Science.gov

Sample records for ache enzyme activity

  1. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE.

  2. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  3. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  4. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus.

    PubMed

    Menéndez-Helman, Renata J; Ferreyroa, Gisele V; dos Santos Afonso, Maria; Salibián, Alfredo

    2015-01-01

    The use of biomarkers as a tool to assess responses of organisms exposed to pollutants in toxicity bioassays, as well as in aquatic environmental risk assessment protocols, requires the understanding of the natural fluctuation of the particular biomarker. The aim of this study was to characterize the intrinsic variations of acetylcholinesterase (AChE) activity in tissues of a native freshwater teleost fish to be used as biomarker in toxicity tests, taking into account both seasonal influence and fish size. Specific AChE activity was measured by the method of Ellman et al. (1961) in homogenates of fish anterior section finding a seasonal variability. The highest activity was observed in summer, decreasing significantly below 40% in winter. The annual AChE activity cycle in the anterior section was fitted to a sinusoidal function with a period of 11.2 months. Moreover, an inverse relationship between enzymatic activity and the animal size was established. The results showed that both the fish length and seasonal variability affect AChE activity. AChE activity in fish posterior section showed a similar trend to that in the anterior section, while seasonal variations of the activity in midsection were observed but differences were not statistically significant. In addition, no relationship between AChE and total tissue protein was established in the anterior and posterior sections suggesting that the circannual rhythms observed are AChE-specific responses. Results highlight the importance of considering both the fish size and season variations to reach valid conclusions when AChE activity is employed as neurotoxicity biomarker.

  5. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity. PMID:24028855

  6. Screening of POP pollution by AChE and EROD activities in Zebra mussels from the Italian Great Lakes.

    PubMed

    Binelli, A; Ricciardi, Francesco; Riva, Consuelo; Provini, Alfredo

    2005-12-01

    The increase of ethoxyresorufin dealkylation (EROD) and the inhibition of acetylcholinesterase (AChE) as biomarkers have been commonly used in vertebrates for the persistent organic pollutants (POPs) biomonitoring of aquatic environments, but very few studies have been performed for invertebrates. Previous researches demonstrated the interference due to some chemicals on EROD and AChE activities of the freshwater bivalve Zebra mussel (Dreissena polymorpha) in laboratory and field studies, showing its possible use for the screening of POP effects. We investigated the contamination of the Italian sub-alpine great lakes (Maggiore, Lugano, Como, Iseo, Garda) by the biomarker approach on Zebra mussel specimens collected at 17 sampling sites with different morphometric characteristics and anthropization levels. Results showed a homogeneous contamination of AChE inhibitors in Lake Garda, Maggiore, Como and Iseo with values ranging from 0.5 to 3 nmol/min/mg proteins and with an average inhibition of about 66% to controls. The planar compounds pollution, able to activate the EROD activity, seems higher in some sampling stations of Lake Garda, Como and Iseo (2-4 pmol/min/mg proteins) than that measured in Lake Lugano (1.5-3 pmol/min/mg proteins). On the contrary, the enzyme activity in Lake Maggiore showed an interesting opposite effect of AhR-binding compounds and trace metals. Finally, the possible use of Zebra mussel specimens maintained at laboratory conditions as controls against the selection of the less polluted sampling site is discussed.

  7. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. PMID:26976216

  8. Bactericidal activity of ACH-702 against nondividing and biofilm Staphylococci.

    PubMed

    Podos, Steven D; Thanassi, Jane A; Leggio, Melissa; Pucci, Michael J

    2012-07-01

    Many bacterial infections involve slow or nondividing bacterial growth states and localized high cell densities. Antibiotics with demonstrated bactericidal activity rarely remain bactericidal at therapeutic concentrations under these conditions. The isothiazoloquinolone (ITQ) ACH-702 is a potent, bactericidal compound with activity against many antibiotic-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We evaluated its bactericidal activity under conditions where bacterial cells were not dividing and/or had slowed their growth. Against S. aureus cultures in stationary phase, ACH-702 showed concentration-dependent bactericidal activity and achieved a 3-log-unit reduction in viable cell counts within 6 h of treatment at ≥ 16× MIC values; in comparison, the bactericidal quinolone moxifloxacin and the additional comparator compounds vancomycin, linezolid, and rifampin at 16× to 32× MICs showed little or no bactericidal activity against stationary-phase cells. ACH-702 at 32× MIC retained bactericidal activity against stationary-phase S. aureus across a range of inoculum densities. ACH-702 did not kill cold-arrested cells yet remained bactericidal against cells arrested by protein synthesis inhibitors, suggesting that its bactericidal activity against nondividing cells requires active metabolism but not de novo protein synthesis. ACH-702 also showed a degree of bactericidal activity at 16× MIC against S. epidermidis biofilm cells that was superior to that of moxifloxacin, rifampin, and vancomycin. The bactericidal activity of ACH-702 against stationary-phase staphylococci and biofilms suggests potential clinical utility in infections containing cells in these physiological states. PMID:22547614

  9. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement.

    PubMed

    Chiapinotto Spiazzi, Cristiano; Bucco Soares, Melina; Pinto Izaguirry, Aryele; Musacchio Vargas, Laura; Zanchi, Mariane Magalhães; Frasson Pavin, Natasha; Ferreira Affeldt, Ricardo; Seibert Lüdtke, Diogo; Prigol, Marina; Santos, Francielli Weber

    2015-01-01

    Alzheimer's disease (AD) is becoming more common due to the increase in life expectancy. This study evaluated the effect of selenofuranoside (Se) in an Alzheimer-like sporadic dementia animal model. Male mice were divided into 4 groups: control, Aβ, Se, and Aβ + Se. Single administration of Aβ peptide (fragments 25-35; 3 nmol/3 μL) or distilled water was administered via intracerebroventricular (i.c.v.) injection. Selenofuranoside (5 mg/kg) or vehicle (canola oil) was administered orally 30 min before Aβ and for 7 subsequent days. Memory was tested through the Morris water maze (MWM) and step-down passive-avoidance (SDPA) tests. Antioxidant defenses along with reactive species (RS) were assessed. Inflammatory cytokines levels and AChE activity were measured. SOD activity was inhibited in the Aβ group whereas RS were increased. AChE activity, GSH, and IL-6 levels were increased in the Aβ group. These changes were reflected in impaired cognition and memory loss, observed in both behavioral tests. Se compound was able to protect against memory loss in mice in both behavioral tests. SOD and AChE activities as well as RS and IL-6 levels were also protected by Se administration. Therefore, Se is promising for further studies.

  10. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  11. AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure.

    PubMed

    Ren, Zongming; Zhang, Xu; Wang, Xiaoguang; Qi, Pingping; Zhang, Biao; Zeng, Yang; Fu, Rongshu; Miao, Mingsheng

    2015-02-01

    As a key enzyme that hydrolyzes the neurotransmitter acetylcholine in cholinergic synapses of both vertebrates and invertebrates, acetylcholinesterase (AChE) is strongly inhibited by organophosphates. AChE inhibition may induce the decrease of swimming ability. According to previous research, swimming behavior of different aquatic organisms could be affected by different chemicals, and there is a shortage of research on direct correlation analysis between swimming behavior and biochemical indicators. Therefore, swimming behavior and whole-body AChE activity of Daphnia magna under dichlorvos (DDVP) exposure were identified in order to clarify the relationship between behavioral responses and AChE inhibition in this study. In the beginning, AChE activity was similar in all treatments with the control. During all exposures, the tendency of AChE activity inhibition was the same as the behavioral responses of D. magna. The AChE activity of individuals without movement would decrease to about zero in several minutes. The correlation analysis between swimming behavior of D. magna and AChE activity showed that the stepwise behavioral response was mainly decided by AChE activity. All of these results suggested that the toxicity characteristics of DDVP as an inhibitor of AChE on the swimming behavior of organisms were the same, and the AChE activity inhibition could induce loss of the nerve conduction ability, causing hyperactivity, loss of coordination, convulsions, paralysis and other kinds of behavioral changes, which was illustrated by the stepwise behavioral responses under different environmental stresses.

  12. Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say).

    PubMed

    Malekmohammadi, M; Galehdari, H

    2016-01-01

    In the present study, we demonstrated the use and optimization of the tetra-primer ARMS-PCR procedure to detect and analyze the frequency of the R30K and I392T mutations in resistant field populations of CPB. The R30K mutation was detected in 72%, 84%, 52% and 64% of Bahar, Dehpiaz, Aliabad and Yengijeh populations, respectively. Overall frequencies of the I392T mutation were 12%, 8% and 16% of Bahar, Aliabad and Yengijeh populations, respectively. No I392T point mutation was found among samples from Dehpiaz field population. Moreover, only 31% and 2% of samples from the resistant field populations were homozygous for R30K and I392T mutations, respectively. No individual simultaneously had both I392T and S291G/R30K point mutations. The incidence of individuals with both S291G and R30K point mutations in the samples from Bahar, Dehpiaz, Aliabad, and Yengijeh populations were 31.5%, 44.7%, 41.6%, and 27.3% respectively. Genotypes determined by the tetra-primer ARMS-PCR method were consistent with those determined by PCR sequencing. There was no significant correlation between the mutation frequencies and resistance levels in the resistant populations, indicating that other mutations may contribute to this variation. Polymorphism in the partial L. decemlineata cDNA AChE gene Ldace2 of four field populations was identified by direct sequencing of PCR-amplified fragments. Among 45 novel mutations detected in this study, T29P mutation was found across all four field populations that likely contribute to the AChE insensitivity. Site-directed mutagenesis and protein expression experiments are needed for a more complete evaluation. PMID:26778439

  13. Searching for the Multi-Target-Directed Ligands against Alzheimer's disease: discovery of quinoxaline-based hybrid compounds with AChE, H₃R and BACE 1 inhibitory activities.

    PubMed

    Huang, Wenhai; Tang, Li; Shi, Ying; Huang, Shufang; Xu, Lei; Sheng, Rong; Wu, Peng; Li, Jia; Zhou, Naiming; Hu, Yongzhou

    2011-12-01

    A novel series of quinoxaline derivatives, as Multi-Target-Directed Ligands (MTDLs) for AD treatment, were designed by lending the core structural elements required for H(3)R antagonists and hybridizing BACE 1 inhibitor 1 with AChE inhibitor BYYT-25. A virtual database consisting of quinoxaline derivatives was first screened on a pharmacophore model of BACE 1 inhibitors, and then filtered by a molecular docking model of AChE. Seventeen quinoxaline derivatives with high score values were picked out, synthesized and evaluated for their biological activities. Compound 11a, the most effective MTDL, showed the potent activity to H(3)R/AChE/BACE 1 (H(3)R antagonism, IC(50)=280.0 ± 98.0 nM; H(3)R inverse agonism, IC(50)=189.3 ± 95.7 nM; AChE, IC(50)=483 ± 5 nM; BACE 1, 46.64±2.55% inhibitory rate at 20 μM) and high selectivity over H(1)R/H(2)R/H(4)R. Furthermore, the protein binding patterns between 11a and AChE/BACE 1 showed that it makes several essential interactions with the enzymes.

  14. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.

    PubMed

    Manthey, Arthur A

    2006-06-01

    During prolonged exposure of postjunctional nicotinic acetylcholine receptors (nAChR) of skeletal muscle to acetylcholine (ACh), agonist-activated nAChR (nAChRa) gradually fall into a refractory "desensitized" state (nAChRd), which no longer supports the high-conductance channel openings characteristic of the initially active nAChRa. In the present study, the possibility was examined that nAChRd, rather than simply constituting a passive "trap" for nAChRa, may actively promote further conversions of nAChRa to nAChRd in a formally autocatalytic manner. Single-ion whole-cell voltage-clamp currents (Na+ and Li+ in separate trials) were measured using two KCl-filled capillary electrodes (5-10 MOmega) implanted at the postjunctional locus of single frog skeletal muscle fibers (Rana pipiens) equilibrated in 30 mM K+ bath media to eliminate mechanical responses. Various nAChR agonists (carbamylcholine, acetylcholine, suberyldicholine) at different concentrations were delivered focally by positive pressure microjet. It was found that the decline of postmaximal agonist-induced currents under these different conditions (driven by the growth of the subpool of nAChRd) consistently followed an autocatalytic logistic rule modified for population growth of fixed units in a planar array: [Formula: see text] (where y represents the remaining agonist-induced current at time t, A=initial maximum current, and n is a constant). Some further experimental features that might result from a self-promoting growth of nAChRd were also tested, namely, (1) the effect of increased nAChRa and (2) the effect of increased nAChRd. Increase in agonist concentration of the superfusate, by increasing the planar density of active nAChRa at the outset, should enhance the probability of autocatalytic interactions with emerging nAChRd, hence, the rate of decline of agonist-induced current, and this was a consistent finding under all conditions tested. Raising the initial level of desensitized nAChRd by

  15. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    PubMed Central

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  16. Analysis of AchE and LDH in mollusc, Lamellidens marginalis after exposure to chlorpyrifos.

    PubMed

    Amanullah, B; Stalin, A; Prabu, P; Dhanapal, S

    2010-07-01

    The enzymes Acetylcholinesterase (AchE) and Lactatedehydrogenase (LDH) are used as biological markers in the present study. Enzymes are highly sensitive and used to evaluate the biological effects of organophosphate pesticide chlorpyrifos in freshwater mussel Lamellidens marginalis. The test organisms were exposed to sub-lethal concentration (5 ppm) of chlorpyrifos for 30 days and allowed to recover for seven days. A distinct reduction of the enzyme AchE (34 +/- 3.3 U l(-1)) was found in the treated hepatopancreas. A significant increase in LDH activity in gill, hepatopancreas and muscle was observed. There was a significant recovery in AchE and LDH in the different tissues, after seven days recovery period.. Hence, the changes in the enzymes are found as the best biomarkering tool to evaluate the effect of organophosphate pesticide chlorpyrifos on the aquatic biota.

  17. mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells

    PubMed Central

    2014-01-01

    Background Epithelial-mesenchymal transition (EMT) has been proposed as a mechanism in the progression of airway diseases and cancer. Here, we explored the role of acetylcholine (ACh) and the pathway involved in the process of EMT, as well as the effects of mAChRs antagonist. Methods Human lung epithelial cells were stimulated with carbachol, an analogue of ACh, and epithelial and mesenchymal marker proteins were evaluated using western blot and immunofluorescence analyses. Results Decreased E-cadherin expression and increased vimentin and α-SMA expression induced by TGF-β1 in alveolar epithelial cell (A549) were significantly abrogated by the non-selective mAChR antagonist atropine and enhanced by the acetylcholinesterase inhibitor physostigmine. An EMT event also occurred in response to physostigmine alone. Furthermore, ChAT express and ACh release by A549 cells were enhanced by TGF-β1. Interestingly, ACh analogue carbachol also induced EMT in A549 cells as well as in bronchial epithelial cells (16HBE) in a time- and concentration-dependent manner, the induction of carbachol was abrogated by selective antagonist of M1 (pirenzepine) and M3 (4-DAMP) mAChRs, but not by M2 (methoctramine) antagonist. Moreover, carbachol induced TGF-β1 production from A549 cells concomitantly with the EMT process. Carbachol-induced EMT occurred through phosphorylation of Smad2/3 and ERK, which was inhibited by pirenzepine and 4-DAMP. Conclusions Our findings for the first time indicated that mAChR activation, perhaps via M1 and M3 mAChR, induced lung epithelial cells to undergo EMT and provided insights into novel therapeutic strategies for airway diseases in which lung remodeling occurs. PMID:24678619

  18. Acetylcholinesterase secreted by Anisakis simplex larvae (Nematoda: Anisakidae) parasitizing herring, Clupea harengus: an inverse relationship of enzyme activity in the host-parasite system.

    PubMed

    Podolska, Magdalena; Nadolna, Katarzyna

    2014-06-01

    Acetylcholinesterase (AChE) is a key enzyme involved in nerve impulse transmission in both vertebrates and invertebrates. In addition to neuromuscular AChE, many parasitic nematodes synthesize AChE in secretory glands and release the enzyme into their external environment. In this study, we evaluate the activities of both somatic and secreted AChE from larvae (L3) of the parasitic nematode Anisakis simplex, and compare these to the AChE activity in its host, herring, Clupea harengus. A. simplex larvae were obtained from a herring sampled in three areas of the southern Baltic. Enzyme kinetics were determined for excretory/secretory (E/S) products and somatic extracts of larvae as well as for herring muscle tissue. The results reveal that mean AChE activity is approximately fourfold higher in E/S products and eightfold higher in somatic extracts of post-secretory A. simplex larvae than in host muscle tissue. The level of AChE activity in nematodes is inversely related to the enzyme activity in their hosts, i.e. reduced AChE activity in herring was accompanied by increased enzyme activity in its parasites. The physiological function of AChE secreted by parasitic nematodes has been widely discussed in the literature, and numerous roles for this form of enzyme have been suggested. The results of our investigation indicate that AChE secretion by A. simplex larvae may constitute an adaptive mechanism that promotes survival under adverse environmental conditions. Larvae probably increase secretion of AChE in response to a direct and/or indirect effect of neurotoxic compounds. This is the first report of such a phenomenon in A. simplex.

  19. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  20. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  1. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides.

    PubMed

    Sinha, Ravi; Ganesana, Mallikarjunarao; Andreescu, Silvana; Stanciu, Lia

    2010-02-28

    Zinc oxide has been used as a matrix for immobilization of acetylcholinesterase (AChE) and detection of the pesticide paraoxon. The immobilized enzyme retained its enzymatic activity up to three months when stored in phosphate buffered saline (pH 7.4) at 4 degrees C. An amperometric biosensor for the detection of paraoxon was designed. The biosensor detected paraoxon in the range 0.035-1.38 ppm and can be used to detect other AChE inhibiting organophosphate pesticides. PMID:20113735

  2. AChE for DNA degradation.

    PubMed

    Sánchez-Osuna, María; Yuste, Victor J

    2015-06-01

    DNA hydrolysis is a biochemical process often associated with different forms of cell death, including apoptosis. In a recent paper published in Cell Discovery, Du et al. report that synaptic acetylcholinesterase (AChE-S) shows an unexpected enzymatic activity as DNase switched on after cytotoxic insults. PMID:25930710

  3. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract.

  4. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration. PMID:24833065

  5. Activation of nicotinic ACh receptors with α4 subunits induces adenosine release at the rat carotid body

    PubMed Central

    Conde, Sílvia V; Monteiro, Emília C

    2006-01-01

    The effect of ACh on the release of adenosine was studied in rat whole carotid bodies, and the nicotinic ACh receptors involved in the stimulation of this release were characterized. ACh and nicotinic ACh receptor agonists, cytisine, DMPP and nicotine, caused a concentration-dependent increase in adenosine production during normoxia, with nicotine being more potent and efficient in stimulating adenosine release from rat CB than cytisine and DMPP. D-Tubocurarine, mecamylamine, DHβE and α-bungarotoxin, nicotinic ACh receptor antagonists, caused a concentration-dependent reduction in the release of adenosine evoked by hypoxia. The rank order of potency for nicotinic ACh receptor antagonists that inhibit adenosine release was DHβE>mecamylamine>D-tubocurarine>α-bungarotoxin. The effect of the endogenous agonist, ACh, which was mimicked by nicotine, was antagonized by DHβE, a selective nicotinic receptor antagonist. The ecto-5′-nucleotidase inhibitor AOPCP produces a 72% inhibition in the release of adenosine from CB evoked by nicotine. Taken together, these data indicate that ACh induced the production of adenosine, mainly from extracellular ATP catabolism at the CB through a mechanism that involves the activation of nicotinic receptors with α4 and β2 receptor subunits. PMID:16444287

  6. Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates.

    PubMed

    Radić, Zoran; Sit, Rakesh K; Garcia, Edzna; Zhang, Limin; Berend, Suzana; Kovarik, Zrinka; Amitai, Gabriel; Fokin, Valery V; Barry Sharpless, K; Taylor, Palmer

    2013-03-25

    A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.

  7. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity.

    PubMed

    Miller, K W; Schamber, R; Osmanagaoglu, O; Ray, B

    1998-06-01

    A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14-20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to approximately 60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed approximately 2. 8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.

  8. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species

    PubMed Central

    2016-01-01

    Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH⁎ activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds. PMID:27803761

  9. Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides.

    PubMed

    Kakani, Evdoxia G; Bon, Suzanne; Massoulié, Jean; Mathiopoulos, Kostas D

    2011-03-01

    The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B. oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance. OP-resistance in the olive fly was previously shown to be associated with two mutations in the acetylcholinesterase (AChE) enzyme that, apparently, hinder the entrance of the OP into the active site. The search for additional mutations in the ace gene that encodes AChE revealed a short deletion of three glutamines (Δ3Q) from a stretch of five glutamines, in the C-terminal peptide that is normally cleaved and substituted by a GPI anchor. We verified that AChEs from B. oleae and other Dipterans are actually GPI-anchored, although this is not predicted by the "big-PI" algorithm. The Δ3Q mutation shortens the unusually long hydrophilic spacer that follows the predicted GPI attachment site and may thus improve the efficiency of GPI anchor addition. We expressed the wild type B. oleae AChE, the natural mutant Δ3Q and a constructed mutant lacking all 5 consecutive glutamines (Δ5Q) in COS cells and compared their kinetic properties. All constructs presented identical K(m) and k(cat) values, in agreement with the fact that the mutations did not affect the catalytic domain of the enzyme. In contrast, the mutants produced higher AChE activity, suggesting that a higher proportion of the precursor protein becomes GPI-anchored. An increase in the number of GPI-anchored molecules in the synaptic cleft may reduce the sensitivity to insecticides.

  10. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  11. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  12. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme.

  13. Activity of nAChRs Containing α9 Subunits Modulates Synapse Stabilization via Bidirectional Signaling Programs

    PubMed Central

    Murthy, Vidya; Taranda, Julián; Elgoyhen, A. Belén; Vetter, Douglas E.

    2010-01-01

    Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) α9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR α9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in α9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the α9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult α9 null mice. Finally, by using mice expressing the nondesensitizing α9 L9′T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation. PMID:19790106

  14. Measurement of enzyme activity.

    PubMed

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  15. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems.

  16. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems. PMID:26695264

  17. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives.

    PubMed

    Basiri, Alireza; Murugaiyah, Vikneswaran; Osman, Hasnah; Kumar, Raju Suresh; Kia, Yalda; Ali, Mohamed Ashraf

    2013-06-01

    A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.

  18. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    PubMed

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  19. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice.

    PubMed

    Somm, Emmanuel; Guérardel, Audrey; Maouche, Kamel; Toulotte, Audrey; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise; Maskos, Uwe; Hüppi, Petra S; Schwitzgebel, Valérie M

    2014-05-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency.

  20. Photoperiodism and Enzyme Activity

    PubMed Central

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  1. Toxicity and mAChRs binding activity of Cassiopea xamachana venom from Puerto Rican coasts.

    PubMed

    Radwan, Faisal F Y; Román, Laura G; Baksi, Krishna; Burnett, Joseph W

    2005-01-01

    A separation of toxic components from the upside down jellyfish Cassiopea xamachana (Cx) was carried out to study their cytotoxic effects and examine whether these effects are combined with a binding activity to cell membrane receptors. Nematocysts containing toxins were isolated from the autolysed tentacles, ruptured by sonication, and the crude venom (CxTX) was separated from the pellets by ultracentrifugation. For identifying its bioactive components, CxTX was fractionated by gel filtration chromatography into six fractions (named fraction I-VI). The toxicity of CxTX and fractions was tested on mice; however, the hemolytic activity was tested on saline washed human erythrocytes. The LD50 of CxTX was 0.75 microg/g of mouse body and for fraction III, IV and VI were 0.28, 0.25 and 0.12 microg/g, respectively. Fractions I, II and V were not lethal at doses equivalent to LD50 1 microg/g. The hemolytic and phospholipase A2 (PLA2) activities of most fractions were well correlated with their mice toxicity. However, fraction VI, which contains the low molecular mass protein components (< or =10 kDa), has shown no PLA2 activity but highest toxicity to mice, highest hemolytic activity, and bound significantly to the acetylcholine muscarinic receptors (mAChRs) isolated from rat brain. The results suggested that fraction VI contains proteinaceous components contributing to most of cytolysis as well as membrane binding events. Meanwhile, fraction IV has shown high PLA2 that may contribute to the venom lethality and paralytic effects. PMID:15581689

  2. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux.

    PubMed

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-09-22

    Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases.

  3. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux.

    PubMed

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-09-22

    Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases. PMID:26295309

  4. Functional Analysis and Molecular Docking studies of Medicinal Compounds for AChE and BChE in Alzheimer’s Disease and Type 2 Diabetes Mellitus

    PubMed Central

    Kaladhar, Dowluru SVGK; Yarla, Nagendra Sastry; Anusha, N.

    2013-01-01

    Acetylcholinesterase and Butyrylcholinesterase share unravelling link with components of metabolic syndromes that’s characterised by low levels of HDL cholesterol, obesity, high fast aldohexose levels, hyper-trigliceridaemia and high blood pressure, by regulation of cholinergic transmission and therefore the enzyme activity within a living system. The phosphomotifs associated with amino acid and tyrosine binding motifs in AChE and BChE were known to be common. Phylogenetic tree was constructed to these proteins usinf UPGMA and Maximum Likelihood methods in MEGA software has shown interaction of AChE and BChE with ageing diseases like Alzheimer’s disease and Diabetes. AChE has shown closely related to BChE, retinol dehydrogenase and β-polypeptide. The present studies is also accomplished that AChE, BChE, COLQ, HAND1, APP, NLGN2 and NGF proteins has interactions with diseases such as Alzheimer’s and D2M using Pathwaylinker and STRING. Medicinal compounds like Ortho-7, Dibucaine and HI-6 are predicted as good targets for modeled AChE and BChE proteins based on docking studies. Hence perceptive studies of cholinesterase structure and the biological mechanisms of inhibition are necessary for effective drug development. PMID:23936743

  5. Nicotine activates YAP1 through nAChRs mediated signaling in esophageal squamous cell cancer (ESCC).

    PubMed

    Zhao, Yue; Zhou, Wei; Xue, Liyan; Zhang, Weimin; Zhan, Qimin

    2014-01-01

    Cigarette smoking is an established risk factor for esophageal cancers. Yes-associated protein 1 (YAP1), the key transcription factor of the mammalian Hippo pathway, has been reported to be an oncogenic factor for many cancers. In this study, we find nicotine administration can induce nuclear translocation and activation of YAP1 in ESCC. Consistently, we observed nuclear translocation and activation of YAP1 by knockdown of CHRNA3, which is a negative regulator of nicotine signaling in bronchial and esophageal cancer cells. Nicotine administration or CHRNA3 depletion substantially increased proliferation and migration in esophageal cancer cells. Interestingly, we find that YAP1 physically interacts with nAChRs, and nAChRs-signaling dissociates YAP1 from its negative regulatory complex composed with α-catenin, β-catenin and 14-3-3 in the cytoplasm, leading to upregulation and nuclear translocation of YAP1. This process likely requires PKC activation, as PKC specific inhibitor Enzastaurin can block nicotine induced YAP1 activation. In addition, we find nicotine signaling also inhibits the interaction of YAP1 with P63, which contributes to the inhibitory effect of nicotine on apoptosis. Using immunohistochemistry analysis we observed upregulation of YAP1 in a significant portion of esophageal cancer samples. Consistently, we have found a significant association between YAP1 upregulation and cigarette smoking in the clinical esophageal cancer samples. Together, these findings suggest that the nicotine activated nAChRs signaling pathway which further activates YAP1 plays an important role in the development of esophageal cancer, and this mechanism may be of a general significance for the carcinogenesis of smoking related cancers.

  6. Determination of lipolytic enzyme activities.

    PubMed

    Jaeger, Karl-Erich; Kovacic, Filip

    2014-01-01

    Pseudomonas aeruginosa is a versatile human opportunistic pathogen that produces and secretes an arsenal of enzymes, proteins and small molecules many of which serve as virulence factors. Notably, about 40 % of P. aeruginosa genes code for proteins of unknown function, among them more than 80 encoding putative, but still unknown lipolytic enzymes. This group of hydrolases (EC 3.1.1) is known already for decades, but only recently, several of these enzymes have attracted attention as potential virulence factors. Reliable and reproducible enzymatic activity assays are crucial to determine their physiological function and particularly assess their contribution to pathogenicity. As a consequence of the unique biochemical properties of lipids resulting in the formation of micellar structures in water, the reproducible preparation of substrate emulsions is strongly dependent on the method used. Furthermore, the physicochemical properties of the respective substrate emulsion may drastically affect the activities of the tested lipolytic enzymes. Here, we describe common methods for the activity determination of lipase, esterase, phospholipase, and lysophospholipase. These methods cover lipolytic activity assays carried out in vitro, with cell extracts or separated subcellular compartments and with purified enzymes. We have attempted to describe standardized protocols, allowing the determination and comparison of enzymatic activities of lipolytic enzymes from different sources. These methods should also encourage the Pseudomonas community to address the wealth of still unexplored lipolytic enzymes encoded and produced by P. aeruginosa.

  7. The stabilization of Au NP-AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor.

    PubMed

    Buiculescu, Raluca; Chaniotakis, Nikos A

    2012-08-01

    We report on the construction of an amperometric biosensor based on the immobilization of the enzyme acetylcholinesterase (AChE) onto gold nanoparticles (Au NPs). The active enzyme is covalently bound directly onto the surface of the Au NPs via a thiol bond. This immobilization provides increased stability and high electron-transfer between the colloidal Au NPs, the catalyst and the transducer surface. To further increase the biosensor stability by protecting the enzyme from denaturation and protease attack, a layer of biosilica was grown around the Au NP enzyme nanocomposite. All steps, i.e., the conjugation of the enzyme to the gold nanoparticles and the encapsulation into biosilica, are monitored and confirmed by ATR-FT-IR spectroscopy. The stabilizing effect of the entrapment was evaluated amperometrically, while the operation of the biosensor was monitored over a period of 4 months. The initial sensitivity of the biosensor was calculated to be 27.58 nA mM(-1) with a linear response to the concentration of the substrate in the range from 0.04 to 0.4 mM. It is thus shown that the biosilica nanocomposites doped with Au NPs-AChE conjugates create a system that provides both signal mediation and significant enzyme stabilization over the existing AChE biosensor. The biosensor had retained all its activity at the end of the 4 months, compared with the normal AChE biosensor whose activity reached 50% after only 42 days of operation.

  8. PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting.

    PubMed

    Jayakar, Selwyn S; Pugh, Phyllis C; Dale, Zack; Starr, Eric R; Cole, Samantha; Margiotta, Joseph F

    2014-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such

  9. Cholinesterases in development: AChE as a firewall to inhibit cell proliferation and support differentiation.

    PubMed

    Layer, Paul G; Klaczinski, Janine; Salfelder, Anika; Sperling, Laura E; Thangaraj, Gopenath; Tuschl, Corina; Vogel-Höpker, Astrid

    2013-03-25

    Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically. Here, we review briefly some of the major ideas and advances of this field, and report on some recent progress from our own experimental work, e.g. that (i) non-neural ChEs have pronounced, predominantly enzymatic effects on early embryonic (limb) development in chick and mouse, that (ii) retinal R28 cells of the rat overexpressing synaptic AChE present a significantly decreased cell proliferation, and that (iii) in developing chick retina ACh-synthesizing and ACh-degrading cells originate from the same postmitotic precursor cells, which later form two locally opposing cell populations. We suggest that such distinct distributions of ChAT(+) vs. AChE(+) cells in the inner half retina provide graded distributions of ACh, which can direct cell differentiation and network formation. Thus, as corroborated by works from many labs, AChE can be considered a highly co-opting protein, which can combine enzymatic and non-enzymatic functions within one molecule. PMID:23047026

  10. In vitro acaricidal activity of 1,8-cineole against Sarcoptes scabiei var. cuniculi and regulating effects on enzyme activity.

    PubMed

    Hu, Zhiqiang; Chen, Zhenzhen; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Yin, Lizi; Lv, Cheng; Zhao, Ling; Su, Gang; Ye, Gang; Shi, Fei

    2015-08-01

    1,8-Cineole found in many essential oils is a monoterpene and acts as a repellent against Sarcoptes scabiei var. cuniculi. In the present study, the acaricidal activity of 1,8-cineole against S. scabiei var. cuniculi was evaluated and the acaricidal mechanism was also investigated by assaying enzyme activities. The results showed that the lethal concentration of 50% (LC50) value (95% confidence limit (CL)) and the lethal time of 50% (LT50) value (95% CL) of 1,8-cineole were 2.77 mg/mL and 3.606 h, respectively. The pathological changes under transmission electron microscopy showed that the morphology of the mitochondria was abnormal, the cell nuclear membrane was damaged, and the nuclear chromatin was dissoluted. The activities of superoxide dismutase (SOD), glutathione-s-transferases (GSTs), monoamine oxidase (MAO), nitric oxide synthase (NOS), and acetylcholinesterase (AChE) were significantly changed after treatment with 1,8-cineole for 4, 8, 12, and 24 h. SOD and GSTs are associated with the protection mechanism of scabies mites. And, the activities of SOD and GSTs were increased as compared with the control group. MAO, AChE, and NOS are associated with the nervous system of scabies mites. The activity of MAO was increased whereas the AChE was suppressed. The activity of NOS was suppressed in the high-dose group whereas increased in the middle-dose group and low-dose group. These results indicated that the mechanism of 1,8-cineole mainly attributed to the changes of these enzyme activities related to the nervous system of scabies mites. PMID:25924796

  11. Enzyme activities in activated sludge flocs.

    PubMed

    Yu, Guang-Hui; He, Pin-Jing; Shao, Li-Ming; Lee, Duu-Jong

    2007-12-01

    This study quantified the activities of enzymes in extracellular polymeric substances (EPS) and in pellets. Seven commonly adopted extraction schemes were utilized to extract from aerobic flocs the contained EPS, which were further categorized into loosely bound (LB) and tightly bound (TB) fractions. Ultrasonication effectively extracted the EPS from sludge flocs. Enzyme assay tests showed that the protease activity was localized mainly on the pellets, alpha-amylase and alpha-glucosidase activities were largely bound with LB-EPS, and few protease, alpha-amylase, or alpha-glucosidase activities were associated with the TB-EPS fraction. There exists no correlation between the biochemical compositions of EPS and the distribution of enzyme activities in the sludge matrix. The 44-65% of alpha-amylase and 59-100% of alpha-glucosidase activities noted with the LB-EPS indicate heterogeneous hydrolysis patterns in the sludge flocs with proteins and carbohydrates.

  12. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    PubMed

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  13. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  14. Serum enzyme activities after cardioversion

    PubMed Central

    Mandecki, Tadeusz; Giec, Leszek; Kargul, Włodzimierz

    1970-01-01

    Serum aspartate aminotransferase (SGOT), alanine aminotransferase (SGPT), creatinine phosphokinase (CPK), and butyric acid dehydrogenase (BDH) were determined in 94 patients before, 1½ hours, and 24 hours after cardioversion. An increase in SGOT and CPK activity was observed 24 hours after cardioversion in the group of patients treated with two or more DC shocks. The importance of this enzyme activity increase is discussed. It originates in the skeletal muscles and probably has no clinical significance, as no other signs of myocardial damage were observed simultaneously in a large group of patients. PMID:5470040

  15. Activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) reverses referred mechanical hyperalgesia induced by colonic inflammation in mice.

    PubMed

    Costa, Robson; Motta, Emerson M; Manjavachi, Marianne N; Cola, Maíra; Calixto, João B

    2012-10-01

    In the current study, we investigated the effect of the activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) on dextran sulphate sodium (DSS)-induced colitis and referred mechanical hyperalgesia in mice. Colitis was induced in CD1 male mice through the intake of 4% DSS in tap water for 7 days. Control mice received unadulterated water. Referred mechanical hyperalgesia was evaluated for 7 days after the beginning of 4% DSS intake. Referred mechanical hyperalgesia started within 1 day after beginning DSS drinking, peaked at 3 days and persisted for 7 days. This time course profile perfectly matched with the appearance of signs of colitis. Both acute and chronic oral treatments with nicotine (0.1-1.0 mg/kg, p.o.) were effective in inhibiting the established referred mechanical hyperalgesia. The antinociceptive effect of nicotine was completely abrogated by cotreatment with the selective α7 nAchR antagonist methyllycaconitine (MLA) (1.0 mg/kg). Consistent with these results, i.p. treatment with the selective α7 nAchR agonist PNU 282987 (0.1-1.0 mg/kg) reduced referred mechanical hyperalgesia at all periods of evaluation. Despite their antinociceptive effects, nicotinic agonists did not affect DSS-induced colonic damage or inflammation. Taken together, the data generated in the present study show the potential relevance of using α7 nAchR agonists to treat referred pain and discomfort associated with inflammatory bowel diseases.

