultured hippocampal neurons to KYNA (>/=100 nm) inhibited activation of somatodendritic alpha7 nAChRs; the IC(50) for KYNA was approximately 7 microm. The inhibition of alpha7 nAChRs was noncompetitive with respect to the agonist and voltage independent. The slow onset of this effect could not be accounted for by an intracellular action because KYNA (1 mm) in the pipette solution had no effect on alpha7 nAChR activity. KYNA also blocked the activity of preterminal/presynaptic alpha7 nAChRs in hippocampal neurons in cultures and in slices. NMDA receptors were less sensitive than alpha7 nAChRs to KYNA. The IC(50) values for KYNA-induced blockade of NMDA receptors in the absence and presence of glycine (10 microm) were approximately 15 and 235 microm, respectively. Prolonged (3 d) exposure of cultured hippocampal neurons to KYNA increased their nicotinic sensitivity, apparently by enhancing alpha4beta2 nAChR expression. Furthermore, as determined by HPLC with fluorescence detection, repeated systemic treatment of rats with nicotine caused a transient reduction followed by an increase in brain KYNA levels. These results demonstrate that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  7. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  8. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  9. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.

  10. Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State

    PubMed Central

    Indurthi, Dinesh C.; Lewis, Trevor M.; Ahring, Philip K.; Balle, Thomas; Chebib, Mary; Absalom, Nathan L.

    2016-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors. PMID:27552221

  11. Absence of substrate inhibition and freezing-inactivation of the mosquito acetylcholinesterase are caused by alterations of hydrophobic interactions.

    PubMed

    Dary, O; Wedding, R T

    1990-05-31

    Membrane-bound acetylcholinesterase (AChE) from mosquito showed the characteristic substrate inhibition of this enzyme, but 105,000 x g supernatants of freshly extracted enzyme did not. Addition of chaotropic anions, a freeze-thaw cycle and autolysis of the amphiphilic acetylcholinesterase to its non-amphiphilic derivatives resulted in return of the substrate inhibition feature along with an apparent increment in the enzyme activity. These results suggested that the lipidic environment of the mosquito AChE is temporarily perturbed when extracted. The enzyme is probably trapped in non-sedimenting mixtures composed of endogenous amphiphilic molecules. The occurrence of this phenomenon was not affected by the presence of Triton X-100 and other detergents, either alone or in combination with sodium chloride. Freezing in the presence of strong chaotropic anions (perchlorate, iodide and thiocyanate) caused the irreversible inactivation of the mosquito AChE. Crude and incomplete purified fractions of the enzyme were more sensitive than a more purified preparation. With both the purified AChE and the non-purified AChE, amphiphilic AChE was more freeze labile. Freezing at -10 degrees C enhanced inactivation of non-purified fractions. At this temperature, even weak chaotropic anions (fluoride, chloride and nitrate), while in combination with non-ionic detergents that solubilized mosquito AChE efficiently, reduced the enzyme activity of these fractions. In this case, recovery of the enzyme activity by incubation at 25 degrees C was inversely correlated with the effectiveness of the chaotropic anion. Gel filtration failed to show any change in the hydrodynamic radius of the freezing-inactivated AChE. Therefore, this phenomenon is explained as different degrees of denaturation of the enzyme in direct association with the chaotropic strength. Thus, antichaotropic anions, such as sulfate, should improve the stability of the mosquito acetylcholinesterase during extraction

  12. Fetal muscle-type nicotinic acetylcholine receptor activation in TE-671 cells and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine.

    PubMed

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Panter, Kip E

    2013-01-01

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be attributable to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR, which results in the complete inhibition of fetal movement. However, pharmacological evidence of coniine actions at fetal muscle-type nAChR is lacking. The present study compared (-)-coniine, (+)-coniine, and nicotine for the ability to inhibit fetal movement in a day 40 pregnant goat model and in TE-671 cells that express fetal muscle-type nAChR. Furthermore, α-conotoxins (CTx) EI and GI were used to antagonize the actions of (+)- and (-)-coniine in TE-671 cells. (-)-Coniine was more effective at eliciting electrical changes in TE-671 cells and inhibiting fetal movement than was (+)-coniine, suggesting stereoselectivity by the receptor. The pyridine alkaloid nicotine did not inhibit fetal movement in a day 40 pregnant goat model, suggesting agonist specificity for the inhibition of fetal movement. Low concentrations of both CTxs potentiated the TE-671 cell response and higher concentrations of CTx EI, and GI antagonized the actions of both coniine enantiomers demonstrating concentration-dependent coagonism and selective antagonism. These results provide pharmacological evidence that the piperidine alkaloid coniine is acting at fetal muscle-type nAChR in a concentration-dependent manner.

  13. Selective inhibition of human acetylcholinesterase by xanthine derivatives: in vitro inhibition and molecular modeling investigations.

    PubMed

    Mohamed, Tarek; Osman, Wesseem; Tin, Gary; Rao, Praveen P N

    2013-08-01

    The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC₅₀=6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC₅₀=7.25 μM)AChE IC₅₀=6.60 μM) ≤ propentofylline (hAChE IC₅₀=6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC₅₀=0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC₅₀>50 μM) relative to the reference agent donepezil (hBuChE IC₅₀=13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.

  14. Role of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell

    PubMed Central

    2012-01-01

    The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different between avian and mammalian species. Calcium permeation is more effective in nAChRs of mammalian cochlea than avian cochlea, and mammalian calcium permeability of nAChRs is about 3 times more than avian hair cell. Thus, mammalian nAChRs is a main component of efferent inhibition in cochlear hair cell system. PMID:24653883

  15. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    USGS Publications Warehouse

    Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.

    2005-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  16. Application of a dynamic in vitro model with real-time determination of acetylcholinesterase activity for the investigation of tabun analogues and oximes.

    PubMed

    Worek, Franz; Herkert, Nadja M; Koller, Marianne; Thiermann, Horst; Wille, Timo

    2015-12-25

    Tabun-inhibited acetylcholinesterase (AChE) is rather resistant towards reactivation by oximes in vitro while in vivo experiments showed some protection of animals poisoned by this chemical warfare nerve agent after treatment with an oxime and atropine. In addition, AChE inhibited by close tabun analogues, N,N-diethyltabun and N,N-di-n-propyltabun was completely resistant towards reactivation by oximes. In order to get more insight into potential mechanisms of this oxime resistance experiments with these toxic agents and the oximes obidoxime, 2-PAM, MMB-4 and HI-6 were performed utilizing a dynamic model with real-time determination of AChE activity. This experimental setup allowed the investigation of reactivation with minimized side reactions. The determined reactivation constants with tabun-inhibited human AChE were in good agreement with previously reported constants determined with a static model. N,N-diethyl- and N,N-di-n-propyltabun-inhibited human AChE could not be reactivated by oximes which indicates that the inadequate oxime effect was not due to re-inhibition by phosphonyloximes. Additional experiments with tabun-inhibited human and Rhesus monkey AChE revealed that no reactivation occurred with HI-6. These data give further support to the assumption that an interaction of tabun with residues in the active site gorge of AChE prevents effective reactivation by oximes, a mechanism which may also be the reason for the total oxime resistance of N,N-diethyl- and N,N-di-n-propyltabun-inhibited human AChE.

  17. Neurophysiological predictors of long term response to AChE inhibitors in AD patients

    PubMed Central

    Di, L; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Ghirlanda, S; Ranieri, F; Gainotti, G; Tonali, P

    2005-01-01

    Background: In vivo evaluation of cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with motor cortex TMS (short latency afferent inhibition, SAI). SAI is reduced in Alzheimer's disease (AD) and drugs enhancing cholinergic transmission increase SAI. Methods: We evaluated whether SAI testing, together with SAI test-retest, after a single dose of the acetylcholinesterase (AChE) inhibitor rivastigmine, might be useful in predicting the response after 1 year treatment with rivastigmine in 16 AD patients. Results: Fourteen AD patients had pathologically reduced SAI. SAI was increased after administration of a single oral dose of rivastigmine in AD patients with abnormal baseline SAI, but individual responses to rivastigmine varied widely, with SAI change ranging from an increase in inhibition of ∼50% of test size to no change. Baseline SAI and the increase in SAI after a single dose of rivastigmine were correlated with response to long term treatment. A normal SAI in baseline conditions, or an abnormal SAI in baseline conditions that was not greatly increased by a single oral dose of rivastigmine, were invariably associated with poor response to long term treatment, while an abnormal SAI in baseline conditions in conjunction with a large increase in SAI after a single dose of rivastigmine was associated with good response to long term treatment in most of the patients. Conclusions: Evaluation of SAI may be useful for identifying AD patients likely to respond to treatment with AChE inhibitors. PMID:16024879

  18. Russian VX: inhibition and reactivation of acetylcholinesterase compared with VX agent.

    PubMed

    Kuca, Kamil; Jun, Daniel; Cabal, Jiri; Hrabinova, Martina; Bartosova, Lucie; Opletalova, Veronika

    2006-04-01

    Organophosphorus compounds such as nerve agents inhibit, practically irreversibly, cholinesterases by their phosphorylation in the active site of these enzymes. Current antidotal treatment used in the case of acute nerve agent intoxications consists of combined administration of anticholinergic drug (usually atropine) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivator (HI-6, obidoxime, pralidoxime), which from a chemical view is a derivative from the group of pyridinium or bispyridinium aldoximes (commonly called "oxime"). Oximes counteract acetylcholine increase, resulting from AChE inhibition. In the human body environment these compounds are powerful nucleophiles and are able to break down the bond between AChE and nerve agent molecule. This process leads to renewal of enzyme functionality -- to its reactivation. The usefulness of oxime in the reactivation process depends on its chemical structure and on the nerve agent whereby AChE is inhibited. Due to this fact, selection of suitable reactivator in the treatment of intoxications is very important. In our work, we have compared differences in the in vitro inhibition potency of VX and Russian VX on rat, pig and human brain, and subsequently we have tested reactivation of rat brain cholinesterase inhibited by these agents using oxime HI-6, obidoxime, pralidoxime, trimedoxime and methoxime. The results showed that no major differences in the reactivation process of both VX and Russian VX-inhibited cholinesterase. The similarity in reactivation was caused by analogous chemical structure of either nerve agent; and that oxime HI-6 seems to be the most effective reactivator tested, which confirms that HI-6 is currently the most potent reactivator of AChE inhibited by nerve agents. The results obtained in our study should be considered in the future development of new AChE reactivators.

  19. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    PubMed

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling.

  20. The atypical antipsychotic olanzapine disturbs depotentiation by modulating mAChRs and impairs reversal learning.

    PubMed

    Song, Woo Seok; Cha, Jin Hee; Yoon, Sang Ho; Cho, Young Seon; Park, Kyeong-Yeol; Kim, Myoung-Hwan

    2017-03-01

    Antipsychotic medication is an essential component for treating schizophrenia, which is a serious mental disorder that affects approximately 1% of the global population. Olanzapine (Olz), one of the most frequently prescribed atypical antipsychotics, is generally considered a first-line drug for treating schizophrenia. In contrast to psychotic symptoms, the effects of Olz on cognitive symptoms of schizophrenia are still unclear. In addition, the mechanisms by which Olz affects the neural circuits associated with cognitive function are unknown. Here we show that Olz interrupts depotentiation (reversal of long-term potentiation) without disturbing de novo LTP (long-term potentiation) and LTD (long-term depression). At hippocampal SC-CA1 synapses, inhibition of NMDARs (N-methyl-d-aspartate receptors), mGluRs (metabotropic glutamate receptors), or mAChRs (muscarinic acetylcholine receptors) disrupted depotentiation. In addition, co-activation of NMDARs, mGluRs, and mAChRs reversed stably expressed LTP. Olz inhibits the activation of mAChRs, which amplifies glutamate signaling through enhanced NMDAR opening and Gq (Gq class of G protein)-mediated signal transduction. Behaviorally, Olz impairs spatial reversal learning of mice in the Morris water maze test. Our results uncover a novel mechanism underpinning the cognitive modulation of Olz and show that the anticholinergic property of Olz affects glutamate signaling and synaptic plasticity.

  1. Generation of Recombinant Human AChE Op-Scavengers With Extended Circulatory Longevity

    DTIC Science & Technology

    2005-04-01

    AChE PEGylation results in a major reduction of the immunogenicity of the enzyme. In structure -function studies of AChE, we compared the reactivities...BChE). Extensive structural and biochemical analyses of over twenty forms of recombinant AChEs allowed us to determine an hierarchical pattern by...glycan structures that do not conform with the classical complex-type of oligosaccharides typical of animal cell proteins or which were entirely devoid of

  2. Inhibition of acetylcholinesterase activity in the central nervous system of the red swamp crayfish, Procambarus clarkii, by mercury, cadmium, and lead

    SciTech Connect

    Devi, M.; Fingerman, M.

    1995-11-01

    The toxicological, physiological and biochemical responses of aquatic crustaceans to heavy metals have been reported by several investigators. Levels of glucose, lactic acid, sodium, potassium, aspartate aminotransferase and alanine aminotransferase in the blood of the crab Scylla serrata increased, while glycogen levels in hepatopancreas and muscle decreased after a four-week exposure to mercuric chloride. In fiddler crab, Uca pugilator, enzyme activity was observed to decrease in the hepatopancreas but increased in abdominal muscle after 48 hr cadmium exposure. In the red swamp crayfish, Procambarus clarkii, exposed for 96 hr to cadmium, glutahione (GSH) level and GSH S-transferase activity deceased in the midgut. In crayfish Astacus astacus exposed to sublethal concentrations of lead and cadmium, oxidative enzyme (succine dehydrogenase and NADPH-cytochrome P450 reductase) activities in gills and hepatopancrease decreased. Acetylcholinesterase (AChE) inhibition by organophosphates and organocarbamates in various crustaceans has bee reported. In vivo cadmium exposure caused increases in esterase activities, but mercury exposure decreases these activities in the hepatopancreas of the shrimp Callianassa tyrrhena. The freshwater crab, Barytelphusa guerini, exposed to 0.6 ppm cadmium showed reduced oxygen consumption throughout the experiment whereas AChE activity increased after 4 days but decreased after 15 days. The authors wanted to determine the effects of cadmium, lead and mercury on AChE activity in central nervous tissue of Procambarus clarkii. This enzyme has the potential for serving both as a biochemical indicator of toxic stress and a sensitive parameter for testing water for the presence of toxicants. These three biologically silent metals have, according to Schweinsberg and Karsa great toxicological significance to humans because their use is widespread. 14 refs., 4 figs.

  3. Evaluation of a Brain Acetylcholinesterase Extraction Method and Kinetic Constants after Methyl-Paraoxon Inhibition in Three Brazilian Fish Species

    PubMed Central

    Freitas, A. P.; Santos, C. R.; Sarcinelli, P. N.; Hauser-Davis, R. A.; Lopes, R. M.

    2016-01-01

    Acetylcholinesterase (AChE) is an important enzyme in the control of the neuronal action potential and sensitive to organophosphate inhibition. Brain fish AChE is less sensitive to organophosphate inhibition than AChE from terrestrial animals, although this sensitivity is variable among species and has not yet been fully evaluated in fish species. In this setting, inhibition kinetic constants for progressive irreversible inhibition of brain acetylcholinesterase due to methyl-paraoxon exposure were determined in three fish species (Mugil liza, Genidens genidens and Lagocephalus laevigatus) and hen (Gallus domesticus). Enzyme extraction using a detergent was shown to be adequate, and samples presented activity inhibition in high substrate concentrations and suppression of inhibition by methyl-paraoxon in the presence of the substrate, similar to kinetic patterns from purified enzyme preparations. Catfish (G. genidens) AChE presented the highest sensitivity among the evaluated fish species (IC50 = 1031.20 nM ± 63.17) in comparison to M. liza and L. laevigatus (IC50: 2878.83 ± 421.94 and 2842.5 ± 144.63 nM respectively). The lower dissociation constant (Kd = 20.3 ± 2.95 μM) of catfish AChE showed greater enzyme affinity for methyl-paraoxon, explaining this species higher sensitivity to organophosphates. Hen AChE presented higher ki (900.57 ± 65.3 mM-1min-1) and, consequently, greater sensitivity to methyl-paraoxon, explained by a lower Kd (0.6 ± 0.13 μM). Furthermore, hen AChE did not differentiate between the propionylthiocholine and acetylthiocholine substrates, indicating easier access of methyl-paraoxon to the hen enzyme activity site. The results obtained herein indicate a suitable extraction of AChE and, despite different inhibition kinetic constants, demonstrate that fish AChE is less sensitive to methyl-paraoxon, probably due to reduced access to the catalytic center which provides greater enzyme substrate selectivity. PMID:27655611

  4. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems.

  5. Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants.

    PubMed

    Cortes, Natalie; Alvarez, Rafael; Osorio, Edison H; Alzate, Fernando; Berkov, Strahil; Osorio, Edison

    2015-01-01

    Acetylcholinesterase (AChE) enzymatic inhibition is an important target for the management of Alzheimer disease (AD) and AChE inhibitors are the mainstay drugs for its treatment. In order to discover new sources of potent AChE inhibitors, a combined strategy is presented based on AChE-inhibitory activity and chemical profiles by GC/MS, together with in silico studies. The combined strategy was applied on alkaloid extracts of five Amaryllidaceae species that grow in Colombia. Fifty-seven alkaloids were detected using GC/MS, and 21 of them were identified by comparing their mass-spectral fragmentation patterns with standard reference spectra in commercial and private library databases. The alkaloid extracts of Zephyranthes carinata exhibited a high level of inhibitory activity (IC50 = 5.97 ± 0.24 μg/mL). Molecular modeling, which was performed using the structures of some of the alkaloids present in this extract and the three-dimensional crystal structures of AChE derived from Torpedo californica, disclosed their binding configuration in the active site of this AChE. The results suggested that the alkaloids 3-epimacronine and lycoramine might be of interest for AChE inhibition. Although the galanthamine group is known for its potential utility in treating AD, the tazettine-type alkaloids should be evaluated to find more selective compounds of potential benefit for AD.

  6. Evaluation of monoquaternary pyridinium oximes potency to reactivate tabun-inhibited human acetylcholinesterase.

    PubMed

    Odzak, Renata; Calić, Maja; Hrenar, Tomica; Primozic, Ines; Kovarik, Zrinka

    2007-04-20

    Monoquaternary N-benzyl-4-hydroxyiminomethylpyridinium bromide (Py-4-H) and its analogous with diverse substituents introduced into the phenyl ring (Py-4-CH(3), Py-4-Br, Py-4-Cl and Py-4-NO(2)) were synthesized in order to examine their potency as reactivators of tabun-inhibited human erythrocyte acetylcholinesterase (AChE; EC 3.1.1.7). Within 24h, the reactivation of tabun-inhibited AChE reached 80% with Py-4-CH(3), Py-4-Br and Py-4-Cl, 40% with Py-4-NO(2), and 30% with Py-4-H. The overall reactivation rate constants were up to 5.0min(-1)M(-1). All oximes inhibited human AChE reversibly, and the inhibition potency increased in the following order Py-4-BrAChE. Docking studies were carried out to elucidate the differences in oximes potency. The orientations of all studied oximes in the active site of human AChE have been proposed by flexible ligand docking with AutoDock 3.0. Analyses of the obtained complexes revealed the presence of numerous hydrogen bonds and close contacts between the oximes and the residues in the active site. Final docked energies predicted correctly the relative order of the inhibition potency of compounds (except in the case of Py-4-CH(3)) as well as the most probable orientation of the best reactivator, Py-4-Br, which can result in an attack on the phosphorus atom of the tabun-phosphorylated human AChE.

  7. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  8. A comparison of tabun-inhibited rat brain acetylcholinesterase reactivation by three oximes (HI-6, obidoxime, and K048) in vivo detected by biochemical and histochemical techniques.

    PubMed

    Bajgar, Jiri; Hajek, Petr; Zdarova, Jana Karasova; Kassa, Jiri; Paseka, Antonin; Slizova, Dasa; Krs, Otakar; Kuca, Kamil; Jun, Daniel; Fusek, Josef; Capek, Lukas

    2010-12-01

    Tabun belongs to the most toxic nerve agents. Its mechanism of action is based on acetylcholinesterase (AChE) inhibition at the peripheral and central nervous systems. Therapeutic countermeasures comprise administration of atropine with cholinesterase reactivators able to reactivate the inhibited enzyme. Reactivation of AChE is determined mostly biochemically without specification of different brain structures. Histochemical determination allows a fine search for different structures but is performed mostly without quantitative evaluation. In rats intoxicated with tabun and treated with a combination of atropine and HI-6, obidoxime, or new oxime K048, AChE activities in different brain structures were determined using biochemical and quantitative histochemical methods. Inhibition of AChE following untreated tabun intoxication was different in the various brain structures, having the highest degree in the frontal cortex and reticular formation and lowest in the basal ganglia and substantia nigra. Treatment resulted in an increase of AChE activity detected by both methods. The highest increase was observed in the frontal cortex. This reactivation was increased in the order HI-6 < K048 < obidoxime; however, this order was not uniform for all brain parts studied. A correlation between AChE activity detected by histochemical and biochemical methods was demonstrated. The results suggest that for the mechanism of action of the nerve agent tabun, reactivation in various parts of the brain is not of the same physiological importance. AChE activity in the pontomedullar area and frontal cortex seems to be the most important for the therapeutic effect of the reactivators. HI-6 was not a good reactivator for the treatment of tabun intoxication.

  9. Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction.

    PubMed

    Lin, T; Simchovitz, A; Shenhar-Tsarfaty, S; Vaisvaser, S; Admon, R; Hanin, G; Hanan, M; Kliper, E; Bar-Haim, Y; Shomron, N; Fernandez, G; Lubin, G; Fruchter, E; Hendler, T; Soreq, H

    2016-05-03

    Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome-neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility.

  10. Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction

    PubMed Central

    Lin, T; Simchovitz, A; Shenhar-Tsarfaty, S; Vaisvaser, S; Admon, R; Hanin, G; Hanan, M; Kliper, E; Bar-Haim, Y; Shomron, N; Fernandez, G; Lubin, G; Fruchter, E; Hendler, T; Soreq, H

    2016-01-01

    Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome–neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility. PMID:27138800

  11. Effects of systemically applied nAChRα7 agonists and antagonists on light-induced phase shifts of hamster circadian activity rhythms.

    PubMed

    Gannon, Robert L; Garcia, David A; Millan, Mark J

    2014-06-01

    Many physiological systems in mammals are linked to the body's master circadian rhythm in the sleep/wake cycle and dysfunctions in this rhythm has been associated with neurological diseases such as major depression, Alzheimer's Disease and schizophrenia. There is some evidence that nicotinic cholinergic input to the master circadian pacemaker, the suprachiasmatic nucleus, may modulate circadian activity rhythms, but data employing in vivo preparations is sparse. Therefore we examined the ability of intraperitoneally applied nicotinic agonists and antagonists relatively selective for the α7 nicotinic receptor to modulate light-induced phase shifts of hamster circadian wheel running rhythms. Hamsters were maintained in constant darkness and exposed to light pulses early and late in their active period, mimicking dusk and dawn respectively, which elicited phase delays and advances of their circadian wheel running rhythms. The α7 receptor antagonists bPiDDB (0.03-3mg/kg) and methyllacaconitine (0.1-1mg/kg) inhibited both light- induced phase advances and delays of circadian wheel running rhythms by as much as 75% versus vehicle injections. In contrast, systemic injections of the α7 agonists PHA 543613 and ABT107, both at 0.156-2.5mg/kg, had no effect on light induced phase advances or delays. Further, α7 nicotinic receptors were identified in the hamster suprachiasmatic nucleus using an antibody that recognizes α7 nicotinic receptors. These results clearly identify the ability of α7 nicotinic receptor antagonists to inhibit light-entrainment of the hamster circadian pacemaker. Therefore, nicotinic compounds may be useful for the treatment of circadian dysfunction associated with neurological diseases.

  12. Triterpenoids with acetylcholinesterase inhibition from Chuquiraga erinacea D. Don. subsp. erinacea (Asteraceae).

    PubMed

    Gurovic, María Soledad; Castro, María Julia; Richmond, Victoria; Faraoni, María Belén; Maier, Marta S; Murray, Ana Paula

    2010-04-01

    A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE) inhibitory agents in the ethanolic extract of Chuquiraga erinacea D. Don. subsp. erinacea leaves using a bioautographic method. This permitted the isolation of the pentacyclic triterpenes calenduladiol (1), faradiol (2), heliantriol B2 (3), lupeol (4), and a mixture of alpha-and beta-amyrin ( 5A and 5B) as active constituents. Pseudotaraxasterol (6) and taraxasterol (7) were also isolated from this extract and showed no activity at the same analytical conditions. Compound 1 showed the highest AChE inhibitory activity with 31.2 % of inhibition at 0.5 mM. Looking forward to improve the water solubility of the active compounds, the sodium sulfate ester of 1 was prepared by reaction with the (CH3)3N.SO3 complex. The semisynthetic derivative disodium calenduladiol disulfate (8) elicited higher AChE inhibition than 1 with 94.1 % of inhibition at 0.5 mM (IC (50) = 0.190 +/- 0.003 mM). Compounds 1, 2, 3, 5, 6, and 7 are reported here for the first time in C. erinacea. This is the first report of AChE inhibition from calenduladiol (1) as well as from a sulfate derived from a natural product.

  13. Activation and inhibition of rat neuronal nicotinic receptors by ABT-418

    PubMed Central

    Papke, Roger L; Thinschmidt, Jeffrey S; Moulton, Becky A; Meyer, Edwin M; Poirier, Amy

    1997-01-01

    ABT-418 appeared to function as a relatively broad spectrum activator of neuronal nicotinic receptors, expressed in Xenopus oocytes, with little cross reactivity to the mammalian muscle receptor subtype. However, the relative potencies of ABT-418 at the various subtypes differed from those acetylcholine (ACh). For example, ACh was most potent at α3β2 (EC50≈30 μM) and least potent at α2β2 (EC50≈500 μM). ABT-418 was most potent at α4β2 and α2β2 (EC50≈6 μM and 11 μM, respectively) and least potent at α3β4 (EC50≈188 μM).In addition to activating neuronal receptors, ABT-418 exhibited complex properties, including the inhibition of ACh responses.The current responses elicited by relatively high concentrations of ABT-418 on the α4β2 receptor subtype were protracted beyond the application interval. The coapplication of ABT-418 with either of the use-dependent inhibitors bis(1,2,2,6,6-tetramethyl-4-pipendimyl)sebacate (BTMPS) or tetramethyl-pipenidine (TMP) eliminated the late protracted phase of the currents with only small effects on the initial activation phase. When the reversible inhibitor TMP was washed from the bath, the previously inhibited late current reappeared, suggesting that the observed mixed agonist-antagonist effects of ABT-418 and (±)-epibatidine on α4β2 were due to a concentration-dependent noncompetitive inhibition, an effect similar to that obtained for (−)-nicotine.The inhibition of α4β2 receptors by ABT-418 was voltage-dependent. When high concentrations of ABT-418 were applied under depolarizing conditions, additional late currents could be observed under conditions which suggested that a build up of ABT-418 in an unstirred layer over the surface of the oocyte was occurring. This may have been due to the dissociation of the drug from channel blocking sites on the receptors themselves, or alternatively, from the plasma membrane of the cells. PMID:9031746

  14. Comparison of Chlorpyrifos-Oxon and Paraoxon Acetylcholinesterase Inhibition Dynamics: Potential role of a peripheral binding site

    SciTech Connect

    Kousba, Ahmed A.; Sultatos, L G.; Poet, Torka S.; Timchalk, Chuck

    2004-08-02

    The primary mechanism of action for organophosphorus (OP) insecticides involves the inhibition of acetylcholinesterase (AChE) by oxygenated metabolites (oxons). This inhibition has been attributed to the phosphorylation of the serine hydroxyl group located in the active site of the AChE molecule. The rate of phosphorylation is described by the bimolecular inhibitory rate constant (ki), which has been utilized for quantification of OP inhibitory capacity. It has been previously proposed that a peripheral binding site exists on the AChE molecule, which when occupied, reduces the capacity of additional oxon molecules to phosphorylate the active site. The objective of the current study was to evaluate the interaction of chlorpyrifos oxon (CPO) and paraoxon (PO) with rat brain AChE using a modified Ellman assay in conjunction with a pharmacodynamic model to further assess the dynamics of AChE inhibition and the potential role of a peripheral binding site. The ki for AChE inhibition determined at oxon concentrations of 5 x 10{sup -4} 100 nM were 0.212 and 0.0216 nM-1h-1 for CPO and PO, respectively. The spontaneous reactivation rates of the inhibited AChE for CPO and PO were 0.087 and 0.078 h-1, respectively. In contrast, the ki estimated at a low oxon concentration (1 pM) were {approx} 1,000 and 10,000 -fold higher than those determined at high CPO and PO concentrations, respectively. At these low concentrations, the ki estimates were approximately similar for both CPO and PO (180 and 250 nM-1h-1, respectively). This implies that at low exposure concentrations, both oxons exhibited similar inhibitory potency in contrast to the marked difference exhibited at higher concentrations, which is consistent with the presence of a peripheral binding site on the AChE enzyme. These results support the potential importance of a secondary binding site associated with AChE kinetics, particularly at low environmentally relevant concentrations.

  15. Hydrogen Sulfide Inhibits Plasma Renin Activity

    PubMed Central

    Lu, Ming; Liu, Yi-Hong; Goh, Hong Swen; Wang, Josh Jia Xing; Yong, Qian-Chen; Wang, Rui

    2010-01-01

    The development of renovascular hypertension depends on the release of renin from the juxtaglomerular (JG) cells, a process regulated by intracellular cAMP. Hydrogen sulfide (H2S) downregulates cAMP production in some cell types by inhibiting adenylyl cyclase, suggesting the possibility that it may modulate renin release. Here, we investigated the effect of H2S on plasma renin activity and BP in rat models of renovascular hypertension. In the two-kidney-one-clip (2K1C) model of renovascular hypertension, the H2S donor NaHS prevented and treated hypertension. Compared with vehicle, NaHS significantly attenuated the elevation in plasma renin activity and angiotensin II levels but did not affect plasma angiotensin-converting enzyme activity. Furthermore, NaHS inhibited the upregulation of renin mRNA and protein levels in the clipped kidneys of 2K1C rats. In primary cultures of renin-rich kidney cells, NaHS markedly suppressed forskolin-stimulated renin activity in the medium and the intracellular increase in cAMP. In contrast, NaHS did not affect BP or plasma renin activity in normal or one-kidney-one-clip (1K1C) rats, both of which had normal plasma renin activity. In conclusion, these results demonstrate that H2S may inhibit renin activity by decreasing the synthesis and release of renin, suggesting its potential therapeutic value for renovascular hypertension. PMID:20360313

  16. Chemical inhibition of nitrification in activated sludge.

    PubMed

    Kelly, R T; Henriques, I D S; Love, N G

    2004-03-20

    Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.

  17. Inhibition of aromatase activity by flavonoids.

    PubMed

    Jeong, H J; Shin, Y G; Kim, I H; Pezzuto, J M

    1999-06-01

    In searching for potent cancer chemopreventive agents from synthetic or natural products, 28 randomly selected flavonoids were screened for inhibitory effects against partially purified aromatase prepared from human placenta. Over 50% of the flavonoids significantly inhibited aromatase activity, with greatest activity being demonstrated with apigenin (IC50: 0.9 microg/mL), chrysin (IC50: 1.1 microg/mL), and hesperetin (IC50: 1.0 microg/mL).

  18. In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens.

    PubMed

    Pucci, Michael J; Podos, Steven D; Thanassi, Jane A; Leggio, Melissa J; Bradbury, Barton J; Deshpande, Milind

    2011-06-01

    ACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency against Haemophilus influenzae, Moraxella catarrhalis, and a Neisseria sp. but was less active against members of the Enterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well as Legionella pneumophila and Mycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10 × MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple. In vivo efficacy was demonstrated against S. aureus with murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (≤0.25 μg/ml) against staphylococcal strains with single mutations in both gyrA and grlA (parC), retention of good antibacterial activity (MICs of ≤0.5 μg/ml) against staphylococcal strains with two mutations in both gyrA and grlA, and low frequencies for the selection of higher-level resistance (<10⁻¹⁰). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates.