  16. Highly sensitive and selective immuno-capture/electrochemical assay of acetylcholinesterase activity in red blood cells: a biomarker of exposure to organophosphorus pesticides and nerve agents.

    PubMed

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-01

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold (MWCNTs-Au) nanocomposites modified screen printed carbon electrode (SPCE), which is used for the immobilization of AChE specific antibody. Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentrations of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to OP concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposure to OPs.

  17. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  18. Effect of medroxyprogesterone acetate contraception on human serum enzymes.

    PubMed

    Mukherjea, M; Mukherjee, P; Biswas, R; Chakraborty, A S; Kushari, J

    1981-01-01

    Activities of five enzymes were determined biochemically in the serum of a woman taking the injectable contraceptive, depo-medroxyprogesterone acetate (DMPA), 150 mg every 3 months for 2 years. The specific activities of SGOT, SGPT, and alkaline phosphatase (AP)-the enzymes commonly discerned in tests on the function of the liver-do not show any change with long-term treatment of this steroid contraceptive. Activities of serum acid phosphatase (ACP) and acetylcholinesterase (AChE) in red cells show significant increase. DMPA contraception has no apparent harmful effect on liver function, although the rise in ACP and AChE activities may be related to some pathological condition.

  19. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  20. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  1. Effects of acetylcholinesterase gene silencing on its activity in cultured human skeletal muscle.

    PubMed

    Mis, Katarina; Mars, Tomaz; Golicnik, Marko; Jevsek, Marko; Grubic, Zoran

    2006-01-01

    In spite of several reports demonstrating that acetylcholinesterase (AChE [EC 3.1.1.7]) expression is importantly regulated at the level of its mRNA, we still know little about the relationship between AChE mRNA level and the level of mature, catalytically active enzyme in the cell. Better insight into this relationship is, however, essential for our understanding of the molecular pathways underlying AChE synthesis in living cells. We have approached this problem previously (Grubic et al., 1995; Brank et al., 1998; Mis et al., 2003; Jevsek et al., 2004); however, recently introduced small interfering RNA (siRNA) methodology, which allows blockade of gene expression at the mRNA level, opens new possibilities in approaching the AChE mRNA-AChE activity relationship. With this technique one can eliminate AChE mRNA in the cell, specifically and at selected times, and follow the effects of such treatment at the mature enzyme level. In this study we followed AChE activity in siRNA-treated cultured human myoblasts. Our aim was to find out how the temporal profile of the AChE mRNA decrease is reflected at the level of AChE activity under normal conditions and after inhibition of preexisting AChE by diisopropyl phosphorofluoridate (DFP).AChE activity was determined at selected time intervals after siRNA treatment in both myoblast homogenates and in culture medium to follow the effects of siRNA treatment at the level of intracellular AChE synthesis and at the level of AChE secreted from the cell.

  2. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model.

    PubMed

    Fgaier, Hedia; Mustafa, Ibrahim H I; Awad, Asmaa A R; Elkamel, Ali

    2015-01-01

    The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT) which is responsible for synthesizing acetylcholine (ACh) in human brain is investigated through the two-enzyme/two-compartment (2E2C) model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD.

  3. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model

    PubMed Central

    Fgaier, Hedia; Mustafa, Ibrahim H. I.; Awad, Asmaa A. R.; Elkamel, Ali

    2015-01-01

    The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT) which is responsible for synthesizing acetylcholine (ACh) in human brain is investigated through the two-enzyme/two-compartment (2E2C) model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD. PMID:26413144

  4. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    SciTech Connect

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  5. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life.

    PubMed

    Noy-Porat, Tal; Cohen, Ofer; Ehrlich, Sharon; Epstein, Eyal; Alcalay, Ron; Mazor, Ohad

    2015-08-19

    Acetylcholinesterase (AChE) is the physiological target of organophosphate nerve agent compounds. Currently, the development of a formulation for prophylactic administration of cholinesterases as bioscavengers in established risk situations of exposure to nerve agents is the incentive for many efforts. While cholinesterase bioscavengers were found to be highly effective in conferring protection against nerve agent exposure in animal models, their therapeutic use is complicated by short circulatory residence time. To create a bioscavenger with prolonged plasma half-life, compatible with biotechnological production and purification, a chimeric recombinant molecule of HuAChE coupled to the Fc region of human IgG1 was designed. The novel fusion protein, expressed in cultured cells under optimized conditions, maintains its full enzymatic activity, at levels similar to those of the recombinant AChE enzyme. Thus, this novel fusion product retained its binding affinity toward BW284c5 and propidium, and its bioscavenging reactivity toward the organophosphate-AChE inhibitors sarin and VX. Furthermore, when administered to mice, AChE-Fc exhibits exceptional circulatory residence longevity (MRT of 6000 min), superior to any other known cholinesterase-based recombinant bioscavengers. Owing to its optimized pharmacokinetic performance, high reactivity toward nerve agents, and ease of production, AChE-Fc emerges as a promising next-generation organophosphate bioscavenger.

  6. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  7. Enzyme activity down to -100 degrees C.

    PubMed

    Bragger, J M; Dunn, R V; Daniel, R M

    2000-07-14

    The activities of two enzymes, beef liver catalase (EC 1.11.1.6) and calf intestine alkaline phosphatase (EC 3.1.3.1), have been measured down to -97 degrees C and -100 degrees C, respectively. Enzyme activity has not previously been measured at such low temperatures. For catalase, the cryosolvents used were methanol:ethylene glycol:water (70:10:20) and DMSO:ethylene glycol:water (60:20:20). For alkaline phosphatase, methanol:ethylene glycol:water (70:10:20) was used. All of the Arrhenius plots were linear over the whole of the temperature range examined. Since the lowest temperatures at which activity was measured are well below the dynamic transition observed for proteins, the results indicate that the motions which cease below the dynamic transition are not essential for enzyme activity. In all cases the use of cryosolvent led to substantial increases in Arrhenius activation energies, and this imposed practical limitations on the measurement of enzyme activity below -100 degrees C. At even lower temperatures, enzyme activity may be limited by the effect of solvent fluidity on substrate/product diffusion, but overall there is no evidence that any intrinsic enzyme property imposes a lower temperature limit for enzyme activity. PMID:10899628

  8. Effects of high dietary sulphur on enzyme activities, selenium concentrations and body weights of cattle.

    PubMed Central

    Khan, A A; Lovejoy, D; Sharma, A K; Sharma, R M; Prior, M G; Lillie, L E

    1987-01-01

    This study was designed to assess the effects of a moderate increase in dietary sulphur (S) in cattle. Twelve animals were initially fed a basal concentrate (S = 0.2%) and then divided into two groups; one fed basal and the other high S (S = 0.75%) concentrates. Health, body weight gains, and activities of erythrocyte enzymes-glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), glucose-6-phosphate dehydrogenase (G6PD), acetylcholinesterase (AChE), plasma- asparate aminotransferase (AST), and whole blood concentrations of selenium (Se) were monitored at various stages of the study. Marked increases in the activities of GSH-Px, SOD and G6PD from the pretrial values were observed upon initial feeding of basal concentrate diet. Sex related differences were not evident in enzyme activities and Se concentrations of the blood. A high linear correlation (r = 0.92) between averages of GSH-Px activity and Se concentration of blood was observed in both sexes. Increasing the amount of S in the concentrate diet (from 0.2 to 0.75%) did not produce any statistically significant change in enzyme activities and Se concentrations, body weight gains, and health of the cattle during the 85 days feeding period. The results indicate that a moderate increase in the dietary S would not impair Se and copper status or cause related disorders in cattle. PMID:3607649

  9. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  10. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1). PMID:26686921

  11. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1).

  12. Visualization of enzyme activities inside earthworm pores

    NASA Astrophysics Data System (ADS)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  13. Antimutagenic activity of oxidase enzymes

    SciTech Connect

    Agabeili, R.A.

    1986-11-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity.

  14. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  15. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  16. Gestational exposure to cadmium alters crucial offspring rat brain enzyme activities: the role of cadmium-free lactation.

    PubMed

    Liapi, Charis; Stolakis, Vasileios; Zarros, Apostolos; Zissis, Konstantinos M; Botis, John; Al-Humadi, Hussam; Tsakiris, Stylianos

    2013-11-01

    The present study aimed to shed more light on the effects of gestational (in utero) exposure to cadmium (Cd) on crucial brain enzyme activities of Wistar rat offspring, as well as to assess the potential protective/restorative role that a Cd-free lactation might have on these effects. In contrast to earlier findings of ours regarding the pattern of effects that adult-onset exposure to Cd has on brain AChE, Na(+),K(+)- and Mg(2+)-ATPase activities, as well as in contrast to similar experimental approaches implementing the sacrificing mode of anaesthesia, in utero exposure to Cd-chloride results in increased AChE and Na(+),K(+)-ATPase activities in the newborn rat brain homogenates that were ameliorated through a Cd-free lactation (as assessed in the brain of 21-day-old offspring). Mg(2+)-ATPase activity was not found to be significantly modified under the examined experimental conditions. These findings could provide the basis for a further evaluation of the herein discussed neurotoxic effects of in utero exposure to Cd, in a brain region-specific manner.

  17. Activity assessment of microbial fibrinolytic enzymes.

    PubMed

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  18. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    PubMed

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  19. Dose-limiting inhibition of acetylcholinesterase by ladostigil results from the rapid formation and fast hydrolysis of the drug-enzyme complex formed by its major metabolite, R-MCPAI.

    PubMed

    Moradov, Dorit; Finkin-Groner, Efrat; Bejar, Corina; Sunita, Priyashree; Schorer-Apelbaum, Donna; Barasch, Dinorah; Nemirovski, Alina; Cohen, Marganit; Weinstock, Marta

    2015-03-15

    Ladostigil is a pseudo reversible inhibitor of acetylcholinesterase (AChE) that differs from other carbamates in that the maximal enzyme inhibition obtainable does not exceed 50-55%. This could explain the low incidence of cholinergic adverse effects induced by ladostigil in rats and human subjects. The major metabolite, R-MCPAI is believed to be responsible for AChE inhibition by ladostigil in vivo. Therefore we determined whether the ceiling in AChE inhibition resulted from a limit in the metabolism of ladostigil to R-MCPAI by liver microsomal enzymes, or from the kinetics of enzyme inhibition by R-MCPAI. Ladostigil reduces TNF-α in lipopolysaccharide-activated microglia. In vivo, it may also reduce pro-inflammatory cytokines by inhibiting AChE and increasing the action of ACh on macrophages and splenic lymphocytes. We also assessed the contribution of AChE inhibition in the spleen of LPS-injected mice to the anti-inflammatory effect of ladostigil. As in other species, AChE inhibition by ladostigil in spleen, brain and plasma did not exceed 50-55%. Since levels of R-MCPAI increased with increasing doses of ladostigil we concluded that there was no dose or rate limitation of metabolism. The kinetics of enzyme inhibition by R-MCPAI are characterized by a rapid formation of the drug-enzyme complex and fast hydrolysis which limits the attainable degree of AChE inhibition. Ladostigil and its metabolites (1-100 nM) decreased TNF-α in lipopolysaccharide-activated macrophages. Ladostigil (5 and 10mg/kg) also reduced TNF-α in the spleen after injection of lipopolysaccharide in mice. However, AChE inhibition contributed to the anti-inflammatory effect only at a dose of 10mg/kg.

  20. Nanomaterials - Acetylcholinesterase Enzyme Matrices for Organophosphorus Pesticides Electrochemical Sensors: A Review

    PubMed Central

    Periasamy, Arun Prakash; Umasankar, Yogeswaran; Chen, Shen-Ming

    2009-01-01

    Acetylcholinesterase (AChE) is an important cholinesterase enzyme present in the synaptic clefts of living organisms. It maintains the levels of the neurotransmitter acetylcholine by catalyzing the hydrolysis reaction of acetylcholine to thiocholine. This catalytic activity of AChE is drastically inhibited by trace amounts of organophosphorus (OP) pesticides present in the environment. As a result, effective monitoring of OP pesticides in the environment is very desirable and has been done successfully in recent years with the use of nanomaterial-based AChE sensors. In such sensors, the enzyme AChE has been immobilized onto nanomaterials like multiwalled carbon nanotubes, gold nanoparticles, zirconia nanoparticles, cadmium sulphide nano particles or quantum dots. These nanomaterial matrices promote significant enhancements of OP pesticide determinations, with the thiocholine oxidation occurring at much lower oxidation potentials. Moreover, nanomaterial-based AChE sensors with rapid response, increased operational and long storage stability are extremely well suited for OP pesticide determination over a wide concentration range. In this review, the unique advantages of using nanomaterials as AChE immobilization matrices are discussed. Further, detection limits, sensitivities and correlation coefficients obtained using various electroanalytical techniques have also been compared with chromatographic techniques. PMID:22408512

  1. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  2. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line

    PubMed Central

    Masha'our, R. Shehadeh; Heinrich, R.; Garzozi, H. J.; Perlman, I.

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16–24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. MissionTM shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  3. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line.

    PubMed

    Masha'our, R Shehadeh; Heinrich, R; Garzozi, H J; Perlman, I

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16-24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. Mission(TM) shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  4. An NMR Study of Enzyme Activity.

    ERIC Educational Resources Information Center

    Peterman, Keith E.; And Others

    1989-01-01

    A laboratory experiment designed as a model for studying enzyme activity with a basic spectrometer is presented. Included are background information, experimental procedures, and a discussion of probable results. Stressed is the value of the use of Nuclear Magnetic Resonance in biochemistry. (CW)

  5. In Vitro Activity of ACH-702, a New Isothiazoloquinolone, against Nocardia brasiliensis Compared with Econazole and the Carbapenems Imipenem and Meropenem Alone or in Combination with Clavulanic Acid ▿

    PubMed Central

    Vera-Cabrera, Lucio; Campos-Rivera, Mayra Paola; Escalante-Fuentes, Wendy G.; Pucci, Michael J.; Ocampo-Candiani, Jorge; Welsh, Oliverio

    2010-01-01

    The in vitro activities of ACH-702 and other antimicrobials against 30 Nocardia brasiliensis isolates were tested. The MIC50 (MIC for 50% of the strains tested) and MIC90 values of ACH-702 were 0.125 and 0.5 μg/ml. The same values for econazole were 2 and 4 μg/ml. The MIC50 and MIC90 values of imipenem and meropenem were 64 and >64 μg/ml and 2 and 8 μg/ml, respectively; the addition of clavulanic acid to the carbapenems had no effect. PMID:20308390

  6. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure.

    PubMed

    Rodríguez-Fuentes, Gabriela; Rubio-Escalante, Fernando J; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Schlenk, Daniel

    2015-01-01

    Organophosphate pesticides cause irreversible inhibition of AChE which leads to neuronal overstimulation and death. Thus, dogma indicates that the target of OP pesticides is AChE, but many authors postulate that these compounds also disturb cellular redox processes, and change the activities of antioxidant enzymes. Interestingly, it has also been reported that oxidative stress plays also a role in the regulation and activity of AChE. The aims of this study were to determine the effects of the antioxidant, vitamin C (VC), the oxidant, t-butyl hydroperoxide (tBOOH) and the organophosphate Chlorpyrifos (CPF), on AChE gene transcription and activity in zebrafish embryos after 72h exposure. In addition, oxidative stress was evaluated by measuring antioxidant enzymes activities and transcription, and quantification of total glutathione. Apical effects on the development of zebrafish embryos were also measured. With the exception of AChE inhibition and enhanced gene expression, limited effects of CPF on oxidative stress and apical endpoints were found at this developmental stage. Addition of VC had little effect on oxidative stress or AChE, but increased pericardial area and heartbeat rate through an unknown mechanism. TBOOH diminished AChE gene expression and activity, and caused oxidative stress when administered alone. However, in combination with CPF, only reductions in AChE activity were observed with no significant changes in oxidative stress suggesting the adverse apical endpoints in the embryos may have been due to AChE inhibition by CPF rather than oxidative stress. These results give additional evidence to support the role of prooxidants in AChE activity and expression.

  7. Arabinogalactan proteins: focus on carbohydrate active enzymes

    PubMed Central

    Knoch, Eva; Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/) involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development. PMID:24966860

  8. Concentration profiles near an activated enzyme.

    PubMed

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  9. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  10. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  11. [Effects of Bt corn straw insecticidal proteins on enzyme activities of Eisenia fetida].

    PubMed

    Shu, Ying-hua; Ma, Hong-hui; Du, Yan; Wang, Jian-wu

    2011-08-01

    Bacillus thuringiensis (Bt) proteins released from Bt corn can enter soil ecosystem via returning straw into field, root exudation, and pollen fluttering-down. In this study, the straws of Bt corn and its near-isogenic non-Bt line were added into soil with an application rate of 5% and 7.5% to breed Eisenia fetida, and the total protein content and the activities of acetylcholine esterase (AchE), glutathione peroxidase (GSH-PX), catalase (CAT), and superoxide dismutase (SOD) in E. fetida were determined after 7 and 14 days. Under the same application rate of the straws, the total protein content and GSH-PX activity of E. fetida decreased while the AchE, CAT, and SOD activities increased on the 14th day, compared with those on the 7th day. The Bt corn straw increased the SOD activity and decreased the AchE and GSH-PX activities, but had less effects on the total protein content and CAT activity, compared with non-Bt corn straw. All the results suggested that Bt corn straw had no inhibitory effect on E. fetida total protein but could inhibit the AchE and GSH-PX activities, and could not induce CAT activity but induce SOD activity within a short time.

  12. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  13. Local encoding of computationally designed enzyme activity

    PubMed Central

    Allert, Malin; Dwyer, Mary A.; Hellinga, Homme W.

    2007-01-01

    One aim of computational protein design is to introduce novel enzyme activity into proteins of known structure by predicting mutations that stabilize transition states. Previously we have shown that it is possible to introduce triose phosphate isomerase activity into the ribose-binding protein of Escherichia coli by constructing 17 mutations in the first two layers of residues that surround the wild-type ligand-binding site. Here we report that these mutations can be “transplanted” into a homologous ribose-binding protein, isolated from the hyperthermophilic bacterium Thermoanaerobacter tengcongensis, with retention of catalytic activity, substrate affinity, and reaction pH dependence. The observed 105–106-fold rate enhancement corresponds to 70% of the maximally known transition-state binding energy. The wild-type sequences in these two homologues are almost perfectly conserved in the vicinity of their ribose-binding sites, but diverge significantly at increasing distance from these sites. The results demonstrate that the computationally designed mutations are sufficient to encode the observed enzyme activity, that all the observed activity is locally encoded within the layer of residues directly in contact with the substrate, and that in this case at least 70% of transition state stabilization energy can be achieved using straightforward considerations of stereochemical complementarity between enzyme and reactants. PMID:17196220

  14. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  15. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae.

    PubMed

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (K(M)) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  16. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    PubMed

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. PMID:26165232

  17. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.

    PubMed

    Zhou, An; Hu, Jianping; Wang, Lirong; Zhong, Guochen; Pan, Jian; Wu, Zeyu; Hui, Ailing

    2015-10-01

    Acetylcholinesterase (AChE) is one of the key targets of drugs for treating Alzheimer's disease (AD). Tacrine is an approved drug with AChE-inhibitory activity. In this paper, 3D-QSAR, molecular docking, and molecular dynamics were carried out in order to study 60 tacrine derivatives and their AChE-inhibitory activities. 3D-QSAR modeling resulted in an optimal CoMFA model with q(2) = 0.552 and r(2) = 0.983 and an optimal CoMSIA model with q(2) = 0.581 and r(2) = 0.989. These QSAR models also showed that the steric and H-bond fields of these compounds are important influences on their activities. The interactions between these inhibitors and AChE were further explored through molecular docking and molecular dynamics simulation. A few key residues (Tyr70, Trp84, Tyr121, Trp279, and Phe330) at the binding site of AChE were identified. The results of this study improve our understanding of the mechanisms of AChE inhibitors and afford valuable information that should aid the design of novel potential AChE inhibitors. Graphical Abstract Superposition of backbone atoms of the lowest-energy structure obtained from MD simulation (magenta) onto those of the structure of the initial molecular docking model (green).

  18. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition.

    PubMed

    Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson

    2015-01-01

    Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis. PMID:25312723

  19. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  20. Enzyme Inhibition by Molluscicidal Components of Myristica fragrans Houtt. in the Nervous Tissue of Snail Lymnaea acuminata.

    PubMed

    Jaiswal, Preetee; Kumar, Pradeep; Singh, V K; Singh, D K

    2010-01-01

    This study was designed to investigate the effects of molluscicidal components of Myristica fragrans Houtt. (Myristicaceae) on certain enzymes in the nervous tissue of freshwater snail Lymnaea acuminata Lamarck (Lymnaeidae). In vivo and in vitro treatments of trimyristin and myristicin (active molluscicidal components of Myristica fragrans Houtt.) significantly inhibited the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activities in the nervous tissue of Lymnaea acuminata. The inhibition kinetics of these enzymes indicates that both the trimyristin and myristicin caused competitive noncompetitive inhibition of AChE. Trimyristin caused uncompetitive and competitive/noncompetitive inhibitions of ACP and ALP, respectively whereas the myristicin caused competitive and uncompetitive inhibition of ACP and ALP, respectively. Thus results from the present study suggest that inhibition of AChE, ACP, and ALP by trimyristin and myristicin in the snail Lymnaea acuminata may be the cause of the molluscicidal activity of Myristica fragrans.

  1. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity.

    PubMed

    Noh, Min-Young; Koh, Seong H; Kim, Sung-Min; Maurice, Tangui; Ku, Sae-Kwang; Kim, Seung H

    2013-11-01

    The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional

  2. High-Throughput Analysis of Enzyme Activities

    SciTech Connect

    Lu, Guoxin

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  3. Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State

    PubMed Central

    Indurthi, Dinesh C.; Lewis, Trevor M.; Ahring, Philip K.; Balle, Thomas; Chebib, Mary; Absalom, Nathan L.

    2016-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors. PMID:27552221

  4. [Detection of enzyme activity in decontaminated spices in industrial use].

    PubMed

    Müller, R; Theobald, R

    1995-03-01

    A range of decontaminated species of industrial use have been examined for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material.

  5. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    PubMed Central

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  6. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    PubMed

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  7. Exploration of the spontaneous fluctuating activity of single enzyme molecules.

    PubMed

    Schwabe, Anne; Maarleveld, Timo R; Bruggeman, Frank J

    2013-09-01

    Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metabolism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as transcription, replication, translation, and histone modifications. Here we introduce the main theoretical concepts of stochastic single-enzyme activity starting from the Michaelis-Menten enzyme mechanism. Next, we discuss stochasticity of multi-substrate enzymes, of enzymes and receptors with multiple conformational states and finally, how fluctuations in receptor activity arise from fluctuations in signal concentration. This paper aims to introduce the exciting field of single-molecule enzyme kinetics and stochasticity to a wider audience of biochemists and systems biologists.

  8. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.

    PubMed

    Shisler, Krista A; Broderick, Joan B

    2014-03-15

    The glycyl radical enzyme activating enzymes (GRE-AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe-4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE-AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE-AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE-AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes.

  9. Antioxidant enzymes activities in obese Tunisian children

    PubMed Central

    2013-01-01

    Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls), aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx). Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p < 0.05). Mean activities of anti-radical GPx and CAT enzymes were not affected by the BMI increase. Although, total cholesterol levels were statistically higher in the obese group, there was no significant association with the SOD activity. Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response. PMID:23360568

  10. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment.

    PubMed

    Li, Qiang; Chen, Min; Liu, Hongmin; Yang, Liqun; Yang, Guiying

    2012-12-01

    The aim of this study was to investigate the pathological changes in a rat model of Alzheimer's disease (AD) and the effect of donepezil hydrochloride (HCl) treatment. The rat model of AD was established by the bilateral injection of amyloid β₁₋₄₀ (Aβ₁₋₄₀) into the hippocampus. Changes in spatial learning and memory functions were examined using the Morris water maze test and changes in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were determined using chemical colorimetry. Moreover, the changes in acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) expression were analyzed using immunohistochemical staining. The mRNA expression levels of the amyloid precursor protein (APP) and β-secreted enzyme 1 (BACE1) were evaluated using RT-PCR. The effects of donepezil HCl on the aforementioned indices were also observed. The rat memories of the platform quadrants in the blank, sham and donepezil HCl groups were improved compared with those of the rats in the model group. The ratio of swim distance in the fourth platform quadrant (l₄) to the total swim distance (l total) for the model group rats (l₄/l total) was significantly decreased compared with that for the blank and sham group rats. Following donepezil HCl treatment, the ratio of l₄/l total significantly increased. AD modeling caused a significant decrease in the CAT and GSH-Px activities in the brain tissues of the rats. The CAT and GSH-Px activities in the AD model rats significantly increased following donepezil HCl treatment. Moreover, donepezil HCl treatment significantly decreased the AChE, APP and BACE1 mRNA expression levels and increased the ChAT expression levels. Therefore, donepezil HCl was able to significantly decrease learning and memory damage in a rat model of AD.

  11. In vitro neuroprotective effects of the leaf and fruit extracts of Juglans regia L. (walnut) through enzymes linked to Alzheimer's disease and antioxidant activity.

    PubMed

    Orhan, Ilkay Erdogan; Suntar, Ipek Pesin; Akkol, Esra Kupeli

    2011-12-01

    Several extracts of the leaves and fruits of Juglans regia L. were assessed for their neuroprotective effects through antioxidant and anti-cholinesterase methods. Anticholinesterase activity was determined against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes vital for Alzheimer's disease, at 50, 100 and 200 μg ml(-1). Antioxidant activity was tested using radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), N,N-dimethyl-p-phenylenediamine (DMPD), superoxide (SO), nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) radicals, as well as ferric ion-chelating capacity, ferric- and phosphomolybdenum-reducing antioxidant power at 500, 1000 and 2000 μg ml(-1). Total phenol and flavonoid quantification of the extracts was calculated. The extracts scavenged DPPH radical in varying degrees; however, they did not scavenge DPMD and H(2)O(2). Only the dichloromethane and water extracts were able to quench SO (10.09 ± 1.38%) and NO (24.09 ± 2.19%) radicals, respectively, at low level. The extracts showed either low or no BChE inhibition and no AChE inhibition.

  12. Active Acetylcholinesterase Immobilization on a Functionalized Silicon Surface.

    PubMed

    Khaldi, K; Sam, S; Gouget-Laemmel, A C; Henry de Villeneuve, C; Moraillon, A; Ozanam, F; Yang, J; Kermad, A; Ghellai, N; Gabouze, N

    2015-08-01

    In this work, we studied the attachment of active acetylcholinesterase (AChE) enzyme on a silicon substrate as a potential biomarker for the detection of organophosphorous (OP) pesticides. A multistep functionalization strategy was developed on a crystalline silicon surface: a carboxylic acid-terminated monolayer was grafted onto a hydrogen-terminated silicon surface by photochemical hydrosilylation, and then AChE was covalently attached through amide bonds using an activation EDC/NHS process. Each step of the modification was quantitatively characterized by ex-situ Fourier transform infrared spectroscopy in attenuated-total-reflection geometry (ATR-FTIR) and atomic force microscopy (AFM). The kinetics of enzyme immobilization was investigated using in situ real-time infrared spectroscopy. The enzymatic activity of immobilized acetylcholinesterase enzymes was determined with a colorimetric test. The surface concentration of active AChE was estimated to be Γ = 1.72 × 10(10) cm(-2).

  13. Insecticidal and Enzyme Inhibitory Activities of Sparassol and Its Analogues against Drosophila suzukii.

    PubMed

    Kim, Junheon; Jang, Miyeon; Lee, Kyoung-Tae; Yoon, Kyungjae Andrew; Park, Chung Gyoo

    2016-07-13

    Drosophila suzukii is an economically important pest in America and Europe as well as in Asia. Sparassol and methyl orsellinate are naturally produced by the cultivating mushrooms Sparassis cripta and Sparassis latifolia. Fumigant and contact toxicities of synthetic sparassol and its analogues, methyl orsellinate and methyl 2,4-dimethoxy-6-methylbenzoate (DMB), were investigated. Negligible fumigant activity was observed from the tested compounds. However, DMB showed the strongest contact toxicity, followed by sparassol and methyl orsellinate. The possible modes of action of the compounds were assessed for their acetylcholinesterase (AChE)- and glutathione S-transferase (GST)-inhibiting activities. AChE activity was weakly inhibited by methyl orsellinate and DMB, but GST was inhibited by sparassol, methyl orsellinate, and DMB. Thus, DMB could be a promising alternative to common insecticides as it can be easily synthesized from sparassol, which is the natural product of Sparassis species. Sparassis species could be an industrial resource of DMB. PMID:27327201

  14. Correlations of regional postmortem enzyme activities with premortem local glucose metabolic rates in Alzheimer's disease.

    PubMed

    McGeer, E G; McGeer, P L; Harrop, R; Akiyama, H; Kamo, H

    1990-12-01

    Correlations were sought between local cerebral metabolic rates (LCMRs) for glucose in various regions of the cortex, determined in premortem PET scans, with the regional activities of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), beta-glucuronidase (Gluc, a probable index of reactive gliosis), and phosphate-activated glutaminase (PAG, a possible indice of the large pyramidal neurons) measured on postmortem tissue. Significant negative correlations between LCMRs and Gluc activities were found in 6 PET-scanned cases of Alzheimer disease (AD), and positive correlations of LCMRs with PAG were found in 5. By contrast, a positive correlation with ChAT and AChE was found in only 1. The results are consistent with the metabolic deficits in AD being primarily a reflection of local neuronal loss and gliosis. Similar data on two cases of Huntington's disease showed no significant correlations, while 1 patient with Parkinson dementia showed a significant (negative) correlation only with Gluc.

  15. Observing single enzyme molecules interconvert between activity states upon heating.

    PubMed

    Rojek, Marcin J; Walt, David R

    2014-01-01

    In this paper, we demonstrate that single enzyme molecules of β-galactosidase interconvert between different activity states upon exposure to short pulses of heat. We show that these changes in activity are the result of different enzyme conformations. Hundreds of single β-galactosidase molecules are trapped in femtoliter reaction chambers and the individual enzymes are subjected to short heating pulses. When heating pulses are introduced into the system, the enzyme molecules switch between different activity states. Furthermore, we observe that the changes in activity are random and do not correlate with the enzyme's original activity. This study demonstrates that different stable conformations play an important role in the static heterogeneity reported previously, resulting in distinct long-lived activity states of enzyme molecules in a population.

  16. Bioaccumulation of Cry1Ab Protein from an Herbivore Reduces Anti-Oxidant Enzyme Activities in Two Spider Species

    PubMed Central

    Wang, Zhi; Tian, Yun; Tian, Yixing; Song, Qisheng

    2014-01-01

    Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators. PMID:24454741

  17. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. PMID:27343862

  18. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species.

  19. Why do crown ethers activate enzymes in organic solvents?

    PubMed

    van Unen, Dirk-Jan; Engbersen, Johan F J; Reinhoudt, David N

    2002-02-01

    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have improved the insights into the mechanisms that are operative in the crown ether activation of enzymes in organic solvents. The enhancement of enzyme activity upon addition of 18-crown-6 to the organic solvent can be reconciled with a mechanism in which macrocyclic interactions of 18-crown-6 with the enzyme play an important role. Macrocyclic interactions (e.g., complexation with lysine ammonium groups of the enzyme) can lead to a reduced formation of inter- and intramolecular salt bridges and, consequently, to lowering of the kinetic conformational barriers, enabling the enzyme to refold into thermodynamically stable, catalytically (more) active conformations. This assumption is supported by the observation that the crown-ether-enhanced enzyme activity is retained after removal of the crown by washing with a dry organic solvent. A much stronger crown ether activation is observed when 18-crown-6 is added prior to lyophilization, and this can be explained by a combination of two effects: the before-mentioned macrocyclic complexation effect, and a less specific, nonmacrocyclic, lyoprotecting effect. The magnitude of the total crown ether effect depends on the polarity and thermodynamic water activity of the solvent, the activation being highest in dry and apolar media, where kinetic conformational barriers are highest. By determination of the specific activity of crown-ether-lyophilized enzyme as a function of the enzyme concentration, the macrocyclic crown ether (linearly dependent on the enzyme concentration) and the nonmacrocyclic lyoprotection effect (not dependent on the enzyme concentration) could be separated. These measurements reveal that the contribution of the

  20. Spatial distribution of enzyme activities in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  1. Self-Assembly of Amyloid Fibrils That Display Active Enzymes

    PubMed Central

    Zhou, Xiao-Ming; Entwistle, Aiman; Zhang, Hong; Jackson, Antony P; Mason, Thomas O; Shimanovich, Ulyana; Knowles, Tuomas P J; Smith, Andrew T; Sawyer, Elizabeth B; Perrett, Sarah

    2014-01-01

    Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface. We measured the steady-state kinetic parameters for the appended enzymes in situ within fibrils and compare these with the identical protein constructs in solution. Finally, we demonstrated that the fibrils can be recycled and reused in functional assays both in conventional batch processes and in a continuous-flow microreactor. PMID:25937845

  2. Intracellular localization of mevalonate-activating enzymes in plant cells

    PubMed Central

    Rogers, L. J.; Shah, S. P. J.; Goodwin, T. W.

    1966-01-01

    Mevalonate-activating enzymes are shown to be present in the chloroplasts of French-bean leaves. The chloroplast membrane is impermeable to mevalonic acid. Mevalonate-activating enzymes also appear to be found outside the chloroplast. These results support the view that terpenoid biosynthesis in the plant cell is controlled by a combination of enzyme segregation and specific membrane permeability. ImagesFig. 1.Fig. 2. PMID:5947149

  3. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator.

    PubMed

    Hamouda, Ayman K; Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B

    2016-05-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR. PMID:26976945

  4. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  5. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  6. Ultrasound in Enzyme Activation and Inactivation

    NASA Astrophysics Data System (ADS)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  7. Manganese enzymes with binuclear active sites

    SciTech Connect

    Dismukes, G.C.

    1996-11-01

    The purpose of this article is twofold. First, to review the recent literature dealing with the mechanisms of catalysis by binuclear manganese enzymes. Second, to summarize and illustrate the general principles of catalysis which distinguish binuclear metalloenzymes from monometallic centers. This review covers primarily the published literature from 1991 up to May 1996. A summary of the major structurally characterized dimanganese enzymes is given. These perform various reaction types including several redox reactions, (de)hydrations, isomerizations, (de)phosphorylation, and phosphoryl transfer. 114 refs.

  8. Determination of concentration and activity of immobilized enzymes.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    Methods that directly measure the concentration of surface-immobilized biomolecules are scarce. More commonly, the concentration of the soluble molecule is measured before and after immobilization, and the bound concentration is assessed by elimination, assuming that all bound molecules are active. An assay was developed for measuring the active site concentration, activity, and thereby the catalytic turnover rate (kcat) of an immobilized dihydrofolate reductase as a model system. The new method yielded a similar first-order rate constant, kcat, to that of the same enzyme in solution. The findings indicate that the activity of the immobilized enzyme, when separated from the surface by the DNA spacers, has not been altered. In addition, a new immobilization method that leads to solution-like activity of the enzyme on the surface is described. The approaches developed here for immobilization and for determining the concentration of an immobilized enzyme are general and can be extended to other enzymes, receptors, and antibodies.

  9. Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction

    PubMed Central

    Lin, T; Simchovitz, A; Shenhar-Tsarfaty, S; Vaisvaser, S; Admon, R; Hanin, G; Hanan, M; Kliper, E; Bar-Haim, Y; Shomron, N; Fernandez, G; Lubin, G; Fruchter, E; Hendler, T; Soreq, H

    2016-01-01

    Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome–neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility. PMID:27138800

  10. Effects of Total Ginsenosides on the Feeding Behavior and Two Enzymes Activities of Mythimna separata (Walker) Larvae

    PubMed Central

    Zhang, Ai-Hua; Tan, Shi-Qiang; Zhao, Yan; Lei, Feng-Jie; Zhang, Lian-Xue

    2015-01-01

    Ginsenosides, the main effective components of Panax ginseng C.A. Meyer and Panax quinquefolius L., are important allelochemicals of ginseng. Although many studies have targeted the pharmacological, chemical, and clinical properties of ginsenosides, little is known about their ecological role in ginseng population adaptation and evolution. Pests rarely feed on ginseng, and it is not known why. This study investigated the effects of total ginsenosides on feeding behavior and activities of acetylcholinesterase (AChE) and glutathione s-transferase (GST) in Mythimna separata (Walker) larvae. The results showed that the total ginsenosides had significant antifeeding activity against M. separata larvae, determined by nonselective and selective antifeeding bioassays. In addition, the total ginsenosides had inhibitory effects on the activities of GST and AChE. The antifeeding ratio was the highest at 8 h, then decreased, and was the lowest at 16 h. Both GST and AChE activities decreased from 0 h to 48 h in all total ginsenosides treatments but increased at 72 h. Total ginsenosides had antifeeding activity against M. separata larvae and inhibitory effects on the activities of GST and AChE. PMID:26074991

  11. Enzyme catalysis in an aqueous/organic segment flow microreactor: ways to stabilize enzyme activity.

    PubMed

    Karande, Rohan; Schmid, Andreas; Buehler, Katja

    2010-06-01

    Multiphase flow microreactors benefit from rapid mixing and high mass transfer rates, yet their application in enzymatic catalysis is limited due to the fast inactivation of enzymes used as biocatalysts. Enzyme inactivation during segment flow is due to the large interfacial area between aqueous and organic phases. The Peclet number of the system points to strong convective forces within the segments, and this results in rapid deactivation of the enzyme depending on segment length and flow rate. Addition of surfactant to the aqueous phase or enzyme immobilization prevents the biocatalyst from direct contact with the interface and thus stabilizes the enzyme activity. Almost 100% enzyme activity can be recovered compared to 45% without any enzyme or medium modification. Drop tensiometry measurements point to a mixed enzyme-surfactant interfacial adsorption, and above a certain concentration, the surfactant forms a protective layer between the interface and the biocatalyst in the aqueous compartments. Theoretical models were used to compare adsorption kinetics of the protein to the interface in the segment flow microreactor and in the drop tensiometry measurements. This study is the basis for the development of segment flow microreactors as a tool to perform productive enzymatic catalysis. PMID:20201570

  12. Enzyme activities along a latitudinal transect in Western Siberia

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wild, Birgit; Eloy Alves, Ricardo J.; Gentsch, Norman; Gittel, Antje; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Takriti, Mounir; Richter, Andreas

    2014-05-01

    Decomposition of soil organic matter (SOM) and thus carbon and nutrient cycling in soils is mediated by the activity of extracellular enzymes. The specific activities of these enzymes and their ratios to each other represent the link between the composition of soil organic matter and the nutrient demand of the microbial community. Depending on the difference between microbial nutrient demand and substrate availability, extracellular enzymes can enhance or slow down different nutrient cycles in the soil. We investigated activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase) in the topsoil organic horizon, topsoil mineral horizon and subsoil horizon in seven ecosystems along a 1,500 km-long North-South transect in Western Siberia. The transect included sites in the southern tundra, northern taiga, middle taiga, southern taiga, forest-steppe (in forested patches as well as in adjacent meadows) and Steppe. We found that enzyme patterns varied stronger with soil depth than between ecosystems. Differences between horizons were mainly based on the increasing ratio of oxidative enzymes to hydrolytic enzymes. Differences between sites were more pronounced in topsoil than in subsoil mineral horizons, but did not reflect the north-south transect and the related gradients in temperature and precipitation. The observed differences between sites in topsoil horizons might therefore result from differences in vegetation rather than climatic factors. The decreasing variability in the enzyme pattern with depth might also indicate that the composition of soil organic matter becomes more similar with soil depth, most likely by an increasing proportion of microbial remains compared to plant derived constituents of SOM. This also indicates, that SOM becomes less divers the more it is processed by soil microorganisms. Our findings highlight the importance of soil depth on enzyme

  13. Activation and stabilization of enzymes in ionic liquids.

    PubMed

    Moniruzzaman, Muhammad; Kamiya, Noriho; Goto, Masahiro

    2010-06-28

    As environmentally benign "green" solvents, room temperature ionic liquids (ILs) have been used as solvents or (co)solvents in biocatalytic reactions and processes for a decade. The technological utility of enzymes can be enhanced greatly by their use in ionic liquids (ILs) rather than in conventional organic solvents or in their natural aqueous reaction media. In fact, the combination of green properties and unique tailor-made physicochemical properties make ILs excellent non-aqueous solvents for enzymatic catalysis with numerous advantages over other solvents, including high conversion rates, high selectivity, better enzyme stability, as well as better recoverability and recyclability. However, in many cases, particularly in hydrophilic ILs, enzymes show relative instability and/or lower activity compared with conventional solvents. To improve the enzyme activity as well as stability in ILs, various attempts have been made by modifying the form of the enzymes. Examples are enzyme immobilization onto support materials via adsorption or multipoint attachment, lyophilization in the presence of stabilizing agents, chemical modification with stabilizing agents, formation of cross-linked enzyme aggregates, pretreatment with polar organic solvents or enzymes combined with suitable surfactants to form microemulsions. The use of these enzyme preparations in ILs can dramatically increase the solvent tolerance, enhance activity as well as stability, and improve enantioselectivity. This perspective highlights a number of pronounced strategies being used successfully for activation and stabilization of enzymes in non-aqueous ILs media. This review is not intended to be comprehensive, but rather to present a general overview of the potential approaches to activate enzymes for diverse enzymatic processes and biotransformations in ILs. PMID:20445940

  14. How should enzyme activities be used in fish growth studies?

    PubMed

    Pelletier; Blier; Dutil; Guderley

    1995-01-01

    The activity of glycolytic and oxidative enzymes was monitored in the white muscle of Atlantic cod Gadus morhua experiencing different growth rates. A strong positive relationship between the activity of two glycolytic enzymes and individual growth rate was observed regardless of whether the enzyme activity was expressed as units per gram wet mass, units per gram dry mass or with respect to muscle protein and DNA content. The most sensitive response to growth rate was observed when pyruvate kinase and lactate dehydrogenase activities were expressed as units per microgram DNA, and this may be useful as an indicator of growth rate in wild fish. In contrast, no relationship between the activities of oxidative enzymes and growth rate was observed when cytochrome c oxidase and citrate synthase activities were expressed as units per gram protein. Apparently, the aerobic capacity of white muscle in cod is not specifically increased to match growth rate. PMID:9319392

  15. TREATABILITY STUDY BULLETIN: ENZYME-ACTIVATED CELLULOSE TECHNOLOGY - THORNECO, INC

    EPA Science Inventory

    The Enzyme-Activated Cellulose Technology developed by Thorneco, Inc. uses cellulose placed into one or more cylindrical towers to remove metals and organic compounds from an aqueous solution. The cellulose is coated with a proprietary enzyme. Operating parameters that can affe...

  16. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  17. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    SciTech Connect

    Woodhead, A.D.; Achey, P.M.

    1981-06-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biological purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in preserving the integrity of embryonic DNA during this free-living stage.

  18. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    SciTech Connect

    Woodhead, A.D.; Achey, P.M.

    1981-01-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biologic purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm, Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in perserving the integrity of embryonic DNA during this free-living stage.

  19. TISSUE ENZYME ACTIVITIES IN KEMP'S RIDLEY TURTLES (LEPIDOCHELYS KEMPII).

    PubMed

    Petrosky, Keiko Y; Knoll, Joyce S; Innis, Charles

    2015-09-01

    This study determined the tissue distribution and activities of eight enzymes in 13 juvenile Kemp's ridley turtles (Lepidochelys kempii) that died after stranding. Samples from the liver, kidney, skeletal muscle, cardiac muscle, pancreas, lung, small intestine, and spleen were evaluated for activities of alanine aminotransferase (ALT), alkaline phosphatase (ALP), amylase, aspartate aminotransferase (AST), creatine kinase (CK), γ-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and lipase. AST, CK, and LDH activities were highest in cardiac and skeletal muscle but were also found in all other tissues. Amylase and lipase activities were highest in the pancreas and low in all other tissues. ALP activity was highest in the lung. ALT activity was highest in liver, kidney, and cardiac muscle, and GGT activity was highest in the kidney, but activities of these enzymes were low in all tissues. These data may assist clinicians in interpretation of plasma enzyme activities of Kemp's ridley turtles.

  20. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  1. A novel isopimarane diterpenoid with acetylcholinesterase inhibitory activity from Nepeta sorgerae, an endemic species to the Nemrut Mountain.

    PubMed

    Yilmaz, Anil; Cağlar, Pinar; Dirmenci, Tuncay; Gören, Nezhun; Topçu, Gülaçti

    2012-06-01

    From the dichloromethane extract of Nepeta sorgerae, the isolation and structure elucidation are now reported of a new isopimarane diterpenoid, named sorgerolone, and two known triterpenoids, oleanolic acid and ursolic acid. Antioxidant activity of the extracts and the isolated terpenoids was determined by the DPPH free radical scavenging and lipid peroxidation inhibition (beta-carotene bleaching) methods. Anticholinesterase activity of the extracts and isolates was investigated by Ellman's method against AChE and BChE enzymes. Although the antioxidant activity results were low, the AChE enzyme inhibition of the extracts and terpenoids was very promising.

  2. A novel isopimarane diterpenoid with acetylcholinesterase inhibitory activity from Nepeta sorgerae, an endemic species to the Nemrut Mountain.

    PubMed

    Yilmaz, Anil; Cağlar, Pinar; Dirmenci, Tuncay; Gören, Nezhun; Topçu, Gülaçti

    2012-06-01

    From the dichloromethane extract of Nepeta sorgerae, the isolation and structure elucidation are now reported of a new isopimarane diterpenoid, named sorgerolone, and two known triterpenoids, oleanolic acid and ursolic acid. Antioxidant activity of the extracts and the isolated terpenoids was determined by the DPPH free radical scavenging and lipid peroxidation inhibition (beta-carotene bleaching) methods. Anticholinesterase activity of the extracts and isolates was investigated by Ellman's method against AChE and BChE enzymes. Although the antioxidant activity results were low, the AChE enzyme inhibition of the extracts and terpenoids was very promising. PMID:22816286

  3. Function and biotechnology of extremophilic enzymes in low water activity

    PubMed Central

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  4. Function and biotechnology of extremophilic enzymes in low water activity.

    PubMed

    Karan, Ram; Capes, Melinda D; Dassarma, Shiladitya

    2012-02-02

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.

  5. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Gregor; Grotzky, Andrea; Lukić, Ružica; Matoori, Simon; Luciani, Paola; Yu, Hao; Zhang, Baozhong; Walde, Peter; Schlüter, A. Dieter; Gauthier, Marc A.; Leroux, Jean-Christophe

    2013-07-01

    Methods to stabilize and retain enzyme activity in the gastrointestinal tract are investigated rarely because of the difficulty of protecting proteins from an environment that has evolved to promote their digestion. Preventing the degradation of enzymes under these conditions, however, is critical for the development of new protein-based oral therapies. Here we show that covalent conjugation to polymers can stabilize orally administered therapeutic enzymes at different locations in the gastrointestinal tract. Architecturally and functionally diverse polymers are used to protect enzymes sterically from inactivation and to promote interactions with mucin on the stomach wall. Using this approach the in vivo activity of enzymes can be sustained for several hours in the stomach and/or in the small intestine. These findings provide new insight and a firm basis for the development of new therapeutic and imaging strategies based on orally administered proteins using a simple and accessible technology.

  6. Activation volumes of enzymes adsorbed on silica particles.

    PubMed

    Schuabb, Vitor; Czeslik, Claus

    2014-12-30

    The immobilization of enzymes on carrier particles is useful in many biotechnological processes. In this way, enzymes can be separated from the reaction solution by filtering and can be reused in several cycles. On the other hand, there is a series of examples of free enzymes in solution that can be activated by the application of pressure. Thus, a potential loss of enzymatic activity upon immobilization on carrier particles might be compensated by pressure. In this study, we have determined the activation volumes of two enzymes, α-chymotrypsin (α-CT) and horseradish peroxidase (HRP), when they are adsorbed on silica particles and free in solution. The experiments have been carried out using fluorescence assays under pressures up to 2000 bar. In all cases, activation volumes were found to depend on the applied pressure, suggesting different compressions of the enzyme-substrate complex and the transition state. The volume profiles of free and adsorbed HRP are similar. For α-CT, larger activation volumes are found in the adsorbed state. However, up to about 500 bar, the enzymatic reaction of α-CT, which is adsorbed on silica particles, is characterized by a negative activation volume. This observation suggests that application of pressure might indeed be useful to enhance the activity of enzymes on carrier particles.

  7. Microbial hydrolytic enzyme activities in deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Boetius, A.

    1995-03-01

    The potential hydrolysis rates of five different hydrolytic enzymes were determined in deep-sea sediments from the northeast Atlantic (BIOTRANS area) in March 1992. Fluorogenic substrates were used to assay extracellular α- and β-glucosidase, chitobiase, lipase and aminopeptidase. The potential activity of most of the enzymes investigated decreased to a minimum within the upper two centimetre range, whereas aminopeptidase was high over the upper five centimetre range. Exceptions were found when macrofaunal burrows occurred in the cores, always increasing the activities of some hydrolases, and therefore indicating the impact of bioturbation on degradation rates. The most striking feature of the investigated enzyme spectrum was the 50 2000 times higher specific activity of the aminopeptidase, compared with the other hydrolases. The activity of hydrolytic enzymes most likely reflects the availability of their respective substrates and is not a function of bacterial biomass.

  8. Silk Microgels Formed by Proteolytic Enzyme Activity

    PubMed Central

    Samal, Sangram K.; Dash, Mamoni; Chiellini, Federica; Kaplan, David L.; Chiellini, Emo

    2013-01-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMG) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer scaled crystals in native silkworm fibers. SDS-PAGE and zeta potential results demonstrated that α-chymotrypsin utilized only the nonamorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient potential and that the prepared SMGS have useful features for studies related to biomaterials and pharmaceutical needs. This process is also an easy approach to obtain the amorphous peptide chains for further study. PMID:23756227

  9. Silk microgels formed by proteolytic enzyme activity.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Chiellini, Federica; Kaplan, David L; Chiellini, Emo

    2013-09-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study. PMID:23756227

  10. Diced electrophoresis gel assay for screening enzymes with specified activities.

    PubMed

    Komatsu, Toru; Hanaoka, Kenjiro; Adibekian, Alexander; Yoshioka, Kentaro; Terai, Takuya; Ueno, Tasuku; Kawaguchi, Mitsuyasu; Cravatt, Benjamin F; Nagano, Tetsuo

    2013-04-24

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

  11. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  12. Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    PubMed Central

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H.

    2011-01-01

    Background Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management. PMID:21379573

  13. A novel approach to predict active sites of enzyme molecules.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-dong

    2004-04-01

    Enzymes are critical in many cellular signaling cascades. With many enzyme structures being solved, there is an increasing need to develop an automated method for identifying their active sites. However, given the atomic coordinates of an enzyme molecule, how can we predict its active site? This is a vitally important problem because the core of an enzyme molecule is its active site from the viewpoints of both pure scientific research and industrial application. In this article, a topological entity was introduced to characterize the enzymatic active site. Based on such a concept, the covariant discriminant algorithm was formulated for identifying the active site. As a paradigm, the serine hydrolase family was demonstrated. The overall success rate by jackknife test for a data set of 88 enzyme molecules was 99.92%, and that for a data set of 50 independent enzyme molecules was 99.91%. Meanwhile, it was shown through an example that the prediction algorithm can also be used to find any typographic error of a PDB file in annotating the constituent amino acids of catalytic triad and to suggest a possible correction. The very high success rates are due to the introduction of a covariance matrix in the prediction algorithm that makes allowance for taking into account the coupling effects among the key constituent atoms of active site. It is anticipated that the novel approach is quite promising and may become a useful high throughput tool in enzymology, proteomics, and structural bioinformatics. PMID:14997541

  14. In Vitro Antibody-Enzyme Conjugates with Specific Bactericidal Activity

    PubMed Central

    Knowles, Daniel M.; Sullivan, Timothy J.; Parker, Charles W.; Williams, Ralph C.

    1973-01-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A β-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I- and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia. PMID:4145026

  15. In Vitro and In Vivo Profiles of ACH-702, an Isothiazoloquinolone, against Bacterial Pathogens▿

    PubMed Central

    Pucci, Michael J.; Podos, Steven D.; Thanassi, Jane A.; Leggio, Melissa J.; Bradbury, Barton J.; Deshpande, Milind

    2011-01-01

    ACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency against Haemophilus influenzae, Moraxella catarrhalis, and a Neisseria sp. but was less active against members of the Enterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well as Legionella pneumophila and Mycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10× MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple. In vivo efficacy was demonstrated against S. aureus with murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (≤0.25 μg/ml) against staphylococcal strains with single mutations in both gyrA and grlA (parC), retention of good antibacterial activity (MICs of ≤0.5 μg/ml) against staphylococcal strains with two mutations in both gyrA and grlA, and low frequencies for the selection of higher-level resistance (<10−10). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates. PMID

  16. Acrylonitrile has Distinct Hormetic Effects on Acetyl-Cholinesterase Activity in Mouse Brain and Blood that are Modulated by Ethanol.

    PubMed

    Yuanqing, He; Suhua, Wang; Guangwei, Xing; Chunlan, Ren; Hai, Qian; Wenrong, Xu; Rongzhu, Lu; Aschner, Michael; Milatovic, Dejan

    2013-01-01

    Acrylonitrile(AN) is a neurotoxin both in animals and humans, but its effects on acetylcholinesterase (AChE) activity remain controversial. This study aimed to determine the dose-response effects of AN on AChE activity and the modulatory role of ethanol pre-treatment. A total of 144 Kunming mice were randomly divided into 18 groups: nine groups received 5% ethanol in their drinking water, and the remaining nine groups received regular tap water. One week later, both the ethanol and tap water only groups were given an intraperitoneal injection of AN at the following doses: 0 (control), 0.156, 0.3125, 0.625, 1.25, 2.5, 5, 10 or 20 mg AN/kg body weight. AChE activity was determined on whole blood and brain 24 h later. Blood AChE activity was higher in AN-injected mice than in controls at all doses. AChE activity in blood increased in a dose-dependent manner, peaking at 0.156 mg/kg, after which a gradual decrease ensued, displaying a β-typed dose-response relationship. In contrast, brain AChE activity, following a single AN injection, was consistently lower than in control mice, and continued to fall up to a dose of 0.313 mg/kg, and thereafter increased gradually with higher doses. Mice receiving a 20 mg/kg dose of AN exhibited AChE brain activity indistinguishable from that of control mice, demonstrating a typical U-typed dose-response relationship. The activity of AChE in the blood and brain of the AN + ethanol-treated groups displayed a shift to the right, and the magnitude of the decrease in AChE activity induced by AN was attenuated relative to the AN-only group. These results suggest that AN affects AChE activity in both mouse blood and brain in a hormetic manner. Pretreatment with ethanol modifies the effect of AN on AChE, indicating that parent AN has a more prominent role than its metabolites in modulating enzyme activity. PMID:23550232

  17. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  18. Synergetic Effects of Nanoporous Support and Urea on Enzyme Activity

    SciTech Connect

    Lei, Chenghong; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2007-02-01

    Here we report that synergetic effects of functionalized nanoporous support and urea on enzyme activity enhancement. Even in 8.0 M urea, the specific activity of GI entrapped in FMS was still higher than the highest specific activity of GI free in solution, indicating the strong tolerance of GI in FMS to the high concentration of urea.

  19. Effects of cadium, zinc and lead on soil enzyme activities.

    PubMed

    Yang, Zhi-xin; Liu, Shu-qing; Zheng, Da-wei; Feng, Sheng-dong

    2006-01-01

    Heavy metal (HM) is a major hazard to the soil-plant system. This study investigated the combined effects of cadium (Cd), zinc (Zn) and lead (Pb) on activities of four enzymes in soil, including calatase, urease, invertase and alkalin phosphatase. HM content in tops of canola and four enzymes activities in soil were analyzed at two months after the metal additions to the soil. Pb was not significantly inhibitory than the other heavy metals for the four enzyme activities and was shown to have a protective role on calatase activity in the combined presence of Cd, Zn and Pb; whereas Cd significantly inhibited the four enzyme activities, and Zn only inhibited urease and calatase activities. The inhibiting effect of Cd and Zn on urease and calatase activities can be intensified significantly by the additions of Zn and Cd. There was a negative synergistic inhibitory effect of Cd and Zn on the two enzymes in the presence of Cd, Zn and Pb. The urease activity was inhibited more by the HM combinations than by the metals alone and reduced approximately 20%-40% of urease activity. The intertase and alkaline phosphatase activities significantly decreased only with the increase of Cd concentration in the soil. It was shown that urease was much more sensitive to HM than the other enzymes. There was a obvious negative correlation between the ionic impulsion of HM in soil, the ionic impulsion of HM in canola plants tops and urease activity. It is concluded that the soil urease activity may be a sensitive tool for assessing additive toxic combination effect on soil biochemical parameters.

  20. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  1. Enzyme:nanoparticle bioconjugates with two sequential enzymes: stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles.

    PubMed

    Keighron, Jacqueline D; Keating, Christine D

    2010-12-21

    We report the synthesis and characterization of bioconjugates in which the enzymes malate dehydrogenase (MDH) and/or citrate synthase (CS) were adsorbed to 30 nm diameter Au nanoparticles. Enzyme:Au stoichiometry and kinetic parameters (specific activity, k(cat), K(M), and activity per particle) were determined for MDH:Au, CS:Au, and three types of dual-activity MDH/CS:Au bioconjugates. For single-activity bioconjugates (MDH:Au and CS:Au), the number of enzyme molecules adsorbed per particle was dependent upon the enzyme concentration in solution, with multilayers forming at high enzyme:Au solution ratios. The specific activity of adsorbed enzyme increased with increasing number adsorbed per particle for CS:Au, but was less sensitive to stoichiometry for MDH:Au. Dual activity bioconjugates were prepared in three ways: (1) by adsorption of MDH followed by CS, (2) by adsorption of CS followed by MDH, and (3) by coadsorption of both enzymes from the same solution. The resulting bioconjugates differed substantially in the number of enzyme molecules adsorbed per particle, the specific activity of the adsorbed enzymes, and also the enzymatic activity per particle. Bioconjugates formed by adding CS to the Au nanoparticles before MDH was added exhibited higher specific activities for both enzymes than those formed by adding the enzymes in the reverse order. These bioconjugates also had 3-fold higher per-particle sequential activity for conversion of malate to citrate, despite substantially fewer copies of both enzymes present.

  2. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease.

    PubMed

    Lemes, Laís Flávia Nunes; de Andrade Ramos, Giselle; de Oliveira, Andressa Souza; da Silva, Fernanda Motta R; de Castro Couto, Gina; da Silva Boni, Marina; Guimarães, Marcos Jorge R; Souza, Isis Nem O; Bartolini, Manuela; Andrisano, Vincenza; do Nascimento Nogueira, Patrícia Coelho; Silveira, Edilberto Rocha; Brand, Guilherme D; Soukup, Ondřej; Korábečný, Jan; Romeiro, Nelilma C; Castro, Newton G; Bolognesi, Maria Laura; Romeiro, Luiz Antonio Soares

    2016-01-27

    Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 μM, and a similar inhibition profile of the human isoform (IC50 = 5.7 μM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 μM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development. PMID:26735910

  3. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  4. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  5. Interfacial activation-based molecular bioimprinting of lipolytic enzymes.

    PubMed Central

    Mingarro, I; Abad, C; Braco, L

    1995-01-01

    Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the present biochemical and structural knowledge, show that the IAMI approach represents a straightforward, versatile method to generate manageable, activated (kinetically trapped) forms of lipolytic enzymes, providing under optimal conditions nonaqueous rate enhancements of up to two orders of magnitude. It is also shown that imprintability of lipolytic enzymes depends not only on the nature of the enzyme but also on the "quality" of the interface used as the template. PMID:7724558

  6. Catalytically active nanomaterials: a promising candidate for artificial enzymes.

    PubMed

    Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2014-04-15

    Natural enzymes, exquisite biocatalysts mediating every biological process in living organisms, are able to accelerate the rate of chemical reactions up to 10(19) times for specific substrates and reactions. However, the practical application of enzymes is often hampered by their intrinsic drawbacks, such as low operational stability, sensitivity of catalytic activity to environmental conditions, and high costs in preparation and purification. Therefore, the discovery and development of artificial enzymes is highly desired. Recently, the merging of nanotechnology with biology has ignited extensive research efforts for designing functional nanomaterials that exhibit various properties intrinsic to enzymes. As a promising candidate for artificial enzymes, catalytically active nanomaterials (nanozymes) show several advantages over natural enzymes, such as controlled synthesis in low cost, tunability in catalytic activities, as well as high stability against stringent conditions. In this Account, we focus on our recent progress in exploring and constructing such nanoparticulate artificial enzymes, including graphene oxide, graphene-hemin nanocomposites, carbon nanotubes, carbon nanodots, mesoporous silica-encapsulated gold nanoparticles, gold nanoclusters, and nanoceria. According to their structural characteristics, these enzyme mimics are categorized into three classes: carbon-, metal-, and metal-oxide-based nanomaterials. We aim to highlight the important role of catalytic nanomaterials in the fields of biomimetics. First, we provide a practical introduction to the identification of these nanozymes, the source of the enzyme-like activities, and the enhancement of activities via rational design and engineering. Then we briefly describe new or enhanced applications of certain nanozymes in biomedical diagnosis, environmental monitoring, and therapeutics. For instance, we have successfully used these biomimetic catalysts as colorimetric probes for the detection of

  7. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability.

    PubMed

    Jin, Liling; Yang, Kai; Yao, Kai; Zhang, Shuai; Tao, Huiquan; Lee, Shuit-Tong; Liu, Zhuang; Peng, Rui

    2012-06-26

    The understanding of interactions between nanomaterials and biomolecules is of fundamental importance to the area of nanobiotechnology. Graphene and its derivative, graphene oxide (GO), are two-dimensional (2-D) nanomaterials with interesting physical and chemical properties and have been widely explored in various directions of biomedicine in recent years. However, how functionalized GO interacts with bioactive proteins such as enzymes and its potential in enzyme engineering have been rarely explored. In this study, we carefully investigated the interactions between serine proteases and GO functionalized with different amine-terminated polyethylene glycol (PEG). Three well-characterized serine proteases (trypsin, chymotrypsin, and proteinase K) with important biomedical and industrial applications were analyzed. It is found that these PEGylated GOs could selectively improve trypsin activity and thermostability (60-70% retained activity at 80 °C), while exhibiting barely any effect on chymotrypsin or proteinase K. Detailed investigation illustrates that the PEGylated GO-induced acceleration is substrate-dependent, affecting only phosphorylated protein substrates, and that at least up to 43-fold increase could be achieved depending on the substrate concentration. This unique phenomenon, interestingly, is found to be attributed to both the terminal amino groups on polymer coatings and the 2-D structure of GO. Moreover, an enzyme-based bioassay system is further demonstrated utilizing our GO-based enzyme modulator in a proof-of-concept experiment. To our best knowledge, this work is the first success of using functionalized GO as an efficient enzyme positive modulator with great selectivity, exhibiting a novel potential of GO, when appropriately functionalized, in enzyme engineering as well as enzyme-based biosensing and detection.

  8. Optimization to Low Temperature Activity in Psychrophilic Enzymes

    PubMed Central

    Struvay, Caroline; Feller, Georges

    2012-01-01

    Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. Considering the subtle structural adjustments required for low temperature activity, directed evolution appears to be the most suitable methodology to engineer cold activity in biological catalysts. PMID:23109875

  9. Angiotensin I converting enzyme activity in rabbit corneal endothelial cells.

    PubMed

    Neels, H M; Vanden Berghe, D A; Neetens, A J; Delgadillo, R A; Scharpe, S L

    1983-01-01

    Angiotensin I converting enzyme (ACE) was studied in Vero cells, rabbit corneal fibroblasts, and rabbit corneal endothelial cells. The enzyme activity was determined by means of an assay employing hippuryl-glycyl-glycine as a substrate. The hippuric acid end product was separated from the substrate by reversed phase liquid chromatography and measured spectrophotometrically at 228 nm. The enzyme was further characterized by a captopril inhibition study. Significant ACE activity was found in rabbit corneal endothelial cells but not in other types of cells tested. This is the first report of the presence of this enzyme in a specific ocular cell type and suggests that angiotensin II may play a role in normal ocular physiology.

  10. Chimeric enzymes with improved cellulase activities

    SciTech Connect

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  11. Enzyme-polymer composites with high biocatalytic activity and stability

    SciTech Connect

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  12. Distribution and activity of hydrogenase enzymes in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a

  13. Improving Activity of Salt-Lyophilized Enzymes in Organic Media

    NASA Astrophysics Data System (ADS)

    Borole, Abhijeet P.; Davison, Brian H.

    Lyophilization with salts has been identified as an important method of activating enzymes in organic media. Using salt-activated enzymes to transform molecules tethered to solid surfaces in organic phase requires solubilization of enzymes in the solvents. Methods of improving performance of salt-lyophilized enzymes, further, via chemical modification, and use of surfactants and surfactants to create fine emulsions prior to lyophilization are investigated. The reaction system used is transesterification of N-acetyl phenylalanine ethyl ester with methanol or propanol. Initial rate of formation of amino acid esters by subtilisin Carlsberg (SC) was studied and found to increase two to sevenfold by either chemical modification or addition of surfactants in certain solvents, relative to the salt (only)-lyophilized enzyme. The method to prepare highly dispersed enzymes in a salt-surfactant milieu also improved activity by two to threefold. To test the effect of chemical modification on derivatization of drug molecules, acylation of bergenin was investigated using chemically modified SC.

  14. Improving activity of salt-lyophilized enzymes in organic media

    SciTech Connect

    Borole, Abhijeet P; Davison, Brian H

    2008-01-01

    Lyophilization with salts has been identified as an important method of activating enzymes in organic media. Using salt-activated enzymes to transform molecules tethered to solid surfaces in organic phase requires solubilization of enzymes in the solvents. Methods of improving performance of salt-lyophilized enzymes, further, via chemical modification, and use of surfactants and surfactants to create fine emulsions prior to lyophilization are investigated. The reaction system used is transesterification of N-acetyl phenylalanine ethyl ester with methanol or propanol. Initial rate of formation of amino acid esters by subtilisin Carlsberg (SC) was studied and found to increase two to sevenfold by either chemical modification or addition of surfactants in certain solvents, relative to the salt (only)-lyophilized enzyme. The method to prepare highly dispersed enzymes in a salt-surfactant milieu also improved activity by two to threefold. To test the effect of chemical modification on derivatization of drug molecules, acylation of bergenin was investigated using chemically modified SC.

  15. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  16. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  17. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  18. Clinical application of clustered-AChR for the detection of SNMG

    PubMed Central

    Zhao, Guang; Wang, Xiaoqing; Yu, Xiaowen; Zhang, Xiutian; Guan, Yangtai; Jiang, Jianming

    2015-01-01

    Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG. PMID:26068604

  19. Enzyme activities of lung lavage in silicosis.

    PubMed

    Larivée, P; Cantin, A; Dufresne, A; Bégin, R

    1990-01-01

    The cytotoxic effect of quartz on lung cells has been well documented by in vitro and animal studies, but the pertinence of these findings to humans has not yet been documented. We measured lactate dehydrogenase (LDH) activities in the lung lavage of 24 long-term workers in the Québec granite industry and 25 control subjects. We found significant increases in LDH activities in the workers' lung lavage, even in the absence of established silicosis (9 subjects). We looked at a similar observation in the sheep model of early silicosis, measured quartz content of lung lavage, and found significant correlation with LDH levels (R = 0.64, p less than 0.001). All of the quartz particles in human and sheep lung lavage were in the alveolar macrophages. To test further the relationship of macrophage damage (cytotoxicity of quartz) we measured the release of LDH by sheep alveolar macrophage in 24 h cell culture under control conditions, exposure to inert dust, titanium, minusil-5 quartz, or aluminum-treated quartz. The LDH release was at control levels during titanium exposure and showed a significantly dose-related increase during quartz exposure. The latter cytotoxic effect was largely attenuated by aluminum treatment of quartz. These in vitro data agreed with previous reports. This study presents evidence of a cytotoxic effect of quartz inhalation in humans. The effect is related to the intensity of quartz retention in the lung macrophages; it is not a nonspecific dust exposure effect and can be attenuated by surface modification of the quartz.

  20. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  1. Chemoproteomic profiling of host and pathogen enzymes active in cholera

    PubMed Central

    Hatzios, Stavroula K.; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A.; Qadri, Firdausi; Ryan, Edward T.; Davis, Brigid M.; Weerapana, Eranthie; Waldor, Matthew K.

    2016-01-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human cholera stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, while genetic disruption of all four proteases increased the abundance and binding of an intestinal lectin—intelectin—to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialogue in an animal model of infection. PMID:26900865

  2. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  3. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  4. Water modulation of stratum corneum chymotryptic enzyme activity and desquamation.

    PubMed

    Watkinson, A; Harding, C; Moore, A; Coan, P

    2001-09-01

    Exposure to a dry environment leads to depletion of water from the peripheral stratum corneum layers in a process dependent on the relative humidity (RH) and the intrinsic properties of the tissue. We hypothesized that by modulating the water content of the stratum corneum in the surface layers, RH effects the rate of desquamation by modulating the activity of the desquamatory enzymes, and specifically stratum corneum chymotryptic enzyme (SCCE). Using a novel air interface in vitro desquamatory model, we demonstrated RH-dependent corneocyte release with desquamatory rates decreasing below 80% RH. Application of 10% glycerol or a glycerol-containing moisturizing lotion further increased desquamation, even in humid conditions, demonstrating that water was the rate-limiting factor in the final stages of desquamation. Furthermore, even in humid conditions desquamation was sub-maximal. In situ stratum corneum SCCE activity showed a dependence on RH: activity was significantly higher at 100% than at 44% RH. Further increases in SCCE activity were induced by applying a 10% glycerol solution. Since SCCE, a water-requiring enzyme, must function in the water-depleted outer stratum corneum, we sought to determine whether this enzyme has a tolerance to lowered water activity. Using concentrated sucrose solutions to lower water activity, we analysed the activity of recombinant SCCE and compared it to that of trypsin and chymotrypsin. SCCE activity demonstrated a tolerance to water restriction, and this may be an adaptation to maintain enzyme activity even within the water-depleted stratum corneum intercellular space. Overall these findings support the concept that in the upper stratum corneum, RH modulates desquamation by its effect upon SCCE activity, and possibly other desquamatory hydrolases. In addition, SCCE may be adapted to function in the water-restricted stratum corneum intercellular space.

  5. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  6. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  7. Activation Energy of Extracellular Enzymes in Soils from Different Biomes

    PubMed Central

    Steinweg, J. Megan; Jagadamma, Sindhu; Frerichs, Joshua; Mayes, Melanie A.

    2013-01-01

    Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones. PMID:23536898

  8. Modulating enzyme activity using ionic liquids or surfactants.

    PubMed

    Goldfeder, Mor; Fishman, Ayelet

    2014-01-01

    One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme-water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems. PMID:24281758

  9. Lipid peroxidation and antioxidant enzymes activity in avian semen.

    PubMed

    Partyka, Agnieszka; Lukaszewicz, Ewa; Niżański, Wojciech

    2012-10-01

    The present study compared the antioxidant system and lipid peroxidation in semen of two avian species: chicken and goose. The experiment was conducted on Greenleg Partridge roosters and White Koluda(®) ganders, each represented by 10 mature males. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma. In gander spermatozoa, the amount of MDA was 10 times greater (P<0.01) than in rooster spermatozoa. Each of the investigated antioxidant enzymes had greater (P<0.01) activity in goose than chicken sperm. Catalase activity was detected in seminal plasma and spermatozoa from both studied species for the first time. In seminal plasma, the activity of GPx was two times greater (P<0.01) in the White Koluda(®) than in chickens, whereas SOD activity was less (P<0.01) than in chickens. This is the first study describing the presence of CAT in avian semen and the occurrence of indicator of lipid peroxidation (LPO) in geese. Data from the present study clearly show the species-specific differences in the activity of antioxidant defense and LPO. The greater amount of lipid peroxidation and greater activity of antioxidant enzymes in goose semen might suggest that spermatozoa were under greater oxidative stress and the enzymes were not utilized for the protection of functionally and structurally impaired cells. In turn, in fresh chicken semen a lesser activity of antioxidant enzymes accompanied with a lesser lipid peroxidation amount and good semen quality could indicate that fowl spermatozoa were under oxidative stress, but the enzymes were employed to protect and maintain sperm quality.

  10. [Enzyme activity of an actinomycete producer of carotenes and macrotetrolides].

    PubMed

    Nefelova, M V; Sverdlova, A N

    1982-01-01

    The activity of pyruvate dehydrogenase and dehydrogenases of the tricarboxylic acid cycle was assayed in the mycelium of Streptomyces chrysomallus var. Carotenoides growing under different conditions of the medium. The activity of the enzymes increased when acetic, citric and succinic acids were added at different periods of the growth. Moreover, addition of the acids increased the time of intensive functioning of the dehydrogenases whose activity abruptly decreased after 60 h of the growth under the control conditions.

  11. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork.