  19. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica).

    PubMed

    Yeom, Hwa-Jeong; Kang, Jae Soon; Kim, Gil-Hah; Park, Il-Kwon

    2012-07-25

    We evaluated the insecticidal and acetylcholine esterase (AChE) inhibition activity of 11 Apiaceae plant essential oils and their constituents in adult male and female Blattella germanica. Of the 11 Apiaceae plant essential oils tested, dill (Anethum graveolens), carvi (Carum carvi), and cumin (Cuminum cyminum) demonstrated >90% fumigant toxicity against adult male German cockroaches at a concentration of 5 mg/filter paper. In a contact toxicity test, dill (Anethum graveolens), carvi (Carum carvi), cumin (Cuminum cyminum), and ajowan (Trachyspermum ammi) produced strong insecticidal activity against adult male and female German cockroaches. Among the test compounds, (S)-(+)-carvone, 1,8-cineole, trans-dihydrocarvone, cuminaldehyde, trans-anethole, p-cymene, and γ-terpinene demonstrated strong fumigant toxicity against adult male and female B. germanica. In a contact toxicity test, carveol, cuminaldehyde, (S)-(+)-carvone, trans-anethole, thymol, and p-cymene showed strong contact toxicity against adult male and female B. germanica. IC(50) values of α-pinene, carvacrol, and dihydrocarvone against female AChE were 0.28, 0.17, and 0.78 mg/mL, respectively. The toxicity of the blends of constituents identified in 4 active oils indicated that carvone, cuminaldehyde, and thymol were major contributors to the fumigant activity or contact toxicity of the artificial blend.

  20. Resveratrol inhibits polyphosphoinositide metabolism in activated platelets.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Holmsen, Holm; Fukami, Miriam H

    2005-08-15

    The effects of resveratrol (trans-3,4',5-trihydroxystilbene) on activation responses and the polyphosphoinositide metabolism in human blood platelets have been studied. Resveratrol partially inhibited secretory responses (liberation of dense granule nucleotides and lysosomal acid hydrolases), microparticle formation and protein phosphorylations induced by thrombin. The effects of resveratrol on phosphoinositide metabolites, phosphatidate (PtdOH), phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate (PtdIns-4(5)-P), phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2), phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) were monitored in blood platelets prelabelled with [32P]Pi. Resveratrol not only inhibited the marked increase in levels of PtdOH in platelets activated by thrombin (0.1 U/ml) but it decreased the steady state levels of the other polyphosphoinositide metabolites. The distribution of 32P in phosphoinositides in activated platelets was consistent with inhibition of CDP-DAG inositol transferase and a weak inhibition of PtdIns-4(5)-P kinase. These observations show that resveratrol has a profound effect on phospholipids, particularly on polyphosphoinositide metabolism, and may decrease the amount of PtdIns-4,5-P2 available for signalling in these cells.

  1. Determination of AChE levels and genotoxic effects in farmers occupationally exposed to pesticides.

    PubMed

    Naravaneni, Rambabu; Jamil, Kaiser

    2007-09-01

    Pesticides can cause cytogenetic effects and lower the acetyl cholinesterase (AChE) levels in farmers exposed to pesticides. In this study, 210 farmers exposed to pesticides and 160 non-exposed individuals were enrolled for determining the genotoxicity and AChE levels. The AChE levels were determined in plasma and RBC lysate from blood samples collected from farmers and control subjects. AChE (true and pseudo) estimation done by the colorimetric method revealed that there was a progressive fall in both the RBC and plasma AChE levels in exposed individuals compared to unexposed individuals, which correlated with the severity of exposure (253.5 versus 311.1 and 142.3 versus 152.1; P < 0.001). Cytogenetic studies showed an increase in DNA damage and higher chromosomal aberrations (CAs) in exposed farmers compared to the control subjects (26.13 versus 07.61 and 21.37 versus 1.52; P < 0.001). When comparing the AChE levels with DNA damage and structural CA frequencies, there was a negative linear correlation. Therefore based on these findings, it is concluded that genotoxic biomarkers like CA frequencies, DNA damage data along with AChE levels are important parameters for determining farmer's health who are exposed to pesticides in any situation.

  2. Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions?

    PubMed Central

    Blohberger, J; Kunz, L; Einwang, D; Berg, U; Berg, D; Ojeda, S R; Dissen, G A; Fröhlich, T; Arnold, G J; Soreq, H; Lara, H; Mayerhofer, A

    2015-01-01

    Proliferation, differentiation and death of ovarian cells ensure orderly functioning of the female gonad during the reproductive phase, which ultimately ends with menopause in women. These processes are regulated by several mechanisms, including local signaling via neurotransmitters. Previous studies showed that ovarian non-neuronal endocrine cells produce acetylcholine (ACh), which likely acts as a trophic factor within the ovarian follicle and the corpus luteum via muscarinic ACh receptors. How its actions are restricted was unknown. We identified enzymatically active acetylcholinesterase (AChE) in human ovarian follicular fluid as a product of human granulosa cells. AChE breaks down ACh and thereby attenuates its trophic functions. Blockage of AChE by huperzine A increased the trophic actions as seen in granulosa cells studies. Among ovarian AChE variants, the readthrough isoform AChE-R was identified, which has further, non-enzymatic roles. AChE-R was found in follicular fluid, granulosa and theca cells, as well as luteal cells, implying that such functions occur in vivo. A synthetic AChE-R peptide (ARP) was used to explore such actions and induced in primary, cultured human granulosa cells a caspase-independent form of cell death with a distinct balloon-like morphology and the release of lactate dehydrogenase. The RIPK1 inhibitor necrostatin-1 and the MLKL-blocker necrosulfonamide significantly reduced this form of cell death. Thus a novel non-enzymatic function of AChE-R is to stimulate RIPK1/MLKL-dependent regulated necrosis (necroptosis). The latter complements a cholinergic system in the ovary, which determines life and death of ovarian cells. Necroptosis likely occurs in the primate ovary, as granulosa and luteal cells were immunopositive for phospho-MLKL, and hence necroptosis may contribute to follicular atresia and luteolysis. The results suggest that interference with the enzymatic activities of AChE and/or interference with necroptosis may be novel

  3. Thiomers: Inhibition of cytochrome P450 activity.

    PubMed

    Iqbal, Javed; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2011-08-01

    The aim of the present study was to investigate the potential of different thiolated polymers (thiomers) on the catalytic activity of CYP450s on one hand and to explore new inhibitors for CYP activity on the other hand. Several thiolated polymers including poly(acrylic acid)-cysteine (PAA-cysteine), chitosan-thioglycolic acid (chitosan-TGA), and thiolated PEG-g-PEI copolymer along with brij 35, myrj 52 and the well-established CYPP450 inhibitor verapamil were screened for their CYP3A4 and CYP2A6 inhibitory activity, and their IC(50) values were determined. Both enzyme inhibition assays were performed in 96-well microtiter plates. 7-Benzyloxy-4-(trifluoromethyl)-coumarin (BFC) and 7-hydroxycoumarin (7-HC) were used as fluorescent substrates in order to determine CYP3A4 and CYP2A6 catalytic activity, respectively. All investigated compounds inhibited CYP3A4 as well as CYP2A6 activity. All tested (thiolated) polymers were found to be more potent inhibitors of CYP3A4 than of CYP2A6 catalytic activity. Apart from verapamil that is a known CYP3A4 inhibitor, brij 35 and myrj 52 were explored as potent inhibitors of CYP3A4 and CYP2A6 catalytic activity. Among the tested polymers, the rank order for CYP3A4 inhibition was PAA-cysteine (100 kDa)>brij 35>thiolated PEG-g-PEI copolymer (16 kDa)>myrj 52>PAA (100 kDa)>PAA-cysteine (450 kDa)>verapamil>PAA (450 kDa)>chitosan-TGA (150 kDa)>chitosan (150 kDa). On the other hand, the rank order of CYP2A6 inhibition was brij 35>PAA-cysteine (100kDa)>chitosan-TGA (150 kDa)>PAA (100 kDa)>thiolated PEG-g-PEI copolymer (16 kDa)>PAA-cysteine (450 kDa)>chitosan (150 kDa)>verapamil>PAA (450 kDa)>myrj 52. Thus, this study suggests that (thiolated) polymers display a promising potential to inhibit cytochrome P450s activity and might turn out to be potentially valuable tools for improving the oral bioavailability of actively secreted compounds by avoiding intestinal metabolism.

  4. Tissue distribution, characterization and in vitro inhibition of B-esterases in the earwig Forficula auricularia.

    PubMed

    Malagnoux, Laure; Capowiez, Yvan; Rault, Magali

    2014-10-01

    Earwigs are important natural enemies of numerous pests in pome fruit orchards worldwide. Studying the effects of agricultural practices on these biological control agents is important for understanding its vulnerability in the field. The aim of this study was to characterize the B-esterase activities in the European earwig Forficula auricularia and to evaluate in vitro its sensitivity to organophosphate and carbamate pesticides. Acetylcholinesterase (AChE) activity was mainly measured with 1.5 mM acetylthiocholine as the substrate in the microsomal fraction of earwig heads (70% of total AChE activity). Carboxylesterase (CbE) activities were measured with three substrates [5 mM 4-nitrophenyl acetate (4-NPA), 1mM 4-nitrophenyl valerate (4-NPV), and 2 mM α-naphtyl acetate (α-NA)] to examine different isoenzymes, which were present mainly in the cytosolic fraction (about 70-88% of total activities) of all earwig tissues. CbE activity was higher than AChE activity, especially with α-NA, then 4-NPA and lastly 4-NPV. Chlorpyrifos-oxon an organophosphate, and carbaryl a carbamate pesticide, inhibited AChE and CbE activities in a concentration-dependent manner. Earwig CbE activities showed a stronger sensitivity to organophosphate than AChE, with the strongest effect for chlorpyrifos-oxon on male carboxylesterase activities. CbE and AChE showed about the same sensitivity to carbamate pesticides regardless of sex. These results suggest that B-type esterases in the European earwig F.auricularia are suitable biomarkers of pesticide exposure.

  5. Aminopeptidase from Brevibacterium linens: activation and inhibition.

    PubMed

    Foissy, H

    1978-04-18

    Activation and inhibition of a purified aminopeptidase from Brevibacterium linens was investigated using L-alpha-leucyl-4-nitroanilide and L-leucyl-L-leucine as substrates. The enzyme was activated by cobalt, provided that the enzyme was preincubated with the metal. Strong inhibitory effects were derived from heavy metals, metal-complexing compounds, reducing agents, the modification of aromatic amino acids, and the presence of hydrophobic substances or certain amino acids in the test mixtures. Supposing that this B. linens aminopeptidase plays a part during surface-ripening of cheeses, possible consequences of specific technological conditions for its activity are discussed.

  6. Increased ratio of rapsyn to ACh receptor stabilizes postsynaptic receptors at the mouse neuromuscular synapse

    PubMed Central

    Gervásio, Othon L; Phillips, William D

    2005-01-01

    The metabolic turnover of nicotinic ACh receptors (AChR) at the neuromuscular synapse is regulated over a tenfold range by innervation status, muscle electrical activity and neural agrin, but the downstream effector of such changes has not been defined. The AChR-associated protein rapsyn is essential for forming AChR clusters during development. Here, rapsyn was tagged with enhanced green fluorescent protein (EGFP) to begin to probe its influence at the adult synapse. In C2 myotubes, rapsyn–EGFP participated with AChR in agrin-induced AChR cluster formation. When electroporated into the tibialis anterior muscle of young adult mice, rapsyn–EGFP accumulated in discrete subcellular structures, many of which colocalized with Golgi markers, consistent with the idea that rapsyn assembles with AChR in the exocytic pathway. Rapsyn–EGFP also targeted directly to the postsynaptic membrane where it occupied previously vacant rapsyn binding sites, thereby increasing the rapsyn to AChR ratio. At endplates displaying rapsyn–EGFP, the metabolic turnover of AChR (labelled with rhodamine-α-bungarotoxin) was slowed. Thus, the metabolic half-life of receptors at the synapse may be modulated by local changes in the subsynaptic ratio of rapsyn to AChR. PMID:15550459

  7. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors.

    PubMed

    Costanzo, Paola; Cariati, Luca; Desiderio, Doriana; Sgammato, Roberta; Lamberti, Anna; Arcone, Rosaria; Salerno, Raffaele; Nardi, Monica; Masullo, Mariorosario; Oliverio, Manuela

    2016-05-12

    An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged.

  8. An efficient ionic liquid mediated synthesis, cholinesterase inhibitory activity and molecular modeling study of novel piperidone embedded α,β-unsaturated ketones.

    PubMed

    Kia, Yalda; Osman, Hasnah; Kumar, Raju Suresh; Murugaiyah, Vikneswaran; Basiri, Alireza; Khaw, Kooi Yeong; Rosli, Mohd Mustaqim

    2014-01-01

    A series of hitherto unreported piperidone embedded α,β-unsaturated ketones were synthesized efficiently in ionic solvent and evaluated for cholinesterase inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Most of the synthesized compounds displayed good enzyme inhibition; therein compounds 7i and 7f displayed significant activity against AChE with IC50 values of 1.47 and 1.74 µM, respectively. Compound 6g showed the highest BChE inhibitory potency with IC50 value of 3.41 µM, being 5 times more potent than galanthamine. Molecular modeling simulation was performed using AChE and BChE receptors extracted from crystal structure of human AChE and human BChE to determine the amino acid residues involved in the binding interaction of synthesized compounds and their relevant receptors.

  9. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  10. Dimethyl sulfoxide inhibits NLRP3 inflammasome activation.

    PubMed

    Ahn, Huijeong; Kim, Jeeyoung; Jeung, Eui-Bae; Lee, Geun-Shik

    2014-04-01

    Dimethyl sulfoxide (DMSO) is an amphipathic molecule that is commonly/widely used as a solvent for biological compounds. In addition, DMSO has been studied as a medication for the treatment of inflammation, cystitis, and arthritis. Based on the anti-inflammatory characteristics of DMSO, we elucidated the effects of DMSO on activation of inflammasomes, which are cytoplasmic multi-protein complexes that mediate the maturation of interleukin (IL)-1β by activating caspase-1 (Casp1). In the present study, we prove that DMSO attenuated IL-1β maturation, Casp1 activity, and ASC pyroptosome formation via NLRP3 inflammasome activators. Further, NLRC4 and AIM2 inflammasome activity were not affected, suggesting that DMSO is a selective inhibitor of the NLRP3 inflammasomes. The anti-inflammatory effect of DMSO was further confirmed in animal, LPS-endotoxin sepsis and inflammatory bowel disease models. In addition, DMSO inhibited LPS-mediating IL-1s transcription. Taken together, DMSO shows anti-inflammatory characteristics, attenuates NLRP3 inflammasome activation, and mediates inhibition of IL-1s transcription.

  11. Automated high-throughput in vitro screening of the acetylcholine esterase inhibiting potential of environmental samples, mixtures and single compounds.

    PubMed

    Froment, Jean; Thomas, Kevin V; Tollefsen, Knut Erik

    2016-08-01

    A high-throughput and automated assay for testing the presence of acetylcholine esterase (AChE) inhibiting compounds was developed, validated and applied to screen different types of environmental samples. Automation involved using the assay in 96-well plates and adapting it for the use with an automated workstation. Validation was performed by comparing the results of the automated assay with that of a previously validated and standardised assay for two known AChE inhibitors (paraoxon and dichlorvos). The results show that the assay provides similar concentration-response curves (CRCs) when run according to the manual and automated protocol. Automation of the assay resulted in a reduction in assay run time as well as in intra- and inter-assay variations. High-quality CRCs were obtained for both of the model AChE inhibitors (dichlorvos IC50=120µM and paraoxon IC50=0.56µM) when tested alone. The effect of co-exposure of an equipotent binary mixture of the two chemicals were consistent with predictions of additivity and best described by the concentration addition model for combined toxicity. Extracts of different environmental samples (landfill leachate, wastewater treatment plant effluent, and road tunnel construction run-off) were then screened for AChE inhibiting activity using the automated bioassay, with only landfill leachate shown to contain potential AChE inhibitors. Potential uses and limitations of the assay were discussed based on the present results.

  12. An Activation Threshold Model for Response Inhibition

    PubMed Central

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.

    2017-01-01

    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  13. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  14. Experimental and computational studies on the inhibition of acetylcholinesterase by curcumin and some of its derivatives.

    PubMed

    Tello-Franco, Veronica; Lozada-García, Maria Concepcion; Soriano-García, Manuel

    2013-06-01

    Recent studies have demonstrated several biological activities of curcumin with therapeutic potential against Alzheimer's disease, among them the inhibition of the enzyme acetylcholinesterase (AChE). Aiming at identifying the chemical features relevant for this activity, the inhibition of curcumin and a set of 7 derivatives against AChE of E. electricus was measured. These derivatives presented lower activity than curcumin, allowing for the identification of possible unfavorable enzyme-inhibitor interactions. Our computational approach was to dock the molecules to the active site of AChE, followed by an analysis of hydrogen bonds and close contacts to relevant aromatic amino acid residues. To account for inhibitory activity, we sought to define the common structural features between known acetylcholinesterase inhibitors and the tested derivatives. A pharmacophore model was generated, which consisted of two hydrophobic, one aromatic and one hydrogen bond acceptor features. We conclude that the presence of two aromatic rings and the distance between them, allows curcumin and its derivatives to favorably interact with both the quaternary and peripheral sites of AChE. Hydrogen bonds can be formed with the quaternary and acyl sites, which should further stabilize the complex. The acylation of the hydroxyl groups and the reduction of the conjugated double bonds lowered the inhibitory activity, pointing to the modification of the keto-enol moiety as the best alternative for the design of more potent curcumin derivatives as acetylcholinesterase inhibitors.

  15. Japanese Encephalitis Virus Infection Results in Transient Dysfunction of Memory Learning and Cholinesterase Inhibition.

    PubMed

    Chauhan, Prashant Singh; Khanna, Vinay Kumar; Kalita, Jayantee; Misra, Usha Kant

    2016-07-22

    Cholinergic system has an important role in memory and learning. Abnormal cognitive and behavioral changes have been reported in Japanese encephalitis (JE), but their basis has not been comprehensively evaluated. In this study, we report memory and learning and its association with acetylcholinesterase (AChE) activity, JE virus titer, and with histopathological observations in a rat model of JE. Wistar rats were intracerebrally inoculated on 12th day with 3 × 10(6) pfu/ml of JE virus. Memory and learning were assessed by the active and passive avoidance tests on 10, 33, and 48 days post inoculation (dpi). After 10, 33, and 48 dpi AChE activity, Japanese encephalitis virus (JEV) titer and histopathological changes were studied in the frontal cortex, thalamus, midbrain, cerebellum, and hippocampus. There was significant impairment in memory and learning on 10 dpi which started improving from 33 dpi to 48 dpi by active avoidance test. Passive avoidance test showed decrease in transfer latency time of retention trial compared to acquisition on first, second, and third retention day trial compared to controls. AChE inhibition was more marked in the hippocampus, frontal cortex, and cerebellum on 10 dpi. However, AChE activity started improving from 33 dpi to 48 dpi. AChE activity in the thalamus and midbrain correlated with active avoidance test on 10 dpi and 33 dpi. Histopathological studies also revealed improvement on 33 and 48 compared to 10 dpi. The present study demonstrates transient memory and learning impairment which was associated with reduction in AChE, JEV titer, and damage in different brain regions of JEV infected rats.

  16. Gentamicin Blocks the ACh-Induced BK Current in Guinea Pig Type II Vestibular Hair Cells by Competing with Ca2+ at the l-Type Calcium Channel

    PubMed Central

    Yu, Hong; Guo, Chang-Kai; Wang, Yi; Zhou, Tao; Kong, Wei-Jia

    2014-01-01

    Type II vestibular hair cells (VHCs II) contain big-conductance Ca2+-dependent K+ channels (BK) and l-type calcium channels. Our previous studies in guinea pig VHCs II indicated that acetylcholine (ACh) evoked the BK current by triggering the influx of Ca2+ ions through l-type Ca2+ channels, which was mediated by M2 muscarinic ACh receptor (mAChRs). Aminoglycoside antibiotics, such as gentamicin (GM), are known to have vestibulotoxicity, including damaging effects on the efferent nerve endings on VHCs II. This study used the whole-cell patch clamp technique to determine whether GM affects the vestibular efferent system at postsynaptic M2-mAChRs or the membrane ion channels. We found that GM could block the ACh-induced BK current and that inhibition was reversible, voltage-independent, and dose-dependent with an IC50 value of 36.3 ± 7.8 μM. Increasing the ACh concentration had little influence on GM blocking effect, but increasing the extracellular Ca2+ concentration ([Ca2+]o) could antagonize it. Moreover, 50 μM GM potently blocked Ca2+ currents activated by (−)-Bay-K8644, but did not block BK currents induced by NS1619. These observations indicate that GM most likely blocks the M2 mAChR-mediated response by competing with Ca2+ at the l-type calcium channel. These results provide insights into the vestibulotoxicity of aminoglycoside antibiotics on mammalian VHCs II. PMID:24758923

  17. LWH and ACH Helmet Hardware Study

    DTIC Science & Technology

    2015-11-30

    screws and nuts used with the Light Weight Helmet (LWH) and Advanced Combat Helmet (ACH). The testing included basic dimensional measurements, Rockwell...laboratory tests to characterize the properties of helmet screws and nuts used with the Light Weight Helmet (LWH) and Advanced Combat Helmet (ACH). The

  18. Kaempferol inhibits thrombosis and platelet activation.

    PubMed

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge.

  19. A novel isopimarane diterpenoid with acetylcholinesterase inhibitory activity from Nepeta sorgerae, an endemic species to the Nemrut Mountain.

    PubMed

    Yilmaz, Anil; Cağlar, Pinar; Dirmenci, Tuncay; Gören, Nezhun; Topçu, Gülaçti

    2012-06-01

    From the dichloromethane extract of Nepeta sorgerae, the isolation and structure elucidation are now reported of a new isopimarane diterpenoid, named sorgerolone, and two known triterpenoids, oleanolic acid and ursolic acid. Antioxidant activity of the extracts and the isolated terpenoids was determined by the DPPH free radical scavenging and lipid peroxidation inhibition (beta-carotene bleaching) methods. Anticholinesterase activity of the extracts and isolates was investigated by Ellman's method against AChE and BChE enzymes. Although the antioxidant activity results were low, the AChE enzyme inhibition of the extracts and terpenoids was very promising.

  20. Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks.

    PubMed

    Alkondon, M; Pereira, E F; Eisenberg, H M; Albuquerque, E X

    2000-01-01

    Cholinergic control of the activity of human cerebral cortical circuits has long been thought to be accounted for by the interaction of acetylcholine (ACh) with muscarinic receptors. Here we report the discovery of functional nicotinic receptors (nAChRs) in interneurons of the human cerebral cortex and discuss the physiological and clinical implications of these findings. The whole-cell mode of the patch-clamp technique was used to record responses triggered by U-tube application of the nonselective agonist ACh and of the alpha7-nAChR-selective agonist choline to interneurons visualized by means of infrared-assisted videomicroscopy in slices of the human cerebral cortex. Choline induced rapidly desensitizing whole-cell currents that, being sensitive to blockade by methyllycaconitine (MLA; 50 nM), were most likely subserved by an alpha7-like nAChR. In contrast, ACh evoked slowly decaying whole-cell currents that, being sensitive to blockade by dihydro-beta-erythroidine (DHbetaE; 10 microM), were most likely subserved by an alpha4beta2-like nAChR. Application of ACh (but not choline) to the slices also triggered GABAergic postsynaptic currents (PSCs). Evidence is provided that ACh-evoked PSCs are the result of activation of alpha4beta2-like nAChRs present in preterminal axon segments and/or in presynaptic terminals of interneurons. Thus, nAChRs can relay inhibitory and/or disinhibitory signals to pyramidal neurons and thereby modulate the activity of neuronal circuits in the human cerebral cortex. These mechanisms, which appear to be retained across species, can account for the involvement of nAChRs in cognitive functions and in certain neuropathological conditions.

  1. Allosteric inhibition of HIV-1 integrase activity

    PubMed Central

    Engelman, Alan; Kessl, Jacques J.; Kvaratskhelia, Mamuka

    2013-01-01

    HIV-1 integrase is an important therapeutic target in the fight against HIV/AIDS. Integrase strand transfer inhibitors (INSTIs), which target the enzyme active site, have witnessed clinical success over the past 5 years, but the generation of drug resistance poses challenges to INSTI-based therapies moving forward. Integrase is a dynamic protein, and its ordered multimerization is critical to enzyme activity. The integrase tetramer, bound to viral DNA, interacts with host LEDGF/p75 protein to tether integration to active genes. Allosteric integrase inhibitors (ALLINIs) that compete with LEDGF/p75 for binding to integrase disrupt integrase assembly with viral DNA and allosterically inhibit enzyme function. ALLINIs display steep dose response curves and synergize with INSTIs ex vivo, highlighting this novel inhibitor class for clinical development. PMID:23647983

  2. Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction

    PubMed Central

    Cinalli, A R; Guarracino, J F; Fernandez, V; Roquel, L I; Losavio, A S

    2013-01-01

    Background and Purpose The role of inosine at the mammalian neuromuscular junction (NMJ) has not been clearly defined. Moreover, inosine was classically considered to be the inactive metabolite of adenosine. Hence, we investigated the effect of inosine on spontaneous and evoked ACh release, the mechanism underlying its modulatory action and the receptor type and signal transduction pathway involved. Experimental Approach End-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) were recorded from the mouse phrenic-nerve diaphragm preparations using conventional intracellular electrophysiological techniques. Key Results Inosine (100 μM) reduced MEPP frequency and the amplitude and quantal content of EPPs; effects inhibited by the selective A3 receptor antagonist MRS-1191. Immunohistochemical assays confirmed the presence of A3 receptors at mammalian NMJ. The voltage-gated calcium channel (VGCC) blocker Cd2+, the removal of extracellular Ca2+ and the L-type and P/Q-type VGCC antagonists, nitrendipine and ω-agatoxin IVA, respectively, all prevented inosine-induced inhibition. In the absence of endogenous adenosine, inosine decreased the hypertonic response. The effects of inosine on ACh release were prevented by the Gi/o protein inhibitor N-ethylmaleimide, PKC antagonist chelerytrine and calmodulin antagonist W-7, but not by PKA antagonists, H-89 and KT-5720, or the inhibitor of CaMKII KN-62. Conclusion and Implications Our results suggest that, at motor nerve terminals, inosine induces presynaptic inhibition of spontaneous and evoked ACh release by activating A3 receptors through a mechanism that involves L-type and P/Q-type VGCCs and the secretory machinery downstream of calcium influx. A3 receptors appear to be coupled to Gi/o protein. PKC and calmodulin may be involved in these effects of inosine. PMID:23731236

  3. Trace element inhibition of phytase activity.

    PubMed

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  4. In vitro anti-acetylcholinesterase activity of an aqueous extract of Unicaria tomentosa and in silico study of its active constituents

    PubMed Central

    Chowdhury, Suman; Shivani; Kumar, Suresh

    2016-01-01

    Depletion of acetylcholine in the central nervous system (CNS) is responsible for memory loss and cognition deficit. Enzyme acetylcholinesterase (AChE) is responsible for destruction of acetylcholine (Ach) in the brain. Many herbal plant extracts have been investigated for their potential use in the treatment of Alzheimer’s disease (AD) by inhibiting AChE and upregulating the levels of Ach. The current study investigated the anti-acetylcholinesterase (AChE) activity of an aqueous extract of Unicaria tomentosa bark which has not been reported so far in the literature. The in vitro study of an aqueous extract of U. tomentosa showed maximum inhibition of 76.2±0.002 % at 0.4mg/ml of final concentration with an IC50 = 0.112 mg/ml. The mechanism of inhibition was elucidated by kinetic study which showed mixed type of inhibition, this might be due to the presence of various phytoconstituents such as oxindole alkaloids present in an aqueous extract. Based on molecular structure of phytoconstituents obtained from U. tomentosa known from the relevant literature, in-silico molecular docking study was performed against AChE protein to validate the results. PMID:28149044

  5. In vitro anti-acetylcholinesterase activity of an aqueous extract of Unicaria tomentosa and in silico study of its active constituents.

    PubMed

    Chowdhury, Suman; Shivani; Kumar, Suresh

    2016-01-01

    Depletion of acetylcholine in the central nervous system (CNS) is responsible for memory loss and cognition deficit. Enzyme acetylcholinesterase (AChE) is responsible for destruction of acetylcholine (Ach) in the brain. Many herbal plant extracts have been investigated for their potential use in the treatment of Alzheimer's disease (AD) by inhibiting AChE and upregulating the levels of Ach. The current study investigated the anti-acetylcholinesterase (AChE) activity of an aqueous extract of Unicaria tomentosa bark which has not been reported so far in the literature. The in vitro study of an aqueous extract of U. tomentosa showed maximum inhibition of 76.2±0.002 % at 0.4mg/ml of final concentration with an IC50 = 0.112 mg/ml. The mechanism of inhibition was elucidated by kinetic study which showed mixed type of inhibition, this might be due to the presence of various phytoconstituents such as oxindole alkaloids present in an aqueous extract. Based on molecular structure of phytoconstituents obtained from U. tomentosa known from the relevant literature, in-silico molecular docking study was performed against AChE protein to validate the results.

  6. Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics.

    PubMed

    Worek, F; Diepold, C; Eyer, P

    1999-02-01

    Human poisoning by organophosphates bearing two methoxy groups, e.g. by malathion, paraoxon-methyl, dimethoate and oxydemeton-methyl, is generally considered to be rather resistant to oxime therapy. Since the oxime effectiveness is influenced not only by its reactivating potential but also by inhibition, aging and spontaneous reactivation kinetics, experiments were performed with human acetyl- (AChE) and butyrylcholinesterase (BChE) to determine the respective kinetic constants. The efficacy of obidoxime in reactivating dimethylphosphoryl-AChE was 40, 9 and 3 times higher than of HI 6, pralidoxime and HLö 7, respectively. Aging (t1/2 3.7 h) and spontaneous reactivation (t1/2 0.7 h) occurred concomitantly, with the portion of the aged enzyme being dependent on the presence of excess inhibitor. Calculation of steady-state AChE activity in the presence of inhibitor and oxime revealed that obidoxime was superior to pralidoxime. In addition, organophosphate concentrations up to 10(-6) M (paraoxon-methyl) and 10(-4) M (oxydemeton-methyl) could be counteracted at clinically relevant oxime concentrations (10 microM). These data indicate that oximes may effectively reactivate human dimethylphosphoryl-AChE. Failure of oximes may be attributed to megadose intoxications and to prolonged time intervals between poison uptake and oxime administration. The potency of the oximes to reactivate dimethylphosphoryl-BChE was much lower and the spontaneous reactivation slower (t1/2 9 h), while aging proceeded at a comparable rate. Thus, BChE activity determination for diagnosis and therapeutic monitoring may give no reliable information on AChE status.

  7. Acetylcholinesterase inhibition in cognition-relevant brain areas of mice treated with a nootropic Amazonian herbal (Marapuama).

    PubMed

    Figueiró, M; Ilha, J; Pochmann, D; Porciúncula, L O; Xavier, L L; Achaval, M; Nunes, D S; Elisabetsky, E

    2010-10-01

    The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted.

  8. Milk inhibits the biological activity of ricin.

    PubMed

    Rasooly, Reuven; He, Xiaohua; Friedman, Mendel

    2012-08-10

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.

  9. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-09

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  10. Acetylcholinesterase Activity and Neurodevelopment in Boys and Girls

    PubMed Central

    Himes, John H.; Jacobs, David R.; Alexander, Bruce H.; Gunnar, Megan R.