    PubMed

    Woraprayote, Weerapong; Kingcha, Yutthana; Amonphanpokin, Pannawit; Kruenate, Jittiporn; Zendo, Takeshi; Sonomoto, Kenji; Benjakul, Soottawat; Visessanguan, Wonnop

    2013-10-15

    A novel poly(lactic acid) (PLA)/sawdust particle (SP) biocomposite film with anti-listeria activity was developed by incorporation of pediocin PA-1/AcH (Ped) using diffusion coating method. Sawdust particle played an important role in embedding pediocin into the hydrophobic PLA film. The anti-listeria activity of the PLA/SP biocomposite film incorporated with Ped (PLA/SP+Ped) was detected, while no activity against the tested pathogen was observed for the control PLA films (without SP and/or Ped). Dry-heat treatment of film before coating with Ped resulted in the highest Ped adsorption (11.63 ± 3.07 μg protein/cm(2)) and the highest anti-listeria activity. A model study of PLA/SP+Ped as a food-contact antimicrobial packaging on raw sliced pork suggests a potential inhibition of Listeria monocytogenes (99% of total listerial population) on raw sliced pork during the chilled storage. This study supports the feasibility of using PLA/SP+Ped film to reduce the initial load of L. monocytogenes on the surface of raw pork.

  12. Nanoparticles Ease Aching Joints in Mice

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_161188.html Nanoparticles Ease Aching Joints in Mice Treatment might one ... News) -- New research in mice suggests that tiny nanoparticles might one day be a better way to ...

  13. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  14. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  15. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  16. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  17. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    USGS Publications Warehouse

    Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.

    2005-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  18. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    PubMed Central

    Wheelock, Craig E.; Eder, Kai J.; Werner, Inge; Huang, Huazhang; Jones, Paul D.; Brammell, Benjamin F.; Elskus, Adria A.; Hammock, Bruce D.

    2006-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  19. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  20. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    NASA Astrophysics Data System (ADS)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  1. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    PubMed

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens. PMID:11265593

  2. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds.

    PubMed

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-04-01

    Alcoholic extracts of 8 different types of seaweeds from Iran's Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml(-1)) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml(-1)). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml(-1), respectively). All extracts were inactive in antimalarial assay. PMID:24019820

  3. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  4. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties.

    PubMed

    Kuriki, T; Stewart, D C; Preiss, J

    1997-11-14

    Branching enzyme I and II isoforms from maize endosperm (mBE I and mBE II, respectively) have quite different properties, and to elucidate the domain(s) that determines the differences, chimeric genes consisting of part mBE I and part mBE II were constructed. When expressed under the control of the T7 promoter in Escherichia coli, several of the chimeric enzymes were inactive. The only fully active chimeric enzyme was mBE II-I BspHI, in which the carboxyl-terminal part of mBE II was exchanged for that of mBE I at a BspHI restriction site and was purified to homogeneity and characterized. Another chimeric enzyme, mBE I-II HindIII, in which the amino-terminal end of mBE II was replaced with that of mBE I, had very little activity and was only partially characterized. The purified mBE II-I BspHI exhibited higher activity than wild-type mBE I and mBE II when assayed by the phosphorylase a stimulation assay. mBE II-I BspHI had substrate specificity (preference for amylose rather than amylopectin) and catalytic capacity similar to mBE I, despite the fact that only the carboxyl terminus was from mBE I, suggesting that the carboxyl terminus may be involved in determining substrate specificity and catalytic capacity. In chain transfer experiments, mBE II-I BspHI transferred more short chains (with a degree of polymerization of around 6) in a fashion similar to mBE II. In contrast, mBE I-II HindIII transferred more long chains (with a degree of polymerization of around 11-12), similar to mBE I, suggesting that the amino terminus of mBEs may play a role in the size of oligosaccharide chain transferred. This study challenges the notion that the catalytic centers for branching enzymes are exclusively located in the central portion of the enzyme; it suggests instead that the amino and carboxyl termini may also be involved in determining substrate preference, catalytic capacity, and chain length transfer.

  5. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    PubMed

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry.

  6. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  7. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  8. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    PubMed Central

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging. PMID:24729833

  9. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    PubMed

    Mel'nyk, A V; Pentiuk, O O

    2009-01-01

    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  10. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  11. Extracellular enzyme activity and biogeochemical cycling in restored prairies

    NASA Astrophysics Data System (ADS)

    Lynch, L.; Hernandez, D.; Schade, J. D.

    2011-12-01

    Winter microbial activity in mid-latitude prairie ecosystems is thermally sensitive and significantly influenced by snow depth. Snow insulates the soil column facilitating microbial processing of complex organic substrates. Previous studies in forests and tundra ecosystems suggest patterns of substrate utilization and limitation are seasonal; above freezing, soil microbes access fresh litter inputs and sugar exudates from plant roots, while under frozen condition they recycle nutrients incorporated in microbial biomass. In order to liberate nutrients required for carbon degradation, soil microbes invest energy in the production of extracellular enzymes that cleave monomers from polymer bonds. The inverse relationship between relative enzyme abundance and substrate availability makes enzyme assays a useful proxy to assess changes in resources over time. Our objective in this study was to assess patterns in microbial biomass, nutrient availability, and extracellular enzyme activity in four snow exclosure sites over a seven-month period. Over the past three years, we have maintained a snow removal experiment on two restored prairies in central Minnesota. In each prairie, snow was continuously removed annually from two 4 x 4 m plots by shoveling after each snow event. Extractable C, N and P, and microbial C, N and P in soil samples were measured in samples collected from these snow removal plots, as well as in adjacent unmanipulated prairie control plots. Pools of C, N, and P were estimated using standard extraction protocols, and microbial pools were estimated using chloroform fumigation direct extraction (CFDE). We conducted fluorometric extracellular enzyme assays (EEA) to assess how the degradation potential of cellulose (cellobiohydrolase, CBH), protein (leucine aminopeptidase, LAP), and phosphate esters (phosphatase, PHOS) changed seasonally. Microbial C and N declined between October and June, while microbial P declined during the fall and winter, but increased

  12. Extracellular enzyme activity in a willow sewage treatment system.

    PubMed

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  13. Enzyme-like activities of algal polysaccharide - cerium complexes

    NASA Astrophysics Data System (ADS)

    Wang, Dongfeng; Sun, Jipeng; Du, Dehong; Ye, Shen; Wang, Changhong; Zhou, Xiaoling; Xue, Changhu

    2005-01-01

    Water-soluble algal polysaccharides (APS) (alginic acid, fucoidan and laminaran) possess many pharmacological activities. The results of this study showed that the APS-Ce4+ complexes have some enzyme-like activities. Fucoidan and its complex with Ce4+ have activities similar to those of SOD. The activities of laminaran, alginic acid and their complexes are not measurable. The APS do not show measurable activities in the digestion of plasmid DNA. In contrast, the APS - Ce4+ complexes show these measurable activities under the comparable condition when APS bind Ce4+ and form homogenous solutions. The laminaran - Ce4+ complex shows the most obvious activity in the digestion of plasmid DNA, pNPP and chloropy-rifos under neutral conditions.

  14. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  15. Discovery of Highly Potent and Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists Containing an Isoxazolylpyridine Ether Scaffold that Demonstrate Antidepressant-like Activity. Part II

    PubMed Central

    Yu, Li-Fang; Eaton, J. Brek; Fedolak, Allison; Zhang, Han-Kun; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J.; Kozikowski, Alan P.

    2012-01-01

    In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [3H]epibatidine binding studies together with functional assays based on 86Rb+ ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity, but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics. PMID:23092294

  16. Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge.

    PubMed Central

    van Groenestijn, J W; Bentvelsen, M M; Deinema, M H; Zehnder, A J

    1989-01-01

    Polyphosphate-degrading enzymes were studied in Acinetobacter spp. and activated sludge. Polyphosphate: AMP phosphotransferase activity in Acinetobacter strain 210A decreased with increasing growth rates. The activity of this enzyme in cell extracts of Acinetobacter strain 210A was maximal at a pH of 8.5 and a temperature of 40 degrees C and was stimulated by (NH4)2SO4. The Km for AMP was 0.6 mM, and the Vmax was 60 nmol/min per mg of protein. Cell extracts of this strain also contained polyphosphatase, which was able to degrade native polyphosphate and synthetic magnesium polyphosphate and was strongly stimulated by 300 to 400 mM NH4Cl. A positive correlation was found between polyphosphate:AMP phosphotransferase activity, adenylate kinase activity, and phosphorus accumulation in six Acinetobacter strains. Significant activities of polyphosphate kinase were detected only in strain P, which contained no polyphosphate:AMP phosphotransferase. In samples of activated sludge from different plants, the activity of adenylate kinase correlated well with the ability of the sludge to remove phosphate biologically from wastewater. PMID:2539774

  17. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  18. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[S

    PubMed Central

    Jaishy, Bharat; Zhang, Quanjiang; Chung, Heaseung S.; Riehle, Christian; Soto, Jamie; Jenkins, Stephen; Abel, Patrick; Cowart, L. Ashley; Van Eyk, Jennifer E.; Abel, E. Dale

    2015-01-01

    Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs. PMID:25529920

  19. Sample storage for soil enzyme activity and bacterial community profiles.

    PubMed

    Wallenius, K; Rita, H; Simpanen, S; Mikkonen, A; Niemi, R M

    2010-04-01

    Storage of samples is often an unavoidable step in environmental data collection, since available analytical capacity seldom permits immediate processing of large sample sets needed for representative data. In microbiological soil studies, sample pretreatments may have a strong influence on measurement results, and thus careful consideration is required in the selection of storage conditions. The aim of this study was to investigate the suitability of prolonged (up to 16 weeks) frozen or air-dried storage for divergent soil materials. The samples selected to this study were mineral soil (clay loam) from an agricultural field, humus from a pine forest and compost from a municipal sewage sludge composting field. The measured microbiological parameters included functional profiling with ten different hydrolysing enzyme activities determined by artificial fluorogenic substrates, and structural profiling with bacterial 16S rDNA community fingerprints by amplicon length heterogeneity analysis (LH-PCR). Storage of samples affected the observed fluorescence intensity of the enzyme assay's fluorophor standards dissolved in soil suspension. The impact was highly dependent on the soil matrix and storage method, making it important to use separate standardisation for each combination of matrix type, storage method and time. Freezing proved to be a better storage method than air-drying for all the matrices and enzyme activities studied. The effect of freezing on the enzyme activities was small (<20%) in clay loam and forest humus and moderate (generally 20-30%) in compost. The most dramatic decreases (>50%) in activity were observed in compost after air-drying. The bacterial LH-PCR community fingerprints were unaffected by frozen storage in all matrices. The effect of storage treatments was tested using a new statistical method based on showing similarity rather than difference of results.

  20. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  1. Chemoproteomic profiling of host and pathogen enzymes active in cholera.

    PubMed

    Hatzios, Stavroula K; Abel, Sören; Martell, Julianne; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A; Qadri, Firdausi; Ryan, Edward T; Davis, Brigid M; Weerapana, Eranthie; Waldor, Matthew K

    2016-04-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection. PMID:26900865

  2. Exploring the sheep rumen microbiome for carbohydrate-active enzymes.

    PubMed

    Lopes, Lucas Dantas; de Souza Lima, André Oliveira; Taketani, Rodrigo Gouvêa; Darias, Phillip; da Silva, Lília Raquel Fé; Romagnoli, Emiliana Manesco; Louvandini, Helder; Abdalla, Adibe Luiz; Mendes, Rodrigo

    2015-07-01

    The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.

  3. Exploring the sheep rumen microbiome for carbohydrate-active enzymes.

    PubMed

    Lopes, Lucas Dantas; de Souza Lima, André Oliveira; Taketani, Rodrigo Gouvêa; Darias, Phillip; da Silva, Lília Raquel Fé; Romagnoli, Emiliana Manesco; Louvandini, Helder; Abdalla, Adibe Luiz; Mendes, Rodrigo

    2015-07-01

    The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes. PMID:25900454

  4. Polymer nanocarriers protecting active enzyme cargo against proteolysis.

    PubMed

    Dziubla, Thomas D; Karim, Adnan; Muzykantov, Vladimir R

    2005-02-01

    Polymeric nanocarriers (PNCs), proposed as an attractive vehicle for vascular drug delivery, remain an orphan technology for enzyme therapies due to poor loading and inactivation of protein cargoes. To unite enzyme delivery by PNC with a clinically relevant goal of containment of vascular oxidative stress, a novel freeze-thaw encapsulation strategy was designed and provides approximately 20% efficiency loading of an active large antioxidant enzyme, catalase, into PNC (200-300 nm) composed of biodegradable block copolymers poly(ethylene glycol)-b-poly(lactic-glycolic acid). Catalase's substrate, H(2)O(2), was freely diffusible in the PNC polymer. Furthermore, PNC-loaded catalase stably retained 25-30% of H(2)O(2)-degrading activity for at least 18 h in a proteolytic environment, while free catalase lost activity within 1 h. Delivery and protection of catalase from lysosomal degradation afforded by PNC nanotechnology may advance effectiveness and duration of treatment of diverse disease conditions associated with vascular oxidative stress. PMID:15653162

  5. In vivo enzyme activity in inborn errors of metabolism

    SciTech Connect

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. )

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  6. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Suzer, Cüneyt; Aktülün, Sevim; Coban, Deniz; Okan Kamaci, H; Saka, Sahin; Firat, Kürşat; Alpbaz, Atilla

    2007-10-01

    The ontogenesis and specific activities of pancreatic and intestinal enzymes were investigated in sharpsnout sea bream, Diplodus puntazzo, during larval development until the end of weaning on day 50. The green-water technique was carried out for larval rearing in triplicate. Trypsin was first detected as early as hatching and sharply increased related to age and exogenous feeding until day 25, but a sharp decrease was observed towards the end of the experiment. Amylase was determined 2 days after hatching (DAH) and sharply increased to 10 DAH. Afterwards, slight decreases were found between 10 and 20 DAH and then slow alterations were continued until end of the experiment. Lipase was measured for the first time on day 4, and then slight increase was found to 25 DAH. After this date, slow variations were maintained until end of the experiment. Pepsin was firstly assayed 32 DAH related with stomach formation and sharply increased to 40 DAH. Then it was fluctuated until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N, showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased to 15 DAH and fluctuated until 20 DAH, aminopeptidase N activity slowly declined to 20 DAH. Afterwards, activity of alkaline phosphatase and aminopeptidase N were sharply increased to 30 DAH, showing maturation of the intestinal digestive process and also these activities continued to slight increase until end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase sharply increased to on day 8, then suddenly declined to 12 DAH and further decreased until 20 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased to 25 DAH and continued to gradually decline until the end of the experiment. These converse expressions were indicative of a maturation of enterocytes and the transition to

  7. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Suzer, Cüneyt; Aktülün, Sevim; Coban, Deniz; Okan Kamaci, H; Saka, Sahin; Firat, Kürşat; Alpbaz, Atilla

    2007-10-01

    The ontogenesis and specific activities of pancreatic and intestinal enzymes were investigated in sharpsnout sea bream, Diplodus puntazzo, during larval development until the end of weaning on day 50. The green-water technique was carried out for larval rearing in triplicate. Trypsin was first detected as early as hatching and sharply increased related to age and exogenous feeding until day 25, but a sharp decrease was observed towards the end of the experiment. Amylase was determined 2 days after hatching (DAH) and sharply increased to 10 DAH. Afterwards, slight decreases were found between 10 and 20 DAH and then slow alterations were continued until end of the experiment. Lipase was measured for the first time on day 4, and then slight increase was found to 25 DAH. After this date, slow variations were maintained until end of the experiment. Pepsin was firstly assayed 32 DAH related with stomach formation and sharply increased to 40 DAH. Then it was fluctuated until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N, showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased to 15 DAH and fluctuated until 20 DAH, aminopeptidase N activity slowly declined to 20 DAH. Afterwards, activity of alkaline phosphatase and aminopeptidase N were sharply increased to 30 DAH, showing maturation of the intestinal digestive process and also these activities continued to slight increase until end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase sharply increased to on day 8, then suddenly declined to 12 DAH and further decreased until 20 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased to 25 DAH and continued to gradually decline until the end of the experiment. These converse expressions were indicative of a maturation of enterocytes and the transition to

  8. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  9. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    PubMed

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-01

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  10. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    PubMed

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-01

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  11. Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes.

    PubMed

    Luong, Trung Quan; Erwin, Nelli; Neumann, Matthias; Schmidt, Andreas; Loos, Cornelia; Schmidt, Volker; Fändrich, Marcus; Winter, Roland

    2016-09-26

    We studied the combined effects of pressure (0.1-200 MPa) and temperature (22, 30, and 38 °C) on the catalytic activity of designed amyloid fibrils using a high-pressure stopped-flow system with rapid UV/Vis absorption detection. Complementary FT-IR spectroscopic data revealed a remarkably high pressure and temperature stability of the fibrillar systems. High pressure enhances the esterase activity as a consequence of a negative activation volume at all temperatures (about -14 cm(3)  mol(-1) ). The enhancement is sustained in the whole temperature range covered, which allows a further acceleration of the enzymatic activity at high temperatures (activation energy 45-60 kJ mol(-1) ). Our data reveal the great potential of using both pressure and temperature modulation to optimize the enzyme efficiency of catalytic amyloid fibrils.

  12. Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes.

    PubMed

    Luong, Trung Quan; Erwin, Nelli; Neumann, Matthias; Schmidt, Andreas; Loos, Cornelia; Schmidt, Volker; Fändrich, Marcus; Winter, Roland

    2016-09-26

    We studied the combined effects of pressure (0.1-200 MPa) and temperature (22, 30, and 38 °C) on the catalytic activity of designed amyloid fibrils using a high-pressure stopped-flow system with rapid UV/Vis absorption detection. Complementary FT-IR spectroscopic data revealed a remarkably high pressure and temperature stability of the fibrillar systems. High pressure enhances the esterase activity as a consequence of a negative activation volume at all temperatures (about -14 cm(3)  mol(-1) ). The enhancement is sustained in the whole temperature range covered, which allows a further acceleration of the enzymatic activity at high temperatures (activation energy 45-60 kJ mol(-1) ). Our data reveal the great potential of using both pressure and temperature modulation to optimize the enzyme efficiency of catalytic amyloid fibrils. PMID:27573584

  13. Detection of glycoalkaloids using disposable biosensors based on genetically modified enzymes.

    PubMed

    Espinoza, Michelle Arredondo; Istamboulie, Georges; Chira, Ana; Noguer, Thierry; Stoytcheva, Margarita; Marty, Jean-Louis

    2014-07-15

    In this work we present a rapid, selective, and highly sensitive detection of α-solanine and α-chaconine using cholinesterase-based sensors. The high sensitivity of the devices is brought by the use of a genetically modified acetylcholinesterase (AChE), combined with a one-step detection method based on the measurement of inhibition slope. The selectivity was obtained by using butyrylcholinesterase (BChE), an enzyme able to detect these two toxins with differential inhibition kinetics. The enzymes were immobilized via entrapment in PVA-AWP polymer directly on the working electrode surface. The analysis of the resulting inhibition slope was performed employing linear regression function included in Matlab. The high toxicity of α-chaconine compared to α-solanine due to a better affinity to the active site was proved. The inhibition of glycoalkaloids (GAs) mixture was performed over AChE enzyme wild-type AChE and BChE biosensors resulting in the detection of synergism effect. The developed method allows the detection of (GAs) at 50 ppb in potato matrix.

  14. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    PubMed

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized.

  15. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    PubMed

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  16. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    PubMed

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized. PMID:26139824

  17. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  18. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  19. Protoplast fusion enhances lignocellulolytic enzyme activities in Trichoderma reesei.

    PubMed

    Cui, Yu-xiao; Liu, Jia-jing; Liu, Yan; Cheng, Qi-yue; Yu, Qun; Chen, Xin; Ren, Xiao-dong

    2014-12-01

    Protoplast fusion was used to obtain a higher production of lignocellulolytic enzymes with protoplast fusion in Trichoderma reesei. The fusant strain T. reesei JL6 was obtained from protoplast fusion from T. reesei strains QM9414, MCG77, and Rut C-30. Filter paper activity of T. reesei JL6 increased by 18% compared with that of Rut C-30. β-Glucosidase, hemicellulase and pectinase activities of T. reesei JL6 were also higher. The former activity was 0.39 Uml(-1), while those of QM9414, MCG77, and Rut C-30 were 0.13, 0.11, and 0.16 Uml(-1), respectively. Pectinase and hemicellulase activities of JL6 were 5.4 and 15.6 Uml(-1), respectively, which were slightly higher than those of the parents. The effects of corn stover and wheat bran carbon sources on the cellulase production and growth curve of T. reesei JL6 were also investigated.

  20. Labdane-type diterpenoids from Leonurus heterophyllus and their cholinesterase inhibitory activity.

    PubMed

    Hung, Tran Manh; Luan, Tran Cong; Vinh, Bui The; Cuong, To Dao; Min, Byung Sun

    2011-04-01

    In the course of screening plants used in natural medicines as memory enhancers, a 70% ethanol extract of the aerial parts of Leonurus heterophyllus showed significant AChE inhibitory activity. Bioassay-guided fractionation and repeated column chromatography led to the isolation of a new labdane-type diterpenoids (1), named leoheteronin F, and six known compounds (2-7). The chemical structures of isolated compounds were elucidated based on extensive 1D and 2D NMR spectroscopic data. The isolates 1-7 were investigated in vitro for their anticholinesterase activity using mouse cortex AChE enzyme. Leoheteronin A (5) and leopersin G (7), which possess a 15,16-epoxy group at the side chain, were found to be potent in the inhibition of AChE.

  1. Non-neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon.

    PubMed

    Yajima, Takaji; Inoue, Ryo; Matsumoto, Megumi; Yajima, Masako

    2011-02-15

    Colonic chloride secretion is induced by chemical stimuli via the enteric nervous reflex. We have previously demonstrated that propionate stimulates chloride secretion via sensory and cholinergic systems of the mucosa in rat distal colon. In this study, we demonstrate non-neuronal release of ACh in the secretory response to propionate using an Ussing chamber. Mucosa preparations from the colon, not including the myenteric and submucosal plexuses, were used. Luminal addition of propionate and serosal addition of ACh caused biphasic changes in short-circuit current (Isc). TTX (1 μm) had no effects, while atropine (10 μm) significantly inhibited the Isc response to propionate and abolished that to ACh. In response to luminal propionate stimulation, ACh was released into the serosal fluid. A linear relationship was observed between the maximal increase in Isc and the amounts of ACh released 5 min after propionate stimulation. This ACh release induced by propionate was not affected by atropine and bumetanide, although both drugs significantly reduced the Isc responses to propionate. Luminal addition of 3-chloropropionate, an inactive analogue of propionate, abolished both ACh release and Isc response produced by propionate. RT-PCR analysis indicated that isolated crypt cells from the distal colon expressed an enzyme of ACh synthesis (ChAT) and transporters of organic cation (OCTs), but not neuronal CHT1 and VAChT. The isolated crypt cells contained comparable amounts of ACh to the residual muscle tissues including nerve plexuses. In conclusion, the non-neuronal release of ACh from colonocytes coupled with propionate stimulation plays a key role in chloride secretion, via the paracrine action of ACh on muscarinic receptors of colonocytes.

  2. Plasma lysosomal enzyme activity in acute myocardial infarction.

    PubMed

    Welman, E; Selwyn, A P; Peters, T J; Colbeck, J F; Fox, K M

    1978-02-01

    N-acetyl-beta-glucosaminidase (EC 3.2.1.30, recommended name beta-N-Acetylglucosaminidase) was found to be a constituent of human cardiac lysosomes. beta-glucuronidase was also found in this tissue, while lysozyme, an enzyme present in leucocyte lysosomes, was not detectable in the heart. The activities of both N-acetyl-beta-glucosaminidase and beta-glucuronidase were elevated in plasma during the first 24 h after the onset of chest pain in patients with acute myocardial infarction and the peak levels of N-acetyl-beta-glucosaminidase correlated well with those of creatine kinase. N-acetyl-beta-glucosaminidase showed a further rise in plasma activity which gave a peak at 72 h after the onset of chest pain and this was accompanied by a rise in lysozyme activity. It is suggested that lysosome disruption caused by myocardial cell necrosis was responsible for the initial rise in plasma lysosomal enzyme activity and that the subsequent inflammatory reaction gave rise to the second peak. PMID:647716

  3. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  4. Contribution of Ldace1 gene to acetylcholinesterase activity in Colorado potato beetle.

    PubMed

    Revuelta, L; Ortego, F; Díaz-Ruíz, J R; Castañera, P; Tenllado, F; Hernández-Crespo, P

    2011-10-01

    The Colorado potato beetle (CPB), Leptinotarsa decemlineata is an important economic pest of potato worldwide. Resistance to organophosphates and carbamates in CPB has been associated in some cases to point mutations in the acetylcholinesterase (AChE) gene Ldace2, an orthologue of Drosophila melanogaster Dmace2. In this paper we report cloning and sequencing of Ldace1, an orthologue of Anopheles gambiae Agace1 that was previously unknown in CPB. The Ldace1 coding enzyme contains all residues conserved in a functionally active AChE. Ldace1 is expressed at higher levels (between 2- and 11-fold) than Ldace2 in embryos, in the four larval instars and in adults. Specific interference of Ldace1 by means of dsRNA injection resulted in a reduction of AChE activity to an approximate 50% compared to control, whilst interference of Ldace2 reduced AChE activity to an approximate 85%. Analysis of zymograms of AChE activity after interference indicates that LdAChE1 is the enzyme predominantly responsible for the activity visualised. Interference of Ldace1 in CPB adults caused a significant increase in mortality (43%) as early as three days post-injection (p.i.), suggesting the essential role of Ldace1. Interference of Ldace2 also caused a significant increase in mortality (29%) compared to control, although at seven days p.i. The effect of the interference of Ldace1 on susceptibility to the organophosphate chlorpyrifos points out that LdAChE1 could be a main target for this insecticide. In the light of our results, studies associating resistance in CPB to mutations in Ldace2 should be reviewed, taking into consideration analysis of the Ldace1 gene.

  5. Characterization of cytidylyltransferase enzyme activity through high performance liquid chromatography.

    PubMed

    Brault, James P; Friesen, Jon A

    2016-10-01

    The cytidylyltransferases are a family of enzymes that utilize cytidine 5'-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from (14)C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively. PMID:27443959

  6. Tissue enzyme activities in the loggerhead sea turtle (Caretta caretta).

    PubMed

    Anderson, Eric T; Socha, Victoria L; Gardner, Jennifer; Byrd, Lynne; Manire, Charles A

    2013-03-01

    The loggerhead sea turtle, Caretta caretta, one of the seven species of threatened or endangered sea turtles worldwide, is one of the most commonly encountered marine turtles off the eastern coast of the United States and Gulf of Mexico. Although biochemical reference ranges have been evaluated for several species of sea turtles, tissue specificity of the commonly used plasma enzymes is lacking. This study evaluated the tissue specificity of eight enzymes, including amylase, lipase, creatine kinase (CK), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), in 30 tissues from five stranded loggerhead sea turtles with no evidence of infectious disease. Amylase and lipase showed the greatest tissue specificity, with activity found only in pancreatic samples. Creatine kinase had high levels present in skeletal and cardiac muscle, and moderate levels in central nervous system and gastrointestinal samples. Gamma-glutamyl transferase was found in kidney samples, but only in very low levels. Creatine kinase, ALP, AST, and LDH were found in all tissues evaluated and ALT was found in most, indicating low tissue specificity for these enzymes in the loggerhead.

  7. Activity of enzyme immobilized on silanized Co-Cr-Mo.

    PubMed

    Puleo, D A

    1995-08-01

    The surface of an orthopedic biomaterial was modified by the covalent immobilization of biomolecules. Derivatization of Co-Cr-Mo samples with organic and aqueous solutions of gamma-aminopropyltriethoxysilane (APS) resulted in a concentration-dependent number of reactive NH2 groups on the surface available for coupling to protein. The enzyme trypsin was used as a model biomolecule to investigate the effect of immobilization on proteolytic activity. Trypsin was coupled to the silanized samples by formation of Schiff's base linkages via glutaraldehyde. The nature of the interaction between trypsin and biomaterial was then probed by treatment with concentrated guanidine hydrochloride (GuHCl) and urea. Residual activity (following treatment with chaotropic agents) of trypsin immobilized on silanized Co-Cr-Mo was dependent both on the nature of the silane solution and on the type of chaotropic agent. Organic silanization with APS required a minimum density of approximately 49 NH2 per nm2 of nominal surface area (> 0.021 M APS) for residual activity of immobilized trypsin. For aqueous silanization, approximately 5.4 NH2/nm2 (0.51 M APS) resulted in maximal residual trypsin activity. Treatment with GuHCl removed more trypsin activity from Co-Cr-Mo samples silanized with organic solutions of APS than did treatment with urea. On the contrary, with aqueous silanization the samples possessed greater residual activity following treatment with GuHCl than following urea. Compared to simple adsorption with protein onto Co-Cr-Mo, both methods of silanization with APS resulted in superior residual immobilized enzyme activity. PMID:7593038

  8. Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Guo, Liping; Yang, Li

    2015-05-15

    In this study, we present an on-line measurement of enzyme activity and inhibition of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme using capillary electrophoresis based immobilized enzyme micro-reactor (CE-based IMER). The IMER was prepared using a two-step protocol based on electrostatic assembly. The micro-reactor exhibited good stability and reproducibility for on-line assay of G6PDH enzyme. Both the activity as well as the inhibition of the G6PDH enzyme by six inhibitors, including three metals (Cu(2+), Pb(2+), Cd(2+)), vancomycin, urea and KMnO4, were investigated using on-line assay of the CE-based IMERs. The enzyme activity and inhibition kinetic constants were measured using the IMERs which were found to be consistent with those using traditional off-line enzyme assays. The kinetic mechanism of each inhibitor was also determined. The present study demonstrates the feasibility of using CE-based IMERs for rapid and efficient on-line assay of G6PDH, an important enzyme in the pentosephosphate pathway of human metabolism.

  9. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  10. Changes in antioxidant enzymes in humans with long-term exposure to pesticides.

    PubMed

    López, Olga; Hernández, Antonio F; Rodrigo, Lourdes; Gil, Fernando; Pena, Gloria; Serrano, José Luis; Parrón, Tesifón; Villanueva, Enrique; Pla, Antonio

    2007-07-10

    Different pesticides, including organophosphates (OPs), have been reported to induce oxidative stress due to generation of free radicals and alteration in antioxidant defence mechanisms. In this study, a cohort of 81 intensive agriculture workers (pesticide sprayers) was assessed twice during the course of a spraying season for changes in erythrocyte antioxidant enzymes. Acetylcholinesterase (AChE) was used as a reference biomarker. Sprayers presented lower levels of superoxide dismutase (SOD) and glutathione reductase (GR) as compared to controls independently of age, BMI, smoking habit or alcohol consumption. A positive correlation between SOD and AChE was observed at the high exposure period. Those individuals with a decrease in AChE greater than 15% exhibited lower SOD and catalase (CAT) activities at the same period. Glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PDH) remained unaffected in the exposed population. Paraoxonase (PON1) polymorphism influenced erythrocyte CAT and GR, as subjects with the R allele presented lower CAT and higher GR levels. Whether or not the decreased enzyme activities found in this study are linked to the adverse health effects related to chronic pesticide toxicity (in which oxidative damage plays a pathophysiological role, such as cancer or neurodegenerative disorders) is an attractive hypothesis that warrants further investigation. PMID:17590542

  11. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  12. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  13. Growth characteristics and enzyme activity in Batrachochytrium dendrobatidis isolates.

    PubMed

    Symonds, E Pearl; Trott, Darren J; Bird, Philip S; Mills, Paul

    2008-09-01

    Batrachochytrium dendrobatidis is a member of the phylum Chytridiomycota and the causative organism chytridiomycosis, a disease of amphibians associated with global population declines and mass mortality events. The organism targets keratin-forming epithelium in adult and larval amphibians, which suggests that keratinolytic activity may be required to infect amphibian hosts. To investigate this hypothesis, we tested 10 isolates of B. dendrobatidis for their ability to grow on a range of keratin-supplemented agars and measured keratolytic enzyme activity using a commercially available kit (bioMerieux API ZYM). The most dense and fastest growth of isolates were recorded on tryptone agar, followed by growth on frog skin agar and the slowest growth recorded on feather meal and boiled snake skin agar. Growth patterns were distinctive for each nutrient source. All 10 isolates were strongly positive for a range of proteolytic enzymes which may be keratinolytic, including trypsin and chymotrypsin. These findings support the predilection of B. dendrobatidis for amphibian skin. PMID:18568420

  14. Engineering Enzymes in Energy Crops: Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Enzymes are required to break plant biomass down into the fermentable sugars that are used to create biofuel. Currently, costly enzymes must be added to the biofuel production process. Engineering crops to already contain these enzymes will reduce costs and produce biomass that is more easily digested. In fact, enzyme costs alone account for $0.50-$0.75/gallon of the cost of a biomass-derived biofuel like ethanol. Agrivida is genetically engineering plants to contain high concentrations of enzymes that break down cell walls. These enzymes can be “switched on” after harvest so they won’t damage the plant while it’s growing.

  15. Activity of extracellular enzymes on the marine beach differing in the level of antropopressure.

    PubMed

    Perliński, P; Mudryk, Z J

    2016-03-01

    The level of activity of extracellular enzymes was determined on two transects characterised by different anthropic pressure on a sandy beach in Ustka, the southern coast of the Baltic Sea. Generally, the level of activity of the studied enzymes was higher on the transect characterised by high anthropic pressure. The ranking order of the mean enzyme activity rates in the sand was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > chitinase. Each enzyme had its characteristic horizontal profile of activity. The levels of activity of the studied enzymes were slightly higher in the surface than subsurface sand layer. Extracellular enzymatic activities were strongly influenced by the season. PMID:26911592

  16. Acetyl cholinesterase activity and muscle contraction in the sea urchin Lytechinus variegatus (Lamarck) following chronic phosphate exposure.

    PubMed

    Boettger, S Anne; McClintock, James B

    2012-03-01

    The common shallow-water sea urchin Lytechinus variegatus is capable of surviving inorganic phosphate exposures as high as 3.2 mg L(-1) and organic phosphate exposures of 1000 mg L(-1) . Nonetheless, chronic exposure to low, medium, and high-sublethal concentrations of organic phosphate inhibits the muscle enzyme acetyl cholinesterase (AChE), responsible for the break down of the neurotransmitter acetylcholine, as well as inhibiting contractions in the muscles associated with the Aristotle's lantern. AChE activity, measured in both a static enzyme assay and by vesicular staining, displayed concentration-dependent declines of activity in individuals maintained in organic phosphate for 4 weeks. The activity of AChE was not adversely affected by exposure to inorganic phosphate or seawater controls over the same time period. Maximum force of muscle contraction and rates of muscle contraction and relaxation also decreased with chronic exposure to increasing concentrations of organic phosphate. Chronic exposure to inorganic phosphates elicited no response except at the highest concentration, where the maximum force of muscular contraction increased compared to controls. These findings indicate that shallow-water populations of Lytechinus variegatus subjected to organic phosphate pollutants may display impaired muscular activity that is potentially related to the inhibition of the muscle relaxant enzyme AChE, and subsequently muscular overstimulation, and fatigue.

  17. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  18. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  19. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  20. Puromycin-Sensitive Aminopeptidase: An Antiviral Prodrug Activating Enzyme

    PubMed Central

    Tehler, Ulrika; Nelson, Cara H.; Peterson, Larryn W.; Provoda, Chester J.; Hilfinger, John M.; Lee, Kyung-Dall; McKenna, Charles E.; Amidon, Gordon L.

    2010-01-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al. Molecular Pharmaceutics, 2008 vol 5 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The kcat for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher kcat for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design. PMID:19969024

  1. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  2. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    PubMed Central

    Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality. PMID:25610908

  3. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality. PMID:25610908

  4. Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design.

    PubMed

    Santos, A M P; Oliveira, M G; Maugeri, F

    2007-11-01

    In this work, a novel method is proposed to establish the most suitable operational temperature for an enzyme reactor. The method was based on mathematical modelling of the thermal stability and activity of the enzyme and was developed using thermodynamic concepts and experimental data from free and immobilized inulinases (2,1-beta-D fructan frutanohydrolase, EC 3.2.1.7) from Kluyveromyces marxianus, which were used as examples. The model was, therefore, designed to predict the enzyme activity with respect to the temperature and time course of the enzymatic process, as well as its half-life, in a broad temperature range. The knowledge and information provided by the model could be used to design the operational temperature conditions, leading to higher enzyme activities, while preserving acceptable stability levels, which represent the link between higher productivity and lower process costs. For the inulinase used in this study, the optimum temperature conditions leading to higher enzyme activities were shown to be 63 degrees C and 57.5 degrees C for the free and immobilized inulinases, respectively. However, according to the novel method of approach used here, the more appropriate operating temperatures would be 52 degrees C for free and 42 degrees C for immobilized inulinases, showing that the working temperature is not necessarily the same as the maximum reaction rate temperature, but preferably a lower temperature where the enzyme is much more stable.

  5. Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity.

    PubMed

    Kellogg, Joshua; Grace, Mary H; Lila, Mary Ann

    2014-10-22

    Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively). The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS) was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.

  6. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese.

    PubMed

    Torres-Llanez, M J; González-Córdova, A F; Hernandez-Mendoza, A; Garcia, H S; Vallejo-Cordoba, B

    2011-08-01

    The objective of this study was to evaluate if Mexican Fresco cheese manufactured with specific lactic acid bacteria (LAB) presented angiotensin I-converting enzyme inhibitory (ACEI) activity. Water-soluble extracts (3 kDa) obtained from Mexican Fresco cheese prepared with specific LAB (Lactococcus, Lactobacillus, Enterococcus, and mixtures: Lactococcus-Lactobacillus and Lactococcus-Enterococcus) were evaluated for ACEI activity. Specific peptide fractions with high ACEI were analyzed using reverse phase-HPLC coupled to mass spectrometry for determination of amino acid sequence. Cheese containing Enterococcus faecium or a Lactococcus lactis ssp. lactis-Enterococcus faecium mixture showed the largest number of fractions with ACEI activity and the lowest half-maximal inhibitory concentration (IC(50); <10 μg/mL). Various ACEI peptides derived from β-casein [(f(193-205), f(193-207), and f(193-209)] and α(S1)-casein [f(1-15), f(1-22), f(14-23), and f(24-34)] were found. The Mexican Fresco cheese manufactured with specific LAB strains produced peptides with potential antihypertensive activity.

  7. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum

  8. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    PubMed

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  9. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  10. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    NASA Astrophysics Data System (ADS)

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-05-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (A549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

  11. Rat oocyte tissue plasminogen activator is a catalytically efficient enzyme in the absence of fibrin. Endogenous potentiation of enzyme activity.

    PubMed

    Bicsak, T A; Hsueh, A J

    1989-01-01

    Rat oocytes synthesize tissue plasminogen activator (tPA) in response to stimuli which initiate meiotic maturation. Purified tPA exhibits optimal activity only in the presence of fibrin or fibrin substitutes. Because oocytes are not exposed to fibrin in situ, we investigated the possible stimulation of rat oocyte tPA activity by other endogenous factor(s). Oocytes were obtained from immature female rats which were induced to ovulate with gonadotropins. tPA activity was measured by the plasminogen-dependent cleavage of a chromogenic substrate. Measurements of kinetic parameters with Glu- or Lys-plasminogen revealed a Km for the rat oocyte enzyme of 1.3-2.1 microM compared with 23-24 microM for purified human tPA. Inclusion of the soluble fibrin substitute polylysine lowered the Km of human tPA by 30-fold (0.8 microM) but had no effect on the oocyte tPA Km. Polylysine had no significant effect on the Vmax values. The rate of plasminogen activation catalyzed by oocyte tPA was increased only 4.3-fold by fibrin while fibrin stimulated purified human tPA activity by 15.2-fold. After fractionation of oocyte extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polylysine enhanced oocyte tPA activity as seen by casein zymography. tPA activity in the conditioned medium of a rat insulinoma cell line was also not stimulated with polylysine prior to fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These data suggest that extravascular cells which elaborate tPA may produce stimulatory factor(s) which allow for full tPA activity at physiological concentrations of plasminogen in the absence of fibrin. PMID:2491854

  12. Microbial enzyme activities of peatland soils in south central Alaska lowlands

    EPA Science Inventory

    Microbial enzyme activities related to carbon and nutrient acquisition were measured on Alaskan peatland soils as indicators of nutrient limitation and biochemical sustainability. Peat decomposition is mediated by microorganisms and enzymes that in turn are limited by various ph...

  13. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    PubMed Central

    Wimmer, Zdeněk; Zarevúcka, Marie

    2010-01-01

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013

  14. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity

    PubMed Central

    Gholamhoseinian, A.; Moradi, M.N.; Sharifi-far, F.

    2009-01-01

    Acetylcholinesterase (AChE) is the main enzyme for the breakdown of acetylcholine. Nowadays, usage of the inhibitors of this enzyme is one of the most important types of treatment of mild to moderate neurodegenerative diseases such as Alzheimer’s disease. Herbal medicines can be a new source of inhibitors of this enzyme. In this study we examined around 100 different plants to evaluate their inhibitory properties for AChE enzyme. Plants were scientifically identified and their extracts were prepared by methanol percolation. Acetylcholinesterase activity was measured using a colorimetric method in the presence or absence of the extracts. Eserine was used as a positive control. Methanol extracts of the Levisticum officinale, Bergeris integrima and Rheum ribes showed more than 50% AChE inhibitory activity. The inhibition kinetics were studied in the presence of the most effective extracts. L. officinale and B. integrima inhibited AChE activity in a non-competitive manner, while R. ribes competitively inhibitied the enzyme as revealed by double-reciprocal Linweaver-Burk plot analysis. Under controlled condition, Km and Vmax values of the enzyme were found to be 9.4 mM and 0.238 mM/min, respectively. However, in the presence of L. officinale, B. integrima, and R. ribes extracts, Vmax values were 0.192, 0.074 and 0.238 mM/min, respectively. Due to the competitive inhibition of the enzyme by R. ribes extract, the Km value of 21.2 mM was obtained. The concentration required for 50% enzyme inhibition (IC50 value) was 0.5, 0.9, and 0.95 mg/ml for the L. officinale, B. integrima and R. ribes extracts, respectively. The IC50 of the eserine was determined to be 0.8 mg/ml. PMID:21589805

  15. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  16. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  17. Effect of age and diet composition on activity of pancreatic enzymes in birds.

    PubMed

    Brzęk, Paweł; Ciminari, M Eugenia; Kohl, Kevin D; Lessner, Krista; Karasov, William H; Caviedes-Vidal, Enrique

    2013-07-01

    Digestive enzymes produced by the pancreas and intestinal epithelium cooperate closely during food hydrolysis. Therefore, activities of pancreatic and intestinal enzymes processing the same substrate can be hypothesized to change together in unison, as well as to be adjusted to the concentration of their substrate in the diet. However, our knowledge of ontogenetic and diet-related changes in the digestive enzymes of birds is limited mainly to intestinal enzymes; it is largely unknown whether they are accompanied by changes in activities of enzymes produced by the pancreas. Here, we analyzed age- and diet-related changes in activities of pancreatic enzymes in five passerine and galloanserine species, and compared them with simultaneous changes in activities of intestinal enzymes. Mass-specific activity of pancreatic amylase increased with age in young house sparrows but not in zebra finches, in agreement with changes in typical dietary starch content and activity of intestinal maltase. However, we found little evidence for the presence of adaptive, diet-related modulation of pancreatic enzymes in both passerine and galloanserine species, even though in several cases the same birds adaptively modulated activities of their intestinal enzymes. In general, diet-related changes in mass-specific activities of pancreatic and intestinal enzymes were not correlated. We conclude that activity of pancreatic enzymes in birds is under strong genetic control, which enables evolutionary adjustment to typical diet composition but is less adept for short term, diet-related flexibility.

  18. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction

    PubMed Central

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-01-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174

  19. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)

    PubMed Central

    Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  20. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    PubMed

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  1. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    PubMed

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  2. Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity.

    PubMed

    Bevan, D R; Bodlaender, P; Shemin, D

    1980-03-10

    The role of metal ions in the mechanism of action of bovine liver porphobilinogen synthase was investigated. Studies with chelating agents were consistent with a requirement of metal ions for enzyme activity, and the use of 8-hydroxyquinoline-5-sulfonic acid suggested that Zn2+ was present in the enzyme. The low activity detected in metal-free apoporphobilinogen synthase was attributed to adventitious metal ions. Addition of Zn2+ to the apoenzyme completely restored enzyme activity if the essential sulfhydryl groups on the enzyme were first reduced with sulfhydryl reagents. It does not follow necessarily from this observation that Zn2+ forms a bond with a sulfhydryl group in the enzyme. However, we also observed that Zn2+ did not bind to the enzyme unless the essential cysteinyl residues were reduced. We have concluded that the octameric enzyme contains 4 g atoms of Zn2+/mol from our enzyme activity measurements and binding studies. Alkylation of the enzyme resulted in a marked reduction in the binding of Zn2+ to the enzyme. These observations are consistent with the suggestion that the interaction of the Zn2+ ions with the enzyme occurs with sulfhydryl groups at the active site. It appears that Zn2+ does not participate in substrate binding nor in the maintenance of the quaternary structure of the enzyme. Possible mechanistic roles for Zn2+ in porphobilinogen synthase are discussed. It should be noted that Cd2+ was the only other element found which restored activity to the apoenzyme.

  3. Influence of dimethoate on acetylcholinesterase activity and locomotor function in terrestrial isopods.

    PubMed

    Engenheiro, Elizabeth L; Hankard, Peter K; Sousa, José P; Lemos, Marco F; Weeks, Jason M; Soares, Amadeu M V M

    2005-03-01

    Locomotor behavior in terrestrial organisms is crucial for burrowing, avoiding predators, food seeking, migration, and reproduction; therefore, it is a parameter with ecological relevance. Acetylcholinesterase (AChE) is a nervous system enzyme inhibited by several compounds and widely used as an exposure biomarker in several organisms. Moreover, changes in energy reserves also may indicate an exposure to a stress situation. The aim of this study is to link biomarkers of different levels of biological organization in isopods exposed to increasing doses of dimethoate in semifield conditions. Locomotor parameters, AChE activity, and energy reserves (lipid, glycogen, and protein contents) were evaluated in the isopod Porcellio dilatatus after 48-h and 10-d exposure to dimethoate-contaminated soil. Results showed a clear impairment of both locomotor and AChE activity during the entire study, although effects were more pronounced after 48 h. Most locomotor parameters and AChE activity showed a clear dose-response relationship. By contrast, no clear trend was observed on energetic components. A positive and significant relationship was found between AChE activity and those locomotor parameters indicating activity, and the opposite was observed with those locomotor parameters indicating confusion and disorientation. The results obtained in this study enhance the importance of linking biochemical responses to parameters with ecological relevance at individual level, the value of locomotor behavior as an important marker to assess effects of toxicants, and also the usefulness and the acquisition of ecological relevance by AChE as a biomarker, by linking it with ecologically relevant behavioral parameters.

  4. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells.

    PubMed

    Sun, Haiji; Ma, Xiaoli

    2015-09-01

    Cigarette smoking is the most important risk factor in the development of human lung cancer. Nicotine, the major component in tobacco, not only contributes to carcinogenesis but also promotes tumor metastasis. By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and migration of non-small cell lung cancer. Recently studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, it is unclear whether nicotine promotes the migration and invasion through activation of α5-nAChR in lung cancer. In the present study, A549 cell was exposed to 1μN nicotine for 8, 24 or 48h. Wound-healing assay and transwell assay were used to evaluate the capability of A549 cell migration and cell invasion, respectively. Silencing of α5-nAChR was done by siRNA. Western blotting and PCR were used to detect α5-nAChR expression. Nicotine can induce activation of α5-nAChR in association with increased migration and invasion of human lung cancer A549 cell. Treatment of cells with α5-nAChR specific siRNA blocks nicotine-stimulated activation of α5-nAChR and suppresses A549 cell migration and invasion. Reduction of α5-nAChR resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. These findings suggest that nicotine-induced migration and invasion may occur in a mechanism through activation of α5-nAChR, which can contribute to metastasis or development of human lung cancer.

  5. Application of activity-based protein profiling to study enzyme function in adipocytes.

    PubMed

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F; Saez, Enrique

    2014-01-01

    Activity-based protein profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways.

  6. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  7. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    PubMed

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL. PMID:11858553

  8. Microbial extracellular enzyme activities in HUMEX Lake Skjervatjern

    SciTech Connect

    Muenster, U. )

    1992-01-01

    Two microbial extracellular enzyme activities (MEEA) were studied in HUMEX Lake Skjervatjern: acid phosphatase (APHA) and leucine aminopeptidase (LeuAMPA). Both enzyme activities varied in the vertical and horizontal scale in both lake sites. APHA varied in the acidfied Basin A between 945-1706 nmol L[sup [minus]1] h[sup [minus]1] and LeuAMPA between 3.7-25 nmol L[sup [minus]1] h[sup [minus]1]. Both MEEA reached maxima in 0.5 m depth. In the control site (Basin B), APHA was lower by a factor of two, and varied between 156-669 nmol L[sup [minus]1] h[sup [minus]1]. LeuAMPA reached similar values as in Basin A and varied between 7.8-34.8 nmol L[sup [minus]1] h[sup [minus]1]. Maxima of APHA were found in the upper layer (0-2 m), while LeuAMPA had only one distinct maxima at 2-2.5 m depth. The number of bacteria (AFDC) varied between 4.4-8.8 10[sup 6] cells mL[sup [minus]1] and was not significantly different in either side, but both had maxima in the thermocline. Highest specific LeuAMPA activities were found in the thermocline (3.2-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1]) in both sides and varied between 0.4-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1] in both water columns. The main contributor (60-70%) to LeuAMPA was found in the microplankton fraction, retained on Nuclepore filters with pore sizes between 2.0-0.2 [mu]m. APHA was retained less even on a filter with pore size smaller than 0.2 [mu]m. About 50-70% of APHA passed through 0.2 [mu]m-0.1 [mu]m Nuclepore filters and could be found in the dissolved organic matter (DOM) fraction. APHA and bacteria counts (AFDC) showed a distinct gradient from the littoral zone to the pelagial in the surface water samples (0.2 m depth). APHA and LeuAMPA are regarded as important regulators for nutrient availabilty to microplankton. 40 refs., 6 figs.

  9. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants. PMID:27230025

  10. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants.

  11. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Lamb, Audrey L.

    2013-01-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the “interchange” hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, “permute” hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities. PMID:24055536

  12. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Lamb, Audrey L

    2013-11-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the "interchange" hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, "permute" hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities.

  13. Ultrasonic Monitoring of Enzyme Catalysis; Enzyme Activity in Formulations for Lactose-Intolerant Infants.

    PubMed

    Altas, Margarida C; Kudryashov, Evgeny; Buckin, Vitaly

    2016-05-01

    The paper introduces ultrasonic technology for real-time, nondestructive, precision monitoring of enzyme-catalyzed reactions in solutions and in complex opaque media. The capabilities of the technology are examined in a comprehensive analysis of the effects of a variety of diverse factors on the performance of enzyme β-galactosidase in formulations for reduction of levels of lactose in infant milks. These formulations are added to infant's milk bottles prior to feeding to overcome the frequently observed intolerance to lactose (a milk sugar), a serious issue in healthy development of infants. The results highlight important impediments in the development of these formulations and also illustrate the capability of the described ultrasonic tools in the assessment of the performance of enzymes in complex reaction media and in various environmental conditions. PMID:27018312

  14. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs.

    PubMed

    Savio, L E B; Vuaden, F C; Kist, L W; Pereira, T C; Rosemberg, D B; Bogo, M R; Bonan, C D; Wyse, A T S

    2013-10-10

    Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism. PMID:23867765

  15. Inhibitory potential of some Romanian medicinal plants against enzymes linked to neurodegenerative diseases and their antioxidant activity

    PubMed Central

    Paun, Gabriela; Neagu, Elena; Albu, Camelia; Radu, Gabriel Lucian

    2015-01-01

    Context: Eryngium planum, Geum urbanum and Cnicus benedictus plants are an endemic botanical from the Romanian used in folk medicine. Objective: The extracts from three Romanian medicinal plants were investigated for their possible neuroprotective potential. Materials and Methods: Within this study, in vitro neuroprotective activity of the extracts of E. planum, G. urbanum, and C. benedictus plants were investigated via inhibition of acetylcholinesterase (AChE) and tyrosinase (TYR). Total content of phenolics, flavonoids, and proanthocyanidins, high-performance liquid chromatography profile of the main phenolic compounds and antioxidant activity were also determined. Results: Among the tested extracts, the best inhibition of AChE (88.76 ± 5.2%) and TYR (88.5 ± 5.2%) was caused by C. benedictus ethanol (EtOH) extract. The G. urbanum extracts exerted remarkable scavenging effect against 2, 2-diphenyl-1-picrylhydrazyl (IC50, 7.8 ± 0.5 μg/mL aqueous extract, and IC50, 1.3 ± 0.1 μg/mL EtOH extract, respectively) and reducing power, whereas the EtOH extract of C. benedictus showed high scavenging activity (IC50, 0.609 ± 0.04 mg/mL), also. Conclusion: According to our knowledge, this is the first study that demonstrates in vitro neuroprotective effects of E. planum, G. urbanum and C. benedictus. PMID:26109755

  16. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    PubMed

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (<24 h) in both waste activated sludge and anaerobic digester sludge environments and that this was, for the majority of enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed. PMID:27498254

  17. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  18. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    PubMed

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (<24 h) in both waste activated sludge and anaerobic digester sludge environments and that this was, for the majority of enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed.

  19. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  20. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  1. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    SciTech Connect

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  2. TEMPERATURE ACTIVATION OF CERTAIN RESPIRATORY ENZYMES OF STENOTHERMOPHILIC BACTERIA

    PubMed Central

    Gaughran, Eugene R. L.

    1949-01-01

    The results of this study of the effect of temperature on the respiratory mechanism of five stenothermophilic bacteria may be summarized as follows:— 1. The respiratory mechanism and its various components of the stenothermophilic bacteria were found to function at temperatures below the minimum temperature for growth of these organisms. In every case the rates of the individual reactions involved in the respiratory chain increased exponentially with temperature until the temperature at which inactivation became apparent was reached. 2. The mean activation energies, calculated from the "best" value for the slope of the straight lines resulting from a plot of log rate against the reciprocal of the absolute temperature were: Dehydrogenases: 28,000 to 28,500 calories per gram molecule. Glucose, fructose, galactose, mannose, xylose, arabinose, maltose, lactose, sucrose, glycine, β-alanine, monosodium glutamate, (asparagine). 19,500 to 20,500 calories per gram molecule. Ethyl alcohol, succinate, pyruvate, lactate, acetate. 19,500 to 20,500 calories per gram molecule. Ethyl alcohol, succinate, pyruvate, lactate, acetate. 15,000 calories per gram molecule. Formate. Cytochrome oxidase and cytochrome b and c (substrate: p-phenylenediamine): 16,800 calories per gram molecule. Cytochrome oxidase and cytochrome c (substrate: hydroquinone): 20,200 calories per gram molecule. Catalase: 4,100 calories per gram molecule. Complete aerobic respiratory system (plus added glucose): 29,500 calories per gram molecule. 3. The identity of the energies of activation of the respiratory system and its enzymic components at temperatures above and below the minimum temperature for growth of the stenothermophilic bacteria was demonstrated. 4. An attempt has been made to indicate a relationship between the nature of the substrate and the activation energy by grouping substrates on the basis of common µ values obtained for their dehydrogenation by resting cell preparations of

  3. Angiotensin-Converting Enzyme Inhibitors and Active Tuberculosis

    PubMed Central

    Wu, Jiunn-Yih; Lee, Meng-Tse Gabriel; Lee, Si-Huei; Lee, Shih-Hao; Tsai, Yi-Wen; Hsu, Shou-Chien; Chang, Shy-Shin; Lee, Chien-Chang

    2016-01-01

    Abstract Numerous epidemiological data suggest that the use of angiotensin-converting enzyme inhibitors (ACEis) can improve the clinical outcomes of pneumonia. Tuberculosis (TB) is an airborne bacteria like pneumonia, and we aimed to find out whether the use of ACEis can decrease the risk of active TB. We conducted a nested case–control analysis by using a 1 million longitudinally followed cohort, from Taiwan national health insurance research database. The rate ratios (RRs) for TB were estimated by conditional logistic regression, and adjusted using a TB-specific disease risk score (DRS) with 71 TB-related covariates. From January, 1997 to December, 2011, a total of 75,536 users of ACEis, and 7720 cases of new active TB were identified. Current use (DRS adjusted RR, 0.87 [95% CI, 0.78–0.97]), but not recent and past use of ACEis, was associated with a decrease in risk of active TB. Interestingly, it was found that chronic use (>90 days) of ACEis was associated with a further decrease in the risk of TB (aRR, 0.74, [95% CI, 0.66–0.83]). There was also a duration response effect, correlating decrease in TB risk with longer duration of ACEis use. The decrease in TB risk was also consistent across all patient subgroups (age, sex, heart failure, cerebrovascular diseases, myocardial infraction, renal diseases, and diabetes) and patients receiving other cardiovascular medicine. In this large population-based study, we found that subjects with recent and chronic use of ACEis were associated with decrease in TB risk. PMID:27175655

  4. Activities of Tricarboxylic Acid Cycle Enzymes, Glyoxylate Cycle Enzymes, and Fructose Diphosphatase in Bakers' Yeast During Adaptation to Acetate Oxidation

    PubMed Central

    Gosling, J. P.; Duggan, P. F.

    1971-01-01

    Bakers' yeast oxidizes acetate at a high rate only after an adaptation period during which the capacity of the glyoxylate cycle is found to increase. There was apparently no necessity for the activity of acetyl-coenzyme A synthetase, the capacity of the tricarboxylic acid cycle, or the concentrations of the cytochromes to increase for this adaptation to occur. Elevation of fructose 1,6 diphosphatase occurred only when acetate oxidation was nearly maximal. Cycloheximide almost completely inhibited adaptation as well as increases in the activities of isocitrate lyase and aconitate hydratase, the only enzymes assayed. p-Fluorophenylalanine was partially effective and chloramphenicol did not inhibit at all. The presence of ammonium, which considerably delayed adaptation of the yeast to acetate oxidation, inhibited the increases in the activities of the glyoxylate cycle enzymes to different degrees, demonstrating noncoordinate control of these enzymes. Under the various conditions, the only enzyme activity increase consistently related to the rising oxygen uptake rate was that of isocitrate lyase which apparently limited the activity of the cycle. PMID:5557595

  5. Enzyme catalysis: C-H activation is a Reiske business

    NASA Astrophysics Data System (ADS)

    Bruner, Steven D.

    2011-05-01

    Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.

  6. Chaperone-like activities of {alpha}-synuclein: {alpha}-Synuclein assists enzyme activities of esterases

    SciTech Connect

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo . E-mail: ywryu@ajou.ac.kr; Doohun Kim, T. . E-mail: doohunkim@ajou.ac.kr

    2006-08-11

    {alpha}-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of {alpha}-synuclein has not yet been known. Here we have shown that {alpha}-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of {alpha}-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with {alpha}-synuclein. Our results indicate that {alpha}-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo.

  7. Controlled exogenous enzyme imbibition and activation in whole chickpea seed enzyme reactor (SER).

    PubMed

    Kliger, Eynav; Fischer, Lutz; Lutz-Wahl, Sabine; Saguy, I Sam

    2011-05-01

    Chickpeas are of excellent quality (protein, vitamins, minerals, unsaturated fatty acids) and very low in phytoestrogen, making them a potentially promising source for vegetarian-based infant formula (VBIF). However, their high starch and fiber concentration could hinder their utilization for infants. To overcome this natural shortcoming, a solid-state "enzymation" (SSE) process was developed in which imbibition of exogenous enzyme facilitates hydrolysis within the intact chickpea seed. The process was termed seed enzyme reactor (SER). Liquid imbibition data of dry chickpeas during soaking were fitted with the Weibull distribution model. The derived Weibull shape parameter, β, value (0.77 ± 0.11) indicated that the imbibition mechanism followed Fickian diffusion. Imbibition occurred through the coat and external layers. The process was tested using green fluorescent protein (GFP) as an exogenous marker, and involved soaking, thermal treatment, peeling, microwave partial drying, rehydration in enzyme solution, and SSE at an adjusted pH, time, and temperature. Amylases, or a combination of amylases and cellulases, resulted in significant carbohydrate hydrolysis (23% and 47% of the available starch, respectively). In addition, chickpea initial raffinose and stachyose concentration was significantly reduced (91% and 92%, respectively). The process could serve as a proof of concept, requiring additional development and optimization to become a full industrial application.

  8. Biochemical changes in certain enzymes of Lysapsus limellium (Anura: Hylidae) exposed to chlorpyrifos.

    PubMed

    Maximiliano Attademo, Andrés; Mariela Peltzer, Paola; Carlos Lajmanovich, Rafael; Cabagna-Zenklusen, Mariana; María Junges, Celina; Lorenzatti, Eduardo; Aró, Carolina; Grenón, Paula

    2015-03-01

    Different enzyme biomarkers (AChE: acetylcholinesterase, CbE: carboxylesterase, GST: glutathione-S-transferase, CAT: catalase) were measured in digestive tissues of Lysapsus limellum frogs collected from a rice field (RF: chlorpyriphos sprayed by aircraft) and a non-contaminated area (RS: reference site), immediately (24h) and 168 h after aerial spraying with chlorpyrifos (CPF). CPF degradation was also searched in water samples collected from RF and RS, and found that insecticide concentration was reduced to≈6.78% of the original concentration in RF at 168 h. A significant reduction of AChE and CbE activities was detected in L. limellum from RF in stomach and liver at 24 and 168 h, and in intestine only at 24h, with respect to RS individuals. CAT activity decreased in intestine of L. limellum from RF 24h and 168 h after exposure to CPF, whereas GST decreased in that tissue only at 24h. In stomach and liver, a decrease was observed only at 168 h in both CAT and GST. The use of biomarkers (AChE, CbE, GST, and CAT) provides different lines of evidences for ecotoxicological risk assessment of wild frog populations at sites contaminated with pesticides.

  9. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    PubMed

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease.

  10. Carbohydrate-active enzymes exemplify entropic principles in metabolism

    PubMed Central

    Kartal, Önder; Mahlow, Sebastian; Skupin, Alexander; Ebenhöh, Oliver

    2011-01-01

    Glycans comprise ubiquitous and essential biopolymers, which usually occur as highly diverse mixtures. The myriad different structures are generated by a limited number of carbohydrate-active enzymes (CAZymes), which are unusual in that they catalyze multiple reactions by being relatively unspecific with respect to substrate size. Existing experimental and theoretical descriptions of CAZyme-mediated reaction systems neither comprehensively explain observed action patterns nor suggest biological functions of polydisperse pools in metabolism. Here, we overcome these limitations with a novel theoretical description of this important class of biological systems in which the mixing entropy of polydisperse pools emerges as an important system variable. In vitro assays of three CAZymes essential for central carbon metabolism confirm the power of our approach to predict equilibrium distributions and non-equilibrium dynamics. A computational study of the turnover of the soluble heteroglycan pool exemplifies how entropy-driven reactions establish a metabolic buffer in vivo that attenuates fluctuations in carbohydrate availability. We argue that this interplay between energy- and entropy-driven processes represents an important regulatory design principle of metabolic systems. PMID:22027553

  11. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    PubMed

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity.

  12. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.

    PubMed

    Rehman, Saima; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad

    2016-10-01

    Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. In this study, Pencillium notatum lipase (PNL) was immobilized as carrier free cross-linked enzyme aggregates using glutaraldehyde (GLA) and Ethylene glycol-bis [succinic acid N-hydroxysuccinimide] (EG-NHS) as cross-linking agents. The optimal conditions for the synthesis of an efficient lipase CLEAs such as precipitant type, the nature and amount of cross-linking reagent, and cross-linking time were optimized. The recovered activities of CLEAs were considerably dependent on the concentration of GLA; however, the activity recovery was not severely affected by EG-NHS as a mild cross-linker. The EG-NHS aggregates displayed superior hydrolytic (52.08±2.52%) and esterification (64.42%) activities as compared to GLA aggregates which showed 23.8±1.86 and 34.54% of hydrolytic and esterification activity, respectively. Morphological analysis by fluorescence and scanning electron microscope revealed that EG-NHS aggregates were smaller in size with larger surface area compared to GLA aggregates. The pH optima of both types of CLEAs were displaced to slightly alkaline region and higher temperature as compared to native enzyme. Highest enzyme activity of CLEAs was achieved at the pH of 9.0 and 42°C temperature. Moreover, a significant improvement in the thermal resistance was also recorded after immobilization. After ten reusability cycles in aqueous medium, GLA and EG-NHS cross-linked lipase CLEAs preserved 63.62% and 70.9% of their original activities, respectively. The results suggest that this novel CLEA-lipase is potentially usable in many industrial applications.

  13. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.

    PubMed

    Rehman, Saima; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad

    2016-10-01

    Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. In this study, Pencillium notatum lipase (PNL) was immobilized as carrier free cross-linked enzyme aggregates using glutaraldehyde (GLA) and Ethylene glycol-bis [succinic acid N-hydroxysuccinimide] (EG-NHS) as cross-linking agents. The optimal conditions for the synthesis of an efficient lipase CLEAs such as precipitant type, the nature and amount of cross-linking reagent, and cross-linking time were optimized. The recovered activities of CLEAs were considerably dependent on the concentration of GLA; however, the activity recovery was not severely affected by EG-NHS as a mild cross-linker. The EG-NHS aggregates displayed superior hydrolytic (52.08±2.52%) and esterification (64.42%) activities as compared to GLA aggregates which showed 23.8±1.86 and 34.54% of hydrolytic and esterification activity, respectively. Morphological analysis by fluorescence and scanning electron microscope revealed that EG-NHS aggregates were smaller in size with larger surface area compared to GLA aggregates. The pH optima of both types of CLEAs were displaced to slightly alkaline region and higher temperature as compared to native enzyme. Highest enzyme activity of CLEAs was achieved at the pH of 9.0 and 42°C temperature. Moreover, a significant improvement in the thermal resistance was also recorded after immobilization. After ten reusability cycles in aqueous medium, GLA and EG-NHS cross-linked lipase CLEAs preserved 63.62% and 70.9% of their original activities, respectively. The results suggest that this novel CLEA-lipase is potentially usable in many industrial applications. PMID:27365121

  14. Modulation of insulin degrading enzyme activity and liver cell proliferation.

    PubMed

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas F H; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.

  15. A microsystem to assay lysosomal enzyme activities in cultured retinal pigment epithelial cells.

    PubMed

    Cabral, L; Unger, W; Boulton, M; Marshall, J

    1988-11-01

    A microsystem to assay the activity of lysosomal enzymes in a small number of cultured RPE cells is described. The activities of acid phosphatase, a-mannosidase, B-glucuronidase and N-acetyl-B-glucosaminidase were estimated in different human RPE cultures of varying passages. Some biochemical characteristics for each of the enzyme assays were studied including the effect of pH, the saturating concentrations of the appropriate substrates and the relationship between the enzyme activity and the number of cells assayed. The method presented is straightforward, avoids complicated tissue fractionation procedures and is able to estimate enzyme activities in as few as 10(4) cells. PMID:3243083

  16. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  17. Acetylcholine as a signaling system to environmental stimuli in plants. III. Asymmetric solute distribution controlled by ACh in gravistimulated maize seedlings.

    PubMed

    Momonoki, Y S; Hineno, C; Noguchi, K

    1998-01-01

    Asymmetric distribution of acetylcholinesterase (AChE) activity has previously been demonstrated to occur in the lower side of the gravity-stimulated maize shoot. The localization of immunoreacted IAA-inositol synthase, AChE and safranin was detected in selected organs of gravistimulated dark grown maize seedlings using a light microscope. Immunoreacted IAA-inositol synthase was asymmetrically distributed in the lower side of the stele of coleoptile node and mesocotyl in maize seedlings placed horizontally. The positive AChE spots in the coleoptile node and mesocotyl were apparently localized in the lower half of the gravistimulated seedlings. Safranin was also asymmetrically distributed in the lower half of the endodermis and stele cells of coleoptile node and mesocotyl. Namely, transport of safranin in the upper half of the coleoptile node and mesocotyl was blocked by gravistimulation. Furthermore, the asymmetric distribution of immunoreacted IAA-inositol synthase was inhibited by neostigmine bromide, AChE inhibitor. These results show that an asymmetric environmental stimulus induces changes in AChE activity, affecting IAA-inositol synthase localization and safranin transport. PMID:12162322

  18. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis.

    PubMed

    Vandeput, Marie; Parsajoo, Cobra; Vanheuverzwijn, Jérôme; Patris, Stéphanie; Yardim, Yavuz; le Jeune, Alexandre; Sarakbi, Ahmad; Mertens, Dominique; Kauffmann, Jean-Michel

    2015-01-01

    A commercially available thin-layer flow-through amperometric detector, with the sensing block customized in an original design, was applied to the screening of drug compounds known as acetylcholinesterase (AChE) inhibitors. AChE from electric eel was covalently immobilized onto a cysteamine modified gold disk adjacent to a silver disk working electrode. On-line studies were performed by flow injection analysis (FIA) in PBS buffer pH 7.4. Seven commercially available AChE inhibitors used in the medical field, namely neostigmine, eserine, tacrine, donepezil, rivastigmine, pyridostigmine and galantamine as well as two natural compounds, quercetin and berberine, were investigated. The same trend of inhibitory potency as described in the literature was observed. Of particular interest and in addition to the determination of the IC50 values, this flow-through system allowed the study of both, the stability of the enzyme-inhibitor complex and the kinetic of the enzyme activity recovery. PMID:25459923

  19. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC. PMID:22922167

  20. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC.

  1. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. PMID:27385587

  2. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs

    PubMed Central

    Lin, Bo; Xiang, Shihua; Li, Mengsen

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12–19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads. PMID:27727162

  3. Annexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling.

    PubMed

    You, Chun; Zhang, Y-H Percival

    2014-06-20

    The self-assembled three-enzyme complex containing triosephosphate isomerase (TIM), aldolase (ALD), and fructose 1,6-biphosphatase (FBP) was constructed via a mini-scaffoldin containing three different cohesins and the three dockerin-containing enzymes. This enzyme complex exhibited 1 order of magnitude higher initial reaction rates than the mixture of noncomplexed three enzymes. In this enzyme cascade reactions, the reaction mediated by ALD was the rate-limiting step. To understand the in-depth role of the rate-limiting enzyme ALD in influencing the substrate channeling effect of synthetic enzyme complexes, low-activity ALD from Thermotoga maritima was replaced with a similar-size ALD isolated from Thermus thermophilus, where the latter had more than 5 times specific activity of the former. The synthetic three-enzyme complexes annexed with either low-activity or high-activity ALDs exhibited higher initial reaction rates than the mixtures of the two-enzyme complex (TIM-FBP) and the nonbound low-activity or high activity ALD at the same enzyme concentration. It was also found that the annexation of more high-activity ALD in the synthetic enzyme complexes drastically decreased the degree of substrate channeling from 7.5 to 1.5. These results suggested that the degree of substrate channeling in synthetic enzyme complexes depended on the enzyme choice. This study implied that the construction of synthetic enzyme enzymes in synthetic cascade pathways could be a very important tool to accrelerate rate-limiting steps controlled by low-activity enzymes.

  4. Two Ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders.

    PubMed

    Zengin, Gokhan; Sarikurkcu, Cengiz; Gunes, Erdogan; Uysal, Ahmet; Ceylan, Ramazan; Uysal, Sengul; Gungor, Halil; Aktumsek, Abdurrahman

    2015-08-01

    This work reports the antioxidant, antimicrobial, and inhibitory effects of methanol and water extracts from Ganoderma applanatum (GAM: methanol extract and GAW: water extract) and G. resinaceum (GRM: methanol extract and GRW: water extract) against cholinesterase, tyrosinase, α-amylase and α-glucosidase. The total phenolics, flavonoids contents, and HPLC profile of phenolic components present in the extracts, were also determined. Antioxidant activities were investigated by using different assays, including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating assays. Antimicrobial activity of the tested Ganoderma extracts was also studied by the broth microdilution method. Generally, the highest antioxidant (59.24 mg TEs per g extract for DPPH, 41.32 mg TEs per g extract for ABTS, 41.35 mg TEs per g extract for CUPRAC, 49.68 mg TEs per g extract for FRAP, 130.57 mg AAEs per g extract for phosphomolybdenum and 26.92 mg EDTAEs per g extract) and enzyme inhibitory effects (1.47 mg GALAEs per g extract for AChE, 1.51 mg GALAEs per g extract for BChE, 13.40 mg KAEs per g extract for tyrosinase, 1.13 mmol ACEs per g extract for α-amylase and 2.20 mmol ACEs per g extract for α-glucosidase) were observed in GRM, which had the highest concentrations of phenolics (37.32 mg GAEs g(-1) extract). Again, Ganoderma extracts possess weak antibacterial and antifungal activities. Apigenin and protocatechuic acid were determined as the main components in GRM (1761 μg per g extract) and GAM (165 μg per g extract), respectively. The results suggest that the Ganoderma species may be considered as a candidate for preparing new food supplements and can represent a good model for the development of new drug formulations.