    2013-01-01

    BACKGROUND: Organophosphate exposures can affect children’s neurodevelopment, possibly due to neurotoxicity induced by acetylcholinesterase (AChE) inhibition, and may affect boys more than girls. We tested the hypothesis that lower AChE activity is associated with lower neurobehavioral development among children living in Ecuadorian floricultural communities. METHODS: In 2008, we examined 307 children (age: 4–9 years; 52% male) and quantified AChE activity and neurodevelopment in 5 domains: attention/executive functioning, language, memory/learning, visuospatial processing, and sensorimotor (NEPSY-II test). Associations were adjusted for demographic and socioeconomic characteristics and height-for-age, flower worker cohabitation, and hemoglobin concentration. RESULTS: Mean ± standard deviation AChE activity was 3.14 ± 0.49 U/mL (similar for both genders). The range of scores among neurodevelopment subtests was 5.9 to 10.7 U (standard deviation: 2.6–4.9 U). Girls had a greater mean attention/executive functioning domain score than boys. In boys only, there were increased odds ratios of low (<9th percentile) neurodevelopment among those in the lowest tertile versus the highest tertile of AChE activity (odds ratios: total neurodevelopment: 5.14 [95% confidence interval (CI): 0.84 to 31.48]; attention/executive functioning domain: 4.55 [95% CI: 1.19 to 17.38], memory/learning domain: 6.03 [95% CI: 1.17 to 31.05]) after adjustment for socioeconomic and demographic factors, height-for-age, and hemoglobin. Within these domains, attention, inhibition and long-term memory subtests were most affected. CONCLUSIONS: Low AChE activity was associated with deficits in neurodevelopment, particularly in attention, inhibition, and memory in boys but not in girls. These critical cognitive skills affect learning and academic performance. Added precautions regarding secondary occupational pesticide exposure would be prudent. PMID:24249815

  11. Carbamazepine inhibits distinct chemoconvulsant-induced seizure-like activity in Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Desaer, Cassie

    2011-10-01

    Planaria, non-parasitic flatworms, were recently shown to be a simple yet sensitive model for investigating the pharmacology of convulsants and anticonvulsants. The present findings show that three distinct chemoconvulsants, (-)-nicotine, picrotoxin, and N-methyl-D-aspartate (NMDA), induce dose-dependent seizure-like paroxysms in the planarian Dugesia tigrina. Carbamazepine and oxcarbazepine, iminodibenzyl derivatives, exhibit anticonvulsive effects mediated mainly through the inactivation of voltage-gated sodium channels. Apart from these primary molecular targets, both carbamazepine and oxcarbazepine are known to activate γ-aminobutyric acid type A (GABA(A)) receptors and inhibit NMDA activated glutamate receptors and neuronal nicotinic acetylcholine receptors (nAChRs). The present study shows that in D. tigrina both carbamazepine and oxcarbazepine inhibit chemoconvulsant-induced seizure behaviors in a dose-dependent manner. Carbamazepine (100 μM) decreased by ~65% the cumulative mean planarian seizure-like activity (pSLA) observed in the presence of (-)-nicotine (10 μM), picrotoxin (5mM), or NMDA (3mM), whereas oxcarbazepine (1 μM) decreased by 45% the cumulative mean pSLA induced by (-)-nicotine (10μM). The results demonstrate, for the first time, the anti-seizure pharmacology of carbamazepine and oxcarbazepine in an invertebrate seizure model.

  12. Tabun-inhibited rat tissue and blood cholinesterases and their reactivation with the combination of trimedoxime and HI-6 in vivo.

    PubMed

    Bajgar, Jiri; Karasova, Jana Zdarova; Kassa, Jiri; Cabal, Jiri; Fusek, Josef; Blaha, Vaclav; Tesarova, Sandra

    2010-09-06

    Up to now, intensive attempts to synthesize a universal reactivator able to reactivate cholinesterases inhibited by all types of nerve agents/organophosphates were not successful. Therefore, another approach using a combination of two reactivators differently reactivating enzyme was used: in rats poisoned with tabun and treated with combination of atropine (fixed dose) and different doses of trimedoxime and HI-6, changes of acetylcholinesterase activities (blood, diaphragm and different parts of the brain) were studied. An increase of AChE activity was observed following trimedoxime treatment depending on its dose; HI-6 had very low effect. Combination of both oximes showed potentiation of their reactivation efficacy; this potentiation was expressed for peripheral AChE (blood, diaphragm) and some parts of the brain (pontomedullar area, frontal cortex); AChE in the basal ganglia was relatively resistant. These observations suggest that the action of combination of oximes in vivo is different from that observed in vitro.

  13. Synthesis and biological activity of a novel class nicotinic acetylcholine receptors (nAChRs) ligands structurally related to anatoxin-a.

    PubMed

    Simoni, Daniele; Rondanin, Riccardo; Marchetti, Paolo; Rullo, Cinzia; Baruchello, Riccardo; Grisolia, Giuseppina; Barbato, Giuseppina; Giovannini, Riccardo; Marchioro, Carla; Capelli, Anna Maria; Virginio, Caterina; Bozzoli, Andrea; Borea, Pier Andrea; Merighi, Stefania; Donati, Daniele

    2011-09-15

    The introduction of the isoxazole ring as bioisosteric replacement of the acetyl group of anatoxin-a led to a new series of derivatives binding to nicotinic acetylcholine receptors. Bulkier substitutions than methyl at the 3 position of isoxazole were shown to be detrimental for the activity. The binding potency of the most interesting compounds with α1, α7 and α3β4 receptor subtypes, was, anyway, only at micromolar level. Moreover, differently from known derivatives with pyridine, isoxazole condensed to azabicyclo ring led to no activity.

  14. GABAA receptor inhibition triggers a nicotinic neuroprotective mechanism

    PubMed Central

    Ferchmin, P. A; Pérez, Dinely; Alvarez, William Castro; Penzo, Mario A.; Maldonado, Héctor M.; Eterovic, Vesna A.

    2014-01-01

    Nicotinic acetylcholine receptor (nAChR)-mediated neuroprotection has been implicated in the treatment of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and hypoxic ischemic events, as well as other diseases hallmarked by excitotoxic and apoptotic neuronal death. Several modalities of nicotinic neuroprotection have been reported. However, although this process generally involves α4β2 and α7 subtypes, the underlying mechanisms are largely unknown. Interestingly, both activation and inhibition of α7 nAChRs have been reported to be neuroprotective. We have shown that inhibition of α7 nAChRs protects the function of acute hippocampal slices against excitotoxicity in a α4β2-dependent manner. Neuroprotection was assessed as the prevention of the NMDA-dependent loss of the area of population spikes (PSs) in the CA1 area of acute hippocampal slices. Our results support a model in which α7 AChRs control the release of GABA. Blocking either α7 or GABAA receptors reduces the inhibitory tone on cholinergic terminals, thereby promoting α4β2 activation, which in turn mediates neuroprotection. These results shed light on how α7 nAChR inhibition can be neuroprotective through a mechanism mediated by activation of α4β2 nAChRs. PMID:23280428

  15. Stathmin Potentiates Vinflunine and Inhibits Paclitaxel Activity

    PubMed Central

    Malesinski, Soazig; Tsvetkov, Philipp O.; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  16. Caspase activation inhibits proteasome function during apoptosis.

    PubMed

    Sun, Xiao-Ming; Butterworth, Michael; MacFarlane, Marion; Dubiel, Wolfgang; Ciechanover, Aaron; Cohen, Gerald M

    2004-04-09

    The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.

  17. Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) α5 Subunits and/or variants modulate function of α6*-nAChR.

    PubMed

    Dash, Bhagirathi; Chang, Yongchang; Lukas, Ronald J

    2011-11-04

    To further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3(V9)'(S) subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*-nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3(V9)'(S) subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3(V9)'(S) subunits has a gain-of-function effect more pronounced than that in the presence of α5(V9)'(S) subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*-nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases.

  18. Pyrilamine inhibits nicotine-induced catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Yun, So Jeong; Park, Yong-Soo; Jun, Dong-Jae; Kim, Dongjin; Jiten Singh, N; Kim, Sanguk; Kim, Kyong-Tai

    2014-07-01

    Function of nicotine, which induces activation of all parts of the body including our brain, has been receiving much attention for a long period of time and also been actively studied by researchers for its pharmacological actions in the central nervous system. The modulation of nicotine concentration and the inhibition of nicotine binding on target receptors in the brain are the key factors for smoking addiction therapy. In previous studies showed that influx of nicotine at the blood-brain barrier was through the pyrilamine-sensitive organic cation transporters. But the direct interacting mechanism of pyrilamine on the nicotine binding target receptors has not yet been clarified. The aim of the present study is to investigate the direct binding mechanisms of a pyrilamine on the nicotinic acetylcholine receptors (nAChRs). We found that pyrilamine shares the same ligand binding pocket of nicotine (NCT) on nAChRs but interacts with more amino acid residues than NCT does. The extended part of pyrilamine interacts with additional residues in the ligand binding pocket of nAChRs which are located nearby the entrance of the binding pocket. The catecholamine (CA) secretion induced by nAChR agonist (NCT') was significantly inhibited by the pyrilamine pretreatment. Real time carbon-fiber amperometry confirmed the inhibition of the NCT'-induced exocytosis by pyrilamine in a single cell level. We also found that pyrilamine inhibited the NCT'-induced [Ca(2+)]i. In contrast, pyrilamine did not affect the increase in calcium induced by high K(+). Overall, these data suggest that pyrilamine directly docks into the ligand binding site of nAChRs and specifically inhibits the nAChR-mediated effects thereby causing inhibition of CA secretion. Therefore, pyrilamine may play an important role to explore new treatments to aid smoking cessation.

  19. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia

    PubMed Central

    Kalappa, Bopanna I; Sun, Fen; Johnson, Stephen R; Jin, Kunlin; Uteshev, Victor V

    2013-01-01

    Background and Purpose Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. Experimental Approach An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. Key Results Choline (20–200 μM) in the presence, but not absence of 1 μM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg−1, s.c. and 1 mg·kg−1, i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg−1, i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. Conclusions and Implications PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting

  20. Pb2+ via protein kinase C inhibits nicotinic cholinergic modulation of synaptic transmission in the hippocampus.

    PubMed

    Braga, Maria F M; Pereira, Edna F R; Mike, Arpad; Albuquerque, Edson X

    2004-11-01

    The present study was designed to investigate the effects of Pb(2+) on modulation of synaptic transmission by nicotinic receptors (nAChRs) in the rat hippocampus. To this end, inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were recorded by means of the whole-cell mode of the patch-clamp technique from rat hippocampal neurons in culture. Acetylcholine (ACh, 1 mM; 1-s pulses) triggered GABA release via activation of alpha4beta2* and alpha7* nAChRs. It also triggered glutamate release via activation of alpha7* nAChRs. Pb(2+) (0.1 and 1 microM) blocked ACh-triggered transmitter release. Blockade by Pb(2+) of ACh-triggered IPSCs was partially reversible upon washing of the neurons. In contrast, even after 30- to 60-min washing, there was no reversibility of Pb(2+)-induced blockade of ACh-triggered EPSCs. The effects of Pb(2+) on GABA release triggered by activation of alpha7* and alpha4beta2* nACRs were mimicked by the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (1 microM) and blocked by the indolocarbazole Go 7874 (50 nM) and the bisindolylmaleimide Ro-31-8425 (150 nM), which are selective PKC inhibitors. After washing of fully functional neuronal networks that had been exposed for 5 min to Pb(2+), the irreversible inhibition by Pb(2+) of ACh-triggered glutamate release was partially overridden by a disinhibitory mechanism that is likely to involve alpha4beta2* nAChR activation in interneurons that synapse onto other interneurons synapsing onto pyramidal neurons. Long-lasting inhibition of alpha7* nAChR modulation of synaptic transmission may contribute to the persistent cognitive impairment that results from childhood Pb(2+) intoxication.

  1. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  2. Discovery of Highly Potent and Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists Containing an Isoxazolylpyridine Ether Scaffold that Demonstrate Antidepressant-like Activity. Part II

    PubMed Central

    Yu, Li-Fang; Eaton, J. Brek; Fedolak, Allison; Zhang, Han-Kun; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J.; Kozikowski, Alan P.

    2012-01-01

    In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [3H]epibatidine binding studies together with functional assays based on 86Rb+ ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity, but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics. PMID:23092294

  3. Discovery of highly potent and selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists containing an isoxazolylpyridine ether scaffold that demonstrate antidepressant-like activity. Part II.

    PubMed

    Yu, Li-Fang; Eaton, J Brek; Fedolak, Allison; Zhang, Han-Kun; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J; Kozikowski, Alan P

    2012-11-26

    In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure-activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [(3)H]epibatidine binding studies together with functional assays based on (86)Rb(+) ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics.

  4. n/Ach Among Agricultural and Business Entrepreneurs of Delhi

    ERIC Educational Resources Information Center

    Singh, Narayan Prasad

    1970-01-01

    Given the wide acceptance of n/Ach in current research as a critical non-economic variable affecting entrepreneurship, the present study tests Atkinson's hypothesis of n/Ach--that individuals with high n/Ach are more susceptible to changes in economic opportunities than their counterparts with low n/Ach. (SE)

  5. Effect of carbaryl (carbamate insecticide) on acetylcholinesterase activity of two strains of Daphnia magna (Crustacea, Cladocera).

    PubMed

    Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François

    2016-11-01

    The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.

  6. AT–1001: a high-affinity α3β4 nAChR ligand with novel nicotine-suppressive pharmacology

    PubMed Central

    Cippitelli, Andrea; Wu, Jinhua; Gaiolini, Kelly A; Mercatelli, Daniela; Schoch, Jennifer; Gorman, Michelle; Ramirez, Alejandra; Ciccocioppo, Roberto; Khroyan, Taline V; Yasuda, Dennis; Zaveri, Nurulain T; Pascual, Conrado; Xie, Xinmin (Simon); Toll, Lawrence

    2015-01-01

    Background and Purpose The α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating nicotine reinforcement processes. AT-1001 has been recently described as a high-affinity and selective α3β4 nAChR antagonist that blocks nicotine self-administration in rats. The aim of this study was to investigate the mechanism of action underlying the nicotine-suppressive effects of AT-1001. Experimental Approach Effects of AT-1001 were determined using in vitro assays and rat models of nicotine addiction, and compared with varenicline. Key Results AT-1001 and its analogue AT-1012 were functionally selective as antagonists for α3β4 over α4β2 nAChRs, but not to the same extent as the binding selectivity, and had partial agonist activity at α3β4 nAChRs. In contrast, varenicline was a partial agonist at α4β2, a weak agonist at α3β4 and inhibited α4β2 at a much lower concentration than it inhibited α3β4 nAChRs. AT-1001 and varenicline also had very different in vivo properties. Firstly, AT-1001 did not exhibit reinforcing properties per se while varenicline was self-administered. Secondly, systemic treatment with AT-1001 did not induce reinstatement of nicotine seeking but rather attenuated reinstatement induced by varenicline, as well as nicotine. Finally, unlike varenicline, AT-1001 selectively blocked nicotine self-administration without altering alcohol lever pressing as assessed in an operant co-administration paradigm. Conclusions and Implications These findings describe a more complex AT-1001 in vitro profile than previously appreciated and provide further support for the potential of AT-1001 and congeners as clinically useful compounds for smoking cessation, with a mechanism of action distinct from currently available medications. PMID:25440006

  7. [Effect of improving memory and inhibiting acetylcholinesterase activity by invigorating-qi and warming-yang recipe].

    PubMed

    Liu, Z Y; Yang, Y G; Zheng, B

    1993-11-01

    Invigorating-Qi and Warming-Yang (IQWY) had a good curative effect to some senile diseases such as senile dementia, senile hypomnesia etc. This experiment was designed for probing into the therapeutical mechanism of IQWY recipe. BALB/C pure bred mice were divided into five groups. Group I was taken per os of invigorating Qi (IQ), Group II warming Yang (WY), Group III IQWY drugs, Group IV was dysmnesia model, and Group V blank control group injected with normal saline only. All groups except Group V were injected scopolamine (5mg/kg) intraperitoneally to induce dysmnesia model after medication. IQ drug consisted of Codonopsis pilosula, Astragalus membranaceus, Poria cocos, and Glycyrrhiza uralensis, WY drug of Cynomorium songoricum, Epimedium brevicornum and Cuscuta chinensis, while IQWY recipe consisted of both IQ and WY drugs. The results showed that IQ, WY and IQWY had an evident antagonistic action to Scopolamine induced dysmnesia mice, and could improve their memory. The erroneous times of the animal's reaction in Group I, II and III were less than those in Group IV, P < 0.05 or P < 0.01. Acetylcholinesterase (AchE) activity in the mice could be inhibited by IQ, WY and IQWY also. The activity in Group I, II and III was less than that in Group IV and V, P < 0.05 or P < 0.01. The therapeutic mechanism of IQWY was in connection with its effect to M-cholinergic transmitters of central nervous system.

  8. Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake.

    PubMed

    Nagaraja, T N; Desiraju, T

    1994-05-01

    1. Very young and adult Wistar rats were given As5+, 5 mg arsenic kg-1 body weight day-1 (sodium arsenate). 2. Operant learning was tested in a Skinner box at the end of exposure and, in the case of developing animals, also after a recovery period. 3. Acetylcholine esterase (AChE) activity was estimated in discrete brain regions of these animals. 4. The animals exposed to arsenic took longer to acquire the learned behaviour and to extinguish the operant. AChE activity was inhibited in some regions of the brain.

  9. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives.

    PubMed

    Saeed, Aamer; Zaib, Sumera; Ashraf, Saba; Iftikhar, Javeria; Muddassar, Muhammad; Zhang, Kam Y J; Iqbal, Jamshed

    2015-12-01

    Alzheimer's disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04±0.01μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06±0.02μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.

  10. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases.

    PubMed

    Luo, Chunyuan; Tong, Min; Maxwell, Donald M; Saxena, Ashima

    2008-09-25

    Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.

  11. Effect of diet on carboxylesterase activity of tadpoles (Rhinella arenarum) exposed to chlorpyrifos.

    PubMed

    Attademo, A M; Sanchez-Hernandez, J C; Lajmanovich, R C; Peltzer, P M; Junges, C

    2017-01-01

    An outdoor microcosm was performed with tadpoles (Rhinella arenarum) exposed to 125μgL(-1) chlorpyrifos and fed two types of food, i.e., lettuce (Lactuca sativa) and a formulated commercial pellet. Acetylcholinesterase (AChE) and carboxylesterase (CbE) activities were measured in liver and intestine after 10 days of pesticide exposure. Non-exposed tadpoles fed lettuce had an intestinal AChE activity almost two-fold higher than that of pellet-fed tadpoles. No significant differences were observed, however, in liver AChE activity between diets. Likewise, intestinal CbE activity - measured using two substrates, i.e. 1-naphthyl acetate (1-NA) and 4-nitrophenyl valerate (4-NPV) - was higher in tadpoles fed lettuce than in those fed pellets. However, the diet-dependent response of liver CbE activity was opposite to that in the intestine. Chlorpyrifos caused a significant inhibition of both esterase activities, which was tissue- and diet-specific. The highest inhibition degree was found in the intestinal AChE and CbE activities of lettuce-fed tadpoles (42-78% of controls) compared with pellet-fed tadpoles (<60%). Although chlorpyrifos significantly inhibited liver CbE activity of the group fed lettuce, this effect was not observed in the group fed pellets. In general, intestinal CbE activity was more sensitive to chlorpyrifos inhibition than AChE activity. This finding, together with the high levels of basal CbE activity found in the intestine, may be understood as a detoxification system able to reduce intestinal OP uptake. Moreover, the results of this study suggest that diet is a determinant factor in toxicity testing with tadpoles to assess OP toxicity, because it modulates levels of this potential detoxifying enzyme activity.

  12. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  13. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  14. Optogenetic Release of ACh Induces Rhythmic Bursts of Perisomatic IPSCs in Hippocampus

    PubMed Central

    Karson, Miranda A.; Klugmann, Matthias; Alger, Bradley E.

    2011-01-01

    Acetylcholine (ACh) influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2), was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB) of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT) promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs) in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs), and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs) of local field potentials (LFPs) were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach may be a

  15. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  16. Kinetic evidence for different mechanisms of acetylcholinesterase inhibition by (1R)- and (1S)-stereoisomers of isomalathion.

    PubMed

    Jianmongkol, S; Marable, B R; Berkman, C E; Talley, T T; Thompson, C M; Richardson, R J

    1999-02-15

    Inhibition of acetylcholinesterase (AChE) by isomalathion has been assumed to proceed by expulsion of diethyl thiosuccinyl to produce O, S-dimethyl phosphorylated AChE. If this assumption is correct, AChE inhibited by (1R)- or (1S)-isomalathions should reactivate at the same rate as AChE inhibited by configurationally equivalent (S)- or (R)-isoparathion methyl, respectively, which are expected to inhibit AChE by loss of 4-nitrophenoxyl to yield O,S-dimethyl phosphorylated AChEs. Previous work has shown that rat brain AChE inhibited by (1R)-isomalathions reactivates at the same rate as the enzyme inhibited by (S)-isoparathion methyl. However, although rat brain AChE inhibited by (R)-isoparathion methyl reactivates at a measurable rate, the enzyme inhibited by (1S)-isomalathions is intractable to reactivation. This surprising finding suggests the hypothesis that (1R)- and (1S)-stereoisomers of isomalathion inhibit AChE by different mechanisms, yielding enzymatic species distinguishable by their postinhibitory kinetics. The present study was carried out to test this hypothesis by comparing kinetic constants of reactivation (k+3) and aging (k+4) of hen brain AChE and bovine erythrocyte AChE inhibited by the four stereoisomers of isomalathion and the two stereoisomers of isoparathion methyl. Both AChEs inhibited by either (1R,3R)- or (1R,3S)-isomalathion had comparable corresponding k+3 values (spontaneous and oxime-mediated) to those of AChEs inhibited with (S)-isoparathion methyl. However, spontaneous and oxime-mediated k+3 values comparable to those of (R)-isoparathion methyl could not be obtained for AChEs inhibited by (1S,3R)- and (1S,3S)-isomalathion. Comparison of k+4 values for hen brain AChE inhibited by each stereoisomer of isomalathion and isoparathion methyl corroborated that only the (1S)-isomalathions failed to produce the expected O,S-dimethyl phosphoryl-conjugated enzymes. The results for (1R)-isomalathions suggest that the mechanism of inhibition of AChE

  17. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  18. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.

    PubMed

    Chang, Jiafu; Li, Haiyin; Hou, Ting; Li, Feng

    2016-12-15

    Various strategies have been proposed for the sensing of acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs). However, the practical application of most methods is restricted by their intrinsic drawbacks such as complexity, long analysis time, and high cost. Thus, it is highly desirable to develop simple, fast and sensitive approaches for AChE activity and OPs detection. Herein, we reported a simple paper-based fluorescent sensor (PFS) based on the aggregation induced emission (AIE) effect of tetraphenylethylene (TPE) and the addition reaction capability of maleimide, which has been used as a powerful tool for rapid naked-eye detection of AChE activity and OPs. The introduction of TPE provides the probe with unique fluorescence property in solid state and is of great importance for improving the sensitivity of PFS. The hydrolysis product of acetylthiocholine catalyzed by AChE induced the maleimide ring destruction and activated the fluorescence performance of TPE. Given that AChE activity can be specifically inhibited by OPs, the as-proposed PFS can also be utilized for sensitive detection of OPs. Meanwhile, the variation of fluorescence signal can be readily detected by naked eyes, and low detection limits of 2.5mUmL(-1) and 0.5ngmL(-1) for AChE activity and OPs are obtained, respectively. Moreover, it has been successfully applied for AChE activity and OPs detection in diluted human serum samples, showing its great potential to be applied in real samples. Thus, this strategy possesses considerable advantages of simplicity, rapid detection, portability, cost efficiency and visualization.

  19. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  20. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  1. Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fish.

    PubMed

    Mochida, Kazuhiko; Ito, Katsutoshi; Harino, Hiroya; Tanaka, Hiroyuki; Onduka, Toshimitsu; Kakuno, Akira; Fujii, Kazunori

    2009-05-01

    In a previous study, we demonstrated that exposure to an antifouling biocide, copper pyrithione (CuPT), early during life induced vertebral deformity in the larvae of a marine fish, the mummichog (Fundulus heteroclitus). Skeletal deformities may be caused by inhibition by of acetylcholiensterase (AChE) activity, and to elucidate the mechanism underlying the CuPT-associated vertebral deformity, we first examined whether CuPT, zinc pyrithione (ZnPT), and their degradation products could inhibit AChE activity in the fish. Two of the degradation products, 2,2'-dipyridyldisulfide [(PS)(2)] and 2,2'-dithiobispyridine-N-oxide [(PT)(2)], but neither CuPT nor ZnPT, exhibited prominent AChE-inhibiting activity. Secondly, thin-layer chromatography revealed that mummichog hepatic microsomes metabolized CuPT to produce (PS)(2) in a microsome-dependent manner. The AChE inhibition induced in CuPT-exposed fish is likely due to (PS)(2) that was produced through metabolism of acquired CuPT. (PS)(2) may cause therefore skeletal deformity in CuPT-exposed fish by means of its neuromuscular blocking properties, through a mechanism similar to that proposed for animals exposed to organophosphorous pesticides.

  2. Effects of intralipid and caffeic acid phenethyl ester on neurotoxicity, oxidative stress, and acetylcholinesterase activity in acute chlorpyriphos intoxication

    PubMed Central

    Ozkan, Umit; Osun, Arif; Basarslan, Kagan; Senol, Serkan; Kaplan, Ibrahim; Alp, Harun

    2014-01-01

    Chlorpyriphos is one of the most widely used organophosphate (OP) insecticide in agriculture with potential toxicity. Current post-exposure treatments consist of anti-cholinergic drugs and oxime compounds. We studied the effects of intralipid and caffeic acid phenethyl ester (CAPE) on chlorpyriphos toxicity to compose an alternative or supportive treatment for OP poisoning. Methods: Forty-nine rats were randomly divided into seven groups. Chlorpyriphos was administered for toxicity. Intralipid (IL) and CAPE administered immediately after chlorpyriphos. Serum acetylcholinesterase (AChE) level, total oxidant status (TOS), total antioxidant response (TAR), and histologic examination of cerebellum and brain tissue with Hematoxylin-Eosin and immunohistochemical dyes were examined. Results: Serum enzym levels showed that chlorpyriphos and CAPE inhibited AChE while IL alone had no effect, chlorpyriphos and CAPE intensifies the inhibition effect. Significant difference at AChE levels between the chlorpyriphos+IL and chlorpyriphos+CAPE verified that IL has a protective effect on AChE inhibition. TAR levels were significantly increased in all groups except chlorpyriphos group, TOS levels revealed that CAPE and IL decrease the amount of oxidative stress. Histologic examination revealed that neuronal degeneration was slightly decreased at chlorpyriphos+IL group, but CAPE had a significant effect on protection of neuronal degeneration. Conclusion: The results of this study gave us three key points. 1) AChE activity is important for diagnosis of OP intoxication but it has no value for determining the neuro-degeneration. 2) CAPE inhibits AChE activity and may increase the muscarinic-nicotinic hyperactivation. Therefore it should not be used for treatment of OP intoxication. 3) IL decreases the severity of neurodegeneration and symptoms of OP intoxication and it can be used as a supportive agent. PMID:24955152

  3. Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC.

    PubMed

    Miyazawa, Mitsuo; Nakahashi, Hiroshi; Usami, Atsushi; Matsuda, Naoki

    2016-04-01

    The compositions of the essential oils obtained from leaves and stems of Gynura bicolor DC. were analyzed by GC-MS. One hundred eight components of these oils were identified. (E)-β-caryophyllene (31.42 %), α-pinene (17.11 %), and bicyclogermacrene (8.09 %) were found to be the main components of the leaf oil, while α-pinene (61.42 %), β-pinene (14.39 %), and myrcene (5.10 %) were the major constituents of the stem oil. We found 73 previously unidentified components in these oils from G. bicolor. The oils were also subjected to odor evaluation. Eleven and 12 aroma-active compounds were detected in the leaf and stem oils, respectively. The abilities of these oils to inhibit acetylcholinesterase (AChE) activity were determined. The sesquiterpenoids in the oils were found to inhibit AChE activity more strongly than the monoterpenoids in the oils did. It was suggested that the three main components in each essential oil act synergistically against AChE activity. These results show that the essential oils obtained from G. bicolor are a good dietary source of AChE activity inhibition.

  4. Activation of Presynaptic GABAB(1a,2) Receptors Inhibits Synaptic Transmission at Mammalian Inhibitory Cholinergic Olivocochlear–Hair Cell Synapses

    PubMed Central

    Wedemeyer, Carolina; Zorrilla de San Martín, Javier; Ballestero, Jimena; Gómez-Casati, María Eugenia; Torbidoni, Ana Vanesa; Fuchs, Paul A.; Bettler, Bernhard; Elgoyhen, Ana Belén

    2013-01-01

    The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca2+-permeable postsynaptic α9α10 nicotinic receptors coupled to the opening of hyperpolarizing Ca2+-activated small-conductance type 2 (SK2)K+ channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs). Although the OC synapse is cholinergic, an abundant OC GABA innervation is present along the mammalian cochlea. The role of this neurotransmitter at the OC efferent innervation, however, is for the most part unknown. We show that GABA fails to evoke fast postsynaptic inhibitory currents in apical developing inner and outer hair cells. However, electrical stimulation of OC efferent fibers activates presynaptic GABAB(1a,2) receptors [GABAB(1a,2)Rs] that downregulate the amount of ACh released at the OC–hair cell synapse, by inhibiting P/Q-type VGCCs. We confirmed the expression of GABABRs at OC terminals contacting the hair cells by coimmunostaining for GFP and synaptophysin in transgenic mice expressing GABAB1–GFP fusion proteins. Moreover, coimmunostaining with antibodies against the GABA synthetic enzyme glutamic acid decarboxylase and synaptophysin support the idea that GABA is directly synthesized at OC terminals contacting the hair cells during development. Thus, we demonstrate for the first time a physiological role for GABA in cochlear synaptic function. In addition, our data suggest that the GABAB1a isoform selectively inhibits release at efferent cholinergic synapses. PMID:24068816

  5. Modulation of nicotinic receptor activity in the central nervous system: a novel approach to the treatment of Alzheimer disease.

    PubMed

    Albuquerque, E X; Santos, M D; Alkondon, M; Pereira, E F; Maelicke, A

    2001-08-01

    Impaired cholinergic function in the central nervous system is an early feature of Alzheimer disease (AD). Currently, cholinergic deficit is usually corrected by increasing the amount of acetylcholine in the synapse by inhibiting acetylcholinesterase (AChE). One of the most consistent cholinergic deficits in AD is the reduced expression of nicotinic acetylcholine receptors (nAChR) in the brain. Since these receptors are essential for learning and memory, restoring nicotinic cholinergic function is a promising approach to treating AD. Allosteric modulation of nAChR is a novel approach, which circumvents development of tolerance through long-term use of conventional nicotinic agonists. Allosteric modulators interact with receptor-binding sites distinct from those capable of recognizing the natural agonist. Positive allosteric modulation of nAChR activity has no effect on conductance of single channels; instead, by facilitating channel opening, it potentiates responses evoked by the interaction of the natural agonist with presynaptic and postsynaptic nAChR. Allosteric modulation of nAChR activity could therefore potentially produce a significant benefit in AD. One such allosteric modulator is galantamine. In addition to increasing nAChR activity, galantamine also inhibits AChE. This novel, dual mechanism of action distinguishes galantamine from many other AChE inhibitors. Galantamine has been shown to improve cognitive and daily function for at least 6 months in placebo-controlled trials, and to maintain these functions at baseline levels for at least 12 months in a 6-month open-label extension study. Galantamine has positive effects on nAChR expression, which are likely to contribute to its sustained efficacy in the treatment of AD patients.

  6. [A comparison of the efficacy of the reactivators of acetylcholinesterase inhibited with tabun].