  5. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes.

    PubMed

    Sarrazin, Stéphane; Wilson, Beth; Sly, William S; Tor, Yitzhak; Esko, Jeffrey D

    2010-07-01

    Guanidinylated neomycin (GNeo) can transport bioactive, high molecular weight cargo into the interior of cells in a process that depends on cell surface heparan sulfate proteoglycans. In this report, we show that GNeo-modified quantum dots bind to cell surface heparan sulfate, undergo endocytosis and eventually reach the lysosomal compartment. An N-hydroxysuccinimide activated ester of GNeo (GNeo-NHS) was prepared and conjugated to two lysosomal enzymes, beta-D-glucuronidase (GUS) and alpha-L-iduronidase. Conjugation did not interfere with enzyme activity and enabled binding of the enzymes to heparin-Sepharose and heparan sulfate on primary human fibroblasts. Cells lacking the corresponding lysosomal enzyme took up sufficient amounts of the conjugated enzymes to restore normal turnover of glycosaminoglycans. The high capacity of proteoglycan-mediated uptake suggests that this method of delivery might be used for enzyme replacement or introduction of foreign enzymes into cells.

  6. Activity-based proteomics probes for carbohydrate-processing enzymes: current trends and future outlook.

    PubMed

    Stubbs, Keith A

    2014-05-22

    Carbohydrate-processing enzymes are gaining more attention due to their roles in health and disease as these enzymes are involved in the construction and deconstruction of vast arrays of glycan structures. As a result, the development of methods to identify these enzymes in complex biological systems is of increasing interest. Activity-based proteomics probes (ABPPs) are increasingly being used in glycobiology to detect and identify functionally related proteins (and homologues) within a biological system. This review will describe the design of activity-based proteomics probes, provide examples of compounds that have been used to profile activity in the area of carbohydrate-processing enzymes, and give some future perspectives.

  7. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers

    SciTech Connect

    Kim, Byoung Chan; Nair, Sujith; Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.; Kim, Seong H.; Gu, Man Bock

    2005-04-01

    We have developed a unique approach for the fabrication of enzyme coating on the surface of electrospun polymer nanofibers. This approach employs covalent attachment of seed enzymes onto nanofibers, followed by the glutaraldehyde treatment that crosslinks additional enzymes onto the seed enzyme molecules. These crosslinked enzyme aggregates, covalently attached to the nanofibers via seed enzyme linker, would improve not only the enzyme activity due to increased enzyme loading, but also the enzyme stability. To demonstrate the principle of concept, we fabricated the coating of alpha-chymotrypsin (CT) on the nanofibers electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The addition of poly(styrene-co-maleic anhydride) makes it much easier to attach the seed enzyme molecules onto electrospun nanofibers without any rigorous functionalization of nanofibers for the attachment of enzymes. The initial activity of final CT coating was 17 and 9 times higher than those of simply-adsorbed CT and covalently-attached CT, respectively. While adsorbed and covalently-attached CT resulted in a serious enzyme leaching during initial incubation in a shaking condition, the CT coating did not show any leaching from the beginning of incubation in the same condition. As a result, the enzyme stability of CT coating was impressively improved with a half-life of 686 days under rigorous shaking while the half-life of covalently-attached CT was only 21 hours. This new approach of enzyme coating with high stability and activity will make a great impact in various applications of enzymes such as bioconversion, bioremediation, and biosensors.

  8. Anisotropic a-C:H from Compression of Polyacetylene

    NASA Astrophysics Data System (ADS)

    Bernasconi, M.; Parrinello, M.; Chiarotti, G. L.; Focher, P.; Tosatti, E.

    1996-03-01

    We have simulated the transformation of crystalline trans-polyacetylene into a-C:H under pressure by constant pressure ab initio molecular dynamics. Polyacetylene undergoes a gradual saturation of C-C bonds via chain interlinks, ending up at ~50 GPa with a-C:H containing 80% sp3 carbon atoms. The sp2-->sp3 conversion is irreversible and does not reverse by returning to zero pressure. The final a-C:H is a wide gap insulator and, at variance with the conventionally generated a-C:H, is highly anisotropic keeping some memory of the original polyacetylene chain axis.

  9. An expedient synthesis, acetylcholinesterase inhibitory activity, and molecular modeling study of highly functionalized hexahydro-1,6-naphthyridines.

    PubMed

    Almansour, Abdulrahman I; Kumar, Raju Suresh; Arumugam, Natarajan; Basiri, Alireza; Kia, Yalda; Ali, Mohamed Ashraf

    2015-01-01

    A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6-10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor. PMID:25710037

  10. An Expedient Synthesis, Acetylcholinesterase Inhibitory Activity, and Molecular Modeling Study of Highly Functionalized Hexahydro-1,6-naphthyridines

    PubMed Central

    Almansour, Abdulrahman I.; Suresh Kumar, Raju; Arumugam, Natarajan; Basiri, Alireza; Kia, Yalda; Ashraf Ali, Mohamed

    2015-01-01

    A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6–10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor. PMID:25710037

  11. Modelling interactions between Loop1 of Fasciculin2 (Fas2) and Torpedo californica acetylcholinesterase ( Tc AChE)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2006-11-01

    Four interaction models for the binding of Torpedo californica acetylcholinesterase ( TcAChE) with Loop1 of Fasciculin2 are investigated at the B3LYP/6-311G(d,p) level of theory. The total binding energy of three fragments (P1-P3) which belong to the omega loop Cys67-Cys94 of TcAChE contributes almost 67% of the entire binding, suggesting the domination of this omega loop on the interaction between AChE and Loop1 of Fas2. The energy decomposition illustrates that the interactions mainly consist of electrostatic components. The polar solvent which reduces the binding energies of the studied models implies the significant impact of the solvent on the binding of Fas2 and AChE.

  12. Molecular architectures and functions of radical enzymes and their (re)activating proteins.

    PubMed

    Shibata, Naoki; Toraya, Tetsuo

    2015-10-01

    Certain proteins utilize the high reactivity of radicals for catalysing chemically challenging reactions. These proteins contain or form a radical and therefore named 'radical enzymes'. Radicals are introduced by enzymes themselves or by (re)activating proteins called (re)activases. The X-ray structures of radical enzymes and their (re)activases revealed some structural features of these molecular apparatuses which solved common enigmas of radical enzymes—i.e. how the enzymes form or introduce radicals at the active sites, how they use the high reactivity of radicals for catalysis, how they suppress undesired side reactions of highly reactive radicals and how they are (re)activated when inactivated by extinction of radicals. This review highlights molecular architectures of radical B12 enzymes, radical SAM enzymes, tyrosyl radical enzymes, glycyl radical enzymes and their (re)activating proteins that support their functions. For generalization, comparisons of the recently reported structures of radical enzymes with those of canonical radical enzymes are summarized here.

  13. Endothelin converting enzyme (ECE) activity in human vascular smooth muscle

    PubMed Central

    Maguire, Janet J; Johnson, Christopher M; Mockridge, James W; Davenport, Anthony P

    1997-01-01

    of a phosphoramidon-sensitive ECE on the smooth muscle layer of the human umbilical vein which can convert big ET-1, big ET-2(1-37), big ET-2(1-38) and big ET-3 to their mature biologically active forms. The precise subcellular localization of this enzyme and its physiological relevance remains to be determined. PMID:9422810

  14. Neurophysiological predictors of long term response to AChE inhibitors in AD patients

    PubMed Central

    Di, L; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Ghirlanda, S; Ranieri, F; Gainotti, G; Tonali, P

    2005-01-01

    Background: In vivo evaluation of cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with motor cortex TMS (short latency afferent inhibition, SAI). SAI is reduced in Alzheimer's disease (AD) and drugs enhancing cholinergic transmission increase SAI. Methods: We evaluated whether SAI testing, together with SAI test-retest, after a single dose of the acetylcholinesterase (AChE) inhibitor rivastigmine, might be useful in predicting the response after 1 year treatment with rivastigmine in 16 AD patients. Results: Fourteen AD patients had pathologically reduced SAI. SAI was increased after administration of a single oral dose of rivastigmine in AD patients with abnormal baseline SAI, but individual responses to rivastigmine varied widely, with SAI change ranging from an increase in inhibition of ∼50% of test size to no change. Baseline SAI and the increase in SAI after a single dose of rivastigmine were correlated with response to long term treatment. A normal SAI in baseline conditions, or an abnormal SAI in baseline conditions that was not greatly increased by a single oral dose of rivastigmine, were invariably associated with poor response to long term treatment, while an abnormal SAI in baseline conditions in conjunction with a large increase in SAI after a single dose of rivastigmine was associated with good response to long term treatment in most of the patients. Conclusions: Evaluation of SAI may be useful for identifying AD patients likely to respond to treatment with AChE inhibitors. PMID:16024879

  15. Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid.

    PubMed

    Yousef, Mokhtar I

    2004-06-01

    For a long time, aluminium (Al) has been considered an indifferent element from a toxicological point of view. In recent years, however, Al has been implicated in the pathogenesis of several clinical disorders, such as dialysis dementia, the fulminant neurological disorder that can develop in patients on renal dialysis. Therefore, the present experiment was carried out to determine the effectiveness of l-ascorbic acid (AA) in alleviating the toxicity of aluminium chloride (AlCl3) on certain hemato-biochemical parameters, lipid peroxidation and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to 1 of 4 treatment groups: 0mg AA and 0mg AlCl3/kg body weight (BW) (control); 40 mg AA/kg BW; 34 mg AlCl3/kg BW (1/25 LD50); 34 mg AlCl3 plus 40 mg AA/kg BW. Rabbits were orally administered their respective doses every other day for 16 weeks. Evaluations were made for lipid peroxidation, enzyme activities and hemato-biochemical parameters. Results obtained showed that AlCl3 significantly (P<0.05) induced free radicals and decreased the activity of glutathione S-transferase (GST) and the levels of sulfhydryl groups (SH groups) in rabbit plasma, liver, brain, testes and kidney. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and phosphorylase activities were significantly decreased in liver and testes due to AlCl3 administration. While, plasma, liver, testes and brain lactate dehydrogenase (LDH) activities were significantly increased. Contrariwise, the activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Aluminium treatment caused a significant decrease in plasma total lipids (TL), blood haemoglobin (Hb), total erythrocytic count (TEC) and packed cell volume (PCV), and increased total leukocyte count (TLC) and the concentrations of glucose, urea, creatinine, bilirubin and cholesterol. Ascorbic acid alone significantly decreased the

  16. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2010-03-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawaters relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme

  17. Enhanced diffusion, chemotaxis, and pumping by active enzymes: progress toward an organizing principle of molecular machines.

    PubMed

    Astumian, R Dean

    2014-12-23

    Active enzymes diffuse more rapidly than inactive enzymes. This phenomenon may be due to catalysis-driven conformational changes that result in "swimming" through the aqueous solution. Recent additional work has demonstrated that active enzymes can undergo chemotaxis toward regions of high substrate concentration, whereas inactive enzymes do not, and, further, that active enzymes immobilized at surfaces can directionally pump liquids. In this Perspective, I will discuss these phenomena in light of Purcell's work on directed motion at low Reynold's number and in the context of microscopic reversibility. The conclusions suggest that a deep understanding of catalytically driven enhanced diffusion of enzymes and related phenomena can lead toward a general organizing principle for the design, characterization, and operation of molecular machines.

  18. Antibacterial, Antifungal, Cytotoxic, Phytotoxic, Insecticidal, and Enzyme Inhibitory Activities of Geranium wallichianum

    PubMed Central

    Ismail, Muhammad; Hussain, Javid; Khan, Arif-ullah; Khan, Abdul Latif; Ali, Liaqat; Khan, Farman-ullah; Khan, Amir Zada; Niaz, Uzma; Lee, In-Jung

    2012-01-01

    The present study describes the phytochemical investigations of the crude extracts of rhizomes and leaves of Geranium wallichianum. The crude extracts were fractionated to obtain n-hexane, ethyl acetate, and n-butanol fractions, which were subjected to different biological activities and enzyme inhibition assays to explore the therapeutic potential of this medicinally important herb. The results indicated that the crude extracts and different fractions of rhizomes and leaves showed varied degree of antimicrobial activities and enzyme inhibitions in different assays. Overall, the rhizome extract and its different fractions showed comparatively better activities in various assays. Furthermore, the purified constituents from the repeated chromatographic separations were also subjected to enzyme inhibition studies against three different enzymes. The results of these studies showed that lipoxygenase enzyme was significantly inhibited as compared to urease. In case of chemical constituents, the sterols (2–4) showed no inhibition, while ursolic acid (1) and benzoic ester (6) showed significant inhibition of urease enzymes. PMID:23049606

  19. [Glycolytic activity of enzyme preparation from the red king crab (Paralithodes camtschaticus) hepatopancreas].

    PubMed

    Rysakova, K S; Novikov, V Iu; Mukhin, V A; Serafimchik, E M

    2008-01-01

    Enzyme preparation exhibiting glycolytic activity yielding chitooligosaccharides along with N-acetyl-D-glucosamine was obtained from the red king crab (Paralithodes camtschaticus) hepatopancreas. The results of the analysis confirmed the presence of endo- and exochitinase activities in the preparation. HPLC showed that the hydrolysis products of chitin and chitosan did not contain D(+)-glucosamine, which is indicative of the absence of deacetylase and, apparently, exochitosanase activities. A comparison of the dependence of the enzyme preparation activity on temperature and pH of the incubation medium suggests that chitinase and protease activities are exhibited by different enzymes.

  20. Brain and hypophyseal acetylcholinesterase activity of pubertal boars fed dietary fumonisin B1.

    PubMed

    Gbore, F A

    2010-10-01

    The effects of dietary fumonisin B(1) (FB(1)) on regional brain and hypophyseal activities of AChE (EC 3117), the enzyme which catalyses the hydrolysis of acetylcholine, were studied using 24 male Large White weanling pigs divided into four groups. Each group received one of the four diets containing 0.2, 5.0, 10.0 and 15.0 mg FB(1)/kg in a 6-month feeding trial. All animals were slaughtered at the end of the feeding trial; the brains and the hypophyses obtained were carefully dissected out. Significant (p < 0.05) influence of dietary FB(1) on regional brain and hypophyseal AChE activities were observed. The AChE activities in the pons, amygdala, hypothalamus and the medulla oblongata declined significantly (p < 0.05) with increased dietary FB(1) concentrations. The findings of this study suggest that diets containing 5.0 mg FB(1)/kg and above significantly (p < 0.05) altered regional brain and hypophyseal AChE activities in the animals. Dietary exposure to FB(1) at a concentration of approximately 5.0 mg/kg or more for a 6-month period is a potential health risk that may induce adverse physiological response resulting from altered brain neurochemistry in growing pigs.

  1. Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii1[W][OA

    PubMed Central

    Steinhauser, Marie-Caroline; Steinhauser, Dirk; Koehl, Karin; Carrari, Fernando; Gibon, Yves; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Enzymes interact to generate metabolic networks. The activities of more than 22 enzymes from central metabolism were profiled during the development of fruit of the modern tomato cultivar Solanum lycopersicum ‘M82’ and its wild relative Solanum pennellii (LA0716). In S. pennellii, the mature fruit remains green and contains lower sugar and higher organic acid levels. These genotypes are the parents of a widely used near introgression line population. Enzymes were also profiled in a second cultivar, S. lycopersicum ‘Moneymaker’, for which data sets for the developmental changes of metabolites and transcripts are available. Whereas most enzyme activities declined during fruit development in the modern S. lycopersicum cultivars, they remained high or even increased in S. pennellii, especially enzymes required for organic acid synthesis. The enzyme profiles were sufficiently characteristic to allow stages of development and cultivars and the wild species to be distinguished by principal component analysis and clustering. Many enzymes showed coordinated changes during fruit development of a given genotype. Comparison of the correlation matrices revealed a large overlap between the two modern cultivars and considerable overlap with S. pennellii, indicating that despite the very different development responses, some basic modules are retained. Comparison of enzyme activity, metabolite profiles, and transcript profiles in S. lycopersicum ‘Moneymaker’ revealed remarkably little connectivity between the developmental changes of transcripts and enzymes and even less between enzymes and metabolites. We discuss the concept that the metabolite profile is an emergent property that is generated by complex network interactions. PMID:20335402

  2. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin

    PubMed Central

    Kumar, Suresh

    2015-01-01

    Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480

  3. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  4. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  5. A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes*

    PubMed Central

    Vidal-Melgosa, Silvia; Pedersen, Henriette L.; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B.; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G. T.

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. PMID:25657012

  6. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    PubMed

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths.

  7. Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae).

    PubMed

    dos Santos Miron, Denise; Crestani, Márcia; Rosa Shettinger, Maria; Maria Morsch, Vera; Baldisserotto, Bernardo; Angel Tierno, Miguel; Moraes, Gilberto; Vieira, Vania Lucia Pimentel

    2005-07-01

    Fingerlings of the silver catfish (Rhamdia quelen) were exposed to three herbicides widely used in rice culture in south Brazil: clomazone, quinclorac, and metsulfuron methyl. LC50 was determined and acetylcholinesterase (AChE) activity was evaluated in brain and muscle tissue of fish exposed to different herbicide concentrations after 96h (short term). The LC50 value (nominal concentration) was 7.32 mg/L for clomazone and 395 mg/L for quinclorac, but was not obtained for metsulfuron-methyl since all fingerlings survived the highest concentration of 1200 mg/L. Brain and muscle AChE activity in unexposed fish were 17.9 and 9.08 micromol/min/g protein, respectively. Clomazone significantly inhibited AChE activity in both tissues, achieving maximal inhibition of about 83% in brain and 89% in muscle tissue. In contrast, quinclorac and metsulfuron methyl caused increases in enzyme activity in the brain (98 and 179%, respectively) and inhibitions in muscle tissue (88 and 56%, respectively). This study demonstrated short-term effects of exposure to environmentally relevant concentrations of rice field herbicides on AChE activity in brain and muscle tissue of silver catfish.

  8. Temperature adaptation of enzymes: roles of the free energy, the enthalpy, and the entropy of activation.

    PubMed

    Low, P S; Bada, J L; Somero, G N

    1973-02-01

    The enzymic reactions of ectothermic (cold-blooded) species differ from those of avian and mammalian species in terms of the magnitudes of the three thermodynamic activation parameters, the free energy of activation (DeltaG()), the enthalpy of activation (DeltaH()), and the entropy of activation (DeltaS()). Ectothermic enzymes are more efficient than the homologous enzymes of birds and mammals in reducing the DeltaG() "energy barrier" to a chemical reaction. Moreover, the relative importance of the enthalpic and entropic contributions to DeltaG() differs between these two broad classes of organisms.

  9. [Relationship between soil enzyme activities and trace element contents in Eucalyptus plantation soil].

    PubMed

    Li, Yuelin; Peng, Shaolin; Li, Zhihui; Ren, Hai; Li, Zhi'an

    2003-03-01

    Canonical correlation analysis on soil enzyme activities and trace element contents in Eucalyptus plantation soil showed that among the test elements, only Zn and Mn affected enzyme activity. Both Zn and Mn increased soil proteinase activity. Zn decreased the activities of soil urease and peroxidase, while Mn promoted them. "Integral soil enzyme factor" could be used as an index of soil fertility. Together with other growth factors, this index should be considered when evaluating soil fertility of Eucalyptus forest sites. It also had a definite significance on the division of Eucalyptus soil families. PMID:12836538

  10. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2009-12-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawater relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme lifetime

  11. Secretion of an articular cartilage proteoglycan-degrading enzyme activity by murine T lymphocytes in vitro.

    PubMed Central

    Kammer, G M; Sapolsky, A I; Malemud, C J

    1985-01-01

    Destruction of articular cartilage is the hallmark of inflammatory arthritides. Enzymes elaborated by mononuclear cells infiltrating the synovium mediate, in part, the degradation of the cartilage extracellular matrix. Since mononuclear cells are the dominant cell type found in chronic inflammatory synovitis, we investigated whether interaction of immune mononuclear cells with antigen initiated the synthesis and secretion of a proteoglycan-degrading enzyme activity. Proteoglycan-degrading enzyme activity was monitored by the capacity of murine spleen cell conditioned medium to release [3H]serine/35SO4 incorporated into rabbit cartilage proteoglycan monomer fraction (A1D1), and by the relative change in specific viscosity of bovine nasal cartilage proteoglycan monomer. The results demonstrated that both virgin and immune mononuclear cells spontaneously generated proteoglycan-degrading enzyme activity and that cellular activation and proliferation induced by the antigen keyhole limpet hemocyanin or the mitogen phytohemagglutinin was not required. Kinetic studies demonstrated stable release of the enzyme activity over 72 h. Cell separation studies showed that T lymphocytes, a thymoma line, and macrophages separately produced proteoglycan-degrading enzyme activity. The enzyme activity has been partially characterized and appears to belong to a class of neutral pH metal-dependent proteinases. These observations, the first to demonstrate that T lymphocytes secrete an enzyme capable of degrading cartilage proteoglycan, raise the possibility that this enzyme activity contributes to cartilage extracellular matrix destruction in vivo. Moreover, these data support the conclusion that production of this enzyme by T lymphocytes is independent of an antigen-specific stimulus. PMID:3897284

  12. Photoregulation of Biological Activity by Photochromic Reagents, IV. A Model for Diurnal Variation of Enzymic Activity*

    PubMed Central

    Bieth, Joseph; Wassermann, Norbert; Vratsanos, Spyros M.; Erlanger, Bernard F.

    1970-01-01

    Levels of acetylcholinesterase activity can be made to vary in response to the presence or absence of sunlight in a system that can be considered as a model for photoperiodic processes found in nature. The enzyme is rendered photosensitive by the presence of a photochromic inhibitor, N-p-phenylazophenylcarbamyl choline, which changes from a trans to a cis isomer under the influence of the light of the sun and reverts back to the trans isomer in the dark. The two isomers differ in their ability acetylcholinesterase, thus rendering the enzyme system responsive to sunlight. The relationship of this system to photoresponsive processes in nature is discussed, and a possible role in photoregulation is suggested for naturally occurring carotenoids. PMID:5269248

  13. Determination of Diamine Oxidase in Lentil Seedlings by Enzymic Activity and Immunoreactivity

    PubMed Central

    Federico, Rodolfo; Angelini, Riccardo; Cesta, Alberinda; Pini, Carlo

    1985-01-01

    A competitive radioimmunoassay for the quantitation of diamine oxidase (EC 1.4.3.6) from Lens culinaris is reported. Specific antibodies raised in rabbits immunized with a homogeneous preparation of the enzyme were incubated with purified 125I-enzyme and with either unlabeled diamine oxidase or plant material. Antigen-antibody complexes were isolated from the mixture by incubation with Staphylococcus protein A. The sensitivity of the test was about 5 nanograms in terms of enzyme protein. This assay was applied to the determination of the enzyme in extracts from lentil shoots grown either in the dark or in the light. Diamine oxidase activity and enzyme protein (as determined by radioimmunoassay) were measured during 7 days after germination. Both enzymic activity and enzyme protein declined slowly in the dark and rapidly in the light. These results indicate that fluctuation of the enzymic activity in this organ, both in the light and in the dark, are mediated via changes in the amount of the enzyme protein and not via the action of an inhibitor. PMID:16664402

  14. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities

    PubMed Central

    Bell, Colin W.; Fricks, Barbara E.; Rocca, Jennifer D.; Steinweg, Jessica M.; McMahon, Shawna K.; Wallenstein, Matthew D.

    2013-01-01

    Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil

  15. Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells.

    PubMed

    Lněničková, Kateřina; Procházková, Eliška; Skálová, Lenka; Matoušková, Petra; Bártíková, Hana; Souček, Pavel; Szotáková, Barbora

    2016-01-01

    The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE) and epigallocatechin gallate (EGCG) using both proliferating (P) and differentiated (D) caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes' activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST) activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT) activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well. PMID:27617982

  16. Synthesis and inhibitory activity of ureidophosphonates, against acetylcholinesterase: pharmacological assay and molecular modeling.

    PubMed

    Kaboudin, Babak; Arefi, Marzban; Emadi, Saeed; Sheikh-Hasani, Vahid

    2012-01-01

    A novel method has been developed for the synthesis of 1-ureidophosphonates through a three components condensation of aldehyde with amine and diethylphosphite in the presence of sulfanilic acid as catalyst followed by subsequent reaction of the product with isocyanate. This method is easy, rapid, and good yielding. The anticholinesterase (AChE) activities (inhibition potency through IC(50)) of newly synthesized 1-ureidophosphonates were also investigated. The activities of the synthesized compounds toward the enzyme AChE were determined and compared in terms of their molecular structures and it was found, through molecular docking simulations, that the most potent derivative (compound 3i) inhibited the enzyme through binding to the peripheral anionic site (PAS) and not to its acylation site (A site).

  17. Quantum dot-based nanosensors for diagnosis via enzyme activity measurement.

    PubMed

    Knudsen, Birgitta R; Jepsen, Morten Leth; Ho, Yi-Ping

    2013-05-01

    Enzymes are essential in the human body, and the disorder of enzymatic activities has been associated with many different diseases and stages of disease. Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have garnered great attention in molecular diagnostics. Owing to their superior optical properties, tunable and narrow emissions, stable brightness and long lifetime, QD-based enzyme activity measurement has demonstrated improved detection sensitivity, which is considered particularly valuable for early disease diagnosis. Recent studies have also shown that QD-based nanosensors are capable of probing multiple enzyme activities simultaneously. This review highlights the current development of QD-based nanosensors for enzyme detection. The enzyme-QD hybrid system, equipped with unique electronic, optical and catalytic properties, is envisioned as a potential solution in addressing challenges in diagnostics and therapeutics.

  18. Retaining and recovering enzyme activity during degradation of TCE by methanotrophs.

    PubMed

    Palumbo, A V; Strong-Gunderson, J M; Carroll, S

    1997-01-01

    To determine if compounds added during trichloroethylene (TCE) degradation could reduce the loss of enzyme activity or increase enzyme recovery, different compounds serving as energy and carbon sources, pH buffers, or free radical scavengers were tested. Formate and formic acid (reducing power and a carbon source), as well as ascorbic acid and citric acid (free radical scavengers) were added during TCE degradation at a concentration of 2 mM. A saturated solution of calcium carbonate was also tested to address pH concerns. In the presence of formate and methane, only calcium carbonate and formic acid had a beneficial effect on enzyme recovery. The calcium carbonate and formic acid both reduced the loss of enzyme activity and resulted in the highest levels of enzyme activity after recovery. PMID:18576132

  19. Retaining and recovering enzyme activity during degradation of TCE by methanotrophs

    SciTech Connect

    Palumbo, A.V.; Strong-Gunderson, J.M.; Carroll, S.

    1997-12-31

    To determine if compounds added during trichloroethylene (TCE) degradation could reduce the loss of enzyme activity or increase enzyme recovery, different compounds serving as energy and carbon sources, pH buffers, or free radical scavengers were tested. Formate and formic acid (reducing power and a carbon source), as well as ascorbic acid and citric acid (free radical scavengers) were added during TCE degradation at a concentration of 2 mM. A saturated solution of calcium carbonate was also tested to address pH concerns. In the presence of formate and methane, only calcium carbonate and formic acid had a beneficial effect on enzyme recovery. The calcium carbonate and formic acid both reduced the loss of enzyme activity and resulted in the highest levels of enzyme activity after recovery. 19 refs., 3 figs.

  20. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    PubMed

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  1. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.

    PubMed

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins' active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  2. Inhibitory activity of Plantago major L. on angiotensin I-converting enzyme.

    PubMed

    Nhiem, Nguyen Xuan; Tai, Bui Huu; Van Kiem, Phan; Van Minh, Chau; Cuong, Nguyen Xuan; Tung, Nguyen Huu; Thu, Vu Kim; Trung, Trinh Nam; Anh, Hoang Le Tuan; Jo, Sung-Hoon; Jang, Hae-Dong; Kwon, Young-In; Kim, Young Ho

    2011-03-01

    Eight compounds were isolated from methanol extract of Plantago major L. leaves and investigated for their ability to inhibit angiotensin I-converting enzyme activity. Among them, compound 1 showed the most potent inhibition with rate of 28.06 ± 0.21% at a concentration of 100 μM. Compounds 2 and 8 exhibited weak activities. These results suggest that compound 1 might contribute to the ability of P. major to inhibit the activity of angiotensin I- converting enzyme.

  3. Soil Enzyme Activities as Affected by Manure Types, Application Rates and Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of manure can restore soil ecosystem services related to nutrient cycling and soil organic matter (SOM) dynamics through biochemical transformations mediated by soil enzymes. Enzyme activities are very crucial in soil metabolic functioning as they drive the decomposition of organic r...

  4. Illustrating the Effect of pH on Enzyme Activity Using Gibbs Energy Profiles

    ERIC Educational Resources Information Center

    Bearne, Stephen L.

    2014-01-01

    Gibbs energy profiles provide students with a visual representation of the energy changes that occur during enzyme catalysis, making such profiles useful as teaching and learning tools. Traditional kinetic topics, such as the effect of pH on enzyme activity, are often not discussed in terms of Gibbs energy profiles. Herein, the symbolism of Gibbs…

  5. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of a biochar made from switchgrass on four soil enzymes (ß- glucosidase, ß-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Inconsistent results from enzyme assays of char-amended soils s...

  6. Sediment Microbial Enzyme Activity as an Indicator of Nutrient Limitation in Great Lakes Coastal Wetlands

    EPA Science Inventory

    This study, the first to link microbial enzyme activities to regional-scale anthropogenic stressors, suggests that microbial enzyme regulation of carbon and nutrient dynamics may be sensitive indicators of nutrient dynamics in aquatic ecosystems, but further work is needed to elu...

  7. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Mclaren, A. D.

    1974-01-01

    Sensitive tests for the detection of extracellular enzyme activity in Martian soil was investigated using simulated Martian soil. Enzyme action at solid-liquid water interfaces and at low humidity were studied, and a kinetic scheme was devised and tested based on the growth of microorganisms and the oxidation of ammonium nitrite.

  8. Measuring potential denitrification enzyme activity rates using the membrane inlet mass spectrometer

    EPA Science Inventory

    The denitrification enzyme activity (DEA) assay, provides a quantitative assessment of the multi enzyme, biological process of reactive nitrogen removal via the reduction of N03 to N2. Measured in soil, usually under non limiting carbon and nitrate concentrations, this short ter...

  9. Enzymatic immuno-assembly of gold nanoparticles for visualized activity screening of histone-modifying enzymes.

    PubMed

    Zhen, Zhen; Tang, Li-Juan; Long, Haoxu; Jiang, Jian-Hui

    2012-04-17

    Activity screening of histone-modifying enzymes is of paramount importance for epigenetic research as well as clinical diagnostics and therapeutics. A novel biosensing strategy has been developed for sensitive and selective detection of histone-modifying enzymes as well as their inhibitors. This strategy relies on the antibody-mediated assembly of gold nanoparticles (AuNPs) decorated with substrate peptides that are subjected to enzymatic modifications by the histone-modifying enzymes. This design allows a visual and homogeneous assay of the enzyme activity using antibodies without any labels, which circumvents the requirements to prefunctionalize the antibody and affords improved assay simplicity and throughput. Additionally, the use of antibody-based recognition of modified peptides could offer improved specificity as compared with existing techniques based on the enzyme coupled assay. We have demonstrated this strategy using a histone methyltransferase acting on histone H3 (Lys 4) and a histone acetyltransferase acting on histone H3 (Lys 14). The results reveal that the absorption peak characteristic for AuNPs decreases dynamically with increasing activity of the enzymes with concomitant visualizable color attenuation, and subnanomolar detection limits are readily achieved for both enzymes. The developed strategy can thus offer a robust and convenient visualized platform for screening the enzyme activities and their inhibitors with high sensitivity and selectivity.

  10. Quantitation of Lipase Activity from a Bee: An Introductory Enzyme Experiment.

    ERIC Educational Resources Information Center

    Farley, Kathleen A.; Jones, Marjorie A.

    1989-01-01

    This four-hour experiment uses a bee as a source of the enzyme which is reacted with a radioactive substrate to determine the specific activity of the enzyme. Uses thin layer chromatography, visible spectrophotometry, and liquid scintillation spectrometry (if not available a Geiger-Muller counter can be substituted). (MVL)

  11. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.

  12. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    SciTech Connect

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka; Fukushima, Tadamasa; Morimoto, Hisao; Usami, Ron; Maekawa, Toru

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  13. The effect of aspartame on the activity of rat liver xenobiotic-metabolizing enzymes.

    PubMed

    Tutelyan, V A; Kravchenko, L V; Kuzmina, E E

    1990-01-01

    Male, Wistar rats were administered aspartame (40 or 4000 mg/kg body weight) in their diet for 90 days. By 45 days, the activities of three microsomal enzymes, epoxide hydrolase, carboxylesterase, and p-nitrophenyl-UDP-glucuronosyltransferase, were significantly increased in rats consuming 4000 mg/kg of aspartame. By 90 days, however, the activity of the xenobiotic-metabolizing enzymes of the rats given aspartame did not differ significantly from the activity of control animals. From these results, we conclude that the consumption of aspartame does not substantially alter the function of the hepatic microsomal enzymes which protect the organism from foreign compounds found in its environment and food.

  14. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  15. Experimental strategy to discover microbes with gluten-degrading enzyme activities

    NASA Astrophysics Data System (ADS)

    Helmerhorst, Eva J.; Wei, Guoxian

    2014-06-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  16. Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities

    PubMed Central

    Helmerhorst, Eva J.; Wei, Guoxian

    2015-01-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement. PMID:26113763

  17. Amino acid activation in mammalian brain. Purification and characterization of tryptophan-activating enzyme from buffalo brain.

    PubMed

    Liu, C C; Chung, C H; Lee, M L

    1973-10-01

    l-Tryptophan-activating enzyme [l-tryptophan-tRNA ligase (AMP), EC 6.1.1.2] of water-buffalo brain was purified to near homogeneity by heat and pH treatments, ammonium sulphate fractionation, column chromatography on DEAE-cellulose, hydroxyapatite and Amberlite CG-50, and gel filtration on Sephadex G-200. The purified enzyme catalyses tryptophanyl-tRNA formation with yeast tRNA, but not with Escherichia coli tRNA. The enzyme exhibits multiple peaks of activity in Sephadex gel filtration with molecular weights corresponding to 155000, 105000 and 50000. However, only one peak of activity with molecular weight of 155000 can be detected when the enzyme is subjected to gel filtration at high concentration. Disc gel electrophoresis in the presence of sodium dodecyl sulphate reveals a single band with molecular weight of 55000. The activity of the enzyme is concentration dependent. Different K(m) and V(max.) values are obtained at different enzyme concentrations. These data suggest that this enzyme may exist in different quaternary structures, each with its own kinetic constants. The enzyme activity is inhibited by p-chloromercuribenzoate, and is not protected by the presence of the substrates, l-tryptophan, Mg(2+), ATP, in any combination.

  18. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  19. Ubiquitin enzymes, ubiquitin and proteasome activity in blood mononuclear cells of MCI, Alzheimer and Parkinson patients.

    PubMed

    Ullrich, C; Mlekusch, R; Kuschnig, A; Marksteiner, J; Humpel, C

    2010-09-01

    Alzheimer's disease (AD) is a severe chronic neurodegenerative disease. During aging and neurodegeneration, misfolded proteins accumulate and activate the ubiquitin-proteasome system. The aim of the present study is to explore whether ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin or proteasome activity are affected in peripheral blood mononuclear cells (PBMC) of AD, mild cognitive impairment (MCI) and Parkinson's disease (PD) patients compared to healthy subjects. PBMCs were isolated from EDTA blood samples and extracts were analyzed by Western Blot. Proteasome activity was measured with fluorogenic substrates. When compared to healthy subjects, the concentration of enzyme E1 was increased in PBMCs of AD patients, whereas the concentration of the enzyme E2 was decreased in these same patients. Ubiquitin levels and proteasome activity were unchanged in AD patients. No changes in enzyme expression or proteasome activity was observed in MCI patients compared to healthy and AD subjects. In PD patients E2 levels and proteasomal activity were significantly reduced, while ubiquitin and E1 levels were unchanged. The present investigation demonstrates the differences in enzyme and proteasome activity patterns of AD and PD patients. These results suggest that different mechanisms are involved in regulating the ubiquitin-proteasomal system in different neurodegenerative diseases.

  20. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual

  1. Plasma B-esterase activities in European raptors.

    PubMed

    Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis

    2005-01-01

    B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and

  2. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications.

  3. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    PubMed

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. PMID:26257292

  4. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    PubMed

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device.

  5. Chemical modification of an alpha 3-fucosyltransferase; definition of amino acid residues essential for enzyme activity.

    PubMed

    Britten, C J; Bird, M I

    1997-02-11

    The biosynthesis of the carbohydrate antigen sialyl Lewis X (sLe(x)) is dependent on the activity of an alpha 3-fucosyltransferase (EC 2.4.1.152, GDP-fucose:Gal beta (1-4)GlcNAc-R alpha (1-3)fucosyltransferase). This enzyme catalyses the transfer of fucose from GDP-beta-fucose to the 3-OH of N-acetylglucosamine present in lactosamine acceptors. In this report, we have investigated the amino acids essential for the activity of a recombinant alpha 3-fucosyltransferase (FucT-VI) through chemical modification of the enzyme with group-selective reagents. FucT-VI activity was found to be particularly sensitive to the histidine-selective reagent diethylpyrocarbonate and the cysteine reagent N-ethylmaleimide, with IC50 values of less than 200 microM. Reagents selective for arginine and lysine had no effect on enzyme activity. The inclusion of GDP-beta-fucose during preincubation with NEM reduces the rate of inactivation whereas inclusion of an acceptor saccharide for the enzyme, Gal beta (1-4)GlcNAc, had no effect. No protective effect with either GDP-beta-fucose or Gal beta (1-4)GlcNAc was observed on treatment of the enzyme with diethylpyrocarbonate. These data suggest that in addition to an NEM-reactive cysteine in, or adjacent to, the substrate-binding site of the enzyme, FucT-VI possesses histidine residue(s) that are essential for enzyme activity.

  6. Studies on the activating enzyme for iron protein of nitrogenase from Rhodospirillum rubrum.

    PubMed

    Saari, L L; Pope, M R; Murrell, S A; Ludden, P W

    1986-04-15

    Removal of ADP-ribose from the iron protein of nitrogenase by activating enzyme resulted in the activation of the inactive iron protein. A radioassay that directly measured the initial velocity of the activation was developed using iron protein radiolabeled with either [8-3H]- or [G-32P]ADP-ribose. The release of radiolabeled ADP-ribose by activating enzyme was linearly correlated with the increase in the specific activity of the iron protein as measured by acetylene reduction. Both ATP and MnCl2 were required for the activation of inactive iron protein. The optimal ratio of [MnCl2]/[ATP] in the radioassay was 2:1, and the optimal concentrations were 4 mM and 2 mM for [MnCl2] and [ATP], respectively. The Km for inactive iron protein was 74 microM and the Vmax was 628 pmol of [32P] ADP-ribose released min-1 microgram of activating enzyme-1. Adenosine, cytidine, guanosine, or uridine mono-, di-, or triphosphates did not substitute for ATP in the activation of native iron protein. Activating enzyme removed ADP-ribose from oxygen-denatured iron protein in the absence of ATP. ADP, ADP-ribose, pyrophosphate, and high concentrations of NaCl inhibited activating enzyme activity. PMID:3082874

  7. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes.

    PubMed Central

    Khan, A. R.; James, M. N.

    1998-01-01

    Proteolytic enzymes are synthesized as inactive precursors, or "zymogens," to prevent unwanted protein degradation, and to enable spatial and temporal regulation of proteolytic activity. Upon sorting or appropriate compartmentalization, zymogen conversion to the active enzyme typically involves limited proteolysis and removal of an "activation segment." The sizes of activation segments range from dipeptide units to independently folding domains comprising more than 100 residues. A common form of the activation segment is an N-terminal extension of the mature enzyme, or "prosegment," that sterically blocks the active site, and thereby prevents binding of substrates. In addition to their inhibitory role, prosegments are frequently important for the folding, stability, and/or intracellular sorting of the zymogen. The mechanisms of conversion to active enzymes are diverse in nature, ranging from enzymatic or nonenzymatic cofactors that trigger activation, to a simple change in pH that results in conversion by an autocatalytic mechanism. Recent X-ray crystallographic studies of zymogens and comparisons with their active counterparts have identified the structural changes that accompany conversion. This review will focus upon the structural basis for inhibition by activation segments, as well as the molecular events that lead to the conversion of zymogens to active enzymes. PMID:9568890

  8. Investigations on the activity of poly(2-oxazoline) enzyme conjugates dissolved in organic solvents.

    PubMed

    Konieczny, Stefan; Krumm, Christian; Doert, Dominik; Neufeld, Katharina; Tiller, Joerg C

    2014-07-10

    The use of enzymes in organic solvents offers a great opportunity for the highly selective synthesis of complex organic compounds. In this study we investigate the POXylation of several enzymes with different polyoxazolines ranging from the hydrophilic poly(2-methyl-oxazoline) (PMOx) to the hydrophobic poly(2-heptyl-oxazoline) (PHeptOx). As reported previously on the examples of model enzymes POXylation mediated by pyromellitic acid dianhydride results in highly modified, organosoluble protein conjugates. This procedure is here extended to a larger number of proteins and optimized for the different polyoxazolines. The resulting polymer-enzyme conjugates (PEC) became soluble in different organic solvents ranging from hydrophilic DMF to even toluene. These conjugates were characterized regarding their solubility and especially their activity in organic solvents and in some cases the PECs showed significantly (up to 153,000 fold) higher activities than the respective native enzymes. PMID:24709400

  9. Coimmobilization of acetylcholinesterase and choline oxidase on gold nanoparticles: stoichiometry, activity, and reaction efficiency.

    PubMed

    Keighron, Jacqueline D; Åkesson, Sebastian; Cans, Ann-Sofie

    2014-09-30

    Hybrid structures constructed from biomolecules and nanomaterials have been used in catalysis and bioanalytical applications. In the design of many chemically selective biosensors, enzymes conjugated to nanoparticles or carbon nanotubes have been used in functionalization of the sensor surface for enhancement of the biosensor functionality and sensitivity. The conditions for the enzyme:nanomaterial conjugation should be optimized to retain maximal enzyme activity, and biosensor effectiveness. This is important as the tertiary structure of the enzyme is often altered when immobilized and can significantly alter the enzyme catalytic activity. Here we show that characterization of a two-enzyme:gold nanoparticle (AuNP) conjugate stoichiometry and activity can be used to gauge the effectiveness of acetylcholine detection by acetylcholine esterase (AChE) and choline oxidase (ChO). This was done by using an analytical approach to quantify the number of enzymes bound per AuNP and monitor the retained enzyme activity after the enzyme:AuNP synthesis. We found that the amount of immobilized enzymes differs from what would be expected from bulk solution chemistry. This analysis was further used to determine the optimal ratio of AChE:ChO added at synthesis to achieve optimum sequential enzyme activity for the enzyme:AuNP conjugates, and reaction efficiencies of greater than 70%. We here show that the knowledge of the conjugate stoichiometry and retained enzyme activity can lead to more efficient detection of acetylcholine by controlling the AChE:ChO ratio bound to the gold nanoparticle material. This approach of optimizing enzyme gold nanoparticle conjugates should be of great importance in the architecture of enzyme nanoparticle based biosensors to retain optimal sensor sensitivity.

  10. Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish from different habitat depths.

    PubMed

    Ribalta, C; Sanchez-Hernandez, J C; Sole, M

    2015-11-01

    Marine fish are threatened by anthropogenic chemical discharges. However, knowledge on adverse effects on deep-sea fish or their detoxification capabilities is limited. Herein, we compared the basal activities of selected hepatic detoxification enzymes in several species (Solea solea, Dicentrarchus labrax, Trachyrhynchus scabrus, Mora moro, Cataetix laticeps and Alepocehalus rostratus) collected from the coast, middle and lower slopes of the Blanes Canyon region (Catalan continental margin, NW Mediterranean Sea). The xenobiotic-detoxifying enzymes analysed were the phase-I carboxylesterases (CbEs), and the phase-II conjugation activities uridine diphosphate glucuronyltransferase (UDPGT) and glutathione S-transferase (GST). Moreover, some antioxidant enzyme activities, i.e., catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR), were also included in this comparative study. Because CbE activity is represented by multiple isoforms, the substrates α-naphthyl acetate (αNA) and ρ-nitrophenyl acetate (ρNPA) were used in the enzyme assays, and in vitro inhibition kinetics with dichlorvos were performed to compare interspecific CbE sensitivity. Activity of xenobiotic detoxification enzymes varied among the species, following a trend with habitat depth and body size. Thus, UDPGT and some antioxidant enzyme activities decreased in fish inhabiting lower slopes of deep-sea, whereas UDPGT and αNA-CbE activities were negatively related to fish size. A trend between CbE activities and the IC50 values for dichlorvos suggested S. solea and M. moro as potentially more sensitive to anticholinesterasic pesticides, and T. scabrus as the most resistant one. A principal component analysis considering all enzyme activities clearly identified the species but this grouping was not related to habitat depth or phylogeny. Although these results can be taken as baseline levels of the main xenobiotic detoxification enzymes in Mediterranean fish, further research is

  11. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  12. Modeling in situ soil enzyme activity using continuous field soil moisture and temperature data

    NASA Astrophysics Data System (ADS)

    Steinweg, J. M.; Wallenstein, M. D.

    2010-12-01

    Moisture and temperature are key drivers of soil organic matter decomposition, but there is little consensus on how climate change will affect the degradation of specific soil compounds under field conditions. Soil enzyme activities are a useful metric of soil community microbial function because they are they are the direct agents of decomposition for specific substrates in soil. However, current standard enzyme assays are conducted under optimized conditions in the laboratory and do not accurately reflect in situ enzyme activity, where diffusion and substrate availability may limit reaction rates. The Arrhenius equation, k= A*e(-Ea/RT), can be used to predict enzyme activity (k), collision frequency (A) or activation energy (Ea), but is difficult to parameterize when activities are measured under artificial conditions without diffusion or substrate limitation. We developed a modifed equation to estimate collision frequency and activation energy based on soil moisture to model in-situ enzyme activites. Our model was parameterized using data we collected from the Boston Area Climate Experiment (BACE) in Massachusetts; a multi-factor climate change experiment that provides an opportunity to assess how changes in moisture availability and temperature may impact enzyme activity. Soils were collected from three precipitation treatments and four temperature treatments arranged in a full-factorial design at the BACE site in June 2008, August 2008, January 2009 and June 2009. Enzyme assays were performed at four temperatures (4, 15, 25 and 35°C) to calculate temperature sensitivity and activation energy over the different treatments and seasons. Enzymes activities were measured for six common enzymes involved in carbon (β-glucosidase, cellobiohydrolase, xylosidase), phosphorus (phosphatase) and nitrogen cycling (N-acetyl glucosaminidase, and leucine amino peptidase). Potential enzyme activity was not significantly affected by precipitation, warming or the interaction of

  13. Extracellular enzyme activities during cassava fermentation for 'fufu' production.

    PubMed

    Oyewole, O B; Odunfa, S A

    1992-01-01

    Amylase and pectin methyl esterase activities increased rapidly during the early period of the fermentation of cassava for 'fufu' production, attaining their peak activities after 12 and 24h, respectively. Cellulase activity was lower and approximately constant for most of the fermentation period.

  14. Androgen-activating enzymes in the central nervous system.

    PubMed

    Poletti, A; Martini, L

    1999-01-01

    In the rat brain, several steroids can be converted by specific enzymes to either more potent compounds or to derivatives showing new biological effects. One of the most studied enzyme is the 5alpha-reductase (5alpha-R), which acts on 3keto-delta4 steroids. In males, testosterone is the main substrate and gives rise to the most potent natural androgen dihydrotestosterone. In females, progesterone is reduced to dihydroprogesterone, a precursor of allopregnanolone, a natural anxiolytic/anesthetic steroid. Other substrates are some gluco- and minero-corticoids. Two isoforms of the 5alpha-R, with limited degree of homology, have been cloned: 5alpha-R type 1 and type 2. The 5alpha-R type 1 possesses low affinity for the various substrates and is widely distributed in the body, with the highest levels in the liver; in the brain, this isoform is expressed throughout life and does not appear to be controlled by androgens. 5Alpha-R type 1 in the rat brain is mainly concentrated in myelin membranes, where it might be involved in the catabolism of potentially neurotoxic steroids. The 5alpha-R type 2 shows high affinity for the various substrates, a peculiar pH optimum at acidic values and is localized in androgen-dependent structures. In the rat brain, the type 2 isoform is expressed at high levels only in the perinatal period and is controlled by androgens, at least in males. In adulthood, the type 2 gene appears to be specifically expressed in localised brain regions, like the hypothalamus and the hippocampus. The 5alpha-R type 2 is present in the GT1 cells, a model of LHRH-secreting neurons. These cells also contain the androgen receptor, which is probably involved in the central negative feedback effect exerted by androgens on the hypothalamic-pituitary-gonadal axis. The physiological significance of these and additional data will be discussed.

  15. One-year monitoring of core biomarker and digestive enzyme responses in transplanted zebra mussels (Dreissena polymorpha).

    PubMed

    Palais, F; Dedourge-Geffard, O; Beaudon, A; Pain-Devin, S; Trapp, J; Geffard, O; Noury, P; Gourlay-Francé, C; Uher, E; Mouneyrac, C; Biagianti-Risbourg, S; Geffard, A

    2012-04-01

    A 12-month active biomonitoring study was performed in 2008-2009 on the Vesle river basin (Champagne-Ardenne, France) using the freshwater mussel Dreissena polymorpha as a sentinel species; allochthonous mussels originating from a reference site (Commercy) were exposed at four sites (Bouy, Sept-Saulx, Fismes, Ardre) within the Vesle river basin. Selected core biomarkers (acetylcholinesterase (AChE) activity, glutathione-S transferase (GST) activity, metallothionein concentration), along with digestive enzyme activities (amylase, endocellulase) and energy reserve concentrations (glycogen, lipids), were monitored throughout the study in exposed mussels. At the Fismes and Ardre sites (downstream basin), metallic and organic contamination levels were low but still high enough to elicit AChE and GST activity induction in exposed mussels (chemical stress); besides, chemical pollutants had no apparent deleterious effects on mussel condition. At the Bouy and Sept-Saulx sites (upstream basin), mussels obviously suffered from adverse food conditions which seriously impaired individual physiological state and survival (nutritional stress); food scarcity had however no apparent effects on core biomarker responses. Digestive enzyme activities responded to both chemical and nutritional stresses, the increase in energy outputs (general adaptation syndrome-downstream sites) or the decrease in energy inputs (food scarcity-upstream sites) leading to mid- or long-term induction of digestive carbohydrase activities in exposed mussels (energy optimizing strategy). Complex regulation patterns of these activities require nevertheless the use of a multi-marker approach to allow data interpretation. Besides, their sensitivity to natural confounding environmental factors remains to be precised.

  16. Studies on antioxidant activity of teasaponins after hydrolyzed by enzyme

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Zhao, Sen; Xu, Longquan; Fei, Xu; Wang, Xiuying; Wang, Yi

    The biological activity of teasaponins and their molecular structure are closely related, and the activity of saponins may be increased with the change of their molecular structure. In this report, teasaponins were hydrolyzed by Aspergillus niger for increasing the antioxidant activity. The antioxidant activity of teasaponins before and after hydrolyzed was tested by DPPH, and the result showed four new teasaponins were produced after hydrolysis, and their antioxidant activity was increased significantly than the original teasaponins before hydrolysis, the radical scavenging capacity (RSC) was partly up to 95 %.

  17. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision. PMID:23524681

  18. Comparative ontogenetic changes in enzyme activity during embryonic development of calyptraeid gastropods.

    PubMed

    Collin, Rachel; Starr, Matthew J

    2013-09-01

    A modification of a semi-quantitative color-based enzyme assay was used to quantify the activity of 19 enzymes (5 peptidases, 3 lipases, 3 phosphotases, and 8 carbohydrases) during five stages of development in eight species of calyptraeid gastropods. Sixteen of the 19 enzymes showed a significant effect of mode of development on the concentration of the reaction product after incubation of homogenates standardized for protein content. The overall pattern was that planktotrophs showed the highest activities, followed by adelphophages, and nonfeeding embryos, which had the lowest enzyme activities. Thirteen enzymes showed significant differences across developmental stages. Of these, eight showed a clear increase during development. Only one of the enzymes showed a sudden jump in activity between the unfed, pre-hatching stage and post-hatching stages that were fed Isochrysis galbana. In three cases, ANOVA identified two exclusive, significantly different groups of species. In naphthol-AS-BI-phosphohydrolase, the measured absorbance of Crucibulum spinosum samples was significantly higher than in all of the other species. The activity of α-fucosidase in Crepipatella occulta was significantly greater than in the other seven species. Finally, the activity of β-galactosidase was significantly higher in C. occulta, Crucibulum spinosum, and Bostrycapulus calyptraeformis than in the four Crepidula species. This is the only enzyme for which there is an indication of a phylogenetic effect. Relative enzyme activities were similar to those reported for other herbivorous gastropods, with the three phosphohydrolases, four carbohydrases (β-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, and α-fucosidase), and leucine arylamidase showing high activities.

  19. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.

  20. Quantum dot based enzyme activity sensors present deviations from Michaelis-Menten kinetic model

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián. A.; Brown, Carl W.; Malanoski, Anthony P.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2016-03-01

    Nanosensors employing quantum dots (QDs) and enzyme substrates with fluorescent moieties offer tremendous promise for disease surveillance/diagnostics and as high-throughput co-factor assays. Advantages of QDs over other nanoscaffolds include their small size and inherent photochemical properties such as size tunable fluorescence, ease in attaching functional moieties, and resistance to photobleaching. These properties make QDs excellent Förster Resonance Energy Transfer (FRET) donors; well-suited for rapid, optical measurement applications. We report enzyme sensors designed with a single FRET donor, the QD donor acting as a scaffold to multiple substrates or acceptors. The QD-sensor follows the concrete activity of the enzyme, as compared to the most common methodologies that quantify the enzyme amount or its mRNA precursor. As the sensor reports on the enzyme activity in real-time we can actively follow the kinetics of the enzyme. Though classic Michaelis-Menten (MM) parameters can be obtained to describe the activity. In the course of these experiments deviations, both decreasing and increasing the kinetics, from the common MM model were observed upon close examinations. From these observations additional experiments were undertaken to understand the varying mechanisms. Different enzymes can present different deviations depending on the chosen target, e.g. trypsin appears to present a positive hopping mechanism while collagenase demonstrates a QD caused reversible inhibition.

  1. Improved complementary polymer pair system: switching for enzyme activity by PEGylated polymers.

    PubMed

    Kurinomaru, Takaaki; Tomita, Shunsuke; Kudo, Shinpei; Ganguli, Sumon; Nagasaki, Yukio; Shiraki, Kentaro

    2012-03-01

    The development of technology for on/off switching of enzyme activity is expected to expand the applications of enzyme in a wide range of research fields. We have previously developed a complementary polymer pair system (CPPS) that enables the activity of several enzymes to be controlled by a pair of oppositely charged polymers. However, it failed to control the activity of large and unstable α-amylase because the aggregation of the complex between anionic α-amylase and cationic poly(allylamine) (PAA) induced irreversible denaturation of the enzyme. To address this issue, we herein designed and synthesized a cationic copolymer with a poly(ethylene glycol) backbone, poly(N,N-diethylaminoethyl methacrylate)-block-poly(ethylene glycol) (PEAMA-b-PEG). In contrast to PAA, α-amylase and β-galactosidase were inactivated by PEAMA-b-PEG with the formation of soluble complexes. The enzyme/PEAMA-b-PEG complexes were then successfully recovered from the complex by the addition of anionic poly(acrylic acid) (PAAc). Thus, dispersion of the complex by PEG segment in PEAMA-b-PEG clearly plays a crucial role for regulating the activities of these enzymes, suggesting that PEGylated charged polymer is a new candidate for CPPS for large and unstable enzymes.

  2. Development of Activity-based Cost Functions for Cellulase, Invertase, and Other Enzymes

    NASA Astrophysics Data System (ADS)

    Stowers, Chris C.; Ferguson, Elizabeth M.; Tanner, Robert D.

    As enzyme chemistry plays an increasingly important role in the chemical industry, cost analysis of these enzymes becomes a necessity. In this paper, we examine the aspects that affect the cost of enzymes based upon enzyme activity. The basis for this study stems from a previously developed objective function that quantifies the tradeoffs in enzyme purification via the foam fractionation process (Cherry et al., Braz J Chem Eng 17:233-238, 2000). A generalized cost function is developed from our results that could be used to aid in both industrial and lab scale chemical processing. The generalized cost function shows several nonobvious results that could lead to significant savings. Additionally, the parameters involved in the operation and scaling up of enzyme processing could be optimized to minimize costs. We show that there are typically three regimes in the enzyme cost analysis function: the low activity prelinear region, the moderate activity linear region, and high activity power-law region. The overall form of the cost analysis function appears to robustly fit the power law form.

  3. High Inorganic Triphosphatase Activities in Bacteria and Mammalian Cells: Identification of the Enzymes Involved

    PubMed Central

    Lakaye, Bernard; Servais, Anne-Catherine; Scholer, Georges; Fillet, Marianne; Elias, Benjamin; Derochette, Jean-Michel; Crommen, Jacques; Wins, Pierre; Bettendorff, Lucien

    2012-01-01

    Background We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. Methodology/Principal Findings Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. Conclusions and General Significance We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling. PMID:22984449

  4. Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes.

    PubMed

    Zhang, Bo; He, Pin-Jing; Lü, Fan; Shao, Li-Ming; Wang, Pei

    2007-11-01

    The hydrolysis process, where the complex insoluble organic materials are hydrolyzed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Recirculating the leachate from hydrolysis reactor and recycling the effluent from methanogenic reactor to hydrolysis reactor in the two-stage solid-liquid anaerobic digestion process could accelerate degradation of organic solid wastes. To justify the influencing mechanism of recirculation and recycling on hydrolysis, the relationship of hydrolysis to the synthesis and locations of extracellular enzymes was evaluated by regulating the dilution rate of the methanogenic effluent recycle. The results showed that the hydrolysis could be enhanced by increasing the dilution rate, resulting from improved total extracellular enzyme activities. About 15%, 25%, 37%, 56% and 92% of carbon, and about 9%, 18%, 27%, 45% and 80% of nitrogen were converted from the solid phase to the liquid phase at dilution rates of 0.09, 0.25, 0.5, 0.9 and 1.8d(-1), respectively. The hydrolysis of organic wastes was mainly attributable to cell-free enzyme, followed by biofilm-associated enzyme. Increasing the dilution rate afforded cell-free extracellular enzymes with more opportunity to access the surface of organic solid waste, which ensured a faster renewal of niche where extracellular enzymes functioned actively. Meanwhile, the increment of biofilm-associated enzyme was promoted concomitantly, and therefore improved the hydrolysis of organic solid wastes.

  5. Effects of deep tillage and straw returning on soil microorganism and enzyme activities.

    PubMed

    Ji, Baoyi; Hu, Hao; Zhao, Yali; Mu, Xinyuan; Liu, Kui; Li, Chaohai

    2014-01-01

    Two field experiments were conducted for two years with the aim of studying the effects of deep tillage and straw returning on soil microorganism and enzyme activity in clay and loam soil. Three treatments, (1) conventional tillage (CT), shallow tillage and straw returning; (2) deep tillage (DT), deep tillage and straw returning; and (3) deep tillage with no straw returning (DNT), were carried out in clay and loam soil. The results showed that deep tillage and straw returning increased the abundance of soil microorganism and most enzyme activities. Deep tillage was more effective for increasing enzyme activities in clay, while straw returning was more effective in loam. Soil microorganism abundance and most enzyme activities decreased with the increase of soil depth. Deep tillage mainly affected soil enzyme activities in loam at the soil depth of 20-30 cm and in clay at the depth of 0-40 cm. Straw returning mainly affected soil microorganism and enzyme activities at the depths of 0-30 cm and 0-40 cm, respectively.

  6. Common regulatory control of CTP synthase enzyme activity and filament formation

    PubMed Central

    Noree, Chalongrat; Monfort, Elena; Shiau, Andrew K.; Wilhelm, James E.

    2014-01-01

    The ability of enzymes to assemble into visible supramolecular complexes is a widespread phenomenon. Such complexes have been hypothesized to play a number of roles; however, little is known about how the regulation of enzyme activity is coupled to the assembly/disassembly of these cellular structures. CTP synthase is an ideal model system for addressing this question because its activity is regulated via multiple mechanisms and its filament-forming ability is evolutionarily conserved. Our structure–function studies of CTP synthase in Saccharomyces cerevisiae reveal that destabilization of the active tetrameric form of the enzyme increases filament formation, suggesting that the filaments comprise inactive CTP synthase dimers. Furthermore, the sites responsible for feedback inhibition and allosteric activation control filament length, implying that multiple regions of the enzyme can influence filament structure. In contrast, blocking catalysis without disrupting the regulatory sites of the enzyme does not affect filament formation or length. Together our results argue that the regulatory sites that control CTP synthase function, but not enzymatic activity per se, are critical for controlling filament assembly. We predict that the ability of enzymes to form supramolecular structures in general is closely coupled to the mechanisms that regulate their activity. PMID:24920825

  7. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  8. Seasonal effects on intestinal enzyme activity in the Australian agamid lizard, Lophognathus temporalis.

    PubMed

    Iglesias, Sebastian; Tracy, Christopher R; Bedford, Gavin S; McWhorter, Todd J; Christian, Keith A

    2009-05-01

    The tropical agamid lizard, Lophognathus temporalis, has higher metabolic and feeding rates during the wet season compared to the dry season. Also, lizards from urban sites tend to be larger than those from natural sites, partly due to site differences in food availability. Therefore, we hypothesized that activity of membrane-bound intestinal enzymes and masses of organs related to digestion would differ both seasonally and between urban and natural sites. To test this, we measured activities of aminopeptidase-N (APN), maltase, and sucrase, as well as organ masses. APN activity (micromol min(-1) g(-1)) was highest in the middle portion of the intestine (section 2), followed by the proximal portion (section 1) and then the distal portion (section 3). Maltase activity was highest in section 1 and decreased distally. We detected some sucrase activity in section 1 but none in sections 2 or 3. We found similar enzyme activities within each section irrespective of site or season. However, total enzyme activities were higher during the wet season compared to the dry season for both urban and bush L. temporalis. Total wet season enzyme activity in urban and bush L. temporalis was greatest for APN (25.4; 15.8 micromol min(-1); respectively), then maltase (3.9; 3.6 micromol min(-1); respectively) and then sucrase (0.3; 0.2 micromol min(-1); respectively). The higher total enzyme activities was the result of an increase in intestinal mass during the wet season.

  9. Identification of activating enzymes of a novel FBPase inhibitor prodrug, CS-917

    PubMed Central

    Kubota, Kazuishi; Inaba, Shin-ichi; Nakano, Rika; Watanabe, Mihoko; Sakurai, Hidetaka; Fukushima, Yumiko; Ichikawa, Kimihisa; Takahashi, Tohru; Izumi, Takashi; Shinagawa, Akira

    2015-01-01

    CS-917 (MB06322) is a selective small compound inhibitor of fructose 1,6-bisphosphatase (FBPase), which is expected to be a novel drug for the treatment of type 2 diabetes by inhibiting gluconeogenesis. CS-917 is a bisamidate prodrug and activation of CS-917 requires a two-step enzyme catalyzed reaction. The first-step enzyme, esterase, catalyzes the conversion of CS-917 into the intermediate form (R-134450) and the second-step enzyme, phosphoramidase, catalyzes the conversion of R-134450 into the active form (R-125338). In this study, we biochemically purified the CS-917 esterase activity in monkey small intestine and liver. We identified cathepsin A (CTSA) and elastase 3B (ELA3B) as CS-917 esterases in the small intestine by mass spectrometry, whereas we found CTSA and carboxylesterase 1 (CES1) in monkey liver. We also purified R-134450 phosphoramidase activity in monkey liver and identified sphingomyelin phosphodiesterase, acid-like 3A (SMPADL3A), as an R-134450 phosphoramidase, which has not been reported to have any enzyme activity. Recombinant human CTSA, ELA3B, and CES1 showed CS-917 esterase activity and recombinant human SMPDL3A showed R-134450 phosphoramidase activity, which confirmed the identification of those enzymes. Identification of metabolic enzymes responsible for the activation process is the requisite first step to understanding the activation process, pharmacodynamics and pharmacokinetics of CS-917 at the molecular level. This is the first identification of a phosphoramidase other than histidine triad nucleotide-binding protein (HINT) family enzymes and SMPDL3A might generally contribute to activation of the other bisamidate prodrugs. PMID:26171222

  10. Gripped by Gout: Avoiding the Ache and Agony

    MedlinePlus

    ... please review our exit disclaimer . Subscribe Gripped by Gout Avoiding the Ache and Agony Sudden, painful swelling ... toe is often the first warning sign of gout. It can affect other joints as well. Without ...

  11. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    NASA Astrophysics Data System (ADS)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  12. Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients

    PubMed Central

    Kordas, Gregory; Lagoumintzis, George; Sideris, Sotirios; Poulas, Konstantinos; Tzartos, Socrates J.

    2014-01-01

    Several studies have suggested that the autoantibodies (autoAbs) against muscle acetylcholine receptor (AChR) of myasthenia gravis (MG) patients are the main pathogenic factor in MG; however, this belief has not yet been confirmed with direct observations. Although animals immunized with AChR or injected with anti-AChR monoclonal Abs, or with crude human MG Ig fractions exhibit MG symptoms, the pathogenic role of isolated anti-AChR autoAbs, and, more importantly, the absence of pathogenic factor(s) in the autoAb-depleted MG sera has not yet been shown by in vivo studies. Using recombinant extracellular domains of the human AChR α and β subunits, we have isolated autoAbs from the sera of four MG patients. The ability of these isolated anti-subunit Abs and of the Ab-depleted sera to passively transfer experimental autoimmune MG in Lewis rats was investigated. We found that the isolated anti-subunit Abs were at least as efficient as the corresponding whole sera or whole Ig in causing experimental MG. Abs to both α- and β-subunit were pathogenic although the anti-α-subunit were much more efficient than the anti-β-subunit ones. Interestingly, the autoAb-depleted sera were free of pathogenic activity. The later suggests that the myasthenogenic potency of the studied anti-AChR MG sera is totally due to their anti-AChR autoAbs, and therefore selective elimination of the anti-AChR autoAbs from MG patients may be an efficient therapy for MG. PMID:25259739

  13. Exposure to ethanol during neurodevelopment modifies crucial offspring rat brain enzyme activities in a region-specific manner.

    PubMed

    Stolakis, Vasileios; Liapi, Charis; Zarros, Apostolos; Kalopita, Konstantina; Memtsas, Vassilios; Botis, John; Tsagianni, Anastasia; Kimpizi, Despoina; Varatsos, Alexios; Tsakiris, Stylianos

    2015-12-01

    The experimental simulation of conditions falling within "the fetal alcohol spectrum disorder" (FASD) requires the maternal exposure to ethanol (EtOH) during crucial neurodevelopmental periods; EtOH has been linked to a number of neurotoxic effects on the fetus, which are dependent upon the extent and the magnitude of the maternal exposure to EtOH and for which very little is known with regard to the exact mechanism(s) involved. The current study has examined the effects of moderate maternal exposure to EtOH (10 % v/v in the drinking water) throughout gestation, or gestation and lactation, on crucial 21-day-old offspring Wistar rat brain parameters, such as the activities of acetylcholinesterase (AChE) and two adenosine triphosphatases (Na(+),K(+)-ATPase and Mg(2+)-ATPase), in major offspring CNS regions (frontal cortex, hippocampus, hypothalamus, cerebellum and pons). The implemented experimental setting has provided a comparative view of the neurotoxic effects of maternal exposure to EtOH between gestation alone and a wider exposure timeframe that better covers the human third trimester-matching CNS neurodevelopment period (gestation and lactation), and has revealed a CNS region-specific susceptibility of the examined crucial neurochemical parameters to the EtOH exposure schemes attempted. Amongst these parameters, of particular importance is the recorded extensive stimulation of Na(+),K(+)-ATPase in the frontal cortex of the EtOH-exposed offspring that seems to be a result of the deleterious effect of EtOH during gestation. Although this stimulation could be inversely related to the observed inhibition of AChE in the same CNS region, its dependency upon the EtOH-induced modulation of other systems of neurotransmission cannot be excluded and must be further clarified in future experimental attempts aiming to simulate and to shed more light on the milder forms of the FASD-related pathophysiology.

  14. Exposure to ethanol during neurodevelopment modifies crucial offspring rat brain enzyme activities in a region-specific manner.

    PubMed

    Stolakis, Vasileios; Liapi, Charis; Zarros, Apostolos; Kalopita, Konstantina; Memtsas, Vassilios; Botis, John; Tsagianni, Anastasia; Kimpizi, Despoina; Varatsos, Alexios; Tsakiris, Stylianos

    2015-12-01

    The experimental simulation of conditions falling within "the fetal alcohol spectrum disorder" (FASD) requires the maternal exposure to ethanol (EtOH) during crucial neurodevelopmental periods; EtOH has been linked to a number of neurotoxic effects on the fetus, which are dependent upon the extent and the magnitude of the maternal exposure to EtOH and for which very little is known with regard to the exact mechanism(s) involved. The current study has examined the effects of moderate maternal exposure to EtOH (10 % v/v in the drinking water) throughout gestation, or gestation and lactation, on crucial 21-day-old offspring Wistar rat brain parameters, such as the activities of acetylcholinesterase (AChE) and two adenosine triphosphatases (Na(+),K(+)-ATPase and Mg(2+)-ATPase), in major offspring CNS regions (frontal cortex, hippocampus, hypothalamus, cerebellum and pons). The implemented experimental setting has provided a comparative view of the neurotoxic effects of maternal exposure to EtOH between gestation alone and a wider exposure timeframe that better covers the human third trimester-matching CNS neurodevelopment period (gestation and lactation), and has revealed a CNS region-specific susceptibility of the examined crucial neurochemical parameters to the EtOH exposure schemes attempted. Amongst these parameters, of particular importance is the recorded extensive stimulation of Na(+),K(+)-ATPase in the frontal cortex of the EtOH-exposed offspring that seems to be a result of the deleterious effect of EtOH during gestation. Although this stimulation could be inversely related to the observed inhibition of AChE in the same CNS region, its dependency upon the EtOH-induced modulation of other systems of neurotransmission cannot be excluded and must be further clarified in future experimental attempts aiming to simulate and to shed more light on the milder forms of the FASD-related pathophysiology. PMID:26380981

  15. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms.

    PubMed

    Sarter, Martin; Parikh, Vinay; Howe, William M

    2009-10-01

    The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.

  16. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Ardakani, M. S.; Mclaren, A. D.; Pukite, A. H.

    1972-01-01

    An exploration was made of enzyme activities in soil, including abundance, persistence and localization of these activities. An attempt was made to develop procedures for the detection and assaying of enzymes in soils suitable for presumptive tests for life in planetary soils. A suitable extraction procedure for soil enzymes was developed and measurements were made of activities in extracts in order to study how urease is complexed in soil organic matter. Mathematical models were developed, based on enzyme action and microbial growth in soil, for rates of oxidation of nitrogen as nitrogen compounds are moved downward in soil by water flow. These biogeochemical models should be applicable to any percolating system, with suitable modification for special features, such as oxygen concetrations, and types of hydrodynamic flow.

  17. Unidirectional inhibition and activation of "malic' enzyme of Solanum tuberosum by meso-tartrate.

    PubMed

    Do Nascimento, K H; Davies, D D; Patil, K D

    1975-08-01

    A kinetic study of "malic' enzyme (EC 1.1.1.40) from potato suggests that the mechanism is Ordered Bi Ter with NADP+ binding before malate, and NADPH binding before pyruvate and HCO3-. The analysis is complicated by the non-linearity that occurs in some of the plots. meso-Tartrate is shown to inhibit the oxidative decarboxylation of malate but to activate the reductive carboxylation of pyruvate. To explain these unidirectional effects it is suggested that the control site of "malic' enzyme binds organic acids (including meso-tartrate) which activate the enzyme. meso-Tartrate, however, competes with malate for the active site and thus inhibits the oxidative decarboxylation of malate. Because meso-tartrate does not compete effectively with pyruvate for enzyme-NADPH, its binding at the control site leads to a stimulation of the carboxylation of pyruvate. A similar explanation is advanced for the observation that malic acid stimulates its own synthesis.