    PubMed

    Cabal, J; Kuca, K; Jun, D; Bajgar, J; Hrabinová, M

    2005-07-01

    The nerve agent tabun inhibits acetylcholinesterase (AChE; EC 3.1.1.7) by the formation of a covalent bond with the enzyme. Afterwards, AChE is not able to fulfil its role in the organism and subsequently cholinergic crisis occurs. AChE reactivators (pralidoxime, obidoxime and HI-6) as causal antidotes are used for the cleavage of the bond between the enzyme and nerve agent. Unfortunately, their potency for reactivation of tabun-inhibited AChE is poor. The aim of the study was to choose the most potent reactivator of tabun-inhibited AChE. We have tested eight AChE reactivators--pralidoxime, obidoxime, trimedoxime, HI-6, methoxime, Hlö-7 and our newly synthesized oximes K027 and K048. All reactivators were tested using our standard in vitro reactivation test (pH 8, 25 degrees C, time of inhibition by the nerve agent 30 minutes, time of reactivation by AChE reactivator 10 minutes). According to our results, only trimedoxime was able to achieve 50% reactivation potency. However, this relatively high potency was achieved at high oxime concentration (10(-2) M). At a lower concentration of 10(-4) M (the probably attainable concentration in vivo), four AChE reactivators (trimedoxime, obidoxime, K027, and K048) were able to reactivate AChE inhibited by tabun reaching from 10 to 18%.

  7. Generation of Recombinant Human AChE OP-Scavengers with Extended Circulatory Longevity

    DTIC Science & Technology

    2006-11-01

    glaucoma or myasthenia gravis (Taylor, 1990). Some organophosphorus (OP) inhibitors of ChEs such as malathion and diazinon, act as efficient...2000); site directed mutagenesis and molecular modeling together with kinetic studies of the 7 AChE muteins with substrates and reversible...of the individual lysine residues does not alter the kinetic performance of the enzyme. Based solely on this criterion, any of the lysine residues

  8. Antipneumococcal activity of neuraminidase inhibiting artocarpin.

    PubMed

    Walther, E; Richter, M; Xu, Z; Kramer, C; von Grafenstein, S; Kirchmair, J; Grienke, U; Rollinger, J M; Liedl, K R; Slevogt, H; Sauerbrei, A; Saluz, H P; Pfister, W; Schmidtke, M

    2015-05-01

    Streptococcus (S.) pneumoniae is a major cause of secondary bacterial pneumonia during influenza epidemics. Neuraminidase (NA) is a virulence factor of both pneumococci and influenza viruses. Bacterial neuraminidases (NAs) are structurally related to viral NA and susceptible to oseltamivir, an inhibitor designed to target viral NA. This prompted us to evaluate the antipneumococcal potential of two NA inhibiting natural compounds, the diarylheptanoid katsumadain A and the isoprenylated flavone artocarpin. Chemiluminescence, fluorescence-, and hemagglutination-based enzyme assays were applied to determine the inhibitory efficiency (IC(50) value) of the tested compounds towards pneumococcal NAs. The mechanism of inhibition was studied via enzyme kinetics with recombinant NanA NA. Unlike oseltamivir, which competes with the natural substrate of NA, artocarpin exhibits a mixed-type inhibition with a Ki value of 9.70 μM. Remarkably, artocarpin was the only NA inhibitor (NAI) for which an inhibitory effect on pneumococcal growth (MIC: 0.99-5.75 μM) and biofilm formation (MBIC: 1.15-2.97 μM) was observable. In addition, we discovered that the bactericidal effect of artocarpin can reduce the viability of pneumococci by a factor of >1000, without obvious harm to lung epithelial cells. This renders artocarpin a promising natural product for further investigations.

  9. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  10. Inhibition of endocytosis exacerbates TNF-α-induced endothelial dysfunction via enhanced JNK and p38 activation.

    PubMed

    Choi, Hyehun; Nguyen, Hong N; Lamb, Fred S

    2014-04-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine that causes endothelial dysfunction. Endocytosis of TNF-α receptors (TNFR) precedes endosomal reactive oxygen species (ROS) production, which is required for NF-κB activation in vascular smooth muscle cells. It is unknown how endocytosis of TNFRs impacts signaling in endothelial cells. We hypothesized that TNF-α-induced endothelial dysfunction is induced by both endosomal and cell surface events, including NF-κB and mitogen-activated protein kinases (MAPKs) activation, and endocytosis of the TNFR modifies signaling. Mesenteric artery segments from C57BL/6 mice were treated with TNF-α (10 ng/ml) for 22 h in tissue culture, with or without signaling inhibitors (dynasore for endocytosis, SP600125 for JNK, SB203580 for p38, U0126 for ERK), and vascular function was assessed. Endothelium-dependent relaxation to acetylcholine (ACh) was impaired by TNF-α, and dynasore exacerbated this, whereas JNK or p38 inhibition prevented these effects. In cultured endothelial cells from murine mesenteric arteries, dynasore potentiated JNK and p38 but not ERK phosphorylation and promoted cell death. NF-κB activation by TNF-α was decreased by dynasore. JNK inhibition dramatically increased both the magnitude and duration of TNF-α-induced NF-κB activation and potentiated intercellular adhesion molecule-1 (ICAM-1) activation. Dynasore still inhibited NF-κB activation in the presence of SP600125. Thus TNF-α-induced endothelial dysfunction is both JNK and p38 dependent. Endocytosis modulates the balance of NF-κB and MAPK signaling, and inhibition of NF-κB activation by JNK limits this pro-proliferative signal, which may contribute to endothelial cell death in response to TNF-α.

  11. America under attack: ACHE affiliates respond.

    PubMed

    Lanser, Ellen G

    2002-01-01

    In the midst of the horror and uncertainty that swept over America on September 11, the healthcare sector helped to keep our nation firmly anchored. Within moments of the terrorist attacks, healthcare organizations in New York, Washington, D.C., and the surrounding areas responded swiftly, calmly, and effectively. Many of these hospitals are led by ACHE affiliates. Following are their accounts of that day, lessons they learned, and plans for the future.

  12. Inhibition of Cholinesterases and Some Pro-Oxidant induced Oxidative Stress in Rats Brain by Two Tomato (Lycopersicon Esculentum) Varieties

    PubMed Central

    Oboh, G.; Bakare, O.O.; Ademosun, A.O.; Akinyemi, A.J.; Olasehinde, T.A.

    2015-01-01

    This study sought to investigate the effects of two tomato varieties [Lycopersicon esculentum Mill. var. esculentum (ESC) and Lycopersicon esculentum Mill. var. cerasiforme (CER)] on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. Phenolics content, carotenoids characterisation, inhibition of Fe2+ and quinolinic acid-induced malondialdehyde (MDA) production in rats brain homogenate and NO* scavenging abilities were also assesed in addition to the AChE and BChE inhibition assays. There was no significant difference in the AChE inhibitory ability of the samples, while CER had significantly higher BChE inhibitory activity. Furthermore, the tomatoes inhibited Fe2+ and quinolinic acid-induced MDA production and further exhibited antioxidant activities through their NO* scavenging abilities. There was no significant difference in the phenolic content of the samples, while significantly high amounts of lycopene were detected in the tomatoes. The cholinesterase-inhibition and antioxidant properties of the “tomatoes” could make them good dietary means for the management of neurodegenerative disorders.

  13. Somatostatin inhibits cANP-mediated cholinergic transmission in the myenteric plexus

    SciTech Connect

    Wiley, J.; Owyang, C. )

    1987-11-01

    The mechanism by which somatostatin acts to modulate cholinergic transmission is not clear. In this study the authors investigated the role of the adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) system in mediating cholinergic transmission in the guinea pig myenteric plexus and examined the ability of somatostatin to alter acetylcholine (ACh) release stimulated by various cAMP agonists. Forskolin, 8-bromo-cAMP, vasoactive intestinal peptide (VIP), and cholera toxin each stimulated the release of ({sup 3}H)ACh in a dose-related manner. Addition of theophylline enhanced the release of ({sup 3}H)ACh stimulated by these cAMP agonists. The observations suggest that cAMP may serve as a physiological mediator for ACh release from myenteric neurons. Somatostatin inhibited release of ({sup 3}H)ACh evoked by various cAMP agonists in a dose-related manner. Pretreatment with pertussis toxin antagonized the inhibitory effect of somatostatin on the release of ({sup 3}H)ACh evoked by forskolin, VIP, or cholera toxin but had no effect on the inhibitory action of somatostatin on the release of ({sup 3}H)ACh evoked by 8-bromo-cAMP. This suggests that the principal mechanism by which somatostatin inhibits cAMP-mediated cholinergic transmission is via activation of the inhibitory regulatory protein (N{sub i} subunit) of adenyalte cyclase.

  14. Blockade of Neuronal α7-nAChR by α-Conotoxin ImI Explained by Computational Scanning and Energy Calculations

    PubMed Central

    Yu, Rilei; Craik, David J.; Kaas, Quentin

    2011-01-01

    α-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to investigate the structure-activity relationships of conotoxin/nAChR complexes. However, the structural determinants of their binding interactions are still ambiguous in the absence of experimental structures of conotoxin-receptor complexes. In this study, the binding modes of α-conotoxin ImI to the α7-nAChR, currently the best-studied system experimentally, were investigated using comparative modeling and molecular dynamics simulations. The structures of more than 30 single point mutants of either the conotoxin or the receptor were modeled and analyzed. The models were used to explain qualitatively the change of affinities measured experimentally, including some nAChR positions located outside the binding site. Mutational energies were calculated using different methods that combine a conformational refinement procedure (minimization with a distance dependent dielectric constant or explicit water, or molecular dynamics using five restraint strategies) and a binding energy function (MM-GB/SA or MM-PB/SA). The protocol using explicit water energy minimization and MM-GB/SA gave the best correlations with experimental binding affinities, with an R2 value of 0.74. The van der Waals and non-polar desolvation components were found to be the main driving force for binding of the conotoxin to the nAChR. The electrostatic component was responsible for the selectivity of the various ImI mutants. Overall, this study provides novel insights into the binding mechanism of α-conotoxins to nAChRs and the methodological developments reported here open avenues for computational scanning studies of a rapidly expanding range of wild

  15. Acetylcholinesterase Inhibitors with Photoswitchable Inhibition of β-Amyloid Aggregation

    PubMed Central

    2014-01-01

    Photochromic cholinesterase inhibitors were obtained from cis-1,2-α-dithienylethene-based compounds by incorporating one or two aminopolymethylene tacrine groups. All target compounds are potent acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors in the nanomolar concentration range. Compound 11b bearing an octylene linker exhibited interactions with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Yet upon irradiation with light, the mechanism of interaction varied from one photochromic form to another, which was investigated by kinetic studies and proved “photoswitchable”. The AChE-induced β-amyloid (Aβ) aggregation assay gave further experimental support to this finding: Aβ1–40 aggregation catalyzed by the PAS of AChE might be inhibited by compound 11b in a concentration-dependent manner and seems to occur only with one photochromic form. Computational docking studies provided potential binding modes of the compound. Docking studies and molecular dynamics (MD) simulations for the ring-open and -closed form indicate a difference in binding. Although both forms can interact with the PAS, more stable interactions are observed for the ring-open form based upon stabilization of a water molecule network within the enzyme, whereas the ring-closed form lacks the required conformational flexibility for an analogous binding mode. The photoswitchable inhibitor identified might serve as valuable molecular tool to investigate the different biological properties of AChE as well as its role in pathogenesis of AD in in vitro assays. PMID:24628027

  16. Cyclooxygenase pathway is involved in the vascular reactivity and inhibition of the Na+, K+-ATPase activity in the tail artery from L-NAME-treated rats.

    PubMed

    dos Santos, Leonardo; Xavier, Fabiano E; Vassallo, Dalton V; Rossoni, Luciana V

    2003-12-19

    L-NAME (LN) induces hypertension by blocking nitric oxide (NO) synthesis. It produces vascular hyperreactivity to phenylephrine (PHE) associated with a reduced vascular Na+, K+-ATPase activity. The aim of this work was to investigate whether products of the cyclooxygenase pathway are involved in alterations of vascular reactivity and Na+-pump activity in the tail artery from LN-induced hypertension rats. Four groups of rats were used: Control (CT, normotensive), LN (50 mg/kg/day, hypertensive), indomethacin (Indo-4 mg/kg/day, normotensive), and LN plus Indo (LN + Indo, partially prevented hypertension). All drugs were administered in drinking water during 7 days. In isolated rat tail vascular beds; the reactivity to PHE, acetylcholine (ACh), sodium nitroprusside (SNP), the functional activity of the Na+, K+-ATPase (K+-induced relaxation) and the modulation of PHE-induced vasoconstriction by constitutively available NO were evaluated. LN increased vascular sensitivity (pD2) and reactivity (Emax) to PHE and Indo blocked the effect of LN on Emax without changing pD2. Emax and pD2 values for ACh were reduced by LN and partially reverted by Indo. SNP-induced vasodilatation was similar in all groups. LN reduced the activity of Na+, K+-ATPase and Indo prevented LN effects. LN also abolished NO ability to modulate PHE-induced contractions. This effect was partially prevented by Indo suggesting that products from the cyclooxygenase pathway might reduce NO actions. Indo itself did not affect vascular reactivity to PHE, ACh or SNP or the Na+,K+-ATPase activity. Results suggested that products from cyclooxygenase pathway are involved in the genesis or maintenance of LN-induced hypertension, playing a role in the increased vascular reactivity, in the reduction of the endothelium-dependent relaxation and in the inhibition of the functional activity of the Na+, K+-ATPase.

  17. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  18. Platelet-activating factor acetylhydrolase: selective inhibition by potent n-alkyl methylphosphonofluoridates.

    PubMed

    Quistad, Gary B; Fisher, Karl J; Owen, Sarah C; Klintenberg, Rebecka; Casida, John E

    2005-06-01

    Platelet-activating factor (PAF) is a potent endogenous phospholipid modulator of diverse biological activities, including inflammation and shock. PAF levels are primarily regulated by PAF acetylhydrolases (PAF-AHs). These enzymes are candidate secondary targets of organophosphorus (OP) pesticides and related toxicants. Previously known OP inhibitors of other serine hydrolases were tested with PAF-AH from mouse brain and testes of established functional importance compared with the structurally different human plasma enzyme. Several key OP pesticides and their oxon metabolites were very poor inhibitors of mouse brain and human plasma PAF-AH in vitro but moderately active for mouse brain and blood PAF-AH in vivo (e.g., tribufos defoliant and profenofos insecticide, presumably following oxidative bioactivation). OP compounds were then designed for maximum in vitro potency and selectivity for mouse brain PAF-AH vs. acetylcholinesterase (AChE). Lead compounds were found in a series of benzodioxaphosphorin 2-oxides. Ultrahigh potency and selectivity were achieved with n-alkyl methylphosphonofluoridates (long-chain sarin analogs): mouse brain and testes IC50 < or = 5 nM for C(8)-C(18) analogs and 0.1-0.6 nM for C(13) and C(14) compounds; human plasma IC50 < or = 2 nM for C(13)-C(18) analogs. AChE inhibitory potency decreased as chain length increased with maximum brain PAF-AH/AChE selectivity (>3000-fold) for C(13)-C(18) compounds. The toxicity of i.p.-administered PAF (LD50 ca. 0.5 mg/kg) was increased less than 2-fold by pretreatment with tribufos or the C(13)n-alkyl methylphosphonofluoridate. These studies with a mouse model indicate that PAF-AH is not a major secondary target of OP pesticide poisoning. The optimized PAF-AH inhibitors may facilitate investigations on other aspects of PAF metabolism and action.

  19. Complement Activation and Inhibition in Wound Healing

    PubMed Central

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  20. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    PubMed

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors.

  1. Evaluation of flow injection analysis for determination of cholinesterase activities in biological material.

    PubMed

    Cabal, Jiri; Bajgar, Jiri; Kassa, Jiri

    2010-09-06

    The method for automatic continual monitoring of acetylcholinesterase (AChE) activity in biological material is described. It is based on flexible system of plastic pipes mixing samples of biological material with reagents for enzyme determination; reaction product penetrates through the semipermeable membrane and it is spectrophotometrically determined (Ellman's method). It consists of sampling (either in vitro or in vivo), adding the substrate and flowing to dialyzer; reaction product (thiocholine) is dialyzed and mixed with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) transported to flow spectrophotometer. Flowing of all materials is realised using peristaltic pump. The method was validated: time for optimal hydratation of the cellophane membrane; type of the membrane; type of dialyzer; conditions for optimal permeation of reaction components; optimization of substrate and DTNB concentrations (linear dependence); efficacy of peristaltic pump; calibration of analytes after permeation through the membrane; excluding of the blood permeation through the membrane. Some examples of the evaluation of the effects of AChE inhibitors are described. It was demonstrated very good uniformity of peaks representing the enzyme activity (good reproducibility); time dependence of AChE inhibition caused by VX in vitro in the rat blood allowing to determine the half life of inhibition and thus, bimolecular rate constants of inhibition; reactivation of inhibited AChE by some reactivators, and continual monitoring of the activity in the whole blood in vivo in intact and VX-intoxicated rats. The method is simple and not expensive, allowing automatic determination of AChE activity in discrete or continual samples in vitro or in vivo. It will be evaluated for further research of cholinesterase inhibitors.

  2. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    PubMed Central

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  3. Rat Hormone Sensitive Lipase Inhibition by Cyclipostins and Their Analogs

    PubMed Central

    Vasilieva, Elena; Dutta, Supratik; Malla, Raj K.; Martin, Benjamin P.; Spilling, Christopher D.; Dupureur, Cynthia M.

    2015-01-01

    Cyclipostins are bicyclic lipophilic phosphate natural products. We report here that synthesized individual diastereomers of cyclipostins P and R have nanomolar IC50s toward hormone sensitive lipase (HSL). The less potent diastereomers of these compounds have 10-fold weaker IC50s. The monocyclic phosphate analog of cyclipostin P is nearly as potent as the bicyclic natural product. Bicyclic phosphonate analogs of both cyclipostins exhibit IC50s similar to those of the weaker diastereomer phosphates (about 400 nM). The monocyclic phosphonate analog of cyclipostin P has similar potency. A series of monocyclic phosphonate analogs in which a hydrophobic tail extends from the lactone side of the ring are considerably poorer inhibitors, with IC50s around 50 μM. Finally cyclophostin, a related natural product inhibitor of acetylcholinesterase (AChE) that lacks the hydrocarbon tail of cyclipostins, is not active against HSL. These results indicate a critical SAR for these compounds, the hydrophobic tail. The smaller lactone ring is not critical to activity, a similarity shared with cyclophostin and AChE. The HSL kinetics of inhibition for the cyclipostin P trans diastereomer were examined in detail. The reaction is irreversible with a KI of 40 nM and a rate constant for inactivation of 0.2 min−1. These results are similar to those observed for cyclophostin and AChE. PMID:25678014

  4. Acetylcholinesterase Inhibitors (AChEI's) for the treatment of visual hallucinations in schizophrenia: A review of the literature

    PubMed Central

    2010-01-01

    Background Visual hallucinations occur in various neurological diseases, but are most prominent in Lewy body dementia, Parkinson's disease and schizophrenia. The lifetime prevalence of visual hallucinations in patients with schizophrenia is much more common than conventionally thought and ranges from 24% to 72%. Cortical acetylcholine (ACh) depletion has been associated with visual hallucinations; the level of depletion being related directly to the severity of the symptoms. Current understanding of neurobiological visual processing and research in diseases with reduced cholinergic function, suggests that AChEI's may prove beneficial in treating visual hallucinations. This offers the potential for targeted drug therapy of clinically symptomatic visual hallucinations in patients with schizophrenia using acetylcholinesterase inhibition. Methods A systematic review was carried out investigating the evidence for the effects of AChEI's in treating visual hallucinations in Schizophrenia. Results No evidence was found relating to the specific role of AChEI's in treating visual hallucinations in this patient group. Discussion Given the use of AChEI's in targeted, symptom specific treatment in other neuropsychiatric disorders, it is surprising to find no related literature in schizophrenia patients. The use of AChEI's in schizophrenia has investigated effects on cognition primarily with non cognitive effects measured more broadly. Conclusions We would suggest that more focused research into the effects of AChEI's on positive symptoms of schizophrenia, specifically visual hallucinations, is needed. PMID:20822517

  5. Reward anticipation enhances brain activation during response inhibition.

    PubMed

    Rosell-Negre, Patricia; Bustamante, Juan Carlos; Fuentes-Claramonte, Paola; Costumero, Víctor; Benabarre, Sergio; Barros-Loscertales, Alfonso

    2014-06-01

    The chance to achieve a reward starts up the required neurobehavioral mechanisms to adapt our thoughts and actions in order to accomplish our objective. However, reward does not equally reinforce everybody but depends on interindividual motivational dispositions. Thus, immediate reward contingencies can modulate the cognitive process required for goal achievement, while individual differences in personality can affect this modulation. We aimed to test the interaction between inhibition-related brain response and motivational processing in a stop signal task by reward anticipation and whether individual differences in sensitivity to reward (SR) modulate such interaction. We analyzed the cognitive-motivational interaction between the brain pattern activation of the regions involved in correct and incorrect response inhibition and the association between such brain activations and SR scores. We also analyzed the behavioral effects of reward on both reaction times for the "go" trials before and after correct and incorrect inhibition in order to test error prediction performance and postinhibition adjustment. Our results show enhanced activation during response inhibition under reward contingencies in frontal, parietal, and subcortical areas. Moreover, activation of the right insula and the left putamen positively correlates with the SR scores. Finally, the possibility of reward outcome affects not only response inhibition performance (e.g., reducing stop signal reaction time), but also error prediction performance and postinhibition adjustment. Therefore, reward contingencies improve behavioral performance and enhance brain activation during response inhibition, and SR is related to brain activation. Our results suggest the conditions and factors that subserve cognitive control strategies in cognitive motivational interactions during response inhibition.

  6. Bis(9)-(-)-nor-meptazinol as a novel dual-binding AChEI potently ameliorates scopolamine-induced cognitive deficits in mice.

    PubMed

    Liu, Ting; Xia, Zheng; Zhang, Wei-Wei; Xu, Jian-rong; Ge, Xin-Xing; Li, Juan; Cui, Yongyao; Qiu, Zhui-Bai; Xu, Jun; Xie, Qiong; Wang, Hao; Chen, Hong-Zhuan

    2013-03-01

    Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder which is characterized by the progressive deterioration of cognition and the emergence of behavioral and psychological symptoms in aging patients. Given that the clinical effectiveness of acetylcholinesterase inhibitors (AChEIs) has still been questioned due to dubious disease-modifying effects, the multi-target directed ligand (MTDL) design has become an emerging strategy for developing new drugs for AD treatment. Bis(9)-(-)-nor-meptazinol (Bis-Mep) was firstly reported by us as a novel MTDL for both potent cholinesterase and amyloid-β aggregation inhibition. In this study, we further explored its AChE inhibition kinetic features and cognitive amelioration. Bis-Mep was found to be a mixed-type inhibitor on electric eel AChE by enzyme kinetic study. Molecular docking revealed that two "water bridges" located at the two wings of Bis-Mep stabilized its interaction with both catalytic and peripheral anionic sites of AChE. Furthermore, subcutaneous administration of Bis-Mep (10, 100 or 1000 ng/kg) significantly reversed the scopolamine-induced memory deficits in a typical bell-shaped dose-response manner. The maximal cognitive amelioration of Bis-Mep was achieved at 100 ng/kg, comparable with the effect of a reference drug Huperzine A at 1 mg/kg and also the relevant AChE inhibition in brain. These findings suggested that Bis-Mep might be a promising dual-binding AChE inhibitor for potential AD therapeutics.

  7. Thyroid peroxidase activity is inhibited by amino acids.

    PubMed

    Carvalho, D P; Ferreira, A C; Coelho, S M; Moraes, J M; Camacho, M A; Rosenthal, D

    2000-03-01

    Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  8. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  9. Hili inhibits HIV replication in activated T cells.

    PubMed

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-03-22

    Piwil proteins restrict the replication of mobile genetic elements in the germline. They are also expressed in many transformed cell lines. In this report, we discovered that the human piwil 2 (hili) can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express hili, it was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of hili increased levels of viral proteins and new viral particles. Further studies revealed that hili binds to tRNA. Some of them represent rare tRNA species, whose codons are over-represented in the viral genome. Targeting tRNA(Arg)(UCU) with an antisense oligonucleotide replicated effects of hili and also inhibited HIV replication. Finally, hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements.IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germline. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small piRNAs. However, in some species and in human somatic cells, piwil proteins bind primarily to tRNA. In this report, we demonstrate that human piwil proteins, especially hili, not only bind to select tRNA species that include rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of hili in CD4+ T cells. Since hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.

  10. Kinetic characters and resistance to inhibition of crude and purified brain acetylcholinesterase of three freshwater fishes by organophosphates.

    PubMed

    Shaonan, Li; Xianchuan, Xie; Guonian, Zhu; Yajun, Tan

    2004-07-14

    Acetylcholinesterase (AChE) was purified from the brain of three fresh-water fishes, topmouth gudgeon (Pseudorasbora parva), goldfish (Carassius auratus auratus) and rainbow trout (Oncorrhychus mykiss, formerly named Salmo gairdneri) by PEG2000/phosphate-salt two phases extraction, DEAE-Sephadex A-50 and Sephadex G-200 chromatography. Kinetic characters and resistance to inhibition of crude and purified enzymes by organophosphates were then studied. Although the crude enzyme from the trout displayed a different specific activity, kinetic curve, Vmax, and sensitivity to inhibition by oxidized malathion and triazopos compared with the two cyprinoids (i.e. topmouth gudgeon and goldfish), the purified enzymes of all the three species showed no significant difference in all aspects. The result suggested a negligible intrinsic difference of brain AChEs among the tested species.

  11. Myasthenia Gravis and the Tops and Bottoms of AChRs Antigenic Structure of the MIR and Specific Immunosuppression of EAMG Using AChR Cytoplasmic Domains

    PubMed Central

    Lindstrom, Jon; Luo, Jie; Kuryatov, Alexander

    2009-01-01

    The main immunogenic region (MIR), against which half or more of the autoantibodies to acetylcholine receptors (AChRs) in myasthenia gravis (MG) or experimental autoimmune MG (EAMG) are directed, is located at the extracellular end of α1 subunits. Rat monoclonal antibodies (mAbs) to the MIR efficiently compete with MG patient autoantibodies for binding to human muscle AChRs. Antibodies bound to the MIR do not interfere with cholinergic ligand binding or AChR function, but target complement and trigger antigenic modulation. Rat mAbs to the MIR also bind to human ganglionic AChR α3 subunits, but MG patient antibodies do not. By making chimeras of α1 subunits with α7 subunits or ACh binding protein, the structure of the MIR and its functional effects are being investigated. Many mAbs to the MIR bind only to the native conformation of α1 subunits because they bind to sequences that are adjacent only in the native structure. The MIR epitopes recognized by these mAbs are not recognized by most patient antibodies whose epitopes must be nearby. The presence of the MIR epitopes in α1/α7 chimeras greatly promotes AChR expression and sensitivity to activation. EAMG can be suppressed by treatment with denatured, bacterially expressed mixtures of extracellular and cytoplasmic domains of human α1, β1, γ, δ, and ε subunits. A mixture of only the cytoplasmic domains not only avoids the potential liability of provoking formation antibodies to pathologically significant epitopes on the extracellular surface, but also potently suppresses the development of EAMG. PMID:18567851

  12. Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2

    PubMed Central

    Zhang, Qichun; Lu, Ying; Bian, Huimin; Guo, Liwei; Zhu, Huaxu

    2017-01-01

    The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR) plays an essential role in the cholinergic anti-inflammatory pathway that regulates macrophage/microglia function in inflammation. Similar to M1 and M2 macrophages, M1 and M2 microglia exhibit pro-inflammation and anti-inflammation properties, respectively. In the present study, we analyzed function-associated phenotypes to detect the transformation of microglia with activation of α7 nAChRs. We used lentivirus-mediated shRNA to knockdown the expression of α7 nAChR in BV-2 microglia incubated with lipopolysaccharides (LPS, 0.1 μg/mL) and measured the acetylcholine (Ach, 1 μg/mL)-mediated release of cytokines, such as IL-1β, IL-4, IL-6, and IL-10, in the culture supernatant via radioimmunoassay. After stimulation with Ach, the expression of typical biomarkers for different microglia phenotypes, Iba-1 and Arg-1, was determined by cellular immunofluorescence. Furthermore, the expression of signaling molecules, including p38, JAK2/STAT3, PI3K/Akt and miR-124, was analyzed via western blotting and real-time PCR. We found that Ach inhibited LPS-induced IL-1β and IL-6 elevation and promoted IL-4 and IL-10 production and that knockdown of the α7 nAChR abolished these effects of Ach. In addition, Ach decreased LPS-induced Iba-1 expression and increased Arg-1 levels in an α7 nAChR-dependent manner. The LPS-inhibited activation of JAK2/STAT3 and PI3K/Akt was also rescued by Ach, an effect that was blocked by knockdown of the α7 nAChR. In contrast, Ach triggered the phosphorylation of JAK2 and STAT3 that was otherwise inactivated by LPS in BV-2 cells. Finally, the levels of miR-124 and downstream targets C/EBPα and PU.1 were significantly enhanced in LPS-treated BV-2 microglia, and the effect of Ach on this signaling pathway was blocked by α7 nAChR knockdown as expected. Overall, our data demonstrate that activation ofα7 nAChRs inhibits the transformation of M1 microglia and promotes the M2

  13. Altruistic cooperation during foraging by the Ache, and the evolved human predisposition to cooperate.

    PubMed

    Hill, Kim

    2002-03-01

    This paper presents quantitative data on altruistic cooperation during food acquisition by Ache foragers. Cooperative activities are defined as those that entail a cost of time and energy to the donor but primarily lead to an increase in the foraging success of the recipient. Data show that Ache men and women spend about 10% of all foraging time engaged in altruistic cooperation on average, and that on some days they may spend more than 50% of their foraging time in such activities. The most time-consuming cooperative activity for both sexes is helping during the pursuit of game animals, a pattern that is probably linked to the widespread sharing of game by Ache foragers. Cooperative food acquisition and subsequent food redistribution in hunter-gatherer societies are critical behaviors that probably helped shape universal, evolved, cooperative tendencies that are well illustrated in modern experimental economics.

  14. Acetylcholinesterase activity in the cerebrospinal fluid of dogs with seizures.

    PubMed

    Chai, Orit; Sommer, Adi; Zimmerman, Gabriel; Soreq, Hermona; Friedman, Alon; Bdolah-Abram, Tali; Aroch, Itamar; Shamir, Merav H

    2013-10-01

    Recent studies in animal models have focused on the role of cholinergic elements, mainly acetylcholinesterase (AChE) and the 'readthrough' acetylcholinesterase isoform (AChE-R), in seizures. A prospective double-masked study was conducted to assess the activity of AChE and AChE-R in cerebrospinal fluid (CSF) of 26 dogs post-seizure, 28 dogs with intervertebral disc disease (IVDD) and 16 healthy dogs. AChE was also measured in the serum in the post-seizure and IVDD groups. The results showed no significant differences in CSF AChE among the three groups. AChE-R was not detected in any dog and AChE in the serum was similar between groups. This preliminary study provides new information on AChE and AChE-R in the CSF and sera of dogs following naturally-occurring seizures.

  15. Fluoxetine Inhibits NLRP3 Inflammasome Activation: Implication in Depression

    PubMed Central

    Du, Ren-Hong; Tan, Jun; Sun, Xi-Yang; Lu, Ming; Ding, Jian-Hua

    2016-01-01

    Background: Emerging evidence indicates that NLRP3 inflammasome-induced inflammation plays a crucial role in the pathogenesis of depression. Thus, inhibition of NLRP3 inflammasome activation may offer a therapeutic benefit in the treatment of depression. Fluoxetine, a widely used antidepressant, has been shown to have potential antiinflammatory activity, but the underlying mechanisms remain obscure. Methods: We used a chronic mild stress model and cultured primary macrophage/microglia to investigate the effects of fluoxetine on NLRP3 inflammasome and its underlying mechanisms. Results: We demonstrated that fluoxetine significantly suppressed NLRP3 inflammasome activation, subsequent caspase-1 cleavage, and interleukin-1β secretion in both peripheral macrophages and central microglia. We further found that fluoxetine reduced reactive oxygen species production, attenuated the phosphorylation of double-stranded RNA-dependent protein kinase, and inhibited the association of protein kinase with NLRP3. These data indicate that fluoxetine inhibits the activation of NLRP3 inflammasome via downregulating reactive oxygen species-protein kinase-NLRP3 signaling pathway. Correspondingly, in vivo data showed that fluoxetine also suppressed NLRP3 inflammasome activation in hippocampus and macrophages of chronic mild stress mice and alleviated chronic mild stress-induced depression-like behavior. Conclusions: Our findings reveal that fluoxetine confers an antidepressant effect partly through inhibition of peripheral and central NLRP3 inflammasome activation and suggest the potential clinical use of fluoxetine in NLRP3 inflammasome-driven inflammatory diseases such as depression. PMID:27207922

  16. Effect of reversible ligands on oxime-induced reactivation of sarin- and cyclosarin-inhibited human acetylcholinesterase.

    PubMed

    Scheffel, Corinna; Thiermann, Horst; Worek, Franz

    2015-02-03

    Poisoning by organophosphorus compounds (OP) used as pesticides and nerve agents is due to irreversible inhibition of the enzyme acetylcholinesterase (AChE). Oximes have been widely recognized for their potency to reactivate the inhibited enzyme. The limited efficacy of currently available oximes against a broad spectrum of OP-compounds initiated novel research efforts to improve oxime-based treatment. Hereby, oxime-induced reactivation of OP-inhibited non-human AChE was reported to be accelerated by different AChE-ligands. To investigate this concept with AChE from human source, the inhibitory potency, binding properties and the potential enhancement of oxime-induced reactivation of OP-inhibited AChE by structurally different AChE-ligands was assessed. Several ligands competed with the oxime for the AChE binding-site impairing reactivation of OP-inhibited AChE whereas a markedly accelerated reactivation of sarin-inhibited enzyme by obidoxime was recorded in the presence of edrophonium, galanthamine and donepezil. Enhancement of oxime-induced reactivation with ligands was presumably subject to prevention of re-inhibition by the reaction product phosphonyloxime (POX). In the end, the results of the present study did not confirm that AChE-ligands directly accelerate the reactivation of OP-inhibited AChE by oximes, but indirectly by prevention of re-inhibition by the reaction product POX. This may be due to different experimental conditions and species differences between human and non-human AChE of previous experiments with non-human AChE.

  17. Insecticidal and Enzyme Inhibitory Activities of Sparassol and Its Analogues against Drosophila suzukii.

    PubMed

    Kim, Junheon; Jang, Miyeon; Lee, Kyoung-Tae; Yoon, Kyungjae Andrew; Park, Chung Gyoo

    2016-07-13

    Drosophila suzukii is an economically important pest in America and Europe as well as in Asia. Sparassol and methyl orsellinate are naturally produced by the cultivating mushrooms Sparassis cripta and Sparassis latifolia. Fumigant and contact toxicities of synthetic sparassol and its analogues, methyl orsellinate and methyl 2,4-dimethoxy-6-methylbenzoate (DMB), were investigated. Negligible fumigant activity was observed from the tested compounds. However, DMB showed the strongest contact toxicity, followed by sparassol and methyl orsellinate. The possible modes of action of the compounds were assessed for their acetylcholinesterase (AChE)- and glutathione S-transferase (GST)-inhibiting activities. AChE activity was weakly inhibited by methyl orsellinate and DMB, but GST was inhibited by sparassol, methyl orsellinate, and DMB. Thus, DMB could be a promising alternative to common insecticides as it can be easily synthesized from sparassol, which is the natural product of Sparassis species. Sparassis species could be an industrial resource of DMB.

  18. Cholinesterase Inhibitor Therapy in Alzheimer’s: The limits and tolerability of Irreversible CNS-selective Acetylcholinesterase Inhibition in Primates

    PubMed Central

    Moss, Donald E.; Perez, Ruth G.; Kobayashi, Haruo

    2016-01-01

    Irreversible acetylcholinesterase (AChE) inhibition accumulates to high levels in the central nervous system (CNS) because AChE turnover in the brain is much slower than in peripheral tissues. As expected from this CNS selectivity, the irreversible AChE inhibitor methanesulfonyl fluoride (MSF) produces significant cognitive improvement in Alzheimer’s patients without the gastrointestinal toxicity that plagues other AChE inhibitors. However, without dose-limiting gastrointestinal toxicity, one shortcoming of the prior human studies of MSF is that the upper limits of CNS AChE inhibition that might be tolerated could not be tested. Therefore, in this study, monkeys were treated with escalating intramuscular doses of MSF that culminated with several weeks of 1.5 mg/kg dosing, more than eight times the prior human clinical dose, still without signs of toxicity. Brain biopsies showed that ~ 80% AChE inhibition had been produced and that the new synthesis of cortical AChE had a half-time (t1/2) of ~ 12 days. A single IM dose of 1.5 mg/kg MSF produced ~ 59% inhibition in cerebrospinal fluid (CSF) AChE as measured one day later. This corresponds to a peak of ~ 80% inhibition in CSF AChE at the time of the injection, recovering with a t1/2 of 2.4 days. Computational analyses suggest that MSF at clinically relevant doses could theoretically produce a steady-state AChE inhibition between 65% and 85% in the CNS. These data suggest that the full therapeutic advantage of AChE inhibition therapy can be realized without interference from dose-limiting gastrointestinal toxicity if an irreversible inhibitor is employed. PMID:27858711

  19. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  20. Acetylcholinesterase (AChE)--amyloid-beta-peptide complexes in Alzheimer's disease. the Wnt signaling pathway.

    PubMed

    Inestrosa, Nibaldo C; Urra, Soledad; Colombres, Marcela

    2004-11-01

    Alzheimer's disease (AD) is characterized by selective neuronal cell death, which is probably caused by amyloid beta-peptide (Abeta) oligomers and fibrils. We have found that acetylcholinesterase (AChE), a senile plaque component, increases amyloid fibril assembly with the formation of highly toxic complexes (Abeta-AChE). The neurotoxic effect induced by Abeta-AChE complexes was higher than that induced by the Abeta peptide alone as shown both in vitro (hippocampal neurons) and in vivo (rats injected with Abeta peptide in the dorsal hippocampus). Interestingly, treatment with Abeta-AChE complexes decreases the cytoplasmic beta-catenin level, a key component of Wnt signaling. Conversely, the activation of this signaling pathway by Wnt-3a promotes neuronal survival and rescues changes in Wnt components (activation or subcellular localization). Moreover Frzb-1, a Wnt antagonist reverses the Wnt-3a neuroprotection effect against Abeta neurotoxicity. Compounds that mimic the Wnt signaling or modulate the cross-talking with this pathway could be used as neuroprotective agents for therapeutic strategies in AD patients.

  1. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  2. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    PubMed

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells.

  3. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs

    PubMed Central

    Lin, Bo; Xiang, Shihua; Li, Mengsen

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12–19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads. PMID:27727162

  4. Thyrsiferol Inhibits Mitochondrial Respiration and HIF-1 Activation

    PubMed Central

    Mahdi, Fakhri; Falkenberg, Miriam; Ioannou, Efstathia; Roussis, Vassilios; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    The cytotoxic marine red algal metabolite thyrsiferol (1) was found to inhibit hypoxia-induced hypoxia-inducible factor-1 (HIF-1) activation in T47D human breast tumor cells (66% inhibition at 3 μM). Compound 1 also suppressed hypoxic induction of HIF-1 target genes (VEGF, GLUT-1) at the mRNA level, and displayed tumor cell line-selective time-dependent inhibition of cell viability/proliferation. Mechanistic studies revealed that 1 selectively suppressed mitochondrial respiration at Complex I (IC50 3 μM). Thyrsiferol represents a prototypical, structurally unique electron transport chain inhibitor. The apparent rotenone-like activity may contribute to the observed cytotoxicity of 1 and play an important role in Laurencia chemical defense. PMID:21785662

  5. Effect of paraoxonase 1 192 Q/R polymorphism on paraoxonase and acetylcholinesterase enzyme activities in a Turkish population exposed to organophosphate.

    PubMed

    Sunay, Seda Zengin; Kayaaltı, Zeliha; Bayrak, Tülin; Söylemezoğlu, Tülin

    2015-12-01

    Organophosphate (OP) compounds are the most commonly used pesticide groups and they are commercially used in the market for local and industrial purposes. Paraoxonase 1 (PON1) enzyme plays an important role in biotransformation of OP compounds, which shows toxic effects via inhibiting the acetylcholinesterase (AChE). The aim of this study was to determine the effects of PON1 gene polymorphism and its effects on PON and AChE enzyme activities in individuals who were exposed to organophosphorus insecticides due to occupational reasons, and to profile the probability of susceptibility to organophosphorus compounds. For this purpose, 54 individuals who were exposed to OPs and 54 healthy unrelated controls were studied. First, PON1 and AChE enzyme activities were measured. Second, PON1 192 Q/R polymorphism was determined by standard polymerase chain reaction-restriction fragment length polymorphism technique. When the PON1 192 Q/R polymorphism was compared with PON1 enzyme activities, statistically significant association was found in both OP-exposed and control groups (p < 0.05). PON1 192 R(+) (QR + RR genotypes) genotype carriers had higher PON1 activities than 192 R(-) (QQ) genotype carriers. On the other hand, results were statistically analyzed in terms of AChE enzyme activities and there were statistically significant differences only in the OP-exposed group (p < 0.05). The mean AChE concentration in the OP-exposed group was determined as 33.79 ± 6.84 U/g haemoglobin (Hb) for PON1 192 R(+) carriers and 30.37 ± 7.62 U/g Hb for PON1 192 R(+) carriers. As a conclusion, PON1 and AChE activities were increasing according to the genotypes found in individuals having been exposed to OPs at a chronic level; 192 R(+) > 192 R(-), respectively.

  6. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

    PubMed Central

    Sung, Nak Yoon

    2015-01-01

    Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-β (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation. PMID:26330757

  7. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  8. Cyanate-mediated inhibition of neutrophil myeloperoxidase activity.

    PubMed Central

    Qian, M; Eaton, J W; Wolff, S P

    1997-01-01

    Cyanate (CNO-) forms spontaneously in solutions containing urea, and is present in urine and the body fluids of uraemic patients. We have explored the possibility that CNO- might be one of the unknown substances responsible for the reported impairment, by urine and uraemic plasma, of neutrophil oxidative metabolism (especially as measured by luminol-enhanced chemiluminescence). Luminol-enhanced chemiluminescence generated by human neutrophils derives predominantly from the activity of myeloperoxidase (MPO) which produces hypochlorous acid from H2O2 and Cl-. We hypothesized that CNO- (which resembles the 'pseudohalide' thiocyanate, an alternative substrate for MPO) might somehow interfere with the activity of MPO. In support of this, we find: (i) CNO- inhibits both peroxidative and halogenating activities of MPO and also inhibits the enzyme within intact human neutrophils; (ii) the inhibition is H2O2-dependent, irreversible, accompanied by covalent addition of [14C]CNO- (or a carbon-containing fragment thereof) to the enzyme; (iii) CNO- also inhibits Cl-/H2O2/MPO-mediated bacterial killing. Impairment of this arm of neutrophil bactericidal activity by CNO- formed from urea may be one factor in the risk of urinary-tract infection associated with urinary stasis and perhaps in the generalized increase in susceptibility to infection in uraemic patients. PMID:9337863

  9. Inhibition of catalase activity in vitro by diesel exhaust particles.

    PubMed

    Mori, Y; Murakami, S; Sagae, T; Hayashi, H; Sakata, M; Sagai, M; Kumagai, Y

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular antioxidant, was investigated because H2O2 is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl-,Br-, or thiocyanate. Other anions, such as CH3COO- or SO4-, and cations such as K+, Na+, Mg2+, or Fe2+, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H2O2 generated from cells in addition to that of O2- generated by the chemical reaction of DEP with oxygen.

  10. Sympathetic α₃β₂-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine.

    PubMed

    Lee, Reggie Hui-Chao; Liu, Yi-Qing; Chen, Po-Yi; Liu, Chin-Hung; Chen, Mei-Fang; Lin, Hung-Wen; Kuo, Jon-Son; Premkumar, Louis S; Lee, Tony Jer-Fu

    2011-08-01

    The α(7)-nicotinic ACh receptor (α(7)-nAChR) on sympathetic neurons innervating basilar arteries of pigs crossed bred between Landrace and Yorkshire (LY) is known to mediate nicotine-induced, β-amyloid (Aβ)-sensitive nitrergic neurogenic vasodilation. Preliminary studies, however, demonstrated that nicotine-induced cerebral vasodilation in pigs crossbred among Landrace, Yorkshire, and Duroc (LYD) was insensitive to Aβ and α-bungarotoxin (α-BGTX). We investigated nAChR subtype on sympathetic neurons innervating LYD basilar arteries. Nicotine-induced relaxation of porcine isolated basilar arteries was examined by tissue bath myography, inward currents on nAChR-expressing oocytes by two-electrode voltage recording, and mRNA and protein expression in the superior cervical ganglion (SCG) and middle cervical ganglion (MCG) by reverse transcription PCR and Western blotting. Nicotine-induced basilar arterial relaxation was not affected by Aβ, α-BGTX, and α-conotoxin IMI (α(7)-nAChR antagonists), or α-conotoxin AuIB (α(3)β(4)-nAChR antagonist) but was inhibited by tropinone and tropane (α(3)-containing nAChR antagonists) and α-conotoxin MII (selective α(3)β(2)-nAChR antagonist). Nicotine-induced inward currents in α(3)β(2)-nAChR-expressing oocytes were inhibited by α-conotoxin MII but not by α-BGTX, Aβ, or α-conotoxin AuIB. mRNAs of α(3)-, α(7)-, β(2)-, and β(4)-subunits were expressed in both SCGs and MCGs with significantly higher mRNAs of α(3)-, β(2)-, and β(4)-subunits than that of α(7)-subunit. The Aβ-insensitive sympathetic α(3)β(2)-nAChR mediates nicotine-induced cerebral nitrergic neurogenic vasodilation in LYD pigs. The different finding from Aβ-sensitive α(7)-nAChR in basilar arteries of LY pigs may offer a partial explanation for different sensitivities of individuals to Aβ in causing diminished cerebral nitrergic vasodilation in diseases involving Aβ.

  11. Curcumin directly inhibits the transport activity of GLUT1.

    PubMed

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin.

  12. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  13. Tac-beta1 inhibits FAK activation and Src signaling.

    PubMed

    Berrier, Allison L; Jones, Christopher W; LaFlamme, Susan E

    2008-03-28

    The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin beta1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-beta1) inhibits cell spreading. To study the mechanism whereby Tac-beta1 inhibits cell spreading, we examined the effect of Tac-beta1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-beta1 and found that Tac-beta1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-beta1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-beta1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-beta1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.

  14. Irregular activity arises as a natural consequence of synaptic inhibition

    SciTech Connect

    Terman, D.; Rubin, J. E.; Diekman, C. O.

    2013-12-15

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  15. Cutting edge: inhibition of T cell activation by TIM-2.

    PubMed

    Knickelbein, Jared E; de Souza, Anjali J; Tosti, Richard; Narayan, Preeti; Kane, Lawrence P

    2006-10-15

    T cell Ig and mucin domain protein 2 (TIM-2) has been shown to regulate T cell activation in vitro and T cell-mediated disease in vivo. However, it is still not clear whether TIM-2 acts mainly to augment T cell function or to inhibit it. We have directly examined the function of TIM-2 in murine and human T cell lines. Our results indicate that expression of TIM-2 significantly impairs the induction of NFAT and AP-1 transcriptional reporters by not only TCR ligation but also by the pharmacological stimuli PMA and ionomycin. This does not appear to be due to a general effect on cell viability, and the block in NFAT activation can be bypassed by expression of activated alleles of Ras or calcineurin, or MEK kinase, in the case of AP-1. Thus, our data are consistent with a model whereby TIM-2 inhibits T cell activation.

  16. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  17. Inhibition of thyroid type 1 deiodinase activity by flavonoids.

    PubMed

    Ferreira, A C F; Lisboa, P C; Oliveira, K J; Lima, L P; Barros, I A; Carvalho, D P

    2002-07-01

    Some dietary flavonoids inhibit thyroperoxidase and hepatic deiodinase activity, indicating that these compounds could be classified as anti-thyroid agents. In this study, we evaluated the in vitro effect of various flavonoids on thyroid type 1 iodothyronine deiodinase activity (D1). D1 activity was measured in murine thyroid microsome fractions by the release of 125I from 125I-reverse T3. D1 activity was significantly inhibited by all the flavonoids tested; however, the inhibitory potencies on thyroid D1 activity differed greatly among them. A 50% inhibition of D1 activity (IC(50)) was obtained at 11 microM baicalein, 13 microM quercetin, 17 microM catechin, 55 microM morin, 68 microM rutin, 70 microM fisetin, 72 microM kaempferol and 77 microM biochanin A. Our data reinforce the concept that dietary flavonoids might behave as antithyroid agents, and possibly their chronic consumption could alter thyroid function.

  18. Pyrithione, a zinc ionophore, inhibits NF-kappaB activation.

    PubMed

    Kim, C H; Kim, J H; Moon, S J; Chung, K C; Hsu, C Y; Seo, J T; Ahn, Y S

    1999-06-16

    Pyrrolidine dithiocarbamate (PDTC) suppresses NF-kappaB activity and exhibits cytotoxic effects in bovine cerebral endothelial cells (BCECs), and we have previously reported that these PDTC effects were accompanied by an increase in intracellular zinc levels. To further explore the role of zinc in the modulation of NF-kappaB activation, we studied the effect of pyrithione, a zinc ionophore, on NF-kappaB activation in BCECs. Pyrithione inhibited NF-kappaB activity in a time- and dose-dependent manner. Ca-EDTA, but not Zn-EDTA, prevented pyrithione inhibition of NF-kappaB activity. Pyrithione increased the intracellular zinc level within 15 min. This effect was also abolished by Ca-EDTA, but not by Zn-EDTA. The potency of pyrithione on NF-kappaB inhibition and zinc influx was approximately one order of magnitude more potent than PDTC. These findings establish the regulatory role of intracellular zinc levels on NF-kappaB activity in BCECs.

  19. Strenuous physical exercise inhibits granulocyte activation induced by high altitude.

    PubMed

    Choukèr, Alexander; Demetz, Florian; Martignoni, André; Smith, Leslie; Setzer, Florian; Bauer, Andreas; Hölzl, Joseph; Peter, Klaus; Christ, Frank; Thiel, Manfred

    2005-02-01

    To test the hypothesis of whether strenuous physical exercise inhibits neutrophils that can get activated by hypobaric hypoxia, we analyzed the effects of both high altitude and strenuous exercise alone and in combination on potentially cytotoxic functions of granulocytes in healthy volunteers (n = 12 men; average age 27.6 yr; range 24-38 yr). To this end, a field study was prospectively performed with an open-labeled within-subject design comprising three protocols. Protocol I (high altitude) involved a helicopter ascent, overnight stay at 3,196 m, and descent on the following day. Protocol II (physical exercise) involved hiking below an altitude of 2,100 m with repetitive ascents amounting to a total ascent to that of protocol III. Protocol III (combination of physical exercise and high altitude) involved climbing from 1,416 to 3,196 m, stay overnight, and descent on the following day. In protocol I, number of granulocytes did not change, but potentially cytotoxic functions of cells (CD18 expression and superoxide production) were early and significantly upregulated. In protocol II, subjects developed granulocytosis, but functions of cells were inhibited. In protocol III, granulocytosis occurred at higher values than those observed under protocol II. Potentially cytotoxic functions of cells, however, were strongly inhibited again. In conclusion, high altitude alone, even moderate in extent, can activate potentially cytotoxic functions of circulating granulocytes. Strenuous physical exercise strongly inhibits this activation, which may give protection from an otherwise inflammatory injury.

  20. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation

    PubMed Central

    Yu, Huangfei; Xia, Hongwei; Tang, Qiulin; Xu, Huanji; Wei, Guoqing; Chen, Ying; Dai, Xinyu; Gong, Qiyong; Bi, Feng

    2017-01-01

    Acetylcholine (ACh), known as a neurotransmitter, regulates the functions of numerous fundamental central and peripheral nervous system. Recently, emerging evidences indicate that ACh also plays an important role in tumorigenesis. However, little is known about the role of ACh in gastric cancer. Here, we reported that ACh could be auto-synthesized and released from MKN45 and BGC823 gastric cancer cells. Exogenous ACh promoted cell proliferation in a does-dependent manner. The M3R antagonist 4-DAMP, but not M1R antagonist trihexyphenidyl and M2/4 R antagonist AFDX-116, could reverse the ACh-induced cell proliferation. Moreover, ACh, via M3R, activated the EGFR signaling to induce the phosphorylation of ERK1/2 and AKT, and blocking EGFR pathway by specific inhibitor AG1478 suppressed the ACh induced cell proliferation. Furthermore, the M3R antagonist 4-DAMP and darifenacin could markedly inhibit gastric tumor formation in vivo. 4-DAMP could also significantly enhance the cytotoxic activity of 5-Fu against the MKN45 and BGC823 cells, and induce the expression of apoptosis-related proteins such as Bax and Caspase-3. Together, these findings indicated that the autocrine ACh could act through M3R and the EGFR signaling to promote gastric cancer cells proliferation, targeting M3R or EGFR may provide us a potential therapeutic strategy for gastric cancer treatment. PMID:28102288

  1. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation.

    PubMed

    Ma, Jianqun; Xu, Hai; Wu, Jun; Qu, Changfa; Sun, Fenglin; Xu, Shidong

    2015-12-01

    Linalool, a natural compound that exists in the essential oils of several aromatic plants species, has been reported to have anti-inflammatory effects. However, the effects of linalool on cigarette smoke (CS)-induced acute lung inflammation have not been reported. In the present study, we investigated the protective effects of linalool on CS-induced acute lung inflammation in mice. Linalool was given i.p. to mice 2h before CS exposure daily for five consecutive days. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were measured. The production of TNF-α, IL-6, IL-1β, IL-8 and MCP-1 were detected by ELISA. The expression of NF-κB was detected by Western blotting. Our results showed that treatment of linalool significantly attenuated CS-induced lung inflammation, coupled with inhibited the infiltration of inflammatory cells and TNF-α, IL-6, IL-1β, IL-8 and MCP-1 production. Meanwhile, treatment of linalool inhibited CS-induced lung MPO activity and pathological changes. Furthermore, linalool suppressed CS-induced NF-κB activation in a dose-dependent manner. In conclusion, our results demonstrated that linalool protected against CS-induced lung inflammation through inhibiting CS-induced NF-κB activation.

  2. Heme from Alzheimer's brain inhibits muscarinic receptor binding via thiyl radical generation.

    PubMed

    Venters, H D; Bonilla, L E; Jensen, T; Garner, H P; Bordayo, E Z; Najarian, M M; Ala, T A; Mason, R P; Frey, W H

    1997-08-01

    An endogenous inhibitor (< 3500 Da) of antagonist binding to the muscarinic acetylcholine receptor (mAChR) has been reported to be elevated 3-fold in Alzheimer's disease (AD) brain. This endogenous inhibitor was found to require the presence of reducing agents such as reduced glutathione (GSH) for optimal activity. In the presence of GSH, the inhibitor was shown to generate thiyl radicals which irreversibly inhibited the mAChR. We now report that the inhibitor contains free heme, a well-established source of oxidative stress capable of generating free radicals and causing neurotoxicity. While FeSO4, microperoxidase and hemin all inhibited antagonist binding to the mAChR, only hemin shared the inhibitor's requirement for GSH. Both the free radical scavengers Trolox and Mn2+, and the metal chelator, EDTA, blocked the activity of the endogenous AD inhibitor and of hemin. Heme oxygenase-1 (HO-1) markedly reduced the activity of both the endogenous AD inhibitor and hemin, indicating that the endogenous inhibitor contains heme. Mass spectrometric analysis confirmed the presence of free heme and heme fragments in fractions of the endogenous AD inhibitor. The antioxidants estrogen, vitamin E and vitamin C all protected the mAChR from irreversible inhibition by the endogenous inhibitor or hemin. These antioxidants may function to protect the integrity of the mAChR in vivo and may have therapeutic potential in AD where free heme could be a source of oxidative stress.

  3. Microglia-inhibiting activity of Parkinson's disease drug amantadine.

    PubMed

    Kim, Jong-Heon; Lee, Ho-Won; Hwang, Jaegyu; Kim, Jaehong; Lee, Min-Jeong; Han, Hyung-Soo; Lee, Won-Ha; Suk, Kyoungho

    2012-09-01

    Amantadine is currently used as an antiviral and an antiparkinsonian drug. Although the drug is known to bind a viral proton channel protein, the mechanism of action in Parkinson's disease (PD) remains to be determined. This study investigated whether the drug has an inhibitory effect on microglial activation and neuroinflammation, which have been implicated in the progression of neurodegenerative processes. Using cultured microglial cells, it was demonstrated that the drug inhibited inflammatory activation of microglia and a signaling pathway that governs the microglial activation. The drug reduced the expression and production of proinflammatory mediators in bacterial lipopolysaccharide-stimulated microglia cells. The microglia-inhibiting activity of amantadine was also demonstrated in a microglia/neuron coculture and animal models of neuroinflammation and Parkinson's disease. Collectively, our results suggest that amantadine may act on microglia in the central nervous system to inhibit their inflammatory activation, thereby attenuating neuroinflammation. These results provide a molecular basis of the glia-targeted mechanism of action for amantadine.

  4. The antileishmanial activity of xanthohumol is mediated by mitochondrial inhibition.

    PubMed

    Monzote, Lianet; Lackova, Alexandra; Staniek, Katrin; Steinbauer, Silvia; Pichler, Gerald; Jäger, Walter; Gille, Lars

    2016-12-12

    Xanthohumol (Xan) is a natural constituent of human nutrition. Little is known about its actions on leishmanial parasites and their mitochondria as putative target. Therefore, we determined the antileishmanial activity of Xan and resveratrol (Res, as alternative compound with antileishmanial activity) with respect to mitochondria in Leishmania amazonensis promastigotes/amastigotes (LaP/LaA) in comparison with their activity in peritoneal macrophages from mouse (PMM) and macrophage cell line J774A.1 (J774). Mechanistic studies were conducted in Leishmania tarentolae promastigotes (LtP) and mitochondrial fractions isolated from LtP. Xan and Res demonstrated antileishmanial activity in LaA [half inhibitory concentration (IC50): Xan 7 µ m, Res 14 µ m]; while they had less influence on the viability of PMM (IC50: Xan 70 µ m, Res >438 µ m). In contrast to Res, Xan strongly inhibited oxygen consumption in Leishmania (LtP) but not in J774 cells. This was based on the inhibition of the mitochondrial electron transfer complex II/III by Xan, which was less pronounced with Res. Neither Xan nor Res increased mitochondrial superoxide release in LtP, while both decreased the mitochondrial membrane potential in LtP. Bioenergetic studies showed that LtP mitochondria have no spare respiratory capacity in contrast to mitochondria in J774 cells and can therefore much less adapt to stress by mitochondrial inhibitors, such as Xan. These data show that Xan may have antileishmanial activity, which is mediated by mitochondrial inhibition.

  5. Chlorhexidine inhibits the activity of dental cysteine cathepsins.

    PubMed

    Scaffa, P M C; Vidal, C M P; Barros, N; Gesteira, T F; Carmona, A K; Breschi, L; Pashley, D H; Tjäderhane, L; Tersariol, I L S; Nascimento, F D; Carrilho, M R

    2012-04-01

    The co-expression of MMPs and cysteine cathepsins in the human dentin-pulp complex indicates that both classes of enzymes can contribute to the endogenous proteolytic activity of dentin. Chlorhexidine (CHX) is an efficient inhibitor of MMP activity. This study investigated whether CHX could also inhibit cysteine cathepsins present in dentin. The inhibitory profile of CHX on the activity of dentin-extracted and recombinant cysteine cathepsins (B, K, and L) was monitored in fluorogenic substrates. The rate of substrate hydrolysis was spectrofluorimetrically measured, and inhibitory constants were calculated. Molecular docking was performed to predict the binding affinity between CHX and cysteine cathepsins. The results showed that CHX inhibited the proteolytic activity of dentin-extracted cysteine cathepsins in a dose-dependent manner. The proteolytic activity of human recombinant cathepsins was also inhibited by CHX. Molecular docking analysis suggested that CHX strongly interacts with the subsites S2 to S2' of cysteine cathepsins B, K, and L in a very similar manner. Taken together, these results clearly showed that CHX is a potent inhibitor of the cysteine cathepsins-proteolytic enzymes present in the dentin-pulp complex.

  6. Sesquiterpenes inhibiting the microglial activation from Laurus nobilis.

    PubMed

    Chen, Hongqiang; Xie, Chunfeng; Wang, Hao; Jin, Da-Qing; Li, Shen; Wang, Meicheng; Ren, Quanhui; Xu, Jing; Ohizumi, Yasushi; Guo, Yuanqiang

    2014-05-21

    The inhibitory reagents to inhibit the activation of microglial cells may be potentially useful for the treatment of neurodegenerative diseases. The leaves of the plant Laurus nobilis belonging to the family Lauraceae, namely, bay leaves, have been used as a popular spice, and their extract showed moderate inhibition on microglial activation. A further phytochemical investigation of the leaves led to the isolation of two new (1, 2) and eight known (3-10) sesquiterpenes. Their structures were elucidated on the basis of extensive 1D and 2D NMR (HMQC, HMBC, (1)H-(1)H COSY, and NOESY) spectroscopic data analyses and Chem3D modeling. The following biological studies disclosed that these isolated compounds showed inhibitory activities on LPS-induced microglial activation. The results of our phytochemical investigation, including two new sesquiterpenes (1 and 2) and the first report of two compounds (3 and 4) from this species, further revealed the chemical composition of bay leaves as a popular spice, and the biological studies implied that bay leaves, containing bioactive substances with the inhibition of microglial activation, were potentially beneficial to human health.

  7. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    PubMed

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid.

  8. Inhibition of rainbow trout acetylcholinesterase by aqueous and suspended particle-associated organophosphorous insecticides.

    PubMed

    Sturm, Armin; Radau, Tanja S; Hahn, Torsten; Schulz, Ralf

    2007-06-01

    Spraydrift and edge-of-field runoff are important routes of pesticide entry into streams. Pesticide contamination originating from spraydrift usually resides in the water phase, while pesticides in contaminated runoff are to a large extent associated with suspended particles (SPs). The effects of two organophosphorous insecticides (OPs), chloropyrifos (CPF) and azinphos-methyl (AZP), on acetylcholinesterase (AChE) activity in rainbow trout were compared between two exposure scenarios, simulating spraydrift- and runoff-borne contamination events in the Lourens River (LR), Western Cape, South Africa. NOECs of brain AChE inhibition, determined after 1h of exposure followed by 24h of recovery, were 0.33microgl(-1) for aqueous CPF, 200mgkg(-1) for SP-associated CPF and 20mgkg(-1) for SP-associated AZP (at 0.5gl(-1) SP). The highest aqueous AZP concentration tested (3.3microgl(-1)) was without significant effects. Previously reported peak levels of aqueous CPF in the LR ( approximately 0.2microgl(-1)) are close to its NOEC (this study), suggesting a significant toxicological risk to fish in the LR. By contrast, reported levels of SP-associated OPs in the LR are 20-200-fold lower than their NOECs (this study). In a comparative in situ study, trout were exposed for seven days at agricultural (LR2, LR3) and upstream reference (LR1) sites. No runoff occurred during the study. Brain AChE was significantly inhibited at LR3. However, OP levels at LR3 (CPF 0.01microgl(-1); AZP 0.14microgl(-1)) were minor compared to concentrations having effects in the laboratory (see above). Additionally, muscle AChE activity was significantly higher in caged trout from LR1 than in animals maintained in laboratory tanks.

  9. Morphinans and isoquinolines: acetylcholinesterase inhibition, pharmacophore modeling, and interaction with opioid receptors.

    PubMed

    Schuster, Daniela; Spetea, Mariana; Music, Melisa; Rief, Silvia; Fink, Monika; Kirchmair, Johannes; Schütz, Johannes; Wolber, Gerhard; Langer, Thierry; Stuppner, Hermann; Schmidhammer, Helmut; Rollinger, Judith M

    2010-07-15

    Following indications from pharmacophore-based virtual screening of natural product databases, morphinan and isoquinoline compounds were tested in vitro for acetylcholinesterase (AChE) inhibition. After the first screen, active and inactive compounds were used to build a ligand-based pharmacophore model in order to prioritize compounds for biological testing. Among the virtual hits tested, the enrichment of actives was significantly higher than in a random selection of test compounds. The most active compounds were biochemically tested for their activity on mu, delta, and kappa opioid receptors.

  10. Diagnosis of anticholinesterase poisoning in birds: Effects of environmental temperature and underfeeding on cholinesterase activity

    USGS Publications Warehouse

    Rattner, B.A.

    1982-01-01

    Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.

  11. On the role of phosphatidylethanolamine in the inhibition of activated protein C activity by antiphospholipid antibodies.

    PubMed Central

    Smirnov, M D; Triplett, D T; Comp, P C; Esmon, N L; Esmon, C T

    1995-01-01

    Phosphatidylethanolamine (PE) is an important membrane component for supporting activated protein C anticoagulant activity but has little influence on prothrombin activation. This difference constitutes a potential mechanism for selective inhibition of the protein C anticoagulant pathway by lupus anticoagulants and/or antiphospholipid antibodies. In this study, we demonstrate that the presence of PE augments lupus anticoagulant activity. In the plasma of some patients with lupus anticoagulants, activated protein C anticoagulant activity is more potently inhibited than prothrombin activation. As a result, in the presence of activated protein C and PE, these patient plasmas clot faster than normal plasma. Patients with minimal lupus anticoagulant activity are identified whose plasma potently inhibits activated protein C anticoagulant activity. This process is also PE dependent. In three patient plasmas, these phenomena are shown to be due to immunoglobulins. The PE requirement in the expression of activated protein C anticoagulant activity and the PE dependence of some antiphospholipid antibodies provide a mechanistic basis for the selective inhibition of the protein C pathway. Inhibition of activated protein C function may be a common mechanism contributing to increased thrombotic risk in certain patients with antiphospholipid antibodies. PMID:7814631

  12. Molecular docking studies and in vitro cholinesterase enzyme inhibitory activities of chemical constituents of Garcinia hombroniana.

    PubMed

    Jamila, Nargis; Yeong, Khaw Kooi; Murugaiyah, Vikneswaran; Atlas, Amir; Khan, Imran; Khan, Naeem; Khan, Sadiq Noor; Khairuddean, Melati; Osman, Hasnah

    2015-01-01

    Garcinia species are reported to possess antimicrobial, anti-inflammatory, anticancer, anti-HIV and anti-Alzheimer's activities. This study aimed to investigate the in vitro cholinesterase enzyme inhibitory activities of garcihombronane C (1), garcihombronane F (2), garcihombronane I (3), garcihombronane N (4), friedelin (5), clerosterol (6), spinasterol glucoside (7) and 3β-hydroxy lup-12,20(29)-diene (8) isolated from Garcinia hombroniana, and to perform molecular docking simulation to get insight into the binding interactions of the ligands and enzymes. The cholinesterase inhibitory activities were evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In this study, compound 4 displayed the highest concentration-dependent inhibition of both AChE and BChE. Docking studies exhibited that compound 4 binds through hydrogen bonds to amino acid residues of AChE and BChE. The calculated docking and binding energies also supported the in vitro inhibitory profiles of IC50. In conclusion, garcihombronanes C, F, I and N (1-4) exhibited dual and moderate inhibitory activities against AChE and BChE.

  13. The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity.

    PubMed

    Dobbs, Lauren K; Cunningham, Christopher L

    2014-05-15

    Methamphetamine (METH) indirectly stimulates the laterodorsal tegmental nucleus (LDT) acetylcholine (ACh) neurons to increase ACh within the ventral tegmental area (VTA). LDT ACh inhibition attenuates METH and saline locomotor activity. The aim of these experiments was to determine whether LDT ACh contributes to METH conditioned place preference (CPP). C57BL/6J mice received a bilateral electrolytic or sham lesion of the LDT. After recovery, mice received alternating pairings of METH (0.5 mg/kg) and saline with distinct tactile floor cues over 8 days. During preference tests, mice were given access to both floor types and time spent on each was recorded. Mice were tested again after exposure to both extinction and reconditioning trials. Brains were then processed for choline acetyltransferase immunohistochemistry to label LDT ACh neurons. Lesioned mice had significantly fewer LDT ACh neurons and showed increased saline and METH locomotor activity during the first conditioning trial compared to sham mice. Locomotor activity (saline and METH) was negatively correlated with the number of LDT ACh neurons. Lesioned and sham mice showed similar METH CPP following conditioning, extinction and reconditioning trials. LDT ACh neurons are not necessary for METH reward as indexed by CPP, but may be important for basal and METH-induced locomotor activity.

  14. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  15. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    SciTech Connect

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio . E-mail: ttanak@imed3.med.osaka-u.ac.jp

    2006-02-03

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.

  16. Immune complexes inhibit interleukin-1 secretion and inflammasome activation

    PubMed Central

    Janczy, John R.; Ciraci, Ceren; Haasken, Stefanie; Iwakura, Yoichiro; Olivier, Alicia K.; Cassel, Suzanne L.; Sutterwala, Fayyaz S.

    2014-01-01

    Immunoglobulin G (IgG) immune complexes have been shown to modify immune responses driven by antigen presenting cells in either a pro- or anti-inflammatory direction depending upon the context of stimulation. However, the ability of immune complexes to modulate the inflammasome-dependent innate immune response is unknown. Here we show that IgG immune complexes suppress IL-1α and IL-1β secretion through inhibition of inflammasome activation. The mechanism by which this inhibition occurs is via immune complex ligation of activating Fcγ receptors (FcγR), resulting in prevention of both activation and assembly of the inflammasome complex in response to NLRP3, NLRC4, or AIM2 agonists. In vivo, administration of antigen in the form of an immune complex during priming of the immune response inhibited resultant adaptive immune responses in a NLRP3 dependent model of allergic airway disease. Our data reveal an unexpected mechanism regulating CD4+ T cell differentiation, whereby immune complexes suppress inflammasome activation and the generation of IL-1α and IL-1β from antigen presenting cells, which are critical for the antigen-driven differentiation of CD4+ T cells. PMID:25320279

  17. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  18. Immune complexes inhibit IL-1 secretion and inflammasome activation.

    PubMed

    Janczy, John R; Ciraci, Ceren; Haasken, Stefanie; Iwakura, Yoichiro; Olivier, Alicia K; Cassel, Suzanne L; Sutterwala, Fayyaz S

    2014-11-15

    IgG immune complexes have been shown to modify immune responses driven by APCs in either a pro- or anti-inflammatory direction depending upon the context of stimulation. However, the ability of immune complexes to modulate the inflammasome-dependent innate immune response is unknown. In this study, we show that IgG immune complexes suppress IL-1α and IL-1β secretion through inhibition of inflammasome activation. The mechanism by which this inhibition occurs is via immune complex ligation of activating FcγRs, resulting in prevention of both activation and assembly of the inflammasome complex in response to nucleotide-binding domain leucine-rich repeat (NLR) P3, NLRC4, or AIM2 agonists. In vivo, administration of Ag in the form of an immune complex during priming of the immune response inhibited resultant adaptive immune responses in an NLRP3-dependent model of allergic airway disease. Our data reveal an unexpected mechanism regulating CD4(+) T cell differentiation, by which immune complexes suppress inflammasome activation and the generation of IL-1α and IL-1β from APCs, which are critical for the Ag-driven differentiation of CD4(+) T cells.

  19. Complement activity and pharmacological inhibition in cardiovascular disease

    PubMed Central

    Théroux, Pierre; Martel, Catherine

    2006-01-01

    While complement is the most important component of humoral autoimmunity, and inflammation plays a key role in atherosclerosis, relatively few studies have looked at complement implications in atherosclerosis and its complications. C-reactive protein is a marker of inflammation and is also involved in atherosclerosis; it activates complement and colocalizes with activated complement proteins within the infarcting myocardium and the active atherosclerotic plaques. As new agents capable of modulating complement activity are being developed, new targets for the management of atherosclerosis are emerging that are related to autoimmunity and inflammation. The present paper reviews the putative roles of the various complement activation pathways in the development of atherosclerosis, in ST segment elevation and non-ST segment elevation acute coronary syndromes, and in coronary artery bypass graft surgery. It also provides a perspective on new therapeutic interventions being developed to modulate complement activity. These interventions include the C1 esterase inhibitor, which may be consumed in some inflammatory states resulting in the loss of one of the mechanisms inhibiting activation of the classical and lectin pathways; TP10, a recombinant protein of the soluble complement receptor type 1 (sCR1) which inhibits the C3 and C5 convertases of the common pathway by binding C3b and C4b; a truncated version of the soluble complement receptor type 1 CRI lacking the C4b binding site which selectively inhibits the alternative pathway; and pexelizumab, a monoclonal antibody selectively blocking C5 to prevent the activation of the terminal pathway that is involved in excessive inflammation and autoimmune responses. PMID:16498508

  20. Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium confusum Coincy.

    PubMed

    Benamar, Houari; Tomassini, Lamberto; Venditti, Alessandro; Marouf, Abderrazak; Bennaceur, Malika; Serafini, Mauro; Nicoletti, Marcello

    2017-06-01

    Four pyrrolizidine alkaloids, namely 7-O-angeloyllycopsamine N-oxide 1, echimidine N-oxide 2, echimidine 3 and 7-O-angeloylretronecine 4, were isolated for the first time from the whole plant ethanolic extract of Echium confusum Coincy, through bioassay-guided approach. Their structures were determined by spectroscopic means. All the isolates compounds showed moderate activities in inhibiting AChE, with IC50 0.276-0.769.

  1. Some heterocyclic thione derivatives exhibit anticoccidial activity by inhibiting glycosidases.

    PubMed

    Balbaa, Mahmoud; Abd El-Hady, Neama; Taha, Nabil; El Ashry, El Sayed H

    2012-01-01

    Coccidiosis is one of the most common parasitic diseases affecting many species of domestic animals. This disease has a major economic significance and the search for new compounds having anticoccidial activity is of great importance. In this article, different levels of protection from coccidian infection by Eimeria stiedae were developed in rabbits by treatment with compounds incorporating the skeleton of thiourea. These compounds include 4,5-diphenylimidazole-2-thione (1), 4,5-Diphenyl-1,2,4-triazole-3-thiol (2) and 5-(2-Hydroxyphenyl)-4-phenyl-1,2,4-triazole-3-thiol (3) compared to the anticoccidial drug toltrazuril as a reference compound. Compounds 1-3 inhibit coccidiosis-induced activity of α-glucosidase. The protection from coccidial infection by compound 1 was higher than that shown for compounds 2 and 3. These data suggest that diazole and triazole thione derivatives have a mimetic effect for anticoccidial drugs through their inhibition of glycosidases.

  2. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  3. Emergent patterns from probabilistic generalizations of lateral activation and inhibition

    PubMed Central

    Kabla, Alexandre

    2016-01-01

    The combination of laterally activating and inhibiting feedbacks is well known to spontaneously generate spatial organization. It was introduced by Gierer and Meinhardt as an extension of Turing's great insight that two reacting and diffusing chemicals can spontaneously drive spatial morphogenesis per se. In this study, we develop an accessible nonlinear and discrete probabilistic model to study simple generalizations of lateral activation and inhibition. By doing so, we identify a range of modes of morphogenesis beyond the familiar Turing-type modes; notably, beyond stripes, hexagonal nets, pores and labyrinths, we identify labyrinthine highways, Kagome lattices, gyrating labyrinths and multi-colour travelling waves and spirals. The results are discussed within the context of Turing's original motivating interest: the mechanisms which underpin the morphogenesis of living organisms. PMID:27170648

  4. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity

    PubMed Central

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426

  5. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity.

    PubMed

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity.

  6. Phytosphingosine and C2-phytoceramide induce cell death and inhibit carbachol-stimulated phospholipase D activation in Chinese hamster ovary cells expressing the Caenorhabditis elegans muscarinic acetylcholine receptor.

    PubMed

    Lee, J S; Min, D S; Park, C; Park, C S; Cho, N J

    2001-06-15

    Sphingolipid metabolites, such as sphingosine and ceramide, are known to play important roles in cell proliferation, differentiation and apoptosis, but the physiological roles of phytosphingosine (PHS) and phytoceramide (PHC) are poorly understood. In this study we investigated the effects of PHS, C2-PHC (N-acetylPHS) and C6-PHC (N-hexanoylPHS) on cell growth and intracellular signalling enzymes. Treatment of Chinese hamster ovary (CHO) cells with PHS, C2-PHC or C6-PHC resulted in cell death in a time- and dose-dependent manner. C2-PHC induced internucleosomal DNA fragmentation, whereas PHS or C6-PHC had little if any effect on DNA fragmentation under the same experimental conditions. Both PHS and C2-PHC inhibited carbachol-induced activation of phospholipase D (PLD), but not of phospholipase C (PLC), in CHO cells expressing the Caenorhabditis elegans muscarinic acetylcholine receptor (mAChR). On the other hand, no significant effect of C6-PHC on PLD or PLC was observed. Our results show that PHS and C2-PHC exert strong cytotoxic effects on CHO cells and modulate the mAChR-mediated signal transduction pathway.

  7. Flavonoid inhibition of aromatase enzyme activity in human preadipocytes.

    PubMed

    Campbell, D R; Kurzer, M S

    1993-09-01

    Eleven flavonoid compounds were compared with aminoglutethimide (AG), a pharmaceutical aromatase inhibitor, for their abilities to inhibit aromatase enzyme activity in a human preadipocyte cell culture system. Flavonoids exerting no effect on aromatase activity were catechin, daidzein, equol, genistein, beta-naphthoflavone (BNF), quercetin and rutin. The synthetic flavonoid, alpha-naphthoflavone (ANF), was the most potent aromatase inhibitor, with an I50 value of 0.5 microM. Three naturally-occurring flavonoids, chrysin, flavone, and genistein 4'-methyl ether (Biochanin A) showed I50 values of 4.6, 68, and 113 microM, respectively, while AG showed an I50 value of 7.4 microM. Kinetic analyses showed that both AG and the flavonoids acted as competitive inhibitors of aromatase. The Ki values, indicating the effectiveness of inhibition, were 0.2, 2.4, 2.4, 22, and 49 microM, for ANF, AG, chrysin, flavone, and Biochanin A, respectively. Chrysin, the most potent of the naturally-occurring flavonoids, was similar in potency and effectiveness to AG, a pharmaceutical aromatase inhibitor used clinically in cases of estrogen-dependent carcinoma. These data suggest that flavonoid inhibition of peripheral aromatase activity may contribute to the observed cancer-preventive hormonal effects of plant-based diets.

  8. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  9. Inhibition of cholinesterase activity and amyloid aggregation by berberine-phenyl-benzoheterocyclic and tacrine-phenyl-benzoheterocyclic hybrids.

    PubMed

    Huang, Ling; Su, Tao; Shan, Wenjun; Luo, Zonghua; Sun, Yang; He, Feng; Li, Xingshu

    2012-05-01

    A series of berberine-phenyl-benzoheterocyclic (26-29) and tacrine-phenyl-benzoheterocyclic hybrids (44-46) were synthesised and evaluated as multifunctional anti-Alzheimer's disease agents. Compound 44b, tacrine linked with phenyl-benzothiazole by 3-carbon spacers, was the most potent AChE inhibitor with an IC(50) value of 0.017 μM. This compound demonstrated similar Aβ aggregation inhibitory activity with cucurmin (51.8% vs 52.1% at 20 μM, respectively), indicating that this hybrid is an excellent multifunctional drug candidate for AD.

  10. Effect of pesticide exposure on acetylcholinesterase activity in subsistence farmers from Campeche, Mexico.

    PubMed

    Rendón von Osten, Jaime; Epomex, Centro; Tinoco-Ojanguren, Rolando; Soares, Amadeu M V M; Guilhermino, Lucia

    2004-08-01

    The authors surveyed agricultural production methods and pesticide use among subsistence farmers (campesinos) in 4 rural communities of Campeche, Mexico. Self-reports of symptoms of poisoning resulting from occupational pesticide exposure were elicited by questionnaire (N = 121), and acetylcholinesterase (AChE) activity during insecticide use was evaluated from blood samples (N = 127). In individuals from 2 of the 4 communities, AChE activity was significantly lower (p < 0.05) than the mean of activity determined for individuals in a reference group. Results of this study show that erythrocyte AChE inhibition provides a good biomarker of exposure to organophosphate pesticides in field studies with human populations. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Studies in field communities where both carbamates and organophosphates are suspected to exist should include blood AChE determinations, symptomatology surveys, and socioeconomic questionnaires. The authors recommend that the Mexican National Health Ministry authorities specify additional provisions regarding the use of protective equipment and the adoption of other safety practices during field work, increase information campaigns about the risks of pesticide use and the value of safety practices, and increase programs of medical monitoring and assistance for rural communities dealing with pesticides.

  11. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    PubMed

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  12. Emotion potentiates response activation and inhibition in masked priming

    PubMed Central

    Bocanegra, Bruno R.; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness. PMID:23162447

  13. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    PubMed Central

    Olajide, Olumayokun A.; Bhatia, Harsharan S.; de Oliveira, Antonio C. P.; Wright, Colin W.; Fiebich, Bernd L.

    2013-01-01

    Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB) and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα), interleukin-6 (IL-6), interleukin-1beta (IL-1β), nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM) did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2. PMID:23737832

  14. Inhibition of polyphenol oxidases activity by various dipeptides.

    PubMed

    Girelli, Anna M; Mattei, Enrico; Messina, Antonella; Tarola, Anna M

    2004-05-19

    In an effort to develop natural and nontoxic inhibitors on the activity of mushroom polyphenol oxidase (PPO) the effect of various glycyl-dipeptides (GlyAsp, GlyGly, GlyHis, GlyLeu, GlyLys, GlyPhe, GlyPro, GlyTyr) was investigated. The inhibition study with dihydroxyphenylalanine (DOPA) as substrate is based on separation of the enzymatic reaction components by reversed phase HPLC and the UV detection of the dopachrome formed. The results have evidenced that several of tested dipeptides inhibited PPO activity in the range of 20-40% while GlyPro and GlyLeu had no effect. The study has also permitted the characterization of the following kinetic pattern: a linear-mixed-type mechanism for GlyAsp, GlyGly, GlyLys, and GlyPhe and a hyperbolic-mixed-type for GlyTyr. It was not possible to identify the inhibition mechanism for GlyHis, although it affects PPO activity. In addition the effects of GlyAsp, GlyLys and GlyHis were evaluated for lessening the browning of fresh Golden Delicious apple and Irish White Skinned potato. The effectiveness of such inhibitors was determined by the difference between the colors observed in the dipeptide-treated sample and the controls using the color space CIE-Lab system. The % browning inhibition on potato (20-50%) was greater than of apple (20-30%) by the all tested dipeptides. Only GlyLys presented the significant value of 50%.

  15. Menthol Inhibits Detrusor Contractility Independently of TRPM8 Activation

    PubMed Central

    Ramos-Filho, Antonio Celso Saragossa; Shah, Ajay; Augusto, Taize Machado; Barbosa, Guilherme Oliveira; Leiria, Luiz Osorio; de Carvalho, Hernandes Faustino; Antunes, Edson; Grant, Andrew Douglas

    2014-01-01

    Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25–30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM–30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation. PMID:25375115

  16. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  17. Reduced brain activation in violent adolescents during response inhibition.

    PubMed

    Qiao, Yi; Mei, Yi; Du, XiaoXia; Xie, Bin; Shao, Yang

    2016-02-18

    Deficits in inhibitory control have been linked to aggression and violent behaviour. This study aimed to observe whether violent adolescents show different brain activation patterns during response inhibition and to ascertain the roles these brain regions play. A self-report method and modified overt aggression scale (MOAS) were used to evaluate violent behaviour. Functional magnetic resonance imaging was performed in 22 violent adolescents and 17 matched healthy subjects aged 12 to 18 years. While scanning, a go/no-go task was performed. Between-group comparisons revealed that activation in the bilateral middle and superior temporal gyrus, hippocampus, and right orbitofrontal area (BA11) regions were significantly reduced in the violent group compared with the control group. Meanwhile, the violent group had more widespread activation in the prefrontal cortex than that observed in the control group. Activation of the prefrontal cortex in the violent group was widespread but lacking in focus, failing to produce intensive activation in some functionally related regions during response inhibition.

  18. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual

  19. Activation of muscarinic K+ current in guinea-pig atrial myocytes by a serum factor.

    PubMed Central

    Banach, K; Hüser, J; Lipp, P; Wellner, M C; Pott, L

    1993-01-01

    1. Atrial myocytes obtained by enzymatic perfusion of hearts from adult guinea-pigs and cultured for 0-14 days were studied using the whole-cell voltage-clamp technique. 2. Superfusion of the myocytes with diluted sera (1:100 to 1:10,000) from different species (human, horse, guinea-pig) evoked an inward rectifying K+ current. The voltage-dependent properties of this current were identical to those of the K+ current activated by acetylcholine (IK(ACh)). Current density in the presence of horse serum (1:100) approximately corresponded to the non-desensitizing fraction of IK(ACh) during superfusion with 1-2 x 10(-6) M ACh. 3. During a maximal serum-evoked current, application of ACh (10(-6) M) failed to evoke additional K+ current. After switching superfusion from serum-containing to serum-free solution, the K+ current decayed 1-2 orders of magnitude slower than ACh-activated IK(ACh). During the decay of the serum-evoked current, a proportional increase in responsiveness to ACh was recorded. During submaximal activation of K+ current by serum, a saturating concentration of ACh resulted in a total current that was identical to the current evoked by ACh alone minus the desensitizing component. Thus, activation of K+ current by serum caused desensitization of IK(ACh). From these results it is concluded that sera contain a factor that activates the same population of K+ channels as ACh. 4. Irreversible activation of IK(ACh) by ACh in myocytes dialysed with the GTP-analogue GTP-gamma-S abolished sensitivity to serum and vice versa. 5. The effect of serum was not modified by atropine (10(-6) M) which completely blocked the response to 2 x 10(-6) M ACh. Furthermore, theophylline (1 mM), which completely inhibited IK(ACh) activation by adenosine (100 microM), failed to inhibit the effect of serum. Thus, neither muscarinic nor purinergic (A1) receptors are involved. 6. The peptide somatostatin (10(-6) M) and the alpha 1-agonist phenylephrine (1 microM) which previously have

  20. Activity inhibition on municipal activated sludge by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parise, Alex; Thakor, Harshrajsinh; Zhang, Xiaoqi

    2014-01-01

    The objective of this study was to evaluate the respiratory activity inhibition of activated sludge used in a typical wastewater treatment plant by single-walled carbon nanotubes (SWCNTs) with different length and functionality. Four types of SWCNTs were evaluated: short, functionalized short, long, and functionalized long. Based on the effective concentration (EC50) values obtained, we determined that functionalized SWCNTs resulted in a higher microbial respiratory inhibition than non-functionalized nanotubes, and long SWCNTs gave a higher microbial respiratory inhibition than their short counterparts. Among the four types of SWCNTs studied, functionalized long exhibited the highest respiration inhibition. Scanning electron microscopy imaging indicates that the long SWCNTs dispersed more favorably after sonication than the short variety. The findings demonstrated that the toxicity of CNTs (exhibited by respiratory inhibition) is related to their physical properties; the length and functionality of SWCNTs affected the toxicity of SWCNTs in a mixed-cultured biologic system.

  1. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus – Multiple gene expression presents an opportune model system for elucidation of multiple functions of AChEs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...

  2. Longitudinal study of tuberculosis outcomes among immunologically naive Aché natives of Paraguay.

    PubMed

    Hurtado, A Magdalena; Hill, Kim R; Rosenblatt, Wilhelm; Bender, Jacquelyn; Scharmen, Tom

    2003-06-01

    This study documents the course of a tuberculosis epidemic in an immunologically naive group of South American Indians within fewer than 20 years after first sustained contact with outsiders. Groups of Northern Aché (ah-CHAY) of eastern Paraguay were contacted and settled on reservations between 1971-1979. Not surprisingly, the Aché are very susceptible to tuberculosis, and the epidemiological characteristics of the disease are quite different from those of populations that have had tuberculosis for centuries. Within 6 years of the first detected case of tuberculosis among the Aché, the prevalence rate of active tuberculosis cases reached 18.2%, and of infected cases among adults, 64.6%, some of the highest rates ever reported for any human group. Remarkably, males and females are equally likely to have been diagnosed with active tuberculosis, Aché children between birth and 5 years of age are least vulnerable to tuberculosis, high nutritional and socioeconomic status do not decrease the risk of disease or infection, and children immunized with BCG are less responsive to tuberculin challenge than are other children. Moreover, similar to the Yanomamö, but unlike populations of European or African descent, a high percentage of Aché with active disease test negative on tuberculin challenge tests (purified protein derivative; PPD). These differences may be due to a high prevalence of diminished cell-mediated immunity, and T-helper 2 dominance. We also hypothesize that these immunological characteristics, low genetic diversity, hostile intergroup interactions, and behavioral noncompliance to treatment protocols together contribute to the high rates of active disease observed. Existing tuberculosis control programs are poorly equipped to handle the impact of these causal complexities on the course of recent tuberculosis epidemics that have quickly spread throughout native communities of Latin America during the last decade.

  3. Calcium signalling mediated through α7 and non-α7 nAChR stimulation is differentially regulated in bovine chromaffin cells to induce catecholamine release

    PubMed Central

    del Barrio, Laura; Egea, Javier; León, Rafael; Romero, Alejandro; Ruiz, Ana; Montero, Mayte; Álvarez, Javier; López, Manuela G

    2011-01-01

    BACKGROUND AND PURPOSE Ca2+ signalling and exocytosis mediated by nicotinic receptor (nAChR) subtypes, especially the α7 nAChR, in bovine chromaffin cells are still matters of debate. EXPERIMENTAL APPROACH We have used chromaffin cell cultures loaded with Fluo-4 or transfected with aequorins directed to the cytosol or mitochondria, several nAChR agonists (nicotine, 5-iodo-A-85380, PNU282987 and choline), and the α7 nAChR allosteric modulator PNU120596. KEY RESULTS Minimal [Ca2+]c transients, induced by low concentrations of selective α7 nAChR agonists and nicotine, were markedly increased by the α7 nAChR allosteric modulator PNU120596. These potentiated responses were completely blocked by the α7 nAChR antagonist α-bungarotoxin (α7-modulated-response). Conversely, high concentrations of the α7 nAChR agonists, nicotine or 5-iodo-A-85380 induced larger [Ca2+]c transients, that were blocked by mecamylamine but were unaffected by α-bungarotoxin (non-α7 response). [Ca2+]c increases mediated by α7 nAChR were related to Ca2+ entry through non-L-type Ca2+ channels, whereas non-α7 nAChR-mediated signals were related to L-type Ca2+ channels; Ca2+-induced Ca2+-release contributed to both responses. Mitochondrial involvement in the control of [Ca2+]c transients, mediated by either receptor, was minimal. Catecholamine release coupled to α7 nAChRs was more efficient in terms of catecholamine released/[Ca2+]c. CONCLUSIONS AND IMPLICATIONS [Ca2+]c and catecholamine release mediated by α7 nAChRs required an allosteric modulator and low doses of the agonist. At higher agonist concentrations, the α7 nAChR response was lost and the non-α7 nAChRs were activated. Catecholamine release might therefore be regulated by different nAChR subtypes, depending on agonist concentrations and the presence of allosteric modulators of α7 nAChRs. PMID:20840468

  4. [Metabolism inhibition stimulates, metabolism activation inhibits cancerogenic activity of ortho-aminoazotoluene in mouse liver].

    PubMed

    Kaledin, V I; Il'nitskaia, S I

    2011-01-01

    Pentachlorophenol, an inhibitor of metabolic activation of aminoazo dyes was administered to suckling mice prior to o-aminoazotoluene (OAT). It was followed by formation of numerous preneoplastic nodules and tumors in the lungs and liver. At the same time, 2,3,7,8-tetrachlorodibenzo-p-dioxine treatment decreased their number in the liver while slightly increasing them in the lung. A possible mechanism of aminoazo dye carcinogenicity is suggested.

  5. Evaluation of potency of known oximes (pralidoxime, trimedoxime, HI-6, methoxime, obidoxime) to in vitro reactivate acetylcholinesterase inhibited by pesticides (chlorpyrifos and methylchlorpyrifos) and nerve agent (Russian VX).

    PubMed

    Musílek, Kamil; Kuca, Kamil; Jun, Daniel

    2007-01-01

    Nerve agents and pesticides belong to the group of organophosphates. They are able to inhibit irreversibly the enzyme acetylcholinesterase (AChE). Acetylcholinesterase reactivators were designed for the treatment of nerve agent intoxications. Their potency to reactivate pesticide-inhibited AChE was many times evaluated. In this study, five commonly used AChE reactivators (pralidoxime, methoxime, HI-6, obidoxime, trimedoxime) for the reactivation of AChE inhibited by two pesticides (chlorpyrifos and methylchlorpyrifos) were used. Russian VX (nerve agent) as a member of nerve agents' family was taken for comparison. Obtained results show that oximes developed against nerve agent intoxication are less effective for intoxication with organophosphorus pesticides. Especially, methylchlorpyrifos-inhibited AChE was found to be poorly reactivated by the compounds used.

  6. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  7. Grafting MAP peptide to dental polymer inhibits MMP-8 activity.

    PubMed

    Dixit, Namrata; Settle, Jenifer K; Ye, Qiang; Berrie, Cindy L; Spencer, Paulette; Laurence, Jennifer S

    2015-02-01

    Matrix metalloproteinases (MMPs) are a class of zinc and calcium-dependent endopeptidases responsible for degrading extracellular matrix (ECM) components. Their activity is critical for both normal biological function and pathological processes (Dejonckheere et al., Cytokine Growth Factor Rev 2011;22:73-81). In dental restorations, the release and subsequent acid activation of MMPs contributes to premature failure. In particular, MMP-8 accelerates degradation by cleaving the collagen matrix within the dentin substrate in incompletely infiltrated aged bonded dentin (Buzalaf et al., Adv Dent Res 2012;24:72-76), hastening the need for replacement of restorations. Therefore, development of a dental adhesive that better resists MMP-8 activity is of significant interest. We hypothesize that modification of the polymer surface with an inhibitor would disable MMP-8 activity. Here, we identify the metal abstraction peptide (MAP) as an inhibitor of MMP-8 and demonstrate that tethering MAP to methacrylate polymers effectively inhibits catalysis. Our findings indicate complete inhibition of MMP-8 is achievable using a grafting approach. This strategy has potential to improve longevity of dental adhesives and other polymers and enable rational design of a new generation of biocompatible materials.

  8. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  9. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    SciTech Connect

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  10. In vitro reactivation potency of novel symmetrical bis-pyridinium oximes for electric eel acetylcholinesterase inhibited by nerve agent sarin.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Kaushik, M P

    2011-12-01

    This communication describes synthesis and in vitro evaluation of a series of novel bis-pyridinium oximes connected by bis-methoxymethyl benzene, 1,4-bis-methoxymethyl (cis)-but-2-ene and 1,4-bis-methoxymethyl but-2-yne linkers as reactivators of sarin inhibited acetylcholinesterase (AChE). The reactivation data of synthesized oximes were compared with those of 2-PAM and obidoxime. The efficacy of oximes such as 1,4-dimethoxy cis-but-2-ene bis-[4,4'-(hydroxyiminomethyl)-pyridinium] dichloride (3g), 1,4-dimethoxy benzene bis-[3,3'-(hydroxyimino-methyl) pyridinium] dichloride (3b) and 1,3-dimethoxy benzene bis-[3,3'-(hydroxy-iminomethyl) pyridinium] dichloride (3e) were found to be more than that of obidoxime in reactivating sarin inhibited AChE. The oxime 3g was able to reactivate 25% of AChE activity in comparison to 20% and 5% reactivation exhibited by 2-PAM and obidoxime respectively at a concentration of 10(-4) M. The pKa of the oximes were determined and correlated with the reactivation potential.

  11. A fluorometric assay for acetylcholinesterase activity and inhibitor detection based on DNA-templated copper/silver nanoclusters.

    PubMed

    Li, Wenhua; Li, Wang; Hu, Yufang; Xia, Yalin; Shen, Qinpeng; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-09-15

    A novel label-free, rapid, cost-effective, and highly sensitive fluorometric sensor has been constructed for the detection of acetylcholinesterase (AChE) activity and its inhibitor based on the fluorescence quenching of DNA-templated copper/silver nanoclusters (DNA-Cu/AgNCs). In this assay, AChE catalyzes the hydrolysis of acetylthiocholine (ATCh) to form thiocholine which induces fluorescence quenching of DNA-Cu/AgNCs. The AChE activity could be detected as low as 0.05mU/mL and with a linear range from 0.05 to 2.0mU/mL. This assay offers a very convenient "mix and detect" approach for AChE activity. On the other hand, tacrine and organophosphorus pesticides (OPPs) were employed to inhibit the hydrolysis of ATCh, which could eliminate the fluorescence quenching of DNA-Cu/AgNCs. The IC50 of tacrine and methamidophos were estimated to be 16.9nM and 0.075mg/L, respectively. This method was also used to detect spiked OPPs in agricultural products successfully. The present work may expand the use of DNA-Cu/AgNCs to the field of enzyme sensors.

  12. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities.

    PubMed

    Luo, Wen; Chen, Ying; Wang, Ting; Hong, Chen; Chang, Li-Ping; Chang, Cong-Cong; Yang, Ya-Cheng; Xie, Song-Qiang; Wang, Chao-Jie

    2016-02-15

    A novel series of 7-aminoalkyl-substituted flavonoid derivatives 5a-5r were designed, synthesized and evaluated as potential cholinesterase inhibitors. The results showed that most of the synthesized compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities at the micromolar range. Compound 2-(naphthalen-1-yl)-7-(8-(pyrrolidin-1-yl)octyloxy)-4H-chromen-4-one (5q) showed the best inhibitory activity (IC50, 0.64μM for AChE and 0.42μM for BChE) which were better than our previously reported compounds and the commercially available cholinergic agent Rivastigmine. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 5q with AChE and BChE. Furthermore, molecular modeling study showed that 5q targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds (5a-5r) did not affect PC12 and HepG2 cell viability at the concentration of 10μM. Consequently, these flavonoid derivatives should be further investigated as multipotent agents for the treatment of Alzheimer's disease.

  13. A comparative evaluation of biological activities and bioactive compounds of the seagrasses Zostera marina and Zostera noltei from southern Portugal.

    PubMed

    Custódio, Luísa; Laukaityte, Simona; Engelen, Aschwin H; Rodrigues, Maria João; Pereira, Hugo; Vizetto-Duarte, Catarina; Barreira, Luísa; Rodríguez, Hortensia; Alberício, Fernando; Varela, João

    2016-01-01

    This work assessed the antioxidant potential, acetylcholinesterase (AChE) inhibition and the in vitro cytotoxic activity of extracts of the seagrasses Zostera marina and Zostera noltei collected from southern Portugal. The total phenolic contents (TPCs), the rosmarinic acid (RA) concentration (HPLC/DAD) and the fatty acid (FA) profile (GC/MS) are also described. Z. marina had the highest TPC, radical scavenging activity against DPPH radicals and copper chelating activity. Z. noltei had metal chelation capacity to copper and iron ions. None of the species was able to inhibit AChE. Both seagrasses had high levels of polyunsaturated FAs. Z. marina significantly and selectively reduced the viability of tumorous neuronal cells. Z. noltei was highly toxic for the three cell lines tested and was selective against hepatocarcinoma cells at the concentration of 100 μg/mL. RA was the main compound identified in Z. marina, but not in Z. noltei.

  14. Betulin inhibits lung carcinoma proliferation through activation of AMPK signaling.

    PubMed

    Li, Xian-Dong; Zhang, Yi-Jie; Han, Ji-Chang

    2014-11-01

    Betulin (lup-20(29)-ene-3β, 28-diol) is an abundant, naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30% of the dry weight of the extractive. In the present study, we revealed its antiproliferative effects and mechanisms using two lung carcinoma cells (A549 and NCI-292). By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) incorporation assays, we found that betulin could efficiently inhibit cell growth and proliferation. Besides, several key genes of cell-cycle regulators were also affected by betulin treatment. At the molecular level, our results demonstrated that treatment with betulin was also associated with activation of AMP kinase and inhibition of mTOR/p70S6K/pS6 signaling in these cells. In agreement, inhibition of AMPK signaling largely reversed the antiproliferative roles of betulin. Taken together, these data provide evidence for a mechanism that may contribute to the antineoplastic effects of betulin and justify further work to explore its potential roles in lung cancer prevention and treatment.

  15. TES inhibits colorectal cancer progression through activation of p38

    PubMed Central

    Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang

    2016-01-01

    The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy. PMID:27323777

  16. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking

    PubMed Central

    Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    Alzheimer’s disease (AD) is a chronic neurodegenerative disease which leads to the gradual loss of neuronal cells. Several hypotheses for AD exists (e.g., cholinergic, amyloid, tau hypotheses, etc.). As per the cholinergic hypothesis, the deficiency of choline is responsible for AD; therefore, the inhibition of AChE is a lucrative therapeutic strategy for the treatment of AD. Acetylcholinesterase (AChE) is an enzyme that catalyzes the breakdown of the neurotransmitter acetylcholine that is essential for cognition and memory. A large non-redundant data set of 2,570 compounds with reported IC50 values against AChE was obtained from ChEMBL and employed in quantitative structure-activity relationship (QSAR) study so as to gain insights on their origin of bioactivity. AChE inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 different data splits using random forest. Generated models afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{CV }}^{2}$\\end{document}QCV2 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{Ext}}^{2}$\\end{document}QExt2 values in ranges of 0.66–0.93, 0.55–0.79 and 0.56–0.81 for the training set, 10-fold cross-validated set and external set, respectively. The best model built using the substructure count was selected according to the OECD guidelines and it afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage

  17. Behavioral inspiratory inhibition: inactivated and activated respiratory cells.

    PubMed

    Orem, J

    1989-11-01

    = 0.27 +/- 0.03, mean +/- SE). 4) The latency of their activation in response to the task averaged 58 +/- 2.7 (SE) ms and was significantly shorter than the latency of inactivation of the high eta 2-valued inspiratory cells. 5) This activation was intense and prolonged. 6. It is hypothesized that the activated cells integrate nonrespiratory and respiratory inputs and act to inhibit other respiratory cells during the behavioral inhibition of inspiration.

  18. Effect of nicotinic acetylcholine receptor alpha 1 (nAChRα1) peptides on rabies virus infection in neuronal cells.

    PubMed

    Sajjanar, Basavaraj; Saxena, Shikha; Bisht, Deepika; Singh, Arvind Kumar; Manjunatha Reddy, G B; Singh, Rajendra; Singh, R P; Kumar, Satish

    2016-06-01

    Rabies virus (RABV) is neurotropic and causes acute progressive encephalitis. Herein, we report the interaction of nAChRα1-subunit peptides with RABV and the effect of these peptides on RABV infection in cultured neuronal cells. Peptide sequences derived from torpedo, bovine, human and rats were synthesized and studied for their interactions with RABV using virus capture ELISA and peptide immunofluorescence. The results showed specific binding of the nAChRα1-subunit peptides to the RABV. In the virus adsorption assay, these peptides were found to inhibit the attachment of the RABV to the neuronal cells. The nAChRα1-subunit peptides inhibited the RABV infection and reduced viral gene expression in the cultured neuroblastoma (N2A) cells. Torpedo peptide sequence (T-32) had highest antiviral effect (IC50=14±3.01μM) compared to the other peptides studied. The results of the study indicated that nAChRα1-subunit peptides may act as receptor decoy molecules and inhibit the binding of virus to the native host cell receptors and hence may reduce viral infection.

  19. Anticholinesterase and Antityrosinase Activities of Ten Piper Species from Malaysia

    PubMed Central

    Salleh, Wan Mohd Nuzul Hakimi Wan; Hashim, Nur Athirah; Ahmad, Farediah; Heng Yen, Khong

    2014-01-01

    Purpose: The aim of this study was to investigate acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and antityrosinase activities of extracts from ten Piper species namely; P. caninum, P. lanatum, P. abbreviatum, P. aborescens, P. porphyrophyllum, P. erecticaule, P. ribesioides, P. miniatum, P. stylosum, and P. majusculum. Methods: Anticholinesterase and antityrosinase activities were evaluated against in vitro Ellman spectroscopy method and mushroom tyrosinase, respectively. Results: The EtOAc extract of P. erecticaule showed the highest AChE and BChE inhibitory with 22.9% and 70.9% inhibition, respectively. In antityrosinase activity, all extracts of P. porphyrophyllum showed the highest inhibitory effects against mushroom tyrosinase, compared to standard, kojic acid. Conclusion: This study showed that P. erecticaule and P. porphyrophyllum have potential AChE/BChE and tyrosinase inhibition activities. The respective extracts can be explored further for the development of novel lead as AChE/BChE and tyrosinase inhibitors in therapeutic management of Alzheimer’s disease. PMID:25671185

  20. Acetylcholinesterase-Inhibition and Antibacterial Activity of Mondia whitei Adventitious Roots and Ex vitro-Grown Somatic Embryogenic-Biomass

    PubMed Central

    Baskaran, Ponnusamy; Kumari, Aloka; Ncube, Bhekumthetho; Van Staden, Johannes

    2016-01-01

    Mondia whitei (Hook.f.) Skeels is an important endangered medicinal and commercial plant in South Africa. In vitro propagation systems are required for biomass production and bioactivity analysis to supplement wild resources/stocks. Adventitious roots from somatic embryogenic explants using suspension culture and ex vitro-grown plants produced via somatic embryogenesis were established using different plant growth regulator treatments. The adventitious root biomass and different parts of ex vitro-grown and mother plants were used to investigate the potential for acetylcholinesterase (AChE) and antibacterial activities. Adventitious roots derived from 2.5 μM indole-3-acetic acid (IAA) treatments and ex vitro-grown plants derived from meta-topolin riboside and IAA treatments gave the best AChE and antibacterial activities. The in vitro-established M. whitei and ex vitro biomass have comparable ability to function as inhibitors of acetylcholinesterase and antibacterial agents, and can be used as potent bioresources in traditional medicine. PMID:27752244

  1. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Gandía, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; López, M. G.; Martínez-Sierra, R.; Borges, R.; García, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by

  2. Caerulomycin A Suppresses Immunity by Inhibiting T Cell Activity

    PubMed Central

    Chauhan, Arun; Khatri, Neeraj; Vohra, Rakesh M.; Jolly, Ravinder S.; Agrewala, Javed N.

    2014-01-01

    Background Caerulomycin A (CaeA) is a known antifungal and antibiotic agent. Further, CaeA is reported to induce the expansion of regulatory T cell and prolongs the survival of skin allografts in mouse model of transplantation. In the current study, CaeA was purified and characterized from a novel species of actinomycetes, Actinoalloteichus spitiensis. The CaeA was identified for its novel immunosuppressive property by inhibiting in vitro and in vivo function of T cells. Methods Isolation, purification and characterization of CaeA were performed using High Performance Flash Chromatography (HPFC), NMR and mass spectrometry techniques. In vitro and in vivo T cell studies were conducted in mice using flowcytometry, ELISA and thymidine-[methyl-3H] incorporation. Results CaeA significantly suppressed T cell activation and IFN-γ secretion. Further, it inhibited the T cells function at G1 phase of cell cycle. No apoptosis was noticed by CaeA at a concentration responsible for inducing T cell retardation. Furthermore, the change in the function of B cells but not macrophages was observed. The CaeA as well exhibited substantial inhibitory activity in vivo. Conclusion This study describes for the first time novel in vitro and in vivo immunosuppressive function of CaeA on T cells and B cells. CaeA has enough potential to act as a future immunosuppressive drug. PMID:25286329

  3. Anticonvulsants Based on the α-Substituted Amide Group Pharmacophore Bind to and Inhibit Function of Neuronal Nicotinic Acetylcholine Receptors.

    PubMed

    Krivoshein, Arcadius V

    2016-03-16

    Although the antiepileptic properties of α-substituted lactams, acetamides, and cyclic imides have been known for over 60 years, the mechanism by which they act remains unclear. I report here that these compounds bind to the nicotinic acetylcholine receptor (nAChR) and inhibit its function. Using transient kinetic measurements with functionally active, nondesensitized receptors, I have discovered that (i) α-substituted lactams and cyclic imides are noncompetitive inhibitors of heteromeric subtypes (such as α4β2 and α3β4) of neuronal nAChRs and (ii) the binding affinity of these compounds toward the nAChR correlates with their potency in preventing maximal electroshock (MES)-induced convulsions in mice. Based on the hypothesis that α-substituted amide group is the essential pharmacophore of these drugs, I found and tested a simple compound, 2-phenylbutyramide. This compound indeed inhibits nAChR and shows good anticonvulsant activity in mice. Molecular docking simulations suggest that α-substituted lactams, acetamides, and cyclic imides bind to the same sites on the extracellular domain of the receptor. These new findings indicate that inhibition of brain nAChRs may play an important role in the action of these antiepileptic drugs, a role that has not been previously recognized.

  4. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    PubMed

    Klüver, Nils; Yang, Lixin; Busch, Wibke; Scheffler, Katja; Renner, Patrick; Strähle, Uwe; Scholz, Stefan

    2011-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe) mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  5. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas.

    PubMed

    Efsen, Eva; Saermark, Torben; Hansen, Alastair; Bruun, Eywin; Brynskov, Jørn

    2011-09-01

    effect on MMP activity. Increased functional MMP activity, notably MMP-3 and -9, is present in Crohn's fistulas and may be inhibited by ramiprilate, a widely available ACE inhibitor.

  6. Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity.

    PubMed

    Yokoyama, Yuhei; Ohtaki, Aguru; Jantan, Ibrahim; Yohda, Masafumi; Nakamoto, Hitoshi

    2015-03-01

    Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.

  7. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells

    PubMed Central

    Qian, Jie; Mummalaneni, Shobha K.; Alkahtani, Reem M.; Mahavadi, Sunila; Murthy, Karnam S.; Grider, John R.

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells. PMID:27846263

  8. Acetylcholinesterase Inhibitory Activity of Pigment Echinochrome A from Sea Urchin Scaphechinus mirabilis

    PubMed Central

    Lee, Sung Ryul; Pronto, Julius Ryan D.; Sarankhuu, Bolor-Erdene; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer’s disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors. PMID:24918454

  9. PLGA-PEG Nanoparticles Coated with Anti-CD45RO and Loaded with HDAC Plus Protease Inhibitors Activate Latent HIV and Inhibit Viral Spread

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Liang, Yong; Liu, Xinkuang; Zhou, Shuping; Liu, Liang; Zhang, Fujina; Xie, Chunmei; Cai, Shuyu; Wei, Jia; Zhu, Yongqiang; Hou, Wei

    2015-10-01

    Activating HIV-1 proviruses in latent reservoirs combined with inhibiting viral spread might be an effective anti-HIV therapeutic strategy. Active specific delivery of therapeutic drugs into cells harboring latent HIV, without the use of viral vectors, is a critical challenge to this objective. In this study, nanoparticles of poly(lactic-co-glycolic acid)-polyethylene glycol diblock copolymers conjugated with anti-CD45RO antibody and loaded with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and/or protease inhibitor nelfinavir (Nel) were tested for activity against latent virus in vitro. Nanoparticles loaded with SAHA, Nel, and SAHA + Nel were characterized in terms of size, surface morphology, zeta potential, entrapment efficiency, drug release, and toxicity to ACH-2 cells. We show that SAHA- and SAHA + Nel-loaded nanoparticles can target latently infected CD4+ T-cells and stimulate virus production. Moreover, nanoparticles loaded with SAHA + NEL were capable of both activating latent virus and inhibiting viral spread. Taken together, these data demonstrate the potential of this novel reagent for targeting and eliminating latent HIV reservoirs.

  10. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil

    PubMed Central

    Hassan, Ramadan; Shaaban, Mona I.; Abdel Bar, Fatma M.; El-Mahdy, Areej M.; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1–V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  11. Biological Activity of sym-Triazines with Acetylcholine-like Substitutions as Multitarget Modulators of Alzheimer’s Disease

    PubMed Central

    2013-01-01

    The bioactivities of two novel compounds (TAE-1 and TAE-2) that contain a sym-triazine scaffold with acetylcholine-like substitutions are examined as promising candidate agents against Alzheimer’s disease. Inhibition of amyloid-β fibril formation in the presence of Aβ1–42, evaluated by Thioflavin T fluorescence, demonstrated comparable or improved activity to a previously reported pentapeptide-based fibrillogenesis inhibitor, iAβ5p. Destabilization of Aβ1–42 assemblies by TAE-1 and TAE-2 was confirmed by scanning electron microscopy imaging. sym-Triazine inhibition of acetylcholinesterase (AChE) activity was observed in cytosol extracted from differentiated human SH-SY5Y neuronal cells and also using human erythrocyte AChE. The sym-triazine derivatives were well tolerated by these cells and promoted beneficial effects on human neurons, upregulating expression of synaptophysin, a synaptic marker protein, and MAP2, a neuronal differentiation marker. PMID:23472585

  12. Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation.

    PubMed

    Li, Lei; Cao, Yu; Wu, Haitao; Ye, Xinchun; Zhu, Zhihui; Xing, Guanglin; Shen, Chengyong; Barik, Arnab; Zhang, Bin; Xie, Xiaoling; Zhi, Wenbo; Gan, Lin; Su, Huabo; Xiong, Wen-Cheng; Mei, Lin

    2016-12-07

    Neurotransmission is ensured by a high concentration of neurotransmitter receptors at the postsynaptic membrane. This is mediated by scaffold proteins that bridge the receptors with cytoskeleton. One such protein is rapsyn (receptor-associated protein at synapse), which is essential for acetylcholine receptor (AChR) clustering and NMJ (neuromuscular junction) formation. We show that the RING domain of rapsyn contains E3 ligase activity. Mutation of the RING domain that abolishes the enzyme activity inhibits rapsyn- as well as agrin-induced AChR clustering in heterologous and muscle cells. Further biological and genetic studies support a working model where rapsyn, a classic scaffold protein, serves as an E3 ligase to induce AChR clustering and NMJ formation, possibly by regulation of AChR neddylation. This study identifies a previously unappreciated enzymatic function of rapsyn and a role of neddylation in synapse formation, and reveals a potential target of therapeutic intervention for relevant neurological disorders.

  13. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  14. Activity and determinants of cholinesterases and paraoxonase-1 in blood of workers exposed to non-cholinesterase inhibiting pesticides.

    PubMed

    Lozano-Paniagua, David; Gómez-Martín, Antonio; Gil, Fernando; Parrón, Tesifón; Alarcón, Raquel; Requena, Mar; Lacasaña, Marina; Hernández, Antonio F

    2016-11-25

    Pesticide exposure has been associated with different adverse health effects which may be modulated to some extent by paraoxonase-1 (PON1) activity and genetic polymorphisms. This study assessed seasonal variations in PON1 activity (using paraoxon -POase-, phenylacetate -AREase-, diazoxon -DZOase- and dihydrocoumarin -DHCase- as substrates), erythrocyte acetylcholinesterase (AChE) and plasma cholinesterase (using butyrylthiocholine -BuChE- and benzoylcholine -BeChE- as substrates. The study population consisted of intensive agriculture workers regularly exposed to pesticides other than organophosphates and non-exposed controls from Almería (Southeastern Spain). The effect of common genetic polymorphisms of PON1 and BCHE on paraoxonase-1 and cholinesterase activities toward different substrates was also assessed. Linear mixed models were used to compare esterase activities in agricultural workers and control subjects over the two study periods (high and low exposure to pesticides). The significant decrease in AChE and increase in BuChE and BeChE activities observed in workers with respect to control subjects was attributed to pesticide exposure. Workers also had higher levels of AREase, DZOase and, to a lesser extent, of POase, but showed decreased DHCase activity. While PON1 Q192R and PON1 -108C/T gene polymorphisms were significantly associated with all PON1 activities, PON1 L55M showed a significant association with AREase, DZOase and DHCase. BCHE-K (Karlow variant) was significantly associated with lower BeChE activity (but not with BuChE) and BCHE-A (atypical variant) showed no significant association with any cholinesterase activity. These findings suggest that increased PON1, BuChE and BeChE activities in exposed workers might result from an adaptive response against pesticide exposure to compensate for adverse effects at the biochemical level. This response appears to be modulated by PON1 and BCHE gene polymorphisms.

  15. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition.

    PubMed

    Cho, Min Kyung; Jang, Young Pyo; Kim, Young Choong; Kim, Sang Geon

    2004-10-01

    Arctigenin, naturally occurring in Bardanae fructus, Saussurea medusa, Arctium lappa L., Torreya nucifera and Ipomea cairica, is a phenylpropanoid dibenzylbutyrolactone lignan with antioxidant and anti-inflammatory activities. Previously, we showed that arctigenin potently inhibited the induction of nitric oxide synthase (iNOS) by lipopolysaccharide (LPS), which involved suppression of NF-kappaB activation. In the present study, we examined the effects of arctigenin on mitogen-activated protein (MAP) kinase activation in Raw264.7 cells and MAP kinase kinase (MKK) activity. The effect of arctigenin on activator protein-1 (AP-1) activation was also studied in association with tumor necrosis factor-alpha (TNF-alpha) expression. Immunoblot analysis showed that arctigenin inhibited phosphorylation of MAP kinases ERK1/2, p38 kinase and JNK and their activities in Raw264.7 cells treated with LPS. Arctigenin potently inhibited the activity of MKK1 in vitro with the IC(50) value of 1 nM. Gel shift and reporter gene analyses revealed that arctigenin inhibited LPS-inducible AP-1 binding to the AP-1 consensus oligonucleotide and AP-1-mediated reporter gene expression. In view of the potential role of AP-1 in the induction of TNF-alpha, we next examined the inhibitory effects of arctigenin on the expression of TNF-alpha. Arctigenin blocked TNF-alpha production and decreased the level of TNF-alpha mRNA in the cells exposed to LPS. These results showed that arctigenin inhibited activation of MAP kinases including ERK1/2, p38 kinase and JNK through the inhibition of MKK activities, leading to AP-1 inactivation, which might, at least in part, contribute to the inhibition of TNF-alpha production.

  16. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity

    PubMed Central

    Gholamhoseinian, A.; Moradi, M.N.; Sharifi-far, F.

    2009-01-01

    Acetylcholinesterase (AChE) is the main enzyme for the breakdown of acetylcholine. Nowadays, usage of the inhibitors of this enzyme is one of the most important types of treatment of mild to moderate neurodegenerative diseases such as Alzheimer’s disease. Herbal medicines can be a new source of inhibitors of this enzyme. In this study we examined around 100 different plants to evaluate their inhibitory properties for AChE enzyme. Plants were scientifically identified and their extracts were prepared by methanol percolation. Acetylcholinesterase activity was measured using a colorimetric method in the presence or absence of the extracts. Eserine was used as a positive control. Methanol extracts of the Levisticum officinale, Bergeris integrima and Rheum ribes showed more than 50% AChE inhibitory activity. The inhibition kinetics were studied in the presence of the most effective extracts. L. officinale and B. integrima inhibited AChE activity in a non-competitive manner, while R. ribes competitively inhibitied the enzyme as revealed by double-reciprocal Linweaver-Burk plot analysis. Under controlled condition, Km and Vmax values of the enzyme were found to be 9.4 mM and 0.238 mM/min, respectively. However, in the presence of L. officinale, B. integrima, and R. ribes extracts, Vmax values were 0.192, 0.074 and 0.238 mM/min, respectively. Due to the competitive inhibition of the enzyme by R. ribes extract, the Km value of 21.2 mM was obtained. The concentration required for 50% enzyme inhibition (IC50 value) was 0.5, 0.9, and 0.95 mg/ml for the L. officinale, B. integrima and R. ribes extracts, respectively. The IC50 of the eserine was determined to be 0.8 mg/ml. PMID:21589805

  17. Highly-substrate active isoenzyme acetylcholinesterase-II, in rosy eye mutant of Aedes aegypti mosquito.

    PubMed

    Mourya, D T; Gokhale, M D; Barde, P V; Deobagkar, D N

    2001-08-01

    Insecticide bioassays were carried out on larvae and adults of rosy eye mutant and wildtype strains of A. aegypti. Both the strains were equally susceptible to DDT, malathion and deltamethrin. Biochemical assays showed an increase in acetylcholinesterase enzyme (AChE) activity in all the stages of mutant strain with both the substrates i.e. acetylthiocholine iodide and S-butyrylthiocholine iodide. However, there was no difference in the percent inhibition of enzyme activity with propoxur in these two strains. Polyacrylamide gel electrophoresis performed in native conditions on the homogenates of adults of rosy eye mosquitoes showed that AChE-II allele was highly active with the substrate acetylthiocholine iodide as compared to wildtype strain. Frequency of the highly active AChE-II allele in the mutant strain was about 68%, whereas it was about 5% in the wildtype strain.

  18. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  19. Homocysteine injures vascular endothelial cells by inhibiting mitochondrial activity

    PubMed Central

    Yang, Fengyong; Qi, Xiujing; Gao, Zheng; Yang, Xingju; Zheng, Xingfeng; Duan, Chonghao; Zheng, Jian

    2016-01-01

    The aim of the present study was to investigate the role of homocysteine (Hcy) in the pathogenesis of pulmonary embolism (PE) and the associated molecular mechanisms in human umbilical vein endothelial cells (HUVECs). Hcy contents were detected with high-performance liquid chromatography. Apoptosis was detected by flow cytometry using Annexin-V staining. Cytochrome c oxidase (COX) activity was assessed with an enzyme activity assay, and the expression levels of COX 17 were determined by western blot analysis. Intracellular reactive oxygen species levels were measured using a microplate reader with a fluorescence probe. The results demonstrated that, compared with the control group, the serum Hcy levels were significantly elevated in the PE group, suggesting that Hcy may be an indicator for PE. Following treatment with Hcy, the apoptosis rate was markedly elevated in HUVECs. Moreover, Hcy decreased COX activity and downregulated the expression of COX 17 in HUVECs. Furthermore, Hcy increased the ROS levels in these endothelial cells. However, all the above-mentioned physiopathological changes induced by Hcy in HUVECs could be restored by folic acid. In conclusion, the results of the present study demonstrated that Hcy inhibited COX activity, downregulated COX 17 expression, increased intracellular ROS levels and enhanced apoptosis in endothelial cells. PMID:27698720

  20. Berberine inhibits PTP1B activity and mimics insulin action.

    PubMed

    Chen, Chunhua; Zhang, Yuebo; Huang, Cheng

    2010-07-02

    Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.

  1. Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms

    PubMed Central

    Zuo, Wanhong; Xiao, Cheng; Gao, Ming; Hopf, F. Woodward; Krnjević, Krešimir; McIntosh, J. Michael; Fu, Rao; Wu, Jie; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    There is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli. Several neurotransmitter systems are implicated in nicotine’s actions, but very little is known about how nicotinic acetylcholine receptors (nAChRs) regulate LHb activity. Here we report in brain slices that activation of nAChRs depolarizes LHb cells and robustly increases firing, and also potentiates glutamate release in LHb. These effects were blocked by selective antagonists of α6-containing (α6*) nAChRs, and were absent in α6*-nAChR knockout mice. In addition, nicotine activates GABAergic inputs to LHb via α4β2-nAChRs, at lower concentrations but with more rapid desensitization relative to α6*-nAChRs. These results demonstrate the existence of diverse functional nAChR subtypes at presynaptic and postsynaptic sites in LHb, through which nicotine could facilitate or inhibit LHb neuronal activity and thus contribute to nicotine aversion or reward. PMID:27596561

  2. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  3. MIF family members cooperatively inhibit p53 expression and activity.

    PubMed

    Brock, Stephanie E; Rendon, Beatriz E; Xin, Dan; Yaddanapudi, Kavitha; Mitchell, Robert A

    2014-01-01

    The tumor suppressor p53 is induced by genotoxic stress in both normal and transformed cells and serves to transcriptionally coordinate cell cycle checkpoint control and programmed cell death responses. Macrophage migration inhibitory factor (MIF) is an autocrine and paracrine acting cytokine/growth factor that promotes lung adenocarcinoma cell motility, anchorage-independence and neo-angiogenic potential. Several recent studies indicate that the only known homolog of MIF, D-dopachrome tautomerase (D-DT - also referred to as MIF-2), has functionally redundant activities with MIF and cooperatively promotes MIF-dependent pro-tumorigenic phenotypes. We now report that MIF and D-DT synergistically inhibit steady state p53 phosphorylation, stabilization and transcriptional activity in human lung adenocarcinoma cell lines. The combined loss of MIF and D-DT by siRNA leads to dramatically reduced cell cycle progression, anchorage independence, focus formation and increased programmed cell death when compared to individual loss of MIF or D-DT. Importantly, p53 mutant and p53 null lung adenocarcinoma cell lines were only nominally rescued from the cell growth effects of MIF/D-DT combined deficiency suggesting only a minor role for p53 in these transformed cell growth phenotypes. Finally, increased p53 activation was found to be independent of aberrantly activated AMP-activated protein kinase (AMPK) that occurs in response to MIF/D-DT-deficiency but is dependent on reactive oxygen species (ROS) that mediate aberrant AMPK activation in these cells. Combined, these findings suggest that both p53 wildtype and mutant human lung adenocarcinoma tumors rely on MIF family members for maximal cell growth and survival.

  4. Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats.

    PubMed

    Chang, Cheng-Yi; Kao, Tsung-Kuei; Chen, Wen-Ying; Ou, Yen-Chuan; Li, Jian-Ri; Liao, Su-Lan; Raung, Shue-Ling; Chen, Chun-Jung

    2015-07-31

    Experimental studies have demonstrated the beneficial effects of tetramethylpyrazine (TMP) against ischemic stroke and highlighted its crucial role in anti-inflammatory activity. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its anti-inflammatory action against ischemic brain injury. We report a global inhibitory effect of TMP on inflammatory cell intracerebral activation and infiltration in a rat model of permanent cerebral ischemia. The results of immunohistochemistry, enzymatic assay, flow cytometric analysis, and cytological analysis revealed that intraperitoneal TMP administration reduced neuronal loss, macrophage/microglia activation, brain parenchyma infiltrative neutrophils, and circulating neutrophils after cerebral ischemia. Biochemical studies of cultured neutrophils further demonstrated that TMP attenuated neutrophil migration, endothelium adhesion, spontaneous nitric oxide (NO) production, and stimuli-activated NO production after cerebral ischemia. In parallel with these anti-neutrophil phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules, including plasma high-mobility group box-1 protein (HMGB1) and neutrophil toll-like receptor-4 (TLR4), Akt, extracellular signal-regulated kinase (ERK), and inducible nitric oxide synthase. Another finding in this study was that the anti-neutrophil effect of TMP was accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in neutrophils after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous anti-inflammatory defense capacity and the attenuation of pro-inflammatory responses via targeting of circulating neutrophils by elevating Nrf2/HO-1 expression and inhibiting HMGB1/TLR4, Akt, and ERK signaling might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.

  5. Structure-activity relationships and binding mode in the human acetylcholinesterase active site of pseudo-irreversible inhibitors related to xanthostigmine.

    PubMed

    Rizzo, Stefano; Cavalli, Andrea; Ceccarini, Luisa; Bartolini, Manuela; Belluti, Federica; Bisi, Alessandra; Andrisano, Vincenza; Recanatini, Maurizio; Rampa, Angela

    2009-04-01

    Structure-activity relationship studies on acetylcholinesterase (AChE) inhibitors were extended to newly synthesized compounds derived from the lead compound xantostigmine (1). The xanthone ring of compound 1 was replaced with several different scaffolds based on the benzopyran skeleton, linked to the tertiary amino nitrogen through an heptyloxy chain. These modifications resulted in 19 new compounds, most of them showing activity in the nanomolar-subnanomolar range. Docking and molecular dynamics simulations were carried out to both define a new computational protocol for the simulation of pseudo-irreversibile AChE covalent inhibitors, and to acquire a better understanding of the structure-activity relationships of the present series of compounds. The results of this computational work prompted us to to evaluate the ability of compounds 5 and 13 to inhibit acetylcholinesterase-induced Abeta aggregation.

  6. cAMP-dependent protein kinase inhibits α7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors

    PubMed Central

    Komal, Pragya; Estakhr, Jasem; Kamran, Melad; Renda, Anthony; Nashmi, Raad

    2015-01-01

    Phosphorylation of ion channels, including nicotinic acetylcholine receptors (nAChRs), by protein kinases plays a key role in the modification of synaptic transmission and neuronal excitability. α7 nAChRs are the second most prevalent nAChR subtype in the CNS following α4β2. Serine 365 in the M3–M4 cytoplasmic loop of the α7 nAChR is a phosphorylation site for protein kinase A (PKA). D1/D5 dopamine receptors signal through the adenylate cyclase–PKA pathway and play a key role in working memory and attention in the prefrontal cortex. Thus, we examined whether the dopaminergic system, mediated through PKA, functionally interacts with the α7-dependent cholinergic neurotransmission. In layer 1 interneurons of mouse prefrontal cortex, α7 nicotinic currents were decreased upon stimulation with 8-Br-cAMP, a PKA activator. In HEK 293T cells, dominant negative PKA abolished 8-Br-cAMP's effect of diminishing α7 nicotinic currents, while a constitutively active PKA catalytic subunit decreased α7 currents. In brain slices, the PKA inhibitor KT-5720 nullified 8-Br-cAMP's effect of attenuating α7 nicotinic responses, while applying a PKA catalytic subunit in the pipette solution decreased α7 currents. 8-Br-cAMP stimulation reduced surface expression of α7 nAChRs, but there was no change in single-channel conductance. The D1/D5 dopamine receptor agonist SKF 83822 similarly attenuated α7 nicotinic currents from layer 1 interneurons and this attenuation of nicotinic current was prevented by KT-5720. These results demonstrate that dopamine receptor-mediated activation of PKA negatively modulates nicotinic neurotransmission in prefrontal cortical interneurons, which may be a contributing mechanism of dopamine modulation of cognitive behaviours such as attention or working memory. PMID:25990637

  7. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  8. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  9. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons.

    PubMed

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABA A Rs). Although, the enhancing effects of ACh on GABA A Rs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABA A currents ( t GABA A ) and puff-evoked GABA A currents ( p GABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with p GABAA and t GABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals.

  10. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  11. Different enzymatic activities in carp (cyprinus carpio L.) as potential biomarkers of exposure to the pesticide methomyl.

    PubMed

    Hernández-Moreno, David; de la Casa-Resino, Irene; Maria Flores, José; González-Gómez, Manuel José; María Neila, Carlos; Soler, Francisco; Pérez-López, Marcos

    2014-09-29

    This study investigated the influence of the pesticide methomyl on different enzymatic activities in carp. The fish were exposed to a sub-lethal concentration (0.34 mg L-1) of methomyl for 15 days. On days 4 and 15, catalase (CAT) and glutathione-S-transferase (GST) activities were measured in the liver and gills. Acetylcholinesterase (AChE) activity in brain and muscle was also determined. Liver catalase activity slightly increased in exposed fish when compared to controls, but it was statistically significant only at the beginning of the experiment. No changes in CAT activity in the gills of exposed and control animals were observed (mean values were in the range 10.7-11.7 nmol min-1 per mg of protein). Liver GST activity was slightly inhibited in the exposed animals at the beginning of the study; however, it was significantly inhibited in the gills. Brain AChE activity was diminished throughout the experiment and significantly decreased after 96 h of exposure compared to controls (0.041 vs. 0.075 nmol min1 per mg of protein; p<0.001). Our findings suggest that CAT, GST, and AChE are reliable biomarkers of effect after exposure to methomyl.

  12. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    SciTech Connect

    Kobayashi, Haruo . E-mail: hk1664@iwate-u.ac.jp; Suzuki, Tadahiko; Sakamoto, Maki; Hashimoto, Wataru; Kashiwada, Keiko; Sato, Itaru; Akahori, Fumiaki; Satoh, Tetsuo

    2007-03-15

    Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 and 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.

  13. Cinnamon effectively inhibits the activity of leukemia stem cells.

    PubMed

    Guan, X; Su, M C; Zhao, R B; Ouyang, H M; Dong, X D; Hu, P; Pei, Q; Lu, J; Li, Z F; Zhang, C R; Yang, T-H

    2016-08-19

    Cinnamon is the main component of Sanyangxuedai, which is one of the effective traditional Chinese medicines for treating malignancies. Leukemia is a prevalent malignant disease that Sanyangxuedai has been used to treat. Although successful in several studies, there is a lack of solid evidence as to why Sanyangxuedai has an effect on leukemia, and little is known about the underlying mechanisms. In this study, the active ingredients of cinnamon were isolated, purified, and identified. The transwell transport pool formed with the Caco-2 cell model was used to filter the active ingredients of cinnamon by simulating the gastrointestinal barrier in vitro. Moreover, the cell morphology, cell cycle status, apoptosis status, and antigenic variation of the cell surface antigens were observed and measured in K562 cells after treatment with the active ingredients of cinnamon. Our results showed that 50-75 μM was a safe concentration of cinnamon extract for treatment of K562 cells for 72 h. The cinnamon extract caused growth inhibition of K562 cells. Cinnamon extract seemed to arrest the cells at the G1 stage and increased the apoptosis rate significantly. Interestingly, cinnamon extract treatment upregulated the expression of erythroid and myeloid differentiation antigens and downregulated that of the megakaryocytic differentiation antigens in a dose-dependent manner. Our findings indicate that cinnamon extract from Sanyangxuedai may be effective for treating leukemia.

  14. Inhibition of LRRK2 kinase activity stimulates macroautophagy☆

    PubMed Central

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; Abeti, Rosella; Soutar, Marc P.M.; Plun-Favreau, Helene; Giunti, Paola; Tooze, Sharon A.; Bandopadhyay, Rina; Lewis, Patrick A.

    2013-01-01

    Leucine Rich Repeat Kinase 2 (LRRK2) is one of the most important genetic contributors to Parkinson's disease. LRRK2 has been implicated in a number of cellular processes, including macroautophagy. To test whether LRRK2 has a role in regulating autophagy, a specific inhibitor of the kinase activity of LRRK2 was applied to human neuroglioma cells and downstream readouts of autophagy examined. The resulting data demonstrate that inhibition of LRRK2 kinase activity stimulates macroautophagy in the absence of any alteration in the translational targets of mTORC1, suggesting that LRRK2 regulates autophagic vesicle formation independent of canonical mTORC1 signaling. This study represents the first pharmacological dissection of the role LRRK2 plays in the autophagy/lysosomal pathway, emphasizing the importance of this pathway as a marker for LRRK2 physiological function. Moreover it highlights the need to dissect autophagy and lysosomal activities in the context of LRRK2 related pathologies with the final aim of understanding their aetiology and identifying specific targets for disease modifying therapies in patients. PMID:23916833

  15. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  16. Notch Inhibits Yorkie Activity in Drosophila Wing Discs

    PubMed Central

    Djiane, Alexandre; Zaessinger, Sophie; Babaoğlan, A. Burcu; Bray, Sarah J.

    2014-01-01

    During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki), the Salvador/Warts/Hippo (SWH) pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd) is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg). We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs. PMID:25157415

  17. Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer's disease.

    PubMed

    Abe, Yasuyuki; Aoyagi, Atsushi; Hara, Takao; Abe, Kazumi; Yamazaki, Reina; Kumagae, Yoshihiro; Naruto, Shunji; Koyama, Kazuo; Marumoto, Shinji; Tago, Keiko; Toda, Narihiro; Takami, Kazuko; Yamada, Naho; Ori, Mayuko; Kogen, Hiroshi; Kaneko, Tsugio

    2003-09-01

    A dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT), RS-1259 (4-[1S)-methylamino-3-(4-nitrophenoxy)]propylphenyl N,N-dimethylcarbamate (fumaric acid)(1/2)salt), was newly synthesized. RS-1259 simultaneously inhibited AChE and SERT in the brain following an oral administration in mice and rats. Actual simultaneous elevation of extracellular levels of 5-HT and ACh in the rat hippocampus was confirmed by microdialysis. The compound was as effective as SERT inhibitors such as fluoxetine and fluvoxamine in a 5-hydroxytryptophan-enhancing test in mice. Spatial memory deficits in the two-platform task of a water maze in aged rats were ameliorated by RS-1259 as well as donepezil. Both RS-1259 and donepezil increased the awake episodes in the daytime electroencephalogram of rats. Although RS-1259 was weaker than donepezil in enhancing central cholinergic transmission, as observed by ACh elevation in the hippocampus and memory enhancement in aged rats, the efficacy of RS-1259 on the consciousness level, which reflects the whole activity in the brain, was almost the same as that of donepezil. These results suggest that both cholinergic and serotonergic systems are involved in maintaining brain arousal and that a dual inhibitor of AChE and SERT may be useful for the treatment of cognitive disorders associated with reduced brain activity such as in Alzheimer's disease.

  18. Nicotine Elicits Convulsive Seizures by Activating Amygdalar Neurons

    PubMed Central

    Iha, Higor A.; Kunisawa, Naofumi; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Ikeda, Akio; Ito, Hidefumi; Serikawa, Tadao; Ohno, Yukihiro

    2017-01-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of epileptic disorders; however, the mechanisms of nACh receptors in seizure generation remain unknown. Here, we performed behavioral and immunohistochemical studies in mice and rats to clarify the mechanisms underlying nicotine-induced seizures. Treatment of animals with nicotine (1–4 mg/kg, i.p.) produced motor excitement in a dose-dependent manner and elicited convulsive seizures at 3 and 4 mg/kg. The nicotine-induced seizures were abolished by a subtype non-selective nACh antagonist, mecamylamine (MEC). An α7 nACh antagonist, methyllycaconitine, also significantly inhibited nicotine-induced seizures whereas an α4β2 nACh antagonist, dihydro-β-erythroidine, affected only weakly. Topographical analysis of Fos protein expression, a biological marker of neural excitation, revealed that a convulsive dose (4 mg/kg) of nicotine region-specifically activated neurons in the piriform cortex, amygdala, medial habenula, paratenial thalamus, anterior hypothalamus and solitary nucleus among 48 brain regions examined, and this was also suppressed by MEC. In addition, electric lesioning of the amygdala, but not the piriform cortex, medial habenula and thalamus, specifically inhibited nicotine-induced seizures. Furthermore, microinjection of nicotine (100 and 300 μg/side) into the amygdala elicited convulsive seizures in a dose-related manner. The present results suggest that nicotine elicits convulsive seizures by activating amygdalar neurons mainly via α7 nACh receptors. PMID:28232801

  19. Effects of Sequential Applications of Bassa 50EC (Fenobucarb) and Vitashield 40EC (Chlorpyrifos ethyl) on Acetylcholinesterase Activity in Climbing Perch (Anabas testudineus) Cultured in Rice Fields in the Mekong Delta, Vietnam.

    PubMed

    Tam, Nguyen Thanh; Berg, Håkan; Laureus, Jenny; Cong, Nguyen Van; Tedengren, Michael

    2016-07-01

    This study assesses the effects of sequential applications of the insecticides Bassa 50EC (fenobucarb-F) and Vitashield 40EC (chlorpyrifos ethyl-CPF), sprayed at concentrations used by rice farmers in the Mekong Delta, on the brain acetylcholinesterase (AChE) in climbing perch fingerlings. After spraying the pesticides on the rice fields, the water concentrations of both insecticides decreased below the detection levels within 3 days. The sequential applications caused significant inhibition on the brain AChE activity in the exposed fish. The inhibition by F was quicker, but less prolonged, than for CPF. The inhibition levels caused by the sequential applications were lower than those caused by only CPF and by a mixture of CPF and F. The results indicate that sequential applications of pesticides could have a negative impact on aquatic organisms and fish yields, with implication for the aquatic biodiversity, local people's livelihood and the aquaculture industry in the Mekong Delta.

  20. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo.

    PubMed

    Healy, Laura D; Puy, Cristina; Fernández, José A; Mitrugno, Annachiara; Keshari, Ravi S; Taku, Nyiawung A; Chu, Tiffany T; Xu, Xiao; Gruber, András; Lupu, Florea; Griffin, John H; McCarty, Owen J T

    2017-04-13

    Activated protein C (APC) is a multi-functional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a non-human primate model of E. coli-induced sepsis, pre-treatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.

  1. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  2. Fyn phosphorylates AMPK to inhibit AMPK activity and AMP-dependent activation of autophagy

    PubMed Central

    Yamada, Eijiro; Okada, Shuichi; Bastie, Claire C.; Vatish, Manu; Nakajima, Yasuyo; Shibusawa, Ryo; Ozawa, Atsushi; Pessin, Jeffrey E.; Yamada, Masanobu

    2016-01-01

    We previously demonstrated that proto-oncogene Fyn decreased energy expenditure and increased metabolic phenotypes. Also Fyn decreased autophagy-mediated muscle mass by directly inhibiting LKB1 and stimulating STAT3 activities, respectively. AMPK, a downstream target of LKB1, was recently identified as a key molecule controlling autophagy. Here we identified that Fyn phosphorylates the α subunit of AMPK on Y436 and inhibits AMPK enzymatic activity without altering the assembly state of the AMPK heterotrimeric complex. As pro-inflammatory mediators are reported modulators of the autophagy processes, treatment with the pro-inflammatory cytokine TNFα resulted in 1) increased Fyn activity 2) stimulated Fyn-dependent AMPKα tyrosine phosphorylation and 3) decreased AICAR-dependent AMPK activation. Importantly, TNFα induced inhibition of autophagy was not observed when AMPKα was mutated on Y436. 4) These data demonstrate that Fyn plays an important role in relaying the effects of TNFα on autophagy and apoptosis via phosphorylation and inhibition of AMPK. PMID:27626315

  3. Nitric oxide released from activated platelets inhibits platelet recruitment.

    PubMed Central

    Freedman, J E; Loscalzo, J; Barnard, M R; Alpert, C; Keaney, J F; Michelson, A D

    1997-01-01

    Vessel injury and thrombus formation are the cause of most ischemic coronary syndromes and, in this setting, activated platelets stimulate platelet recruitment to the growing thrombus. Recently, a constitutive nitric oxide synthase (NOS) has been identified in human platelets. To further define the capacity of platelets to produce nitric oxide (NO), as well as to study the role of this NO in platelet recruitment, we adapted a NO-selective microelectrode for use in a standard platelet aggregometer, thereby permitting simultaneous measurement of platelet aggregation and NO production. Treatment of platelets with the NO synthase inhibitor -NG-nitroarginine methyl ester (L-NAME), reduced NO production by 92+/-8% in response to 5 microM ADP compared to control but increased aggregation by only 15+/-2%. In contrast, L-NAME had a more pronounced effect on platelet recruitment as evidenced by a 35+/-5% increase in the extent of aggregation, a 33+/-3% decrease in cyclic GMP content, and a 31+/-5% increase in serotonin release from a second recruitable population of platelets added to stimulated platelets at the peak of NO production. To study platelet recruitment accurately, we developed an assay that monitors two platelet populations simultaneously. Nonbiotinylated platelets were incubated with L-NAME or vehicle and activated with ADP. At peak NO production, biotinylated platelets were added. As measured by three-color flow cytometry, there was a 56+/-11% increase in the number of P selectin- positive platelets in the nonbiotinylated population treated with L-NAME as compared to control. When biotinylated platelets were added to the L-NAME-treated nonbiotinylated population, the number of P selectin positive biotinylated plate-lets increased by 180+/-32% as compared to biotinylated platelets added to the control. In summary, stimulated platelets produce NO that modestly inhibits platelet activation but markedly inhibits additional platelet recruitment. These data suggest

  4. Nicotine/Cigarette-smoke Promotes Metastasis of Pancreatic Cancer Through α7nAChR-mediated MUC4 Up-regulation

    PubMed Central

    Momi, Navneet; Ponnusamy, Moorthy P.; Kaur, Sukhwinder; Rachagani, Satyanarayana; Kunigal, Sateesh S; Chellappan, Srikumar; Ouellette, Michel M; Batra, Surinder K

    2012-01-01

    Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well-established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared to the normal pancreas and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette-smoke-extract (CSE) and nicotine, which is the major component of CS, significantly up-regulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. Additionally, we demonstrated that nicotine-mediated MUC4 up-regulation promotes the PC cell migration through the activation of the downstream effectors such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in-vivo studies demonstrated a dramatic increase in the mean pancreatic tumor weight [low-dose (100 mg/m3 TSP), p=0.014; high-dose (247 mg/m3 TSP), p=0.02] and significant tumor metastasis to various distant organs in the CS-exposed-mice, orthotopically implanted with luciferase-transfected PC cells, as compared to the sham-controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine [low-dose, 155.88±35.96 ng/ml; high-dose, 216.25±29.95 ng/ml] and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings revealed for the first time that CS up

  5. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    PubMed Central

    Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y.

    2015-01-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  6. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    PubMed

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  7. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin

    PubMed Central

    Kumar, Suresh

    2015-01-01

    Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480

  8. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation.

    PubMed

    Harder, Markus J; Kuhn, Nadine; Schrezenmeier, Hubert; Höchsmann, Britta; von Zabern, Inge; Weinstock, Christof; Simmet, Thomas; Ricklin, Daniel; Lambris, John D; Skerra, Arne; Anliker, Markus; Schmidt, Christoph Q

    2017-02-23

    Eculizumab inhibits the terminal, lytic pathway of complement by blocking the activation of the complement protein C5 and shows remarkable clinical benefits in certain complement-mediated diseases. However, several reports suggest that activation of C5 is not always completely suppressed in patients even under excess of eculizumab over C5, indicating that residual C5 activity may derogate the drug's therapeutic benefit under certain conditions. By using eculizumab and the tick-derived C5 inhibitor coversin, we determined conditions ex vivo in which C5 inhibition is incomplete. The degree of such residual lytic activity depended on the strength of the complement activator and the resulting surface density of the complement activation product C3b, which autoamplifies via the alternative pathway (AP) amplification loop. We show that at high C3b densities required for binding and activation of C5, both inhibitors reduce but do not abolish this interaction. The decrease of C5 binding to C3b clusters in the presence of C5 inhibitors correlated with the levels of residual hemolysis. However, by employing different C5 inhibitors simultaneously, residual hemolytic activity could be abolished. The importance of AP-produced C3b clusters for C5 activation in the presence of eculizumab was corroborated by the finding that residual hemolysis after forceful activation of the classical pathway could be reduced by blocking the AP. By providing insights into C5 activation and inhibition, our study delivers the rationale for the clinically observed phenomenon of residual terminal pathway activity under eculizumab treatment with important implications for anti-C5 therapy in general.

  9. Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation.

    PubMed

    Carletti, Eugénie; Colletier, Jacques-Philippe; Dupeux, Florine; Trovaslet, Marie; Masson, Patrick; Nachon, Florian

    2010-05-27

    Tabun is a warfare agent that inhibits human acetylcholinesterase (hAChE) by rapid phosphylation of the catalytic serine. A time-dependent reaction occurs on the tabun adduct, leading to an "aged" enzyme, resistant to oxime reactivators. The aging reaction may proceed via either dealkylation or deamidation, depending on the stereochemistry of the phosphoramidyl adduct. We solved the X-ray structure of aged tabun-hAChE complexed with fasciculin II, and we show that aging proceeds through O-dealkylation, in agreement with the aging mechanism that we determined for tabun-inhibited human butyrylcholinesterase and mouse acetylcholinesterase. Noteworthy, aging and binding of fasciculin II lead to an improved thermostability, resulting from additional stabilizing interactions between the two subdomains that face each other across the active site gorge. This first structure of hAChE inhibited by a nerve agent provides structural insight into the inhibition and aging mechanisms and a structural template for the design of molecules capable of reactivating aged hAChE.

  10. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders

    PubMed Central

    Mathew, Maya; Subramanian, Sarada

    2014-01-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease. PMID:24466247

  11. Design, synthesis and evaluation of rivastigmine and curcumin hybrids as site-activated multitarget-directed ligands for Alzheimer's disease therapy.

    PubMed

    Li, Yujie; Peng, Peng; Tang, Li; Hu, Yunzhen; Hu, Yongzhou; Sheng, Rong

    2014-09-01

    A series of novel 2-methoxy-phenyl dimethyl-carbamate derivatives were designed, synthesized and evaluated as site-activated MTDLs based on rivastigmine and curcumin. Most of them exhibited good to excellent AChE and BuChE inhibitory activities with sub-micromolar IC50 values. Among all the compounds, 6a demonstrated the most potent AChE inhibition with IC50 value of 0.097μM, which is about 20-fold than that of rivastigmine. In addition, the three selected compounds 5a, 6a and 6e demonstrated inhibitory activity against Aβ self-aggregation similar to cucurmin in TEM assay, which is obviously different from the weak activity of rivastigmine. Moreover, the hydrolysate of 6a (compound 7) also showed potent ABTS(+) scavenging and moderate copper ion chelating activity in vitro.

  12. Blocking M2 muscarinic receptor signaling inhibits tumor growth and reverses epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC).

    PubMed

    Zhao, Qingnan; Gu, Xiajing; Zhang, Chun; Lu, Qin; Chen, Hongzhuan; Xu, Lu

    2015-01-01

    Lung cancers express non-neuronal, cholinergic autoparacrine loop, which facilitates tumor growth. Interruption of M3 muscarinic cholinergic signaling has been reported to inhibit small cell lung cancer (SCLC) growth. The purpose of this study is to investigate if blocking autoparacrine muscarinic cholinergic signaling could inhibit non-small cell lung cancer (NSCLC) growth and possible underlying mechanisms. Our results showed that PC9 and A549 cells expressed all 5 subtypes of muscarinic receptor (mAChR) and blocking M2 mAChR (M2R) signaling using selective antagonist methoctramine or short hairpin RNA (shRNA) inhibited tumor cell proliferation in vitro and in vivo. Consistent with AChR agonists stimulating p44/42 MAPK (Erk1/2) and Akt phosphorylation, blocking M2R signaling decreased MAPK and Akt phosphorylation, indicating that non-neuronal ACh functions as an autoparacrine growth factor signaling in part through activation of M2R and downstream MAPK and Akt pathways. Importantly, further studies revealed that blocking M2R signaling also reversed epithelial-mesenchymal transition (EMT) in vitro and in vivo, indicating that non-neuronal ACh promotes EMT partially through activation of M2R. These findings demonstrate that M2R plays a role in the growth and progression of NSCLC and suggest M2R antagonists may be an efficacious adjuvant therapy for NSCLC.

  13. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    PubMed

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.

  14. Activation and Inhibition of TMEM16A Calcium-Activated Chloride Channels

    PubMed Central

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1. PMID:24489780

  15. Central respiratory effects on motor nerve activities after organophosphate exposure in a working heart brainstem preparation of the rat.

    PubMed

    Klein-Rodewald, Tanja; Seeger, Thomas; Dutschmann, Mathias; Worek, Franz; Mörschel, Michael

    2011-09-25

    The impact of organophosphorus compound (OP) intoxication on the activity of central respiratory circuitry, causing acetylcholinesterase (AChE) inhibition and accumulation of acetylcholine in the respiratory brainstem circuits, is not understood. We investigated the central effect of the OP Crotylsarin (CRS) on respiratory network activity using the working heart brainstem preparation, which specifically allows for the analysis of central drug effects without changes in brainstem oxygenation possibly caused by drug effects on peripheral cardio-respiratory activity. Respiratory network activity was determined from phrenic and hypoglossal or vagal nerve activities (PNA, HNA, VNA). To investigate combined central and peripheral CRS effects hypo-perfusion was used mimicking additional peripheral cardiovascular collapse. Systemic CRS application induced a brief central apnea and complete AChE-inhibition in the brainstem. Subsequently, respiration was characterised by highly significant reduced PNA minute activity, while HNA showed expiratory related extra bursting indicative for activation of un-specified oro-pharyngeal behaviour. During hypo-perfusion CRS induced significantly prolonged apnoea. In all experiments respiratory activity fully recovered after 1h. We conclude that CRS mediated AChE inhibition causes only transient central breathing disturbance. Apparently intrinsic brainstem mechanisms can compensate for cholinergic over activation. Nevertheless, combination of hypo-perfusion and CRS exposure evoke the characteristic breathing arrests associated with OP poisoning.

  16. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  17. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity.

    PubMed

    Topal, Ahmet; Alak, Gonca; Ozkaraca, Mustafa; Yeltekin, Aslı Cilingir; Comaklı, Selim; Acıl, Gurdal; Kokturk, Mine; Atamanalp, Muhammed

    2017-05-01

    The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity.

  18. Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes.

    PubMed

    Grønlien, Jens Halvard; Håkerud, Monika; Ween, Hilde; Thorin-Hagene, Kirsten; Briggs, Clark A; Gopalakrishnan, Murali; Malysz, John

    2007-09-01

    Selective modulation of alpha7 nicotinic acetylcholine receptors (nAChRs) is thought to regulate processes impaired in schizophrenia, Alzheimer's disease, and other dementias. One approach to target alpha7 nAChRs is by positive allosteric modulation. Structurally diverse compounds, including PNU-120596, 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS), and 5-hydroxyindole (5-HI) have been identified as positive allosteric modulators (PAMs), but their receptor interactions and pharmacological profiles remain to be fully elucidated. In this study, we investigated interactions of these compounds at human alpha7 nAChRs, expressed in Xenopus laevis oocytes, along with genistein, a tyrosine kinase inhibitor. Genistein was found to function as a PAM. Two types of PAM profiles were observed. 5-HI and genistein predominantly affected the apparent peak current (type I) whereas PNU-120596 and TQS increased the apparent peak current and evoked a distinct weakly decaying current (type II). Concentration-responses to agonists [ACh, 3-[(3E)-3-[(2,4-dimethoxyphenyl)methylidene]-5,6-dihydro-4H-pyridin-2-yl]pyridine dihydrochloride (GTS-21), and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)] were potentiated by both types, although type II PAMs had greater effects. When applied after alpha7 nAChRs were desensitized, type II, but not type I, PAMs could reactivate alpha7 currents. Both types of PAMs also increased the ACh-evoked alpha7 window currents, with type II PAMs generally showing larger potentiation. None of the PAMs tested increased nicotine-evoked Ca(2+) transients in human embryonic kidney 293 cells expressing human alpha4beta2 or alpha3beta4 nAChRs, although some inhibition was noted for 5-HI, genistein, and TQS. In summary, our studies reveal two distinct alpha7 PAM profiles, which could offer unique opportunities for modulating alpha7 nAChRs in vivo and in the development of novel

  19. A combined molecular docking and charge density analysis is a new approach for medicinal research to understand drug-receptor interaction: curcumin-AChE model.

    PubMed

    Renuga Parameswari, A; Rajalakshmi, G; Kumaradhas, P

    2015-01-05

    In the present study, a molecular docking analysis has been performed on diketone form of curcumin molecule with acetylcholinesterase (AChE). The calculated lowest docked energy of curcumin molecule in the active site of AChE is -11.21 kcal/mol; this high negative value indicates that the molecule exhibits large binding affinity towards AChE. When the curcumin molecule present in the active site of AChE, subsequently, its conformation has altered significantly and the molecule adopts a U-shape geometry as it is linear in gas phase (before entering into the active site). This conformational transition facilitates curcumin to form strong interaction with Phe330 of acyl-binding pocket and the choline binding site with indole ring of Trp84 and Asp72. The gas phase and the active site analysis of curcumin allows to understand the conformational geometry, nature of molecular flexibility, charge density redistribution and the variation of electrostatic properties of curcumin in the active site. To obtain the gas phase structure, the curcumin molecule was optimized using Hartree-Fock and density functional methods (B3LYP) with the basis set 6-311G(∗∗). A charge density analysis on both gas phase as well as the molecule lifted from the active site was carried out using Bader's theory of atoms in molecules (AIM). The difference in molecular electrostatic potential between the two forms of curcumin displays the difference in charge distribution. The large dipole moment of curcumin (7.54 D) in the active site reflects the charge redistribution as it is much less in the gas phase (4.34 D).

  20. Prepulse inhibition modulation by contextual conditioning of dopaminergic activity.

    PubMed

    Mena, Auxiliadora; De la Casa, Luis G

    2013-09-01

    When a neutral stimulus is repeatedly paired with a drug, an association is established between them that can induce two different responses: either an opponent response that counteracts the effect of the drug, or a response that is similar to that induced by the drug. In this paper, we focus on the analysis of the associations that can be established between the contextual cues and the administration of dopamine agonists or antagonists. Our hypothesis suggests that repeated administration of drugs that modulate dopaminergic activity in the presence of a specific context leads to the establishment of an association that subsequently results in a conditioned response to the context that is similar to that induced by the drug. To test this hypothesis, we conducted two experiments that revealed that contextual cues acquired the property to modulate pre-pulse inhibition by prior pairings of such context with the dopamine antagonist haloperidol (Experiment 1), and with the dopamine agonist d-amphetamine (Experiment 2). The implications of these results are discussed both at a theoretical level, and attending to the possibilities that could involve the use of context cues for the therapeutic administration of dopaminergic drugs.

  1. Contribution of α4β2 nAChR in nicotine-induced intracellular calcium response and excitability of MSDB neurons.

    PubMed

    Wang, Jiangang; Wang, Yali; Wang, Yang; Wang, Ran; Zhang, Yunpeng; Zhang, Qian; Lu, Chengbiao

    2014-12-10

    The neurons of medial septal diagonal band of broca (MSDB) project to hippocampus and play an important role in MSDB-hippocampal synaptic transmission, plasticity and network oscillation. Nicotinic acetylcholine receptor (nAChR) subunits, α4β2 and α7 nAChRs, are expressed in MSDB neurons and permeable to calcium ions, which may modulate the function of MSDB neurons. The aims of this study are to determine the roles of selective nAChR activation on the calcium responses and membrane currents in MSDB neurons. Our results showed that nicotine increased calcium responses in the majority of MSDB neurons, pre-treatment of MSDB slices with a α4β2 nAChR antagonist, DhβE but not a α7 nAChR antagonist, MLA prevented nicotine-induced calcium responses. The whole cell patch clamp recordings showed that nicotine-induced inward current and acetylcholine (ACh) induced-firing activity can be largely reduced or prevented by DhβE in MSDB neurons. Surprisingly, post-treatment of α4β2 or α7 nAChR antagonists failed to block nicotine׳s role, they increased calcium responses instead. Application of calcium chelator EGTA reduced calcium responses in all neurons tested. These results suggest that there was a subtype specific modulation of nAChRs on calcium signaling and membrane currents in MSDB neurons and nAChR antagonists were also able to induce calcium responses involving a distinct mechanism.

  2. Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme.

    PubMed Central

    Jankowsky, E; Schwenzer, B

    1996-01-01

    Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems. PMID:8602353