  18. Effects of phosphorus fertilizer supplementation on antioxidant enzyme activities in tomato fruits.

    PubMed

    Ahn, Taehyun; Oke, Moustapha; Schofield, Andrew; Paliyath, Gopinadhan

    2005-03-01

    The effects of soil and foliar phosphorus supplementation on the activities and levels of superoxide dismutase (SOD), guaiacol peroxidase (POX), and ascorbate peroxidase (APX) in tomato fruits were evaluated by determining enzyme activities and isoenzyme analysis. Both protein levels and enzyme activities varied depending on the variety and season. In general, phosphorus supplementation did not alter SOD, POX, and APX activities significantly;however, some treatments showed season- and stage-specific enhancement in activities as noticed with hydrophos and seniphos supplementation. Three different SOD isozymes were observed, and these isozymes showed very similar staining intensities in response to P application and during the three developmental stages studied. Two major isozymes of POX and two different APX isozymes were observed at all the developmental stages. The results suggest that antioxidant enzyme activities may be influenced by the availability of phosphorus, but are subject to considerable variation depending on the developmental stage and the season. PMID:15740037

  19. Photoswitching of enzyme activity by laser-induced pH-jump.

    PubMed

    Kohse, Stefanie; Neubauer, Antje; Pazidis, Alexandra; Lochbrunner, Stefan; Kragl, Udo

    2013-06-26

    Controlled initiation of biochemical events and in particular of protein activity is a powerful tool in biochemical research. Specifically, optical trigger signals are an attractive approach for remote control of enzyme activity. We present a method for generating optical control of enzyme activity applicable to a widespread range of enzymes. The approach is based on short laser pulses as optical "switches" introducing an instantaneous change of the pH-value for activation of protein function. The pH-jump is induced by proton release from 2-nitrobenzaldehyde. Reaction conditions were chosen to yield a pH-jump of almost 3 units on switching from inactive to active conditions for the enzyme. In this experimental setup, irradiation can be realized without any loss of enzyme activity. Following this change in pH-value, a controlled activation of hydrolytic activity of acid phosphatase is successfully demonstrated. This application provides a general method for photocontrol of enzymatic function for proteins having a significant pH-profile. The kinetic data for the substrate 6-chloro-8-fluoro-4-methylumbelliferone phosphate are determined.

  20. Generation of in vivo activating factors in the ischemic intestine by pancreatic enzymes

    NASA Astrophysics Data System (ADS)

    Mitsuoka, Hiroshi; Kistler, Erik B.; Schmid-Schönbein, Geert W.

    2000-02-01

    One of the early events in physiological shock is the generation of activators for leukocytes, endothelial cells, and other cells in the cardiovascular system. The mechanism by which these activators are produced has remained unresolved. We examine here the hypothesis that pancreatic digestive enzymes in the ischemic intestine may be involved in the generation of activators during intestinal ischemia. The lumen of the small intestine of rats was continuously perfused with saline containing a broadly acting pancreatic enzyme inhibitor (6-amidino-2-naphthyl p-guanidinobenzoate dimethanesulfate, 0.37 mM) before and during ischemia of the small intestine by splanchnic artery occlusion. This procedure inhibited activation of circulating leukocytes during occlusion and reperfusion. It also prevented the appearance of activators in portal venous and systemic artery plasma and attenuated initiating symptoms of multiple organ injury in shock. Intestinal tissue produces only low levels of activators in the absence of pancreatic enzymes, whereas in the presence of enzymes, activators are produced in a concentration- and time-dependent fashion. The results indicate that pancreatic digestive enzymes in the ischemic intestine serve as an important source for cell activation and inflammation, as well as multiple organ failure.

  1. Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters.

    PubMed

    Nassenstein, Christina; Wiegand, Silke; Lips, Katrin S; Li, Guanfeng; Klein, Jochen; Kummer, Wolfgang

    2015-11-01

    In addition to quantal, vesicular release of acetylcholine (ACh), there is also non-quantal release at the motor endplate which is insufficient to evoke postsynaptic responses unless acetylcholinesterase (AChE) is inhibited. We here addressed potential non-quantal release in the mouse trachea by organ bath experiments and (immuno)histochemical methods. Electrical field stimulation (EFS) of nerve terminals elicited tracheal constriction that is largely due to ACh release. Classical enzyme histochemistry demonstrated acetylcholinesterase (AChE) activity in nerve fibers in the muscle and butyrylcholinesterase (BChE) activity in the smooth muscle cells. Acute inhibition of both esterases by eserine significantly raised tracheal tone which was fully sensitive to atropine. This effect was reduced, but not abolished, in AChE, but not in BChE gene-deficient mice. The eserine-induced increase in tracheal tone was unaffected by vesamicol (10(-5)M), an inhibitor of the vesicular acetylcholine transporter, and by corticosterone (10(-4)M), an inhibitor of organic cation transporters. Hemicholinium-3, in low concentrations an inhibitor of the high-affinity choline transporter-1 (CHT1), completely abrogated the eserine effects when applied in high concentrations (10(-4)M) pointing towards an involvement of low-affinity choline transporters. To evaluate the cellular sources of non-quantal ACh release in the trachea, expression of low-affinity choline transporter-like family (CTL1-5) was evaluated by RT-PCR analysis. Even though these transporters were largely abundant in the epithelium, denudation of airway epithelial cells had no effect on eserine-induced tracheal contraction, indicating a non-quantal release of ACh from non-epithelial sources in the airways. These data provide evidence for an epithelium-independent non-vesicular, non-quantal ACh release in the mouse trachea involving low-affinity choline transporters. PMID:26278668

  2. [Effect of pyrazole on the activity of acetaldehyde-producing enzymes in the liver].

    PubMed

    Gerashchenko, D Iu; Gorenshteĭn, B I; Pyzhik, T N; Ostrovskiĭ, Iu M

    1993-01-01

    Influence of pyrazole on the endogenous ethanol level and activities of acetaldehyde-producing enzymes was investigated. Drastic enhancement of the endogenous ethanol level in the blood and tissues was accompanied by an insignificant increase of phosphoethanolamine lyase activity, while activity of threonine aldolase and pyruvate dehydrogenase was unchanged.

  3. Local salt substitutes "Obu-otoyo" activate acetylcholinesterase and butyrylcholinesterase and induce lipid peroxidation in rat brain.

    PubMed

    Akinyemi, Ayodele J; Oboh, Ganiyu; Ademiluyi, Adedayo O

    2015-09-01

    Evidence has shown that ingestion of heavy metals can lead to neurodegenerative diseases. This study aimed to investigate the neurotoxic potential of salt substitutes (Obu-Otoyo); salt A (made by burning palm kernel shaft then soaked in water overnight and the extract from the resulting residue is used as the salt substitute) and salt B (an unrefined salt mined from a local site at Ilobu town, Osun-State, Nigeria) by assessing their effect on some key enzymes linked with neurodegenerative disease [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities] as well as on malondialdehyde (MDA) content of the rat brain. Salt substitutes were fed to normal rats as dietary inclusion at doses of 0.5 and 1.0% for 30 days. Thereafter, the effect of the salt substitutes on AChE and BChE activities as well as on MDA level in the rat brain was determined. The results revealed that the salt substitutes caused a significant (p<0.05) increase in both AChE and BChE activity and also induced lipid peroxidation in the brain of rats in vivo as well as under in vitro condition in a dose-dependent manner. The effect of the salt substitutes on AChE and BChE activities could be attributed to the presence of some toxic heavy metals. Therefore, the ability of the salt substitutes to induce lipid peroxidation and activate AChE and BChE activities could provide some possible mechanism for their neurotoxic effect. PMID:27486373

  4. Local salt substitutes “Obu-otoyo” activate acetylcholinesterase and butyrylcholinesterase and induce lipid peroxidation in rat brain

    PubMed Central

    Oboh, Ganiyu; Ademiluyi, Adedayo O.

    2015-01-01

    Evidence has shown that ingestion of heavy metals can lead to neurodegenerative diseases. This study aimed to investigate the neurotoxic potential of salt substitutes (Obu-Otoyo); salt A (made by burning palm kernel shaft then soaked in water overnight and the extract from the resulting residue is used as the salt substitute) and salt B (an unrefined salt mined from a local site at Ilobu town, Osun-State, Nigeria) by assessing their effect on some key enzymes linked with neurodegenerative disease [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities] as well as on malondialdehyde (MDA) content of the rat brain. Salt substitutes were fed to normal rats as dietary inclusion at doses of 0.5 and 1.0% for 30 days. Thereafter, the effect of the salt substitutes on AChE and BChE activities as well as on MDA level in the rat brain was determined. The results revealed that the salt substitutes caused a significant (p<0.05) increase in both AChE and BChE activity and also induced lipid peroxidation in the brain of rats in vivo as well as under in vitro condition in a dose-dependent manner. The effect of the salt substitutes on AChE and BChE activities could be attributed to the presence of some toxic heavy metals. Therefore, the ability of the salt substitutes to induce lipid peroxidation and activate AChE and BChE activities could provide some possible mechanism for their neurotoxic effect. PMID:27486373

  5. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  6. Construction of a Fusion Enzyme Exhibiting Superoxide Dismutase and Peroxidase Activity.

    PubMed

    Sharapov, M G; Novoselov, V I; Ravin, V K

    2016-04-01

    A chimeric gene construct encoding human peroxiredoxin 6 and Mn-superoxide dismutase from Escherichia coli was developed. Conditions for expression of the fusion protein in E. coli cell were optimized. Fusing of the enzymes into a single polypeptide chain with peroxiredoxin 6 at the N-terminus (PSH) did not affect their activities. On the contrary, the chimeric protein with reverse order of enzymes (SPH) was not obtained in a water-soluble active form. The active chimeric protein (PSH) exhibiting both peroxidase and superoxide dismutase activities was prepared and its physicochemical properties were characterized. PMID:27293100

  7. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  8. Response of enzyme activities and microbial communities to soil amendment with sugar alcohols.

    PubMed

    Yu, Huili; Si, Peng; Shao, Wei; Qiao, Xiansheng; Yang, Xiaojing; Gao, Dengtao; Wang, Zhiqiang

    2016-08-01

    Changes in microbial community structure are widely known to occur after soil amendment with low-molecular-weight organic compounds; however, there is little information on concurrent changes in soil microbial functional diversity and enzyme activities, especially following sorbitol and mannitol amendment. Soil microbial functional diversity and enzyme activities can be impacted by sorbitol and mannitol, which in turn can alter soil fertility and quality. The objective of this study was to investigate the effects of sorbitol and mannitol addition on microbial functional diversity and enzyme activities. The results demonstrated that sorbitol and mannitol addition altered the soil microbial community structure and improved enzyme activities. Specifically, the addition of sorbitol enhanced the community-level physiological profile (CLPP) compared with the control, whereas the CLPP was significantly inhibited by the addition of mannitol. The results of a varimax rotated component matrix demonstrated that carbohydrates, polymers, and carboxylic acids affected the soil microbial functional structure. Additionally, we found that enzyme activities were affected by both the concentration and type of inputs. In the presence of high concentrations of sorbitol, the urease, catalase, alkaline phosphatase, β-glucosidase, and N-acetyl-β-d-glucosaminidase activities were significantly increased, while invertase activity was decreased. Similarly, this increase in invertase, catalase, and alkaline phosphatase and N-acetyl-β-d-glucosaminidase activities was especially evident after mannitol addition, and urease activity was only slightly affected. In contrast, β-glucosidase activity was suppressed at the highest concentration. These results indicate that microbial community diversity and enzyme activities are significantly affected by soil amendment with sorbitol and mannitol. PMID:27005019

  9. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth.

    PubMed

    Liu, Ying-Li; Zheng, Jie; Tang, Li-Juan; Han, Wei; Wang, Jian-Min; Liu, Dian-Wu; Tian, Qing-Bao

    2015-11-01

    Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell.

  10. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    PubMed

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  11. Influence of vegetation spatial heterogeneity on soil enzyme activity in burned Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Mayor, Á. G.; Goirán, S.; Bautista, S.

    2009-04-01

    Mediterranean ecosystems are commonly considered resilient to wildfires. However, depending on fire severity and recurrence, post-fire climatic conditions and plant community type, the recovery rate of the vegetation can greatly vary. Often, the post-fire vegetation cover remains low and sparsely distributed many years after the wildfire, which could have profound impacts on ecosystem functioning. In this work, we studied the influence of vegetation patchiness on soil enzyme activity (acid phosphatase, β-glucosidase and urease), at the patch and landscape scales, in degraded dry Mediterranean shrublands affected by wildfires. At the patch scale, we assessed the variation in soil enzyme between bare soils and vegetation patches. At the landscape scale, we studied the relationships between soil enzyme activity and various landscape metrics (total patch cover, average interpatch length, average patch width, and patch density). The study was conducted in 19 sites in the Valencia Region (eastern Spain), which had been affected by large wildfires in 1991. Site selection aimed at capturing a wide range of the variability of post-fire plant recovery rates in Mediterranean areas. The activities of the three enzymes were significantly higher in soils under the vegetation canopies than in adjacent bare areas, which we attributed to the effect of plants on the soil amount of both enzyme substrates and enzymes. The differences between bare and plant microsites were larger in the case of the acid phosphatase and less marked for urease. The activity of acid phosphatase was also higher under patches of resprouter species than under patches of seeder species, probably due to the faster post-fire recovery and older age of resprouter patches in fire-prone ecosystems. Soil enzyme activities of β-glucosidase and urease in both bare soils and vegetation patches showed no relationships with any of the landscape metrics analysed. However, the activity of acid phosphatase increased

  12. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock.

    PubMed

    Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao

    2014-03-15

    To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis.

  13. Extracellular enzyme activity at the air-water interface of an estuarine lake

    NASA Astrophysics Data System (ADS)

    Mudryk, Z. J.; Skórczewski, P.

    2004-01-01

    Variations in hydrolytic activity of eight extracellular enzymes in surface and subsurface waters in estuarine Lake Gardno were measured. The ranking of potential activity rates of the assayed enzymes was the same in both surface and subsurface water, i.e. esterase > lipase > aminopeptidase > phosphatase > β-glucosidase > α-glucosidase > chitinase > β-lactosidase. The vertical activity profiles show that esterase, aminopeptidase, α-glucosidase, β-glucosidase and β-lactosidase reached the highest values in surface layer, whereas lipase, phosphatase and chitinase showed maximum activity in subsurface water. Significant differences in enzyme activity between different parts of the studied lake were demonstrated, with higher values in the seawater zone, and lower values in the freshwater zone.

  14. Changes in metabolome and in enzyme activities during germination of Trichoderma atroviride conidia.

    PubMed

    Kaliňák, Michal; Simkovič, Martin; Zemla, Peter; Matata, Matej; Molnár, Tomáš; Liptaj, Tibor; Varečka, L'udovít; Hudecová, Daniela

    2014-08-01

    The aim of this work was to study the metabolic changes during germination of Trichoderma atroviride conidia along with selected marker enzyme activities. The increase in proteinogenic amino acid concentrations together with the increase in glutamate dehydrogenase activity suggests a requirement for nitrogen metabolism. Even though the activities of tricarboxylic acid cycle enzymes also increased, detected organic acid pools did not change, which predisposes this pathway to energy production and supply of intermediates for further metabolism. The concentrations of many metabolites, including the main osmolytes mannitol and betaine, also increased during the formation of germ tubes. The activities of H(+)-ATPase and GDPase, the only marker enzymes that did not have detectable activity in non-germinated conidia, were shown with germ tubes.

  15. Novel TPP-riboswitch activators bypass metabolic enzyme dependency

    NASA Astrophysics Data System (ADS)

    Mayer, Günter; Lünse, Christina; Suckling, Colin; Scott, Fraser

    2014-07-01

    Riboswitches are conserved regions within mRNA molecules that bind specific metabolites and regulate gene expression. TPP-riboswitches, which respond to thiamine pyrophosphate (TPP), are involved in the regulation of thiamine metabolism in numerous bacteria. As these regulatory RNAs are often modulating essential biosynthesis pathways they have become increasingly interesting as promising antibacterial targets. Here, we describe thiamine analogs containing a central 1,2,3-triazole group to induce repression of thiM-riboswitch dependent gene expression in different E. coli strains. Additionally, we show that compound activation is dependent on proteins involved in the metabolic pathways of thiamine uptake and synthesis. The most promising molecule, triazolethiamine (TT), shows concentration dependent reporter gene repression that is dependent on the presence of thiamine kinase ThiK, whereas the effect of pyrithiamine (PT), a known TPP-riboswitch modulator, is ThiK independent. We further show that this dependence can be bypassed by triazolethiamine-derivatives that bear phosphate-mimicking moieties. As triazolethiamine reveals superior activity compared to pyrithiamine, it represents a very promising starting point for developing novel antibacterial compounds that target TPP-riboswitches. Riboswitch-targeting compounds engage diverse endogenous mechanisms to attain in vivo activity. These findings are of importance for the understanding of compounds that require metabolic activation to achieve effective riboswitch modulation and they enable the design of novel compound generations that are independent of endogenous activation mechanisms.

  16. [Activities of some yeast flavogenic enzymes in situ].

    PubMed

    Logvinenko, E M; Trach, V M; Kashchenko, V E; Zakal'skiĭ, A E; Koltun, L V; Shavlovskiĭ, G M

    1977-09-01

    Effects of digitonin, dimethylsulfoxide and protamine sulfate on yeast Pichia guilliermondii were studied in order to produce cells with increased permeability and possessing the GTP-cyclohydrolase, riboflavinsynthetase and riboflavinkinase activities. The digitonin-treated cells exhibited a higher cyclohydrolase activity than the cell-free extracts; the activities of riboflavinsynthetase and riboflavinkinase in the cells and cell-free extracts were found to be similar. Treatment of cells with dimethylsulfoxide proved to be most effective to determine the activity of GTP-cyclohydrolase and also helpful to determine that of riboflavinsynthetase. Protamine sulfate had no effect on the cells of P. guilliermondii. The methods developed were used to determine the activities of GTP-cyclohydrolase, riboflavinsynthetase and riboflavinkinase in the cells of flavinogenic (P. guiller-mondii, Torulopsis candida) and non-flavinogenic (Candida utilis, Candida pulcherrima) yeasts grown in iron-rich and iron-deficient media. Derepression of riboflavinsynthetase and GTP-cyclohydrolase syntheses under conditions of Fe deficiency in the flavinogenic yeast cells confirmed previously made assumptions. PMID:199288

  17. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    SciTech Connect

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  18. Isolation and characterization of an enzyme with esterase activity from Micropolyspora faeni.

    PubMed Central

    Bannerman, E N; Nicolet, J

    1976-01-01

    The isolation and the characterization of one of the enzymes of Micropolyspora faeni that hydrolyzes the substrate N-benzoyl-DL-phenylalanine-beta-naphthyl ester and that seems to be of medical importance are described. This enzyme (enzyme 1) was isolated with an 86-fold purification by using the following seven steps: ammonium sulfate precipitation, gel filtration through Sephadex G-150, heat treatment, chromatography on diethylaminoethyl-cellulose, rechromatography on diethylaminoethyl-Sephadex, gel filtration through Sephadex G-200, and affinity chromatography. Enzyme 1 has a molecular weight of approximately 500,000 and maximum activity at pH 7.8 to 8.0 and at 20 degrees C. The enzyme is stable between pH 7.5 and 10.5 and at temperatures up to 60 degrees C. Its activity is not inhibited by ethylenediaminetetraacetic acid. It is, however, sensitive to diisopropyl phosphofluoride and phenylmethyl sulfonyl fluoride. These properties and the ability to hydrolyze the esters of phenylalanine, tyrosine, and tryptophan without endopeptidasic activity and no marked proteolytic activity suggest that the enzyme is an esterase. Images PMID:9899

  19. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens.

    PubMed

    Rytioja, Johanna; Hildén, Kristiina; Mäkinen, Susanna; Vehmaanperä, Jari; Hatakka, Annele; Mäkelä, Miia R

    2015-01-01

    White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification. PMID:26660105

  20. [Photodynamic reaction and oxidative stress - influence of the photodynamic effect on the activity antioxidant enzymes].

    PubMed

    Romiszewska, Anna; Nowak-Stępniowska, Agata

    2014-01-01

    The interaction of light with a photosensitizer, accumulated in a tissue in the presence of oxygen, leads to formation of reactive oxygen species, mainly of singlet oxygen and free radicals. These factors react with biomolecules producing their oxidized states. Reactive oxygen species, such as singlet oxygen and free radicals are able to damage membranes, DNA, enzymes, structural peptides and other cellular structures leading to cell death. An antioxidant protection of cell is formed by enzymes belonging to the family of oxidoreductases: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). Photodynamic therapy leads to the increased production of oxidizing toxic forms. It is important to analyze impact of PDT on the activity of antioxidant enzymes, such as SOD, CAT, GPx. The activity of antioxidant enzymes during the photodynamic effect is influenced by both the light energy dose and the concentration of photosensitizer. The presence only of the photosensitizer or only the light energy may also result in changes in the activity of these enzymes. The differences in changes in the activity of these enzymes depend on the type of used photosensitizer. A phenomenon of selective accumulation of photosensitizer in tumor tissues is used in the photodynamic method of tumor diagnosis and treatment.

  1. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities

    PubMed Central

    Liu, Ge; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    A multifunctional enzyme is one that performs multiple physiological functions, thus benefiting the organism. Characterization of multifunctional enzymes is important for researchers to understand how organisms adapt to different environmental challenges. In the present study, we report the discovery of a novel multifunctional enzyme Amy63 produced by marine bacterium Vibrio alginolyticus 63. Remarkably, Amy63 possesses amylase, agarase and carrageenase activities. Amy63 is a substrate promiscuous α-amylase, with the substrate priority order of starch, carrageenan and agar. Amy63 maintains considerable amylase, carrageenase and agarase activities and stabilities at wide temperature and pH ranges, and optimum activities are detected at temperature of 60 °C and pH of 6.0, respectively. Moreover, the heteroexpression of Amy63 dramatically enhances the ability of E. coli to degrade starch, carrageenan and agar. Motif searching shows three continuous glycosyl hydrolase 70 (GH70) family homologs existed in Amy63 encoding sequence. Combining serial deletions and phylogenetic analysis of Amy63, the GH70 homologs are proposed as the determinants of enzyme promiscuity. Notably, such enzymes exist in all kingdoms of life, thus providing an expanded perspective on studies of multifunctional enzymes. To our knowledge, this is the first report of an amylase having additional agarase and carrageenase activities. PMID:26725302

  2. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Mäkinen, Susanna; Vehmaanperä, Jari; Hatakka, Annele; Mäkelä, Miia R.

    2015-01-01

    White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification. PMID:26660105

  3. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  4. Endogenously released ACh and exogenous nicotine differentially facilitate long-term potentiation induction in the hippocampal CA1 region of mice.

    PubMed

    Nakauchi, Sakura; Sumikawa, Katumi

    2012-05-01

    We examined the role of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in the induction of long-term potentiation (LTP). Theta-burst stimulation (TBS), mimicking the brain's naturally occurring theta rhythm, induced robust LTP in hippocampal slices from α7 and β2 knockout mice. This suggests TBS is capable of inducing LTP without activation of α7- or β2-containing nAChRs. However, when weak TBS was applied, the modulatory effects of nicotinic receptors on LTP induction became visible. We showed that during weak TBS, activation of α7 nAChRs occurs by the release of ACh, contributing to LTP induction. Additionally, bath-application of nicotine activated β2-containing nAChRs to promote LTP induction. Despite predicted nicotine-induced desensitization, synaptically mediated activation of α7 nAChRs still occurs in the presence of nicotine and contributed to LTP induction. Optical recording of single-stimulation-evoked excitatory activity with a voltage-sensitive dye revealed enhanced excitatory activity in the presence of nicotine. This effect of nicotine was robust during high-frequency stimulation, and was accompanied by enhanced burst excitatory postsynaptic potentials. Nicotine-induced enhancement of excitatory activity was observed in slices from α7 knockout mice, but was absent in β2 knockout mice. These results suggest that the nicotine-induced enhancement of excitatory activity is mediated by β2-containing nAChRs, and is related to the nicotine-induced facilitation of LTP induction. Thus, our study demonstrates that the activation of α7- and β2-containing nAChRs differentially facilitates LTP induction via endogenously released ACh and exogenous nicotine, respectively, in the hippocampal CA1 region of mice.

  5. Effects of butachlor on microbial enzyme activities in paddy soil.

    PubMed

    Min, Hang; Ye, Yang-Fang; Chen, Zhong-Yun; Wu, Wei-Xiang; Du, Yu-Feng

    2002-07-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethl-chloro-2', 6'-diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 micrograms/g dried soil, 11.0 micrograms/g dried soil and 22.0 micrograms/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 micrograms/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  6. Single-stranded DNA binding activity of C1-tetrahydrofolate synthase enzymes.

    PubMed

    Wahls, W P; Song, J M; Smith, G R

    1993-11-15

    In eukaryotes C1-5,6,7,8-tetrahydrofolate (THF) synthase is a trifunctional enzyme that catalyzes the interconversion of reduced forms of folate to supply activated one-carbon units required for a variety of metabolic pathways. The enzymatic activities include 10-formyl-THF synthetase (EC 6.3.4.3), 5,10-methenyl-THF cyclohydrolase (EC 3.5.4.9), and 5,10-methylene-THF dehydrogenase (EC 1.5.1.5). In bacteria separate, monofunctional or bifunctional polypeptides catalyze the same reactions. We have purified C1-THF synthase from the fission yeast Schizosaccharomyces pombe and found its physical and enzymatic properties similar to those of other eukaryotic C1-THF synthase enzymes. Unexpectedly, the S. pombe enzyme bound strongly (Keq = 100 pM) to single-stranded DNA, but not to double-stranded DNA or to RNA. The binding was sequence-independent, apparently not cooperative, and not detectably inhibited by C1-THF synthase substrates or cofactors. Trifunctional cytoplasmic enzyme from Saccharomyces cerevisiae and monofunctional (synthetase) enzyme from Clostridium acidiurici also bound tightly to single-stranded DNA, while bifunctional (dehydrogenase and cyclohydrolase) enzyme from Escherichia coli did not, suggesting that single-stranded DNA binding is a conserved function of the synthetase domain of C1-THF synthase enzymes. PMID:8226914

  7. Crystal Structure of the Human Ubiquitin-activating Enzyme 5 (UBA5) Bound to ATP Mechanistic Insights into a Minimalistic E1 Enzyme

    SciTech Connect

    Bacik, John-Paul; Walker, John R.; Ali, Mohsin; Schimmer, Aaron D.; Dhe-Paganon, Sirano

    2010-08-30

    E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-adenylate phosphoester and a ubiquityl-enzyme thioester. However, the mechanism of thioester bond formation and its subsequent transfer to an E2 enzyme remains poorly understood. We have determined the crystal structure of the human UFM1 (ubiquitin-fold modifier 1) E1-activating enzyme UBA5, bound to ATP, revealing a structure that shares similarities with both large canonical E1 enzymes and smaller ancestral E1-like enzymes. In contrast to other E1 active site cysteines, which are in a variably sized domain that is separate and flexible relative to the adenylation domain, the catalytic cysteine of UBA5 (Cys{sup 250}) is part of the adenylation domain in an {alpha}-helical motif. The novel position of the UBA5 catalytic cysteine and conformational changes associated with ATP binding provides insight into the possible mechanisms through which the ubiquityl-enzyme thioester is formed. These studies reveal structural features that further our understanding of the UBA5 enzyme reaction mechanism and provide insight into the evolution of ubiquitin activation.

  8. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies

    PubMed Central

    Guerrero, Ligia; Castillo, Julián; Quiñones, Mar; Garcia-Vallvé, Santiago; Arola, Lluis; Pujadas, Gerard; Muguerza, Begoña

    2012-01-01

    Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results. PMID:23185345

  9. Heterogeneity of hydrolytic enzyme activities under drought: imaging and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Sanaullah, Muhammad; Razavi, Bahar S.; Kuzyakov, Yakov

    2015-04-01

    The zymography-based "snap-shoot" of enzyme activities in the rhizosphere is challenging to detect the in situ microbial response to global climate change. We developed in situ soil zymography and used it for identification and localization of hotspots of β-glucosidase activity in the rhizosphere of maize under drought stress (30% of field capacity). The zymographic signals were especially high at root tips and were much stronger for activity of β-glucosidase under drought as compared with optimal moisture (70% of field capacity). This distribution of enzyme activity was confirmed by fluorogenically labelled substrates applied directly to the root exudates. The activity of β-glucosidase in root exudates (produced by root and microorganism associated on the root surface), sampled within 1 hour after zymography was significantly higher by drought stressed plants as compared with optimal moisture. In contrast, the β-glucosidase activity in destructively sampled rhizosphere soil was lower under drought stress compared with optimal moisture. Furthermore, drought stress did not affected β-glucosidase activity in bulk soil, away from rhizosphere. Consequently, we conclude that higher release of mucilage by roots und drought stimulated β-glucosidase activity in the rhizosphere. Thus, the zymography revealed plant-mediated mechanisms accelerating β-glucosidase activity under drought at the root-soil interface. So, coupling of zymography and enzyme assays in the rhizosphere and non-rhizosphere soil enables precise mapping the changes in two-dimensional distribution of enzyme activities due to climate change within dynamic soil interfaces.

  10. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    PubMed

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities.

  11. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    PubMed

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. PMID:27062342

  12. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the activities of ß-glucosidase (C cycling, ß-glucosaminidase (C and N cycling), acid phosphatase (P cycling) and arylsulfatase (S cycling) under lettuce (Lactuca sativa), potato (Solanum Tuberosum), onion (Allium cepa L), broccoli (Brassica oleracea var. botrytis) and Tall f...

  13. Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    SciTech Connect

    Harvey W. Blanch

    2004-12-01

    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality.

  14. Host suitability and diet mixing influence activities of detoxification enzymes in adult Japanese beetles.

    PubMed

    Adesanya, Adekunle; Liu, Nannan; Held, David W

    2016-05-01

    Induction of cytochrome P450, glutathione S transferase (GST), and carboxylesterase (CoE) activity was measured in guts of the scarab Popillia japonica Newman, after consumption of single or mixed plant diets of previously ranked preferred (rose, Virginia creeper, crape myrtle and sassafras) or non-preferred hosts (boxelder, riverbirch and red oak). The goal of this study was to quantify activities of P450, GST and CoE enzymes in the midgut of adult P. japonica using multiple substrates in response to host plant suitability (preferred host vs non-preferred hosts), and single and mixed diets. Non-preferred hosts were only sparingly fed upon, and as a group induced higher activities of P450, GST and CoE than did preferred hosts. However, enzyme activities for some individual plant species were similar across categories of host suitability. Similarly, beetles tended to have greater enzyme activities after feeding on a mixture of plants compared to a single plant type, but mixing per se does not seem as important as the species represented in the mix. Induction of detoxification enzymes on non-preferred hosts, or when switching between hosts, may explain, in part, the perceived feeding preferences of this polyphagous insect. The potential consequences of induced enzyme activities on the ecology of adult Japanese beetles are discussed.

  15. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets

    PubMed Central

    Yang, Yushi; Mao, Zhou; Huang, Wenjie; Liu, Lihua; Li, Junli; Li, Jialiang; Wu, Qingzhi

    2016-01-01

    CeO2 nanoparticles (NPs) have been well demonstrated as an antioxidant in protecting against oxidative stress-induced cellular damages and a potential therapeutic agent for various diseases thanks to their redox enzyme-mimicking activities. The Ce3+/Ce4+ ratio and oxygen vacancies on the surface have been considered as the major originations responsible for the redox enzyme-mimicking activities of CeO2 NPs. Herein, CeO2 nanostructures (nanocubes and nanorods) exposed different facets were synthesized via a facile hydrothermal method. The characterizations by X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-Vis spectroscopy show that the Ce3+/Ce4+ ratio and oxygen vacancy content on the surfaces of as-synthesized CeO2 nanostructures are nearly at the same levels. Meanwhile, the enzymatic activity measurements indicate that the redox enzyme-mimicking activities of as-synthesized CeO2 nanostructures are greatly dependent on their exposed facets. CeO2 nanocubes with exposed {100} facets exhibit a higher peroxidase but lower superoxide dismutase activity than those of the CeO2 nanorods with exposed {110} facets. Our results provide new insights into the redox enzyme-mimicking activities of CeO2 nanostructures, as well as the design and synthesis of inorganic nanomaterials-based artificial enzymes. PMID:27748403

  16. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets

    NASA Astrophysics Data System (ADS)

    Yang, Yushi; Mao, Zhou; Huang, Wenjie; Liu, Lihua; Li, Junli; Li, Jialiang; Wu, Qingzhi

    2016-10-01

    CeO2 nanoparticles (NPs) have been well demonstrated as an antioxidant in protecting against oxidative stress-induced cellular damages and a potential therapeutic agent for various diseases thanks to their redox enzyme-mimicking activities. The Ce3+/Ce4+ ratio and oxygen vacancies on the surface have been considered as the major originations responsible for the redox enzyme-mimicking activities of CeO2 NPs. Herein, CeO2 nanostructures (nanocubes and nanorods) exposed different facets were synthesized via a facile hydrothermal method. The characterizations by X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-Vis spectroscopy show that the Ce3+/Ce4+ ratio and oxygen vacancy content on the surfaces of as-synthesized CeO2 nanostructures are nearly at the same levels. Meanwhile, the enzymatic activity measurements indicate that the redox enzyme-mimicking activities of as-synthesized CeO2 nanostructures are greatly dependent on their exposed facets. CeO2 nanocubes with exposed {100} facets exhibit a higher peroxidase but lower superoxide dismutase activity than those of the CeO2 nanorods with exposed {110} facets. Our results provide new insights into the redox enzyme-mimicking activities of CeO2 nanostructures, as well as the design and synthesis of inorganic nanomaterials-based artificial enzymes.

  17. Host suitability and diet mixing influence activities of detoxification enzymes in adult Japanese beetles.

    PubMed

    Adesanya, Adekunle; Liu, Nannan; Held, David W

    2016-05-01

    Induction of cytochrome P450, glutathione S transferase (GST), and carboxylesterase (CoE) activity was measured in guts of the scarab Popillia japonica Newman, after consumption of single or mixed plant diets of previously ranked preferred (rose, Virginia creeper, crape myrtle and sassafras) or non-preferred hosts (boxelder, riverbirch and red oak). The goal of this study was to quantify activities of P450, GST and CoE enzymes in the midgut of adult P. japonica using multiple substrates in response to host plant suitability (preferred host vs non-preferred hosts), and single and mixed diets. Non-preferred hosts were only sparingly fed upon, and as a group induced higher activities of P450, GST and CoE than did preferred hosts. However, enzyme activities for some individual plant species were similar across categories of host suitability. Similarly, beetles tended to have greater enzyme activities after feeding on a mixture of plants compared to a single plant type, but mixing per se does not seem as important as the species represented in the mix. Induction of detoxification enzymes on non-preferred hosts, or when switching between hosts, may explain, in part, the perceived feeding preferences of this polyphagous insect. The potential consequences of induced enzyme activities on the ecology of adult Japanese beetles are discussed. PMID:26964493

  18. Relevance of drug metabolizing enzyme activity modulation by tea polyphenols in the inhibition of esophageal tumorigenesis.

    PubMed

    Maliakal, Pius; Sankpal, Umesh T; Basha, Riyaz; Maliakal, Cima; Ledford, Andrea; Wanwimolruk, Sompon

    2011-09-01

    Tea is a popular, socially accepted, drink that is enjoyed by millions of people. A growing body of evidence suggests that moderate consumption of tea may protect against several forms of cancer. It is also known that bioactivation of precarcinogens and detoxification of ultimate carcinogens is carried out mainly by drug metabolizing enzymes such as cytochrome P450 (CYP). The present study investigates the effect of tea consumption on modulating CYP and phase II conjugating enzymes, and their association in the chemopreventive effect against esophageal tumorigenesis using both in vitro and in vivo techniques. Female Wistar rats were given aqueous solutions (2% w/v) of six different teas, standard green tea extract (GTE) (0.5% w/v), and dandelion tea (2% w/v) as the sole source of fluid for two weeks prior to and during the entire period of tumour induction (12 weeks). Animals were gavaged with 0.5 mg/kg N-nitrosomethylbenzylamine (NMBA) twice weekly for 12 weeks for esophageal tumor induction and the activities of different CYP isoforms and phase II enzymes were determined in the liver microsomes or cytosols. GTE, green tea and Dandelion tea caused decrease in tumour multiplication, tumour size and tumour volume; however, none of these tea preparations altered tumour incidence. No appreciable changes in drug metabolizing enzyme activity were observed in the treatment groups. Thus, the modulations in the activities of CYP 1A1/ 1A2 and CYP2E enzymes, by pre-treatment with green and dandelion teas, observed in our earlier experiments, seem to be compensated by the tumor inducing agent, NMBA. The balance between phase I carcinogen-activating enzymes and phase II detoxifying enzymes could be important in determining the risk of developing chemically-induced cancer and the present study in conjunction with the previous observations suggest a possible role of drug metabolizing enzymes in the anticancer effect of tea.

  19. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    PubMed Central

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W.; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu