Science.gov

Sample records for ache inhibition assay

  1. Comparative study of oxime-induced reactivation of erythrocyte and muscle AChE from different animal species following inhibition by sarin or paraoxon.

    PubMed

    Herkert, Nadja M; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst; Worek, Franz

    2010-05-01

    Standard treatment of acute poisoning by organophosphorus compounds (OP) includes administration of an antimuscarinic (e.g. atropine) and of an oxime-based reactivator of OP-inhibited acetylcholinesterase (AChE). A recently introduced dynamically working in vitro model with real-time determination of membrane-bound AChE activity was shown to be a very versatile and promising model to investigate oxime-induced reactivation kinetics of OP-inhibited enzyme. In this assay, human AChE from erythrocytes or muscle tissue was immobilized on a particle filter. This bioreactor was continuously perfused with substrate and chromogen and AChE activity was analyzed on-line in a flow-through detector. The model has been successfully adopted to Rhesus monkey, swine and guinea pig erythrocytes and intercostal muscle AChE. In addition, the basic kinetic constants of inhibition, aging, spontaneous- and oxime-induced-reactivation of erythrocyte AChE from these species were determined with a standard static model. The major findings were, in part substantial species differences in the inhibition (sarin, paraoxon) and reactivation kinetics (obidoxime, HI 6) of erythrocyte AChE, but comparable kinetics of inhibition and reactivation between erythrocyte and muscle AChE. Hence, these data provide further support of the assumption that erythrocyte AChE is an adequate surrogate of muscle (synaptic) AChE and admonish that major species differences have to be considered for the design and evaluation of therapeutic animal models. PMID:20156534

  2. Potent AChE enzyme inhibition activity of Zizyphus oxyphylla: A new source of antioxidant compounds.

    PubMed

    Mazhar, Farhana; Khanum, Raisa; Ajaib, Muhammad; Jahangir, Muhammad

    2015-11-01

    The purpose of this study was to assess the antioxidant potential and enzyme inhibition of various fractions of Zizyphus oxyphylla. The plant metabolites were extracted in methanol and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol successively. Phytochemical screening showed presence of alkaloids, terpenoids and flavonoids in ethyl acetate and n-butanol fractions. The antioxidant potential and acetylcholine esterase assay of all these fractions and remaining aqueous fraction was evaluated by using reported methods. The results revealed that chloroform soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 95.01 ± 0.37% inhibition of DPPH radical at a concentration of 120 μg/mL. The IC₅₀ of this fraction was 13.20 ± 0.27 μg/mL, relative to butylated hydroxytoluene (BHT, a reference standard), having IC₅₀ of 12.10 ± 0.29 μg/mL. It also showed highest total antioxidant activity i.e. 1.723 ± 0.34 as well as highest FRAP value (339.5 ± 0.57 TE μm/mL) and highest total phenolic contents (142.65 ± 1.20 GAE mg/g) as compared to the other studied fractions. The fractions were also studied for Acetylcholine esterase enzyme (AChE) enzyme inhibition activity and n-butanol soluble fraction exhibited maximum inhibition (95.5 ± 0.13 mg/mL with IC50 =9.58 ± 0.08 mg/mL relative to galanthamine (13.26 ± 0.73 mg/mL), while n- hexane soluble fraction (165.15 ± 0.94 mg/mL) showed non-significant. We are still working to isolate pure compounds for active fractions targeting potent inhibition responsible for some activities. PMID:26639499

  3. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    PubMed

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  4. Novel assay utilizing fluorochrome-tagged physostigmine (Ph-F) to in situ detect active acetylcholinesterase (AChE) induced during apoptosis.

    PubMed

    Huang, Xuan; Lee, Brian; Johnson, Gary; Naleway, John; Guzikowski, Anthony; Dai, Wei; Darzynkiewicz, Zbigniew

    2005-01-01

    It was recently reported that acetylcholinesterase (AChE) is expressed in cells undergoing apoptosis and that its presence is essential for assembly of the apoptosome and subsequent caspase-9 activation. To obtain a marker of active AChE that could assay this enzyme in live intact cells and be applicable to fluorescence microscopy and cytometry, the fluorescein-tagged physostigmine (Ph-F), high affinity ligand (inhibitor) reactive with the active center of AChE, was constructed and tested for its ability to in situ label AChE and measure its induction during apoptosis. Ph-F inhibited cholinesterase activity in vitro (IC50 = 10(-6) and 5 x 10(-6) M for equine butyrylcholinesterase and human erythrocyte AChE, respectively) and was a selective marker of cells and structures that were AChE-positive. Thus, exposure of mouse bone marrow cells to Ph-F resulted in the exclusive labeling of megakaryocytes, and of the diaphragm muscle, preferential labeling of the nerve-muscle junctions (end-plates). During apoptosis of carcinoma HeLa cells and leukemic HL-60 or Jurkat cells triggered either by the DNA topoisomerase 1 inhibitor topotecan (TPT) or by oxidative stress (H2O2), the cells become reactive with Ph-F. Their Ph-F derived fluorescence was measured by flow and laser scanning cytometry. The appearance of Ph-F binding sites during apoptosis was preceded by the loss of mitochondrial potential, was concurrent with the presence of activated caspases, and was followed by loss of membrane integrity. At a very early stage of apoptosis, when nucleolar segregation was apparent, the Ph-F binding sites were distinctly localized within the nucleolus and at later stages of apoptosis in the cytoplasm. During apoptosis triggered by TPT, Ph-F binding was preferentially induced in S-phase cells. Our data on megakaryocytes and end-plates indicate that Ph-F reacts with active sites of AChE, and can be used to reveal the presence of this enzyme in live cells and possibly to study its

  5. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay.

    PubMed

    Neale, Peta A; Escher, Beate I

    2013-07-01

    The acetylcholinesterase (AChE) inhibition assay is frequently applied to detect organophosphates and carbamate pesticides in different water types, including dissolved organic carbon (DOC)-rich wastewater and surface water. The aim of the present study was to quantify the effect of coextracted DOC from different water samples on the commonly used enzyme-based AChE inhibition assay. Approximately 40% to 70% of DOC is typically recovered by solid-phase extraction, and this comprises not only organic micropollutants but also natural organic matter. The inhibition of the water extracts in the assay differed greatly from the expected mixture effects based on chemical analysis of organophosphates and carbamates. Binary mixture experiments with the known AChE inhibitor parathion and the water extracts showed reduced toxicity in comparison with predictions using the mixture models of concentration addition and independent action. In addition, the extracts and reference organic matter had a suppressive effect on a constant concentration of parathion. The present study thus indicated that concentrations of DOC as low as 2 mg carbon/L can impair the AChE inhibition assay and, consequently, that only samples with a final DOC concentration of less than 2 mgC /L are suitable for this assay. To check for potential suppression in environmental samples, standard addition experiments using an AChE-inhibiting reference compound are recommended. PMID:23424099

  6. Highly sensitive assay for acetylcholinesterase activity and inhibition based on a specifically reactive photonic nanostructure.

    PubMed

    Tian, Tian; Li, Xuesong; Cui, Jiecheng; Li, Jian; Lan, Yue; Wang, Chen; Zhang, Meng; Wang, Hui; Li, Guangtao

    2014-09-10

    Assays for acetylcholinesterase (AChE) with high sensitivity and high selectivity as well as facile manipulation have been urgently required in various fields. In this work, a reaction-based photonic strategy was developed for the efficient assay of AChE activity and inhibition based on the synergetic combination of the specific thiol-maleimide addition reaction with photonic porous structure. It was found that various applications including detection of AChE activity, measurement of the related enzymatic kinetics, and screening of inhibitors could be efficiently implemented using such strategy. Remarkably, the unique photonic nanostructure endows the constructed sensing platform with high sensitivity with a limit of detection (LOD) of 5 mU/mL for AChE activity, high selectivity, and self-reporting signaling. Moreover, the label-free solid film-based sensing approach described here has advantages of facile manipulation and bare-eye readout, compared with conventional liquid-phase methods, exhibiting promising potential in practical application for the AChE assay. PMID:25130420

  7. Mipafox differential inhibition assay for heart muscle cholinesterases: substrate specificity and inhibition of three isoenzymes by physostigmine and quinidine.

    PubMed

    Chemnitius, J M; Haselmeyer, K H; Gonska, B D; Kreuzer, H; Zech, R

    1997-04-01

    1. A differential inhibition assay was developed for the quantitative determination of cholinesterase isoenzymes acetylcholinesterase (AChE; EC 3.1.1.7), cholinesterase (BChE; EC 3.1.1.8), and atypical cholinesterase in small samples of left ventricular porcine heart muscle. 2. The assay is based on kinetic analysis of irreversible cholinesterase inhibition by the organophosphorus compound N,N'-di-isopropylphosphorodiamidic fluoride (mipafox). With acetylthiocholine (ASCh) as substrate (1.25 mM), hydrolytic activities (A) of cholinesterase isoenzymes were determined after preincubation (60 min, 25 degrees C) of heart muscle samples with either saline (total activity, A tau), 7 microM mipafox (AM1), or 0.8 mM mipafox (AM2): (BChE) = A tau-AM1, (AChE) = AM1-AM2, (Atypical ChE) = AM2. 3. The mipafox differential inhibition assay was used to determine the substrate hydrolysis patterns of myocardial cholinesterases with ASCh, acetyl-beta-methylthiocholine (A beta MSCh), propionylthiocholine (PSCh), and butyrylthiocholine (BSCh). The substrate specificities of myocardial AChE and BChE resemble those of erythrocyte AChE and serum BChE, respectively. Michaelis constants KM with ASCh were determined to be 0.15 mM for AChE and 1.4 mM for BChE. 4. Atypical cholinesterase, in respect to both substrate specificity and inhibition kinetics, differs from cholinesterase activities of vertebrate tissue and, up to now, could be identified exclusively in heart muscle. The enzyme's Michaelis constant with ASCh was determined to be 4.0 mM. 5. The reversible inhibitory effects of physostigmine (eserine) and quinidine on heart muscle cholinesterases were investigated using the differential inhibition assay. With all three isoenzymes, the inhibition kinetics of both substances were strictly competitive. The physostigmine inhibition of AChE was most pronounced (Ki = 0.22 microM). Quinidine most potently inhibited myocardial BChE (Ki = 35 microM). PMID:9147026

  8. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes.

    PubMed

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind; Huang, Mingjun

    2013-07-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication. PMID:23629709

  9. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line.

    PubMed

    Masha'our, R Shehadeh; Heinrich, R; Garzozi, H J; Perlman, I

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16-24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. Mission(TM) shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  10. Paper-based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection

    PubMed Central

    Apilux, Amara; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Prachayasittikul, Virapong

    2015-01-01

    A dramatic increase in pesticide usage in agriculture highlights the need for on-site monitoring for public health and safety. Here, a paper-based sensor combined with a wet system was developed for the simple and rapid screening of organophosphate (OP) and carbamate (CM) pesticides based on the inhibition of acetylcholinesterase (AChE). The paper-based sensor was designed as a foldable device consisting of a cover and detection sheets pre-prepared with indoxyl acetate and AChE, respectively. The paper-based sensor requires only the incubation of a sample on the test zone for 10 minutes, followed by closing of the foldable sheet to initiate the enzymatic reaction. Importantly, the buffer loading hole was additionally designed on the cover sheet to facilitate the interaction of the coated substrate and the immobilized enzyme. This subsequently facilitates the mixing of indoxyl acetate with AChE, resulting in the improved analytical performance of the sensor. The absence or decrease in blue color produced by the AChE hydrolysis of indoxyl acetate can be observed in the presence of OPs and CMs. Under optimized conditions and using image analysis, the limit of detection (LOD) of carbofuran, dichlorvos, carbaryl, paraoxon, and pirimicarb are 0.003, 0.3, 0.5, 0.6, and 0.6 ppm, respectively. The assay could be applied to determine OP and CM residues in spiked food samples. Visual interpretation of the color signal was clearly observed at the concentration of 5 mg/kg. Furthermore, a self-contained sample pre-concentration approach greatly enhanced the detection sensitivity. The paper-based device developed here is low-cost, requires minimal reagents and is easy to handle. As such, it would be practically useful for pesticide screening by non-professional end-users. PMID:26417364

  11. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells.

    PubMed

    Jia, Yanfei; Sun, Haiji; Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin. PMID:26909550

  12. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  13. Immunoperoxidase inhibition assay for rabies antibody detection.

    PubMed

    Batista, H B C R; Lima, F E S; Maletich, D; Silva, A C R; Vicentini, F K; Roehe, L R; Spilki, F R; Franco, A C; Roehe, P M

    2011-06-01

    An immunoperoxidase inhibition assay (IIA) for detection of rabies antibodies in human sera is described. Diluted test sera are added to microplates with paraformaldehyde-fixed, CER cells infected with rabies virus. Antibodies in test sera compete with a rabies polyclonal rabbit antiserum which was added subsequently. Next, an anti-rabbit IgG-peroxidase conjugate is added and the reaction developed by the addition of the substrate 3-amino-9-ethylcarbazole (AEC). The performance of the assay was compared to that of the "simplified fluorescence inhibition microtest" (SFIMT), an established virus neutralization assay, by testing 422 human sera. The IIA displayed 97.6% sensitivity, 98% specificity and 97.6% accuracy (Kappa correlation coefficient=0.9). The IIA results can be read by standard light microscopy, where the clearly identifiable specific staining is visible in antibody-negative sera, in contrast to the absence of staining in antibody-positive samples. The assay does not require monoclonal antibodies or production of large amounts of virus; furthermore, protein purification steps or specialized equipment are not necessary for its performance. The IIA was shown to be suitable for detection of rabies antibodies in human sera, with sensitivity, specificity and accuracy comparable to that of a neutralization-based assay. This assay may be advantageous over other similar methods designed to detect rabies-specific binding antibodies, in that it can be easily introduced into laboratories, provided basic cell culture facilities are available. PMID:21458492

  14. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated. PMID:24473150

  15. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    SciTech Connect

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  16. Novel AChE Inhibitors for Sustainable Insecticide Resistance Management

    PubMed Central

    Alout, Haoues; Labbé, Pierrick; Berthomieu, Arnaud; Djogbénou, Luc; Leonetti, Jean-Paul; Fort, Philippe; Weill, Mylène

    2012-01-01

    Resistance to insecticides has become a critical issue in pest management and it is particularly chronic in the control of human disease vectors. The gravity of this situation is being exacerbated since there has not been a new insecticide class produced for over twenty years. Reasoned strategies have been developed to limit resistance spread but have proven difficult to implement in the field. Here we propose a new conceptual strategy based on inhibitors that preferentially target mosquitoes already resistant to a currently used insecticide. Application of such inhibitors in rotation with the insecticide against which resistance has been selected initially is expected to restore vector control efficacy and reduce the odds of neo-resistance. We validated this strategy by screening for inhibitors of the G119S mutated acetylcholinesterase-1 (AChE1), which mediates insensitivity to the widely used organophosphates (OP) and carbamates (CX) insecticides. PyrimidineTrione Furan-substituted (PTF) compounds came out as best hits, acting biochemically as reversible and competitive inhibitors of mosquito AChE1 and preferentially inhibiting the mutated form, insensitive to OP and CX. PTF application in bioassays preferentially killed OP-resistant Culex pipiens and Anopheles gambiae larvae as a consequence of AChE1 inhibition. Modeling the evolution of frequencies of wild type and OP-insensitive AChE1 alleles in PTF-treated populations using the selectivity parameters estimated from bioassays predicts a rapid rise in the wild type allele frequency. This study identifies the first compound class that preferentially targets OP-resistant mosquitoes, thus restoring OP-susceptibility, which validates a new prospect of sustainable insecticide resistance management. PMID:23056599

  17. A novel 4/6-type alpha-conotoxin ViIA selectively inhibits nAchR α3β2 subtype.

    PubMed

    Li, Liang; Liu, Na; Ding, Rong; Wang, Shuo; Liu, Zhuguo; Li, Haiying; Zheng, Xing; Dai, Qiuyun

    2015-12-01

    Conotoxins (CTxs) are typically small peptides composed of 12-50 amino acid residues with 2-5 disulfide bridges. Most of them potently and selectively target a wide variety of ion channels and membrane receptors. They are highly valued as neuropharmacological probes and in pharmaceutical development. In this work, a novel α4/6-CTx named ViIA (RDCCSNPPCAHNNPDC-NH2) was identified from a cDNA library of the venom ducts of Conus virgo (C. virgo). ViIA was then synthesized chemically and its disulfide connectivity was identified as 'C(1)-C(3), C(2)-C(4)'. Its molecular targets were further assessed using two-electrode voltage clamping. The results indicated that ViIA selectively inhibited nicotinic acetylcholine receptor (nAChR) α3β2 subtype with an IC50 of 845.5 nM, but did not target dorsal root ganglion sodium (Na(+))-, potassium (K(+))- or calcium (Ca(2+))-ion channels. Further structure-activity relationship analysis demonstrated that Arg(1) and His(11) but not Asp(2) were the functional residues. To the best of our knowledge, ViIA is the first 4/6 α-CTx that selectively inhibits nAChR α3β2 subtype. This finding expands the knowledge of targets of α4/6-family CTxs. PMID:26511093

  18. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    PubMed

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. PMID:26165232

  19. Development of an inhibitive enzyme assay for copper.

    PubMed

    Shukor, M Y; Bakar, N A; Othman, A R; Yunus, I; Shamaan, N A; Syed, M A

    2009-01-01

    In this work the development of an inhibitive assay for copper using the molybdenum-reducing enzyme assay is presented. The enzyme is assayed using 12-molybdophosphoric acid at pH 5.0 as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme converts the yellowish solution into a deep blue solution. The assay is based on the ability of copper to inhibit the molybdenum-reducing enzyme from the molybdate-reducing Serratia sp. Strain DRY5. Other heavy metals tested did not inhibit the enzyme at 10 mg l(-1). The best model with high regression coefficient to measure copper inhibition is one-phase binding. The calculated IC50 (concentration causing 50% inhibition) is 0.099 mg l(-1) and the regression coefficient is 0.98. The comparative LC50, EC50 and IC50 data for copper in different toxicity tests show that the IC50 value for copper in this study is lower than those for immobilized urease, bromelain, Rainbow trout, R. meliloti, Baker's Yeast dehydrogenase activity Spirillum volutans, P. fluorescens, Aeromonas hydrophilia and synthetic activated sludge assays. However the IC50 value is higher than those for Ulva pertusa and papain assays, but within the reported range for Daphnia magna and Microtox assays. PMID:20112861

  20. Hemagglutinin inhibition assay with swine sera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemagglutination is based on the ability of certain viruses to agglutinate red blood cells (RBC) of certain animal species by formation of cross-linking lattices between RBC. Antibodies that have the ability to inhibit the hemagglutination property of influenza A viruses are generally thought to pro...

  1. Evaluation of Pregnancy Malaria Vaccine Candidates: The Binding Inhibition Assay.

    PubMed

    Saveria, Tracy; Duffy, Patrick E; Fried, Michal

    2015-01-01

    The parasite-binding inhibition assay is designed to evaluate the acquisition of naturally acquired functional antibodies that block Plasmodium falciparum binding to endothelial or placental receptors. The assay is also used to assess functional activity by antibodies induced by immunization, for example antibodies raised against pregnancy malaria vaccine candidates like VAR2CSA. Here we describe a plate-based assay to measure the levels of adhesion-blocking antibodies. This assay format can be adapted to any lab that is minimally equipped for short-term parasite culture. PMID:26450393

  2. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  3. New potential AChE inhibitor candidates.

    PubMed

    de Paula, A A N; Martins, J B L; dos Santos, M L; Nascente, L de C; Romeiro, L A S; Areas, T F M A; Vieira, K S T; Gambôa, N F; Castro, N G; Gargano, R

    2009-09-01

    We have theoretically studied new potential candidates of acetylcholinesterase (AChE) inhibitors designed from cardanol, a non-isoprenoid phenolic lipid of cashew Anacardium occidentale nut-shell liquid. The electronic structure calculations of fifteen molecule derivatives from cardanol were performed using B3LYP level with 6-31G, 6-31G(d), and 6-311+G(2d,p) basis functions. For this study we used the following groups: methyl, acetyl, N,N-dimethylcarbamoyl, N,N-dimethylamine, N,N-diethylamine, piperidine, pyrrolidine, and N,N-methylbenzylamine. Among the proposed compounds we identified that the structures with substitution by N,N-dimethycarbamoyl, N,N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine, and represent possible AChE inhibitors against Alzheimer disease. PMID:19446931

  4. Synthesis and in vitro reactivation study of isonicotinamide derivatives of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide as reactivators of Sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan

    2016-09-15

    Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential. PMID:27450532

  5. Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease: synthesis, biological assessment, and molecular modeling.

    PubMed

    Samadi, Abdelouahid; Estrada, Martín; Pérez, Concepción; Rodríguez-Franco, María Isabel; Iriepa, Isabel; Moraleda, Ignacio; Chioua, Mourad; Marco-Contelles, José

    2012-11-01

    The synthesis, biological assessment and molecular modeling of new pyridonepezils1-8, able to inhibit human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBuChE), are described. The new compounds have been designed as hybrids resulting from a conjunctive approach that combines the N-benzylpiperidine moiety, present in donepezil, and the 2-amino-6-chloropyridine heterocyclic ring system, connected by an appropriate polymethylene linker. Compounds 1-8 were prepared by reaction of 2-amino-6-chloro-4-phenylpyridine-3,5-dicarbonitrile (13) [or 2-amino-6-chloropyridine-3,5-dicarbonitrile (14)] with 2-(1-benzylpiperidin-4-yl)alkylamines (9-12). The biological evaluation of molecules 1-8 showed that compounds 1-6 are potent AChE inhibitors, in the submicromolar, while compounds 7 and 8 are on the nanomolar range, the most potent, 2-amino-6-((3-(1-benzylpiperidin-4-yl)propyl)amino)pyridine-3,5-dicarbonitrile (7), showing a IC(50) (hAChE) = 9.4 ± 0.4 nM. Inhibitors 2-8 are permeable as determined in the PAMPA assay. Compared to donepezil, compound 7 is in the same range of inhibitory activity for hAChE, and 703-fold more selective for hAChE than for hBuChE. Molecular modeling investigation on pyridonepezil7 supports its dual AChE inhibitory profile, binding simultaneously at the catalytic active and at peripheral anionic sites of the enzyme. The theoretical ADME analysis of pyridonepezils1-8 has been carried out. Overall, compound 7, a potent and selective dual AChEI, can be considered as a candidate with potential impact for further pharmacological development in Alzheimer's therapy. PMID:23078965

  6. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease.

    PubMed

    Lemes, Laís Flávia Nunes; de Andrade Ramos, Giselle; de Oliveira, Andressa Souza; da Silva, Fernanda Motta R; de Castro Couto, Gina; da Silva Boni, Marina; Guimarães, Marcos Jorge R; Souza, Isis Nem O; Bartolini, Manuela; Andrisano, Vincenza; do Nascimento Nogueira, Patrícia Coelho; Silveira, Edilberto Rocha; Brand, Guilherme D; Soukup, Ondřej; Korábečný, Jan; Romeiro, Nelilma C; Castro, Newton G; Bolognesi, Maria Laura; Romeiro, Luiz Antonio Soares

    2016-01-27

    Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 μM, and a similar inhibition profile of the human isoform (IC50 = 5.7 μM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 μM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development. PMID:26735910

  7. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity. PMID:24028855

  8. Automated high-throughput in vitro screening of the acetylcholine esterase inhibiting potential of environmental samples, mixtures and single compounds.

    PubMed

    Froment, Jean; Thomas, Kevin V; Tollefsen, Knut Erik

    2016-08-01

    A high-throughput and automated assay for testing the presence of acetylcholine esterase (AChE) inhibiting compounds was developed, validated and applied to screen different types of environmental samples. Automation involved using the assay in 96-well plates and adapting it for the use with an automated workstation. Validation was performed by comparing the results of the automated assay with that of a previously validated and standardised assay for two known AChE inhibitors (paraoxon and dichlorvos). The results show that the assay provides similar concentration-response curves (CRCs) when run according to the manual and automated protocol. Automation of the assay resulted in a reduction in assay run time as well as in intra- and inter-assay variations. High-quality CRCs were obtained for both of the model AChE inhibitors (dichlorvos IC50=120µM and paraoxon IC50=0.56µM) when tested alone. The effect of co-exposure of an equipotent binary mixture of the two chemicals were consistent with predictions of additivity and best described by the concentration addition model for combined toxicity. Extracts of different environmental samples (landfill leachate, wastewater treatment plant effluent, and road tunnel construction run-off) were then screened for AChE inhibiting activity using the automated bioassay, with only landfill leachate shown to contain potential AChE inhibitors. Potential uses and limitations of the assay were discussed based on the present results. PMID:27085000

  9. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  10. Automated Imaging and Analysis of the Hemagglutination Inhibition Assay.

    PubMed

    Nguyen, Michael; Fries, Katherine; Khoury, Rawia; Zheng, Lingyi; Hu, Branda; Hildreth, Stephen W; Parkhill, Robert; Warren, William

    2016-04-01

    The hemagglutination inhibition (HAI) assay quantifies the level of strain-specific influenza virus antibody present in serum and is the standard by which influenza vaccine immunogenicity is measured. The HAI assay endpoint requires real-time monitoring of rapidly evolving red blood cell (RBC) patterns for signs of agglutination at a rate of potentially thousands of patterns per day to meet the throughput needs for clinical testing. This analysis is typically performed manually through visual inspection by highly trained individuals. However, concordant HAI results across different labs are challenging to demonstrate due to analyst bias and variability in analysis methods. To address these issues, we have developed a bench-top, standalone, high-throughput imaging solution that automatically determines the agglutination states of up to 9600 HAI assay wells per hour and assigns HAI titers to 400 samples in a single unattended 30-min run. Images of the tilted plates are acquired as a function of time and analyzed using algorithms that were developed through comprehensive examination of manual classifications. Concordance testing of the imaging system with eight different influenza antigens demonstrates 100% agreement between automated and manual titer determination with a percent difference of ≤3.4% for all cases. PMID:26464422

  11. Extracts from Traditional Chinese Medicinal Plants Inhibit Acetylcholinesterase, a Known Alzheimer's Disease Target.

    PubMed

    Kaufmann, Dorothea; Kaur Dogra, Anudeep; Tahrani, Ahmad; Herrmann, Florian; Wink, Michael

    2016-01-01

    Inhibition of acetylcholinesterase (AChE) is a common treatment for early stages of the most general form of dementia, Alzheimer's Disease (AD). In this study, methanol, dichloromethane and aqueous crude extracts from 80 Traditional Chinese Medical (TCM) plants were tested for their in vitro anti-acetylcholinesterase activity based on Ellman's colorimetric assay. All three extracts of Berberis bealei (formerly Mahonia bealei), Coptis chinensis and Phellodendron chinense, which contain numerous isoquinoline alkaloids, substantially inhibited AChE. The methanol and aqueous extracts of Coptis chinensis showed IC50 values of 0.031 µg/mL and 2.5 µg/mL, therefore having an up to 100-fold stronger AChE inhibitory activity than the already known AChE inhibitor galantamine (IC50 = 4.33 µg/mL). Combinations of individual alkaloids berberine, coptisine and palmatine resulted in a synergistic enhancement of ACh inhibition. Therefore, the mode of AChE inhibition of crude extracts of Coptis chinensis, Berberis bealei and Phellodendron chinense is probably due to of this synergism of isoquinoline alkaloids. All extracts were also tested for their cytotoxicity in COS7 cells and none of the most active extracts was cytotoxic at the concentrations which inhibit AChE. Based on these results it can be stated that some TCM plants inhibit AChE via synergistic interaction of their secondary metabolites. The possibility to isolate pure lead compounds from the crude extracts or to administer these as nutraceuticals or as cheap alternative to drugs in third world countries make TCM plants a versatile source of natural inhibitors of AChE. PMID:27589716

  12. Procaine rapidly inactivates acetylcholine receptors from Torpedo and competes with agonist for inhibition sites

    SciTech Connect

    Forman, S.A.; Miller, K.W. )

    1989-02-21

    The relationship between the high-affinity procaine channel inhibition site and the agonist self-inhibition site on acetylcholine receptors (AChRs) from Torpedo electroplaque was investigated by using rapid {sup 86}Rb{sup +} quenched-flux assays at 4 {degree}C in native AChR-rich vesicles on which 50-60% of ACh activation sites were blocked with {alpha}-bungarotoxin ({alpha}-BTX). In the presence of channel-activating acetylcholine (ACh) concentrations alone, AChR undergoes one phase of inactivation in under a second. Addition of procaine produces two-phase inactivation similar to that seen with self-inhibiting ACh concentrations rapid inactivation complete in 30-75 ms is followed by fast desensitization at the same k{sub d} observed without procaine. The dependence of k{sub r} on (procaine) is consistent with a bimolecular association between procaine and its AChR site. Inhibition of AChR function by mixtures of procaine plus self-inhibiting concentrations of ACh or suberyldicholine was studied by reducing the level of {alpha}-BTX block in vesicles. The data support a mechanism where procaine binds preferentially to the open-channel AChR state, since no procaine-induced inactivation is observed without agonist and k{sub r}'s dependence on (ACh) in channel-activating range closely parallels that of {sup 86}Rb{sup +} flux response to ACh.

  13. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo.

    PubMed

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman's colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4'-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer's disease. PMID:26330885

  14. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

    PubMed Central

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman’s colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4’-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer’s disease. PMID:26330885

  15. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin

    PubMed Central

    Kumar, Suresh

    2015-01-01

    Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480

  16. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  17. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  18. Tribendimidine: Mode of Action and nAChR Subtype Selectivity in Ascaris and Oesophagostomum

    PubMed Central

    Robertson, Alan P.; Puttachary, Sreekanth; Buxton, Samuel K.; Martin, Richard J.

    2015-01-01

    The cholinergic class of anthelmintic drugs is used for the control of parasitic nematodes. One of this class of drugs, tribendimidine (a symmetrical diamidine derivative, of amidantel), was developed in China for use in humans in the mid-1980s. It has a broader-spectrum anthelmintic action against soil-transmitted helminthiasis than other cholinergic anthelmintics, and is effective against hookworm, pinworms, roundworms, and Strongyloides and flatworm of humans. Although molecular studies on C. elegans suggest that tribendimidine is a cholinergic agonist that is selective for the same nematode muscle nAChR as levamisole, no direct electrophysiological observations in nematode parasites have been made to test this hypothesis. Also the hypothesis that levamisole and tribendimine act on the same receptor, does not explain why tribendimidine is effective against some nematode parasites when levamisole is not. Here we examine the effects of tribendimidine on the electrophysiology and contraction of Ascaris suum body muscle and show that tribendimidine produces depolarization antagonized by the nicotinic antagonist mecamylamine, and that tribendimidine is an agonist of muscle nAChRs of parasitic nematodes. Further pharmacological characterization of the nAChRs activated by tribendimidine in our Ascaris muscle contraction assay shows that tribendimidine is not selective for the same receptor subtypes as levamisole, and that tribendimidine is more selective for the B-subtype than the L-subtype of nAChR. In addition, larval migration inhibition assays with levamisole-resistant Oesophagostomum dentatum isolates show that tribendimidine is as active on a levamisole-resistant isolate as on a levamisole-sensitive isolate, suggesting that the selectivity for levamisole and tribendimidine is not the same. It is concluded that tribendimidine can activate a different population of nematode parasite nAChRs than levamisole, and is more like bephenium. The different nAChR subtype

  19. Pesticide Mixture Toxicity in Surface Water Extracts in Snails (Lymnaea stagnalis) by an in Vitro Acetylcholinesterase Inhibition Assay and Metabolomics.

    PubMed

    Tufi, Sara; Wassenaar, Pim N H; Osorio, Victoria; de Boer, Jacob; Leonards, Pim E G; Lamoree, Marja H

    2016-04-01

    Many chemicals in use end up in the aquatic environment. The toxicity of water samples can be tested with bioassays, but a metabolomic approach has the advantage that multiple end points can be measured simultaneously and the affected metabolic pathways can be revealed. A current challenge in metabolomics is the study of mixture effects. This study aims at investigating the toxicity of an environmental extract and its most abundant chemicals identified by target chemical analysis of >100 organic micropollutants and effect-directed analysis (EDA) using the acetylcholinesterase (AChE) bioassay and metabolomics. Surface water from an agricultural area was sampled with a large volume solid phase extraction (LVSPE) device using three cartridges containing neutral, anionic, and cationic sorbents able to trap several pollutants classes like pharmaceuticals, pesticides, PAHs, PCBs, and perfluorinated surfactants. Targeted chemical analysis and AChE bioassay were performed on the cartridge extracts. The extract of the neutral sorbent cartridge contained most of the targeted chemicals, mainly imidacloprid, thiacloprid, and pirimicarb, and was the most potent AChE inhibitor. Using an EDA approach, other AChE inhibiting candidates were identified in the neutral extract, such as carbendazim and esprocarb. Additionally, a metabolomics experiment on the central nervous system (CNS) of the freshwater snail Lymnaea stagnalis was conducted. The snails were exposed to the extract, the three most abundant chemicals individually, and a mixture of these. The extract disturbed more metabolic pathways than the three most abundant chemicals individually, indicating the contribution of other chemicals. Most pathways perturbed by the extract exposure overlapped with those related to exposure to neonicotinoids, like the polyamine metabolism involved in CNS injuries. Metabolomics for the straightforward comparison between a complex mixture and single compound toxicity is still challenging but

  20. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors. PMID:21591743

  1. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro

    PubMed Central

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-01-01

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569

  2. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity.

    PubMed

    Herkert, Nadja M; Lallement, Guy; Clarençon, Didier; Thiermann, Horst; Worek, Franz

    2009-04-28

    Recently, a dynamically working in vitro model with real-time determination of membrane-bound human acetylcholinesterase (AChE) activity was shown to be a versatile model to investigate oxime-induced reactivation kinetics of organophosphate- (OP) inhibited enzyme. In this assay, AChE was immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. Subsequently, AChE activity was continuously analyzed in a flow-through detector. Now, it was an intriguing question whether this model could be used with erythrocyte AChE from other species in order to investigate kinetic interactions in the absence of annoying side reactions. Rhesus monkey, swine and guinea pig erythrocytes were a stable and highly reproducible enzyme source. Then, the model was applied to the reactivation of sarin- and paraoxon-inhibited AChE by obidoxime or HI 6 and it could be shown that the derived reactivation rate constants were in good agreement to previous results obtained from experiments with a static model. Hence, this dynamic model offers the possibility to investigate highly reproducible interactions between AChE, OP and oximes with human and animal AChE. PMID:19428926

  3. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    PubMed

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL. PMID:11858553

  4. Development of a thyroperoxidase inhibition assay for high-throughput screening

    EPA Science Inventory

    High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluores...

  5. Effect of nicotinic acetylcholine receptor alpha 1 (nAChRα1) peptides on rabies virus infection in neuronal cells.

    PubMed

    Sajjanar, Basavaraj; Saxena, Shikha; Bisht, Deepika; Singh, Arvind Kumar; Manjunatha Reddy, G B; Singh, Rajendra; Singh, R P; Kumar, Satish

    2016-06-01

    Rabies virus (RABV) is neurotropic and causes acute progressive encephalitis. Herein, we report the interaction of nAChRα1-subunit peptides with RABV and the effect of these peptides on RABV infection in cultured neuronal cells. Peptide sequences derived from torpedo, bovine, human and rats were synthesized and studied for their interactions with RABV using virus capture ELISA and peptide immunofluorescence. The results showed specific binding of the nAChRα1-subunit peptides to the RABV. In the virus adsorption assay, these peptides were found to inhibit the attachment of the RABV to the neuronal cells. The nAChRα1-subunit peptides inhibited the RABV infection and reduced viral gene expression in the cultured neuroblastoma (N2A) cells. Torpedo peptide sequence (T-32) had highest antiviral effect (IC50=14±3.01μM) compared to the other peptides studied. The results of the study indicated that nAChRα1-subunit peptides may act as receptor decoy molecules and inhibit the binding of virus to the native host cell receptors and hence may reduce viral infection. PMID:26656837

  6. Development of a thyroperoxidase inhibition assay for high-throughput screening.

    PubMed

    Paul, Katie B; Hedge, Joan M; Rotroff, Daniel M; Hornung, Michael W; Crofton, Kevin M; Simmons, Steven O

    2014-03-17

    High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein, we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluorescent peroxidase substrate, Amplex UltraRed (AUR), were employed in an end-point assay for comparison to the existing kinetic guaiacol (GUA) oxidation assay. Following optimization of assay metrics, including Z', dynamic range, and activity, using methimazole (MMI), the assay was tested with a 21-chemical training set. The potency of MMI-induced TPO inhibition was greater with AUR compared to GUA. The dynamic range and Z' score with MMI were as follows: 127-fold and 0.62 for the GUA assay, 18-fold and 0.86 for the 96-well AUR assay, and 11.5-fold and 0.93 for the 384-well AUR assay. The 384-well AUR assay drastically reduced animal use, requiring one-tenth of the rat thyroid microsomal protein needed for the GUA 96-well format assay. Fourteen chemicals inhibited TPO, with a relative potency ranking of MMI > ethylene thiourea > 6-propylthiouracil > 2,2',4,4'-tetrahydroxy-benzophenone > 2-mercaptobenzothiazole > 3-amino-1,2,4-triazole > genistein > 4-propoxyphenol > sulfamethazine > daidzein > 4-nonylphenol > triclosan > iopanoic acid > resorcinol. These data demonstrate the capacity of this assay to detect diverse TPO inhibitors. Seven chemicals acted as negatives: 2-hydroxy-4-methoxybenzophenone, dibutylphthalate, diethylhexylphthalate, diethylphthalate, 3,5-dimethylpyrazole-1-methanol, methyl 2-methyl-benzoate, and sodium perchlorate. This assay could be used to screen large numbers of chemicals as an integral component of a tiered TH-disruptor screening approach. PMID:24383450

  7. Discovery of non-oxime reactivators using an in silico pharmacophore model of reactivators for DFP-inhibited acetylcholinesterase.

    PubMed

    Bhattacharjee, Apurba K; Marek, Elizabeth; Le, Ha Thu; Ratcliffe, Ruthie; DeMar, James C; Pervitsky, Dmitry; Gordon, Richard K

    2015-01-27

    Utilizing our previously reported in silico pharmacophore model for reactivation efficacy of oximes, we present here a discovery of twelve new non-oxime reactivators of diisopropylfluorophosphate (DFP)-inhibited acetylcholinesterase (AChE) obtained through virtual screening of an in-house compound database. Rate constant (kr) efficacy values of the non-oximes were found to be within ten-fold of pralidoxime (2-PAM) in an in vitro DFP inhibited eel AChE assay and one of them showed in vivo efficacy comparable to 2-PAM against brain symptoms for DFP induced neuropathology in guinea pigs. Short listing of the identified compounds were performed on the basis of in silico evaluations for favorable blood brain barrier penetrability, octanol-water partition (Clog P), toxicity (rat oral LD50) and binding affinity to the active site of the crystal structure of a OP- inhibited AChE. PMID:25461321

  8. A High Sensitivity Micro Format Chemiluminescence Enzyme Inhibition Assay for Determination of Hg(II)

    PubMed Central

    Deshpande, Kanchanmala; Mishra, Rupesh K.; Bhand, Sunil

    2010-01-01

    A highly sensitive and specific enzyme inhibition assay based on alcohol oxidase (AlOx) and horseradish peroxidase (HRP) for determination of mercury Hg(II) in water samples has been presented. This article describes the optimization and miniaturization of an enzymatic assay using a chemiluminescence reaction. The analytical performance and detection limit for determination of Hg(II) was optimized in 96 well plates and further extended to 384 well plates with a 10-fold reduction in assay volume. Inhibition of the enzyme activity by dissolved Hg(II) was found to be linear in the range 5–500 pg·mL−1 with 3% CV in inter-batch assay. Due to miniaturization of assay in 384 well plates, Hg(II) was measurable as low as 1 pg·mL−1 within 15 min. About 10-fold more specificity of the developed assay for Hg(II) analysis was confirmed by challenging with interfering divalent metal ions such as cadmium Cd(II) and lead Pb(II). Using the proposed assay we could successfully demonstrate that in a composite mixture of Hg(II), Cd(II) and Pb(II), inhibition by each metal ion is significantly enhanced in the presence of the others. Applicability of the proposed assay for the determination of the Hg(II) in spiked drinking and sea water resulted in recoveries ranging from 100–110.52%. PMID:22163555

  9. Aches and pains during pregnancy

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000580.htm Aches and pains during pregnancy To use the sharing features on ... the end of your pregnancy, tell your provider. Pain in Your Lower Abdomen (Belly) or Groin Most ...

  10. Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs

    PubMed Central

    Vlcek, Vitezslav

    2014-01-01

    Different toxic compounds can target the cholinergic nervous system. Acetylcholinesterase (AChE; EC 3.1.1.7) is one of the most crucial components of the cholinergic nervous system and thus many of the toxins interact with this enzyme. As to inhibitors, nerve agents used as chemical warfare, some insecticides, and drugs influencing the cholinergic system are common examples of AChE inhibitors. Once inhibited by a neurotoxic compound, a serious cholinergic crisis can occur. On the other hand, sensitivity of AChE to the inhibition can be used for analytical purposes. In this study, a simple disposable biosensor with AChE as a recognition element was devised. AChE was immobilized onto a cellulose matrix and indoxylacetate was used as a chromogenic substrate. The enzyme reaction was assessed by the naked eye using arbitrary units and pyridostigmine, tacrine, paraoxon, carbofuran, soman and VX were assayed as selected inhibitors. A good stability of the biosensors was found, with no aging over a quarter of a year and minimal sensitivity to the interference of organic solvents. The limit of detection ranged from 10 to 100 nmol/L for the compounds tested with a sample volume of 40 µL. PMID:26109903

  11. Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs.

    PubMed

    Pohanka, Miroslav; Vlcek, Vitezslav

    2014-12-01

    Different toxic compounds can target the cholinergic nervous system. Acetylcholinesterase (AChE; EC 3.1.1.7) is one of the most crucial components of the cholinergic nervous system and thus many of the toxins interact with this enzyme. As to inhibitors, nerve agents used as chemical warfare, some insecticides, and drugs influencing the cholinergic system are common examples of AChE inhibitors. Once inhibited by a neurotoxic compound, a serious cholinergic crisis can occur. On the other hand, sensitivity of AChE to the inhibition can be used for analytical purposes. In this study, a simple disposable biosensor with AChE as a recognition element was devised. AChE was immobilized onto a cellulose matrix and indoxylacetate was used as a chromogenic substrate. The enzyme reaction was assessed by the naked eye using arbitrary units and pyridostigmine, tacrine, paraoxon, carbofuran, soman and VX were assayed as selected inhibitors. A good stability of the biosensors was found, with no aging over a quarter of a year and minimal sensitivity to the interference of organic solvents. The limit of detection ranged from 10 to 100 nmol/L for the compounds tested with a sample volume of 40 µL. PMID:26109903

  12. Surface plasmon resonance assay of inhibition by pharmaceuticals for thyroxine hormone binging to transport proteins.

    PubMed

    Kinouchi, Hiroki; Matsuyama, Keigo; Kitagawa, Hiroshi; Kamimori, Hiroshi

    2016-01-01

    We developed a surface plasmon resonance (SPR) assay to estimate the competitive inhibition by pharmaceuticals for thyroxine (T4) binding to thyroid hormone transport proteins, transthyretin (TTR) and thyroxine binding globulin (TBG). In this SPR assay, the competitive inhibition of pharmaceuticals for introducing T4 into immobilized TTR or TBG on the sensor chip can be estimated using a running buffer containing pharmaceuticals. The SPR assay showed reproducible immobilization of TTR and TBG, and the kinetic binding parameters of T4 to TTR or TBG were estimated. The equilibrium dissociation constants of TTR or TBG measured by SPR did not clearly differ from data reported for other binding assays. To estimate the competitive inhibition of tetraiodothyroacetic acid, diclofenac, genistein, ibuprofen, carbamazepine, and furosemide, reported to be competitive or noncompetitive pharmaceuticals for T4 binding to TTR or TBG, their 50% inhibition concentrations (IC50) (or 80% inhibition concentration, IC80) were calculated from the change of T4 responses in sensorgrams obtained with various concentrations of the pharmaceuticals. Our SPR method should be a useful tool for predicting the potential of thyroid toxicity of pharmaceuticals by evaluating the competitive inhibition of T4 binding to thyroid hormone binding proteins, TTR and TBG. PMID:26384643

  13. Inhibition Controls for Qualitative Real-Time PCR Assays: Are They Necessary for All Specimen Matrices?

    PubMed Central

    Buckwalter, S. P.; Sloan, L. M.; Cunningham, S. A.; Espy, M. J.; Uhl, J. R.; Jones, M. F.; Vetter, E. A.; Mandrekar, J.; Cockerill, F. R.; Pritt, B. S.; Patel, R.

    2014-01-01

    A retrospective analysis of 386,706 specimens representing a variety of matrix types used in qualitative real-time PCR assays determined the overall inhibition rate to be 0.87% when the inhibition control was added preextraction to 5,613 specimens and 0.01% when the inhibition control was added postextraction but preamplification in 381,093 specimens. Inhibition rates of ≤1% were found for all specimen matrix types except urine and formalin-fixed, paraffin-embedded tissue. PMID:24740078

  14. Rapid identification of cholinesterase inhibitors from the seedcases of mangosteen using an enzyme affinity assay.

    PubMed

    Ryu, Hyung Won; Oh, Sei-Ryang; Curtis-Long, Marcus J; Lee, Ji Hye; Song, Hyuk-Hwan; Park, Ki Hun

    2014-02-12

    Enzyme binding affinity has been recently introduced as a selective screening method to identify bioactive substances within complex mixtures. We used an assay which identified small molecule binders of acetylcholinesterase (AChE) using the following series of steps: incubation of enzyme with extract; centrifugation and filtration; identification of small molecule content in the flow through. The crude extract contained 10 peaks in the UPLC chromatogram. However, after incubation the enzyme, six peaks were reduced, indicating these compounds bound AChE. All these isolated compounds (2, 3, and 5-8) significantly inhibited human AChE with IC₅₀s = 5.4-15.0 μM and butyrylcholinsterase (IC₅₀s = 0.7-11.0 μM). All compounds exhibited reversible mixed kinetics. Consistent with the binding screen and fluorescence quenching, γ-mangostin 6 had a much higher affinity for AChE than 9-hydroxycalabaxanthone 9. This validates this screening protocol as a rapid method to identify inhibitors of AChE. PMID:24446804

  15. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator.

    PubMed

    Hamouda, Ayman K; Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B

    2016-05-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR. PMID:26976945

  16. PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic Inhibition Observed during a Sulfhydryl-Scavenging HTS

    PubMed Central

    2015-01-01

    Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter. PMID:25634295

  17. Qualification of the hemagglutination inhibition assay in support of pandemic influenza vaccine licensure.

    PubMed

    Noah, Diana L; Hill, Heather; Hines, David; White, E Lucile; Wolff, Mark C

    2009-04-01

    Continued outbreaks of highly pathogenic avian influenza over the past decade have spurred global efforts to develop antivirals and vaccines. As part of vaccine development, standard methods are needed for determining serum antibody titers in response to vaccination. Hemagglutination inhibition (HAI) assays are appropriate for assessing the immunogenicity of pandemic influenza vaccines in support of license approval. We demonstrate that a rigorous qualification of the HAI assay for H5N1 influenza virus, evaluating for precision, intermediate precision, linearity, range, specificity, and robustness, satisfies the intent of regulatory guidance for assay validation despite the lack of availability of specific reference standard antigens and antisera. PMID:19225073

  18. Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates.

    PubMed

    Meek, Edward C; Chambers, Howard W; Coban, Alper; Funck, Kristen E; Pringle, Ronald B; Ross, Matthew K; Chambers, Janice E

    2012-04-01

    Four nonvolatile nerve agent surrogates, 4-nitrophenyl ethyl dimethylphosphoramidate (NEDPA, a tabun surrogate), 4-nitrophenyl ethyl methylphosphonate (NEMP, a VX surrogate), and two sarin surrogates, phthalimidyl isopropyl methylphosphonate (PIMP) and 4-nitrophenyl isopropyl methylphosphonate (NIMP), were synthesized and tested as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. These surrogates were designed to phosphorylate cholinesterases with the same moiety as their respective nerve agents, making them highly relevant for the study of cholinesterase reactivators. Surrogates were characterized by liquid chromatography-mass spectrometry and nuclear magnetic resonance. NEMP, PIMP, and NIMP were potent inhibitors of rat brain, skeletal muscle, diaphragm, and serum AChE as well as human erythrocyte AChE and serum BuChE in vitro. PIMP was determined to degrade quickly in aqueous solution, making it useful for in vitro assays only, and NEDPA was not a potent inhibitor of AChE or BuChE in vitro; therefore, these two surrogates were not tested in subsequent in vivo studies. Sublethal dosages (yielding about 80% brain AChE inhibition) were determined for both the stable sarin surrogate, NIMP (0.325 mg/kg ip), and the VX surrogate, NEMP (0.4 mg/kg ip), in adult male rats. Time course studies indicated the time to peak brain AChE inhibition for both NIMP and NEMP to be 1 h postexposure. Both surrogates yielded severe cholinergic signs. These dosages did not require the addition of atropine to prevent lethality, and the rate of AChE aging was slow, making these surrogates useful for reactivation studies both in vitro and in vivo. The surrogates synthesized in this study are potent yet safer to test than nerve agents and are useful tools for initial screening of nerve agent oxime therapeutics. PMID:22247004

  19. Direct Measurement of Lipase Inhibition by Orlistat Using a Dissolution Linked In Vitro Assay

    PubMed Central

    Lewis, Daniel R; Liu, Dongzhou J

    2014-01-01

    Purpose To develop a bio-assay that would be able to directly test gastrointestinal and/or dissolution samples to determine lipase activity and inhibition by Orlistat. Methods Enzyme assays were performed with porcine pancreatic lipase and para-Nitrophenyl Palmitate (pNPP) in pH 8.0 reaction buffer at 37°C. Substrate hydrolysis was monitored by absorbance changes at 410 nm. The dissolution of two Orlistat formulations was tested with a USP II apparatus. Samples were HPLC analyzed to determine release profile in addition to being diluted and directly assayed for inhibitory effect. Results The lipase-pNPP system demonstrates linearity and Michalis-Menten kinetics with a Km=2.7 ± 0.2 μM and Kcat = 0.019 s−1. Orlistat showed highly potent and time dependent inhibition with 5 ng/ml effecting 50% activity after 5 minutes in the Lipase-pNPP system. Dissolution studies showed a correlation of the drug release profile to the inhibitory effect of dissolution samples in the assay. Conclusions The lipase-pNPP method can be used as an in vitro assay to monitor orlistat inhibition from drug release or dissolution samples. PMID:25419492

  20. Inhibition of human immunodeficiency virus type 1 activity by purified human breast milk mucin (MUC1) in an inhibition assay.

    PubMed

    Habte, Habtom H; de Beer, Corena; Lotz, Zoë E; Tyler, Marilyn G; Kahn, Delawir; Mall, Anwar S

    2008-01-01

    It has been reported that breast-feeding is responsible for approximately 40% of the HIV transmissions from HIV-positive mothers to children. Human breast milk, however, is known to contain numerous biologically active components which protect breast-fed infants against bacteria, viruses, and toxins. The purpose of this study was to purify and characterize breast milk mucin and to determine its anti-HIV-1 activity in an HIV inhibition assay. Sepharose CL-4B column chromatography and caesium chloride isopycnic density gradient purification were used to isolate and purify the mucin. Following Western blotting and amino acid analysis, an HIV-1 inhibition assay was carried out to determine the anti-HIV-1 activity of crude breast milk and purified milk mucin (MUC1) by incubating them with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells). SDS-PAGE analysis of the mucin, together with its amino acid composition and Western blotting, suggested that this purified mucin from human breast milk was MUC1. The HIV inhibition assay revealed that while the purified milk mucin (MUC1) inhibited the HIV-1 activity by approximately 97%, there was no inhibition of the HIV-1 activity by crude breast milk. Although the reason for this is not clear, it is likely that because the MUC1 in crude milk is enclosed by fat globules, there may not be any physical contact between the mucin and the virus in the crude breast milk. Thus, there is a need to free the mucin from the fat globules for it to be effective against the virus. PMID:17878743

  1. Differential effects of lysophosphatidylcholine and ACh on muscarinic K(+),non-selective cation and Ca(2+) currents in guinea-pig atrial cells.

    PubMed

    Li, Libing; Matsuoka, Isao; Sakamoto, Kazuho; Kimura, Junko

    2016-06-01

    We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh). PMID:26911304

  2. Development and validation of a simple assay for the determination of cholinesterase activity in whole blood of laboratory animals.

    PubMed

    Naik, Ramachandra S; Liu, Weiyi; Saxena, Ashima

    2013-04-01

    Current methods for measuring acetylcholinesterase (AChE) activities in whole blood use butyrylcholinesterase (BChE)-selective inhibitors. However, the poor selectivity of these inhibitors results in the inhibition of AChE activity to some degree, leading to errors in reported values. The goal of this study was to develop and validate a simple assay for measuring AChE and BChE activities in whole blood from humans as well as experimental animals. Blood was fractionated into plasma and erythrocytes, and cholinesterase activities were titrated against ethopropazine and (-)-huperzine A to determine the lowest concentration of ethopropazine that inhibited BChE completely without affecting AChE activity and the lowest concentration of (-)-huperzine A that inhibited AChE completely without interfering with BChE activity. Results indicate that 20 µm ethopropazine can be successfully used for the accurate measurement of AChE activity in blood from humans as well as animals. Use of (-)-huperzine A is not required for measuring BChE activity in normal or 'exposed' blood samples. The method was validated for blood from several animal species, including mice, rats, guinea pigs, dogs, minipigs, and African green, cynomolgus and rhesus monkeys. This method is superior to all reported methods, does not require the separation of erythrocyte and plasma fractions, and is suitable for measuring cholinesterase activities in fresh or frozen blood from animals that were exposed to nerve agents or those that were administered high doses of BChE. The method is simple, direct, reproducible, and reliable and can easily be adapted for high-throughput screening of blood samples. Published 2012. This article is a US Government work and is in the public domain in the USA. PMID:22407886

  3. Characterization of acetylcholinesterase inhibition and energy allocation in Daphnia magna exposed to carbaryl.

    PubMed

    Jeon, Junho; Kretschmann, Andreas; Escher, Beate I; Hollender, Juliane

    2013-12-01

    The inhibition of acetylcholinesterase (AChE) activity and energy allocation in the freshwater organism Daphnia magna exposed to carbaryl and potential recovery from the effects was examined. The binding of carbaryl-AChE was characterized through in vitro assays. To evaluate the recovery from inhibition and the alteration in energy budget, in vivo exposure and recovery regime tests were conducted. In comparison to diazoxon, the active metabolite of the insecticide diazinon, the stability of enzyme-carbaryl complex was fifteen times lower and the reactivity toward the active site was two times lower, resulting in approximately 30 times lower overall inhibition rate than for diazoxon. The in vitro reactivation rate constant of the inhibited enzyme and the in vivo recovery rate constant of AChE activity were 1.9 h⁻¹ and 0.12 h⁻¹ for carbaryl, respectively, which are much higher than the corresponding rate constants for diazoxon. The lower AChE inhibition and greater reactivation/recovery rates are in accordance with the lower toxicity of carbaryl compared to diazinon. Carbaryl exposure also altered the profile of the energy reserve: the decrease in lipid and glycogen and the increase in protein content resulted in the reduction of the total energy budget by about 45 mJ/g(ww). This corresponds to 26 percent of the available energy, which might allocate for external stressors. The mechanistic model of AChE inhibition is helpful to get an insight into (eco-)toxicological effects of AChE inhibitors on freshwater crustaceans under environmentally realistic conditions. PMID:24139064

  4. Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice.

    PubMed

    Zhao, Xia; Ye, Jia; Sun, Qi; Xiong, Yulan; Li, Runtao; Jiang, Yimin

    2011-01-01

    The aim of this study was to evaluate the antinociceptive effects and potential mechanisms of the spirocyclopiperazinium compound LXM-15. We found that LXM-15 produced significant antinociceptive effects in a dose- and time-dependent manner in mice. The maximum inhibition ratio was 70% in the acetic acid writhing test; the effect started at 1.0 h, peaked at 2.0 h with the MPEs of 61%, and persisted 3.5 h in the hot-plate test; LXM-15 reduced the time spent licking or biting the injected paw remarkably with inhibitions of 53% in formalin test. LXM-15 did not affect motor coordination, spontaneous activity, body temperature, heart rate, or liver enzyme activity, the LD(50) values was 616.26 μmol/kg. The antinociceptive effect of LXM-15 was blocked by mecamylamine, hexamethonium, atropine or atropine methylnitrate, and was also blocked by MLA, tropicamide. In contrast, the effect was not blocked by naloxone. Meanwhile, competition receptor binding assays showed LXM-15 can bind to α7 nAChR or M4 mAChR. Our studies show that LXM-15 may be via activating peripheral α7 nicotnic and M4 muscarinic receptors, resulted in antinociceptive effects. PMID:21035471

  5. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase.

    PubMed

    Zhuang, Qinggeng; Young, Amneh; Callam, Christopher S; McElroy, Craig A; Ekici, Özlem Dogan; Yoder, Ryan J; Hadad, Christopher M

    2016-06-01

    Aging is a dealkylation reaction of organophosphorus (OP)-inhibited acetylcholinesterase (AChE). Despite many studies to date, aged AChE cannot be reactivated directly by traditional pyridinium oximes. This review summarizes strategies that are potentially valuable in the treatment against aging in OP poisoning. Among them, retardation of aging seeks to lower the rate of aging through the use of AChE effectors. These drugs should be administered before AChE is completely aged. For postaging treatment, realkylation of aged AChE by appropriate alkylators may pave the way for oxime treatment by neutralizing the oxyanion at the active site of aged AChE. The other two strategies, upregulation of AChE expression and introduction of exogenous AChE, cannot resurrect aged AChE but may compensate for lowered active AChE levels by in situ production or external introduction of active AChE. Upregulation of AChE expression can be triggered by some peptides. Sources of exogenous AChE can be whole blood or purified AChE, either from human or nonhuman species. PMID:27327269

  6. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  7. High-throughput radiometric CYP2C19 inhibition assay using tritiated (S)-mephenytoin.

    PubMed

    Di Marco, Annalise; Cellucci, Antonella; Chaudhary, Ashok; Fonsi, Massimiliano; Laufer, Ralph

    2007-10-01

    A rapid and sensitive radiometric assay for assessing the potential of drugs to inhibit cytochrome P450 (P450) 2C19 in human liver microsomes is described. The new assay, which does not require high-performance liquid chromatography (HPLC) separation or mass spectrometric detection, is based on the release of tritium as tritiated water that occurs upon CYP2C19-mediated 4'-hydroxylation of (S)-mephenytoin labeled with tritium in the 4' position. Because this reaction is subject to an NIH shift, tritium was also introduced into the 3'- and 5'-positions of the tracer to enhance formation of a tritiated water product. Tritiated water was separated from the substrate using 96-well solid-phase extraction plates. The reaction is NADPH-dependent and sensitive to CYP2C19 inhibitors. IC(50) values for 15 diverse drugs differed less than 2.5-fold from those determined by quantification of the unlabeled 4'-hydroxy-(S)-mephenytoin product, using HPLC coupled to mass spectrometric detection. All of the steps of the new assay, namely incubation, product separation, and radioactivity counting, are performed in a 96-well format and can be automated. This assay represents a non-HPLC, high-throughput version of the classic (S)-mephenytoin 4'-hydroxylation assay, which is the most widely used method to assess the potential for CYP2C19 inhibition of new chemical entities. PMID:17600081

  8. Comparison of Chlorpyrifos-Oxon and Paraoxon Acetylcholinesterase Inhibition Dynamics: Potential role of a peripheral binding site

    SciTech Connect

    Kousba, Ahmed A.; Sultatos, L G.; Poet, Torka S.; Timchalk, Chuck

    2004-08-02

    The primary mechanism of action for organophosphorus (OP) insecticides involves the inhibition of acetylcholinesterase (AChE) by oxygenated metabolites (oxons). This inhibition has been attributed to the phosphorylation of the serine hydroxyl group located in the active site of the AChE molecule. The rate of phosphorylation is described by the bimolecular inhibitory rate constant (ki), which has been utilized for quantification of OP inhibitory capacity. It has been previously proposed that a peripheral binding site exists on the AChE molecule, which when occupied, reduces the capacity of additional oxon molecules to phosphorylate the active site. The objective of the current study was to evaluate the interaction of chlorpyrifos oxon (CPO) and paraoxon (PO) with rat brain AChE using a modified Ellman assay in conjunction with a pharmacodynamic model to further assess the dynamics of AChE inhibition and the potential role of a peripheral binding site. The ki for AChE inhibition determined at oxon concentrations of 5 x 10{sup -4} 100 nM were 0.212 and 0.0216 nM-1h-1 for CPO and PO, respectively. The spontaneous reactivation rates of the inhibited AChE for CPO and PO were 0.087 and 0.078 h-1, respectively. In contrast, the ki estimated at a low oxon concentration (1 pM) were {approx} 1,000 and 10,000 -fold higher than those determined at high CPO and PO concentrations, respectively. At these low concentrations, the ki estimates were approximately similar for both CPO and PO (180 and 250 nM-1h-1, respectively). This implies that at low exposure concentrations, both oxons exhibited similar inhibitory potency in contrast to the marked difference exhibited at higher concentrations, which is consistent with the presence of a peripheral binding site on the AChE enzyme. These results support the potential importance of a secondary binding site associated with AChE kinetics, particularly at low environmentally relevant concentrations.

  9. WblAch, a Pivotal Activator of Natamycin Biosynthesis and Morphological Differentiation in Streptomyces chattanoogensis L10, Is Positively Regulated by AdpAch

    PubMed Central

    Yu, Pin; Liu, Shui-Ping; Bu, Qing-Ting; Zhou, Zhen-Xing; Zhu, Zhen-Hong; Huang, Fang-Liang

    2014-01-01

    Detailed mechanisms of WhiB-like (Wbl) proteins involved in antibiotic biosynthesis and morphological differentiation are poorly understood. Here, we characterize the role of WblAch, a Streptomyces chattanoogensis L10 protein belonging to this superfamily. Based on DNA microarray data and verified by real-time quantitative PCR (qRT-PCR), the expression of wblAch was shown to be positively regulated by AdpAch. Gel retardation assays and DNase I footprinting experiments showed that AdpAch has specific DNA-binding activity for the promoter region of wblAch. Gene disruption and genetic complementation revealed that WblAch acts in a positive manner to regulate natamycin production. When wblAch was overexpressed in the wild-type strain, the natamycin yield was increased by ∼30%. This provides a strategy to generate improved strains for natamycin production. Moreover, transcriptional analysis showed that the expression levels of whi genes (including whiA, whiB, whiH, and whiI) were severely depressed in the ΔwblAch mutant, suggesting that WblAch plays a part in morphological differentiation by influencing the expression of the whi genes. PMID:25172865

  10. A miniaturized assay for influenza neuraminidase‐inhibiting antibodies utilizing reverse genetics‐derived antigens

    PubMed Central

    Sandbulte, Matthew R.; Gao, Jin; Straight, Timothy M.; Eichelberger, Maryna C.

    2009-01-01

    Background  Antibodies to neuraminidase (NA) contribute to protection during influenza virus infection, but NA inhibition (NI) titers are not routinely analyzed in vaccine trials. One reason is the cumbersome nature of the conventional thiobarbituric acid (TBA) NI assay, which uses chemical methods to quantify free sialic acid following incubation of NA with substrate in the presence of serum. In addition, the assay is complicated by the need to use virus of a hemagglutinin (HA) subtype novel to the host to detect NA‐specific antibodies only. Objectives  Our primary objectives were to miniaturize the colorimetric NI assay to a format suitable for quantitative analysis of large numbers of samples, and validate the specificity and sensitivity of the miniaturized format with ferret and human sera. An additional aim was to use reverse genetics to construct HA‐mismatched viral reagents bearing NA of recent influenza A vaccine strains and H6 HA. Results  Analysis of ferret antisera by the miniaturized assay demonstrated sensitivity and specificity comparable with the conventional assay. Similar increases in the NI titers in sera from vaccinated human volunteers were measured in miniaturized and conventional assays. Inactivated and live‐attenuated vaccines increased NI titers against a given subtype at approximately the same rate. Conclusions  The reagents and miniaturized format of the TBA method described here provide a platform for practical serological monitoring of functional antibodies against NA. PMID:21462400

  11. Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition.

    PubMed

    Shen, Congcong; Xia, Xiaodong; Hu, Shengqiang; Yang, Minghui; Wang, Jianxiu

    2015-01-01

    A simple and sensitive fluorescence method for monitoring the activity and inhibition of protein kinase (PKA) has been developed using polycytosine oligonucleotide (dC12)-templated silver nanoclusters (Ag NCs). Adenosine-5'-triphosphate (ATP) was found to enhance the fluorescence of Ag NCs, while the hydrolysis of ATP to adenosine diphosphate (ADP) by PKA decreased the fluorescence of Ag NCs. Compared to the existing methods for kinase activity assay, the developed method does not involve phosphorylation of the substrate peptides, which significantly simplifies the detection procedures. The method exhibits high sensitivity, good selectivity, and wide linear range toward PKA detection. The inhibition effect of kinase inhibitor H-89 on the activity of PKA was also studied. The sensing protocol was also applied to the assay of drug-stimulated activation of PKA in HeLa cell lysates. PMID:25517425

  12. Rapid Sensitive Assay for Interferons Based on the Inhibition of MM Virus Nucleic Acid Synthesis

    PubMed Central

    Allen, Patton T.; Giron, David J.

    1970-01-01

    A method for assaying mouse interferon based on the inhibition of viral ribonucleic acid (RNA) synthesis was devised. The amount of MM virus and RNA synthesized in interferon-treated L-cell cultures was determined by measuring the amount of 3H-uridine converted into a trichloroacetic acid-insoluble form after treatment of the infected cultures with 2.5 μg of actinomycin D per ml. The amount of RNA synthesized was inversely related to the concentration of interferon used for treatment. A linear dose-response regression curve was obtained by plotting the log of the amount of RNA made, expressed as a percentage of the control, versus the log of the reciprocal of the interferon dilution. A unit of interferon was defined as that concentration which inhibited nucleic acid synthesis by 50% (INAS50). The concentration of mouse interferon could be determined within 24 hr. This assay method, on the average, was approximately half as sensitive as the method which measured the 50% reduction of MM virus plaque number (PDD50-MM method), but was, on the average, almost 1.7 times as sensitive as the PDD50-VSV method. It averaged approximately 20 times the sensitivity of the methods which used as end points the 70% reduction in yield of MM virus or the complete inhibition of cytopathic effect by MM virus. The reproducibility of the INAS50 technique was tested in two ways. (i) Four independent assays of an interferon specimen were performed with replicate cultures. The standard deviation was 11.2% of the mean titer. (ii) On different dates, one interferon specimen was assayed seven times and another was assayed four times. The standard deviations were 21.5 and 26.6% of the respective mean titers. PMID:4320919

  13. Screen-printed acetylcholinesterase-based biosensors for inhibitive determination of permethrin.

    PubMed

    Domínguez-Renedo, Olga; Alonso-Lomillo, M Asunción; Recio-Cebrián, Pedro; Arcos-Martínez, M Julia

    2012-06-01

    An amperometric assay based on acetylcholinesterase (AChE) inactivation has been developed for the monitoring of permethrin using a screen-printed three-electrode system. The enzyme AChE catalyzes the hydrolysis of acetylthiocholine to thiocholine, which can be electrochemically oxidized. The presence of permethrin inhibits the AChE activity, resulting in a lower thiocholine production and thus, a decrease in the amperometric oxidation current. Immobilization of AChE was performed by cross-linking giving a capability of detection of 8.1±0.4 μM. Repeatability and reproducibility of the developed AChE biosensor were also calculated, yielding values of 9.6% (n=4) and 5.4% (n=5), respectively related to the slopes of the calibration curves performed in the range from 6.2 up to 41 μM. The method was successfully applied to the determination of permethrin content in a commercial lice gel. PMID:22503679

  14. An Inhibitive Enzyme Assay to Detect Mercury and Zinc Using Protease from Coriandrum sativum

    PubMed Central

    Baskaran, Gunasekaran; Masdor, Noor Azlina; Syed, Mohd Arif; Shukor, Mohd Yunus

    2013-01-01

    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg2+ and Zn2+, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg2+ and Zn2+ exhibited one-phase binding curve with IC50 values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg2+ and Zn2+ in the aquatic environments. PMID:24194687

  15. In-site interaction evaluation of Tn density by inhibition/competition assays.

    PubMed

    Robles, Ana; Medeiros, Andrea; Berois, Nora; Balter, Henia S; Pauwels, Ernest K; Osinaga, Eduardo

    2010-05-01

    The tumor-associated structure N-acetyl-galactosamine-O-Ser/Thr (Tn antigen), which is overexpressed in various tumor cell types, notably of the breast, ovary and colon, is an interesting determinant that is useful for cancer diagnosis and follow-up. The aim of this research was to study different assay strategies in order to determine the most sensitive system for further application in epitope characterization and binding assessment. The tetrameric isolectin obtained from Vicia villosa seeds (VVLB(4)) shows high affinity for the tumor-associated structure. A monoclonal antibody against VVLB(4), MabVV(34), was generated, and the interaction between MabVV(34) and VVLB(4) was studied by means of binding and inhibition assays. Several synthetic peptides (10 amino acid sequences) designed from the amino acid sequence of VVLB(4) and obtained from trypsin digestion were tested to determine which amino acids were involved in the interaction between MabVV(34) and VVLB(4). The further unraveling of this epitope was investigated by inhibition using designed synthetic peptides as well as mixtures mimicking variable density effect. Under the experimental circumstances, MabVV(34) was able to inhibit the binding of VVLB(4) to Tn. Two of the four peptide sequences assayed showed better inhibition properties. Finally, mixtures containing these selected sequences allowed the evaluation of binding and inhibition as a function of Tn density. We conclude that the present study facilitates the further development of a specific Tn marker and may contribute to the development of Tn-like radiolabelled peptides or Tn-specific radiolabelled fragments providing a highly selective tool for cancer diagnosis and treatment. This strategy may contribute to characterize the new generation of radiopharmaceuticals for diagnosis and therapy based on biomolecules like antibodies, fragments or peptides, whose application is directly guided by their specific molecular recognition. PMID:20447557

  16. Novel Fungitoxicity Assays for Inhibition of Germination-Associated Adhesion of Botrytis cinerea and Puccinia recondita Spores

    PubMed Central

    Slawecki, Richard A.; Ryan, Eileen P.; Young, David H.

    2002-01-01

    Botrytis cinerea and Puccinia recondita spores adhere strongly to polystyrene microtiter plates coincident with germination. We developed assays for inhibition of spore adhesion in 96-well microtiter plates by using sulforhodamine B staining to quantify the adherent spores. In both organisms, fungicides that inhibited germination strongly inhibited spore adhesion, with 50% effective concentrations (EC50s) comparable to those for inhibition of germination. In contrast, fungicides that acted after germination in B. cinerea inhibited spore adhesion to microtiter plates only at concentrations much higher than their EC50s for inhibition of mycelial growth. Similarly, in P. recondita the ergosterol biosynthesis inhibitors myclobutanil and fenbuconazole acted after germination and did not inhibit spore adhesion. The assays provide a rapid, high-throughput alternative to traditional spore germination assays and may be applicable to other fungi. PMID:11823196

  17. Biomarkers of low-level exposure to soman vapor: comparison of fluoride regeneration to acetylcholinesterase inhibition.

    PubMed

    Dabisch, P A; Davis, E A; Renner, J A; Jakubowski, E M; Mioduszewski, R J; Thomson, S A

    2008-01-01

    The nerve agent O-pinacolyl methylphosphonofluoridate, also known as soman or by its military designation GD, is a highly toxic organophosphorous compound that exerts its effects through inhibition of the enzyme acetylcholinesterase (AChE). In the present study, a fluoride ion based regeneration assay was developed to quantify the level of soman present in the blood of rats following a low-level whole-body inhalation exposure. It was hypothesized that the amount of regenerated nerve agent in the blood would be dose dependent in rats subjected to a whole-body inhalation exposure to a low-level dose of soman vapor, and that the fluoride ion-based regeneration method would be more sensitive for the detection of a low-level exposure to soman vapor than the measurement of whole blood AChE activity. Regenerated soman was dose-dependently detected in both the red blood cells (RBCs) and plasma of exposed rats at all concentrations tested (0.033-0.280 mg/m(3) for a 240-min exposure). Significant inhibition of whole blood AChE activity did not occur below a concentration of 0.101 mg/m(3), and was only depressed by approximately 10-25% at concentrations ranging from 0.101 mg/m(3) to 0.280 mg/m(3). This study is the first to utilize a fluoride ion-based regeneration assay to demonstrate the dose-dependent increases in soman in the blood following whole-body inhalation exposure to low levels of vapor. Additionally, the results of the present study demonstrate that the fluoride ion based regeneration assay was approximately threefold more sensitive than the measurement of AChE activity in the blood for the detection of exposure to soman, and also that miosis is a more sensitive marker of soman exposure than inhibition of AChE activity. PMID:18236229

  18. A new diatom growth inhibition assay using the XTT colorimetric method.

    PubMed

    Jiang, Weina; Akagi, Takuya; Suzuki, Hidekazu; Takimoto, Ayaka; Nagai, Hiroshi

    2016-01-01

    Marine biofouling, which leads to significant operational stress and economic damage on marine infrastructures, is a major problem in marine related industries. Currently, the most common way to avoid marine biofouling involves the use of biocidal products in surface coatings. However, the need for environmentally friendly antibiofouling compounds has increased rapidly with the recent global prohibition of harmful antifoulants, such as tributyltin (TBT). In particular, periphytic diatoms have been shown to contribute significantly to biofilms, which play an important role in biofouling. Therefore, inhibiting the proliferation of fouling diatoms is a very important step in the prevention of marine biofouling. In this study, we developed a new, rapid, accurate, and convenient growth inhibition assay using the XTT colorimetric method to prevent the growth of the fouling periphytic diatom, Nitzschia amabilis Hidek. Suzuki (replaced synonym, Nitzschia laevis Hustedt). The feasibility of this method was verified by determining the growth inhibition activities of two standard photosynthetic inhibitors, DCMU and CuSO4. However, neither inhibitor had any cytotoxic activities at the range of concentrations tested. Moreover, this method was applied by screening and purification of herbicidic but non-cytotoxic compounds from cyanobacteria extracts. Our results demonstrate the utility of this newly established growth inhibition assay for the identification of marine anti-biofouling compounds. PMID:26945522

  19. [18F]ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor (α7-nAChR) with positron emission tomography (PET)

    PubMed Central

    Horti, Andrew G.; Gao, Yongjun; Kuwabara, Hiroto; Wang, Yuchuan; Abazyan, Sofya; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Sahibzada, Niaz; Holt, Daniel P.; Kellar, Kenneth J.; Pletnikov, Mikhail V.; Pomper, Martin G.; Wong, Dean F.; Dannals, Robert F.

    2014-01-01

    The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly due to insufficient specific binding. The goal of this study was to evaluate the potential of [18F]ASEM ([18F]JHU82132) as an α7-nAChR radioligand for PET. Methods Inhibition binding assay and receptor functional properties of ASEM were assessed in vitro. The brain regional distribution of [18F]ASEM in baseline and blockade were evaluated in DISC1 mice (dissection) and baboons (PET). Results ASEM is an antagonist for the α7-nAChR with high binding affinity (Ki = 0.3 nM). [18F]ASEM readily entered the baboon brain and specifically labeled α7-nAChR. The in vivo specific binding of [18F]ASEM in the brain regions enriched with α7-nAChRs was 80–90%. SSR180711, an α7-nAChR selective partial agonist, blocked [18F]ASEM binding in the baboon brain in a dose-dependent manner, suggesting that the binding of [18F]ASEM was mediated by α7-nAChRs and the radioligand was suitable for drug evaluation studies. In the baboon baseline studies, the brain regional volume of distribution (VT) values for [18F]ASEM were 23 (thalamus), 22 (insula), 18 (hippocampus) and 14 (cerebellum), whereas in the binding selectivity (blockade) scan, all regional VT values were reduced to less than 4. The range of regional binding potential (BPND) values in the baboon brain was from 3.9 to 6.6. In vivo cerebral binding of [18F]ASEM and α7-nAChR expression in mutant DISC1 mice, a rodent model of schizophrenia, was significantly lower than in control animals, which is in agreement with previous post-mortem human data. Conclusion [18F]ASEM holds promise as a radiotracer with suitable imaging properties for quantification of α7-nAChR in the human brain. PMID:24556591

  20. Assay Reproducibility and Within-Person Variation of Mullerian Inhibiting Substance

    PubMed Central

    Dorgan, Joanne F.; Spittle, Cynthia S.; Egleston, Brian L.; Shaw, Christiana M.; Kahle, L. L.; Brinton, Louise A.

    2009-01-01

    Objectives To assess reproducibility of a commercial mullerian inhibiting substance (MIS) assay and evaluate within-person variation in serum MIS levels. Design Assay reproducibility was evaluated by measuring MIS in multiple serum aliquots from the same blood collection. Within-person variation was assessed by measuring MIS in serum collected twice from the same individuals. Setting Fox Chase Cancer Center, Philadelphia, PA Patient(s) Assay reproducibility was evaluated using serum from 5 volunteers with regular menstrual cycles. Within-person variation was evaluated in serum from 20 premenopausal women who donated blood twice at least 1 year apart. Intervention(s) For both studies, samples were randomly ordered in batches and laboratory personnel were blinded to which aliquots were from the same subject. Main Outcome Measure(s) MIS was measured using an enzyme-linked immunosorbent assay. Results Within- and between-batch coefficients of variation (CVs) of the assay were 7.9% and 12.3%, respectively. After deleting one subject with extreme values, these CVs decreased to 7.6% and 7.7%, respectively. Within- and between-subject variance in MIS measurements were 2.19 and 0.31, respectively, and the intraclass correlation coefficient was .88 (95% confidence interval = .77 – .98). Conclusion(s) MIS serum concentration is relatively stable over one year in premenopausal women and can be measured with good reproducibility using a commercial kit. PMID:19409547

  1. PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting.

    PubMed

    Jayakar, Selwyn S; Pugh, Phyllis C; Dale, Zack; Starr, Eric R; Cole, Samantha; Margiotta, Joseph F

    2014-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such

  2. β-glucan attenuated scopolamine induced cognitive impairment via hippocampal acetylcholinesterase inhibition in rats.

    PubMed

    Haider, Ali; Inam, Wali; Khan, Shahab Ali; Hifza; Mahmood, Wajahat; Abbas, Ghulam

    2016-08-01

    β-glucan (polysaccharide) rich diet has been reported to enhance cognition in humans but the mechanism remained elusive. Keeping this in mind, the present study was designed to investigate the interaction of β-glucan with central cholinergic system. Briefly, in-silico analysis revealed promising interactions of β-glucan with the catalytic residues of acetylcholinesterase (AChE) enzyme. In line with this outcome, the in vitro assay (Ellman's method) also exhibited inhibition of AChE by β-glucan (IC50=0.68±0.08μg/µl). Furthermore, the in vivo study (Morris water maze) showed significant dose dependent reversal of the amnesic effect of scopolamine (2mg/kg i.p.) by β-glucan treatment (5, 25, 50 and 100mg/kg, i.p.). Finally, the hippocampi of aforementioned treated animals also revealed dose dependent inhibition of AChE enzyme. Hence, it can be deduced that β-glucan possesses potential to enhance central cholinergic tone via inhibiting AChE enzyme. In conclusion, the present study provides mechanistic insight to the cognition enhancing potential of β-glucan. Keeping in mind its dietary use and abundance in nature, it can be considered as economic therapeutic option against cognitive ailments associated with decline in cholinergic neurotransmission. PMID:27180103

  3. In vitro assay of endotoxin by the inhibition of macrophage migration.

    PubMed

    Heilman, D H; Bast, R C

    1967-01-01

    A quantitative in vitro technique was used to compare the ability of different endotoxins to inhibit the migration of macrophages from explants of rabbit spleen cultured in a coagulated plasma medium. The order of potency was different from that observed in chick embryo assays, and in assays with mice, of the same endotoxins. In general, however, the sensitivity of the macrophage inhibition test was comparable to that of other bioassay methods. A highly purified endotoxin from Salmonella enteritidis (Ribi) in a concentration of 0.004 mug/ml regularly inhibited macrophage migration. The in vitro method was used to detect a progressive loss of biological activity in fractions obtained during acid hydrolysis of the purified endotoxin. The selective toxicity of very low concentrations of endotoxin for mammalian macrophages was important in estimating the degree of specificity of the reaction. The pattern of cellular response in explant cultures made it possible to differentiate endotoxic damage from the specific cytotoxic action of antigen associated with delayed hypersensitivity. PMID:5335889

  4. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration.

    PubMed

    del Pino, Javier; Moyano, Paula; Anadon, María José; García, José Manuel; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2015-10-01

    Chlorpyrifos (CPF) is one of the most widely used organophosphates insecticides that has been reported to induce cognitive disorders both after acute and repeated administration similar to those induced in Alzheimer's disease (AD). However, the mechanisms through which it induces these effects are unknown. On the other hand, the cholinergic system, mainly basal forebrain cholinergic neurons, is involved in learning and memory regulation, and an alteration of cholinergic transmission or/and cholinergic cell loss could induce these effects. In this regard, it has been reported that CPF can affect cholinergic transmission, and alter AChE variants, which have been shown to be related with basal forebrain cholinergic neuronal loss. According to these data, we hypothesized that CPF could induce basal forebrain cholinergic neuronal loss through cholinergic transmission and AChE variants alteration. To prove this hypothesis, we evaluated in septal SN56 basal forebrain cholinergic neurons, the CPF toxic effects after 24h and 14 days exposure on neuronal viability and the cholinergic mechanisms related to it. This study shows that CPF impaired cholinergic transmission, induced AChE inhibition and, only after long-term exposure, increased CHT expression, which suggests that acetylcholine levels alteration could be mediated by these actions. Moreover, CPF induces, after acute and long-term exposure, cell death in cholinergic neurons in the basal forebrain and this effect is independent of AChE inhibition and acetylcholine alteration, but was mediated partially by AChE variants alteration. Our present results provide a new understanding of the mechanisms contributing to the harmful effects of CPF on neuronal function and viability, and the possible relevance of CPF in the pathogenesis of neurodegenerative diseases. PMID:26210949

  5. Development of a murine mycobacterial growth inhibition assay for evaluating vaccines against Mycobacterium tuberculosis.

    PubMed

    Parra, Marcela; Yang, Amy L; Lim, JaeHyun; Kolibab, Kristopher; Derrick, Steven; Cadieux, Nathalie; Perera, Liyanage P; Jacobs, William R; Brennan, Michael; Morris, Sheldon L

    2009-07-01

    The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immunization with five different types of TB vaccine preparations (Mycobacterium bovis BCG, an attenuated M. tuberculosis mutant strain, a DNA vaccine, a modified vaccinia virus strain Ankara [MVA] construct expressing four TB antigens, and a TB fusion protein formulated in adjuvant) can be detected. Importantly, the levels of vaccine-induced mycobacterial growth-inhibitory responses seen in vitro after 1 week of coculture correlated with the protective immune responses detected in vivo at 28 days postchallenge in a mouse model of pulmonary tuberculosis. In addition, similar patterns of cytokine expression were evoked at day 7 of the in vitro culture by immune splenocytes taken from animals immunized with the different TB vaccines. Among the consistently upregulated cytokines detected in the immune cocultures are gamma interferon, growth differentiation factor 15, interleukin-21 (IL-21), IL-27, and tumor necrosis factor alpha. Overall, we have developed an in vitro functional assay that may be useful for screening and comparing new TB vaccine preparations, investigating vaccine-induced protective mechanisms, and assessing manufacturing issues, including product potency and stability. PMID:19458207

  6. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition.

    PubMed

    Brown, Adam R; Ettefagh, Keivan A; Todd, Daniel; Cole, Patrick S; Egan, Joseph M; Foil, Daniel H; Graf, Tyler N; Schindler, Bryan D; Kaatz, Glenn W; Cech, Nadja B

    2015-01-01

    Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin), were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence. PMID:25961825

  7. A Mass Spectrometry-Based Assay for Improved Quantitative Measurements of Efflux Pump Inhibition

    PubMed Central

    Brown, Adam R.; Ettefagh, Keivan A.; Todd, Daniel; Cole, Patrick S.; Egan, Joseph M.; Foil, Daniel H.; Graf, Tyler N.; Schindler, Bryan D.; Kaatz, Glenn W.; Cech, Nadja B.

    2015-01-01

    Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin), were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence. PMID:25961825

  8. Standardization of Hemagglutination Inhibition Assay for Influenza Serology Allows for High Reproducibility between Laboratories.

    PubMed

    Zacour, Mary; Ward, Brian J; Brewer, Angela; Tang, Patrick; Boivin, Guy; Li, Yan; Warhuus, Michelle; McNeil, Shelly A; LeBlanc, Jason J; Hatchette, Todd F

    2016-03-01

    Standardization of the hemagglutination inhibition (HAI) assay for influenza serology is challenging. Poor reproducibility of HAI results from one laboratory to another is widely cited, limiting comparisons between candidate vaccines in different clinical trials and posing challenges for licensing authorities. In this study, we standardized HAI assay materials, methods, and interpretive criteria across five geographically dispersed laboratories of a multidisciplinary influenza research network and then evaluated intralaboratory and interlaboratory variations in HAI titers by repeatedly testing standardized panels of human serum samples. Duplicate precision and reproducibility from comparisons between assays within laboratories were 99.8% (99.2% to 100%) and 98.0% (93.3% to 100%), respectively. The results for 98.9% (95% to 100%) of the samples were within 2-fold of all-laboratory consensus titers, and the results for 94.3% (85% to 100%) of the samples were within 2-fold of our reference laboratory data. Low-titer samples showed the greatest variability in comparisons between assays and between sites. Classification of seroprotection (titer ≥ 40) was accurate in 93.6% or 89.5% of cases in comparison to the consensus or reference laboratory classification, respectively. This study showed that with carefully chosen standardization processes, high reproducibility of HAI results between laboratories is indeed achievable. PMID:26818953

  9. Clinical application of clustered-AChR for the detection of SNMG

    PubMed Central

    Zhao, Guang; Wang, Xiaoqing; Yu, Xiaowen; Zhang, Xiutian; Guan, Yangtai; Jiang, Jianming

    2015-01-01

    Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG. PMID:26068604

  10. Inhibition of Microglia Activation as a Phenotypic Assay in Early Drug Discovery

    PubMed Central

    Figuera-Losada, Mariana; Rojas, Camilo; Slusher, Barbara S.

    2014-01-01

    Complex biological processes such as inflammation, cell death, migration, proliferation, and the release of biologically active molecules can be used as outcomes in phenotypic assays during early stages of drug discovery. Although target-based approaches have been widely used over the past decades, a disproportionate number of first-in-class drugs have been identified using phenotypic screening. This review details phenotypic assays based on inhibition of microglial activation and their utility in primary and secondary screening, target validation, and pathway elucidation. The role of microglia, both in normal as well as in pathological conditions such as chronic neurodegenerative diseases, is reviewed. Methodologies to assess microglia activation in vitro are discussed in detail, and classes of therapeutic drugs known to decrease the proinflammatory and cytotoxic responses of activated microglia are appraised, including inhibitors of glutaminase, cystine/glutamate antiporter, nuclear factor κB, and mitogen-activated protein kinases. PMID:23945875

  11. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  12. An inhibitive enzyme assay to detect mercury and zinc using protease from Coriandrum sativum.

    PubMed

    Baskaran, Gunasekaran; Masdor, Noor Azlina; Syed, Mohd Arif; Shukor, Mohd Yunus

    2013-01-01

    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg²⁺ and Zn²⁺, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg²⁺ and Zn²⁺ exhibited one-phase binding curve with IC₅₀ values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg²⁺ and Zn²⁺ in the aquatic environments. PMID:24194687

  13. Modified bimolecular fluorescence complementation assay to study the inhibition of transcription complex formation by JAZ proteins.

    PubMed

    Qi, Tiancong; Song, Susheng; Xie, Daoxin

    2013-01-01

    The jasmonate (JA) ZIM-domain (JAZ) proteins of Arabidopsis thaliana repress JA signaling and negatively regulate the JA responses. Recently, JAZ proteins have been found to inhibit the transcriptional function of several transcription factors, among which the basic helix-loop-helix (bHLH) (GLABRA3 [GL3], ENHANCER OF GLABRA3 [EGL3], and TRANSPARENT TESTA8 [TT8]) and R2R3-MYB (GL1 and MYB75) that can interact with each other to form bHLH-MYB complexes and further control gene expression. The bimolecular fluorescence complementation (BiFC) assay is a widely used technique to study protein-protein interactions in living cells. Here we describe a modified BiFC experimental procedure to study the inhibition of the formation of the bHLH (GL3)-MYB (GL1) complex by JAZ proteins. PMID:23615997

  14. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  15. Development of a solid-phase receptor-based assay for the detection of cyclic imines using a microsphere-flow cytometry system.

    PubMed

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Louzao, M Carmen; Taylor, Palmer; Talley, Todd; Botana, Luis M

    2013-02-19

    Biologically active macrocycles containing a cyclic imine were isolated for the first time from aquaculture sites in Nova Scotia, Canada, during the 1990s. These compounds display a "fast-acting" toxicity in the traditional mouse bioassay for lipophilic marine toxins. Our work aimed at developing a receptor-based detection method for spirolides using a microsphere/flow cytometry Luminex system. For the assay, two alternatives were considered as binding proteins, the Torpedo marmorata nicotinic acetylcholine receptor (nAChR) and the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP). A receptor-based inhibition assay was developed using the immobilization of nAChR or Ls-AChBP on the surface of carboxylated microspheres and the competition of cyclic imines with biotin-α-bungarotoxin (α-BTX) for binding to these proteins. The amount of biotin-α-BTX bound to the surface of the microspheres was quantified using phycoerythrin (PE)-labeled streptavidin, and the fluorescence was analyzed in a Luminex 200 system. AChBP and nAChR bound to 13-desmethyl spirolide C efficiently; however, the cross-reactivity profile of the nAChR for spirolides and gymnodimine more closely matched the relative toxic potencies reported for these toxins. The nAChR was selected for further assay development. A simple sample preparation protocol consisting of an extraction with acetone yielded a final extract with no matrix interference on the nAChR/microsphere-based assay for mussels, scallops, and clams. This cyclic imine detection method allowed the detection of 13-desmethyl spirolide C in the range of 10-6000 μg/kg of shellfish meat, displaying a higher sensitivity and wider dynamic range than other receptor-based assays previously published. This microsphere-based assay provides a rapid, sensitive, and easily performed screening method that could be multiplexed for the simultaneous detection of several marine toxins. PMID:23343192

  16. Development of a Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines Using a Microsphere-Flow Cytometry System

    PubMed Central

    Rodríguez, Laura P.; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Louzao, M. Carmen; Taylor, Palmer; Talley, Todd; Botana, Luis M.

    2013-01-01

    Biologically active macrocycles containing a cyclic imine were isolated for the first time from aquaculture sites in Nova Scotia, Canada, during the 1990s. These compounds display a “fast-acting” toxicity in the traditional mouse bioassay for lipophilic marine toxins. Our work aimed at developing receptor-based detection method for spirolides using a microsphere/flow cytometry Luminex system. For the assay two alternatives were considered as binding proteins, the Torpedo marmorata nicotinic acetylcholine receptor (nAChR) and the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP). A receptor-based inhibition assay was developed using the immobilization of nAChR or Ls-AChBP on the surface of carboxylated microspheres and the competition of cyclic imines with biotin-α-bungarotoxin (α-BTX) for binding to these proteins. The amount of biotin-α-BTX bound to the surface of the microspheres was quantified using phycoerythrin (PE)-labeled streptavidin and the fluorescence was analyzed in a Luminex 200 system. AChBP and nAChR bound to 13-desmethyl spirolide C efficiently; however the cross-reactivity profile of the nAChR for spirolides and gymnodimine more closely matched the relative toxic potencies reported for these toxins. The nAChR was selected for further assay development. A simple sample preparation protocol consisting of an extraction with acetone yielded a final extract with no matrix interference on the nAChR/microsphere-based assay for mussels, scallops and clams. This cyclic imine detection method allowed the detection of 13-desmethyl spirolide C in the range of 10–6000 μg/kg of shellfish meat, displaying a higher sensitivity and wider dynamic range than other receptor-based assays previously published. This microsphere-based assay provides a rapid, sensitive and easily performed screening method that could be multiplexed for the simultaneous detection of several marine toxins. PMID:23343192

  17. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  18. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  19. Effects of selective serotonin reuptake inhibitors on three sex steroids in two versions of the aromatase enzyme inhibition assay and in the H295R cell assay.

    PubMed

    Jacobsen, Naja Wessel; Hansen, Cecilie Hurup; Nellemann, Christine; Styrishave, Bjarne; Halling-Sørensen, Bent

    2015-10-01

    Selective serotonin reuptake inhibitors are known to have a range of disorders that are often linked to the endocrine system e.g. hormonal imbalances, breast enlargement, sexual dysfunction, and menstrual cycle disorders. The mechanisms behind most of these disorders are not known in details. In this study we investigated whether the endocrine effect due to SSRI exposure could be detected in well adopted in vitro steroidogenesis assays, two versions of the aromatase enzyme inhibition assay and the H295R cell assay. The five drugs citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline, were shown to inhibit the aromatase enzyme in both types of aromatase assays. The IC50 values ranged from 3 to 600 μM. All five SSRIs, were further investigated in the H295R cell line. All compounds altered the steroid secretion from the cells, the lowest observed effect levels were 0.9 μM and 3.1 μM for sertraline and fluvoxamine, respectively. In general the H295R cell assay was more sensitive to SSRI exposure than the two aromatase assays, up to 20 times more sensitive. This indicates that the H295R cell line is a better tool for screening endocrine disrupting effects. Our findings show that the endocrine effects of SSRIs may, at least in part, be due to interference with the steroidogenesis. PMID:26162595

  20. High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles.

    PubMed

    Mortimer, M; Kasemets, K; Heinlaan, M; Kurvet, I; Kahru, A

    2008-08-01

    Despite of the growing production and use of nanoparticles (NPs) in various applications, current regulations, including EC new chemical policy REACH, fail to address the environmental, health, and safety risks posed by NPs. This paper shows that kinetic Vibrio fischeri luminescence inhibition test--Flash Assay--that up to now was mainly used for toxicity analysis of solid and colored environmental samples (e.g. sediments, soil suspensions), is a powerful tool for screening the toxic properties of NPs. To demonstrate that Flash Assay (initially designed for a tube luminometer) can also be adapted to a microplate format for high throughput toxicity screening of NPs, altogether 11 chemicals were comparatively analyzed. The studied chemicals included bulk and nanosized CuO and ZnO, polyethylenimine (PEI) and polyamidoamine dendrimer generations 2 and 5 (PAMAM G2 and G5). The results showed that EC50 values of 30-min Flash Assay in tube and microplate formats were practically similar and correlated very well (log-logR2=0.98), classifying all analyzed chemicals, except nano CuO (that was more toxic in cuvette format), analogously when compared to the risk phrases of the EC Directive 93/67/EEC for ranking toxicity of chemicals for aquatic organisms. The 30-min EC50 values of nanoscale organic cationic polymers (PEI and dendrimers) ranged from 215 to 775 mg/l. Thirty-minute EC50 values of metal oxides varied largely, ranging from approximately 4 mg/l (bulk and nano ZnO) to approximately 100 mg/l (nano CuO) and approximately 4000 mg/l (bulk CuO). Thus, considering an excellent correlation between both formats, 96-well microplate Flash Assay can be successfully used for high throughput evaluation of harmful properties of chemicals (including organic and inorganic NPs) to bacteria. PMID:18400463

  1. On-plate enzyme and inhibition assay of glucose-6-phosphate dehydrogenase using thin-layer chromatography.

    PubMed

    Tian, Miaomiao; Mohamed, Amara Camara; Wang, Shengtian; Yang, Li

    2015-08-01

    We performed on-plate enzyme and inhibition assays of glucose 6-phosphate dehydrogenase using thin-layer chromatography. The assays were accomplished based on different retardation factors of the substrates, enzyme, and products. All the necessary steps were integrated on-plate in one developing process, including substrate/enzyme mixing, reaction starting, and quenching as well as product separation. In order to quantitatively measure the enzyme reaction, the developed plate was then densitometrically evaluated to determine the peak area of the product. Rapid and high-throughput assays were achieved by loading different substrate spots and/or enzyme (and inhibition) spots in different tracks on the plate. The on-plate enzyme assay could be finished in a developing time of only 4 min, with good track-to-track and plate-to-plate repeatability. Moreover, we determined the Km values of the enzyme reaction and Ki values of the inhibition (Pb(2+) Cd(2+) and Cu(2+) as inhibitors), as well as the corresponding kinetics using the on-plate assay. Taken together, our method expanded the application of thin-layer chromatography in enzyme assays, and it could be potentially used in research fields for rapid and quantitative measurement of enzyme activity and inhibition. PMID:26017233

  2. Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives.

    PubMed

    Öztaşkın, Necla; Çetinkaya, Yasin; Taslimi, Parham; Göksu, Süleyman; Gülçin, İlhami

    2015-06-01

    In this study, series of novel bromophenol derivatives were synthesized and investigated for their antioxidant and AChE inhibition properties. Novel brominated diarylmethanones were obtained from the acylation reactions of benzoic acids with substituted benzenes. One of the bromodiarylmethanone was synthesized from the bromination of diarylmethanone with molecular bromine. All diarylmethanones were converted into their bromophenol derivatives with BBr3. The antioxidant activities of all synthesized compounds were elucidated by using various bioanalytical assays. Radical scavenging activities of compounds 10-24 were evaluated by means of DPPH and ABTS(+) scavenging activities. In addition, reducing ability of 10-24 were determined by Fe(3+), Cu(2+), and [Fe(3+)-(TPTZ)2](3) reducing activities. α-Tocopherol, trolox, BHA, and BHT were used as positive antioxidant and radical scavenger molecules. On the other hand, IC50 values were calculated for DPPH, ABTS(+) scavenging, and AChE inhibition effects of novel compounds. The results obtained from the current studies clearly show that novel bromophenol derivatives 20-24 have considerable antioxidant, antiradical, and AChE inhibition effects. PMID:25956827

  3. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus.

    PubMed

    Menéndez-Helman, Renata J; Ferreyroa, Gisele V; dos Santos Afonso, Maria; Salibián, Alfredo

    2015-01-01

    The use of biomarkers as a tool to assess responses of organisms exposed to pollutants in toxicity bioassays, as well as in aquatic environmental risk assessment protocols, requires the understanding of the natural fluctuation of the particular biomarker. The aim of this study was to characterize the intrinsic variations of acetylcholinesterase (AChE) activity in tissues of a native freshwater teleost fish to be used as biomarker in toxicity tests, taking into account both seasonal influence and fish size. Specific AChE activity was measured by the method of Ellman et al. (1961) in homogenates of fish anterior section finding a seasonal variability. The highest activity was observed in summer, decreasing significantly below 40% in winter. The annual AChE activity cycle in the anterior section was fitted to a sinusoidal function with a period of 11.2 months. Moreover, an inverse relationship between enzymatic activity and the animal size was established. The results showed that both the fish length and seasonal variability affect AChE activity. AChE activity in fish posterior section showed a similar trend to that in the anterior section, while seasonal variations of the activity in midsection were observed but differences were not statistically significant. In addition, no relationship between AChE and total tissue protein was established in the anterior and posterior sections suggesting that the circannual rhythms observed are AChE-specific responses. Results highlight the importance of considering both the fish size and season variations to reach valid conclusions when AChE activity is employed as neurotoxicity biomarker. PMID:25450939

  4. Detection of Borrelia burgdorferi in urine of Peromyscus leucopus by inhibition enzyme-linked immunosorbent assay.

    PubMed

    Magnarelli, L A; Anderson, J F; Stafford, K C

    1994-03-01

    An inhibition enzyme-linked immunosorbent assay was developed to detect Borrelia burgdorferi, the etiologic agent of Lyme borreliosis, in urine from white-footed mice (Peromyscus leucopus). Of the 87 urine specimens tested from 87 mice collected in widely separated tick-infested sites in Connecticut, 57 (65.5%) contained detectable concentrations of spirochetal antigens. Forty-seven (62.7%) of 75 serum samples analyzed contained antibodies to B. burgdorferi. In culture work with tissues from bladders, kidneys, spleens, or ears, 50 of 87 mice (57.5%) were infected with B. burgdorferi. Thirty-eight (76%) of 50 infected mice had antigens of this spirochete in urine, while 36 (72%) individuals had infected bladders. Of those with infected bladders, 24 (66.7%) mice excreted subunits or whole cells of B. burgdorferi into urine. Successful culturing of B. burgdorferi from mouse tissues, the presence of serum antibodies to this bacterium, and detection of antigens to this spirochete in urine provide further evidence that multiple assays can be performed to verify the presence of B. burgdorferi in P. leucopus. PMID:8195393

  5. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile.

    PubMed

    Strelnik, Alexey D; Petukhov, Alexey S; Zueva, Irina V; Zobov, Vladimir V; Petrov, Konstantin A; Nikolsky, Evgeny E; Balakin, Konstantin V; Bachurin, Sergey O; Shtyrlin, Yurii G

    2016-08-15

    We report a novel class of carbamate-type ChE inhibitors, structural analogs of pyridostigmine. A small library of congeneric pyridoxine-based compounds was designed, synthesized and evaluated for AChE and BChE enzymes inhibition in vitro. The most active compounds have potent enzyme inhibiting activity with IC50 values in the range of 0.46-2.1μM (for AChE) and 0.59-8.1μM (for BChE), with moderate selectivity for AChE comparable with that of pyridostigmine and neostigmine. Acute toxicity studies using mice models demonstrated excellent safety profile of the obtained compounds with LD50 in the range of 22-326mg/kg, while pyridostigmine and neostigmine are much more toxic (LD50 3.3 and 0.51mg/kg, respectively). The obtained results pave the way to design of novel potent and safe cholinesterase inhibitors for symptomatic treatment of neuromuscular disorders. PMID:27377327

  6. Acetylcholinesterase Inhibitors with Photoswitchable Inhibition of β-Amyloid Aggregation

    PubMed Central

    2014-01-01

    Photochromic cholinesterase inhibitors were obtained from cis-1,2-α-dithienylethene-based compounds by incorporating one or two aminopolymethylene tacrine groups. All target compounds are potent acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors in the nanomolar concentration range. Compound 11b bearing an octylene linker exhibited interactions with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Yet upon irradiation with light, the mechanism of interaction varied from one photochromic form to another, which was investigated by kinetic studies and proved “photoswitchable”. The AChE-induced β-amyloid (Aβ) aggregation assay gave further experimental support to this finding: Aβ1–40 aggregation catalyzed by the PAS of AChE might be inhibited by compound 11b in a concentration-dependent manner and seems to occur only with one photochromic form. Computational docking studies provided potential binding modes of the compound. Docking studies and molecular dynamics (MD) simulations for the ring-open and -closed form indicate a difference in binding. Although both forms can interact with the PAS, more stable interactions are observed for the ring-open form based upon stabilization of a water molecule network within the enzyme, whereas the ring-closed form lacks the required conformational flexibility for an analogous binding mode. The photoswitchable inhibitor identified might serve as valuable molecular tool to investigate the different biological properties of AChE as well as its role in pathogenesis of AD in in vitro assays. PMID:24628027

  7. Toxicodynamic analysis of the inhibition of isolated human acetylcholinesterase by combinations of methamidophos and methomyl in vitro

    SciTech Connect

    Bosgra, Sieto Eijkeren, Jan C.H. van; Schans, Marcel J. van der; Langenberg, Jan P.; Slob, Wout

    2009-04-01

    The applicability of dose addition to combinations of OP-esters and carbamates has been questioned based on theoretical considerations, but these have not been well supported by experimental findings. In the present study, the inhibition of AChE by combinations of methamidophos (an OP-ester) and methomyl (a carbamate) was examined in vitro. AChE inhibition was measured by the Ellman assay. We addressed the question of interaction between the OP-ester and carbamate by a toxicodynamic (TD) model reflecting the mechanism of action of the individual chemicals, without incorporating any interactions between them. The model was extended by including the experimental actions in the Ellman assay to correct for the difference in reactivation rates between phosphorylated and carbamylated AChE, which caused a bias in the observations from the assay. This zero-interactive TD model described the observations well, indicating that the OP-ester and carbamate did not interact. The applicability of dose addition was further explored by applying dose addition to the predicted inhibition by the TD model. Despite the differences in dynamics between methamidophos and methomyl, their dose-response curves were close to parallel, and dose addition gave a reasonably accurate prediction of the combined effects.

  8. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling.

    PubMed

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-08-01

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury. PMID:26066647

  9. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling

    PubMed Central

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-01-01

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury. PMID:26066647

  10. Hemagglutination-inhibition assay for influenza virus subtype identification and the detection and quantitation of serum antibodies to influenza virus.

    PubMed

    Pedersen, Janice C

    2014-01-01

    Hemagglutination-inhibition (HI) assay is a classical laboratory procedure for the classification or subtyping of hemagglutinating viruses. For influenza virus, HI assay is used to identify the hemagglutinin (HA) subtype of an unknown isolate or the HA subtype specificity of antibodies to influenza virus. Since the HI assay is quantitative it is frequently applied to evaluate the antigenic relationships between different influenza virus isolates of the same subtype. The basis of the HI test is inhibition of hemagglutination with subtype-specific antibodies. The HI assay is a relatively inexpensive procedure utilizing standard laboratory equipment, is less technical than molecular tests, and is easily completed within several hours. However when working with uncharacterized viruses or antibody subtypes the library of reference reagents required for identifying antigenically distinct influenza viruses and or antibody specificities from multiple lineages of a single hemagglutinin subtype requires extensive laboratory support for the production and optimization of reagents. PMID:24899416

  11. Discovery of non-oxime reactivators using an in silico pharmacophore model of oxime reactivators of OP-inhibited acetylcholinesterase.

    PubMed

    Bhattacharjee, Apurba K; Marek, Elizabeth; Le, Ha Thu; Gordon, Richard K

    2012-03-01

    We earlier reported an in silico pharmacophore model for reactivation of oximes to tabun-inhibited AChE. Since DFP (diisopropylfluorophosphate) like tabun is a G-agent simulator, we utilized the model as a rational strategy to discover non-oxime reactivators of DFP-inhibited AChE in this study. The phramacophore was used for virtual screening of two commercial databases, Maybridge and ChemNavigator, to identify reactivators which lack the oxime functions. The procedure led us to identify several potent non-oxime compounds that reactivate DFP-inhibited AChE. These non-oxime reactivators contain a nucleophile group in lieu of the oxime moiety in the compound. Five of these novel non-oximes showed Kr values within ten-fold of 2-PAM in an in vitro assay. The pharmacophore model contained a hydrogen bond acceptor, a hydrogen bond donor, and an aromatic ring features distributed in a 3D space. Calculated stereoelectronic properties reported earlier with respect to the location of molecular orbitals and electrostatic potentials were consistent with the model and the newly identified compounds. Down selection of compounds after virtual screening was performed on the basis of fit score to the model, conformational energy, and in silico evaluations for favorable blood-brain barrier (BBB) penetrability, octanol-water partition (log P), and toxicity (rat oral LD(50)) assessments. In vitro reactivation efficacy of the compounds was evaluated in a DFP-inhibited eel acetylcholinesterase assay. PMID:22309910

  12. Anti-tumour immunity in malignant melanoma assay by tube leucocyte adherence inhibition.

    PubMed Central

    Marti, J. H.; Thomson, D. M.

    1976-01-01

    Tumour antigen-induced inhibition of leucocyte adherence was modified for use in glass test tubes (Tube LAI assay) for the study of cell-mediated anti-tumour immunity to human malignant melanoma. Peripheral blood leucocytes (PBL) of 20 out of 25 patients (80%) with active malignant melanoma responded to an extract of malignant melanoma with LAI, whereas only 4-5% of 475 control subjects showed a response. The malignant melanoma patients reacted to both allogeneic and autologous extracts of malignant melanoma which indicates a common cross-reacting antigen. Malignant melanoma patients did not respond to unrelated tumour extracts. The LAI was mediated by PBL (monocytes) "armed" with cytophilic anti-tumour antibody specific for the sensitizing tumour antigen. The anti-tumour response of the malignant melanoma patients was dependent on the stage of the cancer, and 11 out of 13 Stage I patients had a positive NAI, whereas patients with disseminated cancer had decreased response. The diminished LAI in patients with large tumour burdens appeared to be the result of release of tumour antigen systemically. Also, surgery and chemotherapy depressed LAI. Although LAI was depressed after surgical excision of the cutaneous melanoma, most patients showed LAI 1-3 months later. Tumour-free melanoma patients monitored for one year by the Tube LAI assay showed a decline in their anti-tumour immunity 5-6 months after surgery. The NAI was low or negative after the 8th post-surgical month in tumour-free patients. Patients with residual malignant melanoma showed persistent or recurrent LAI after the 8th post-surgical month. LAI reactivity monitored after "curative" surgery for malignant melanoma may assist in determining whether the patient is tumour-free or has a recurrence. PMID:962991

  13. Behavioral phenotyping of heterozygous acetylcholinesterase knockout (AChE+/-) mice showed no memory enhancement but hyposensitivity to amnesic drugs.

    PubMed

    Espallergues, Julie; Galvan, Laurie; Sabatier, Florence; Rana-Poussine, Vanessa; Maurice, Tangui; Chatonnet, Arnaud

    2010-01-20

    Decrease in the expression or activity of acetylcholinesterase (AChE) enzymatic activity results in increased cholinergic tonus in the brain and periphery, with concomitant regulations of nicotinic and muscarinic receptors expression. We generated AChE knockout mice and characterized the behavioral phenotype of heterozygous animals, focusing on learning and memory functions. Male and female, AChE+/- and AChE+/+ littermate controls (129 sv strain) were tested at 5-9 weeks of age. AChE activity was significantly decreased in the hippocampus and cortex of AChE+/- mice, but butyrylcholinesterase activity was preserved. AChE+/- mice failed to show any difference in terms of locomotion, exploration and anxiety parameters in the open-field test. Animals were then tested for place learning in the water-maze. They were trained using a 'sustained acquisition' protocol (3 swim trials per day) or a 'mild acquisition' protocol (2 swim trials per day) to locate an invisible platform in fixed position (reference memory procedure). Then, during 3 days, they were trained to locate the platform in a variable position (working memory procedure). Learning profiles and probe test performances were similar for AChE+/- and AChE+/+ mice. Mice were then treated with the muscarinic receptor antagonist scopolamine (0.5, 5 mg/kg) 20 min before each training session. Scopolamine impaired learning at both doses in AChE+/+ mice, but only at the highest dose in AChE+/- mice. Moreover, the intracerebroventricular injection of amyloid-beta25-35 peptide, 9 nmol, 7 days before water-maze acquisition, failed to induce learning deficits in AChE+/- mice, but impaired learning in AChE+/+ controls. The peptide failed to be toxic in forebrain structures of AChE+/- mice, since an increase in lipid peroxidation levels was measured in the hippocampus of AChE+/+ but not AChE+/- mice. We conclude that the increase in cholinergic tonus observed in AChE+/- mice did not result in increased memory functions but

  14. The inhibition of the Human Immunodeficiency Virus type 1 activity by crude and purified human pregnancy plug mucus and mucins in an inhibition assay

    PubMed Central

    Habte, Habtom H; de Beer, Corena; Lotz, Zoë E; Tyler, Marilyn G; Schoeman, Leann; Kahn, Delawir; Mall, Anwar S

    2008-01-01

    Background The female reproductive tract is amongst the main routes for Human Immunodeficiency Virus (HIV) transmission. Cervical mucus however is known to protect the female reproductive tract from bacterial invasion and fluid loss and regulates and facilitates sperm transport to the upper reproductive tract. The purpose of this study was to purify and characterize pregnancy plug mucins and determine their anti-HIV-1 activity in an HIV inhibition assay. Methods Pregnancy plug mucins were purified by caesium chloride density-gradient ultra-centrifugation and characterized by Western blotting analysis. The anti-HIV-1 activities of the crude pregnancy plug mucus and purified pregnancy plug mucins was determined by incubating them with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells). Results The pregnancy plug mucus had MUC1, MUC2, MUC5AC and MUC5B. The HIV inhibition assay revealed that while the purified pregnancy plug mucins inhibit HIV-1 activity by approximately 97.5%, the crude pregnancy plug mucus failed to inhibit HIV-1 activity. Conclusion Although it is not clear why the crude sample did not inhibit HIV-1 activity, it may be that the amount of mucins in the crude pregnancy plug mucus (which contains water, mucins, lipids, nucleic acids, lactoferrin, lysozyme, immunoglobulins and ions), is insufficient to cause viral inhibition or aggregation. PMID:18489743

  15. Development of an Assay Method to Search for Compounds Inhibiting Stress-Enhanced Allergy.

    PubMed

    Oku, Hisae; Kanaya, Ryoko; Ishiguro, Kyoko

    2016-01-01

    Stress exacerbates allergic disorders such as atopic dermatitis and asthma. It is also an important factor affecting blood flow (BF). Allergic reactions also affect blood flow. For example, we observed that mice sensitized with hen egg-white lysozyme (HEL) have decreased BF during the allergy induction phase. Based on this finding, we established a model for evaluating chronic restraint stress-enhanced allergies. Mice were sensitized with 12.5 µg/head of HEL on day 0, then restrained for 90 min daily on days 1-3, 5, and 6 in a modified 50 mL polystyrene conical centrifuge tube with multiple air holes for ventilation. We used the decrease in BF during that time as a guide for developing an in vivo assay for substances that can inhibit stress-enhanced allergies. Finally, we demonstrated the utility of the new method by testing crude drugs that are used solely or in combination with other crude drugs to treat stress-related illness and neuropsychiatric symptoms. Our model should be useful for identifying potential anti-stress-enhanced allergy drugs. PMID:27150154

  16. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    PubMed

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts. PMID:23930975

  17. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition.

    PubMed

    Hou, Ting; Zhang, Lianfang; Sun, Xinzhi; Li, Feng

    2016-01-15

    Herein, we reported a facile and highly sensitive biphasic photoelectrochemical (PEC) sensing strategy based on enzymatic product-mediated in situ formation of CdS quantum dots (QDs), and assayed the activity and inhibition of acetylcholinesterase (AChE) in its optimal state. Upon the hydrolysis of acetylthiocholine catalyzed by AChE, the product thiocholine stabilizes the in situ formation of CdS QDs in homogenous solution. Due to the electrostatic attraction, the resulting tertiary amino group-functionalized CdS QDs are attached to the surface of the negatively charged indium tin oxide (ITO) electrode, generating significant PEC response upon illumination in the presence of electron donors. By taking full advantage of the in situ formation of CdS QDs in homogenous solution, this strategy is capable of detecting AChE activity and inhibition in its optimal state. A directly measured detection limit of 0.01mU/mL for AChE activity is obtained, which is superior to those obtained by some fluorescence methods. The inhibition of AChE activity by aldicarb is successfully detected, and the corresponding IC50 is determined to be 13μg/L. In addition to high sensitivity and good selectivity, this strategy also exhibits additional advantages of simplicity, low cost and easy operation. To the best of our knowledge, the as-proposed strategy is the first example demonstrating the application of CdS QDs formed in situ for biphasic PEC detection of enzyme activity and inhibition. More significantly, it opens up a new horizon for the development of homogenous PEC sensing platforms, and has great potential in probing many other analytes. PMID:26339933

  18. A modified in vitro larvae migration inhibition assay using rumen fluid to evaluate Haemonchus contortus viability.

    PubMed

    Whitney, T R; Lee, A E; Klein, D R; Scott, C B; Craig, T M; Muir, J P

    2011-03-10

    Anthelmintic effects of plant secondary compounds may be occurring in the rumen, but in vitro larvae migration inhibition (LMI) methods using rumen fluid and forage material have not been widely used. Forage material added to an in vitro system can affect rumen pH, ammonia N, and volatile fatty acids, which may affect larvae viability (LV). Validating a LMI assay using rumen fluid and a known anthelmintic drug (Ivermectin) and a known anthelmintic plant extract (Quebracho tannins; QT) is important. Rumen fluid was collected and pooled from 3 goats, mixed with buffer solution and a treatment (1 jar/treatment), and placed into an anaerobic incubator for 16h. Ensheathed larvae (<3 months old) were then anaerobically incubated with treatment rumen fluid for 2, 4, or 16h depending on the trial. Larvae (n=15-45) were then transferred onto a screen (n=4-6 wells/treatment) within a multi-screen 96-well plate that contained treatment rumen fluid. Larvae were incubated overnight and those that passed through the 20-μm screen were considered viable. Adding dry or fresh juniper material reduced (P<0.05) pH, ammonia N, and isobutyric, butyric, isovaleric, and valeric acids, and increased (P<0.001) acetic, propionic, and total VFA. Including 4.5% (w/v) polyethylene glycol (PEG) in rumen fluid mixture with or without forage material reduced (P<0.01) LV. However, LV was similar at all PEG concentrations tested (0-2%, w/v; 89.4, 78.9, 76.5, 75.5, and 77.5% viable). Q. tannin concentrations from 0 to 1.2% (w/v) quadratically reduced (P<0.001) LV; 89.4, 65.5, 22.8, and 9.2%. Ivermectin concentrations from 0 to 15μg/mL quadratically reduced (P<0.001) LV; 90.2, 82.6, 73.6, 66.3, 51.9, 56.5, 43.5, 41.9, 29.3, and 19.9% viable, respectively. Effects of altering in vitro rumen fluid pH, ammonia N, and VFA and using PEG when evaluating LV need to be further investigated. In vitro rumen fluid assays using QT and Ivermectin resulted in decreased LV, validating the efficacy of this

  19. A Microplate Growth Inhibition Assay for Screening Bacteriocins against Listeria monocytogenes to Differentiate Their Mode-of-Action

    PubMed Central

    Vijayakumar, Paul Priyesh; Muriana, Peter M.

    2015-01-01

    Lactic acid bacteria (LAB) have historically been used in food fermentations to preserve foods and are generally-recognized-as-safe (GRAS) by the FDA for use as food ingredients. In addition to lactic acid; some strains also produce bacteriocins that have been proposed for use as food preservatives. In this study we examined the inhibition of Listeria monocytogenes 39-2 by neutralized and non-neutralized bacteriocin preparations (Bac+ preps) produced by Lactobacillus curvatus FS47; Lb. curvatus Beef3; Pediococcus acidilactici Bac3; Lactococcus lactis FLS1; Enterococcus faecium FS56-1; and Enterococcus thailandicus FS92. Activity differences between non-neutralized and neutralized Bac+ preps in agar spot assays could not readily be attributed to acid because a bacteriocin-negative control strain was not inhibitory to Listeria in these assays. When neutralized and non-neutralized Bac+ preps were used in microplate growth inhibition assays against L. monocytogenes 39-2 we observed some differences attributed to acid inhibition. A microplate growth inhibition assay was used to compare inhibitory reactions of wild-type and bacteriocin-resistant variants of L. monocytogenes to differentiate bacteriocins with different modes-of-action (MOA) whereby curvaticins FS47 and Beef3, and pediocin Bac3 were categorized to be in MOA1; enterocins FS92 and FS56-1 in MOA2; and lacticin FLS1 in MOA3. The microplate bacteriocin MOA assay establishes a platform to evaluate the best combination of bacteriocin preparations for use in food applications as biopreservatives against L. monocytogenes. PMID:26111195

  20. Beyond acetylcholinesterase inhibitors for treating Alzheimer's disease: α7-nAChR agonists in human clinical trials.

    PubMed

    Russo, Patrizia; Del Bufalo, Alessandra; Frustaci, Alessandra; Fini, Massimo; Cesario, Alfredo

    2014-01-01

    The neuronal nicotinic alpha7-acetylcholine receptor (α7-nAChR) is a promising and attractive drug target for improving cognitive deficits in neuropsychiatric and neurological disorders such as Alzheimer's disease (AD). α7-nAChR belongs to the family of ligand gated ion channels. α7-nAChR is expressed in key brain regions (e.g. pre- and frontal cortex, hippocampus). It is involved in essential cognitive functions such as memory, thinking, comprehension, learning capacity, calculation, orientation, language, and judgment. α7-nAChR binds to amyloid peptide (Aβ) inducing either receptor activation or inhibition in an Aβ concentration-dependent mode. Aβ oligomers induce τ phosphorylation via α7-nAChR activation. α7-nAChR agonists and/or α7-nAChR positive allosteric modulators may be useful in AD therapy. The current review enlightens: (i) α7-nAChR neurobiology, (ii) α7-nAChR role in cognition and (iii) in AD, and (iv) the clinical status of the most promising molecules for the treatment of cognitive dysfunction in AD. PMID:24641224

  1. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.

    PubMed

    Xie, Sai-Sai; Wang, Xiaobing; Jiang, Neng; Yu, Wenying; Wang, Kelvin D G; Lan, Jin-Shuai; Li, Zhong-Rui; Kong, Ling-Yi

    2015-05-01

    A series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as multi-target agents against Alzheimer's disease. The biological assays indicated that most of compounds displayed potent inhibitory activity toward AChE and BuChE, and clearly selective inhibition for MAO-B. Among these compounds, 14c exhibited strong inhibitory activity for AChE (IC50 values of 33.63 nM for eeAChE and 16.11 nM for hAChE) and BuChE (IC50 values of 80.72 nM for eqBuChE and 112.72 nM for hBuChE), and the highest inhibitory activity against hMAO-B (IC50 value of 0.24 μM). Kinetic and molecular modeling studies revealed that 14c was a mixed-type inhibitor, binding simultaneously to catalytic, peripheral and mid-gorge sites of AChE. It was also a competitive inhibitor, which covered the substrate and entrance cavities of MAO-B. Moreover, 14c could penetrate the CNS and show low cell toxicity. Overall, these results suggested that 14c might be an excellent multi-target agent for AD treatment. PMID:25812965

  2. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies.

    PubMed

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013-2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  3. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies

    PubMed Central

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013–2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  4. Flexibility versus “rigidity” of the functional architecture of AChE active center

    PubMed Central

    Shafferman, Avigdor; Barak, Dov; Stein, Dana; Kronman, Chanoch; Velan, Baruch; Greig, Nigel H.; Ordentlich, Arie

    2008-01-01

    Functional architecture of the AChE active center appears to be characterized by both structural “rigidity”, necessary to stabilize the catalytic triad as well as by flexibility in accommodating the different, high affinity AChE ligands. These seemingly conflicting structural properties of the active center are demonstrated through combination of structural methods with kinetic studies of the enzyme and its mutant derivatives with plethora of structurally diverse ligands and in particular with series of stereoselective covalent and noncovalent AChE ligands. Thus, steric perturbation of the acyl pocket precipitates in a pronounced stereoselectivity toward methylphosphonates by disrupting the stabilizing environment of the catalytic histidine rather than through steric exclusion demonstrating the functional importance of the “rigid” environment of the catalytic machinery. The acyl pocket, the cation-binding subsite (Trp86) and the peripheral anionic subsite were also found to be directly involved in HuAChE stereoselectivity toward charged chiral phosphonates, operating through differential positioning of the ligand cationic moiety within the active center. Residue Trp86 is also a part of the “hydrophobic patch” which seems flexible enough to accommodate the structurally diverse ligands like tacrine, galanthamine and the two diastereomers of huperzine A. Also, we have recently discovered further aspects of the role of both the unique structure and the flexibility of the “hydrophobic patch” in determining the reactivity and stereoselectivity of HuAChE toward certain carbamates including analogs of physostigmine. In these cases the ligands are accommodated mostly through hydrophobic interactions and their stereoselectivity delineates precisely the steric limits of the pocket. Hence, the HuAChE stereoselectivity provides a sensitive tool in the in depth exploration of the functional architecture of the active center. These studies suggest that the

  5. Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay.

    PubMed

    Lee, Susan J; Levitsky, Konstantin; Parlati, Francesco; Bennett, Mark K; Arastu-Kapur, Shirin; Kellerman, Lois; Woo, Tina F; Wong, Alvin F; Papadopoulos, Kyriakos P; Niesvizky, Ruben; Badros, Ashraf Z; Vij, Ravi; Jagannath, Sundar; Siegel, David; Wang, Michael; Ahmann, Gregory J; Kirk, Christopher J

    2016-06-01

    While proteasome inhibition is a validated therapeutic approach for multiple myeloma (MM), inhibition of individual constitutive proteasome (c20S) and immunoproteasome (i20S) subunits has not been fully explored owing to a lack of effective tools. We utilized the novel proteasome constitutive/immunoproteasome subunit enzyme-linked immunosorbent (ProCISE) assay to quantify proteasome subunit occupancy in samples from five phase I/II and II trials before and after treatment with the proteasome inhibitor carfilzomib. Following the first carfilzomib dose (15-56 mg/m(2) ), dose-dependent inhibition of c20S and i20S chymotrypsin-like active sites was observed [whole blood: ≥67%; peripheral blood mononuclear cells (PBMCs): ≥75%]. A similar inhibition profile was observed in bone marrow-derived CD138(+) tumour cells. Carfilzomib-induced proteasome inhibition was durable, with minimal recovery in PBMCs after 24 h but near-complete recovery between cycles. Importantly, the ProCISE assay can be used to quantify occupancy of individual c20S and i20S subunits. We observed a relationship between MM patient response (n = 29), carfilzomib dose and occupancy of multiple i20S subunits, where greater occupancy was associated with an increased likelihood of achieving a clinical response at higher doses. ProCISE represents a new tool for measuring proteasome inhibitor activity in clinical trials and relating drug action to patient outcomes. PMID:27071340

  6. Development of a high-throughput screening for nerve agent detoxifying materials using a fully-automated robot-assisted biological assay.

    PubMed

    Wille, T; Thiermann, H; Worek, F

    2010-04-01

    Developing improved medical countermeasures against chemical warfare agents (nerve agents) is urgently needed but time-consuming and costly. Here we introduce a robot-assisted liquid handling system with warming, cooling and incubating facilities to screen the detoxifying properties of biological and chemical materials against nerve agents. Two biological tests were established and plasma from various species, DFPase and three cyclodextrins were used as test materials. In test 1, plasma was mixed with sarin or VX and the inhibitory potency of the incubate was determined with human acetylcholinesterase (AChE) at 0, 30 and 60 min. In test 2, test materials and nerve agents were mixed and incubated. Between 0 and 40 min samples were taken and incubated for 3 min with AChE and the residual AChE inhibition was determined to enable the semi-quantitative evaluation of the detoxification kinetics. The automated assays proved to be highly reproducible. It was possible to pre-select detoxifying reagents with test 1 and to determine more detailed detoxifying kinetics with test 2. In conclusion, the automated assay may be considered as a versatile tool for the high-throughput screening of potential detoxifying materials against different nerve agents. With this two-step assay it is possible to screen effectively for detoxifying materials in a high-throughput system. PMID:19961920

  7. Increased sensitivity for detecting avian influenza-specific antibodies by a modified hemagglutination inhibition assay using horse erythrocytes.

    PubMed

    Jia, Na; Wang, Shi-Xia; Liu, Yun-Xi; Zhang, Pan-He; Zuo, Shu-Qing; Lin-Zhan; Dang, Rong-Li; Ma, Yong-Hong; Zhang, Chunhua; Zhang, Lu; Lu, Shan; Cao, Wu-Chun

    2008-10-01

    The hemagglutination inhibition (HI) assay is a widely used serological method to measure the levels of protective antibody responses against influenza viruses. However, the traditional HI assay which uses chicken erythrocytes is not sufficiently sensitive for detecting HI antibodies specific to avian influenza viruses. Previously, it was demonstrated that employing an assay using horse erythrocytes was able to increase the sensitivity of HI assay. The current report describes further optimization of this modified HI assay. It was shown that this method was able to increase detection of HI activities in rabbit sera immunized with H5 HA antigens, and proved that this increased sensitivity is useful in dissecting the strain specificity of HI antibody responses. In addition, the modified HI assay using horse erythrocytes increased the sensitivity of detecting HI antibodies specific for three major serotypes of avian influenza viruses, H5, H7 and H9, in people who may have asymptomatic infection with avian influenza viruses. Based on these results, the optimized use of horse erythrocytes should be standard practice for detecting HI activities against avian influenza viruses. PMID:18634828

  8. The current status of time dependent CYP inhibition assay and in silico drug-drug interaction predictions.

    PubMed

    Yan, Zhengyin; Caldwell, Gary W

    2012-01-01

    Various CYP time-dependent inhibition (TDI) assays have been widely implemented in drug discovery and development which has led to great success in positively identifying compounds with mechanism-base inhibition liability. However, drug-drug interaction (DDI) predictions by various in-silico models utilizing kinetic parameters obtained from TDI assays have met with significant challenges including questionable kinetic data, over-simplified in-vitro models and unreliable mathematic algorithms. Although significant efforts have been made to standardize the TDI assay and refine mathematical models, recent evaluation studies have revealed that the kinetic parameters of TDI, the most important in-vitro data required by all DDI prediction models, are significantly impacted by a variety of experimental variables including microsomal protein concentration, metabolic stability, CYP-specific probes, and post-incubation time. This review attempts to provide medicinal chemists a brief overview on the current status of TDI assays, determination of kinetic parameters and in silico DDI predictions with emphasis on the complexity of the TDI kinetics and limitations of current in-vitro models and DDI prediction methodologies. PMID:22571791

  9. Serological diagnosis of bovine neosporosis by Neospora caninum monoclonal antibody-based competitive inhibition enzyme-linked immunosorbent assay.

    PubMed

    Baszler, T V; Knowles, D P; Dubey, J P; Gay, J M; Mathison, B A; McElwain, T F

    1996-06-01

    Neospora caninum, a protozoan parasite closely related to Toxoplasma gondii, causes abortion and congenital infection in cattle. To investigate specific methods of antemortem diagnosis, the antibody responses of infected cows were evaluated by immunoblot assay and competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA) by using a monoclonal antibody (MAb), MAb 4A4-2, against N. caninum tachyzoites. MAb 4A4-2 bound diffusely to the exterior surface of N. caninum tachyzoites and recognized a single 65-kDa band in immunoblots. MAb 4A4-2 was unreactive to antigens of two closely related apicomplexan protozoa, Toxoplasma gondii and Sarcocystis cruzi. Binding of MAb 4A4-2 was inhibited by mild periodate treatment of N. caninum antigen, demonstrating the carbohydrate nature of the epitope. Immunoblot analysis of N. caninum tachyzoite antigens with sera from cows with confirmed Neospora-induced abortion revealed at minimum 14 major antigens ranging from 11 to 175 kDa. Although the recognized antigens varied from cow to cow, antigens of 116, 65, and 25 kDa were detected in all cows with abortion confirmed to be caused by N. caninum. The binding of MAb 4A4-2 to N. caninum tachyzoite antigen was consistently inhibited by sera from Neospora-infected cows in a CI-ELISA format and was not inhibited by sera from Neospora antibody-negative cows. Furthermore, sera from cattle experimentally infected with T. gondii, S. cruzi, Sarcocystis hominis, or Sarcocystis hirsuta, which had cross-reactive antibodies recognizing multiple N. caninum antigens by immunoblot assay, did not inhibit binding of MAb 4A4-2 in the CI-ELISA. Thus, MAb 4A4-2 binds a carbohydrate epitope on a single N. caninum tachyzoite surface antigen that is recognized consistently and specifically by Neospora-infected cattle. PMID:8735092

  10. Comparison of Protein Phosphatase Inhibition Assay with LC-MS/MS for Diagnosis of Microcystin Toxicosis in Veterinary Cases

    PubMed Central

    Moore, Caroline E.; Juan, Jeanette; Lin, Yanping; Gaskill, Cynthia L.; Puschner, Birgit

    2016-01-01

    Microcystins are acute hepatotoxins of increasing global concern in drinking and recreational waters and are a major health risk to humans and animals. Produced by cyanobacteria, microcystins inhibit serine/threonine protein phosphatase 1 (PP1). A cost-effective PP1 assay using p-nitrophenyl phosphate was developed to quickly assess water and rumen content samples. Significant inhibition was determined via a linear model, which compared increasing volumes of sample to the log-transformed ratio of the exposed rate over the control rate of PP1 activity. To test the usefulness of this model in diagnostic case investigations, samples from two veterinary cases were tested. In August 2013 fifteen cattle died around two ponds in Kentucky. While one pond and three tested rumen contents had significant PP1 inhibition and detectable levels of microcystin-LR, the other pond did not. In August 2013, a dog became fatally ill after swimming in Clear Lake, California. Lake water samples collected one and four weeks after the dog presented with clinical signs inhibited PP1 activity. Subsequent analysis using liquid chromatography-mass spectrometry (LC-MS/MS) detected microcystin congeners -LR, -LA, -RR and -LF but not -YR. These diagnostic investigations illustrate the advantages of using functional assays in combination with LC-MS/MS. PMID:27005635

  11. Comparison of Protein Phosphatase Inhibition Assay with LC-MS/MS for Diagnosis of Microcystin Toxicosis in Veterinary Cases.

    PubMed

    Moore, Caroline E; Juan, Jeanette; Lin, Yanping; Gaskill, Cynthia L; Puschner, Birgit

    2016-03-01

    Microcystins are acute hepatotoxins of increasing global concern in drinking and recreational waters and are a major health risk to humans and animals. Produced by cyanobacteria, microcystins inhibit serine/threonine protein phosphatase 1 (PP1). A cost-effective PP1 assay using p-nitrophenyl phosphate was developed to quickly assess water and rumen content samples. Significant inhibition was determined via a linear model, which compared increasing volumes of sample to the log-transformed ratio of the exposed rate over the control rate of PP1 activity. To test the usefulness of this model in diagnostic case investigations, samples from two veterinary cases were tested. In August 2013 fifteen cattle died around two ponds in Kentucky. While one pond and three tested rumen contents had significant PP1 inhibition and detectable levels of microcystin-LR, the other pond did not. In August 2013, a dog became fatally ill after swimming in Clear Lake, California. Lake water samples collected one and four weeks after the dog presented with clinical signs inhibited PP1 activity. Subsequent analysis using liquid chromatography-mass spectrometry (LC-MS/MS) detected microcystin congeners -LR, -LA, -RR and -LF but not -YR. These diagnostic investigations illustrate the advantages of using functional assays in combination with LC-MS/MS. PMID:27005635

  12. Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses

    PubMed Central

    Naarding, Marloes A.; Fernandez-Fernandez, Natalia; Kappes, John C.; Hayes, Peter; Ahmed, Tina; Icyuz, Mert; Edmonds, Tara G.; Bergin, Philip; Anzala, Omu; Hanke, Tomas; Clark, Lorna; Cox, Josephine H.; Cormier, Emmanuel; Ochsenbauer, Christina; Gilmour, Jill

    2014-01-01

    Emergence of SIV and HIV specific CD8 T cells has been shown to correlate with control of in vivo replication. Poor correlation between IFN-γ ELISPOT responses and in vivo control of the virus has triggered the development of more relevant assays to assess functional HIV-1 specific CD8 T-cell responses for the evaluation and prioritization of new HIV-1 vaccine candidates. We previously established a viral inhibition assay (VIA) that measures the ability of vaccine-induced CD8 T-cell responses to inhibit viral replication in autologous CD4 T cells. In this assay, viral replication is determined by measuring p24 in the culture supernatant. Here we describe the development of a novel VIA, referred to as IMC LucR VIA that exploits replication-competent HIV-1 infectious molecular clones (IMCs) in which the complete proviral genome is strain-specific and which express the Renilla luciferase (LucR) gene to determine viral growth and inhibition. The introduction of the luciferase readout does provide significant improvement of the read out time. In addition to switching to the LucR read out, changes made to the overall protocol resulted in the miniaturization of the assay from a 48 to a 96-well plate format, which preserved sample and allowed for the introduction of replicates. The overall assay time was reduced from 13 to 8 days. The assay has a high degree of specificity, and the previously observed non-specific background inhibition in cells from HIV-1 negative volunteers has been reduced dramatically. Importantly, we observed an increase in positive responses, indicating an improvement in sensitivity compared to the original VIA. Currently, only a limited number of “whole-genome” IMC-LucR viruses are available and our efforts will focus on expanding the panel to better evaluate anti-viral breadth. Overall, we believe the IMC LucR VIA provides a platform to assess functional CD8 T-cell responses in large-scale clinical trial testing, which will enhance the ability

  13. Assaying Bcr-Abl kinase activity and inhibition in whole cell extracts by phosphorylation of substrates immobilized on agarose beads

    PubMed Central

    Wu, Ding; Nair-Gill, Evan; Sher, Dorie A.; Parker, Laurie L.; Campbell, Jennifer M.; Siddiqui, Mariah; Stock, Wendy; Kron, Stephen J.

    2015-01-01

    There is a current and increasing demand for simple, robust, nonradioactive assays of protein tyrosine kinase activity with applications for clinical diagnosis and high-throughput screening of potential molecularly targeted therapeutic agents. One significant challenge is to detect and measure the activity of specific kinases with key roles in cell signaling as an approach to distinguish normal cells from cancer cells and as a means of evaluating targeted drug efficacy and resistance in cancer cells. Here, we describe a method in which kinase substrates fused to glutathione-S-transferase and immobilized on glutathione agarose beads are phosphorylated, eluted, and then assayed to detect kinase activity. The activity of recombinant, purified c-Abl kinase or Bcr-Abl kinase in whole cell extracts can be detected with equivalent specificity, sensitivity, and reproducibility. Similarly, inhibition of recombinant c-Abl or Bcr-Abl in cells or cell extracts by imatinib mesylate and other Bcr-Abl targeted kinase inhibitors is readily assayed. This simple kinase assay is sufficiently straightforward and robust for use in clinical laboratories and is potentially adaptable to high-throughput assay formats. PMID:16236241

  14. Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins

    PubMed Central

    Dash, Raju; Emran, Talha Bin; Uddin, Mir Muhammad Nasir; Islam, Ashekul; Junaid, Md

    2014-01-01

    Alzheimer׳s disease (AD) is one of the most common dementias showing slow progressive cognitive decline. Progression of intracerebral accumulation of beta amyloid (Aβ) peptides by the action of amyloid binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the degradation of Acetylcholinesterase (AChE) the main pathological characteristics of AD. Therefore, it is of interest to evaluate the importance of fisetin (a flavonol that belongs to the flavonoid group of polyphenols) binding with AChE, ABAD and BACE1 proteins. Docking experiment of fisetin with these proteins using two different tools namely iGEMDOCK and FlexX show significant binding with acceptable binding values. Thus, the potential inhibitory role of fisetin with AD associated proteins is documented. PMID:25352723

  15. Assay and Inhibition of the Purified Catalytic Domain of Diacylglycerol Lipase Beta.

    PubMed

    Singh, Praveen K; Markwick, Rachel; Lu, Leanne; Howell, Fiona V; Williams, Gareth; Doherty, Patrick

    2016-05-17

    The diacylglycerol lipases (DAGLα and DAGLβ) hydrolyze DAG to generate 2-arachidonoylglycerol (2-AG), the principal endocannabinoid and main precursor of arachidonic acid (AA). The DAGLs make distinct tissue specific contributions toward 2-AG and AA levels, and therefore, selective modulators for these enzymes could play crucial roles toward harnessing their therapeutic potential. Relatively high-throughput assays have recently been reported for DAGLα and have proven useful toward the characterization of inhibitors of this enzyme. Similar assays are also warranted for DAGLβ which was the aim of this study. We first adapted previously reported DAGLα membrane assays (using PNPB and DiFMUO as substrates) to measure recombinant DAGLβ activity in membranes. In contrast to results with DAGLα, both substrates provided a relatively limited signal window for measuring DAGLβ activity, however, an improved window was obtained when employing a third commercially available substrate, EnzChek. In order to further improve on the assay parameters, we successfully purified the glutathione S-transferase (GST) tagged catalytic domain of DAGLβ. Activity of the enzyme was confirmed using EnzChek as well as two DAGL inhibitors (THL and OMDM-188). The purified DAGLβ catalytic domain assay described here provides the basis for a relatively clean and convenient assay with the potential to be adapted for high-throughput drug discovery efforts. PMID:27115711

  16. Epirubicin, Identified Using a Novel Luciferase Reporter Assay for Foxp3 Inhibitors, Inhibits Regulatory T Cell Activity

    PubMed Central

    Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira

    2016-01-01

    Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors. PMID:27284967

  17. Synthesis, pharmacological assessment, and molecular modeling of 6-chloro-pyridonepezils: new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Samadi, Abdelouahid; de la Fuente Revenga, Mario; Pérez, Concepción; Iriepa, Isabel; Moraleda, Ignacio; Rodríguez-Franco, María Isabel; Marco-Contelles, José

    2013-09-01

    6-Chloro-pyridonepezils are chloropyridine-donepezil hybrids designed by combining the N-benzylpiperidine moiety present in donepezil with the 2-chloropyridine-3,5-dicarbonitrile heterocyclic ring system, both connected by an appropriate polymethylene linker. 6-Chloro-pyridonepezils1-8 were prepared by reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (13) [or 2,6-dichloropyridine-3,5-dicarbonitrile (14)] with suitable 2-(1-benzylpiperidin-4-yl)alkylamines (9-12). The biological evaluation showed that these new compounds are cholinesterase inhibitors, in the submicromolar range, one of them (6) being a potent hBuChE inhibitor (IC50 = 0.47 ± 0.08 μM). 6-Chloro-pyridonepezils4, 7 and 8 are potent hAChE inhibitors showing IC50 in the 0.013-0.054 μM range. Particularly, 6-chloro-pyridonepezil8 is 625-fold more selective for hAChE than for hBuChE and compared to donepezil is equipotent for the inhibition of hAChE. Molecular modeling investigation on 6-chloro-pyridonepezils4, 6-8 supports its dual AChE inhibitory profile, by binding simultaneously at the catalytic active and at peripheral anionic sites of the enzyme. The in vitro Blood Brain Barrier (BBB) and theoretical ADME analysis of 6-chloro-pyridonepezils1-8 have been carried out. Overall, compound 8, is a permeable potent and selective dual AChEI that can be considered as a good candidate with potential impact for further pharmacological development in Alzheimer's therapy. PMID:23838422

  18. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway.

    PubMed

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  19. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway

    PubMed Central

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  20. Time-dependent inhibition of phospholipase C beta-catalysed phosphoinositide hydrolysis: a comparison of different assays.

    PubMed Central

    James, S R; Smith, S; Paterson, A; Harden, T K; Downes, C P

    1996-01-01

    The properties of three different beta-isoforms of phospholipase C (PLC) were analysed using substrate lipids dispersed in phospholipid vesicles, phospholipid-detergent mixed micelles and phospholipid monolayers spread at an air-water interface. Phosphatidylinositol 4,5-bisphosphate hydrolysis went virtually to completion in monolayers, but inositol trisphosphate production was curtailed prematurely in vesicular and micellar assays. Assays were linear for less than 2 min with vesicles; the linear portion could be significantly extended in micelles by increasing the ratio of micelles to enzyme molecules. However, onset of a second lower rate of substrate hydrolysis always occurred when < or = 10% of PtdIns(4,5)P(2) had been utilized. This was not due to enzyme inactivation in the micellar interface, determined by addition of fresh substrate or fresh enzyme after the slow phase of activity had started, nor was it due to overt product inhibition of PLC or apparent entrapment of PLC at the micelle surface. These results are similar to those seen in assays using bacterial PLC and we suggest that the biphasic kinetics may be due to product-dependent changes in the presentation of substrate lipic to PLC in lamellar assays, leading to reduced activity. PMID:8615789

  1. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells

    PubMed Central

    Rui, Yan-Ning; Xu, Zhen; Chen, Zhihua; Zhang, Sheng

    2015-01-01

    By monitoring the fragmentation of a GST-BHMT (a protein fusion of glutathionine S-transferase N-terminal to betaine-homocysteine S-methyltransferase) reporter in lysosomes, the GST-BHMT assay has previously been established as an endpoint, cargo-based assay for starvation-induced autophagy that is largely nonselective. Here, we demonstrate that under nutrient-rich conditions, proteasome inhibition by either pharmaceutical or genetic manipulations induces similar autophagy-dependent GST-BHMT processing. However, mechanistically this proteasome inhibition-induced autophagy is different from that induced by starvation as it does not rely on regulation by MTOR (mechanistic target of rapamycin [serine/threonine kinase]) and PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit), the upstream central sensors of cellular nutrition and energy status, but requires the presence of the cargo receptors SQSTM1/p62 (sequestosome 1) and NBR1 (neighbor of BRCA1 gene 1) that are normally involved in the selective autophagy pathway. Further, it depends on ER (endoplasmic reticulum) stress signaling, in particular ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) and its main downstream effector MAPK8/JNK1 (mitogen-activated protein kinase 8), but not XBP1 (X-box binding protein 1), by regulating the phosphorylation-dependent disassociation of BCL2 (B-cell CLL/lymphoma 2) from BECN1 (Beclin 1, autophagy related). Moreover, the multimerization domain of GST-BHMT is required for its processing in response to proteasome inhibition, in contrast to its dispensable role in starvation-induced processing. Together, these findings support a model in which under nutrient-rich conditions, proteasome inactivation induces autophagy-dependent processing of the GST-BHMT reporter through a distinct mechanism that bears notable similarity with the yeast Cvt (cytoplasm-to-vacuole targeting) pathway, and suggest the GST-BHMT reporter might be employed as a convenient assay to study

  2. Ribonuclease activity of vaccinia DNA topoisomerase IB: kinetic and high-throughput inhibition studies using a robust continuous fluorescence assay.

    PubMed

    Kwon, Keehwan; Nagarajan, Rajesh; Stivers, James T

    2004-11-30

    Vaccinia type I DNA topoisomerase exhibits a strong site-specific ribonuclease activity when provided a DNA substrate that contains a single uridine ribonucleotide within a duplex DNA containing the sequence 5' CCCTU 3'. The reaction involves two steps: attack of the active site tyrosine nucleophile of topo I at the 3' phosphodiester of the uridine nucleotide to generate a covalent enzyme-DNA adduct, followed by nucleophilic attack of the uridine 2'-hydroxyl to release the covalently tethered enzyme. Here we report the first continuous spectroscopic assay for topoisomerase that allows monitoring of the ribonuclease reaction under multiple-turnover conditions. The assay is especially robust for high-throughput screening applications because sensitive molecular beacon technology is utilized, and the topoisomerase is released during the reaction to allow turnover of multiple substrate molecules by a single molecule of enzyme. Direct computer simulation of the fluorescence time courses was used to obtain the rate constants for substrate binding and release, covalent complex formation, and formation of the 2',3'-cyclic phosphodiester product of the ribonuclease reaction. The assay allowed rapid screening of a 500 member chemical library from which several new inhibitors of topo I were identified with IC(50) values in the range of 2-100 microM. Three of the most potent hits from the high-throughput screening were also found to inhibit plasmid supercoil relaxation by the enzyme, establishing the utility of the assay in identifying inhibitors of the biologically relevant DNA relaxation reaction. One of the most potent inhibitors of the vaccinia enzyme, 3-benzo[1,3]dioxol-5-yl-2-oxoproprionic acid, did not inhibit the closely related human enzyme. The inhibitory mechanism of this compound is unique and involves a step required for recycling the enzyme for steady-state turnover. PMID:15554707

  3. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. PMID:27385587

  4. An ultrasensitive assay format for detecting ULK1 inhibition by monitoring the phosphorylation status of Atg13.

    PubMed

    Yan, Zhong-Hua; Zhang, Wenhai; Rollins, Neil; Tayber, Olga; Chen, Jiejin; Wu, Dongyun; Brauer, Pam; Chouitar, Johara; Bosse, Robin; Yu, Jie; Bembenek, Michael E

    2016-09-15

    A new technology from Quanterix called SiMoA (single molecule array) which employs a fully automated system capable of ultrasensitive sandwich based ELISA detection was explored. Our studies focused upon the inhibition of the autophagy initiating kinase ULK1 by measuring the both total Atg13 and the phosphorylation of Atg13(pSer(318)) from control and following compound treatment in either overexpressing or wild type tissue culture samples. The results show linear protein concentration dependence over two orders of magnitude and provide an assay window of 8- to 100-fold signal to background for inhibition of phosphorylation for both wild type and overexpressed samples, respectively. Moreover, overexpressed samples displayed 17-fold pSer(318)-Atg13 above wild type levels of with no apparent differences in compound potency. Lastly, the inhibition of ULK1 from mouse derived wild type xenografts also demonstrated loss of pSer(318)-Atg13 upon ULK1 inhibitor treatment that compared favorably to Western blot. These results show that the SiMoA technology can detect quantitatively low levels of endogenous biomarkers with the ability to detect the loss of pSer(318)-Atg13 upon ULK1 inhibition. PMID:27387056

  5. Monoclonal antibody AE-2 modulates carbamate and organophosphate inhibition of fetal bovine serum acetylcholinesterase. (Reannouncement with new availability information)

    SciTech Connect

    Wolfe, A.D.; Chiang, P.K.; Doctor, B.P.; Fryar, N.; Rhee, J.P.

    1993-12-31

    The monoclonal antibody AE-2 raised against the human erythrocyte acetylcholinesterase (AChE) dimer (acetylcholine acetylhydrolase, EC 3.1.1.7), binds to other mammalian AChEs, including the tetramer that occurs in fetal bovine serum (FBS). AE2 partially inhibited the rate of hydrolysis of the charged substrate acetylthiocholine by FBS AChE, whereas it increased the rate of hydrolysis of the neutral substrate indophenyl acetate. Present results show that AE-2 decreases the rate of inhibition of FBS AChE by the positively charged organophosphate amition-p-toluene sulfonate and the positively charged carbamates pyridostigmine and neostigmine but accelerate inhibition of FBS AChE by neutral organophosphates paraoxon and diisopropylfluorophosphate. Results suggest that AE-2 may allosterically modulate an anionic site in the catalytic center of FBS AChE.

  6. Voltage-dependent interaction between the muscarinic ACh receptor and proteins of the exocytic machinery.

    PubMed Central

    Linial, M; Ilouz, N; Parnas, H

    1997-01-01

    1. Release of neurotransmitter into the synaptic cleft is the last step in the chain of molecular events following the arrival of an action potential at the nerve terminal. The neurotransmitter exerts negative feedback on its own release. This inhibition would be most effective if exerted on the first step in this chain of events, i.e. a step that is mediated by membrane depolarization. Indeed, in numerous studies feedback inhibition was found to be voltage dependent. 2. The purpose of this study is to investigate whether the mechanism underlying feedback inhibition of transmitter release resides in interaction between the presynaptic autoreceptors and the exocytic apparatus, specifically the soluble NSF-attachment protein receptor (SNARE) complex. 3. Using rat synaptosomes we show that the muscarinic ACh autoreceptor (mAChR) is an integral component of the exocytic machinery. It interacts with syntaxin, synaptosomal-associated protein of 25 kDa (SNAP-25), vesicle-associated membrane protein (VAMP) and synaptotagmin as shown using both cross-linking and immunoprecipitation. 4. The interaction between mAChRs and both syntaxin and SNAP-25 is modulated by depolarization levels; binding is maximal at resting potential and disassembly occurs at higher depolarization. 5. This voltage-dependent interaction of mAChRs with the secretory core complex appears suitable for controlling the rapid, synchronous neurotransmitter release at nerve terminals. Images Figure 2 Figure 3 PMID:9365901

  7. Development of a colorimetric inhibition assay for microcystin-LR detection: comparison of the sensitivity of different protein phosphatases.

    PubMed

    Sassolas, Audrey; Catanante, Gaëlle; Fournier, Didier; Marty, Jean Louis

    2011-10-15

    A colorimetric protein phosphatase (PP) inhibition test for the detection of microcystin-LR (MC-LR) has been developed. Three PP2As, one recombinant and two natural versions, as well as one PP1 produced by molecular engineering, were tested. First, assays were performed using the enzymes in solution to compare their sensitivity to MC-LR. The PP2A purchased from ZEU Immunotec and PP1 appeared more sensitive to the toxin than the other enzymes. With PP2A from ZEU Immunotec, the colorimetric test showed a detection limit of 0.0039 μg L(-1) and an IC(50) value of 0.21 μg L(-1). With PP1, the assay gave a detection limit of 0.05 μg L(-1) and an IC(50) value of 0.56 μg L(-1). Therefore, this assay allowed the detection of lower microcystin-LR (MC-LR) concentrations than the maximum level (1 μg L(-1)) recommended by the World Health Organisation (WHO). The main drawback of this PP-based approach in solution is poor enzyme stabilisation. To overcome this problem, enzymes were entrapped within either a photopolymer or an agarose gel. PP2A from ZEU Immunotec and PP1 were immobilised at the bottom of microwells. The agarose-based tests performed better than the photopolymer-based assay for all of the enzymes. Therefore, the agarose gel is a good candidate to replace the photopolymer, which is generally used in PP-immobilising membranes. The assays based on enzyme-entrapping agarose gels showed detection limits equal to 0.17 μg L(-1) and 0.29 μg L(-1) with immobilised PP2A from ZEU and PP1, respectively. In view of these performances, these tests can potentially be used for monitoring water quality. PMID:21962674

  8. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    PubMed

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method. PMID:26087169

  9. An acetylcholinesterase-based chronoamperometric biosensor for fast and reliable assay of nerve agents.

    PubMed

    Pohanka, Miroslav; Adam, Vojtech; Kizek, Rene

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10(-12) mol/L for sarin, 6.31 × 10(-12) mol /L for soman, 6.17 × 10(-11) mol/L for tabun, and 2.19 × 10(-11) mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples. PMID:23999806

  10. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    PubMed Central

    Pohanka, Miroslav; Adam, Vojtech; Kizek, Rene

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10−12 mol/L for sarin, 6.31 × 10−12 mol/L for soman, 6.17 × 10−11 mol/L for tabun, and 2.19 × 10−11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples. PMID:23999806

  11. Amine substitution of quinazolinones leads to selective nanomolar AChE inhibitors with 'inverted' binding mode.

    PubMed

    Darras, Fouad H; Wehle, Sarah; Huang, Guozheng; Sotriffer, Christoph A; Decker, Michael

    2014-09-01

    Selective and nanomolar acetylcholinesterase inhibitors were obtained by connecting tri- and tetracyclic quinazolinones-previously described as moderately active and unselective cholinesterase (ChE) inhibitors-via a hydroxyl group in para position to an anilinic nitrogen with different amines linked via a three carbon atom spacer. These tri- and tetracyclic quinazolinones containing different alicyclic ring sizes and connected to tertiary amines were docked to a high-resolution hAChE crystal structure to investigate the preferred binding mode in relation to results obtained by experimental structure-activity relationships. While the 'classical orientation' locating the heterocycle in the active site was rarely found, an alternative binding mode with the basic aliphatic amine in the active center ('inverted' orientation) was obtained for most compounds. Analyses of extended SARs based on this inverted binding mode are able to explain the compounds' binding affinities at AChE. PMID:25047936

  12. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1). PMID:26686921

  13. Porcine respiratory coronavirus in Quebec: Serological studies using a competitive inhibition enzyme-linked immunosorbent assay

    PubMed Central

    Jabrane, Ahmed; Elazhary, Youssef; Talbot, Brian G.; Ethier, Raymond; Dubuc, Claude; Assaf, Robert

    1992-01-01

    Porcine respiratory coronavirus (PRCV) was identified for the first time in Quebec, using a blocking enzyme-linked immunosorbent assay (ELISA). Unlike the virus neutralization test (VNT), this ELISA was able to distinguish transmissible gastroenteritis virus (TGEV) from PRCV. Among the 15 seropositive fattening herds from group A, sera containing PRCV antibodies represented 74.8%, whereas those with TGEV antibodies represented only 7.2%. In group B, which consisted of 15 sow herds, nine herds expressed only PRCV-specific antibodies while the other herds had animals positive for TGEV-specific antibodies. PMID:17424115

  14. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. PMID:27208478

  15. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis.

    PubMed

    Nagel, Zachary D; Margulies, Carrie M; Chaim, Isaac A; McRee, Siobhan K; Mazzucato, Patrizia; Ahmad, Anwaar; Abo, Ryan P; Butty, Vincent L; Forget, Anthony L; Samson, Leona D

    2014-05-01

    The capacity to repair different types of DNA damage varies among individuals, making them more or less susceptible to the detrimental health consequences of damage exposures. Current methods for measuring DNA repair capacity (DRC) are relatively labor intensive, often indirect, and usually limited to a single repair pathway. Here, we describe a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) that measures the ability of human cells to repair plasmid reporters, each bearing a different type of DNA damage or different doses of the same type of DNA damage. FM-HCR simultaneously measures repair capacity in any four of the following pathways: nucleotide excision repair, mismatch repair, base excision repair, nonhomologous end joining, homologous recombination, and methylguanine methyltransferase. We show that FM-HCR can measure interindividual DRC differences in a panel of 24 cell lines derived from genetically diverse, apparently healthy individuals, and we show that FM-HCR may be used to identify inhibitors or enhancers of DRC. We further develop a next-generation sequencing-based HCR assay (HCR-Seq) that detects rare transcriptional mutagenesis events due to lesion bypass by RNA polymerase, providing an added dimension to DRC measurements. FM-HCR and HCR-Seq provide powerful tools for exploring relationships among global DRC, disease susceptibility, and optimal treatment. PMID:24757057

  16. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis

    PubMed Central

    Nagel, Zachary D.; Margulies, Carrie M.; Chaim, Isaac A.; McRee, Siobhan K.; Mazzucato, Patrizia; Ahmad, Anwaar; Abo, Ryan P.; Butty, Vincent L.; Forget, Anthony L.; Samson, Leona D.

    2014-01-01

    The capacity to repair different types of DNA damage varies among individuals, making them more or less susceptible to the detrimental health consequences of damage exposures. Current methods for measuring DNA repair capacity (DRC) are relatively labor intensive, often indirect, and usually limited to a single repair pathway. Here, we describe a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) that measures the ability of human cells to repair plasmid reporters, each bearing a different type of DNA damage or different doses of the same type of DNA damage. FM-HCR simultaneously measures repair capacity in any four of the following pathways: nucleotide excision repair, mismatch repair, base excision repair, nonhomologous end joining, homologous recombination, and methylguanine methyltransferase. We show that FM-HCR can measure interindividual DRC differences in a panel of 24 cell lines derived from genetically diverse, apparently healthy individuals, and we show that FM-HCR may be used to identify inhibitors or enhancers of DRC. We further develop a next-generation sequencing-based HCR assay (HCR-Seq) that detects rare transcriptional mutagenesis events due to lesion bypass by RNA polymerase, providing an added dimension to DRC measurements. FM-HCR and HCR-Seq provide powerful tools for exploring relationships among global DRC, disease susceptibility, and optimal treatment. PMID:24757057

  17. Baculovirus expression, biochemical characterization and organophosphate sensitivity of rBmAChE1, rBmAChE2, and rBmAChE3 of Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhipicephalus (Boophilus) microplus cDNAs, BmAChE1, BmAChE2, and BmAChE3,were previously identified as presumptively encoding acetylcholinesterases, but biochemical identity was confirmed only for recombinant BmAChE3. In the present study, four recombinant BmAChE1 constructs and single recombinant c...

  18. Bioluminescence inhibition assays for toxicity screening of wood extractives and biocides in paper mill process waters.

    PubMed

    Rigol, Anna; Latorre, Anna; Lacorte, Sílvia; Barceló, Damià

    2004-02-01

    The risk associated with wood extractives, biocides, and other additives in pulp and paper mill effluents was evaluated by performing a characterization of process waters and effluents in terms of toxicity and chemical analysis. The individual toxicity of 10 resin acids, two unsaturated fatty acids, and three biocides was estimated by measuring the bioluminescence inhibition with a ToxAlert 100 system. Median effective concentration values (EC50) of 4.3 to 17.9, 1.2 to 1.5, and 0.022 to 0.50 mg/L were obtained, respectively. Mixtures of these three families of compounds showed antagonistic effects. Chemical analysis of process waters was performed by liquid chromatography- and gas chromatography-mass spectrometry. Biocides such as 2-(thiocyanomethylthio)-benzotiazole (TCMTB) (EC50 = 0.022 mg/L) and 2,2-dibromo-3-nitrilpropionamide (DBNPA) (EC50 = 0.50 mg/L) were the most toxic compounds tested and were detected at concentrations of 16 and 59 microg/L, respectively, in a closed-circuit recycling paper mill. Process waters from kraft pulp mills, printing paper mills, and packing board paper mills showed the highest concentration of resin acids (up to 400 microg/L) and accounted for inhibition percentages up to 100%. Detergent degradation products such as nonylphenol (NP) and octylphenol (OP) and the plasticizer bisphenol A (BPA) were also detected in the waters at levels of 0.6 to 10.6, 0.3 to 1.4, and 0.7 to 187 microg/L, respectively. However, once these waters were biologically treated, the concentration of detected organic compounds diminished and the toxicity decreased in most cases to values of inhibition lower than 20%. PMID:14982380

  19. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    SciTech Connect

    Zhang, Lin; Long, Linjuan; Zhang, Weiying; Du, Dan; Lin, Yuehe

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  20. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs.

    PubMed

    Androsavich, John R; Sobczynski, Daniel J; Liu, Xueqing; Pandya, Shweta; Kaimal, Vivek; Owen, Tate; Liu, Kai; MacKenna, Deidre A; Chau, B Nelson

    2016-01-29

    Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method--miRNA Polysome Shift Assay (miPSA)--for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used 'RT-interference' approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences. PMID:26384419

  1. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs

    PubMed Central

    Androsavich, John R.; Sobczynski, Daniel J.; Liu, Xueqing; Pandya, Shweta; Kaimal, Vivek; Owen, Tate; Liu, Kai; MacKenna, Deidre A.; Chau, B. Nelson

    2016-01-01

    Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method—miRNA Polysome Shift Assay (miPSA)—for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used ‘RT-interference’ approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences. PMID:26384419

  2. Inhibition of erythrocyte acetylcholinesterase by n-butanol at high concentrations.

    PubMed

    Arsov, Zoran; Zorko, Matjaz; Schara, Milan

    2005-05-01

    Erythrocyte acetylcholinesterase (AChE) is bound to the membrane by a complex glycosylphosphatidylinositol anchor, so the effect of alcohol on AChE activity may reflect direct and/or membrane-mediated effects. The indication of a direct interaction between n-butanol and AChE molecules is the activation/inhibition of AChE by occupation of the enzyme's active and/or regulatory sites by alcohol. The activation of AChE can occur only at low concentrations of alcohols, while at high concentrations AChE is inhibited. In this work the mechanism of inhibition of erythrocyte AChE by n-butanol at high concentrations was studied. The values of activity, calculated assuming parabolic competitive inhibition, which implies that one or two molecules of inhibitor bind to the enzyme, fit well to the experimental values. From the values of the inhibition constants it was concluded that at high n-butanol concentrations two alcohol molecules usually interact with AChE. PMID:15820219

  3. Oxime-mediated in vitro reactivation kinetic analysis of organophosphates-inhibited human and electric eel acetylcholinesterase.

    PubMed

    Sahu, Arvind Kumar; Sharma, Rahul; Gupta, Bhanushree; Musilek, Kamil; Kuca, Kamil; Acharya, Jyotiranjan; Ghosh, Kallol K

    2016-06-01

    Organophosphate (OP)-based pesticides and nerve agents are highly toxic compounds which interrupt the catalytic mechanism of acetylcholinesterase (AChE) by phosphorylating the hydroxyl moiety of serine residue. The inhibited enzyme can be reactivated by the nucleophilic action of oxime reactivators. To analyze the effect of different AChE sources on reactivation efficacy of reactivators, several in vivo studies have carried out using variety of AChE sources like pig, rat and monkey. Investigations on species differences provide a better insight for the development of new reactivators. Hence, present study was mainly targeted on comparative analysis of the reactivation of electric eel and human AChE inhibited by different OP. A series of butene-linked bis-pyridinium mono oximes which vary in functional groups present at the second pyridinium ring have been examined against sarin, VX, tabun and ethyl-paraoxon-poisoned AChE. In case of tabun-inhibited AChEs, tested oximes were better than reference oximes. For VX-poisoned human AChE, reactivator K251 (kr2;1.51 mM (-) (1 )min (-) (1)) showed good reactivation efficacy with standard oximes. Studies stipulated that butene-linked oximes consisting of different functional moieties are good reactivators and found to have better efficacy to reactivate nerve agent-inhibited human AChE in comparison to eel AChE. PMID:27101948

  4. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent.

    PubMed

    Liang, Minmin; Fan, Kelong; Pan, Yong; Jiang, Hui; Wang, Fei; Yang, Dongling; Lu, Di; Feng, Jing; Zhao, Jianjun; Yang, Liu; Yan, Xiyun

    2013-01-01

    Rapid and sensitive detection methods are in urgent demand for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents for their neurotoxicity. In this study, we developed a novel Fe(3)O(4) magnetic nanoparticle (MNP) peroxidase mimetic-based colorimetric method for the rapid detection of organophosphorus pesticides and nerve agents. The detection assay is composed of MNPs, acetylcholinesterase (AChE), and choline oxidase (CHO). The enzymes AChE and CHO catalyze the formation of H(2)O(2) in the presence of acetylcholine, which then activates MNPs to catalyze the oxidation of colorimetric substrates to produce a color reaction. After incubation with the organophosphorus neurotoxins, the enzymatic activity of AChE was inhibited and produced less H(2)O(2), resulting in a decreased catalytic oxidation of colorimetric substrates over MNP peroxidase mimetics, accompanied by a drop in color intensity. Three organophosphorus compounds were tested on the assay: acephate and methyl-paraoxon as representative organophosphorus pesticides and the nerve agent Sarin. The novel assay displayed substantial color change after incubation in organophosphorus neurotoxins in a concentration-dependent manner. As low as 1 nM Sarin, 10 nM methyl-paraoxon, and 5 μM acephate are easily detected by the novel assay. In conclusion, by employing the peroxidase-mimicking activity of MNPs, the developed colorimetric assay has the potential of becoming a screening tool for the rapid and sensitive assessment of the neurotoxicity of an overwhelming number of organophosphate compounds. PMID:23153113

  5. Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay.

    PubMed

    Park, Yoo Kyoung; Lee, Hyang Burm; Jeon, Eun-Jae; Jung, Hack Sung; Kang, Myung-Hee

    2004-01-01

    The Chaga mushroom (Inonotus obliquus) is claimed to have beneficial properties for human health, such as anti-bacterial, anti-allergic, anti-inflammatory and antioxidant activities. The antioxidant effects of the mushroom may be partly explained by protection of cell components against free radicals. We evaluated the effect of aqueous Chaga mushroom extracts for their potential for protecting against oxidative damage to DNA in human lymphocytes. Cells were pretreated with various concentrations (10, 50, 100 and 500 microg/mL) of the extract for 1 h at 37 degrees C. Cells were then treated with 100 microM of H2O2 for 5 min as an oxidative stress. Evaluation of oxidative damage was performed using single-cell gel electrophoresis for DNA fragmentation (Comet assay). Using image analysis, the degree of DNA damage was evaluated as the DNA tail moment. Cells pretreated with Chaga extract showed over 40% reduction in DNA fragmentation compared with the positive control (100 micromol H2O2 treatment). Thus, Chaga mushroom treatment affords cellular protection against endogenous DNA damage produced by H2O2. PMID:15630179

  6. A gold nanoparticle-based label free colorimetric aptasensor for adenosine deaminase detection and inhibition assay.

    PubMed

    Cheng, Fen; He, Yue; Xing, Xiao-Jing; Tan, Dai-Di; Lin, Yi; Pang, Dai-Wen; Tang, Hong-Wu

    2015-03-01

    A novel strategy for the fabrication of a colorimetric aptasensor using label free gold nanoparticles (AuNPs) is proposed in this work, and the strategy has been employed for the assay of adenosine deaminase (ADA) activity. The aptasensor consists of adenosine (AD) aptamer, AD and AuNPs. The design of the biosensor takes advantage of the special optical properties of AuNPs and the interaction between AuNPs and single-strand DNA. In the absence of ADA, the AuNPs are aggregated and are blue in color under appropriate salt concentration because of the grid structure of an AD aptamer when binding to AD, while in the presence of the analyte, AuNPs remain dispersed with red color under the same concentration of salt owing to ADA converting AD into inosine which has no affinity with the AD aptamer, thus allowing quantitative investigation of ADA activity. The present strategy is simple, cost-effective, selective and sensitive for ADA with a detection limit of 1.526 U L(-1), which is about one order of magnitude lower than that previously reported. In addition, a very low concentration of the inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) could generate a distinguishable response. Therefore, the AuNP-based colorimetric biosensor has great potential in the diagnosis of ADA-relevant diseases and drug screening. PMID:25597304

  7. Single Laboratory Validation of A Ready-to-Use Phosphatase Inhibition Assay for Detection of Okadaic Acid Toxins

    PubMed Central

    Smienk, Henry G. F.; Calvo, Dolores; Razquin, Pedro; Domínguez, Elena; Mata, Luis

    2012-01-01

    A phosphatase inhibition assay for detection of okadaic acid (OA) toxins in shellfish, OkaTest, was single laboratory validated according to international recognized guidelines (AOAC, EURACHEM). Special emphasis was placed on the ruggedness of the method and stability of the components. All reagents were stable for more than 6 months and the method was highly robust under normal laboratory conditions. The limit of detection and quantification were 44 and 56 µg/kg, respectively; both below the European legal limit of 160 µg/kg. The repeatability was evaluated with 2 naturally contaminated samples. The relative standard deviation (RSD) calculated was 1.4% at a level of 276 µg/kg and 3.9% at 124 µg/kg. Intermediate precision was estimated by testing 10 different samples (mussel and scallop) on three different days and ranged between 2.4 and 9.5%. The IC50 values of the phosphatase used in this assay were determined for OA (1.2 nM), DTX-1 (1.6 nM) and DTX-2 (1.2 nM). The accuracy of the method was estimated by recovery testing for OA (mussel, 78–101%; king scallop, 98–114%), DTX-1 (king scallop, 79–102%) and DTX-2 (king scallop, 93%). Finally, the method was qualitatively compared to the mouse bioassay and LC-MS/MS. PMID:22778904

  8. Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]octanes as Selective α4β2-nAChR Ligands.

    PubMed

    Onajole, Oluseye K; Eaton, J Brek; Lukas, Ronald J; Brunner, Dani; Thiede, Lucinda; Caldarone, Barbara J; Kozikowski, Alan P

    2014-11-13

    We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at α4β2-nicotinic acetylcholine receptor (nAChR) subtype. Structure-activity relationship studies revealed that incorporation of a cyclopropane-containing side chain at the 5-position of the pyridine ring provides ligands with improved subtype selectivity for nAChR β2 subunit-containing nAChR subtypes (β2*-nAChRs) over β4*-nAChRs compared to the parent compound 4. Compound 15 exhibited subnanomolar binding affinity for α4β2- and α4β2*-nAChRs with negligible interaction. Functional assays confirm selectivity for α4β2-nAChRs. Furthermore, using the SmartCube assay system, this ligand showed antidepressant, anxiolytic, and antipsychotic features, while mouse forced-swim assay further confirm the antidepressant-like property of 15. PMID:25408831

  9. Phytochemical analysis and Enzyme Inhibition Assay of Aerva javanica for Ulcer

    PubMed Central

    2012-01-01

    Background Aerva javanica (Burm. f.) Juss. ex Schult. (Amaranthacea) is traditionally used for the treatment of wound healings, cough, diarrhoea, ulcer and hyperglycaemia. The current study was aimed to fractionate and isolate bioactive compounds and ultimately to evaluate their anti-ulcereogenic potential. Results In order to achieve these aims, the fractionation, purifications and then biological potential determination of the isolated compounds was carried out. For purification purpose, initially extraction of the plant material was done with aqueous MeOH in the order of increasing polarity by using solvent-solvent extraction method. Phytochemical analysis revealed the presence of three compounds, 3-hydroxy-4 methoxybenzaldehyde (1), ursolic acid (2) and (E)-N-(4-hydroxy-3-methoxyphenethyl)-3-(4-hydroxy-3-ethoxyphenyl) acryl amide (3). Inhibition of urease activity of various fractions revealed that ethyl acetate fraction showed significant activity (P <0.05) as compared to other fractions. (E)-N-(4-hydroxy-3-methoxyphenethyl)-3-(4-hydroxy-3-ethoxyphenyl) acryl amide (3) showed marked anti ulcer activity (P <0.05). Conclusion These results suggested the mild potential of A. javanica against ulcer. PMID:22849857

  10. Touchscreen assays of learning, response inhibition, and motivation in the marmoset (Callithrix jacchus).

    PubMed

    Kangas, Brian D; Bergman, Jack; Coyle, Joseph T

    2016-05-01

    Recent developments in precision gene editing have led to the emergence of the marmoset as an experimental subject of considerable interest and translational value. A better understanding of behavioral phenotypes of the common marmoset will inform the extent to which forthcoming transgenic mutants are cognitively intact. Therefore, additional information regarding their learning, inhibitory control, and motivational abilities is needed. The present studies used touchscreen-based repeated acquisition and discrimination reversal tasks to examine basic dimensions of learning and response inhibition. Marmosets were trained daily to respond to one of the two simultaneously presented novel stimuli. Subjects learned to discriminate the two stimuli (acquisition) and, subsequently, with the contingencies switched (reversal). In addition, progressive ratio performance was used to measure the effort expended to obtain a highly palatable reinforcer varying in magnitude and, thereby, provide an index of relative motivational value. Results indicate that rates of both acquisition and reversal of novel discriminations increased across successive sessions, but that rate of reversal learning remained slower than acquisition learning, i.e., more trials were needed for mastery. A positive correlation was observed between progressive ratio break point and reinforcement magnitude. These results closely replicate previous findings with squirrel monkeys, thus providing evidence of similarity in learning processes across nonhuman primate species. Moreover, these data provide key information about the normative phenotype of wild-type marmosets using three relevant behavioral endpoints. PMID:26846231

  11. Chlorpyrifos and Chlorpyrifos-Oxon Inhibit Axonal Growth by Interfering with the Morphogenic Activity of Acetylcholinesterase

    PubMed Central

    Yang, Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE−/−) versus wildtype (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE−/− DRG neurons. However, transfection of AChE−/− DRG neurons with cDNA encoding full-length AChE restored the wildtype response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs. PMID:18076960

  12. In vitro Plasmodium falciparum drug sensitivity assay: inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane.

    PubMed

    Ziegler, Hanne L; Staerk, Dan; Christensen, Jette; Hviid, Lars; Hägerstrand, Henry; Jaroszewski, Jerzy W

    2002-05-01

    Lupeol, which shows in vitro inhibitory activity against Plasmodium falciparum 3D7 strain with a 50% inhibitory concentration (IC50) of 27.7 +/- 0.5 microM, was shown to cause a transformation of the human erythrocyte shape toward that of stomatocytes. Good correlation between the IC50 value and the membrane curvature changes caused by lupeol was observed. Preincubation of erythrocytes with lupeol, followed by extensive washing, made the cells unsuitable for parasite growth, suggesting that the compound incorporates into erythrocyte membrane irreversibly. On the other hand, lupeol-treated parasite culture continued to grow well in untreated erythrocytes. Thus, the antiplasmodial activity of lupeol appears to be indirect, being due to stomatocytic transformation of the host cell membrane and not to toxic effects via action on a drug target within the parasite. A number of amphiphiles that cause stomatocyte formation, but not those causing echinocyte formation, were shown to inhibit growth of the parasites, apparently via a mechanism similar to that of lupeol. Since antiplasmodial agents that inhibit parasite growth through erythrocyte membrane modifications must be regarded as unsuitable as leads for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay. PMID:11959580

  13. In Vitro Plasmodium falciparum Drug Sensitivity Assay: Inhibition of Parasite Growth by Incorporation of Stomatocytogenic Amphiphiles into the Erythrocyte Membrane

    PubMed Central

    Ziegler, Hanne L.; Stærk, Dan; Christensen, Jette; Hviid, Lars; Hägerstrand, Henry; Jaroszewski, Jerzy W.

    2002-01-01

    Lupeol, which shows in vitro inhibitory activity against Plasmodium falciparum 3D7 strain with a 50% inhibitory concentration (IC50) of 27.7 ± 0.5 μM, was shown to cause a transformation of the human erythrocyte shape toward that of stomatocytes. Good correlation between the IC50 value and the membrane curvature changes caused by lupeol was observed. Preincubation of erythrocytes with lupeol, followed by extensive washing, made the cells unsuitable for parasite growth, suggesting that the compound incorporates into erythrocyte membrane irreversibly. On the other hand, lupeol-treated parasite culture continued to grow well in untreated erythrocytes. Thus, the antiplasmodial activity of lupeol appears to be indirect, being due to stomatocytic transformation of the host cell membrane and not to toxic effects via action on a drug target within the parasite. A number of amphiphiles that cause stomatocyte formation, but not those causing echinocyte formation, were shown to inhibit growth of the parasites, apparently via a mechanism similar to that of lupeol. Since antiplasmodial agents that inhibit parasite growth through erythrocyte membrane modifications must be regarded as unsuitable as leads for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay. PMID:11959580

  14. Quantifying Protection Against Influenza Virus Infection Measured by Hemagglutination-inhibition Assays in Vaccine Trials

    PubMed Central

    Zhao, Xiahong; Fang, Vicky J.; Ohmit, Suzanne E.; Monto, Arnold S.; Cowling, Benjamin J.

    2016-01-01

    Background: Correlations between hemagglutination-inhibition titers (hereafter “titers”) and protection against infection have been identified in historical studies. However, limited information is available about the dynamics of how titer influences protection. Methods: Titers were measured in randomized, placebo-controlled vaccine trials in Hong Kong among pediatrics during September 2009–December 2010 and the United States among adults during Oct 2007–April 2008. Intermediate unobserved titers were imputed using three interpolation methods. As participants were recruited at different times leading to varying exposure to infection relative to entry, a modified proportional hazards model was developed to account for staggered entry into the studies and to quantify the correlation of titers with protection against influenza infections, adjusting for waning in titers. The model was fitted using Markov chain Monte Carlo and importance sampling. Results: A titer of 1:40 was associated with a reduced infection risk of 40%–70% relative to a titer of 1:10, depending on the circulating strain; the corresponding protection associated with a titer of 1:80 was 54%–84%. Results were robust across interpolation methods. The trivalent-inactivated vaccine reduced cumulative incidence of influenza B and influenza A(H3N2) infections by six percentage points (pp; 95% credible interval = 2 pp, 10 pp) and 1 pp (95% credible interval = 0.3 pp, 2 pp) respectively, but not for influenza A(H1N1)pdm09. The live-attenuated vaccine showed little efficacy against influenza A(H3N2) infections. Conclusions: Titers are correlated with protection against influenza infections. The trivalent inactivated vaccine can reduce the risk of influenza A(H3N2) and influenza B infections in the community. PMID:26427723

  15. The open duration of fetal ACh receptor-channel changes during mouse muscle development

    PubMed Central

    Grassi, Francesca; Epifano, Olga; Mileo, Anna Maria; Barabino, Benedetta; Eusebi, Fabrizio

    1998-01-01

    We performed an RNase protection assay on cultured C2C12 mouse myotubes, demonstrating that the γ subunit of the fetal muscle acetylcholine receptor (AChR) exists as two splice variants, which differ in the presence of the amino terminal exon 5. We studied unitary ACh-evoked events in fibres acutely dissociated from the hindlimb flexor digitorum brevis muscle of BALB/C mice aged between embryonic day 16 (E16) and postnatal day 6 (P6). At all ages, the channel conductance was about 30 pS, typical of the fetal form of the AChR. The mean open time increased significantly from 6 ms at E16 to 9 ms at E19, then decreased to about 5 ms during the first postnatal week. The lengthening of the open time was considerably delayed in hypothyroid mice. Data were recorded at 24-26 °C. On the basis of previously reported experiments in heterologous expression systems, we suggest that the modulation of channel open time is related to the expression of the AChR incorporating the γs subunit. These events might be coupled to the crucial modifications in muscle innervation that take place during the same developmental period. PMID:9508804

  16. THE INHIBITION OF ACETYLCHOLINESTERASE ACTIVITY IN PINK SHRIMP 'PENAEUS DUORARUM' BY METHYL PARATHION AND ITS OXON

    EPA Science Inventory

    The inhibition of acetylcholinesterase, E.C.3.1.1.7, (AChE) activity in the ventral nerve cord of pink shrimp (Penaeus duorarum) by methyl parathion (MPT) and methyl paraoxon (MPO) was investigated. When the animals were exposed to these compounds in water (in vivo), AChE activit...

  17. Development of ESI-MS-based continuous enzymatic assay for real-time monitoring of enzymatic reactions of acetylcholinesterase.

    PubMed

    Fu, Qiang; Tang, Jun; Cui, Meng; Zheng, Zhong; Liu, Zhiqiang; Liu, Shuying

    2015-05-15

    The continuous enzymatic assay based on ESI-MS was developed to real-time monitoring of enzymatic reactions of acetylcholinesterase (AChE). The changes of product concentrations were continuously measured. Calibration curves were established for quantitative calculation. By this method, the Michaelis constant (Km) of acetylcholinesterase was determined to be 70.60±0.93μM and Huperzine A as an effective inhibitor of acetylcholinesterase displayed a mixed inhibition with competitive and noncompetitive inhibition behaviors. The half maximal inhibitory concentration (IC50) and inhibition constant (Ki) value of Huperzine A were also calculated as 48.51±1.16nM and 26.73±0.27nM, respectively. This method provides the rapid and accurate ways to monitor enzyme reactions. PMID:25875590

  18. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection.

    PubMed

    Egea, Javier; Buendia, Izaskun; Parada, Esther; Navarro, Elisa; León, Rafael; Lopez, Manuela G

    2015-10-15

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system, being expressed in neurons and non-neuronal cells, where they participate in a variety of physiological responses like memory, learning, locomotion, attention, among others. We will focus on the α7 nAChR subtype, which has been implicated in neuroprotection, synaptic plasticity and neuronal survival, and is considered as a potential therapeutic target for several neurological diseases. Oxidative stress and neuroinflammation are currently considered as two of the most important pathological mechanisms common in neurodegenerative diseases such as Alzheimer, Parkinson or Huntington diseases. In this review, we will first analysed the distribution and expression of nAChR in mammalian brain. Then, we focused on the function of the α7 nAChR subtype in neuronal and non-neuronal cells and its role in immune responses (cholinergic anti-inflammatory pathway). Finally, we will revise the anti-inflammatory pathway promoted via α7 nAChR activation that is related to recruitment and activation of Jak2/STAT3 pathway, which on the one hand inhibits NF-κB nuclear translocation, and on the other hand, activates the master regulator of oxidative stress Nrf2/HO-1. This review provides a profound insight into the role of the α7 nAChR subtype in microglia and point out to microglial α7/HO-1 pathway as an anti-inflammatory therapeutic target. PMID:26232730

  19. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.

    PubMed

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe3O4-SiO2) possessed three dimensional core-shell structures with an average diameter of ~20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g(-1). The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The Km and the Vmax values (0.02 mM, 6.40 U·mg(-1) enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg(-1) enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. PMID:24656379

  20. Cotinine Exposure Increases Fallopian Tube PROKR1 Expression via Nicotinic AChRα-7

    PubMed Central

    Shaw, Julie L.V.; Oliver, Elizabeth; Lee, Kai-Fai; Entrican, Gary; Jabbour, Henry N.; Critchley, Hilary O.D.; Horne, Andrew W.

    2010-01-01

    Tubal ectopic pregnancy (EP) is the most common cause of maternal mortality in the first trimester of pregnancy; however, its etiology is uncertain. In EP, embryo retention within the Fallopian tube (FT) is thought to be due to impaired smooth muscle contractility (SMC) and alterations in the tubal microenvironment. Smoking is a major risk factor for EP. FTs from women with EP exhibit altered prokineticin receptor-1 (PROKR1) expression, the receptor for prokineticins (PROK). PROK1 is angiogenic, regulates SMC, and is involved in intrauterine implantation. We hypothesized that smoking predisposes women to EP by altering tubal PROKR1 expression. Sera/FT were collected at hysterectomy (n = 21). Serum levels of the smoking metabolite, cotinine, were measured by enzyme-linked immunosorbent assay. FTs were analyzed by q-RT-PCR, immunohistochemistry, and Western blotting for expression of PROKR1 and the predicted cotinine receptor, nicotinic acetylcholine receptor α-7 (AChRα−7). FT explants (n = 4) and oviductal epithelial cells (cell line OE-E6/E7) were treated with cotinine and an nAChRα−7 antagonist. PROKR1 transcription was higher in FTs from smokers (P < 0.01). nAChRα−7 expression was demonstrated in FT epithelium. Cotinine treatment of FT explants and OE-E6/E7 cells increased PROKR1 expression (P < 0.05), which was negated by cotreatment with nAChRα−7 antagonist. Smoking targets human FTs via nAChRα−7 to increase tubal PROKR1, leading to alterations in the tubal microenvironment that could predispose to EP. PMID:20864676

  1. Identification of G-Quadruplex Inducers Usinga Simple, Inexpensiveand Rapid High Throughput Assay, and TheirInhibition of Human Telomerase

    PubMed Central

    Sassano, Maria Florencia; Schlesinger, Alexander P; Jarstfer, Michael B

    2012-01-01

    Telomeres are protein and DNA complexes located atchromosome ends. Telomeric DNA is composed of a double stranded region of repetitive DNA followed by single-stranded 3' extension of aG-rich sequence. Single-stranded G-rich sequencescan fold into G-quadruplex structures,and molecules that stabilize G-quadruplexes are known to inhibit the enzyme telomerase and disrupt telomere maintenance. Because telomere maintenance is required for proliferation of cancer cells, G-quadruplex stabilizers have become attractive prospects for anticancer drug discovery.However, telomere-targeting G-quadruplex ligands have yet to enter the clinic owing in part to poor pharmacokinetics and target selectivity. Increasing the pharmacophore diversity of G-quadruplex and specifically telomeric-DNA targeting agents should assist in overcoming these shortcomings. In this work, we report the identification and validation ofligands that bind telomeric DNA and induce G-quadruplex formationusing the NCI Diversity Set I, providing validation of anextremely simple, rapid and high-throughput screen using FRET technology. Hits from the screen were validated by examining telomerase inhibition and G-quadruplex inductionusing CD spectroscopy and DNA polymerase stop assays. We show that two known DNA binding molecules, ellipticine derivativeNSC 176327 (apyridocarbazole) and NSC 305831 (an antiparasitic hetero-cyclediamidine referred to as furamidine and DB75),are selective induceG-quadruplex formation in the human telomeric sequence and bind telomeric DNA quadruplexes in the absence of stabilizing monovalent cations with molar ratios(molecule: DNA)of 4:1and 1.5:1, respectively. PMID:23173022

  2. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  3. A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia.

    PubMed

    Agrawal, Rahul; Tyagi, Ethika; Shukla, Rakesh; Nath, Chandishwar

    2009-03-01

    In the present study, role of brain insulin receptors (IRs) in memory functions and its correlation with acetylcholinesterase (AChE) activity and oxidative stress in different brain regions were investigated in intracerebroventricular (ICV) streptozotocin (STZ) induced dementia model. Rats were treated with STZ (3 mg/kg, ICV) on day 1 and 3. Donepezil (5 mg/kg po) and melatonin (20 mg/kg ip) were administered in pre- and post-treatment schedules. Morris water maze test was done on day 14 and animals were sacrificed on day 21 from 1st STZ injection. Memory deficit was found in STZ group as indicated by no significant decrease in latency time antagonized by donepezil and melatonin. IR protein level was found significantly increased in trained group as compared to control, whereas STZ decreased IR level significantly as compared to trained rats in hippocampus which indicates that IR is associated with memory functions. STZ induced decrease in IR was reversed by melatonin but not by donepezil. Melatonin per se did not show any significant change in IR level as compared to control. AChE activity (DS and SS fraction) was found to be increased in hippocampus in STZ group as compared to trained which was inhibited by donepezil and melatonin. Increase in MDA level and decrease in GSH level were obtained in STZ group indicating oxidative stress, which was attenuated by donepezil and melatonin. Effectiveness of antioxidant, melatonin but not of anti-cholinesterase, donepezil against STZ induced changes in IR indicates that IR is more affected with oxidative stress than cholinergic changes. PMID:19705549

  4. Direct growth inhibition assay of total airborne fungi with application of biocide-treated malt extract agar

    PubMed Central

    Er, Chin Ming; Sunar, N.M.; Leman, A.M.; Othman, N.

    2015-01-01

    Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants’ health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi. PMID:27077051

  5. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. PMID:27427305

  6. Direct growth inhibition assay of total airborne fungi with application of biocide-treated malt extract agar.

    PubMed

    Er, Chin Ming; Sunar, N M; Leman, A M; Othman, N

    2015-01-01

    Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants' health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi. PMID:27077051

  7. A label-free and sensitive fluorescent assay for one step detection of protein kinase activity and inhibition.

    PubMed

    Wang, Lei; Yan, Xu; Su, Xingguang

    2016-09-01

    In this paper, a label-free, highly sensitive and simple assay for one step detection of protein kinase (PKA) activity and inhibition that avoids the fluorescent dye process has been established. The detection was based on the fluorescence (FL) quenching of peptide-Ag nanoclusters (Ag NCs) caused by antibody modified Au nanoparticles (anti-Au NPs) via fluorescence resonance energy transfer (FRET). With PKA and adenosine 5'-triphosphate (ATP) introduced, the substrate peptide of Ag NCs could react with PKA via targeted phosphorylation, and followed by the linking interactions between peptide-Ag NCs and anti-Au NPs. According to the fluorescence quenching of Ag NCs, the activity of protein kinase can be facilely monitored in the range of 0.1-2000 mU/μL with high sensitivity. The detection limit for PKA is 0.039 mU/μL. We further explored the inhibitory effect of H-89 for protein kinase activity. The developed method was also applied to the investigation of drug-induced PKA activation in HeLa cells, which provides a promising means for screening of kinase-related drugs and the clinical diagnosis of disease. PMID:27543031

  8. Boronate Affinity Fluorescent Nanoparticles for Förster Resonance Energy Transfer Inhibition Assay of cis-Diol Biomolecules.

    PubMed

    Wang, Shuangshou; Ye, Jin; Li, Xinglin; Liu, Zhen

    2016-05-17

    Förster resonance energy transfer (FRET) has been essential for many applications, in which an appropriate donor-acceptor pair is the key. Traditional dye-to-dye combinations remain the working horses but are rather nonspecifically susceptive to environmental factors (such as ionic strength, pH, oxygen, etc.). Besides, to obtain desired selectivity, functionalization of the donor or acceptor is essential but usually tedious. Herein, we present fluorescent poly(m-aminophenylboronic acid) nanoparticles (poly(mAPBA) NPs) synthesized via a simple procedure and demonstrate a FRET scheme with suppressed environmental effects for the selective sensing of cis-diol biomolecules. The NPs exhibited stable fluorescence properties, resistance to environmental factors, and a Förster distance comparable size, making them ideal donor for FRET applications. By using poly(mAPBA) NPs and adenosine 5'-monophosphate modified graphene oxide (AMP-GO) as a donor and an acceptor, respectively, an environmental effects-suppressed boronate affinity-mediated FRET system was established. The fluorescence of poly(mAPBA) NPs was quenched by AMP-GO while it was restored when a competing cis-diol compounds was present. The FRET system exhibited excellent selectivity and improved sensitivity toward cis-diol compounds. Quantitative inhibition assay of glucose in human serum was demonstrated. As many cis-diol compounds such as sugars and glycoproteins are biologically and clinically significant, the FRET scheme presented herein could find more promising applications. PMID:27089186

  9. The relationship between single radial hemolysis, hemagglutination inhibition, and virus neutralization assays used to detect antibodies specific for equine influenza viruses.

    PubMed

    Morley, P S; Hanson, L K; Bogdan, J R; Townsend, H G; Appleton, J A; Haines, D M

    1995-06-01

    Antibodies specific for equine influenza viruses are usually quantified using single radial hemolysis (SRH), hemagglutination inhibition (HI) or virus neutralization (VN). Neutralizing antibodies are thought to provide optimum protection to challenged animals. The purpose of this study was to determine the extent to which SRH and HI assays detect antibodies which neutralize equine influenza viruses. Acute and convalescent sera from 41 horses were analyzed using VN, SRH, and HI assays. These horses were present in a population of Thoroughbred racehorses during an epidemic of upper respiratory tract disease associated with influenza A/equine/Saskatoon/1/91 (H3N8), infections. Concentrations of antibodies binding to influenza A/equine/Kentucky/1/81 (H3N8), A/equine/Miami/1/63 (H3N8), and A/equine/Prague/1/56 (H7N7) were determined. Results of the VN assay were compared with results from the SRH and HI assays for acute antibody levels, changes in antibody concentrations between acute and convalescent sampling, and the occurrence of seroconversion. The correlation between assays for pre-exposure antibody levels ranged from 88% to 96%. The correlation between assays for change in antibody concentration ranged from 83% to 90% for the H3N8 viruses. This study shows that antibody concentrations specific for equine influenza virus, measured using SRH and HI assays, are highly correlated with concentrations detected using a VN assay. PMID:7653031

  10. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition.

    PubMed

    Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson

    2015-01-01

    Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis. PMID:25312723

  11. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder.

    PubMed Central

    Somogyi, G T; Zernova, G V; Tanowitz, M; de Groat, W C

    1997-01-01

    1. 3H-Noradrenaline (NA) and 14C-acetylcholine (ACh) released by electrical field stimulation were measured simultaneously in strips from the body of rat urinary bladder. 2. omega-Conotoxin GVIA (omega-CgTX; 20-100 nM) suppressed the non-facilitated transmitter release evoked by intermittent stimulation (IS), whereas nifedipine (1 microM) did not affect release. 3. Continuous electrical stimulation (CS) facilitated NA and ACh release via an atropine-sensitive mechanism. omega-CgTX reduced the facilitated release of NA (44% depression) but did not affect ACh release. Nifedipine depressed ACh release (43%) but not NA release. Combined administration of nifedipine and omega-CgTX (20 nM) produced a greater suppression of NA and ACh release (86 and 91%, respectively). 4. Maximal muscarinic facilitation of NA (5-fold) and ACh (17-fold) release occurred following administration of eserine, an anticholinesterase agent. Release of both NA and ACh was depressed by nifedipine (70 and 83%, respectively) but not by omega-CgTX. Combined application of omega-CgTX and nifedipine elicited a further depression of NA (95%) but not ACh release. 5. When NA and ACh release was facilitated with phorbol dibutyrate (0.5 microM), nifedipine inhibited ACh (67%) but not NA release, whereas omega-CgTX inhibited NA (73%) but not ACh release. Combined administration of both Ca2+ channel blockers did not elicit greater inhibition. 6. Bay K 8644, the L-type Ca2+ channel activator, increased ACh release in a dose-dependent manner (up to 5-fold) but did not significantly change NA release. 7. Both omega-CgTX (20-100 nM) and nifedipine (100 nM-1 microM) significantly decreased (50-80%) the neurally evoked contractions of the bladder strips. 8. It is concluded that L-type Ca2+ channels play a major role in muscarinic facilitation of NA and ACh release in the urinary bladder but are not essential for non-facilitated release. Other types of Ca2+ channels, including N-type, are involved to varying

  12. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    SciTech Connect

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-04-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.

  13. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus – Multiple gene expression presents an opportune model system for elucidation of multiple functions of AChEs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...

  14. Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin.

    PubMed

    Martin, Benjamin P; Vasilieva, Elena; Dupureur, Cynthia M; Spilling, Christopher D

    2015-12-15

    New monocyclic phosphate, phosphonate and difluorophosphonate analogs of the natural AChE inhibitor cyclophostin were synthesized and their activity toward human AChE examined. Surprisingly, the phosphate, phosphonate, and difluorophosphonate analogs all showed diminished activity when compared with the natural product. PMID:26585276

  15. Organophosphorus Inhibition and Characterization of Recombinant Guinea Pig Acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Chapleau, Richard R; Mahle, Deirdre A; Gearhart, Jeffery M

    2015-01-01

    Organophosphorus (OP) pesticides and nerve agents have been designed to inhibit the hydrolysis of the neurotransmitter acetylcholine by covalently binding to the active site serine of acetylcholinesterase while Alzheimer drugs and prophylactics, such as tacrine, are characterized by reversible binding. Historically, the guinea pig has been believed to be the best non-primate model for OP toxicology and medical countermeasure development because, similarly to humans, guinea pigs have low amounts of circulating OP metabolizing carboxylesterase. To explore the hypothesis that guinea pigs are the appropriate responder species for OP toxicology and medical countermeasure development, guinea pig acetylcholinesterase (gpAChE) was cloned into pENTR/D-TOPO, recombined into pT-Rex-DEST30 and expressed in Human Embryonic Kidney 293 cells. Recombinant gpAChE was purified to a specific activity of 800 U/mg using size exclusion and immobilized nickel affinity chromatography, with purity confirmed by gel electrophoresis. Ellman's assay was used to enzymatically characterize gpAChE, identifying a K(M) of 154±18.7 µmol L(-1) and a k(cat) of 4.79x10(4)±5.26x10(2) /sec. Apparent gpAChE IC50's for diisopropylfluorophosphate, dicrotophos, paraoxon, and an Alzheimer's drug, tacrine, were found to be 10.1±1.98, 337±108, 1.02±0.29 and 0.30±0.01 µmol L(-1), respectively. Apparent gpAChE inhibition constants for diisopropylfluorophosphate, dicrotophos, paraoxon, and tacrine were found to be 8.40±0.60, 4.50±0.30, 0.29±0.01 and 0.42±0.07 µmol L(-1), respectively. Lineweaver-Burk plots confirmed tacrine as a mixed inhibitor and paraoxon, dicrotophos and diisopropylfluorophosphate as irreversible non-competitive inhibitors. gpAChE bimolecular rate constants for diisopropylfluorophosphate, dicrotophos and paraoxon were found to be 1.44±0.33x10(4), 1.56±0.12x10(3) and 4.57± 0.23x10(5) L µmol(-1) min(-1), respectively. Although the blood levels of OP metabolizing carboxylesterases

  16. Non-competitive Inhibition of Nicotinic Acetylcholine Receptors by Ladybird Beetle Alkaloids.

    PubMed

    Leong, Ron L; Xing, Hong; Braekman, Jean-Claude; Kem, William R

    2015-10-01

    Ladybird beetles (Family Coccinellidae) secrete an alkaloid rich venom from their leg joints that protects them from predators. Coccinellines, the major venom constituents, are alkaloids composed of three fused piperidine rings that share a common nitrogen atom. Although many coccinellines have been isolated and chemically characterized, their pharmacological properties are essentially unknown. Using radioligand binding and functional assays we investigated the actions of several coccinellines on skeletal muscle and α7 nicotinic acetylcholine receptors (nAChRs). The alkaloids were shown to displace the specific binding of tritiated piperidyl-N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine ([(3)H]-TCP), which has been shown to bind deep within the ion channel of the electric fish (Torpedo) muscle nAChR. The stereoisomers precoccinelline and hippodamine (whose nitrogens are predicted to be ionized at physiological pH) and their respective analogs N-methyl-precoccinelline and N-methyl-hippodamine (whose quaternary nitrogens are permanently charged) displayed similar IC50s for inhibition of [(3)H]-TCP binding. However, the corresponding precoccinelline and hippodamine N-oxides, coccinelline and convergine (which have an electronegative oxygen bonded to an electropositive nitrogen) displayed significantly higher binding IC50s. Finally, exochomine, a dimeric coccinelline containing the hippodamine structure, displayed the highest IC50 (lowest affinity) for displacing specific [(3)H]-TCP binding. The presence of a desensitizing concentration (10(-3) M) of carbachol (CCh) had little or no effect on the affinity of the Torpedo nAChR for the three coccinellines tested. High concentrations of the coccinellid alkaloids did not affect binding of [(3)H]-cytisine to Torpedo receptor ACh binding sites. Inhibition of the alpha7 nAChR with pre-equilibrated precoccinelline was insurmountable with respect to ACh concentration. We conclude that the coccinellines bind to one or more

  17. A microplate assay for the coupled transglycosylase-transpeptidase activity of the penicillin binding proteins; a vancomycin-neutralizing tripeptide combination prevents penicillin inhibition of peptidoglycan synthesis.

    PubMed

    Kumar, Vidya P; Basavannacharya, Chandrakala; de Sousa, Sunita M

    2014-07-18

    A microplate, scintillation proximity assay to measure the coupled transglycosylase-transpeptidase activity of the penicillin binding proteins in Escherichia coli membranes was developed. Membranes were incubated with the two peptidoglycan sugar precursors UDP-N-acetyl muramylpentapeptide (UDP-MurNAc(pp)) and UDP-[(3)H]N-acetylglucosamine in the presence of 40 μM vancomycin to allow in situ accumulation of lipid II. In a second step, vancomycin inhibition was relieved by addition of a tripeptide (Lys-D-ala-D-ala) or UDP-MurNAc(pp), resulting in conversion of lipid II to cross-linked peptidoglycan. Inhibitors of the transglycosylase or transpeptidase were added at step 2. Moenomycin, a transglycosylase inhibitor, had an IC50 of 8 nM. Vancomycin and nisin also inhibited the assay. Surprisingly, the transpeptidase inhibitors penicillin and ampicillin showed no inhibition. In a pathway assay of peptidoglycan synthesis, starting from the UDP linked sugar precursors, inhibition by penicillin was reversed by a 'neutral' combination of vancomycin plus tripeptide, suggesting an interaction thus far unreported. PMID:24944023

  18. A bridging study for oxytetracycline in the edible fillet of rainbow trout: Analysis by a liquid chromatographic method and the official microbial inhibition assay

    USGS Publications Warehouse

    Stehly, G.R.; Gingerich, W.H.; Kiessling, C.R.; Cutting, J.H.

    1999-01-01

    Oxytetracycline (OTC) is a drug approved by the U.S. Food and Drug Administration (FDA) to control certain diseases in salmonids and catfish. OTC is also a likely control agent for diseases of other fish species and for other diseases of salmonids and catfish not currently on the label. One requirement for FDA to extend and expand the approval of this antibacterial agent to other fish species is residue depletion studies. The current regulatory method for OTC in fish tissue, based on microbial inhibition, lacks sensitivity and specificity. To conduct residue depletion studies for OTC in fish with a liquid chromatographic method, a bridging study was required to determine its relationship with the official microbial inhibition assay. Triplicate samples of rainbow trout fillet tissue fortified with OTC at 0.3, 0.6, 1.2, 2.4, 4.8, and 9.6 ppm and fillet tissue with incurred OTC at approximately 0.75, 1.5, and 3.75 ppm were analyzed by high-performance liquid chromatography (HPLC) and the microbial inhibition assay. The results indicated that the 2 methods are essentially identical in the tested range, with mean coefficients of variation of 1.05% for the HPLC method and 3.94% for the microbial inhibition assay.

  19. Effect of hypochlorite oxidation on cholinesterase-inhibition assay of acetonitrile extracts from fruits and vegetables for monitoring traces of organophosphate pesticides.

    PubMed

    Kitamura, Kentaro; Maruyama, Kaori; Hamano, Sachiko; Kishi, Tomohiro; Kawakami, Tsuyoshi; Takahashi, Yasuo; Onodera, Sukeo

    2014-02-01

    A reproducible method for monitoring traces of cholinesterase (ChE) inhibitors in acetonitrile extracts from fruits and vegetables is described. The method is based on hypochlorite oxidation and ChE inhibition assay. Four common representative samples of produce were selected from a supermarket to investigate the effect of different matrices on pesticides recoveries and assay precision. The samples were extracted with acetonitrile to prepare them for ChE inhibition assays: if necessary, clean-up was performed using dispersive solid-phase extraction for gas chromatography-mass spectrometry (GC/MS) analyses. Chlorine was tested as an oxidising reagent for the conversion of thiophosphorus pesticides (P=S compounds) into their P=O analogues, which have high ChE-inhibiting activity. Chlorine consumption of individual acetonitrile extracts was determined and was strongly dependent on the individual types of fruits and vegetables. After treating the acetonitrile extracts with an excess hypochlorite at 25°C for 15 min, the ChE-inhibiting activities and detection limits for each chlorine-treated pesticide solution were determined. Matrix composition did not interfere significantly with the determination of the pesticides. Enhanced anti-ChE activities leading to low detection limits (ppb levels) were observed for the chlorine-treated extracts that were spiked with chlorpyrifos, diazinon, fenitrothion, and isoxathion. This combination of oxidative derivatisation and ChE inhibition assays was used successfully to monitor and perform semi-quantitative determination of ChE inhibitors in apple, tomato, cucumber, and strawberry samples. PMID:24418711

  20. Gripped by Gout: Avoiding the Ache and Agony

    MedlinePlus

    ... please review our exit disclaimer . Subscribe Gripped by Gout Avoiding the Ache and Agony Sudden, painful swelling ... toe is often the first warning sign of gout. It can affect other joints as well. Without ...

  1. Topoisomerase Assays

    PubMed Central

    Nitiss, John L.; Soans, Eroica; Rogojina, Anna; Seth, Aman; Mishina, Margarita

    2012-01-01

    Topoisomerases are nuclear enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of topoisomerases: type I, which makes single-stranded cuts in DNA, and type II enzymes, which cut and pass double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. The protocols described in this unit are of assays used to assess new chemical entities for their ability to inhibit both forms of DNA topoisomerase. Included are an in vitro assay for topoisomerase I activity based on relaxation of supercoiled DNA and an assay for topoisomerase II based on the decatenation of double-stranded DNA. The preparation of mammalian cell extracts for assaying topoisomerase activity is described, along with a protocol for an ICE assay for examining topoisomerase covalent complexes in vivo and an assay for measuring DNA cleavage in vitro. PMID:22684721

  2. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders.

    PubMed

    Kalkman, Hans O; Feuerbach, Dominik

    2016-07-01

    The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders. PMID:26979166

  3. Different inhibition of acetylcholinesterase in selected parts of the rat brain following intoxication with VX and Russian VX.

    PubMed

    Hajek, Petr; Bajgar, Jiri; Slizova, Dasa; Krs, Otakar; Kuca, Kamil; Capek, Lukas; Fusek, Josef

    2009-01-01

    Differences between acetylcholinesterase (AChE) inhibition in the brain structures following VX and RVX exposure are not known as well as information on the possible correlation of biochemical and histochemical methods detecting AChE activity. Therefore, inhibition of AChE in different brain parts detected by histochemical and biochemical techniques was compared in rats intoxicated with VX and RVX. AChE activities in defined brain regions 30 min after treating rats with VX and Russian VX intramuscularly (1.0 x LD(50)) were determined by using biochemical and histochemical methods. AChE inhibition was less expressed for RVX, in comparison with VX. Frontal cortex and pontomedullar areas containing ncl. reticularis has been found as the most sensitive areas for the action of VX. For RVX, these structures were determined to be frontal cortex, dorsal septum, and hippocampus, respectively. Histochemical and biochemical results were in good correlation (R(xy) = 0.8337). Determination of AChE activity in defined brain structures was a more sensitive parameter for VX or RVX exposure than the determination of AChE activity in the whole-brain homogenate. This activity represents a "mean" of the activities in different structures. Thus, AChE activity is the main parameter investigated in studies searching for target sites following nerve-agent poisoning contributing to better understanding of toxicodynamics of nerve agents. PMID:19514933

  4. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Gandía, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; López, M. G.; Martínez-Sierra, R.; Borges, R.; García, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by

  5. Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, antioxidant and neuroprotection properties against Alzheimer's disease.

    PubMed

    Mishra, Chandra Bhushan; Manral, Apra; Kumari, Shikha; Saini, Vikas; Tiwari, Manisha

    2016-08-15

    A series of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)-1H-indene-1,3(2H)-diones were designed, synthesized and appraised as multifunctional anti-Alzheimer agents. In vitro studies of compounds 27-38 showed that these compounds exhibit moderate to excellent AChE, BuChE and Aβ aggregation inhibitory activity. Notably, compounds 34 and 38 appeared as most active multifunctional agents in the entire series and exhibited excellent inhibition against AChE (IC50=0.048μM: 34; 0.036μM: 38), Aβ aggregation (max% inhibition 82.2%, IC50=9.2μM: 34; max% inhibition 80.9%, IC50=10.11μM: 38) and displayed significant antioxidant potential in ORAC-FL assay. Both compounds also successfully diminished H2O2 induced oxidative stress in SH-SY5Y cells. Fascinatingly, compounds 34 and 38 showed admirable neuroprotective effects against H2O2 and Aβ induced toxicity in SH-SY5Y cells. Additionally, both derivatives showed no considerable toxicity in neuronal cell viability assay and represented drug likeness properties in the primarily pharmacokinetics study. All these results together, propelled out that compounds 34 and 38 might serve as promising multi-functional lead candidates for treatment of AD in the future. PMID:27353888

  6. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively. PMID:26293707

  7. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-01-01

    In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex

  8. Development of LC/MS/MS, high-throughput enzymatic and cellular assays for the characterization of compounds that inhibit kynurenine monooxygenase (KMO).

    PubMed

    Winkler, Dirk; Beconi, Maria; Toledo-Sherman, Leticia M; Prime, Michael; Ebneth, Andreas; Dominguez, Celia; Muñoz-Sanjuan, Ignacio

    2013-09-01

    Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells. PMID:23690293

  9. A Cell-Based Fluorescent Assay to Detect the Activity of Shiga Toxin and Other Toxins That Inhibit Protein Synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7, a major cause of food-borne illness, produces Shiga toxins that block protein synthesis by inactivating the ribosome. In this chapter we describe a simple cell-based fluorescent assay to detect Shiga toxins and inhibitors of toxin activity. The assay can also be used to d...

  10. Neuromuscular therapeutics by RNA-targeted suppression of ACHE gene expression.

    PubMed

    Dori, Amir; Soreq, Hermona

    2006-10-01

    RNA-targeted therapeutics offers inherent advantages over small molecule drugs wherever one out of several splice variant enzymes should be inhibited. Here, we report the use of Monarsen, a 20-mer acetylcholinesterase-targeted antisense agent with three 3'-2'o-methyl-protected nucleotides, for selectively attenuating the stress-induced accumulation of the normally rare, soluble "readthrough" acetylcholinesterase variant AChE-R. Acetylcholine hydrolysis by AChE-R may cause muscle fatigue and moreover, limit the cholinergic anti-inflammatory blockade, yielding inflammation-associated pathology. Specific AChE-R targeting by Monarsen was achieved in cultured cells, experimental animals, and patient volunteers. In rats with experimental autoimmune myasthenia gravis, oral delivery of Monarsen improved muscle action potential in a lower dose regimen (nanomolar versus micromolar), rapid and prolonged manner (up to 72 h versus 2-4 h) as compared with the currently used small molecule anticholinesterases. In central nervous system neurons of both rats and cynomolgus monkeys, systematic Monarsen treatment further suppressed the levels of the proinflammatory cytokines interleukin-1 (IL-1) and IL-6. Toxicology testing and ongoing clinical trials support the notion that Monarsen treatment would offer considerable advantages over conventional cholinesterase inhibitors with respect to dosing, specificity, side effects profile, and duration of efficacy, while raising some open questions regarding its detailed mechanism of action. PMID:17145929

  11. Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats.

    PubMed

    Chattipakorn, Siriporn; Pongpanparadorn, Anucha; Pratchayasakul, Wasana; Pongchaidacha, Anchalee; Ingkaninan, Kornkanok; Chattipakorn, Nipon

    2007-03-01

    The current pharmacotherapy for Alzheimer's disease (AD) is the use of acetylcholinesterase inhibitors (AChE-Is). A previous in vitro study showed that Tabernaemontana divaricata extract (TDE) can inhibit AChE activity. However, neither the AChE inhibitory effects nor the effect on neuronal activity of TDE has been investigated in vivo. To determine those effects of TDE in animal models, the Ellman's colorimetric method was implemented to investigate the cortical and circulating cholinesterase (ChE) activity, and Fos expression was used to determine the neuronal activity in the cerebral cortex, following acute administration of TDE with various doses (250, 500 and 1000 mg/kg) and at different time points. All doses of TDE 2 h after a single administration significantly inhibited cortical AChE activity and enhanced neuronal activity in the cerebral cortex. The enhancement of Fos expression and AChE inhibitory effects in the cerebral cortex among the three TDE-treated groups was not significantly different. A 2 h interval following all doses of TDE administration had no effect on circulating ChE activity. However, TDE significantly inhibited circulating AChE 10, 30 and 60 min after administration. Our findings suggest that TDE is a reversible AChE-I and could be beneficial as a novel therapeutic agent for AD. PMID:17023131

  12. Comparability of neuraminidase inhibition antibody titers measured by enzyme-linked lectin assay (ELLA) for the analysis of influenza vaccine immunogenicity.

    PubMed

    Eichelberger, Maryna C; Couzens, Laura; Gao, Yonghong; Levine, Min; Katz, Jacqueline; Wagner, Ralf; Thompson, Catherine I; Höschler, Katja; Laurie, Karen; Bai, Tian; Engelhardt, Othmar G; Wood, John

    2016-01-20

    Neuraminidase-inhibition (NI) antibody titers can be used to evaluate the immunogenicity of inactivated influenza vaccines and have provided evidence of serologic cross-reactivity between seasonal and pandemic H1N1 viruses. The traditional thiobarbituric acid assay is impractical for large serologic analyses, and therefore many laboratories use an enzyme-linked lectin assay (ELLA) to determine serum NI antibody titers. The comparability of ELLA NI antibody titers when measured in different laboratories was unknown. Here we report a study conducted through the Consortium for the Standardisation of Influenza SeroEpidemiology (CONSISE) to evaluate the variability of the ELLA. NI antibody titers of a set of 12 samples were measured against both N1 and N2 neuraminidase antigens in 3 independent assays by each of 23 laboratories. For a sample repeated in the same assay, ≥96% of N1 and N2 assays had less than a 4-fold difference in titer. Comparison of the titers measured in assays conducted on 3 different days in the same laboratory showed that a four-fold difference in titer was uncommon. Titers of the same sera measured in different laboratories spanned 3 to 6 two-fold dilutions (i.e., 8-64 fold difference in titer), with an average percent geometric coefficient of variation (%GCV) of 112 and 82% against N1 and N2 antigens, respectively. The difference in titer as indicated by fold range and %GCV was improved by normalizing the NI titers to a standard that was included in each assay. This study identified background signal and the amount of antigen in the assay as critical factors that influence titer, providing important information toward development of a consensus ELLA protocol. PMID:26707221

  13. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae.

    PubMed

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (K(M)) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  14. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  15. Comparison of an enzyme-linked immunosorbent assay with indirect hemagglutination and hemagglutination inhibition for determination of rubella virus antibody: evaluation of immune status with commercial reagents in a clinical laboratory.

    PubMed Central

    Truant, A L; Barksdale, B L; Huber, T W; Elliott, L B

    1983-01-01

    Comparative evaluations of immune status for rubella virus are described for enzyme-linked immunosorbent assay, hemagglutination inhibition, and indirect hemagglutination. A 92.1% agreement between enzyme-linked immunosorbent assay and indirect hemagglutination assay was demonstrated for rubella immune status. Enzyme-linked immunosorbent assay and hemagglutination inhibition demonstrated a 92.6% agreement and were compared in an attempt to define the quantitative usefulness of comparisons of single sera for determining immune status. These data support the relative lack of correlation between single enzyme-linked immunosorbent assay and hemagglutination inhibition quantitative values. Enzyme immunoassay was, however, an acceptable alternative to hemagglutination inhibition for the determination of immune status to rubella virus. PMID:6338030

  16. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  17. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  18. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  19. Detoxification of nerve agents by a substituted beta-cyclodextrin: application of a modified biological assay.

    PubMed

    Wille, T; Tenberken, O; Reiter, G; Müller, S; Le Provost, R; Lafont, O; Estour, F; Thiermann, H; Worek, F

    2009-11-30

    Chemical warfare agents (nerve agents) are still available and present a real threat to the population. Numerous in vitro and in vivo studies showed that various nerve agents, e.g. tabun and cyclosarin, are resistant towards standard therapy with atropine and oxime. Based on these facts we applied a modified biological assay for the easy, semi-quantitative testing of the detoxifying properties of the beta-cyclodextrin derivative CD-IBA. Cyclosarin, sarin, tabun and VX were incubated with CD-IBA for 1-50 min at 37 degrees C, then an aliquot was added to erythrocyte acetylcholinesterase (AChE) and the percentage of AChE inhibition was determined. The validity of the assay was confirmed by concomitant quantification of tabun by GC-MS. Different concentrations of cyclosarin were detoxified by CD-IBA in a concentration-dependent velocity. The ability to detoxify various nerve agents decreased in the order cyclosarin>sarin>tabun>VX. Hereby, no detoxification of VX could be detected. Sarin was detoxified in a biphasic reaction with a fast reduction of inhibitory potential in the first phase and a slower detoxification in the second phase. CD-IBA detoxified tabun in a one phase decay and, compared to cyclosarin and sarin, a longer half-life was determined with tabun. The modified biological assay is appropriate for the initial semi-quantitative screening of candidate compounds for the detoxification of nerve agents. The beta-cyclodextrin derivative CD-IBA demonstrated its ability to detoxify different nerve agents. PMID:19800384

  20. RBC invasion and invasion-inhibition assays using free merozoites isolated after cold treatment of Babesia bovis in vitro culture.

    PubMed

    Ishizaki, Takahiro; Sivakumar, Thillaiampalam; Hayashida, Kyoko; Tuvshintulga, Bumduuren; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis is an apicomplexan hemoprotozoan that can invade bovine red blood cells (RBCs), where it multiplies asexually. RBC invasion assays using free viable merozoites are now routinely used to understand the invasion mechanism of B. bovis, and to evaluate the efficacy of chemicals and antibodies that potentially inhibit RBC invasion by the parasite. The application of high-voltage pulses (high-voltage electroporation), a commonly used method to isolate free merozoites from infected RBCs, reduces the viability of the merozoites. Recently, a cold treatment of B. bovis in vitro culture was found to induce an effective release of merozoites from the infected RBCs. In the present study, we incubated in vitro cultures of B. bovis in an ice bath to liberate merozoites from infected RBCs and then evaluated the isolated merozoites in RBC invasion and invasion-inhibitions assays. The viability of the purified merozoites (72.4%) was significantly higher than that of merozoites isolated with high-voltage electroporation (48.5%). The viable merozoites prepared with the cold treatment also invaded uninfected bovine RBCs at a higher rate (0.572%) than did merozoites prepared with high-voltage electroporation (0.251%). The invasion-blocking capacities of heparin, a polyclonal rabbit antibody directed against recombinant B. bovis rhoptry associated protein 1, and B. bovis-infected bovine serum were successfully demonstrated in an RBC invasion assay with the live merozoites prepared with the cold treatment, suggesting that the targets of these inhibitors were intact in the merozoites. These findings indicate that the cold treatment technique is a useful tool for the isolation of free, viable, invasion-competent B. bovis merozoites, which can be effectively used for RBC invasion and invasion-inhibition assays in Babesia research. PMID:26965399

  1. The linoleic acid derivative DCP-LA increases membrane surface localization of the α7 ACh receptor in a protein 4.1N-dependent manner.

    PubMed

    Kanno, Takeshi; Tsuchiya, Ayako; Tanaka, Akito; Nishizaki, Tomoyuki

    2013-03-01

    In yeast two-hybrid screening, protein 4.1N, a scaffolding protein, was identified as a binding partner of the α7 ACh (acetylcholine) receptor. For rat hippocampal slices, the linoleic acid derivative DCP-LA {8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid} increased the association of the α7 ACh receptor with 4.1N, and the effect was inhibited by GF109203X, an inhibitor of PKC (protein kinase C), although DCP-LA did not induce PKC phosphorylation of 4.1N. For PC-12 cells, the presence of the α7 ACh receptor in the plasma membrane fraction was significantly suppressed by knocking down 4.1N. DCP-LA increased the presence of the α7 ACh receptor in the plasma membrane fraction, and the effect was still inhibited by knocking down 4.1N. In the monitoring of α7 ACh receptor mobilization, DCP-LA enhanced signal intensities for the α7 ACh receptor at the membrane surface in PC-12 cells, which was clearly prevented by knocking down 4.1N. Taken together, the results of the present study show that 4.1N interacts with the α7 ACh receptor and participates in the receptor tethering to the plasma membrane. The results also indicate that DCP-LA increases membrane surface localization of the α7 ACh receptor in a 4.1N-dependent manner under the control of PKC, but without phosphorylating 4.1N. PMID:23256752

  2. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV

    PubMed Central

    2013-01-01

    Background Evidence points to the emergence of a novel human coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), which causes a severe acute respiratory syndrome (SARS)-like disease. In response, the development of effective vaccines and therapeutics remains a clinical priority. To accomplish this, it is necessary to evaluate neutralizing antibodies and screen for MERS-CoV entry inhibitors. Methods In this study, we produced a pseudovirus bearing the full-length spike (S) protein of MERS-CoV in the Env-defective, luciferase-expressing HIV-1 backbone. We then established a pseudovirus-based inhibition assay to detect neutralizing antibodies and anti-MERS-CoV entry inhibitors. Results Our results demonstrated that the generated MERS-CoV pseudovirus allows for single-cycle infection of a variety of cells expressing dipeptidyl peptidase-4 (DPP4), the confirmed receptor for MERS-CoV. Consistent with the results from a live MERS-CoV-based inhibition assay, the antisera of mice vaccinated with a recombinant protein containing receptor-binding domain (RBD, residues 377–662) of MERS-CoV S fused with Fc of human IgG exhibited neutralizing antibody response against infection of MERS-CoV pseudovirus. Furthermore, one small molecule HIV entry inhibitor targeting gp41 (ADS-J1) and the 3-hydroxyphthalic anhydride-modified human serum albumin (HP-HSA) could significantly inhibit MERS-CoV pseudovirus infection. Conclusion Taken together, the established MERS-CoV inhibition assay is a safe and convenient pseudovirus-based alternative to BSL-3 live-virus restrictions and can be used to rapidly screen MERS-CoV entry inhibitors, as well as evaluate vaccine-induced neutralizing antibodies against the highly pathogenic MERS-CoV. PMID:23978242

  3. The role of crude human saliva and purified salivary MUC5B and MUC7 mucins in the inhibition of Human Immunodeficiency Virus type 1 in an inhibition assay

    PubMed Central

    Habte, Habtom H; Mall, Anwar S; de Beer, Corena; Lotz, Zoë E; Kahn, Delawir

    2006-01-01

    Background Despite the continuous shedding of HIV infected blood into the oral cavity and the detectable presence of the AIDS virus at a high frequency, human saliva is reported to inhibit oral transmission of HIV through kissing, dental treatment, biting, and aerosolization. The purpose of this study was to purify salivary MUC5B and MUC7 mucins from crude saliva and determine their anti-HIV-1 activities. Methods Following Sepharose CL-4B column chromatography and caesium chloride isopycnic density-gradient ultra-centrifugation, the purity and identity of the mucins was determined by SDS-PAGE and Western blotting analysis respectively. Subsequently an HIV-1 inhibition assay was carried out to determine the anti-HIV-1 activity of the crude saliva and purified salivary mucins by incubating them with subtype D HIV-1 prior to infection of the CD4+ CEM SS cells. Results Western blotting analysis confirmed that the mucin in the void volume is MUC5B and the mucin in the included volume is MUC7. The HIV inhibition assay revealed that both the crude saliva and salivary MUC5B and MUC7 mucins inhibited HIV-1 activity by 100%. Conclusion Although the mechanism of action is not clear the carbohydrate moieties of the salivary mucins may trap or aggregate the virus and prevent host cell entry. PMID:17125499

  4. HIGHLY SENSITIVE ASSAY FOR ANTICHOLINESTERASE COMPOUNDS USING 96 WELL PLATE FORMAT

    EPA Science Inventory

    The rapid and sensitive detection of organophosphate insecticides using a 96 well plate format is reported. Several features of this assay make it attractive for development as a laboratory-based or field screening assay. Acetylcholinesterase (AChE) was stabilized in a gelati...

  5. Immune responses to HTLV-I(ACH) during acute infection of pig-tailed macaques.

    PubMed

    McGinn, Therese M; Wei, Qing; Stallworth, Jackie; Fultz, Patricia N

    2004-04-01

    Human T cell lymphotropic virus type 1 (HTLV-I) is causally linked to adult T cell leukemia/lymphoma (ATL) and a chronic progressive neurological disease, HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A nonhuman primate model that reproduces disease symptoms seen in HTLV-I-infected humans might facilitate identification of initial immune responses to the virus and an understanding of pathogenic mechanisms in HTLV-I-related disease. Previously, we showed that infection of pig-tailed macaques with HTLV-I(ACH) is associated with multiple signs of disease characteristic of both HAM/TSP and ATL. We report here that within the first few weeks after HTLV-I(ACH) infection of pig-tailed macaques, serum concentrations of interferon (IFN)-alpha increased and interleukin-12 decreased transiently, levels of nitric oxide were elevated, and activation of CD4(+) and CD8(+) lymphocytes and CD16(+) natural killer cells in peripheral blood were observed. HTLV-I(ACH) infection elicited virus-specific antibodies in all four animals within 4 to 6 weeks; however, Tax-specific lymphoproliferative responses were not detected until 25-29 weeks after infection in all four macaques. IFN-gamma production by peripheral blood cells stimulated with a Tax or Gag peptide was detected to varying degrees in all four animals by ELISPOT assay. Peripheral blood lymphocytes from one animal that developed only a marginal antigen-specific cellular response were unresponsive to mitogen stimulation during the last few weeks preceding its death from a rapidly progressive disease syndrome associated with HTLV-I(ACH) infection of pig-tailed macaques. The results show that during the first few months after HTLV-I(ACH) infection, activation of both innate and adaptive immunity, limited virus-specific cellular responses, sustained immune system activation, and, in some cases, immunodeficiency were evident. Thus, this animal model might be valuable for understanding early stages of infection

  6. TiO2/MWNTs nanocomposites-based electrochemical strategy for label-free assay of casein kinase II activity and inhibition.

    PubMed

    He, Xiaoxiao; Chen, Zhifeng; Wang, Yonghong; Wang, Kemin; Su, Jing; Yan, Genping

    2012-05-15

    In this paper, a novel label-free electrochemical strategy has been developed for assay of casein kinase II (CK2) activity and inhibition using TiO(2)/MWNTs nanocomposites. This detection system takes advantage of specific binding of the phosphate groups with TiO(2) nanoparticles and fast electron transfer rate of MWNTs. In this strategy, the synthesized TiO(2)/MWNTs nanocomposite was firstly deposited on the surface of a glassy carbon electrode (GCE). The presence of MWNTs not only increased the surface area of the electrode but also promoted electron-transfer reaction. In the presence of CK2, the kinase reaction resulted in the phosphorylation of peptide substrates. The phosphorylated peptides were subsequently captured to the surface of GCE modified with TiO(2)/MWNTs nanocomposite through specific binding of the phosphate groups with TiO(2) nanoparticles. Then the access of redox probe [Fe(CN)(6)](3-/4-) to electrode surface was blocked. As a result, the decrease peak currents were related to the concentrations of the CK2, providing a sensing mechanism for monitoring peptides phosphorylation. The electrochemical strategy can be employed to assay CK2 activity with a low detection limit of 0.07 U/mL. The linear range of the assay for CK2 was 0-0.5 U/mL. Furthermore, the interferences experiments of PKA and inhibition of CK2 have been also studied by using this strategy. PMID:22417874

  7. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.

    PubMed

    Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T

    2016-04-01

    Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. PMID:26418413

  8. Competitive-inhibition enzyme-linked immunosorbent assay for detection of serum antibodies to caprine arthritis-encephalitis virus: diagnostic tool for successful eradication.

    PubMed

    Herrmann, Lynn M; Cheevers, William P; McGuire, Travis C; Adams, D Scott; Hutton, Melinda M; Gavin, William G; Knowles, Donald P

    2003-03-01

    A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) was evaluated for the detection of serum antibodies to the surface envelope (SU) of caprine arthritis-encephalitis virus (CAEV) in goats. This assay utilized 96-well microtiter plates containing CAEV-63 SU captured by monoclonal antibody (MAb) F7-299 and measured the competitive displacement of horseradish peroxidase-conjugated MAb GPB 74A binding by undiluted goat sera (F. Ozyörük, W. P. Cheevers, G. A. Hullinger, T. C. McGuire, M. Hutton, and D. P. Knowles, Clin. Diagn. Lab. Immunol. 8:44-51, 2001). Two hundred serum samples from goats in the United States were used to determine the sensitivity and specificity of cELISA based on the immunoprecipitation (IP) of [(35)S]methionine-labeled viral antigens as a standard of comparison. A positive cELISA was defined as >33.2% inhibition of MAb 74A binding based on 2 standard deviations above the mean percent inhibition of 140 IP-negative serum samples. At this cutoff value, there were 0 of 60 false-negative sera (100% sensitivity) and 5 of 140 false-positive sera (96.4% specificity). Additional studies utilized IP-monitored cELISA to establish a CAEV-free herd of 1,640 dairy goats. PMID:12626453

  9. Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie

    PubMed Central

    Schmitz, Matthias; Cramm, Maria; Llorens, Franc; Candelise, Niccolò; Müller-Cramm, Dominik; Varges, Daniela; Schulz-Schaeffer, Walter J.; Zafar, Saima; Zerr, Inga

    2016-01-01

    In vitro amplification assays, such as real-time quaking-induced conversion (RT-QuIC) are used to detect aggregation activity of misfolded prion protein (PrP) in brain, cerebrospinal fluid (CSF) and urine samples from patients with a prion disease. We believe that the method also has a much broader application spectrum. In the present study, we applied RT-QuIC as a pre-screening test for substances that potentially inhibit the aggregation process of the cellular PrP (PrPC) to proteinase (PK)-resistant PrPres. We chose doxycycline as the test substance as it has been tested successfully in animal models and proposed in clinical studies as a therapeutic for prion diseases. The RT-QuIC-reaction was seeded with brain tissue or CSF from sCJD patients and doxycycline was then added in different concentrations as well as at different time points. In both experiments, we observed a dose- and time-dependent inhibition of the RT-QuIC seeding response and a decrease of PK resistant PrPres when doxycycline was added. In contrast, ampicillin or sucrose had no effect on the RT-QuIC seeding response. Our study is the first to apply RT-QuIC as a pre-screening assay for compounds inhibiting the PrP aggregation in vitro and confirms that doxycycline is an efficient inhibitor of the PrP aggregation process in RT-QuIC analysis. PMID:27385410

  10. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. PMID:26976216

  11. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF.

    PubMed

    Wang, Xuemei; Loutzenhiser, Rodger

    2002-01-01

    The renal microvascular actions of ACh were investigated using the in vitro perfused hydronephrotic rat kidney. ACh reversed ANG II-induced vasoconstriction in the afferent and efferent arteriole by 106 +/- 2 and 75 +/- 5%, respectively. Inhibition of nitric oxide synthase [NOS; 100 micromol/l N(G)-nitro-L-arginine methyl ester (L-NAME)] and cyclooxygenase (COX; 10 micromol/l ibuprofen) prevented the sustained response of the afferent arteriole but did not reduce the magnitude of the initial dilation (97 +/- 7%). However, NOS/COX inhibition abolished the response of the efferent arteriole. The underlying mechanisms mediating this endothelium-derived hyperpolarizing factor (EDHF)-like response were characterized using K channel blockers. Ba (100 micromol/l), tetraethylammonium (1 mmol/l), and ouabain (3 mmol/l) had no effect, arguing against a role of an inward rectifier K channel, large-conductance Ca-activated K channel, or Na,K-ATPase. Charybdotoxin (10 nmol/l) and apamin (1.0micromol/l) attenuated the response when administered alone (63 +/- 7% and 37 +/- 5%, respectively) and abolished the response when coadministered (0.1 +/- 1.0%). These findings indicate that, as in other vascular beds, the renal EDHF-like response to ACh involves K channels that are sensitive to a combination of apamin and charybdotoxin. Our finding that EDHF modulates preglomerular, but not postglomerular, tone is consistent with the evolving concept that vasomotor mechanisms in cortical efferent arterioles do not involve voltage-gated Ca entry. PMID:11739120

  12. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors.

    PubMed

    Costanzo, Paola; Cariati, Luca; Desiderio, Doriana; Sgammato, Roberta; Lamberti, Anna; Arcone, Rosaria; Salerno, Raffaele; Nardi, Monica; Masullo, Mariorosario; Oliverio, Manuela

    2016-05-12

    An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged. PMID:27190595

  13. The Ache: Genocide Continues in Paraguay. IWGIA Document No. 17.

    ERIC Educational Resources Information Center

    Munzel, Mark

    In 1972, the Paraguayan Roman Catholic Church protested against the massacre of Indians in Paraguay. This was followed by further protests from Paraguayan intellectuals. These protests led to the removal of Jesus de Pereira, one of the executors of the official Ache policy. Thus, the critics were appeased. Since the beginning of 1973, new protests…

  14. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. PMID:25620714

  15. Detection of inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase by thioinosinic acid and azathioprine by a new colorimetric assay.

    PubMed Central

    Ha, T; Morgan, S L; Vaughn, W H; Eto, I; Baggott, J E

    1990-01-01

    The colorimetric assay for 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase (phosphoribosylamino-imidazolecarboxamide formyltransferase; EC 2.1.2.3) has been extensively modified. The modified assay is based upon the short-term permanganate oxidation of the folate product, tetrahydrofolate (H4folate) to p-aminobenzoyl glutamate (pABG). The modified assay was used to detect the transformylase activity in crude extracts of peripheral-blood mononuclear cells (PBMCs). Azathioprine and its metabolite, thioinosinic acid (tIMP), are competitive inhibitors (with respect to AICAR) of the chicken liver transformylase and the transformylase from PBMCs of the MRL/lpr mouse, an animal model of systemic autoimmune disease. The Ki values of tIMP and azathioprine for the chicken liver enzyme are 39 +/- 4 microM and 120 +/- 10 microM, whereas the Ki values for the enzyme from PBMCs of the MRL/lpr mouse are 110 +/- 20 microM and 90 +/- 14 microM respectively. The anti-inflammatory drugs ibuprofen and naproxen are also inhibitors of the transformylase. PMID:2268263

  16. Investigation of miscellaneous hERG inhibition in large diverse compound collection using automated patch-clamp assay

    PubMed Central

    Yu, Hai-bo; Zou, Bei-yan; Wang, Xiao-liang; Li, Min

    2016-01-01

    Aim: hERG potassium channels display miscellaneous interactions with diverse chemical scaffolds. In this study we assessed the hERG inhibition in a large compound library of diverse chemical entities and provided data for better understanding of the mechanisms underlying promiscuity of hERG inhibition. Methods: Approximately 300 000 compounds contained in Molecular Library Small Molecular Repository (MLSMR) library were tested. Compound profiling was conducted on hERG-CHO cells using the automated patch-clamp platform–IonWorks Quattro™. Results: The compound library was tested at 1 and 10 μmol/L. IC50 values were predicted using a modified 4-parameter logistic model. Inhibitor hits were binned into three groups based on their potency: high (IC50<1 μmol/L), intermediate (1 μmol/L< IC50<10 μmol/L), and low (IC50>10 μmol/L) with hit rates of 1.64%, 9.17% and 16.63%, respectively. Six physiochemical properties of each compound were acquired and calculated using ACD software to evaluate the correlation between hERG inhibition and the properties: hERG inhibition was positively correlative to the physiochemical properties ALogP, molecular weight and RTB, and negatively correlative to TPSA. Conclusion: Based on a large diverse compound collection, this study provides experimental evidence to understand the promiscuity of hERG inhibition. This study further demonstrates that hERG liability compounds tend to be more hydrophobic, high-molecular, flexible and polarizable. PMID:26725739

  17. Regeneration of acetylcholinesterase in clonal neuroblastoma-glioma hybrid NG108-15 cells after soman inhibition: Effect of glycyl-l-glutamine. (Reannouncement with new availability information)

    SciTech Connect

    Yourick, J.J.; Eklo, P.A.; McCluskey, M.P.; Ray, R.

    1991-12-31

    Acetylcholinesterase (AChE) in the clonal NG108-15 cell line has been previously characterized. This cell line represents an in vitro system to study AChE regulation and effects of chemical compounds that may alter AChE activity. Recently, glycyl-L-glutamine (GLG) was demonstrated to function as a neurotrophic factor for maintenance of AChE content in cat denervated superior cervical ganglion cells. In the present study, regeneration of AChE activity in cultures of undifferentiated NG108-15 cells after soman inhibition was investigated in the presence and absence of GLG. Cells were treated with soman (5.5 x 10-6 M) for 15 min and then washed to remove excess soman. Culture medium containing either GLG (10-6, 10-5, or 10.4 M) or glycyl-L-glutamic acid (10-6 M) was added to cultures after soman treatment and remained in the medium until cell harvest. Cells were physically detached at various times after soman treatment and specific AChE activity was determined. After soman, AChE activity dramatically decreased to less than 1% of untreated cellular activity at 1 hr. AChe activity gradually increased after 5 hr, while untreated cell AChE activity was regained 20 hr after soman.

  18. Large scale integration of drug-target information reveals poly-pharmacological drug action mechanisms in tumor cell line growth inhibition assays

    PubMed Central

    Knight, Richard A.; Gostev, Mikhail; Ilisavskii, Sergei; Willis, Anne E.; Melino, Gerry; Antonov, Alexey V.

    2014-01-01

    Understanding therapeutic mechanisms of drug anticancer cytotoxicity represents a key challenge in preclinical testing. Here we have performed a meta-analysis of publicly available tumor cell line growth inhibition assays (~ 70 assays from 6 independent experimental groups covering ~ 500 000 molecules) with the primary goal of understanding molecular therapeutic mechanisms of cancer cytotoxicity. To implement this we have collected currently available information on protein targets for molecules that were tested in the assays. We used a statistical methodology to identify protein targets overrepresented among molecules exhibiting cancer cytotoxicity with the particular focus of identifying overrepresented patterns consisting of several proteins (i.e. proteins “A” and “B” and “C”). Our analysis demonstrates that targeting individual proteins can result in a significant increase (up to 50-fold) of the observed odds for a molecule to be an efficient inhibitor of tumour cell line growth. However, further insight into potential molecular mechanisms reveals a multi-target mode of action: targeting a pattern of several proteins drastically increases the observed odds (up to 500-fold) for a molecule to be tumour cytotoxic. In contrast, molecules targeting only one protein but not targeting an additional set of proteins tend to be nontoxic. Our findings support a poly-pharmacology drug discovery paradigm, demonstrating that anticancer cytotoxicity is a product, in most cases, of multi-target mode of drug action PMID:24553133

  19. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease.

    PubMed

    Riley, Jennifer; Brand, Stephen; Voice, Michael; Caballero, Ivan; Calvo, David; Read, Kevin D

    2015-09-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life threatening global health problem with only two drugs available for treatment (benznidazole and nifurtimox), both having variable efficacy in the chronic stage of the disease and high rates of adverse drug reactions. Inhibitors of sterol 14α-demethylase (CYP51) have proven effective against T. cruzi in vitro and in vivo in animal models of Chagas disease. Consequently two azole inhibitors of CYP51 (posaconazole and ravuconazole) have recently entered clinical development by the Drugs for Neglected Diseases initiative. Further new drug treatments for this disease are however still urgently required, particularly having a different mode of action to CYP51 in order to balance the overall risk in the drug discovery portfolio. This need has now been further strengthened by the very recent reports of treatment failure in the clinic for both posaconazole and ravuconazole. To this end and to prevent enrichment of drug candidates against a single target, there is a clear need for a robust high throughput assay for CYP51 inhibition in order to evaluate compounds active against T. cruzi arising from phenotypic screens. A high throughput fluorescence based functional assay using recombinantly expressed T. cruzi CYP51 (Tulahuen strain) is presented here that meets this requirement. This assay has proved valuable in prioritising medicinal chemistry resource on only those T. cruzi active series arising from a phenotypic screening campaign where it is clear that the predominant mode of action is likely not via inhibition of CYP51. PMID:26394211

  20. Acetylcholinesterase in the human erythron. II. Biochemical assay.

    PubMed

    Barr, R D; Koekebakker, M; Lawson, A A

    1988-08-01

    Acetylcholinesterase (AChE) is an integral erythrocyte membrane protein. A role for the enzyme in the developing human erythron is being explored. Assays of AchE by the standard Ellman technique overestimate the amount of enzyme by failing to account for the contribution of hemoglobin to the optical density of the reaction mixture. Furthermore, reliance on substrate selection alone for specificity is unsatisfactory. Incorporation of inhibitors of "true" AchE and of pseudocholinesterase confer greater ability to distinguish one enzyme from the other. In our experience, the inhibitor constant (Kl) for edrophonium, which is highly specific for AChE, is approximately 5 x 10(-5) M against adult human erythrocytes that contain significantly more total cholinesterase activity than do erythrocytes from umbilical cord blood. This consists of both "true" and "pseudo" enzyme, the former predominating and accounting for 0.75-1.65 (mean 1.02, median 0.87) femtomoles of substrate hydrolysed per min per cell in adult blood, with values of 0.15-1.04 (mean 0.71, median 0.73) obtained on cord blood. Moreover, the enzyme activity in neonatal erythrocytes has a rather different inhibitor profile from that of adult cells. AChE was also demonstrated in fresh (ALL) and cultured (K562 and HL60) human leukemic cells, as well as in primitive granulocyte-macrophage and erythroid cells cloned from normal human bone marrow. In the erythroid colonies the enzyme activity was 0-3.76 (mean 1.20, median 0.76) femtomoles per min per cell, apparently the first successful measurement of AChE in such cells. PMID:3166338

  1. Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie.

    PubMed

    Schmitz, Matthias; Cramm, Maria; Llorens, Franc; Candelise, Niccolò; Müller-Cramm, Dominik; Varges, Daniela; Schulz-Schaeffer, Walter J; Zafar, Saima; Zerr, Inga

    2016-01-01

    In vitro amplification assays, such as real-time quaking-induced conversion (RT-QuIC) are used to detect aggregation activity of misfolded prion protein (PrP) in brain, cerebrospinal fluid (CSF) and urine samples from patients with a prion disease. We believe that the method also has a much broader application spectrum. In the present study, we applied RT-QuIC as a pre-screening test for substances that potentially inhibit the aggregation process of the cellular PrP (PrP(C)) to proteinase (PK)-resistant PrP(res). We chose doxycycline as the test substance as it has been tested successfully in animal models and proposed in clinical studies as a therapeutic for prion diseases. The RT-QuIC-reaction was seeded with brain tissue or CSF from sCJD patients and doxycycline was then added in different concentrations as well as at different time points. In both experiments, we observed a dose- and time-dependent inhibition of the RT-QuIC seeding response and a decrease of PK resistant PrP(res) when doxycycline was added. In contrast, ampicillin or sucrose had no effect on the RT-QuIC seeding response. Our study is the first to apply RT-QuIC as a pre-screening assay for compounds inhibiting the PrP aggregation in vitro and confirms that doxycycline is an efficient inhibitor of the PrP aggregation process in RT-QuIC analysis. PMID:27385410

  2. Zebrafish as a model for acetylcholinesterase-inhibiting organophosphorus agent exposure and oxime reactivation.

    PubMed

    Koenig, Jeffrey A; Dao, Thuy L; Kan, Robert K; Shih, Tsung-Ming

    2016-06-01

    The current research progression efforts for investigating novel treatments for exposure to organophosphorus (OP) compounds that inhibit acetylcholinesterase (AChE), including pesticides and chemical warfare nerve agents (CWNAs), rely solely on in vitro cell assays and in vivo rodent models. The zebrafish (Danio rerio) is a popular, well-established vertebrate model in biomedical research that offers high-throughput capabilities and genetic manipulation not readily available with rodents. A number of research studies have investigated the effects of subacute developmental exposure to OP pesticides in zebrafish, observing detrimental effects on gross morphology, neuronal development, and behavior. Few studies, however, have utilized this model to evaluate treatments, such as oxime reactivators, anticholinergics, or anticonvulsants, following acute exposure. Preliminary work has investigated the effects of CWNA exposure. The results clearly demonstrated relative toxicity and oxime efficacy similar to that reported for the rodent model. This review surveys the current literature utilizing zebrafish as a model for OP exposure and highlights its potential use as a high-throughput system for evaluating AChE reactivator antidotal treatments to acute pesticide and CWNA exposure. PMID:27123828

  3. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Schrage, William G.; Woodman, Christopher R.; Laughlin, M. Harold

    2002-01-01

    The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.

  4. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes.

    PubMed

    Lankoff, Anna; Banasik, Anna; Duma, Anna; Ochniak, Edyta; Lisowska, Halina; Kuszewski, Tomasz; Góźdź, Stanisław; Wojcik, Andrzej

    2006-02-01

    Although it is known that many metals induce DNA damage and inhibit DNA repair, information regarding aluminium (Al) is scarce. The aim of this study was to analyze the level of DNA damage in human peripheral blood lymphocytes treated with Al and the impact of Al on the repair of DNA damage induced by ionizing radiation. Cells were treated with different doses of aluminium chloride (1, 2, 5, 10 and 25 microg/ml AlCl(3)) for 72 h. The level of DNA damage and of apoptosis was determined by the comet assay. The level of oxidative damage was determined by the application of endonuclease III and formamidopyrimidine DNA glycosylase. The results on apoptosis were confirmed by flow cytometry. Based on the fluorescence intensity, cells were divided into cohorts of different relative DNA content that corresponds to G(1), S and G(2) phases of the cell cycle. Our results revealed that Al induces DNA damage in a dose-dependent manner, however, at the dose of 25 microg/ml the level of damage declined. This decline was accompanied by a high level of apoptosis indicating selective elimination of damaged cells. Cells pre-treated with Al showed a decreased repair capacity indicating that Al inhibits DNA repair. The possible mechanisms by which Al induces DNA damage and inhibits the repair are discussed. PMID:16139969

  5. Optimized inhibition assays reveal different inhibitory responses of hydroxylamine oxidoreductases from beta- and gamma-proteobacterial ammonium-oxidizing bacteria.

    PubMed

    Nishigaya, Yuki; Fujimoto, Zui; Yamazaki, Toshimasa

    2016-07-29

    Ammonia-oxidizing bacteria (AOB), ubiquitous chemoautotrophic bacteria, convert ammonia (NH3) to nitrite (NO2(-)) via hydroxylamine as energy source. Excessive growth of AOB, enhanced by applying large amounts of ammonium-fertilizer to the farmland, leads to nitrogen leaching and nitrous oxide gas emission. To suppress these unfavorable phenomena, nitrification inhibitors, AOB specific bactericides, are widely used in fertilized farmland. However, new nitrification inhibitors are desired because of toxicity and weak-effects of currently used inhibitors. Toward development of novel nitrification inhibitors that target hydroxylamine oxidoreductase (HAO), a key enzyme of nitrification in AOB, we established inhibitor evaluation systems that include simplified HAO purification procedure and high-throughput HAO activity assays for the purified enzymes and for the live AOB cells. The new assay systems allowed us to observe distinct inhibitory responses of HAOs from beta-proteobacterial AOB (βAOB) Nitrosomonas europaea (NeHAO) and gamma-proteobacterial AOB (γAOB) Nitrosococcus oceani (NoHAO) against phenylhydrazine, a well-known suicide inhibitor for NeHAO. Consistently, the live cells of N. europaea, Nitrosomonas sp. JPCCT2 and Nitrosospira multiformis of βAOB displayed higher responses to phenylhydrazine than those of γAOB N. oceani. Our homology modeling studies suggest that different inhibitory responses of βAOB and γAOB are originated from different local environments around the substrate-binding sites of HAOs in these two classes of bacteria due to substitutions of two residues. The results reported herein strongly recommend inhibitor screenings against both NeHAO of βAOB and NoHAO of γAOB to develop HAO-targeting nitrification inhibitors with wide anti-AOB spectra. PMID:27173879

  6. Novel nonquaternary reactivators showing reactivation efficiency for soman-inhibited human acetylcholinesterase.

    PubMed

    Wei, Zhao; Liu, Yan-Qin; Wang, Yong-An; Li, Wan-Hua; Zhou, Xin-Bo; Zhao, Jian; Huang, Chun-Qian; Li, Xing-Zhou; Liu, Jia; Zheng, Zhi-Bing; Li, Song

    2016-03-30

    Soman is a highly toxic nerve agent with strong inhibition of acetylcholinesterase (AChE), but of the few reactivators showing antidotal efficiency for soman-inhibited AChE presently are all permanently charged cationic oximes with poor penetration of the blood-brain barrier. To overcome this problem, uncharged reactivators have been designed and synthesized, but few of them were efficient for treating soman poisoning. Herein, we used a dual site biding strategy to develop more efficient uncharged reactivators. The ortho-hydroxylbenzaldoximes were chosen as reactivation ligands of AChE to prevent the secondary poisoning of AChE, and simple aromatic groups were used as peripheral site ligands of AChE, which were linked to the oximes in a similar way as that found in the reactivator HI-6. The in vitro experiment demonstrated that some of the resulting conjugates have robust activity against soman-inhibited AChE, and oxime 8b was highlighted as the most efficient one. Although not good as HI-6 in vitro, these new compounds hold promise for development of more efficient centrally acting reactivators for soman poisoning due to their novel nonquaternary structures, which are predicted to be able to cross the blood-brain barrier. PMID:26809136

  7. Inactivity–Induced Increase in nAChRs Up–Regulates Shal K+ Channels to Stabilize Synaptic Potentials

    PubMed Central

    Ping, Yong; Tsunoda, Susan

    2011-01-01

    Long–term synaptic changes, which are essential for learning and memory, are dependent on homeostatic mechanisms that stabilize neural activity. Homeostatic responses have also been implicated in pathological conditions, including nicotine addiction. Although multiple homeostatic pathways have been described, little is known about how compensatory responses are tuned to prevent them from overshooting their optimal range of activity. We show that prolonged inhibition of nicotinic acetylcholine receptors (nAChRs), the major excitatory receptor in the Drosophila CNS, results in a homeostatic increase in the Dα7 nAChR. This response then induces an increase in the transient A–type K+ current carried by Shal/Kv4 channels. While increasing Dα7 boosts mEPSCs, the ensuing increase in Shal channels serves to stabilize postsynaptic potentials. This identifies a novel mechanism to fine–tune the homeostatic response. PMID:22081160

  8. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. PMID:27343862

  9. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.

    PubMed

    Manthey, Arthur A

    2006-06-01

    During prolonged exposure of postjunctional nicotinic acetylcholine receptors (nAChR) of skeletal muscle to acetylcholine (ACh), agonist-activated nAChR (nAChRa) gradually fall into a refractory "desensitized" state (nAChRd), which no longer supports the high-conductance channel openings characteristic of the initially active nAChRa. In the present study, the possibility was examined that nAChRd, rather than simply constituting a passive "trap" for nAChRa, may actively promote further conversions of nAChRa to nAChRd in a formally autocatalytic manner. Single-ion whole-cell voltage-clamp currents (Na+ and Li+ in separate trials) were measured using two KCl-filled capillary electrodes (5-10 MOmega) implanted at the postjunctional locus of single frog skeletal muscle fibers (Rana pipiens) equilibrated in 30 mM K+ bath media to eliminate mechanical responses. Various nAChR agonists (carbamylcholine, acetylcholine, suberyldicholine) at different concentrations were delivered focally by positive pressure microjet. It was found that the decline of postmaximal agonist-induced currents under these different conditions (driven by the growth of the subpool of nAChRd) consistently followed an autocatalytic logistic rule modified for population growth of fixed units in a planar array: [Formula: see text] (where y represents the remaining agonist-induced current at time t, A=initial maximum current, and n is a constant). Some further experimental features that might result from a self-promoting growth of nAChRd were also tested, namely, (1) the effect of increased nAChRa and (2) the effect of increased nAChRd. Increase in agonist concentration of the superfusate, by increasing the planar density of active nAChRa at the outset, should enhance the probability of autocatalytic interactions with emerging nAChRd, hence, the rate of decline of agonist-induced current, and this was a consistent finding under all conditions tested. Raising the initial level of desensitized nAChRd by

  10. Developing a microbiological growth inhibition screening assay for the detection of 27 veterinary drugs from 13 different classes in animal feedingstuffs.

    PubMed

    Bohn, Torsten; Pellet, Terence; Boscher, Aurore; Hoffmann, Lucien

    2013-01-01

    Many regulations prohibit using veterinary drugs in feedingstuffs to protect consumers and animals alike. Within this investigation we developed a simple, cost-efficient primary screening method for detecting antibiotics and coccidiostats in animal feeds. Thirty-two veterinary drugs were originally considered. Following matrix-free testing to optimise detection, an assay based on matrix extraction with methanol/acetonitrile/phosphate buffer followed by inoculation and diffusion in agar plates was developed. Final validation was performed with 14 representative drugs (one per drug class) and four bacteria (Escherichia coli ATCC11303 and ATCC27166, Staphylococcus aureus ATCC6538P, Micrococcus luteus ATCC9341) in bovine, lamb and swine fodder, measuring growth inhibition zones. Of the original drugs tested, 27 remained detectable in feed matrices at or below 20 mg kg(-1). Of the 14 validated representatives, two had estimated minimum detectable concentrations of 10-11 mg kg(-1), others of 5 mg kg(-1) or lower, an earlier minimum European Union inclusion rate for many veterinary drugs. No significant matrix effect on inhibition zones was detected. Per cent wrong negative deviations ranged from 0% (nine of 14 compounds) to 20-27% (two of 14), while inter-day precision based on inhibition zones had relative standard deviations (RSDs) of 6-109% (mean of 40%). When setting a 1 mm inhibition zone, the maximum observed for negative controls, as a cut-off level, no false-positives were found. While not all targeted antibiotics were detectable in complex matrices, the majority of veterinary drugs were detected with reasonable sensitivity, indicating that this method could be suitable for screening feedingstuffs prior to further confirmatory investigation of positive findings such as by LC-MS/MS. PMID:24053648

  11. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs.

    PubMed

    Olsen, Elisabeth K; Hansen, Espen; W K Moodie, Lindon; Isaksson, Johan; Sepčić, Kristina; Cergolj, Marija; Svenson, Johan; Andersen, Jeanette H

    2016-02-01

    Barettin, 8,9-dihydrobarettin, bromoconicamin and a novel brominated marine indole were isolated from the boreal sponge Geodia barretti collected off the Norwegian coast. The compounds were evaluated as inhibitors of electric eel acetylcholinesterase. Barettin and 8,9-dihydrobarettin displayed significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 μM respectively towards acetylcholinesterase via a reversible noncompetitive mechanism. These activities are comparable to those of several other natural acetylcholinesterase inhibitors of marine origin. Bromoconicamin was less potent against acetylcholinesterase, and the novel compound was inactive. Based on the inhibitory activity, a library of 22 simplified synthetic analogs was designed and prepared to probe the role of the brominated indole, common to all the isolated compounds. From the structure-activity investigation it was shown that the brominated indole motif is not sufficient to generate a high acetylcholinesterase inhibitory activity, even when combined with natural cationic ligands for the acetylcholinesterase active site. The four natural compounds were also analysed for their butyrylcholinesterase inhibitory activity in addition and shown to display comparable activities. The study illustrates how both barettin and 8,9-dihydrobarettin display additional bioactivities which may help to explain their biological role in the producing organism. The findings also provide new insights into the structure-activity relationship of both natural and synthetic acetylcholinesterase inhibitors. PMID:26695619

  12. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay

    SciTech Connect

    Chang, Kyeong-Ok; Takahashi, Daisuke; Prakash, Om; Kim, Yunjeong

    2012-02-20

    Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI-GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

  13. 77 FR 40148 - Proposed Collection of Information: ACH Vendor/Miscellaneous Payment Enrollment Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... Fiscal Service Proposed Collection of Information: ACH Vendor/Miscellaneous Payment Enrollment Form... comments concerning the SF 3881 ``ACH Vendor/Miscellaneous Payment Enrollment Form.'' DATES: Written... solicits comments on the collection of information described below: Title: ACH Vendor/Miscellaneous...

  14. Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say).

    PubMed

    Malekmohammadi, M; Galehdari, H

    2016-01-01

    In the present study, we demonstrated the use and optimization of the tetra-primer ARMS-PCR procedure to detect and analyze the frequency of the R30K and I392T mutations in resistant field populations of CPB. The R30K mutation was detected in 72%, 84%, 52% and 64% of Bahar, Dehpiaz, Aliabad and Yengijeh populations, respectively. Overall frequencies of the I392T mutation were 12%, 8% and 16% of Bahar, Aliabad and Yengijeh populations, respectively. No I392T point mutation was found among samples from Dehpiaz field population. Moreover, only 31% and 2% of samples from the resistant field populations were homozygous for R30K and I392T mutations, respectively. No individual simultaneously had both I392T and S291G/R30K point mutations. The incidence of individuals with both S291G and R30K point mutations in the samples from Bahar, Dehpiaz, Aliabad, and Yengijeh populations were 31.5%, 44.7%, 41.6%, and 27.3% respectively. Genotypes determined by the tetra-primer ARMS-PCR method were consistent with those determined by PCR sequencing. There was no significant correlation between the mutation frequencies and resistance levels in the resistant populations, indicating that other mutations may contribute to this variation. Polymorphism in the partial L. decemlineata cDNA AChE gene Ldace2 of four field populations was identified by direct sequencing of PCR-amplified fragments. Among 45 novel mutations detected in this study, T29P mutation was found across all four field populations that likely contribute to the AChE insensitivity. Site-directed mutagenesis and protein expression experiments are needed for a more complete evaluation. PMID:26778439

  15. Fluorescence Quenching Determination of Uranium (VI) Binding Properties by Two Functional Proteins: Acetylcholinesterase (AChE) and Vitellogenin (Vtg).

    PubMed

    Coppin, Frédéric; Michon, Jérôme; Garnier, Cédric; Frelon, Sandrine

    2015-05-01

    The interactions between uranium and two functional proteins (AChE and Vtg) were investigated using fluorescence quenching measurements. The combined use of a microplate spectrofluorometer and logarithmic additions of uranium into protein solutions allowed us to define the fluorescence quenching over a wide range of [U]/[Pi] ratios (from 1 to 3235) at physiologically relevant conditions of pH. Results showed that fluorescence from the two functional proteins was quenched by UO2 (2+). Stoichiometry reactions, fluorescence quenching mechanisms and complexing properties of proteins, i.e. binding constants and binding sites densities, were determined using classic fluorescence quenching methods and curve-fitting software (PROSECE). It was demonstrated that in our test conditions, the protein complexation by uranium could be simulated by two specific sites (L1 and L2). The obtained complexation constant values are log K1 = 5.7 (±1.0), log K2 = 4.9 (±1.1); L1 = 83 (±2), L2 = 2220 (±150) for U(VI) - Vtg and log K1 = 8.1 (±0.9), log K2 = 6.6 (±0.5), L1 = 115 (±16), L2 = 530 (±23) for U(VI)-AChE (Li is expressed in mol/mol of protein). PMID:25764300

  16. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    PubMed Central

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  17. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    PubMed Central

    Pohanka, Miroslav; Dobes, Petr

    2013-01-01

    Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 μmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed. PMID:23698772

  18. Effect of human plasma on the reactivation of sarin-inhibited human erythrocyte acetylcholinesterase.

    PubMed

    Worek, F; Eyer, P; Kiderlen, D; Thiermann, H; Szinicz, L

    2000-03-01

    The reactivation of organophosphate-inhibited acetylcholinesterase (AChE) by oximes inevitably results in the formation of highly reactive phosphoryloximes (POX), which are able to re-inhibit the enzyme. In this study, the dependence of POX formation on AChE concentration was investigated with sarin-inhibited human erythrocyte AChE (EryAChE). A marked dependence was found with obidoxime but not with the experimental oxime HI 6, suggesting great differences in the decomposition rates of the respective POXs. At a physiological erythrocyte content the reactivation of EryAChE was markedly affected by POX with obidoxime and pralidoxime (2-PAM) but not with the newer oximes HI 6 and HLö 7. Addition of extensively dialysed, sarin-treated human plasma reduced the reactivation by obidoxime and 2-PAM even more. Obidoxime and 2-PAM were superior to HI 6 and HLö 7 in reactivating butyrylcholinesterase (BChE). This effect was pronounced in diluted plasma, but was obscured in concentrated plasma, probably because of re-inhibition by the generated POX. Addition of native erythrocytes to sarin-treated plasma resulted in marked inhibition of EryAChE in the presence of obidoxime, suggesting a higher affinity of the POX for EryAChE. The results indicate that obidoxime and 2-PAM may reactivate sarin-inhibited AChE insufficiently due to re-inhibition by the POX formed. In addition, the re-inhibition of Ery-AChE may be aggravated by the POX that is produced during BChE reactivation. These reactions must be regarded as therapeutically detrimental and disqualify those oximes which are capable of forming stable POX by reactivation of BChE. PMID:10817663

  19. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.

    PubMed

    O'Shea, Desmond J; O'Riordan, Tomás C; O'Sullivan, Paul J; Papkovsky, Dmitri B

    2007-02-01

    A rapid, homogenous, antibody-free assay for phosphatase enzymes was developed using the phosphorescent platinum (II)-coproporphyrin label (PtCP) and time-resolved fluorescent detection. An internally quenched decameric peptide substrate containing a phospho-tyrosine residue, labeled with PtCP-maleimide and dabcyl-NHS at its termini was designed. Phosphatase catalysed dephosphorylation of the substrate resulted in a minor increase in PtCP signal, while subsequent cleavage by chymotrypsin at the dephosphorylated Tyr-Leu site provided a 3.5 fold enhancement of PtCP phosphorescence. This phosphorescence phosphatase enhancement assay was optimized to a 96 well plate format with detection on a commercial TR-F plate reader, and applied to measure the activity and inhibition of alkaline phosphatase, recombinant human CD45, and tyrosine phosphatases in Jurkat cell lysates within 40 min. Parameters of these enzymatic reactions such as Km's, limits of detection (L.O.D's) and IC50 values for the non-specific inhibitor sodium orthovanadate were also determined. PMID:17386566

  20. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay.

    PubMed

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8(+) T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. PMID:27473013

  1. Cholinesterase inhibition in Alzheimer's disease: is specificity the answer?

    PubMed

    Macdonald, Ian R; Rockwood, Kenneth; Martin, Earl; Darvesh, Sultan

    2014-01-01

    Cholinesterase inhibitors are the standard of care for Alzheimer's disease (AD). Acetylcholinesterase (AChE) catalyzes the hydrolysis of the cholinergic neurotransmitter acetylcholine. However, the related enzyme butyrylcholinesterase (BuChE) also breaks down acetylcholine and is likewise targeted by the same clinical cholinesterase inhibitors. The lack of clinical efficacy for the highly specific and potent AChE inhibitor, (-) huperzine A, is intriguing, given the known cholinergic deficit in AD. Based on the proven efficacy of inhibitors affecting both cholinesterases and the apparent failure of specific AChE inhibition, focused BuChE inhibition seems important for more effective treatment of AD. Therefore, BuChE-selective inhibitors provide promise for improved benefit. PMID:24898642

  2. Pre- and post-treatment effect of physostigmine on soman-inhibited human erythrocyte and muscle acetylcholinesterase in vitro

    SciTech Connect

    Herkert, N.M.; Schulz, S.; Wille, T.; Thiermann, H.; Hatz, R.A.; Worek, F.

    2011-05-15

    Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before or after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.

  3. The Inhibition of Mast Cell Activation of Radix Paeoniae alba Extraction Identified by TCRP Based and Conventional Cell Function Assay Systems

    PubMed Central

    Fu, Huiying; Cheng, Hongqiang; Cao, Gang; Zhang, Xingde; Tu, Jue; Sun, Mingjiao; Mou, Xiaozhou; Shou, Qiyang; Ke, Yuehai

    2016-01-01

    Chinese herbs have long been used to treat allergic disease, but recently the development was greatly impeded by the lack of good methods to explore the mechanism of action. Here, we showed the effects of Chinese herb Radix Paeoniae alba were identified and characterized by a mast cell activation assay that involves electronic impedance readouts for dynamic monitoring of cellular responses to produce time-dependent cell responding profiles (TCRPs), and the anti-allergic activities were further confirmed with various conventional molecular and cell biology tools. We found Radix P. alba can dose-dependently inhibit TCPRs, and have anti-allergic function in vitro and in vivo. Radix P. alba suppressed mast cell degranulation not only inhibiting the translocation of granules to the plasma membrane, but also blocking membrane fusion and exocytosis; and that there may be other anti-allergic components in addition to paeoniflorin. Our results suggest that Radix P. alba regulated mast cell activation with multiple targets, and this approach is also suitable for discovering other mast cell degranulation-targeting Chinese herbs and their potential multi-target mechanisms. PMID:27195739

  4. Dual inhibitors for aspartic proteases HIV-1 PR and renin: advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations.

    PubMed

    Tzoupis, Haralambos; Leonis, Georgios; Megariotis, Grigorios; Supuran, Claudiu T; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2012-06-28

    Human immunodeficiency virus type 1 protease (HIV-1 PR) and renin are primary targets toward AIDS and hypertension therapies, respectively. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free-energy calculations and inhibition assays for canagliflozin, an antidiabetic agent verified its effective binding to both proteins (ΔG(pred) = -9.1 kcal mol(-1) for canagliflozin-renin; K(i,exp)= 628 nM for canagliflozin-HIV-1 PR). Moreover, drugs aliskiren (a renin inhibitor) and darunavir (an HIV-1 PR inhibitor) showed high affinity for HIV-1 PR (K(i,exp)= 76.5 nM) and renin (K(i,pred)= 261 nM), respectively. Importantly, a high correlation was observed between experimental and predicted binding energies (r(2) = 0.92). This study suggests that canagliflozin, aliskiren, and darunavir may induce profound effects toward dual HIV-1 PR and renin inhibition. Since patients on highly active antiretroviral therapy (HAART) have a high risk of developing hypertension and diabetes, aliskiren-based or canagliflozin-based drug design against HIV-1 PR may eliminate these side-effects and also facilitate AIDS therapy. PMID:22621689

  5. Assessment of constituents in Allium by multivariate data analysis, high-resolution α-glucosidase inhibition assay and HPLC-SPE-NMR.

    PubMed

    Schmidt, Jeppe S; Nyberg, Nils T; Staerk, Dan

    2014-10-15

    Bulbs and leaves of 35 Allium species and cultivars bought or collected in 2010-2012 were investigated with multivariate data analysis, high-resolution α-glucosidase inhibition assays and HPLC-HRMS-SPE-NMR with the aim of exploring the potential of Allium as a future functional food for management of type 2 diabetes. It was found that 30 out of 106 crude extracts showed more than 80% inhibition of the α-glucosidase enzyme at a concentration of 40mg/mL (dry sample) or 0.4g/mL (fresh sample). High-resolution α-glucosidase biochromatograms of these extracts allowed fast identification of three analytes with α-glucosidase inhibitory activity, and subsequent HPLC-HRMS-SPE-NMR experiments allowed identification of these as N-p-coumaroyloctopamine, N-p-coumaroyltyramine, and quercetin. The distribution of these three compounds was mapped for all samples by HPLC-ESI-HRMS. Unsupervised principal component analysis of samples from 2012 indicated that a major difference between fresh material and dried material is the increased amount of quercetin, a known α-glucosidase inhibitor. PMID:24837940

  6. Structure-function relationship of new anthralin derivatives assayed for growth inhibition and cytotoxicity in human keratinocyte cultures.

    PubMed

    Bonnekoh, B; Tanzer, H; Seidel, M; Geisel, J; Merk, H F; Mahrle, G; Wiegrebe, W

    1991-11-01

    HaCaT keratinocyte cultures were exposed to twelve hydrophilic anthralin derivatives 1 to 12 with substituents at C-1 and C-8 of the anthrone skeleton, of one H at C-10 and of both H's at C-10 by lacton rings. After 3 microM treatment growth was determined by cellular protein content, 3H-thymidine- and 14C-amino-acid-uptake and cytotoxicity by the release of cytoplasmic LDH into the culture medium. In comparison to acetone control (100%) anthralin suppressed mean protein content, as well as DNA- and protein-synthesis to 33, 28, and 21%, respectively, and the drug revealed an enzyme release of 660%. In relation to the parent drug we found similar cell growth inhibitory effects of compounds 4, 6, 8, 9, 10, and 12. Deriv. 4, 8, and 10 were, however, to some extent less cytotoxic than anthralin, whereas deriv. 6, 9, and 12 were in the same range. An extreme suppression of growth parameters which differed from the anthralin effect by a factor 0.5-0.8 was caused by deriv. 11, showing the same cytotoxicity. Deriv. 1, 2, 3, 5, and 7 did not demonstrate any cytotoxicity. Concerning growth parameters, deriv. 2 induced a slight stimulation, deriv. 3 and 7 were completely ineffective, deriv. 1 and 5 induced slightly to moderately inhibited proliferation but both being much less effective than anthralin. These data indicate that the "minimum structure" concept by Krebs and Schaltegger--claiming 1-hydroxy-9-anthrone as a precondition for clinical antipsoriatic potency--is not valid at least in cell-biological tests and point toward possible usefulness of some experimental model compounds as alternative antipsoriatics. PMID:1804068

  7. Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells.

    PubMed

    Nimnual, A S; Chang, W; Chang, N S; Ross, A F; Gelman, M S; Prives, J M

    1998-10-20

    The innervation of embryonic skeletal muscle cells is marked by the redistribution of nicotinic acetylcholine receptors (AChRs) on muscle surface membranes into high-density patches at nerve-muscle contacts. To investigate the role of protein phosphorylation pathways in the regulation of AChR surface distribution, we have identified the sites on AChR delta-subunits that undergo phosphorylation associated with AChR cluster dispersal in cultured myotubes. We found that PKC-catalyzed AChR phosphorylation is targeted to Ser378, Ser393, and Ser450, all located in the major intracellular domain of the AChR delta-subunit. Adjacent to one of these sites is a PKA consensus target site (Ser377) that was efficiently phosphorylated by purified PKA in vitro. The PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA) and the phosphoprotein phosphatase inhibitor okadaic acid (OA) produced increased phosphorylation of AChR delta-subunits on the three serine residues that were phosphorylated by purified PKC in vitro. In contrast, treatment of these cells with the PKA activator forskolin, or with the cell-permeable cAMP analogue 8-bromo-cAMP, did not alter the phosphorylation state of surface AChR, suggesting that PKA does not actively phosphorylate the delta-subunit in intact chick myotubes. The effects of TPA and OA included an increase in the proportion of surface AChR that is extracted in Triton X-100, as well as the spreading of AChR from cluster regions to adjacent areas of the muscle cell surface. These findings suggest that PKC-catalyzed phosphorylation on the identified serine residues of AChR delta-subunits may play a role in the surface distribution of these receptors. PMID:9778356

  8. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity.

    PubMed

    Richendrfer, Holly; Creton, Robbert

    2015-07-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  9. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    PubMed Central

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  10. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. PMID:26961950

  11. In vitro enzyme inhibition activities of crude ethanolic extracts derived from medicinal plants of Pakistan.

    PubMed

    Khattak, Somia; Saeed-Ur-Rehman; Shah, Hameed Ullah; Khan, Taous; Ahmad, Manzoor

    2005-09-01

    Twenty two crude ethanolic extracts from 14 indigenous medicinal plants were subjected to enzyme inhibition screening against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and lipoxygenase enzymes (LO). Three extracts showed activity against AChE, nine extracts were found to be active against BChE and four extracts inhibited the enzyme LO. The most significant inhibition activities (> or =50%) were found in extracts derived from Aloe vera (leaves), Alpinia galanga (rhizome), Curcuma longa (rhizome), Cymbopogon citratus (leaves), Ocimum americanum (leaves), Ocimum americanum (stem) and Withania somnifera (roots). PMID:16010821

  12. Cholinesterase based amperometric biosensors for assay of anticholinergic compounds

    PubMed Central

    Pohanka, Miroslav

    2009-01-01

    Biosensors are analytical devices being approachable for multiple analytes assay. Here, biosensors with intercepted acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) are presented as tool for assay of anticholinergic compounds such as pesticides, nerve agents and some natural toxins. Principle of assay is based on evaluation of cholinesterase activity and its pertinent decrease in presence of analyte. Nerve agents, pesticides, anticholinergic drugs useable for treatment of Alzheimer′s disease as well as myasthenia gravis and aflatoxins are enlisted as compounds simply analyzable by cholinesterase biosensors. PMID:21217847

  13. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. PMID:26795115

  14. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs)

    PubMed Central

    Abraham, Nikita; Paul, Blessy; Ragnarsson, Lotten; Lewis, Richard J.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies. PMID:27304486

  15. Inhibition of cholinesterases by stereoisomers of Huperzine-A

    SciTech Connect

    Saxena, A.; Qian, N.; Kovach, I.M.; Ashani, Y.; Kozikowski, A.P.

    1993-05-13

    Huperzine-A, a potential drug for the treatment of Alzheimer's disease and possible pretreament for nerve agent toxicity, has recently been characterized as a reversible inhibitor of cholinesterases (Ashani et al., BBRC, 184:719-726, 1992). Long-term incubation of purified cholinesterases with Huperzine-A did not show any chemical modification of Huperzine-A. The dissociation constant, K(I), for fetal bovine serum acetylcholinesterase (FBS AChE) was approximately 20 nM, for Torpedo AChE was 215 nM, and for horse serum butyrylcholinesterase (BChE) was 40 micrometers M. Inhibition studies with the two stereoisomers of Huperzine-A have shown that naturally occurring (-)-Huperzine-A inhibited FBS AChE 35-fold more potently than (+)-Huperzine-A, with K(I) values of 6.2 nM and 210 nM, respectively. These results are in agreement with those reported previously using crude preparations of rat cortical AChE (McKinney et al., Eur. J. Pharmacol., 203, 303-305, 1991). (-)-Huperzine-A, on the other hand, was 80-fold more potent than (+)-Huperzine-A in inhibiting Torpedo AChE, with K(I), values of 0.25 micrometers M and 22 micrometer M, respectively. No significant differences in K(I) were observed for the two stereoisomers of Huperzine-A with horse serum BChE, indicating the lack of stereoselectivity of this compound for BChE. Molecular modeling studies involving docking of each of the two stereoisomers of Huperzine-A into the active-site gorge of Torpedo AChE also revealed that (-)-Huperzine-A gave a better fit than (+)-Huperzine-A.

  16. Development and validation of a sample stabilization strategy and a UPLC-MS/MS method for the simultaneous quantitation of acetylcholine (ACh), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF).

    PubMed

    Zhang, Yanhua; Tingley, F David; Tseng, Elaine; Tella, Max; Yang, Xin; Groeber, Elizabeth; Liu, Jianhua; Li, Wenlin; Schmidt, Christopher J; Steenwyk, Rick

    2011-07-15

    A UPLC-MS/MS assay was developed and validated for simultaneous quantification of acetylcholine (ACh), histamine (HA), tele-methylhistamine (t-mHA), and tele-methylimidazolacetic acid (t-MIAA) in rat cerebrospinal fluid (CSF). The biological stability of ACh in rat CSF was investigated. Following fit-for-purpose validation, the method was applied to monitor the drug-induced changes in ACh, HA, t-mHA, and t-MIAA in rat CSF following administration of donepezil or prucalopride. The quantitative method utilizes hydrophilic interaction chromatography (HILIC) Core-Shell HPLC column technology and a UPLC system to achieve separation with detection by positive ESI LC-MS/MS. This UPLC-MS/MS method does not require extraction or derivatization, utilizes a stable isotopically labeled internal standard (IS) for each analyte, and allows for rapid throughput with a 4 min run time. Without an acetylcholinesterase (AChE) inhibitor present, ACh was found to have 1.9±0.4 min in vitro half life in rat CSF. Stability studies and processing modification, including the use of AChE inhibitor eserine, extended this half life to more than 60 min. The UPLC-MS/MS method, including stabilization procedure, was validated over a linear concentration range of 0.025-5 ng/mL for ACh and 0.05-10 ng/mL for HA, t-mHA, and t-MIAA. The intra-run precision and accuracy for all analytes were 1.9-12.3% CV and -10.2 to 9.4% RE, respectively, while inter-run precision and accuracy were 4.0-16.0% CV and -5.3 to 13.4% RE, respectively. By using this developed and validated method, donepezil caused increases in ACh levels at 0.5, 1, 2, and 4h post dose as compared to the corresponding vehicle group, while prucalopride produced approximately 1.6- and 3.1-fold increases in the concentrations of ACh and t-mHA at 1h post dose, respectively, compared to the vehicle control. Overall, this methodology enables investigations into the use of CSF ACh and HA as biomarkers in the study of these neurotransmitter systems

  17. NEUROTOXICITY OF PARATHION-INDUCED ACETYLCHOLINESTERASE INHIBITION IN NEONATAL RATS

    EPA Science Inventory

    The biochemical and morphological neurotoxic effects of postnatal acetylcholinesterase (AChE) inhibition were examined in rat pups dosed with parathion, at time points critical to hippocampal neurogenesis and synaptogenesis (i.e., D5-20). ippocampal cytopathology as assessed by l...

  18. The use of α-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to α7 nAChR-overexpressing breast cancer.

    PubMed

    Mei, Dong; Lin, Zhiqiang; Fu, Jijun; He, Bing; Gao, Wei; Ma, Ling; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Lu, Wanliang; Zhou, Demin; Zhang, Qiang

    2015-02-01

    Alpha7 nicotinic acetylcholine receptor (α7 nAChR), a ligand-gated ion channel, is increasingly emerging as a new tumor target owing to its expression specificity and significancy for cancer. In an attempt to increase the targeted drug delivery to the α7 nAChR-overexpressing tumors, herein, α-conotoxin ImI, a disulfide-rich toxin with highly affinity for α7 nAChR, was modified on the PEG-DSPE micelles (ImI-PMs) for the first time. The DLS, TEM and HPLC detections showed the spherical nanoparticle morphology about 20 nm with negative charge and high drug encapsulation. The ligand modification did not induce significant differences. The immunofluorescence assay confirmed the expression level of α7 nAChR in MCF-7 cells. In vitro and in vivo experiments demonstrated that the α7 nAChR-targeted nanomedicines could deliver more specifically and faster into α7 nAChR-overexpressing MCF-7 cells. Furthermore, fluo-3/AM fluorescence imaging technique indicated that the increased specificity was attributed to the ligand-receptor interaction, and the inducitivity for intracellular Ca(2+) transient by ImI was still remained after modification. Moreover, paclitaxel, a clinical frequently-used anti-tumor drug for breast cancer, was loaded in ImI-modified nanomedicines to evaluate the targeting efficacy. Besides of exhibiting greater cytotoxicity and inducing more cell apoptosis in vitro, paclitaxel-loaded ImI-PMs displayed stronger anti-tumor efficacy in MCF-7 tumor-bearing nu/nu mice. Finally, the active targeting system showed low systemic toxicity and myelosuppression evidenced by less changes in body weight, white blood cells, neutrophilic granulocyte and platelet counts. In conclusion, α7 nAChR is also a promising target for anti-tumor drug delivery and in this case, α-conotoxin ImI-modified nanocarrier is a potential delivery system for targeting α7 nAChR-overexpressing tumors. PMID:25542793

  19. Synthesis and biological activities of indolizine derivatives as alpha-7 nAChR agonists.

    PubMed

    Xue, Yu; Tang, Jingshu; Ma, Xiaozhuo; Li, Qing; Xie, Bingxue; Hao, Yuchen; Jin, Hongwei; Wang, Kewei; Zhang, Guisen; Zhang, Liangren; Zhang, Lihe

    2016-06-10

    Human α7 nicotinic acetylcholine receptor (nAChR) is a promising therapeutic target for the treatment of schizophrenia accompanied with cognitive impairment. Herein, we report the synthesis and agonistic activities of a series of indolizine derivatives targeting to α7 nAChR. The results show that all synthesized compounds have affinity to α7 nAChR and some give strong agonistic activity, particularly most active agonists show higher potency than control EVP-6124. The docking and structure-activity relationship studies provide insights to develop more potent novel α7 nAChR agonists. PMID:26994846

  20. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  1. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism

    PubMed Central

    Bourne, Yves; Radić, Zoran; Aráoz, Rómulo; Talley, Todd T.; Benoit, Evelyne; Servent, Denis; Taylor, Palmer; Molgó, Jordi; Marchot, Pascale

    2010-01-01

    Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type α12βγδ and neuronal α3β2 and α4β2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP (≈2.4Å) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity. PMID:20224036

  2. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism.

    PubMed

    Bourne, Yves; Radic, Zoran; Aráoz, Rómulo; Talley, Todd T; Benoit, Evelyne; Servent, Denis; Taylor, Palmer; Molgó, Jordi; Marchot, Pascale

    2010-03-30

    Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type alpha1(2)betagammadelta and neuronal alpha3beta2 and alpha4beta2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP ( approximately 2.4A) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity. PMID:20224036

  3. Reactivation of organophosphate-inhibited human, Cynomolgus monkey, swine and guinea pig acetylcholinesterase by MMB-4: A modified kinetic approach

    SciTech Connect

    Worek, Franz; Wille, Timo; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst

    2010-12-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary high MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning.

  4. Targeting the Nicotinic Acetylcholine Receptors (nAChRs) in Astrocytes as a Potential Therapeutic Target in Parkinson's Disease.

    PubMed

    Jurado-Coronel, Juan Camilo; Avila-Rodriguez, Marco; Capani, Francisco; Gonzalez, Janneth; Moran, Valentina Echeverria; Barreto, George E

    2016-01-01

    Parkinson's disease (PD) is a relatively common disorder of the Central Nervous System (CNS), whose etiology is characterized by a selective and progressive degeneration of dopaminergic neurons, and the presence of Lewy bodies in the pars compacta of the substantia nigra, and gaping dopamine depletion in the striatum. Patients with this disease suffer from tremors, slowness of movements, gait instability, and rigidity. These patients may also present functional disability, reduced quality of life, and rapid cognitive decline. It has been shown that nicotine exerts beneficial effects in patients with PD and in in-vitro and in-vivo models of this disease. Astrocytes are an important component in the immune response associated with PD, and that nicotine might be able to inhibit the inflammation-related apoptosis of these cells, being this a potential strategy for PD treatment. This action of nicotine could be due mainly to activation of α7 nicotinic acetylcholine receptors (α7-nAChRs) expressed in glial cells. However, nicotine administration can protect dopaminergic neurons against degeneration by inhibiting astrocytes activation in the substantia nigra pars compacta (SNpc) and therefore reduce inflammation. Owing to the toxicity and capacity of nicotine to induce addiction, analogues of this substance have been designed and tested in various experimental paradigms, and targeting α7-nAChRs expressed in glial cells may be a novel therapeutic strategy for PD treatment. PMID:26972289

  5. Detection of serum antibodies to ovine progressive pneumonia virus in sheep by using a caprine arthritis-encephalitis virus competitive-inhibition enzyme-linked immunosorbent assay.

    PubMed

    Herrmann, Lynn M; Cheevers, William P; Marshall, Katherine L; McGuire, Travis C; Hutton, Melinda M; Lewis, Gregory S; Knowles, Donald P

    2003-09-01

    A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) for detection of antibodies to the surface envelope (SU) of caprine arthritis-encephalitis virus (CAEV) was recently reported (L. M. Herrmann, W. P. Cheevers, T. C. McGuire, D. Scott Adams, M. M. Hutton, W. G. Gavin, and D. P. Knowles, Clin. Diagn. Lab. Immunol. 10:267-271, 2003). The cELISA utilizes CAEV-63 SU captured on microtiter plates using the monoclonal antibody (MAb) F7-299 and measures competitive displacement of binding of the anti-CAEV MAb GPB 74A by goat serum. The present study evaluated the CAEV cELISA for detection of antibodies to ovine progressive pneumonia virus (OPPV) in sheep. Three hundred thirty-two sera were randomly selected from 21,373 sheep sera collected throughout the United States to determine the sensitivity and specificity of cELISA and agar gel immunodiffusion (AGID) based on immunoprecipitation (IP) of [35S]methionine-labeled OPPV antigens as a standard of comparison. A positive cELISA test was defined as >20.9 percent inhibition (% I) of MAb 74A binding based on two standard deviations above the mean % I of 191 IP-negative sheep sera. At this cutoff, there were 2 of 141 false-negative sera (98.6% sensitivity) and 6 of 191 false-positive sera (96.9% specificity). Sensitivity and specificity values for IP-monitored AGID were comparable to those for cELISA for 314 of 332 sera with unambiguous AGID results. Concordant results by cELISA and IP resolved 16 of the 18 sera that were indeterminate by AGID. Additional studies evaluated cELISA by using 539 sera from a single OPPV-positive flock. Based on IP of 36 of these sera, there was one false-negative by cELISA among 21 IP-positive sera (95.5% sensitivity) and 0 of 15 false-positives (100% specificity). We conclude that the CAEV cELISA can be applied to detection of OPPV antibodies in sheep with high sensitivity and specificity. PMID:12965917

  6. New series of monoquaternary pyridinium oximes: synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase

    PubMed Central

    Bharate, Sandip B.; Guo, Lilu; Reeves, Tony E.; Cerasoli, Douglas M.; Thompson, Charles M.

    2009-01-01

    The preparation of a series of monoquaternary pyridinium oximes bearing either a heterocyclic side chain or a functionalized aliphatic side chain and the corresponding in vitro evaluation for reactivation of paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE) are reported. Several newly synthesized compounds efficiently reactivated inhibited EeAChE, but were poor reactivators of inhibited rHuAChE. Compounds bearing a thiophene ring in the side chain (20, 23, 26 and 29) showed better reactivation (24–37% for EeAChE and 5–9% for rHuAChE) compared to compounds with furan and isoxazole heterocycles (0–8% for EeAChE and 2–3% for rHuAChE) at 10−5 M. The N-pyridyl-CH2COOH analog 8 reactivated EeAChE (36%) and rHuAChE (15%) at 10−4 M with a kr value better than 2-pyridine aldoxime methiodide (2-PAM) for rHuAChE. PMID:19640713

  7. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI. PMID:24820623

  8. Peripheral site and acyl pocket define selective inhibition of mouse butyrylcholinesterase by two biscarbamates.

    PubMed

    Bosak, Anita; Smilović, Ivana Gazić; Stimac, Adela; Vinković, Vladimir; Sinko, Goran; Kovarik, Zrinka

    2013-01-15

    In this study we related metacarb (N-(2-(3,5-bis(dimethylcarbamoyloxy)phenyl)-2-hydroxyethyl)propan-2-aminium chloride) and isocarb (N-(2-(3,4-bis(dimethylcarbamoyloxy)phenyl)-2-hydroxyethyl)propan-2-aminium chloride) inhibition selectivity, as well as stereoselectivity of mouse acetylcholinesterase (AChE; 3.1.1.7) and butyrylcholinesterase (BChE; 3.1.1.8) to the active site residues by studying the progressive inhibition of AChE, BChE and six AChE mutants with racemic and (R)-enantiomers of metacarb and isocarb. Metacarb and isocarb proved to be very potent BChE inhibitors with inhibition rate constants in the range of 10(3)-10(4)M(-1)s(-1). For metacarb and isocarb, inhibition of BChE w.t. was 260 and 35 times, respectively, faster than inhibition of AChE w.t. For four mutants inhibition was faster than for AChE w.t. but none reached the inhibition rate of BChE. The highest increase in the inhibition rate (about 30 times for metacarb and 13 times for isocarb) was achieved with mutants F295L/Y337A and Y124Q meaning that selective inhibition of mouse BChE is dictated mainly by two amino acids from BChE: leucine 286 from the acyl pocket and glutamine 119 from the peripheral site. Wild type enzymes displayed pronounced stereoselectivity for (R)-enantiomers of metacarb and isocarb. Interestingly, the residues that define selective inhibition of mouse BChE by biscarbamates also affect the stereoselectivity of enzymes. PMID:23219600

  9. 31 CFR 363.38 - What happens if my financial institution returns an ACH debit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What happens if my financial... TreasuryDirect § 363.38 What happens if my financial institution returns an ACH debit? If your designated...Direct ® account. If the ACH return occurs after the security has been redeemed, transferred, or...

  10. 31 CFR 363.38 - What happens if my financial institution returns an ACH debit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false What happens if my financial... TreasuryDirect § 363.38 What happens if my financial institution returns an ACH debit? If your designated...Direct ® account. If the ACH return occurs after the security has been redeemed, transferred, or...

  11. THE ACHES THAT TAKE YOUR BREATH (AND TEARS) AWAY.

    PubMed

    Becerril, J; Gonzales, H; Saketkoo, L A

    2015-01-01

    An 80-year-old man presented with a complaint of three months of fatigue and aching of his shoulders and hips, as well as pain, swelling, and stiffness in bilateral fingers that was worse in the morning but improved with movement. Associated symptoms included worsening dry mouth and eyes, dysphagia, exertional dyspnea, and right foot drop. Physical exam was significant for edematous and tender bilateral proximal interphalangeal joints, metacarpophalangeal joints and wrists with decreased grip, extension and flexion, as well as bilateral pulmonary crackles. Laboratory analysis revealed Anti-Ro (SSA) and Anti-La (SSB) positivity with elevated erythrocyte sedimentation rate (70mm/hr) and C-reactive peptide (13mg/L). Pulmonary function testing was notable for a forced vital capacity (FVC) of 64% and carbon monoxide diffusing capacity (DLCO) of 44%. High resolution chest computed tomography demonstrated fibrotic changes consistent with nonspecific interstitial pneumonitis. The patient was started on mycophenolate mofetil, hydroxychloroquine, and prednisone for Sjögren's syndrome (SjS). Symptoms improved and repeat FVC revealed a 20 percent improvement, however subsequent tapering of prednisone resulted in worsening dyspnea and increase of FVC to 60 prcent. Prednisone was restarted and rituximab 2g divided in two doses was administered with overall symptom improvement. Symptoms and FVC continued to wax and wane over the following 18 months requiring re-dosing of rituximab with most recent FVC improved to 71 percent and DLCO 41 percent. PMID:27159479

  12. Anniston community health survey: Follow-up and dioxin analyses (ACHS-II)--methods.

    PubMed

    Birnbaum, Linda S; Dutton, N D; Cusack, C; Mennemeyer, S T; Pavuk, M

    2016-02-01

    High serum concentrations of polychlorinated biphenyls (PCBs) have been reported previously among residents of Anniston, Alabama, where a PCB production facility was located in the past. As the second of two cross-sectional studies of these Anniston residents, the Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) will yield repeated measurements to be used to evaluate changes over time in ortho-PCB concentrations and selected health indicators in study participants. Dioxins, non-ortho PCBs, other chemicals, heavy metals, and a variety of additional clinical tests not previously measured in the original ACHS cohort will be examined in ACHS-II. The follow-up study also incorporates a questionnaire with extended sections on diet and occupational history for a more comprehensive assessment of possible exposure sources. Data collection for ACHS-II from 359 eligible participants took place in 2014, 7 to 9 years after ACHS. PMID:25982988

  13. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer's disease.

    PubMed

    Duan, Songwei; Guan, Xiaoyin; Lin, Runxuan; Liu, Xincheng; Yan, Ying; Lin, Ruibang; Zhang, Tianqi; Chen, Xueman; Huang, Jiaqi; Sun, Xicui; Li, Qingqing; Fang, Shaoliang; Xu, Jun; Yao, Zhibin; Gu, Huaiyu

    2015-05-01

    Alzheimer's disease (AD) is characterized by amyloid β (Aβ) peptide aggregation and cholinergic neurodegeneration. Therefore, in this paper, we examined silibinin, a flavonoid extracted from Silybum marianum, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for AD treatment. To achieve this, we used molecular docking and molecular dynamics simulations to examine the affinity of silibinin with Aβ and AChE in silico. Next, we used circular dichroism and transmission electron microscopy to study the anti-Aβ aggregation capability of silibinin in vitro. Moreover, a Morris Water Maze test, enzyme-linked immunosorbent assay, immunohistochemistry, 5-bromo-2-deoxyuridine double labeling, and a gene gun experiment were performed on silibinin-treated APP/PS1 transgenic mice. In molecular dynamics simulations, silibinin interacted with Aβ and AChE to form different stable complexes. After the administration of silibinin, AChE activity and Aβ aggregations were down-regulated, and the quantity of AChE also decreased. In addition, silibinin-treated APP/PS1 transgenic mice had greater scores in the Morris Water Maze. Moreover, silibinin could increase the number of newly generated microglia, astrocytes, neurons, and neuronal precursor cells. Taken together, these data suggest that silibinin could act as a dual inhibitor of AChE and Aβ peptide aggregation, therefore suggesting a therapeutic strategy for AD treatment. PMID:25771396

  14. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    PubMed

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. PMID:25926684

  15. Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish

    PubMed Central

    Yen, Jerry; Donerly, Sue; Levin, Edward D.; Linney, Elwood A.

    2011-01-01

    Zebrafish are increasingly used for developmental neurotoxicity testing because early embryonic events are easy to visualize, exposures are done without affecting the mother and the rapid development of zebrafish allows for high throughput testing. We used zebrafish to examine how exposures to three different organophosphorus pesticides (chlorpyrifos, diazinon and parathion) over the first five days of embryonic and larval development of zebrafish affected their survival, acetylcholinesterase (AChE) activity and behavior. We show that at non-lethal, equimolar concentrations, chlorpyrifos (CPF) is more effective at equimolar concentrations than diazinon (DZN) and parathion (PA) in producing AChE inhibition. As concentrations of DZN and PA are raised, lethality occurs before they can produce the degree of AChE inhibition observed with CPF at 300nM. Because of its availability outside the mother at the time of fertilization, zebrafish provides a complementary model for studying the neurotoxicity of very early developmental exposures. PMID:22036888

  16. High-throughput receptor-based assay for the detection of spirolides by chemiluminescence.

    PubMed

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Botana, Luis M

    2013-12-01

    The spirolides are marine toxins that belong to a new class of macrocyclic imines produced by dinoflagellates. In this study a previously described solid-phase receptor-based assay for the detection of spirolides was optimized for high-throughput screening and prevalidated. This method is based on the competition between 13-desmethyl spirolide C and biotin-α-bungarotoxin immobilized on a streptavidin-coated surface, for binding to nicotinic acetylcholine receptors. In this inhibition assay the amount of nAChR bound to the well surface is quantified using a specific antibody, followed by a second anti-mouse IgG antibody labeled with horseradish peroxidase (HRP). The assay protocol was optimized for 384-well microplates, which allowed a reduction of the amount of reagents per sample and an increase of the number of samples per plate versus previously published receptor-based assays. The sensitivity of the assay for 13-desmethyl spirolide C ranged from 5 to 150 ng mL(-1). The performance of the assay in scallop extracts was adequate, with an estimated detection limit for 13-desmethyl spirolide C of 50 μg kg(-1) of shellfish meat. The recovery rate of 13-desmethyl spirolide C for spiked samples with this assay was 80% and the inter-assay coefficient of variation was 8%. This 384-well microplate, chemiluminescence method can be used as a high-throughput screening assay to detect 13-desmethyl spirolide C in shellfish meat in order to reduce the number of samples to be processed through bioassays or analytical methods. PMID:23827412

  17. Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR.

    PubMed

    Zoltowska, Katarzyna; Webster, Richard; Finlayson, Sarah; Maxwell, Susan; Cossins, Judith; Müller, Juliane; Lochmüller, Hanns; Beeson, David

    2013-07-15

    Mutations in GFPT1 underlie a congenital myasthenic syndrome (CMS) characterized by a limb-girdle pattern of muscle weakness. Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is a key rate-limiting enzyme in the hexosamine biosynthetic pathway providing building blocks for the glycosylation of proteins and lipids. It is expressed ubiquitously and it is not readily apparent why mutations in this gene should cause a syndrome with symptoms restricted to muscle and, in particular, to the neuromuscular junction. Data from a muscle biopsy obtained from a patient with GFPT1 mutations indicated that there were reduced endplate acetylcholine receptors. We, therefore, further investigated the relationship between identified mutations in GFPT1 and expression of the muscle acetylcholine receptor. Cultured myotubes derived from two patients with GFPT1 mutations showed a significant reduction in cell-surface AChR expression (Pt1 P < 0.0001; Pt2 P = 0.0097). Inhibition of GFPT1 enzymatic activity or siRNA silencing of GFPT1 expression both resulted in reduced AChR cell-surface expression. Western blot and gene-silencing experiments indicate this is due to reduced steady-state levels of AChR α, δ, ε, but not β subunits rather than altered transcription of AChR-subunit RNA. Uridine diphospho-N-acetylglucosamine, a product of the hexosamine synthetic pathway, acts as a substrate at an early stage in the N-linked glycosylation pathway. Similarity between CMS due to GFPT1 mutations and CMS due to DPAGT1 mutations would suggest that reduced endplate AChR due to defective N-linked glycosylation is a primary disease mechanism in this disorder. PMID:23569079

  18. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    NASA Astrophysics Data System (ADS)

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Lena, Rohe

    2013-04-01

    The measurement of denitrification in soils and aquifers is still challenging and often enough associated with considerable experimental effort and high costs. Against this background, the acetylene inhibition technique (AIT) applied in laboratory soil and groundwater denitrification assays is by far the most effective approach. However, this method has been largely criticized, as it is susceptible to underestimate denitrification rates and adds an additional carbon source to the substrates to be investigated. Here we provide evidence that the AIT is not necessarily an inappropriate approach to measure denitrification, that its reliability depends on the drivers governing the process, and that the 15N site preference of N2O (SP) may serve as a tool to assess this reliability. Two laboratory batch experiments were conducted, where sandy aquifer material and a peat soil were incubated as slurries. We established (i) a standard anaerobic treatment by adding KNO3 (10 mg N L-1), (ii) an oxygen treatment by adding KNO3 and O2 (5 mg L-1), and (iii) a glucose treatment by adding KNO3 supplemented with glucose (200 mg C L-1). Both experiments were run under 10 % (v/v) acetylene atmosphere and as 15N tracer treatments using labeled K15NO3 (60 atom % 15N). In the case of the standard anaerobic treatments, we found a very good agreement of denitrification potential obtained by the AIT and 15N tracer methods. SP of N2O of the AIT samples from this treatment ranged between -4.8 and 2.6 ‰ which is indicative for N2O production during bacterial denitrification but not for N2O reduction to N2. In contrast, we observed substantial underestimation of denitrification by AIT for the glucose treatments compared to the 15N method, i.e. denitrification was underestimated by 36 % (sandy aquifer material) and 47 % (peat soil). SP of N2O of the AIT samples from this treatment ranged between 4.5 and 9.6 ‰, which suggests occurrence of bacterial N2O reduction. In the case of the oxygen

  19. Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions?

    PubMed

    Blohberger, J; Kunz, L; Einwang, D; Berg, U; Berg, D; Ojeda, S R; Dissen, G A; Fröhlich, T; Arnold, G J; Soreq, H; Lara, H; Mayerhofer, A

    2015-01-01

    Proliferation, differentiation and death of ovarian cells ensure orderly functioning of the female gonad during the reproductive phase, which ultimately ends with menopause in women. These processes are regulated by several mechanisms, including local signaling via neurotransmitters. Previous studies showed that ovarian non-neuronal endocrine cells produce acetylcholine (ACh), which likely acts as a trophic factor within the ovarian follicle and the corpus luteum via muscarinic ACh receptors. How its actions are restricted was unknown. We identified enzymatically active acetylcholinesterase (AChE) in human ovarian follicular fluid as a product of human granulosa cells. AChE breaks down ACh and thereby attenuates its trophic functions. Blockage of AChE by huperzine A increased the trophic actions as seen in granulosa cells studies. Among ovarian AChE variants, the readthrough isoform AChE-R was identified, which has further, non-enzymatic roles. AChE-R was found in follicular fluid, granulosa and theca cells, as well as luteal cells, implying that such functions occur in vivo. A synthetic AChE-R peptide (ARP) was used to explore such actions and induced in primary, cultured human granulosa cells a caspase-independent form of cell death with a distinct balloon-like morphology and the release of lactate dehydrogenase. The RIPK1 inhibitor necrostatin-1 and the MLKL-blocker necrosulfonamide significantly reduced this form of cell death. Thus a novel non-enzymatic function of AChE-R is to stimulate RIPK1/MLKL-dependent regulated necrosis (necroptosis). The latter complements a cholinergic system in the ovary, which determines life and death of ovarian cells. Necroptosis likely occurs in the primate ovary, as granulosa and luteal cells were immunopositive for phospho-MLKL, and hence necroptosis may contribute to follicular atresia and luteolysis. The results suggest that interference with the enzymatic activities of AChE and/or interference with necroptosis may be novel

  20. APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Kološa, Katja; Filipič, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  1. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  2. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1.

    PubMed

    Hua, Nan; Wei, Xiaoli; Liu, Xiaoyan; Ma, Xiaoyun; He, Xinhua; Zhuo, Rengong; Zhao, Zhe; Wang, Liyun; Yan, Haitao; Zhong, Bohua; Zheng, Jianquan

    2012-01-01

    Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs). In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC) cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ presented a strong anticholinergic activity on carbachol-induced contraction of guinea-pig trachea. R2HBJJ markedly suppressed the growth of NSCLC cells, such as H1299, H460 and H157. In H1299 cells, both R2HBJJ and its leading compound R2-PHC displayed significant anti-proliferative activity as M3 receptor antagonist darifenacin. Exogenous replenish of ACh could attenuate R2HBJJ-induced growth inhibition. Silencing M3 receptor or ChAT by specific-siRNAs resulted in a growth inhibition of 55.5% and 37.9% on H1299 cells 96 h post transfection, respectively. Further studies revealed that treatment with R2HBJJ arrested the cell cycle in G0/G1 by down-regulation of cyclin D1-CDK4/6-Rb. Therefore, the current study reveals that NSCLC cells express an autocrine and paracrine cholinergic system which stimulates the growth of NSCLC cells. R2HBJJ, as a novel mAChRs antagonist, can block the local cholinergic loop by antagonizing predominantly M3 receptors and inhibit NSCLC cell growth, which suggest that M3 receptor antagonist might be a potential chemotherapeutic regimen for NSCLC. PMID:23285263

  3. Myasthenia Gravis and the Tops and Bottoms of AChRs Antigenic Structure of the MIR and Specific Immunosuppression of EAMG Using AChR Cytoplasmic Domains

    PubMed Central

    Lindstrom, Jon; Luo, Jie; Kuryatov, Alexander

    2009-01-01

    The main immunogenic region (MIR), against which half or more of the autoantibodies to acetylcholine receptors (AChRs) in myasthenia gravis (MG) or experimental autoimmune MG (EAMG) are directed, is located at the extracellular end of α1 subunits. Rat monoclonal antibodies (mAbs) to the MIR efficiently compete with MG patient autoantibodies for binding to human muscle AChRs. Antibodies bound to the MIR do not interfere with cholinergic ligand binding or AChR function, but target complement and trigger antigenic modulation. Rat mAbs to the MIR also bind to human ganglionic AChR α3 subunits, but MG patient antibodies do not. By making chimeras of α1 subunits with α7 subunits or ACh binding protein, the structure of the MIR and its functional effects are being investigated. Many mAbs to the MIR bind only to the native conformation of α1 subunits because they bind to sequences that are adjacent only in the native structure. The MIR epitopes recognized by these mAbs are not recognized by most patient antibodies whose epitopes must be nearby. The presence of the MIR epitopes in α1/α7 chimeras greatly promotes AChR expression and sensitivity to activation. EAMG can be suppressed by treatment with denatured, bacterially expressed mixtures of extracellular and cytoplasmic domains of human α1, β1, γ, δ, and ε subunits. A mixture of only the cytoplasmic domains not only avoids the potential liability of provoking formation antibodies to pathologically significant epitopes on the extracellular surface, but also potently suppresses the development of EAMG. PMID:18567851

  4. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents.

    PubMed

    Van Hoecke, Karen; De Schamphelaere, Karel A C; Ramirez-Garcia, Sonia; Van der Meeren, Paul; Smagghe, Guy; Janssen, Colin R

    2011-08-01

    Silica nanoparticles (NPs) belong to the industrially most important NP types. In a previous study it was shown that amorphous SiO(2) NPs of 12.5 and 27.0 nm are stable in algal growth inhibition assays and that their ecotoxic effects are related to NP surface area. Here, it was hypothesized and demonstrated that an alumina coating completely alters the particle-particle, particle-test medium and particle-algae interactions of SiO(2) NPs. Therefore, stability and surface characteristics, dissolution, nutrient adsorption and effects on algal growth rate of both alumina coated SiO(2) NPs and bare SiO(2) NPs in OECD algal test medium as a function of pH (6.0-8.6) and natural organic matter (NOM) contents (0-12 mg C/l) were investigated. Alumina coated SiO(2) NPs aggregated in all media and adsorbed phosphate depending on pH and NOM concentration. On the other hand, no aggregation or nutrient adsorption was observed for the bare SiO(2) NPs. Due to their positive surface charge, alumina coated SiO(2) NPs agglomerated with Pseudokirchneriella subcapitata. Consequently, algal cell density measurements based on cell counts were unreliable and hence fluorescent detection of extracted chlorophyll was the preferred method. Alumina coated SiO(2) NPs showed lower toxicity than bare SiO(2) NPs at concentrations ≥46 mg/l, except at pH 6.0. At low concentrations, no clear pH effect was observed for alumina coated SiO(2) NPs, while at higher concentrations phosphate deficiency could have contributed to the higher toxicity of those particles at pH 6.0-6.8 compared to higher pH values. Bare SiO(2) NPs were not toxic at pH 6.0 up to 220 mg/l. Addition of NOM decreased toxicity of both particles. For SiO(2) NPs the 48 h 20% effect concentration of 21.8 mg/l increased 2.6-21 fold and a linear relationship was observed between NOM concentration and effective concentrations. No effect was observed for alumina coated SiO(2) NPs in presence of NOM up to 1000 mg/l. All experiments point

  5. Sequence polymorphism in acetylcholinesterase transcripts and genotyping survey of BmAChE1 in laboratory and Mexican strains of Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BmAChE1, BmAChE2, and BmAChE3 cDNAs of Rhipicephalus (Boophilus) microplus were sequenced and found to exhibit significant polymorphism. A portion of the predicted amino acid substitutions in BmAChE1, BmAChE2 and BmAChE3 were found predominantly in organophosphate-resistant (OP-R) strains, but most ...

  6. HIV-1 entry inhibition by small-molecule CCR5 antagonists: A combined molecular modeling and mutant study using a high-throughput assay

    SciTech Connect

    Labrecque, Jean; Metz, Markus; Lau, Gloria; Darkes, Marilyn C.; Wong, Rebecca S.Y.; Bogucki, David; Carpenter, Bryon; Chen Gang; Li Tongshuang; Nan, Susan; Schols, Dominique; Bridger, Gary J.; Fricker, Simon P.; Skerlj, Renato T.

    2011-05-10

    Based on the attrition rate of CCR5 small molecule antagonists in the clinic the discovery and development of next generation antagonists with an improved pharmacology and safety profile is necessary. Herein, we describe a combined molecular modeling, CCR5-mediated cell fusion, and receptor site-directed mutagenesis approach to study the molecular interactions of six structurally diverse compounds (aplaviroc, maraviroc, vicriviroc, TAK-779, SCH-C and a benzyloxycarbonyl-aminopiperidin-1-yl-butane derivative) with CCR5, a coreceptor for CCR5-tropic HIV-1 strains. This is the first study using an antifusogenic assay, a model of the interaction of the gp120 envelope protein with CCR5. This assay avoids the use of radioactivity and HIV infection assays, and can be used in a high throughput mode. The assay was validated by comparison with other established CCR5 assays. Given the hydrophobic nature of the binding pocket several binding models are suggested which could prove useful in the rational drug design of new lead compounds.

  7. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction. PMID:19689389

  8. Acetylcholinesterase Inhibitors (AChEI's) for the treatment of visual hallucinations in schizophrenia: a case report

    PubMed Central

    2010-01-01

    Background Visual hallucinations are commonly seen in various neurological and psychiatric disorders including schizophrenia. Current models of visual processing and studies in diseases including Parkinsons Disease and Lewy Body Dementia propose that Acetylcholine (Ach) plays a pivotal role in our ability to accurately interpret visual stimuli. Depletion of Ach is thought to be associated with visual hallucination generation. AchEI's have been used in the targeted treatment of visual hallucinations in dementia and Parkinson's Disease patients. In Schizophrenia, it is thought that a similar Ach depletion leads to visual hallucinations and may provide a target for drug treatment Case Presentation We present a case of a patient with Schizophrenia presenting with treatment resistant and significantly distressing visual hallucinations. After optimising treatment for schizophrenia we used Rivastigmine, an AchEI, as an adjunct to treat her symptoms successfully. Conclusions This case is the first to illustrate this novel use of an AchEI in the targeted treatment of visual hallucinations in a patient with Schizophrenia. Targeted therapy of this kind can be considered in challenging cases although more evidence is required in this field. PMID:20822516

  9. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  10. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR

    PubMed Central

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E.; Tsetlin, Victor I.; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  11. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR.

    PubMed

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E; Tsetlin, Victor I; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  12. Behavioral changes in young and adult rats: Indications of cholinesterase inhibition

    EPA Science Inventory

    Inhibition of acetylcholinesterase (AChE) has long been accepted as the basis for neurotoxicity produced by organophosphorus (OP) and N-methyl carbamate chemicals. Functional or behavioral alterations result from acute exposure to these chemicals. We have conducted behavioral eva...

  13. Determination of antioxidant activity of lichen Cetraria islandica (L) Ach.

    PubMed

    Gülçin, Ilhami; Oktay, Münir; Küfrevioğlu, O Irfan; Aslan, Ali

    2002-03-01

    The study was aimed at evaluating the antioxidant activity of aqueous extract of C. islandica. The antioxidant activity, reducing power, superoxide anion radical scavenging and free radical scavenging activities were studied. The antioxidant activity increased with the increasing amount of extracts (from 50 to 500 microg) added to linoleic acid emulsion. About 50, 100, 250, and 500 microg of aqueous extract of C. islandica showed higher antioxidant activity than 500 microg of alpha-tocopherol. The samples showed 96, 99, 100, and 100% inhibition on peroxidation of linoleic acid, respectively. On the other hand, the 500 microg of alpha-tocopherol showed 77% inhibition on peroxidation on linoleic acid emulsion. Like antioxidant activity, the reducing power, superoxide anion radical scavenging and free radical scavenging activities of C. islandica depends on concentration and increasing with increased amount of sample. The results obtained in the present study indicate that C. islandica is a potential source of natural antioxidant. PMID:11849836

  14. Inhibition of the acetylcholine receptor by histrionicotoxin.

    PubMed Central

    Anwyl, R.; Narahashi, T.

    1980-01-01

    1 The action of C5-decahydrohistrionicotoxin (C5-HTX) has been investigated on the extrajunctional acetylcholine (ACh) receptors of denervated rat muscle. 2 C5-HTX causes both a rapid and slow reduction in amplitude of iontophoretic ACh potentials evoked at all frequencies from the extrajunctional receptors. 3 C5-HTX also causes a time-dependent inhibition of the iontophoretic potentials evoked at frequencies greater than 0.02 Hz. This inhibition was observed either alone or superimposed upon desensitization, and may be caused by a similar mechanism to desensitization. PMID:7378635

  15. Cyperus rotundus extract inhibits acetylcholinesterase activity from animal and plants as well as inhibits germination and seedling growth in wheat and tomato.

    PubMed

    Sharma, Rashmi; Gupta, Rajendra

    2007-05-30

    Cyperus rotundus (nutgrass) is the world's worst invasive weed through tubers. Its success in dominating natural habitats depends on its ability to prevent herbivory, and to kill or suppress other plants growing in its vicinity. The present study was done to investigate whether chemicals in nutgrass target neuronal and non-neuronal acetylcholinesterases to affect surrounding animals and plants respectively. Methanolic extract of tubers of nutgrass strongly inhibited activity of AChE from electric eel, wheat and tomato. It also inhibited seed germination and seedling growth in wheat and tomato. Our results suggest that inhibitor of AChE in nutgrass possibly acts as agent of plant's war against (a) herbivore animals, and (b) other plants trying to grow in the same habitat. An antiAChE from nutgrass has been purified by employing chromatography and crystallization. The structural determination of the purified inhibitor is in progress. PMID:17367818

  16. Comparison of inhibition kinetics of several organophosphates, including some nerve agent surrogates, using human erythrocyte and rat and mouse brain acetylcholinesterase.

    PubMed

    Coban, Alper; Carr, Russell L; Chambers, Howard W; Willeford, Kenneth O; Chambers, Janice E

    2016-04-25

    Because testing of nerve agents is limited to only authorized facilities, our laboratory developed several surrogates that resemble nerve agents because they phosphylate the acetylcholinesterase (AChE) with the same moiety as the actual nerve agents. The inhibition kinetic parameters were determined for AChE by surrogates of cyclosarin (NCMP), sarin (NIMP, PIMP and TIMP) and VX (NEMP and TEMP) and other organophosphorus compounds derived from insecticides. All compounds were tested with rat brain and a subset was tested with mouse brain and purified human erythrocyte AChE. Within the compounds tested on all AChE sources, chlorpyrifos-oxon had the highest molecular rate constant followed by NCMP and NEMP. This was followed by NIMP then paraoxon and DFP with rat and mouse brain AChE but DFP was a more potent inhibitor than NIMP and paraoxon with human AChE. With the additional compounds tested only in rat brain, TEMP was slightly less potent than NEMP but more potent than PIMP which was more potent than NIMP. Methyl paraoxon was slightly less potent than paraoxon but more potent than TIMP which was more potent than DFP. Overall, this study validates that the pattern of inhibitory potencies of our surrogates is comparable to the pattern of inhibitory potencies of actual nerve agents (i.e., cyclosarin>VX>sarin), and that these are more potent than insecticidal organophosphates. PMID:26965078

  17. Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family.

    PubMed

    Wu, Meilin; Puddifoot, Clare A; Taylor, Palmer; Joiner, William J

    2015-10-01

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. PMID:26276394

  18. A comparison of tabun-inhibited rat brain acetylcholinesterase reactivation by three oximes (HI-6, obidoxime, and K048) in vivo detected by biochemical and histochemical techniques.

    PubMed

    Bajgar, Jiri; Hajek, Petr; Zdarova, Jana Karasova; Kassa, Jiri; Paseka, Antonin; Slizova, Dasa; Krs, Otakar; Kuca, Kamil; Jun, Daniel; Fusek, Josef; Capek, Lukas

    2010-12-01

    Tabun belongs to the most toxic nerve agents. Its mechanism of action is based on acetylcholinesterase (AChE) inhibition at the peripheral and central nervous systems. Therapeutic countermeasures comprise administration of atropine with cholinesterase reactivators able to reactivate the inhibited enzyme. Reactivation of AChE is determined mostly biochemically without specification of different brain structures. Histochemical determination allows a fine search for different structures but is performed mostly without quantitative evaluation. In rats intoxicated with tabun and treated with a combination of atropine and HI-6, obidoxime, or new oxime K048, AChE activities in different brain structures were determined using biochemical and quantitative histochemical methods. Inhibition of AChE following untreated tabun intoxication was different in the various brain structures, having the highest degree in the frontal cortex and reticular formation and lowest in the basal ganglia and substantia nigra. Treatment resulted in an increase of AChE activity detected by both methods. The highest increase was observed in the frontal cortex. This reactivation was increased in the order HI-6 < K048 < obidoxime; however, this order was not uniform for all brain parts studied. A correlation between AChE activity detected by histochemical and biochemical methods was demonstrated. The results suggest that for the mechanism of action of the nerve agent tabun, reactivation in various parts of the brain is not of the same physiological importance. AChE activity in the pontomedullar area and frontal cortex seems to be the most important for the therapeutic effect of the reactivators. HI-6 was not a good reactivator for the treatment of tabun intoxication. PMID:21054236

  19. Cholinesterase inhibition and acetylcholine accumulation following intracerebral administration of paraoxon in rats

    SciTech Connect

    Ray, A.; Liu, J.; Karanth, S.; Gao, Y.; Brimijoin, S.; Pope, C.

    2009-05-01

    We evaluated the inhibition of striatal cholinesterase activity following intracerebral administration of paraoxon assaying activity either in tissue homogenates ex vivo or by substrate hydrolysis in situ. Artificial cerebrospinal fluid (aCSF) or paraoxon in aCSF was infused unilaterally (0.5 {mu}l/min for 2 h) and ipsilateral and contralateral striata were harvested for ChE assay ex vivo. High paraoxon concentrations were needed to inhibit ipsilateral striatal cholinesterase activity (no inhibition at < 0.1 mM; 27% at 0.1 mM; 79% at 1 mM paraoxon). With 3 mM paraoxon infusion, substantial ChE inhibition was also noted in contralateral striatum. ChE histochemistry generally confirmed these concentration- and side-dependent effects. Microdialysates collected for up to 4 h after paraoxon infusion inhibited ChE activity when added to striatal homogenate, suggesting prolonged efflux of paraoxon. Since paraoxon efflux could complicate acetylcholine analysis, we evaluated the effects of paraoxon (0, 0.03, 0.1, 1, 10 or 100 {mu}M, 1.5 {mu}l/min for 45 min) administered by reverse dialysis through a microdialysis probe. ChE activity was then monitored in situ by perfusing the colorimetric substrate acetylthiocholine through the same probe and measuring product (thiocholine) in dialysates. Concentration-dependent inhibition was noted but reached a plateau of about 70% at 1 {mu}M and higher concentrations. Striatal acetylcholine was below the detection limit at all times with 0.1 {mu}M paraoxon but was transiently elevated (0.5-1.5 h) with 10 {mu}M paraoxon. In vivo paraoxon (0.4 mg/kg, sc) in adult rats elicited about 90% striatal ChE inhibition measured ex vivo, but only about 10% inhibition measured in situ. Histochemical analyses revealed intense AChE and glial fibrillary acidic protein staining near the cannula track, suggesting proliferation of inflammatory cells/glia. The findings suggest that ex vivo and in situ cholinesterase assays can provide very different views

  20. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds. PMID:26579414

  1. In vitro inhibition of choline acetyltransferase by a series of 2-benzylidene-3-quinuclidinones

    SciTech Connect

    Capacio, B.R.

    1988-01-01

    Ten substituted 2-benzylidene-3-quinuclidinones were synthesized and evaluated for their relative potency as in vitro inhibitors of choline acetyltransferase (ChAT). Acetylcholine (ACh) synthesis was followed radiometrically by the incorporation of labeled acetate originating from {sup 14}C-acetyl-CoA. Woolf-Augustinsson-Hofstee data analysis was used to calculate Vmax, Km, and Ki values. The inhibition was found to be noncompetitive or uncompetitive with respect to choline. Quantitative structure activity relationship correlations demonstrated a primary dependence on {kappa}-{sigma}, as well as steric properties of the substituted benzene ring. Additional radiometric and spectrophotometric were performed with 2-(3{prime}-methyl)-benzylidene-3-quinuclidinone, one of the more potent analogs, to further elucidate the inhibitory mechanism. ChAT-mediated cleavage of ACh was measured spectrophotometrically by following the appearance of NADH at 340 nanometers in an enzyme coupled assay. Lineweaver-Burk analysis indicated mixed or uncompetitive inhibition with respect to both substrates of the forward reaction, suggesting interference with a rate limiting step.

  2. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes

    PubMed Central

    Vos, Martijn W.; Stone, Will J. R.; Koolen, Karin M.; van Gemert, Geert-Jan; van Schaijk, Ben; Leroy, Didier; Sauerwein, Robert W.; Bousema, Teun; Dechering, Koen J.

    2015-01-01

    Current first-line treatments for uncomplicated falciparum malaria rapidly clear the asexual stages of the parasite, but do not fully prevent parasite transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter parasite without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for Malaria Venture validation and malaria boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting parasite infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the malaria box that may serve as a starting point for further discovery and development of malaria transmission blocking drugs. PMID:26687564

  3. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis. PMID:25112677

  4. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua.

    PubMed

    Nguyen, Van Thu; To, Dao Cuong; Tran, Manh Hung; Oh, Sang Ho; Kim, Jeong Ah; Ali, Md Yousof; Woo, Mi-Hee; Choi, Jae Sue; Min, Byung Sun

    2015-07-01

    Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22μM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42μM. Compound 2 showed the most potent activity with an IC50 of 0.23μM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue. PMID:26003344

  5. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    SciTech Connect

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  6. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    PubMed

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF. PMID:21170647

  7. Organic UV filters inhibit multixenobiotic resistance (MXR) activity in Tetrahymena thermophila: investigations by the Rhodamine 123 accumulation assay and molecular docking.

    PubMed

    Gao, Li; Yuan, Tao; Cheng, Peng; Zhou, Chuanqi; Ao, Junjie; Wang, Wenhua; Zhang, Haimou

    2016-09-01

    Multixenobiotic resistance (MXR) transporters, which belong to ATP-binding cassette (ABC) family proteins, are present in living organisms as a first line of defense system against xenobiotics and environmental contaminants. The effects of six organic UV filters (4-methyl -benzylidene camphor, 4-MBC; benzophenone-3, BP-3; butyl methoxydibenzoyl-methane, BM-DBM; ethylhexyl methoxy cinnamate, EHMC; octocrylene, OC and homosalate, HMS) on multixenobiotic resistance (MXR) in Tetrahymena thermophila were investigated in this study. It was found that 4-MBC, BP-3 and BM-DBM could significantly inhibit activity of the MXR system, causing concentration dependent accumulation of rhodamine 123; while EHMC, OC and HMS had weak MXR inhibition. The IC50 (50 % inhibition concentration) values of 4-MBC, BP-3 and BM-DBM were 23.54, 40.59 and 26.37 μM, respectively, with inhibitory potentials of 23.1, 13.4 and 20.6 % relative to verapamil (VER, a model inhibitor of P-glycoprotein). Our results firstly provide the evidence for UV filters inhibition effect on MXR in aquatic organisms. In addition, it was revealed by molecular docking analysis that the selected six UV filters can occupy the same binding site on T. thermophila P-gp as VER does; and form H-bonds with residues Ser 328 and/or Asn 281. This study raises the awareness of aquatic ecological risk from the organic UV filters exposure, as they would be involved in potentiating toxic effects by chemosensitizing. PMID:27315091

  8. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  9. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors.

    PubMed

    Kirsch, Glenn E; Fedorov, Nikolai B; Kuryshev, Yuri A; Liu, Zhiqi; Armstrong, Lucas C; Orr, Michael S

    2016-08-01

    The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  10. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  11. Arginase inhibition alleviates hypertension in the metabolic syndrome

    PubMed Central

    El-Bassossy, Hany M; El-Fawal, Rania; Fahmy, Ahmed; Watson, Malcolm L

    2013-01-01

    Background and Purpose We have previously shown that arginase inhibition alleviates hypertension associated with in a diabetic animal model. Here, we investigated the protective effect of arginase inhibition on hypertension in metabolic syndrome. Experimental Approach Metabolic syndrome was induced in rats by administration of fructose (10% in drinking water) for 12 weeks to induce vascular dysfunction. Three arginase inhibitors (citrulline, norvaline and ornithine) were administered daily in the last 6 weeks of study before and tail BP was recorded in conscious animals. Concentration response curves for phenylephrine (PE), KCl and ACh in addition to ACh-induced NO generation were obtained in thoracic aorta rings. Serum glucose, insulin, uric acid and lipid profile were determined as well as reactive oxygen species (ROS) and arginase activity. Key Results Arginase activity was elevated in metabolic syndrome while significantly inhibited by citrulline, norvaline or ornithine treatment. Metabolic syndrome was associated with elevations in systolic and diastolic BP, while arginase inhibition significantly reduced elevations in diastolic and systolic BP. Metabolic syndrome increased vasoconstriction responses of aorta to PE and KCl and decreased vasorelaxation to ACh, while arginase inhibition completely prevented impaired responses to ACh. In addition, arginase inhibition prevented impaired NO generation and exaggerated ROS formation in metabolic syndrome. Furthermore, arginase inhibition significantly reduced hyperinsulinaemia and hypertriglyceridaemia without affecting hyperuricaemia or hypercholesterolaemia associated with metabolic syndrome. Conclusions and Implications Arginase inhibition alleviates hypertension in metabolic syndrome directly through endothelial-dependent relaxation/NO signalling protection and indirectly through inhibition of insulin resistance and hypertriglyceridaemia. PMID:23441715

  12. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking.

    PubMed

    Simeon, Saw; Anuwongcharoen, Nuttapat; Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease which leads to the gradual loss of neuronal cells. Several hypotheses for AD exists (e.g., cholinergic, amyloid, tau hypotheses, etc.). As per the cholinergic hypothesis, the deficiency of choline is responsible for AD; therefore, the inhibition of AChE is a lucrative therapeutic strategy for the treatment of AD. Acetylcholinesterase (AChE) is an enzyme that catalyzes the breakdown of the neurotransmitter acetylcholine that is essential for cognition and memory. A large non-redundant data set of 2,570 compounds with reported IC50 values against AChE was obtained from ChEMBL and employed in quantitative structure-activity relationship (QSAR) study so as to gain insights on their origin of bioactivity. AChE inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 different data splits using random forest. Generated models afforded R (2), [Formula: see text] and [Formula: see text] values in ranges of 0.66-0.93, 0.55-0.79 and 0.56-0.81 for the training set, 10-fold cross-validated set and external set, respectively. The best model built using the substructure count was selected according to the OECD guidelines and it afforded R (2), [Formula: see text] and [Formula: see text] values of 0.92 ± 0.01, 0.78 ± 0.06 and 0.78 ± 0.05, respectively. Furthermore, Y-scrambling was applied to evaluate the possibility of chance correlation of the predictive model. Subsequently, a thorough analysis of the substructure fingerprint count was conducted to provide informative insights on the inhibitory activity of AChE inhibitors. Moreover, Kennard-Stone sampling of the actives were applied to select 30 diverse compounds for further molecular docking studies in order to gain structural insights on the origin of AChE inhibition. Site-moiety mapping of compounds from the diversity set revealed three binding anchors encompassing both hydrogen bonding and van der Waals

  13. Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay.

    PubMed

    Bohnert, Jürgen A; Schuster, Sabine; Kern, Winfried V; Karcz, Tadeusz; Olejarz, Agnieszka; Kaczor, Aneta; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna

    2016-04-01

    In this study, we tested five compounds belonging to a novel series of piperazine arylideneimidazolones for the ability to inhibit the AcrAB-TolC efflux pump. The biphenylmethylene derivative (BM-19) and the fluorenylmethylene derivative (BM-38) were found to possess the strongest efflux pump inhibitor (EPI) activities in the AcrAB-TolC-overproducingEscherichia colistrain 3-AG100, whereas BM-9, BM-27, and BM-36 had no activity at concentrations of up to 50 μM in a Nile red efflux assay. MIC microdilution assays demonstrated that BM-19 at 1/4 MIC (intrinsic MIC, 200 μM) was able to reduce the MICs of levofloxacin, oxacillin, linezolid, and clarithromycin 8-fold. BM-38 at 1/4 MIC (intrinsic MIC, 100 μM) was able to reduce only the MICs of oxacillin and linezolid (2-fold). Both compounds markedly reduced the MIC of rifampin (BM-19, 32-fold; and BM-38, 4-fold), which is suggestive of permeabilization of the outer membrane as an additional mechanism of action. Nitrocefin hydrolysis assays demonstrated that in addition to their EPI activity, both compounds were in fact weak permeabilizers of the outer membrane. Moreover, it was found that BM-19, BM-27, BM-36, and BM-38 acted as near-infrared-emitting fluorescent membrane probes, which allowed for their use in a combined influx and efflux assay and thus for tracking of the transport of an EPI across the outer membrane by an efflux pump in real time. The EPIs BM-38 and BM-19 displayed the most rapid influx of all compounds, whereas BM-27, which did not act as an EPI, showed the slowest influx. PMID:26824939

  14. Modulation of nicotinic ACh-, GABAA- and 5-HT3-receptor functions by external H-7, a protein kinase inhibitor, in rat sensory neurones

    PubMed Central

    Hu, Hong-Zhen; Li, Zhi-Wang

    1997-01-01

    The effects of external H-7, a potent protein kinase inhibitor, on the responses mediated by γ-aminobutyric acid A type (GABAA)-, nicotinic acetylcholine (nicotinic ACh)-, ionotropic 5-hydroxytryptamine (5-HT3)-, adenosine 5′-triphosphate (ATP)-, N-methyl-D-aspartate (NMDA)- and kainate (KA)-receptors were studied in freshly dissociated rat dorsal root ganglion neurone by use of whole cell patch-clamp technique. External H-7 (1–1000 μM) produced a reversible, dose-dependent inhibition of whole cell currents activated by GABA, ACh and 5-HT. Whole-cell currents evoked by ATP, 2-methylthio-ATP, NMDA and KA were insensitive to external H-7. External H-7 shifted the dose-response curve of GABA-activated currents downward without changing the EC50 significantly (from 15.0±4.0 μM to 18.0±5.0 μM). The maximum response to GABA was depressed by 34.0±5.3%. This inhibitory action of H-7 was voltage-independent. Intracellular application of H-7 (20 μM), cyclic AMP (1 mM) and BAPTA (10 mM) could not reverse the H-7 inhibition of GABA-activated currents. The results suggest that external H-7 selectively and allosterically modulates the functions of GABAA-, nicotine ACh- and 5-HT3 receptors via a common conserved site in the external domain of these receptors. PMID:9401786

  15. Protein tyrosine kinase inhibition and cell proliferation: is the [3H]-thymidine uptake assay representative of the T-lymphocyte proliferation rate?

    PubMed

    Spinozzi, F; Pagliacci, M C; Agea, E; Migliorati, G; Riccardi, C; Bertotto, A; Nicoletti, I

    1995-01-01

    T-cell growth is controlled to a large degree by extracellular signals that bind to specific receptors on the surface of cells. A number of these receptors have intrinsic protein tyrosine kinase (PTK) activity. Their action on second messenger generation, and thus on cell proliferation, has been indirectly demonstrated by the decrease in [3H]-thymidine (TdR) uptake that follows co-stimulation of T-cells with mitogens and PTK inhibitors such as genistein (GEN). In this paper we report that the [3H]-TdR uptake assay is not a valid and reliable tool for investigating the proliferative activity of certain T-cell lines. In fact, a concomitant assessment of both [3H]-TdR uptake and cell cycle progression demonstrated that GEN is able to block G2/M progression of Jurkat T-lymphocytes even at doses (5 micrograms/ml) that do not influence [3H]-TdR uptake. Pretreatment with sodium o-vanadate (100 nM) could not reverse the GEN-related cell cycle perturbation, but was able to restore optimal [3H]-TdR uptake. Finally, GEN treatment was able to induce concentration-dependent apoptotic cell death of Jurkat T-cells. The control of cell activation, proliferation and programmed cell death is undoubtedly influenced by receptor-associated PTKs. The final effect on cell survival is almost entirely dependent on the activation state of the cell. The [3H]-TdR uptake assay seems to be inadequate for a correct interpretation of the expected results. PMID:7655707

  16. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  17. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    SciTech Connect

    Wang Lei; Sasai, Ken Akagi, Tsuyoshi; Tanaka, Shinya

    2008-08-29

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development.

  18. Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion.

    PubMed

    Shelukhina, Irina; Paddenberg, Renate; Kummer, Wolfgang; Tsetlin, Victor

    2015-07-01

    In recent pain studies on animal models, α7 nicotinic acetylcholine receptor (nAChR) agonists demonstrated analgesic, anti-hyperalgesic and anti-inflammatory effects, apparently acting through some peripheral receptors. Assuming possible involvement of α7 nAChRs on nociceptive sensory neurons, we investigated the morphological and neurochemical features of the α7 nAChR-expressing subpopulation of dorsal root ganglion (DRG) neurons and their ability to transport α7 nAChR axonally. In addition, α7 receptor activity and its putative role in pain signal neurotransmitter release were studied. Medium-sized α7 nAChR-expressing neurons prevailed, although the range covered all cell sizes. These cells accounted for one-fifth of total medium and large DRG neurons and <5% of small ones. 83.2% of α7 nAChR-expressing DRG neurons were peptidergic nociceptors (CGRP-immunopositive), one half of which had non-myelinated C-fibers and the other half had myelinated Aδ- and likely Aα/β-fibers, whereas 15.2% were non-peptidergic C-fiber nociceptors binding isolectin B4. All non-peptidergic and a third of peptidergic α7 nAChR-bearing nociceptors expressed TRPV1, a capsaicin-sensitive noxious stimulus transducer. Nerve crush experiments demonstrated that CGRPergic DRG nociceptors axonally transported α7 nAChRs both to the spinal cord and periphery. α7 nAChRs in DRG neurons were functional as their specific agonist PNU282987 evoked calcium rise enhanced by α7-selective positive allosteric modulator PNU120596. However, α7 nAChRs do not modulate neurotransmitter CGRP and glutamate release from DRG neurons since nicotinic ligands affected neither their basal nor provoked levels, showing the necessity of further studies to elucidate the true role of α7 nAChRs in those neurons. PMID:24706047

  19. Salbutamol and ephedrine in the treatment of severe AChR deficiency syndromes

    PubMed Central

    Rodríguez Cruz, Pedro M.; Palace, Jacqueline; Ramjattan, Hayley; Jayawant, Sandeep; Robb, Stephanie A.

    2015-01-01

    Objective: To evaluate the response to salbutamol and ephedrine in the treatment of congenital myasthenic syndromes due to CHRNE mutations causing severe acetylcholine receptor (AChR) deficiency. Methods: A cohort study of 6 patients with severe AChR deficiency, symptomatic despite optimal therapy with anticholinesterase and 3,4-diaminopyridine, were analyzed for their response to the addition of salbutamol or ephedrine to their medication. Baseline quantitative myasthenia gravis (QMG) (severity) scores were worse than 15 of 39. Patients were assessed in clinic with QMG and mobility scores. Pretreatment and 6- to 8-month follow-up scores were evaluated. Results: All 6 patients tolerated treatment well and reported no side effects. There was a strong positive response to treatment over the 6- to 8-month assessment period with significant improvement in QMG (p = 0.027) and mobility scores. The analysis of subcomponents of the QMG score revealed marked improvement in upper (p = 0.028) and lower (p = 0.028) limb raise times. All patients reported enhanced activities of daily living at 6 to 8 months. Conclusions: Oral salbutamol and ephedrine appear to be effective treatments in severe cases of AChR deficiency on pyridostigmine. They are well tolerated and improvement in strength can be dramatic. Classification of evidence: This study provides Class IV evidence that salbutamol or ephedrine improves muscle strength in patients with congenital myasthenia from severe AChR deficiency. PMID:26296515

  20. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8.

    PubMed

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensisACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  1. Helium permeation through a-C:H films deposited on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Bellachioma, M. C.; Lozzi, L.; Santucci, S.; Kenny, J. M.

    2002-09-01

    The influence of amorphous hydrogenated carbon a-C:H coatings on gas permeation through polymer films was investigated. Hydrogenated amorphous carbon (a-C:H) films were deposited, at room temperature, from a CH4/Ar plasma produced by a radio frequency glow discharge system at 13.56 MHz. Polyether-etherketone (PEEK) and polyetherimide foils with different thicknesses were used as substrates. The permeation of He was measured and the reduction of the permeability coefficient is correlated here to the composition and density of the a-C:H films. The density and film structure of the layers were analyzed using x-ray reflectivity and Raman spectroscopy of films deposited onto silicon reference samples. A less pronounced reduction of the permeability coefficients for hard, dense diamond-like layers is reported with respect to those obtained for soft, polymer-like layers on PEEK substrates. Surprisingly, the barrier efficacy of the coating decreases with an increase in a-C:H film density. This unexpected result is attributed to intrinsic stress and the corresponding formation of microcracks. The effect of nitrogen incorporation, which reduces film permeability, is investigated in terms of the stress relaxation mechanism promoted. copyright 2002 American Vacuum Society.

  2. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  3. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    PubMed Central

    Ye, Jun; Ren, Chong; Shan, Xiexie

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  4. Importance of aspartate-70 in organophosphate inhibition, oxime re-activation and aging of human butyrylcholinesterase.

    PubMed Central

    Masson, P; Froment, M T; Bartels, C F; Lockridge, O

    1997-01-01

    Asp-70 is the defining amino acid in the peripheral anionic site of human butyrylcholinesterase (BuChE), whereas acetylcholinesterase has several additional amino acids, the most important one being Trp-277 (Trp-279 in Torpedo AChE). We studied mutants D70G, D70K and A277W to evaluate the role of Asp-70 and Trp-277 in reactions with organophosphates. We found that Asp-70 was important for binding positively charged echothiophate, but not neutral paraoxon and iso-OMPA. Asp-70 was also important for binding of positively charged pralidoxime (2-PAM) and for activation of re-activation by excess 2-PAM. Excess 2-PAM had an effect similar to substrate activation, suggesting the binding of 2 mol of 2-PAM to wild-type but not to the D70G mutant. A surprising result was that Asp-70 was important for irreversible aging, the D70G mutant having a 3- and 8-fold lower rate of aging for paraoxon-inhibited and di-isopropyl fluorophosphate-inhibited BuChE. Mutants of Asp-70 had the same rate constants for phosphorylation and re-activation by 2-PAM as wild-type. The A277W mutant behaved like wild-type in all assays. Our results predict that people with the atypical (D70G) variant of BuChE will be more sensitive to the toxic effects of echothiophate, but will be equally sensitive to paraoxon and di-isopropyl fluorophosphate. People with the D70G mutation will be resistant to re-activation of their inhibited BuChE by 2-PAM, but this will be offset by the lower rate of irreversible aging of inhibited BuChE, allowing some regeneration by spontaneous hydrolysis. PMID:9224629

  5. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli.

    PubMed

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  6. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli

    PubMed Central

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  7. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life.

    PubMed

    Noy-Porat, Tal; Cohen, Ofer; Ehrlich, Sharon; Epstein, Eyal; Alcalay, Ron; Mazor, Ohad

    2015-08-19

    Acetylcholinesterase (AChE) is the physiological target of organophosphate nerve agent compounds. Currently, the development of a formulation for prophylactic administration of cholinesterases as bioscavengers in established risk situations of exposure to nerve agents is the incentive for many efforts. While cholinesterase bioscavengers were found to be highly effective in conferring protection against nerve agent exposure in animal models, their therapeutic use is complicated by short circulatory residence time. To create a bioscavenger with prolonged plasma half-life, compatible with biotechnological production and purification, a chimeric recombinant molecule of HuAChE coupled to the Fc region of human IgG1 was designed. The novel fusion protein, expressed in cultured cells under optimized conditions, maintains its full enzymatic activity, at levels similar to those of the recombinant AChE enzyme. Thus, this novel fusion product retained its binding affinity toward BW284c5 and propidium, and its bioscavenging reactivity toward the organophosphate-AChE inhibitors sarin and VX. Furthermore, when administered to mice, AChE-Fc exhibits exceptional circulatory residence longevity (MRT of 6000 min), superior to any other known cholinesterase-based recombinant bioscavengers. Owing to its optimized pharmacokinetic performance, high reactivity toward nerve agents, and ease of production, AChE-Fc emerges as a promising next-generation organophosphate bioscavenger. PMID:26121420

  8. A Novel Translational Assay of Response Inhibition and Impulsivity: Effects of Prefrontal Cortex Lesions, Drugs Used in ADHD, and Serotonin 2C Receptor Antagonism

    PubMed Central

    Humby, Trevor; Eddy, Jessica B; Good, Mark A; Reichelt, Amy C; Wilkinson, Lawrence S

    2013-01-01

    Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory ‘stop-signal' during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control. PMID:23657439

  9. Characterization of the cloned full-length and a truncated human target of rapamycin: Activity, specificity, and enzyme inhibition as studied by a high capacity assay

    SciTech Connect

    Toral-Barza, Lourdes; Zhang Weiguo; Lamison, Craig; LaRocque, James; Gibbons, James; Yu, Ker . E-mail: yuk@wyeth.com

    2005-06-24

    The mammalian target of rapamycin (mTOR/TOR) is implicated in cancer and other human disorders and thus an important target for therapeutic intervention. To study human TOR in vitro, we have produced in large scale both the full-length TOR (289 kDa) and a truncated TOR (132 kDa) from HEK293 cells. Both enzymes demonstrated a robust and specific catalytic activity towards the physiological substrate proteins, p70 S6 ribosomal protein kinase 1 (p70S6K1) and eIF4E binding protein 1 (4EBP1), as measured by phosphor-specific antibodies in Western blotting. We developed a high capacity dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) for analysis of kinetic parameters. The Michaelis constant (K {sub m}) values of TOR for ATP and the His6-S6K substrate were shown to be 50 and 0.8 {mu}M, respectively. Dose-response and inhibition mechanisms of several known inhibitors, the rapamycin-FKBP12 complex, wortmannin and LY294002, were also studied in DELFIA. Our data indicate that TOR exhibits kinetic features of those shared by traditional serine/threonine kinases and demonstrate the feasibility for TOR enzyme screen in searching for new inhibitors.

  10. HLA-G1-transfected K562 cells do not inhibit NK-cell-mediated lysis in europium release cytotoxicity assay.

    PubMed

    Sapak, M; Buc, M

    2003-01-01

    The class Ia of HLA molecules are recognised by NK-cells either by inhibitory or stimulatory NK-receptors. When inhibitory signals prevail over stimulatoryones, the target cells expressing the class Ia of HLA molecules are not lysed by NK-cells. Similarly, class Ib of HLA molecules have been reported to induce the inhibitory signal in NK-cells. The cell line K562 is deprived of both class Ia and class Ib of HLA molecules, respectively, the fact of which enhances the lysis of K562 cells when they are co-cultivated with NK-cells. To study the role of HLA-G molecules in NK-cell cytotoxic activity, HLA-G tranfected K562 cells were used as target cells. NK-cells were isolated from the peripheral blood of 4 unrelated persons using Miltenyi's Biotec isolation system. The purity of directly isolated NK cells (CD56 Multisort kit) was 74.1%, and that of indirectly isolated NK-cells (NK-cell isolation kit) 69.4%. The europium release cytotoxicity assay was used in all experiments. The percentage of cytotoxicity ranged from 19% to 24% when K562 target cells were used. Similar results were obtained with the HLA-G1-transfected target cells: the percentage of cytotoxicity ranged from 17% to 29%. Our preliminary results indicate that NK-cells are able to lyse both, K562 cells and the HLA-G1-transfected K562 cells. (Tab. 1, Fig. 8, Ref. 21.). PMID:15055728

  11. In Vitro and In Vivo Antimalarial Activity Assays of Seeds from Balanites aegyptiaca: Compounds of the Extract Show Growth Inhibition and Activity against Plasmodial Aminopeptidase

    PubMed Central

    Kusch, Peter; Deininger, Susanne; Specht, Sabine; Maniako, Rudeka; Haubrich, Stefanie; Pommerening, Tanja; Lin, Paul Kong Thoo; Hoerauf, Achim; Kaiser, Annette

    2011-01-01

    Balanites aegyptiaca (Balanitaceae) is a widely grown desert plant with multiuse potential. In the present paper, a crude extract from B. aegyptiaca seeds equivalent to a ratio of 1 : 2000 seeds to the extract was screened for antiplasmodial activity. The determined IC50 value for the chloroquine-susceptible Plasmodium falciparum NF54 strain was 68.26 μg/μL ± 3.5. Analysis of the extract by gas chromatography-mass spectrometry detected 6-phenyl-2(H)-1,2,4-triazin-5-one oxime, an inhibitor of the parasitic M18 Aspartyl Aminopeptidase as one of the compounds which is responsible for the in vitro antiplasmodial activity. The crude plant extract had a Ki of 2.35 μg/μL and showed a dose-dependent response. After depletion of the compound, a significantly lower inhibition was determined with a Ki of 4.8 μg/μL. Moreover, two phenolic compounds, that is, 2,6-di-tert-butyl-phenol and 2,4-di-tert-butyl-phenol, with determined IC50 values of 50.29 μM ± 3 and 47.82 μM ± 2.5, respectively, were detected. These compounds may contribute to the in vitro antimalarial activity due to their antioxidative properties. In an in vivo experiment, treatment of BALB/c mice with the aqueous Balanite extract did not lead to eradication of the parasites, although a reduced parasitemia at day 12 p.i. was observed. PMID:21687598

  12. Cholinergic inhibition of short (outer) hair cells of the chick's cochlea.

    PubMed

    Fuchs, P A; Murrow, B W

    1992-03-01

    Cochlear hair cells are thought to be inhibited by the release of ACh from efferent neurons. Several studies have implicated Ca2+ as a postsynaptic intermediary in hair cell inhibition, but its role remains unproven. We have made whole-cell, tight-seal recordings from single short hair cells (the avian analog of outer hair cells in the mammalian cochlea), isolated from the chick's cochlea, to determine the mechanism of cholinergic inhibition. These cells hyperpolarized upon exposure to ACh, although a brief depolarization preceded the much larger, longer-lasting hyperpolarization. In voltage clamp ACh evoked an outward current that reversed in sign near the K+ equilibrium potential. A small, transient inward current preceded the predominant outward current. The ACh-evoked K+ current depended on Ca2+ in the external saline, or could be prevented when the cell was dialyzed with the rapid Ca2+ buffer BAPTA. In BAPTA-loaded cells a residual inward current was seen. This activated with very little delay upon exposure of the cell to ACh and reversed near 0 mV membrane potential. Thus, the hair cell ACh receptor appears to be a nonspecific cation channel through which Ca2+ enters and triggers the opening of nearby Ca(2+)-activated K+ channels. However, the ACh-evoked K+ channels are not the same as the "maxi" K+ channels activated by Ca2+ influx through voltage-gated Ca2+ channels in these same cells. PMID:1545240

  13. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B

    PubMed Central

    Scior, Thomas; Guevara-García, José Antonio; Melendez, FJ; Abdallah, Hassan H; Do, Quoc-Tuan; Bernard, Philippe

    2010-01-01

    Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [VVO2(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm−1 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C–N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); 13C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and 1H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH2 shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD50) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC50) and extended solution stability will be tested. PMID:20957214

  14. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII&D

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-06-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII&D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys. 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  15. MuSK Myasthenia Gravis IgG4 Disrupts the Interaction of LRP4 with MuSK but Both IgG4 and IgG1-3 Can Disperse Preformed Agrin-Independent AChR Clusters

    PubMed Central

    Koneczny, Inga; Cossins, Judith; Waters, Patrick; Beeson, David; Vincent, Angela

    2013-01-01

    A variable proportion of patients with generalized myasthenia gravis (MG) have autoantibodies to muscle specific tyrosine kinase (MuSK). During development agrin, released from the motor nerve, interacts with low density lipoprotein receptor-related protein-4 (LRP4), which then binds to MuSK; MuSK interaction with the intracellular protein Dok7 results in clustering of the acetylcholine receptors (AChRs) on the postsynaptic membrane. In mature muscle, MuSK helps maintain the high density of AChRs at the neuromuscular junction. MuSK antibodies are mainly IgG4 subclass, which does not activate complement and can be monovalent, thus it is not clear how the antibodies cause disruption of AChR numbers or function to cause MG. We hypothesised that MuSK antibodies either reduce surface MuSK expression and/or inhibit the interaction with LRP4. We prepared MuSK IgG, monovalent Fab fragments, IgG1-3 and IgG4 fractions from MuSK-MG plasmas. We asked whether the antibodies caused endocytosis of MuSK in MuSK-transfected cells or if they inhibited binding of LRP4 to MuSK in co-immunoprecipitation experiments. In parallel, we investigated their ability to reduce AChR clusters in C2C12 myotubes induced by a) agrin, reflecting neuromuscular development, and b) by Dok7- overexpression, producing AChR clusters that more closely resemble the adult neuromuscular synapse. Total IgG, IgG4 or IgG1-3 MuSK antibodies were not endocytosed unless cross-linked by divalent anti-human IgG. MuSK IgG, Fab fragments and IgG4 inhibited the binding of LRP4 to MuSK and reduced agrin-induced AChR clustering in C2C12 cells. By contrast, IgG1-3 antibodies did not inhibit LRP4-MuSK binding but, surprisingly, did inhibit agrin-induced clustering. Moreover, both IgG4 and IgG1-3 preparations dispersed agrin-independent AChR clusters in Dok7-overexpressing C2C12 cells. Thus interference by IgG4 antibodies of the LRP4-MuSK interaction will be one pathogenic mechanism of MuSK antibodies, but IgG1-3 Mu

  16. Muscle aches

    MedlinePlus

    ... be done include: Complete blood count (CBC) Other blood tests to look at muscle enzymes (creatine kinase) and possibly a test for Lyme disease or a connective tissue disorder Physical therapy may be helpful.

  17. Chemical analog-to-digital signal conversion based on robust threshold chemistry and its evaluation in the context of microfluidics-based quantitative assays.

    PubMed

    Huynh, Toan; Sun, Bing; Li, Liang; Nichols, Kevin P; Koyner, Jay L; Ismagilov, Rustem F

    2013-10-01

    In this article, we describe a nonlinear threshold chemistry based on enzymatic inhibition and demonstrate how it can be coupled with microfluidics to convert a chemical concentration (analog input) into patterns of ON or OFF reaction outcomes (chemical digital readout). Quantification of small changes in concentration is needed in a number of assays, such as that for cystatin C, where a 1.5-fold increase in concentration may indicate the presence of acute kidney injury or progression of chronic kidney disease. We developed an analog-to-digital chemical signal conversion that gives visual readout and applied it to an assay for cystatin C as a model target. The threshold chemistry is based on enzymatic inhibition and gives sharper responses with tighter inhibition. The chemistry described here uses acetylcholinesterase (AChE) and produces an unambiguous color change when the input is above a predetermined threshold concentration. An input gives a pattern of ON/OFF responses when subjected to a monotonic sequence of threshold concentrations, revealing the input concentration at the point of transition from OFF to ON outcomes. We demonstrated that this threshold chemistry can detect a 1.30-fold increase in concentration at 22 °C and that it is robust to experimental fluctuations: it provided the same output despite changes in temperature (22-34 °C) and readout time (10-fold range). We applied this threshold chemistry to diagnostics by coupling it with a traditional sandwich immunoassay for serum cystatin C. Because one quantitative measurement comprises several assays, each with its own threshold concentration, we used a microfluidic SlipChip device to process 12 assays in parallel, detecting a 1.5-fold increase (from 0.64 (49 nM) to 0.96 mg/L (74 nM)) of cystatin C in serum. We also demonstrated applicability to analysis of patient serum samples and the ability to image results using a cell phone camera. This work indicates that combining developments in nonlinear

  18. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y

  19. Deposition of a-C:H films on UHMWPE substrate and its wear-resistance

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Liu, Hengjun; Deng, Xingrui; Leng, Y. X.; Huang, Nan

    2009-10-01

    In prosthetic hip replacements, ultrahigh molecular weight polyethylene (UHMWPE) wear debris is identified as the main factor limiting the lifetime of the artificial joints. Especially UHMWPE debris from the joint can induce tissue reactions and bone resorption that may lead to the joint loosening. The diamond like carbon (DLC) film has attracted a great deal of interest in recent years mainly because of its excellent tribological property, biocompatibility and chemically inert property. In order to improve the wear-resistance of UHMWPE, a-C:H films were deposited on UHMWPE substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-PECVD) technology. During deposition, the working gases were argon and acetylene, the microwave power was set to 800 W, the biased pulsed voltage was set to -200 V (frequency 15 kHz, duty ratio 20%), the pressure in vacuum chamber was set to 0.5 Pa, and the process time was 60 min. The films were analysed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, nano-indentation, anti-scratch and wear test. The results showed that a typical amorphous hydrogenated carbon (a-C:H) film was successfully deposited on UHMWPE with thickness up to 2 μm. The nano-hardness of the UHMWPE coated with a-C:H films, measured at an applied load of 200 μN, was increased from 10 MPa (untreated UHMWPE) to 139 MPa. The wear test was carried out using a ball (Ø 6 mm, SiC) on disk tribometer with an applied load of 1 N for 10000 cycles, and the results showed a reduction of worn cross-sectional area from 193 μm 2 of untreated UHMWPE to 26 μm 2 of DLC coated sample. In addition the influence of argon/acetylene gas flow ratio on the growth of a-C:H films was studied.

  20. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  1. The stabilization of Au NP-AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor.

    PubMed

    Buiculescu, Raluca; Chaniotakis, Nikos A

    2012-08-01

    We report on the construction of an amperometric biosensor based on the immobilization of the enzyme acetylcholinesterase (AChE) onto gold nanoparticles (Au NPs). The active enzyme is covalently bound directly onto the surface of the Au NPs via a thiol bond. This immobilization provides increased stability and high electron-transfer between the colloidal Au NPs, the catalyst and the transducer surface. To further increase the biosensor stability by protecting the enzyme from denaturation and protease attack, a layer of biosilica was grown around the Au NP enzyme nanocomposite. All steps, i.e., the conjugation of the enzyme to the gold nanoparticles and the encapsulation into biosilica, are monitored and confirmed by ATR-FT-IR spectroscopy. The stabilizing effect of the entrapment was evaluated amperometrically, while the operation of the biosensor was monitored over a period of 4 months. The initial sensitivity of the biosensor was calculated to be 27.58 nA mM(-1) with a linear response to the concentration of the substrate in the range from 0.04 to 0.4 mM. It is thus shown that the biosilica nanocomposites doped with Au NPs-AChE conjugates create a system that provides both signal mediation and significant enzyme stabilization over the existing AChE biosensor. The biosensor had retained all its activity at the end of the 4 months, compared with the normal AChE biosensor whose activity reached 50% after only 42 days of operation. PMID:22421347

  2. Cross-talk between α7 nAchR and NMDAR revealed by protein profiling.

    PubMed

    Zhang, Hailong; Li, Tao; Li, Shupeng; Liu, Fang

    2016-01-10

    Functional regulation of NMDA receptor (NMDAR) by the activation of α7 nicotinic acetylcholine receptor (α7nAChR) has been reported, although the molecular signaling pathway underlying this process remains largely unknown. We employed a label-free quantitative proteomics approach to identify potential intracellular molecules and pathways that might be involved in the functional cross-talk between NMDAR and α7nAChR. 43 proteins showed significantly expression changes after choline treatment in which 35 out of 43 proteins was significantly altered by co-treatment with NMDA. Western blot analysis verified proteins expression determined by LC-MS. Furthermore, protein expression in vivo in neurons from fetal rats were visualized and quantified by Confocal microscopy,which showed consistency of relative changes of AHA-1 expressionmeasured by LC-MS and Western blot. Biological network analysis of differently expressed proteins found 21 kind of biological pathways involved. Of those pathways, 6 pathways were directly involved in regulation of neurotransmitters. Lastly, the levels of neurotransmitters (dopamine, glutamate, GABA and 5-HT) were measured by HPLC-ECD. Co-treatment choline/NMDA significantly enhances the release of dopamine, glutamate and GABA and dramatically decrease 5-HT to only 65% of control level, which is consist with this protein interaction network analysis, providing an additional evidence for the cross-talk between NMDAR and α7nAChR. PMID:26498070

  3. Does Your Patient’s Urine Turns Dark? Alkaptonuria and Low Back Ache: A Literature Review

    PubMed Central

    Kanniyan, Kalaivanan; Pathak, Aditya C; Dhammi, Ish Kumar; Jain, Anil Kumar

    2014-01-01

    Introduction: Alkaptonuria is a very rare inborn error of amino acid metabolism due to deficient homogentisic acid (HGA) oxidase enzyme leading to accumulation of HGA in plasma, cartilage, other tissues of human body and its excretion in urine. It has both systemic and peripheral signs and symptoms. Though low back is a common symptom of alkaptonuria but, in the absence of ochronosis it is rare. Alkaptonuria itself is very rare occurrence with no specific treatment option available to reverse the effect as yet. Case Report: A 38-year-old male, embroidery worker presented with chronic low back ache with history of staining of clothes in infancy. Later on laboratory and the radiological investigation patient was diagnosed to have alkaptonuria without ochronosis. No other systemic manifestation was present. Patient was treated conservatively and responded well. Conclusion: Though alkaptonuria is a very rare disease, and the occurrence of low back-ache in absence of ochronosis is much rarer. One must be aware of this inborn error of metabolism. Early diagnosis though being “diagnosis of exclusion” for low back-ache, high index of suspicion is advantageous as symptomatic treatment of the alkaptonuria can be initiated and evaluation of other systemic organs can be done in early stages itself. PMID:27298997

  4. Expression of human AChR extracellular domain mutants with improved characteristics.

    PubMed

    Lazaridis, Konstantinos; Zisimopoulou, Paraskevi; Giastas, Petros; Bitzopoulou, Kalliopi; Evangelakou, Panagiota; Sideri, Anastasia; Tzartos, Socrates J

    2014-02-01

    The muscle nicotinic acetylcholine receptor (AChR) has a central role in neuromuscular transmission, and is the major target in the autoimmune disease myasthenia gravis (MG). We created mutants of the extracellular domains (ECDs) of the human α1, β1, δ and ε AChR subunits, whereby their Cys-loop was exchanged for that of the acetylcholine binding protein. The mutants were expressed in Pichia pastoris and had improved solubility resulting in 2- to 43-fold higher expression yields compared to the wild type. An additional mutant was created for the α1 ECD restoring its glycosylation site within the Cys-loop and its α-bungarotoxin binding ability. Furthermore, we constructed dimeric and pentameric concatamers of the mutant ECDs. All concatamers were successfully expressed as soluble secreted proteins, although the pentamers had about 10-fold lower expression than the dimers and were more susceptible to fragmentation. Initial crystallizations with the mutant ECDs were promising, and we reproducibly obtained crystals of the β1 ECD, diffracting at ~12 Å. Further optimization is underway to obtain crystals suitable for high resolution crystallography. The proteins described herein are useful tools in structural studies of the human muscle AChR and can be used in applications requiring high yields such as therapeutic adsorbents for MG autoantibodies. PMID:24246999

  5. Novel multipotent AChEI-CCB attenuates hyperhomocysteinemia-induced memory deficits and Neuropathologies in rats.

    PubMed

    Xia, Yiyuan; Liu, Rong; Chen, Rong; Tian, Qing; Zeng, Kuan; Hu, Jichang; Liu, Xinghua; Wang, Qun; Wang, Peng; Wang, Xiao-Chuan; Wang, Jian-Zhi

    2014-01-01

    Alzheimer's disease (AD) has multiple etiopathogenic factors, yet the definitive cause remains unclear and the therapeutic strategies have been elusive. Combination therapy, as one of the promising treatments, has been studied for years and may exert synergistic beneficial effects on AD through polytherapeutic targets. In this study, we tested the effects of a synthesized juxtaposition (named SCR1693) composed of an acetylcholinesterase inhibitor (AChEI) and a calcium channel blocker (CCB) on the hyperhomocysteinemia (HHcy)-induced AD rat model, and found that SCR1693 remarkably improved the HHcy-induced memory deficits and preserved dendrite morphologies as well as spine density by upregulating synapse-associated proteins PSD95 and synapsin-1. In addition, SCR1693 attenuated HHcy-induced tau hyperphosphorylation at multiple AD-associated sites by regulating the activity of protein phosphatase-2A and glycogen synthase kinase-3β. Furthermore, SCR1693 was more effective than individual administration of both donepezil and nilvadipine which were used as AChEI and CCB, respectively, in the clinical practice. In conclusion, our data suggest that the polytherapeutic targeting juxtaposition SCR1693 (AChEI-CCB) is a promising therapeutic candidate for AD. PMID:25024319

  6. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  7. Heterogeneous Inhibition in Macroscopic Current Responses of Four Nicotinic Acetylcholine Receptor Subtypes by Cholesterol Enrichment.

    PubMed

    Báez-Pagán, Carlos A; Del Hoyo-Rivera, Natalie; Quesada, Orestes; Otero-Cruz, José David; Lasalde-Dominicci, José A

    2016-08-01

    The nicotinic acetylcholine receptor (nAChR), located in the cell membranes of neurons and muscle cells, mediates the transmission of nerve impulses across cholinergic synapses. In addition, the nAChR is also found in the electric organs of electric rays (e.g., the genus Torpedo). Cholesterol, which is a key lipid for maintaining the correct functionality of membrane proteins, has been found to alter the nAChR function. We were thus interested to probe the changes in the functionality of different nAChRs expressed in a model membrane with modified cholesterol to phospholipid ratios (C/P). In this study, we examined the effect of increasing the C/P ratio in Xenopus laevis oocytes expressing the neuronal α7, α4β2, muscle-type, and Torpedo californica nAChRs in their macroscopic current responses. Using the two-electrode voltage clamp technique, it was found that the neuronal α7 and Torpedo nAChRs are significantly more sensitive to small increases in C/P than the muscle-type nAChR. The peak current versus C/P profiles during enrichment display different behaviors; α7 and Torpedo nAChRs display a hyperbolic decay with two clear components, whereas muscle-type and α4β2 nAChRs display simple monophasic decays with different slopes. This study clearly illustrates that a physiologically relevant increase in membrane cholesterol concentration produces a remarkable reduction in the macroscopic current responses of the neuronal α7 and Torpedo nAChRs functionality, whereas the muscle nAChR appears to be the most resistant to cholesterol inhibition among all four nAChR subtypes. Overall, the present study demonstrates differential profiles for cholesterol inhibition among the different types of nAChR to physiological cholesterol increments in the plasmatic membrane. This is the first study to report a cross-correlation analysis of cholesterol sensitivity among different nAChR subtypes in a model membrane. PMID:27116687

  8. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress.

    PubMed

    Miranda-Rottmann, Soledad; Aspillaga, Augusto A; Pérez, Druso D; Vasquez, Luis; Martinez, Alvaro L F; Leighton, Federico

    2002-12-18

    Oxidative modification of low-density lipoprotein (LDL) particles is a key event in the development of atherosclerosis. Oxidized LDL induces oxidative stress and modifies gene expression in endothelial cells. Berries constitute a rich dietary source of phenolic antioxidants. We found that the endemic Chilean berry Aristotelia chilensis (ach) has higher phenol content and scores better for total radical-trapping potential and total antioxidant reactivity in in vitro antioxidant capacity tests, when compared to different commercial berries. The juice of ach is also effective in inhibiting copper-induced LDL oxidation. In human endothelial cell cultures, the addition of ach juice significantly protects from hydrogen peroxide-induced intracellular oxidative stress and is dose-dependent. The aqueous, anthocyanin-rich fraction of ach juice accounts for most of ach's antioxidant properties. These results show that ach is a rich source of phenolics with high antioxidant capacity and suggest that it may have antiatherogenic properties. PMID:12475268

  9. The α3β4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies

    PubMed Central

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-01-01

    BACKGROUND AND PURPOSE Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. EXPERIMENTAL APPROACHES To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. KEY RESULTS BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. CONCLUSION AND IMPLICATIONS Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. PMID:24750073

  10. Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells.

    PubMed

    Xu, Man; Bi, Xueyuan; He, Xi; Yu, Xiaojiang; Zhao, Ming; Zang, Weijin

    2016-05-18

    The mitochondrial unfolded protein response (UPR(mt)) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPR(mt) in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPR(mt) in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPR(mt) and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPR(mt) might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR. PMID:27111378

  11. Somatostatin inhibits cANP-mediated cholinergic transmission in the myenteric plexus

    SciTech Connect

    Wiley, J.; Owyang, C. )

    1987-11-01

    The mechanism by which somatostatin acts to modulate cholinergic transmission is not clear. In this study the authors investigated the role of the adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) system in mediating cholinergic transmission in the guinea pig myenteric plexus and examined the ability of somatostatin to alter acetylcholine (ACh) release stimulated by various cAMP agonists. Forskolin, 8-bromo-cAMP, vasoactive intestinal peptide (VIP), and cholera toxin each stimulated the release of ({sup 3}H)ACh in a dose-related manner. Addition of theophylline enhanced the release of ({sup 3}H)ACh stimulated by these cAMP agonists. The observations suggest that cAMP may serve as a physiological mediator for ACh release from myenteric neurons. Somatostatin inhibited release of ({sup 3}H)ACh evoked by various cAMP agonists in a dose-related manner. Pretreatment with pertussis toxin antagonized the inhibitory effect of somatostatin on the release of ({sup 3}H)ACh evoked by forskolin, VIP, or cholera toxin but had no effect on the inhibitory action of somatostatin on the release of ({sup 3}H)ACh evoked by 8-bromo-cAMP. This suggests that the principal mechanism by which somatostatin inhibits cAMP-mediated cholinergic transmission is via activation of the inhibitory regulatory protein (N{sub i} subunit) of adenyalte cyclase.

  12. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual

  13. Docking studies of benzylidene anabaseine interactions with α7 nicotinic acetylcholine receptor (nAChR) and acetylcholine binding proteins (AChBPs): Application to the design of related α7 selective ligands

    PubMed Central

    Kombo, David C.; Mazurov, Anatoly; Tallapragada, Kartik; Hammond, Philip S.; Chewning, Joseph; Hauser, Terry A.; Vasquez-Valdivieso, Montserrat; Yohannes, Daniel; Talley, Todd T.; Taylor, Palmer; Caldwell, William S.

    2016-01-01

    AChBPs isolated from Lymnaea stagnalis (Ls), Aplysia californica (Ac) and Bulinus truncatus (Bt) have been extensively used as structural prototypes to understand the molecular mechanisms that underlie ligand-interactions with nAChRs [1]. Here, we describe docking studies on interactions of benzylidene anabaseine analogs with AChBPs and α7 nAChR. Results reveal that docking of these compounds using Glide software accurately reproduces experimentally-observed binding modes of DMXBA and of its active metabolite, in the binding pocket of Ac. In addition to the well-known nicotinic pharmacophore (positive charge, hydrogen-bond acceptor, and hydrophobic aromatic groups), a hydrogen-bond donor feature contributes to binding of these compounds to Ac, Bt, and the α7 nAChR. This is consistent with benzylidene anabaseine analogs with OH and NH2 functional groups showing the highest binding affinity of these congeners, and the position of the ligand shown in previous X-ray crystallographic studies of ligand-Ac complexes. In the predicted ligand-Ls complex, by contrast, the ligand OH group acts as hydrogen-bond acceptor. We have applied our structural findings to optimizing the design of novel spirodiazepine and spiroimidazoline quinuclidine series. Binding and functional studies revealed that these hydrogen-bond donor containing compounds exhibit improved affinity and selectivity for the α7 nAChR subtype and demonstrate partial agonism. The gain in affinity is also due to conformational restriction, tighter hydrophobic enclosures, and stronger cation-π interactions. The use of AChBPs structure as a surrogate to predict binding affinity to α7 nAChR has also been investigated. On the whole, we found that molecular docking into Ls binding site generally scores better than when a α7 homology model, Bt or Ac crystal structure is used. PMID:21986237

  14. Molecular Mechanisms of Cross-inhibition Between Nicotinic Acetylcholine Receptors and P2X Receptors in Myenteric Neurons and HEK-293 cells

    PubMed Central

    Decker, Dima A.; Galligan, James J.

    2010-01-01

    Background P2X2 and nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic excitation in the enteric nervous system. P2X receptors and nAChRs are functionally linked. This study examined the mechanisms responsible for interactions between P2X2 and α3β4subunit-containing nAChRs. Methods The function of P2X2 and α3β4 nAChRs expressed by HEK-293 cells and guinea pig ileum myenteric neurons in culture was studied using whole-cell patch clamp techniques. Results In HEK-293 cells expressing α3β4 nAChRs and P2X2 receptors, co-application of ATP and ACh caused inward currents that were 56 ± 7% of the current that should occur if these channels functioned independently (P < 0.05, n = 9); we call this interaction cross-inhibition. Cross-inhibition did not occur in HEK-293 cells expressing α3β4 nAChRs and a C-terminal tail truncated P2X2 receptor (P2X2TR)(P >0.05, n = 8). Intracellular application of the C-terminal tail of the P2X2 receptor blocked nAChR-P2X receptor cross-inhibition in HEK-293 cells and myenteric neurons. In the absence of ATP, P2X2 receptors constitutively inhibited nAChR currents in HEK-293 cells expressing both receptors. Constitutive inhibition did not occur in HEK-293 cells expressing α3β4 nAChRs transfected with P2X2TR. Currents caused by low (≤30 μM), but not high (≥100 μM) concentrations of ATP in cells expressing P2X2 receptors were inhibited by co-expression with α3β4 nAChRs. Conclusions The C-terminal tail of P2X2 receptors mediates cross-inhibition between α3β4 nAChR-P2X2 receptors. The closed state of P2X2 receptors and nAChRs can also cause cross inhibition. These interactions may modulate transmission at enteric synapses that use ATP and acetylcholine as co-transmitters. PMID:20426799

  15. Rat hormone sensitive lipase inhibition by cyclipostins and their analogs.

    PubMed

    Vasilieva, Elena; Dutta, Supratik; Malla, Raj K; Martin, Benjamin P; Spilling, Christopher D; Dupureur, Cynthia M

    2015-03-01

    Cyclipostins are bicyclic lipophilic phosphate natural products. We report here that synthesized individual diastereomers of cyclipostins P and R have nanomolar IC50s toward hormone sensitive lipase (HSL). The less potent diastereomers of these compounds have 10-fold weaker IC50s. The monocyclic phosphate analog of cyclipostin P is nearly as potent as the bicyclic natural product. Bicyclic phosphonate analogs of both cyclipostins exhibit IC50s similar to those of the weaker diastereomer phosphates (about 400nM). The monocyclic phosphonate analog of cyclipostin P has similar potency. A series of monocyclic phosphonate analogs in which a hydrophobic tail extends from the lactone side of the ring are considerably poorer inhibitors, with IC50s around 50μM. Finally cyclophostin, a related natural product inhibitor of acetylcholinesterase (AChE) that lacks the hydrocarbon tail of cyclipostins, is not active against HSL. These results indicate a critical SAR for these compounds, the hydrophobic tail. The smaller lactone ring is not critical to activity, a similarity shared with cyclophostin and AChE. The HSL kinetics of inhibition for the cyclipostin P trans diastereomer were examined in detail. The reaction is irreversible with a KI of 40nM and a rate constant for inactivation of 0.2min(-1). These results are similar to those observed for cyclophostin and AChE. PMID:25678014

  16. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Abuta grandifolia.

    PubMed

    Cometa, Maria Francesca; Fortuna, Stefano; Palazzino, Giovanna; Volpe, Maria Teresa; Rengifo Salgado, Elsa; Nicoletti, Marcello; Tomassini, Lamberto

    2012-04-01

    The phytochemical study of the stem bark and wood of Abuta grandifolia (Mart.) Sandwith led to the identification of four bisbenzylisoquinoline alkaloids (BBIQs), namely (R,S)-2 N-norberbamunine (1), (R,R)-isochondodendrine (2), (S-S)-O4″-methyl, Nb-nor-O6'-demethyl-(+)-curine (3), and (S-S)-O4″-methyl, O6'-demethyl-(+)-curine (4), together with the aporphine alkaloid R-nornuciferine (5), all obtained by countercurrent distribution separation (CCD) and identified on the basis of their spectroscopic data. Alkaloids 3 and 4 were new. All the isolated compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. 1 was the most active against AChE, whereas 3 and 4 were the most potent against BChE. Interestingly, all tested alkaloids are more potent against BChE than against AChE. This selectivity of cholinesterase (ChE) inhibition could be important in order to speculate on their potential therapeutic relevance. PMID:22230193

  17. Rat Hormone Sensitive Lipase Inhibition by Cyclipostins and Their Analogs

    PubMed Central

    Vasilieva, Elena; Dutta, Supratik; Malla, Raj K.; Martin, Benjamin P.; Spilling, Christopher D.; Dupureur, Cynthia M.

    2015-01-01

    Cyclipostins are bicyclic lipophilic phosphate natural products. We report here that synthesized individual diastereomers of cyclipostins P and R have nanomolar IC50s toward hormone sensitive lipase (HSL). The less potent diastereomers of these compounds have 10-fold weaker IC50s. The monocyclic phosphate analog of cyclipostin P is nearly as potent as the bicyclic natural product. Bicyclic phosphonate analogs of both cyclipostins exhibit IC50s similar to those of the weaker diastereomer phosphates (about 400 nM). The monocyclic phosphonate analog of cyclipostin P has similar potency. A series of monocyclic phosphonate analogs in which a hydrophobic tail extends from the lactone side of the ring are considerably poorer inhibitors, with IC50s around 50 μM. Finally cyclophostin, a related natural product inhibitor of acetylcholinesterase (AChE) that lacks the hydrocarbon tail of cyclipostins, is not active against HSL. These results indicate a critical SAR for these compounds, the hydrophobic tail. The smaller lactone ring is not critical to activity, a similarity shared with cyclophostin and AChE. The HSL kinetics of inhibition for the cyclipostin P trans diastereomer were examined in detail. The reaction is irreversible with a KI of 40 nM and a rate constant for inactivation of 0.2 min−1. These results are similar to those observed for cyclophostin and AChE. PMID:25678014

  18. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  19. LSD1 Histone Demethylase Assays and Inhibition.

    PubMed

    Hayward, D; Cole, P A

    2016-01-01

    The lysine-specific demethylase (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from histone H3 at the Lys4 position. Along with histone deacetylases 1 and 2, LSD1 is involved in epigenetically silencing gene expression. LSD1 has been implicated as a potential therapeutic target in cancer and other diseases. In this chapter, we discuss several approaches to measure LSD1 demethylase activity and their relative strengths and limitations for inhibitor discovery and mechanistic characterization. In addition, we review the principal established chemical functional groups derived from monoamine oxidase inhibitors that have been investigated in the context of LSD1 as demethylase inhibitors. Finally, we highlight a few examples of recently developed LSD1 mechanism-based inactivators and their biomedical applications. PMID:27372757

  20. Spacetime Non-Commutativity Corrections to the Cardy-Verlinde Formula of Achúcarro-Ortiz Black Hole

    NASA Astrophysics Data System (ADS)

    Setare, M. R.

    2007-02-01

    In this letter we compute the corrections to the Cardy-Verlinde formula of Achúcarro-Ortiz black hole, which is the most general two-dimensional black hole derived from the three-dimensional rotating Banados-Teitelboim-Zanelli black hole. These corrections stem from the space non-commutativity. We show that in non-commutative case, non-rotating Achúcarro-Ortiz black hole in contrast with commutative case has two horizons.

  1. Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients

    PubMed Central

    Kordas, Gregory; Lagoumintzis, George; Sideris, Sotirios; Poulas, Konstantinos; Tzartos, Socrates J.

    2014-01-01

    Several studies have suggested that the autoantibodies (autoAbs) against muscle acetylcholine receptor (AChR) of myasthenia gravis (MG) patients are the main pathogenic factor in MG; however, this belief has not yet been confirmed with direct observations. Although animals immunized with AChR or injected with anti-AChR monoclonal Abs, or with crude human MG Ig fractions exhibit MG symptoms, the pathogenic role of isolated anti-AChR autoAbs, and, more importantly, the absence of pathogenic factor(s) in the autoAb-depleted MG sera has not yet been shown by in vivo studies. Using recombinant extracellular domains of the human AChR α and β subunits, we have isolated autoAbs from the sera of four MG patients. The ability of these isolated anti-subunit Abs and of the Ab-depleted sera to passively transfer experimental autoimmune MG in Lewis rats was investigated. We found that the isolated anti-subunit Abs were at least as efficient as the corresponding whole sera or whole Ig in causing experimental MG. Abs to both α- and β-subunit were pathogenic although the anti-α-subunit were much more efficient than the anti-β-subunit ones. Interestingly, the autoAb-depleted sera were free of pathogenic activity. The later suggests that the myasthenogenic potency of the studied anti-AChR MG sera is totally due to their anti-AChR autoAbs, and therefore selective elimination of the anti-AChR autoAbs from MG patients may be an efficient therapy for MG. PMID:25259739

  2. Helicase Assays

    PubMed Central

    Wang, Xin; Li, Jing; Diaz, Jason; You, Jianxin

    2016-01-01

    Helicases are a class of enzymes which are motor proteins using energy derived from ATP hydrolysis to move directionally along a nucliec acid phosphodiester backbone (such as DNA, RNA and DNA-RNA hybrids) and separate two annealed nucleic acid strands. Many cellular processes, such as transcription, DNA replication, recombination and DNA repair involve helicase activity. Here, we provide a protocol to analyze helicase activities in vitro. In this protocol, the DNA helicase protein Merkel cell polyomavirus large T-antigen was expressed in the mammalian cell line HEK293 and immoblized on an IgG resin. The helicase assay is performing while the protein is immoblized on IgG resin.

  3. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria.

    PubMed

    Schrey, Silvia D; Schellhammer, Michael; Ecke, Margret; Hampp, Rüdiger; Tarkka, Mika T

    2005-10-01

    The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric (Amanita muscaria) and spruce (Picea abies) was investigated. The effects of both bacteria on the mycelial growth of different ectomycorrhizal fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture with AcH 505 were determined. The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances. PMID:16159334

  4. Angiogenesis Assays.

    PubMed

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  5. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: Effect on acetylcholinesterase inhibition activity.

    PubMed

    Islam, Mullah Muhaiminul; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-05-01

    The increase in fluorescence intensity of model acetyl cholinesterase (AChE) inhibitors like propidium iodide (PI) and ethidium bromide (EB) is due to sequestration of the probes in primary micellar aggregates of bile acid (BA) host medium with moderate binding affinity of ca. 10(2)-10(3)M(-1). Multiple regression analysis of solvent dependent fluorescence behavior of PI indicates the decrease in total nonradiative decay rate due to partial shielding of the probe from hydrogen bond donation ability of the aqueous medium in bile acid bound fraction. Both PI and EB affects AChE activity through mixed inhibition and consistent with one site binding model; however, PI (IC50=20±1μM) shows greater inhibition in comparison with EB (IC50=40±3μM) possibly due to stronger interaction with enzyme active site. The potency of AChE inhibition for both the compounds is drastically reduced in the presence of bile acid due to the formation of BA-inhibitor complex and subsequent reduction of active inhibitor fraction in the medium. Although the inhibition mechanism still remains the same, the course of catalytic reaction critically depends on equilibrium binding among several species present in the solution; particularly at low inhibitor concentration. All the kinetic parameters for enzyme inhibition reaction are nicely correlated with the association constant for BA-inhibitor complex formation. PMID:26974580

  6. On ACH, or how reliable is regional teleseismic delay time tomography?

    NASA Astrophysics Data System (ADS)

    Masson, F.; Trampert, J.

    1997-06-01

    ACH (named after Aki et al., 1976, Bull. Seismol. Soc. Am., 66: 501-524; Aki et al., 1977, J. Geophys. Res., 82: 277-296) is a standard, widely used, method for three-dimensional seismic imaging of the Earth. The fundamental hypothesis which underlies the method is that the time residuals generated outside the given target volume (from the seismic source to the bottom of the modelled zone) are approximately constant across the seismic array. The main purpose of this study is to check this assumption. We computed travel times for a given station and event distribution using a three-dimensional global Earth model taken from seismic tomography. We found that the relative residuals generated outside the target volume are not negligible and that the fundamental hypothesis underlying ACH is thus not verified. These deviations are generated in the lower and/or upper mantle and the corresponding proportions are entirely dependent on the raypaths. The bias in the inverted model is statistically similar to the input model outside the target volume. We thus recommend caution in any interpretations involving ACH-generated models. A secondary, somewhat independent, outcome of this study is that Fermat's principle, used to linearise the inverse problem in ray theory based tomography, seems to be valid without any restrictions (given our input model is representative for the true Earth) for rays with turning points in the lower mantle. For rays with turning points in the upper mantle, the constant raypath approximation is probably not true. This applies to global tomography as well.

  7. [Throat ache ans swelling of the neck: first symptoms of Lemierre's syndrome].

    PubMed

    Ybema, A; de Lange, J; Baas, E M

    2014-03-01

    Lemierre's syndrome, a thrombophlebitis of the internal jugular vein, is a rare disorder, usually caused by the microorganism Fusobacterium necrophorum. Throat ache and swelling of the neck are often the first symptoms. Without adequate treatment, Lemierre's syndrome may result in thrombosis of the internal jugular vein and metastatic lung abscesses, with a mortality rate of 18%. On the basis of 2 cases, Lemierre's syndrome is described here. In cases where Lemierre's syndrome is suspected, hospitalization often follows, with the administration of intravenous antibiotics and drainage of the abscesses. One should be on the alert for Lemierre's syndrome when a patient is presented with swelling in the neck following an oropharyngeal infection. PMID:24684132

  8. (-)-Reboxetine inhibits muscle nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    PubMed

    Arias, Hugo R; Ortells, Marcelo O; Feuerbach, Dominik

    2013-11-01

    The interaction of (-)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (-)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca(2+) influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50=3.86±0.49 and 1.92±0.48 μM, respectively, (b) binds to the [(3)H]TCP site with ~13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [(3)H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6' and 13' in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9' is the minimum structural component for (-)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (-)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants. PMID:23917086

  9. miR-434-3p and DNA hypomethylation co-regulate eIF5A1 to increase AChRs and to improve plasticity in SCT rat skeletal muscle.

    PubMed

    Shang, Fei-Fei; Xia, Qing-Jie; Liu, Wei; Xia, Lei; Qian, Bao-Jiang; You, Ling; He, Mu; Yang, Jin-Liang; Wang, Ting-Hua

    2016-01-01

    Acetylcholine receptors (AChRs) serve as connections between motor neurons and skeletal muscle and are essential for recovery from spinal cord transection (SCT). Recently, microRNAs have emerged as important potential biotherapeutics for several diseases; however, whether miRNAs operate in the modulation of AChRs remains unknown. We found increased AChRs numbers and function scores in rats with SCT; these increases were reduced following the injection of a eukaryotic translation initiation factor 5A1 (eIF5A1) shRNA lentivirus into the hindlimb muscle. Then, high-throughput screening for microRNAs targeting eIF5A1 was performed, and miR-434-3p was found to be robustly depleted in SCT rat skeletal muscle. Furthermore, a highly conserved miR-434-3p binding site was identified within the mRNA encoding eIF5A1 through bioinformatics analysis and dual-luciferase assay. Overexpression or knockdown of miR-434-3p in vivo demonstrated it was a negative post-transcriptional regulator of eIF5A1 expression and influenced AChRs expression. The microarray-enriched Gene Ontology (GO) terms regulated by miR-434-3p were muscle development terms. Using a lentivirus, one functional gene (map2k6) was confirmed to have a similar function to that of miR-434-3p in GO terms. Finally, HRM and MeDIP-PCR analyses revealed that DNA demethylation also up-regulated eIF5A1 after SCT. Consequently, miR-434-3p/eIF5A1 in muscle is a promising potential biotherapy for SCI repair. PMID:26964899

  10. miR-434-3p and DNA hypomethylation co-regulate eIF5A1 to increase AChRs and to improve plasticity in SCT rat skeletal muscle

    PubMed Central

    Shang, Fei-Fei; Xia, Qing-Jie; Liu, Wei; Xia, Lei; Qian, Bao-Jiang; You, Ling; He, Mu; Yang, Jin-Liang; Wang, Ting-Hua

    2016-01-01

    Acetylcholine receptors (AChRs) serve as connections between motor neurons and skeletal muscle and are essential for recovery from spinal cord transection (SCT). Recently, microRNAs have emerged as important potential biotherapeutics for several diseases; however, whether miRNAs operate in the modulation of AChRs remains unknown. We found increased AChRs numbers and function scores in rats with SCT; these increases were reduced following the injection of a eukaryotic translation initiation factor 5A1 (eIF5A1) shRNA lentivirus into the hindlimb muscle. Then, high-throughput screening for microRNAs targeting eIF5A1 was performed, and miR-434-3p was found to be robustly depleted in SCT rat skeletal muscle. Furthermore, a highly conserved miR-434-3p binding site was identified within the mRNA encoding eIF5A1 through bioinformatics analysis and dual-luciferase assay. Overexpression or knockdown of miR-434-3p in vivo demonstrated it was a negative post-transcriptional regulator of eIF5A1 expression and influenced AChRs expression. The microarray-enriched Gene Ontology (GO) terms regulated by miR-434-3p were muscle development terms. Using a lentivirus, one functional gene (map2k6) was confirmed to have a similar function to that of miR-434-3p in GO terms. Finally, HRM and MeDIP-PCR analyses revealed that DNA demethylation also up-regulated eIF5A1 after SCT. Consequently, miR-434-3p/eIF5A1 in muscle is a promising potential biotherapy for SCI repair. PMID:26964899

  11. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: a further study based on Flavokawain B Mannich base derivatives.

    PubMed

    Liu, Haoran; Fan, Haoqun; Gao, Xiaohui; Huang, Xueqing; Liu, Xianjun; Liu, Linbo; Zhou, Chao; Tang, Jingjing; Wang, Qiuan; Liu, Wukun

    2016-08-01

    In order to study the structure-activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4 a-8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85 μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE. PMID:26186269

  12. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction

    PubMed Central

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-01-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174

  13. Monoclonal antibodies to conformational epitopes of the surface glycoprotein of caprine arthritis-encephalitis virus: potential application to competitive-inhibition enzyme-linked immunosorbent assay for detecting antibodies in goat sera.

    PubMed

    Ozyörük, F; Cheevers, W P; Hullinger, G A; McGuire, T C; Hutton, M; Knowles, D P

    2001-01-01

    Four immunoglobulin G1 monoclonal antibodies (MAbs) to the gp135 surface envelope glycoprotein (SU) of the 79-63 isolate of caprine arthritis-encephalitis virus (CAEV), referred to as CAEV-63, were characterized and evaluated for their ability to compete with antibody from CAEV-infected goats. Three murine MAbs (MAbs GPB16A, 29A, and 74A) and one caprine MAb (MAb F7-299) were examined. All MAbs reacted in nitrocellulose dot blots with native CAEV-63 SU purified by MAb F7-299 affinity chromatography, whereas none reacted with denatured and reduced SU. All MAbs reacted in Western blots with purified CAEV-63 SU or the SU component of whole-virus lysate following denaturation in the absence of reducing agent, indicating that intramolecular disulfide bonding was essential for epitope integrity. Peptide-N-glycosidase F digestion of SU abolished the reactivities of MAbs 74A and F7-299, whereas treatment of SU with N-acetylneuraminate glycohydrolase (sialidase A) under nonreducing conditions enhanced the reactivities of all MAbs as well as polyclonal goat sera. MAbs 29A and F7-299 were cross-reactive with the SU of an independent strain of CAEV (CAEV-Co). By enzyme-linked immunosorbent assay (ELISA), the reactivities of horseradish peroxidase (HRP)-conjugated MAbs 16A and 29A with homologous CAEV-63 SU were <10% of that of HRP-conjugated MAb 74A. The reactivity of HRP-conjugated MAb 74A was blocked by sera from goats immunized with CAEV-63 SU or infected with CAEV-63. The reactivity of MAb 74A was also blocked by sera from goats infected with a CAEV-Co molecular clone, although MAb 74A did not react with CAEV-Co SU in Western blots. Thus, goats infected with either CAEV-63 or CAEV-Co make antibodies that inhibit binding of MAb 74A to CAEV-63 SU. A competitive-inhibition ELISA based on displacement of MAb 74A reactivity has potential applicability for the serologic diagnosis of CAEV infection. PMID:11139194

  14. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance.

    PubMed

    Nishizaki, Tomoyuki

    2003-06-10

    The present study investigated the effects of N-glycosylation sites on Torpedo acetylcholine (ACh) receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents and single-channel currents from excised patches. Receptors with the mutant subunit at the asparagine residue on the conserved N-glycosylation site (mbetaN141D, mgammaN141D, or mdeltaN143D) or the serine/threonine residue (mbetaT143A, mgammaS143A, or mdeltaS145A) delayed the rate of current decay as compared with wild-type receptors, and the most striking effect was found with receptors with mbetaT143A or mgammaS143A. For wild-type receptors, the lectin concanavalin A, that binds to glycosylated membrane proteins with high affinity, mimicked this effect. Receptors with mbetaN141D or mdeltaN143D exhibited lower single-channel conductance, but those with mbetaT143A, mgammaS143A, or mdeltaS145A otherwise revealed higher conductance than wild-type receptors. Mean opening time of single-channel currents was little affected by the mutation. N-glycosylation sites, thus, appear to play a role in the regulation of ACh receptor desensitization and ion permeability. PMID:12829329

  15. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives.

    PubMed

    Taslimi, Parham; Gulcin, Ilhami; Ozgeris, Bunyamin; Goksu, Suleyman; Tumer, Ferhan; Alwasel, Saleh H; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66-4.14 nM) and hCA II inhibitors (Kis of 1.37-3.12 nM) and perfect AChE inhibitors (Kis in the range of 1.87-7.53 nM) compared to acetazolamide as CA inhibitor (Ki: 6.76 nM for hCA I and Ki: 5.85 nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64 nM). PMID:25697270

  16. Cinnamomum loureirii Extract Inhibits Acetylcholinesterase Activity and Ameliorates Trimethyltin-Induced Cognitive Dysfunction in Mice.

    PubMed

    Kim, Cho Rong; Choi, Soo Jung; Kwon, Yoon Kyung; Kim, Jae Kyeom; Kim, Youn-Jung; Park, Gwi Gun; Shin, Dong-Hoon

    2016-01-01

    The pathogenesis of Alzheimer's disease (AD) has been linked to the deficiency of neurotransmitter acetylcholine (ACh) in the brain, and the main treatment strategy for improving AD symptoms is the inhibition of acetylcholinesterase (AChE) activity. In the present study, we aimed to identify potent AChE inhibitors from Cinnamomum loureirii extract via bioassay-guided fractionation. We demonstrated that the most potent AChE inhibitor present in the C. loureirii extract was 2,4-bis(1,1-dimethylethyl)phenol. To confirm the antiamnesic effects of the ethanol extract of C. loureirii, mice were intraperitoneally injected with the neurotoxin trimethyltin (2.5 mg/kg) to induce cognitive dysfunction, and performance in the Y-maze and passive avoidance tests was assessed. Treatment with C. loureirii extract significantly improved performance in both behavioral tests, suggesting that this extract may be neuroprotective and therefore beneficial in preventing or ameliorating the degenerative processes of AD, potentially by restoring cholinergic function. PMID:27374288

  17. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation.

    PubMed

    Oboh, Ganiyu; Olasehinde, Tosin A; Ademosun, Ayokunle O

    2014-01-01

    This study sought to investigate the effects of essential oil from lemon (Citrus limoni) peels on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. The essential oil was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography. Antioxidant properties of the oil and inhibition of pro-oxidant-induced lipid peroxidation in rats brain homogenate were also assessed. The essential oil inhibited AChE and BChE activities in a concentration-dependent manner. GC analysis revealed the presence of sabinene, limonene, α-pinene, β-pinene, neral, geranial, 1,8-cineole, linalool, borneol, α-terpineol, terpinen-4-ol, linalyl acetate and β-caryophyllene. Furthermore, the essential oil exhibited antioxidant activities as typified by ferric reducing property, Fe(2+)-chelation and radicals [DPPH, ABTS, OH, NO] scavenging abilities. The inhibition of AChE and BChE activities, inhibition of pro-oxidant induced lipid peroxidation and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress-induced neurodegeneration. PMID:24599102

  18. The chemistry behind antioxidant capacity assays.

    PubMed

    Huang, Dejian; Ou, Boxin; Prior, Ronald L

    2005-03-23

    This review summarizes the multifaceted aspects of antioxidants and the basic kinetic models of inhibited autoxidation and analyzes the chemical principles of antioxidant capacity assays. Depending upon the reactions involved, these assays can roughly be classified into two types: assays based on hydrogen atom transfer (HAT) reactions and assays based on electron transfer (ET). The majority of HAT-based assays apply a competitive reaction scheme, in which antioxidant and substrate compete for thermally generated peroxyl radicals through the decomposition of azo compounds. These assays include inhibition of induced low-density lipoprotein autoxidation, oxygen radical absorbance capacity (ORAC), total radical trapping antioxidant parameter (TRAP), and crocin bleaching assays. ET-based assays measure the capacity of an antioxidant in the reduction of an oxidant, which changes color when reduced. The degree of color change is correlated with the sample's antioxidant concentrations. ET-based assays include the total phenols assay by Folin-Ciocalteu reagent (FCR), Trolox equivalence antioxidant capacity (TEAC), ferric ion reducing antioxidant power (FRAP), "total antioxidant potential" assay using a Cu(II) complex as an oxidant, and DPPH. In addition, other assays intended to measure a sample's scavenging capacity of biologically relevant oxidants such as singlet oxygen, superoxide anion, peroxynitrite, and hydroxyl radical are also summarized. On the basis of this analysis, it is suggested that the total phenols assay by FCR be used to quantify an antioxidant's reducing capacity and the ORAC assay to quantify peroxyl radical scavenging capacity. To comprehensively study different aspects of antioxidants, validated and specific assays are needed in addition to these two commonly accepted assays. PMID:15769103

  19. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes.

    PubMed

    Holden-Dye, Lindy; Joyner, Michelle; O'Connor, Vincent; Walker, Robert J

    2013-12-01

    Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes. PMID:23500392

  20. A Case Report of Congenital Fiber Type Disproportion with an Increased Level of Anti-ACh Receptor Antibodies.

    PubMed

    Kimura, Shigemi; Ozasa, Shiro; Nomura, Keiko; Kosuge, Hirofumi; Yoshioka, Kowasi

    2013-01-01

    Congenital fiber type disproportion (CFTD) is a form of congenital myopathy, which is defined by type 1 myofibers that are 12% smaller than type 2 myofibers, as well as a general predominance of type 1 myofibers. Conversely, myasthenia gravis (MG) is an acquired immune-mediated disease, in which the acetylcholine receptor (AChR) of the neuromuscular junction is blocked by antibodies. Thus, the anti-AChR antibody is nearly specific to MG. Herein, we report on a case of CFTD with increased anti-AChR antibody levels. A 23-month-old boy exhibited muscle hypotonia and weakness. Although he could walk by himself, he easily fell down and could not control his head for a long time. His blood test was positive for the anti-AChR antibody, while a muscle biopsy revealed characteristics of CFTD. We could not explain the relationship between MG and CFTD. However, we considered different diagnoses aside from MG, even when the patient's blood is positive for the anti-AChR antibody. PMID:23762716

  1. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    PubMed Central

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; D’Souza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  2. Quantitative structure-activity analysis of acetylcholinesterase inhibition by oxono and thiono analogues of organophosphorus compounds. (Reannouncement with new availability information)

    SciTech Connect

    Maxwell, D.M.; Brecht, K.M.

    1992-02-01

    A comparison of the bimolecular rate constants (ki) for inhibition of electric eel acetylcholinesterase (AChE) by the oxono (i.e., P=O) and thiono (i.e., P=S) analogues of parathion, methylparathion, leptophos, fonofos, sarin, and soman revealed that the oxono/thiono ratios of ki values varied from 14 for soman to 1240 for parathion. Analysis of the relative importance of the dissociation equilibrium constant and the phosphorylation rate constant in producing this variation in ki values indicated that the oxono analogues had phosphorylation rate constant values that varied in a narrow range from 8- to 14-fold greater than their thiono counterparts, while the oxono/thiono ratios for dissociation constants varied widely from 1 for soman to 82 for fonofos. The lower affinities of thiono analogues for AChE probably resulted from differences in the hydrophobic binding of oxono and thiono analogues to the active site of AChE, inasmuch as the hydrophobicities (i.e., octanol/water partition coefficients) of thiono organophosphorus compounds were much greater than the hydrophobicities of their oxono analogues. Quantitative structure-activity analysis indicated that the hydrophobic effects of oxono and thiono moieties correlated with log ki for AChE inhibition to a greater extent (r2 = 0.79) than their electronic effects (r2 equal to or less than 0.48). These observations suggest that the differences in hydrophobicity of oxono and thiono analogues of organophosphorus compounds may be as important as their electronic differences in determining their effectiveness as AChE inhibitors. Acetylcholinesterase, soman (GD), structure-activity analysis inhibition, oxono analogues, thiono analogues.

  3. Geological Mapping of the Ac-H-10 Rongo and Ac-H-15 Zadeni quadrangles of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Ruesch, Ottaviano; Hoffmann, Martin; Schaefer, Michael; Crown, David; Mest, Scott; Aileen Yingst, R.; Williams, David; Buczkowski, Debra; Hughson, Kynan; Kneissl, Thomas; Schmedemann, Nico; Schorghofer, Norbert; Nass, Andrea; Preusker, Frank; Russell, Christopher

    2016-04-01

    On March 6, 2015 NASA's Dawn spacecraft arrived at (1) Ceres, the largest object in the main asteroid belt. Dawn is studying the dwarf planet more than one year through successively lower orbits at increasing resolution. Main orbital phases include Survey Orbit, High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO) where Framing Camera (FC) [1] resolution increased from c.400 m/px to c.140 m/px and c.35 m/px, respectively. The Dawn Science Team is conducting geological mapping campaigns for Ceres (as done before for Vesta [2,3]) and includes the production of a Survey/HAMO-based global geological map and a series of 15 LAMO-based geological quadrangle maps. This abstract presents HAMO-based geological maps of Ac-H-10 Rongo (22°N-22°S, 288-360°E) and Ac-H-15 Zadeni (65°-90°S, 0°-360°E) quadrangles. The Rongo Quadrangle is located at the equatorial region and comprises the unique isolated mountain Ahuna Mons (10.5°S/316.0°E; formerly known as the pyramid), abundant impact craters spanning a range in diameters and states of preservation - from fresh to highly degraded - , and a number of tholi, which may represent surface expressions of sub-surface diapir intrusions. The SW portion of the quandrangle is characterised by Yalode (D=260 km) sourced ejecta. The Zadeni Quadrangle is dominated by the 122-km-diameter crater Zadeni located at 70.2°S/37.4°E) and a suite of mid-sized craters whose morphologies range from fresh to highly degraded. Portions of the quadrangle are covered by Urvara [4] and Yalode [5] ejecta materials. The South Polar Region is poorly illuminated and the South Pole itself is likely located within a larger impact structure. Future work of this mapping campaign includes revision of HAMO-based line work (e.g., contacts) with higher resolution LAMO data. Final interpretations regarding the geological histories of these two quadrangles will also be based on FC colour and stereo-derived topography data, VIR spectra as well

  4. Geologic Mapping of the Ac-H-1 quadrangle of Ceres from NASA's Dawn mission

    NASA Astrophysics Data System (ADS)

    Rüsch, Ottaviano; McFadden, Lucy A.; Hiesinger, Harald; Scully, Jennifer; Kneissl, Thomas; Hughson, Kynan; Williams, David A.; Roatsch, Thomas; Platz, Thomas; Preusker, Frank; Schmedemann, Nico; Marchi, Simone; Jaumann, Ralf; Nathues, Andreas; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta (1, 2), including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract, we present the geologic map and geologic evolution of the Ac-H-1 Asari Quadrangle. At the time of writing, LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and HAMO and Survey (400 m/pixel) digital terrain models (for topographic information) (3). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. Ac-H-1 quadrangle covers the North Pole area: 65°N-90°N. Key characteristics of the study area are: (i) a high density of impact craters and (ii) only moderate topographic variations across the quadrangle. We measured a crater density of 9.8E-04 km-2 for crater diameters >10 km, the highest on Ceres measured so far. Topographic lows, reaching -4 km, correspond to the floors of impact craters with diameters up to 64 km. A few isolated topographic highs (plateaus), reaching ~5 km in altitude relative to the ellipsoid are present. Their irregular shape is often sculpted by impacts. A peculiar topographic rise is represented by Ysolo Mons: a ~5 km high and ~20 km wide mountain. No downslope striations are preserved on the Mons flanks, indicating an older surface relative to Ahuna Mons, a similar but morphologically fresh appearing mountain at the equator (quadrangle Ac-H-10, (4)). Several impact craters show central peaks and/or mass wasting deposits on their floor. Crater rims often display terraces. These morphologies show varying degrees of degradation. Uncommon crater morphologies are a smooth crater floor (crater located at 79°N-170°E) and a large mass wasting landform inside

  5. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines.

    PubMed

    Falé, P L; Amaral, F; Amorim Madeira, P J; Sousa Silva, M; Florêncio, M H; Frazão, F N; Serralheiro, M L M

    2012-08-01

    This work aimed to study the inhibition on acetylcholinesterase activity (AChE), the antioxidant activity and the toxicity towards Caco-2 and HeLa cells of aqueous extracts of Peumus Boldus. An IC(50) value of 0.93 mg/mL, for AChE inhibition, and EC(50) of 18.7 μg/mL, for the antioxidant activity, was determined. This activity can be attributed to glycosylated flavonoid derivatives detected, which were the main compounds, although boldine and other aporphine derivatives were also present. No changes in the chemical composition or the biochemical activities were found after gastrointestinal digestion. Toxicity of P. boldus decoction gave an IC(50) value 0.66 mg/mL for HeLa cells, which caused significant changes in the cell proteome profile. PMID:22617353

  6. Evidence for a role for α6(∗) nAChRs in l-dopa-induced dyskinesias using Parkinsonian α6(∗) nAChR gain-of-function mice.

    PubMed

    Bordia, T; McGregor, M; McIntosh, J M; Drenan, R M; Quik, M

    2015-06-01

    l-Dopa-induced dyskinesias (LIDs) are a serious side effect of dopamine replacement therapy for Parkinson's disease. The mechanisms that underlie LIDs are currently unclear. However, preclinical studies indicate that nicotinic acetylcholine receptors (nAChRs) play a role, suggesting that drugs targeting these receptors may be of therapeutic benefit. To further understand the involvement of α6β2(∗) nAChRs in LIDs, we used gain-of-function α6(∗) nAChR (α6L9S) mice that exhibit a 20-fold enhanced sensitivity to nAChR agonists. Wildtype (WT) and α6L9S mice were lesioned by unilateral injection of 6-hydroxydopamine (6-OHDA, 3μg/ml) into the medial forebrain bundle. Three to 4wk later, they were administered l-dopa (3mg/kg) plus benserazide (15mg/kg) until stably dyskinetic. l-dopa-induced abnormal involuntary movements (AIMs) were similar in α6L9S and WT mice. WT mice were then given nicotine in the drinking water in gradually increasing doses to a final 300μg/ml, which resulted in a 40% decline AIMs. By contrast, there was no decrease in AIMs in α6L9S mice at a maximally tolerated nicotine dose of 20μg/ml. However, the nAChR antagonist mecamylamine (1mg/kg ip 30min before l-dopa) reduced l-dopa-induced AIMs in both α6L9S and WT mice. Thus, both a nAChR agonist and antagonist decreased AIMs in WT mice, but only the antagonist was effective in α6L9S mice. Since nicotine appears to reduce LIDs via desensitization, hypersensitive α6β2(∗) nAChRs may desensitize less readily. The present data show that α6β2(∗) nAChRs are key regulators of LIDs, and may be useful therapeutic targets for their management in Parkinson's disease. PMID:25813704

  7. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  8. Direct measurement of ACh release from exposed frog nerve terminals: constraints on interpretation of non-quantal release.

    PubMed Central

    Grinnell, A D; Gundersen, C B; Meriney, S D; Young, S H

    1989-01-01

    1. Acetylcholine (ACh) release from enzymatically exposed frog motor nerve terminals has been measured directly with closely apposed outside-out clamped patches of Xenopus myocyte membrane, rich in ACh receptor channels. When placed close to the synaptic surface of the terminal, such a membrane patch detects both nerve-evoked patch currents (EPCs) and spontaneous quantal 'miniature' patch currents (MPCs), from a few micrometres length of the terminal, in response to ACh release from the nearest three to five active zones. 2. Chemical measurements of ACh efflux from whole preparations revealed a spontaneous release rate of 4.1 pmol (2 h)-1, and no significant difference in resting efflux between enzyme-treated and control preparations. The ratio of enzyme-treated to contralateral control muscle efflux averaged 1.17, indicating that enzyme treatment did not affect spontaneous ACh release. Vesamicol (1.7 microM), which blocks the ACh transporter in synaptic vesicles, decreased the spontaneous release of ACh to 67% of control. 3. In the absence of nerve stimulation, the frequency of single-channel openings recorded by outside-out patch probes adjacent to nerve terminals was very low (1-2 min-1), and little different at a distance of hundreds of micrometres, suggesting that if ACh was continually leaking from the terminal in a non-quantal fashion, the amount being released near active zone regions on the terminal was below the limit of detection with the patches. 4. Direct measurements of the sensitivity of the patches, coupled with calculated ACh flux rates, lead to the conclusion that the amount of ACh released non-quantally from the synaptic surface of the frog nerve terminal is less than one-tenth the amount expected if all non-quantal release is from this region of the terminal membrane. 5. Following a series of single nerve shocks or a 50 Hz train of nerve stimuli, the frequency of asynchronous single-channel openings increased for several seconds. This transient

  9. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-03-01

    The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR) rich membrane solubilized with long chain (16 saturated carbons) lysophospholipid with glycerol headgroup (LFG-16). The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP) was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP) and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique. PMID:26870753

  10. Inhibition of acetylcholinesterase by extracts and constituents from Angelica archangelica and Geranium sylvaticum.

    PubMed

    Sigurdsson, Steinthor; Gudbjarnason, Sigmundur

    2007-01-01

    The aim of this study was to explore the acetylcholinesterase (AChE) inhibition of several Icelandic medicinal herbs. Ethanolic extracts of Angelica archangelica seeds and the aerial parts of Geranium sylvaticum proved effective, with IC50 values of 2.20 mg/ml and 3.56 mg/ml, respectively. The activity of imperatorin and xanthotoxin from A. archangelica was measured. Xanthotoxin proved much more potent than imperatorin, with an IC50 value of 155 microg/ml (0.72 mM) but that for imperatorin was above 274 microg/ml (1.01 mM). However, furanocoumarins seem to have a minor part in the total activity of this extract. Synergistic interaction was observed between the extracts of A. archangelica and G. sylvaticum. Several medicinal herbs (Achillea millefolium, Filipendula ulmaria, Thymus praecox and Matricaria maritima) did not show AChE inhibitory activity. PMID:18069242

  11. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  12. Erosion of a-C:H in the afterglow of ammonia plasma

    NASA Astrophysics Data System (ADS)

    Drenik, Aleksander; Mourkas, Angelos; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Panjan, Peter; Alegre, Daniel; Tabarés, Francisco L.

    2016-07-01

    Amorphous hydrogenated carbon (a-C:H) deposits were eroded in the afterglow of a NH3 plasma, created with an inductively coupled RF generator in pure NH3 at the gas pressure of 50 Pa. The plasma system was characterised by optical emission spectroscopy and mass spectrometry, and the erosion process was monitored in-situ with a laser interferometry system. Based on the mass spectrometry measurements, the degree of dissociation of the NH3 molecules was estimated at 90% at the highest generator forward power in the discharge region, however the densities of N and H atoms were significantly smaller at the location of the sample holder. The erosion rates were found to increase with surface temperature and forward generator power. In the high dissociation regime, the composition of the afterglow and the reaction products highlight the role of N atoms in the erosion process.

  13. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs

    PubMed Central

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R.; McIntosh, J. Michael; Brunzell, Darlene H.; Cannon, Jason R.; Drenan, Ryan M.

    2014-01-01

    α6β2* nAChRs in the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9’S mice) that are hypersensitive to nicotine and endogenous acetylcholine (ACh). Evoked extracellular dopamine (DA) levels were enhanced in α6L9’S NAc slices compared to control, non-transgenic (nonTg) slices. Extracellular DA levels in both nonTg and α6L9’S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by ACh plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9’S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9’S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) compared to nonTg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine (NE) were unchanged in α6L9’S compared to nonTg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9’S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. PMID:24266758

  14. Deposition of a-C:H films on inner surface of high-aspect-ratio microchannel

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2016-08-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared on inner surface of 100-μm-width microchannel by using a bipolar-type plasma based ion implantation and deposition. The microchannel was fabricated using a silicon plate, and two kinds of microchannels were prepared, namely, with a bottom layer (open at one end) and without a bottom layer (open at both ends). The distribution of thickness and hardness of films was evaluated by SEM and nanoindentation measurements, respectively, and the microstructures of films were evaluated by Raman spectroscopy. Furthermore, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision and Direct Simulation Monte Carlo to investigate the coating mechanism for the microchannel. It was found that the film thickness decreased as the depth of the coating position increased in the microchannels where it is open at one end. The uniformity of the film thickness improved by increasing the negative pulse voltage because ions can arrive at the deeper part of the microchannel. In addition, the hardness increased as the depth of the coating position increased. This is because the radicals do not arrive at the deeper part of the microchannel, and the incident proportion of ions relative to that of radicals increases, resulting in a high hardness due to the amorphization of the film. The opening area of the microchannel where the aspect ratio is very small, radicals dominate the incident flux, whereas ions prevail over radicals above an aspect ratio of about 7.5. On the other hand, in the microchannels that are open at both ends, there were great improvements in uniformity of the film thickness, hardness, and the film structure. The a-C:H films were successfully deposited on the entire inner surface of a microchannel with an aspect ratio of 20.

  15. Exonuclease I-aided homogeneous electrochemical strategy for organophosphorus pesticide detection based on enzyme inhibition integrated with a DNA conformational switch.

    PubMed

    Wang, Xiuzhong; Dong, Shanshan; Hou, Ting; Liu, Lei; Liu, Xiaojuan; Li, Feng

    2016-02-15

    A novel enzyme inhibition-based homogeneous electrochemical biosensing strategy was designed for an organophosphorus pesticide assay based on exploiting the resistance of a mercury ion-mediated helper probe (HP) toward nuclease-catalyzed digestion and the remarkable diffusivity difference between HPs and the mononucleotides toward a negatively charged indium tin oxide (ITO) electrode. In particular, the mercury ion-mediated T-Hg(2+)-T base pairs facilitate the HP labeled with methylene blue (MB) to fold into a hairpin structure, preventing its digestion by exonuclease I, and thus resulting in a low electrochemical response because of the large electrostatic repulsion between the negatively charged ITO electrode and the HPs. The competitive binding by a thiol group (-SH), produced in the hydrolysis reaction of acetylthiocholine (ACh) chloride with acetylcholinesterase (AChE), removes mercury ions from the base pairs, causing a nuclease-catalyzed digestion, and the subsequent electrochemical response increase due to the weak electrostatic repulsion between the product-mononucleotides and the ITO electrode. Mercury ion-mediated HPs were first designed for pesticide detection and diazinon was chosen as the model target. Under the optimal experimental conditions, the approach exhibited high sensitivity for diazinon detection with a detection limit of 0.25 μg L(-1). The satisfactory results in the determination of diazinon in real samples demonstrate that the method possesses great potential for detecting organophosphorus pesticides. This new approach is expected to promote the exploitation of mercury-mediated base pair-based homogenous electrochemical biosensors in biochemical studies and in the food safety field. PMID:26839920

  16. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.

    PubMed

    Lucas-Meunier, Estelle; Monier, Cyril; Amar, Muriel; Baux, Gérard; Frégnac, Yves; Fossier, Philippe

    2009-10-01

    This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat visual cortex. The pharmacological specificity of the ACh neuromodulation was determined from the continuous whole-cell voltage clamp measurement of stimulation-locked changes of the input conductance during the application of cholinergic agonists and antagonists. Blockade of glutamatergic and gamma-aminobutyric acid (GABAergic) receptors suppressed the evoked response, indicating that stimulation-induced release of ACh does not directly activate a cholinergic synaptic conductance in recorded neurons. Comparison of cytisine and mecamylamine effects on nicotinic receptors showed that excitation is enhanced by endogenous evoked release of ACh through the presynaptic activation of alpha(*)beta4 receptors located on glutamatergic fibers. DHbetaE, the selective alpha4beta2 nicotinic receptor antagonist, induced a depression of inhibition. Endogenous ACh could also enhance inhibition by acting directly on GABAergic interneurons, presynaptic to the recorded cell. We conclude that endogenous-released ACh amplifies the dominance of the inhibitory drive and thus decreases the excitability and sensory responsiveness of layer 5 pyramidal neurons. PMID:19176636

  17. Association between Anti-Ganglionic Nicotinic Acetylcholine Receptor (gAChR) Antibodies and HLA-DRB1 Alleles in the Japanese Population

    PubMed Central

    Maeda, Yasuhiro; Migita, Kiyoshi; Higuchi, Osamu; Mukaino, Akihiro; Furukawa, Hiroshi; Komori, Atsumasa; Nakamura, Minoru; Hashimoto, Satoru; Nagaoka, Shinya; Abiru, Seigo; Yatsuhashi, Hiroshi; Matsuo, Hidenori; Kawakami, Atsushi; Yasunami, Michio; Nakane, Shunya

    2016-01-01

    Background/Aims Anti-ganglionic nicotinic acetylcholine receptor (gAChR) antibodies are observed in autoimmune diseases, as well as in patients with autoimmune autonomic ganglionopathy. However, the genetic background of anti-gAChR antibodies is unclear. Here, we investigated HLA alleles in autoimmune hepatitis (AIH) patients with or without anti-gAChR antibodies. Methodology/Principal Findings Genomic DNA from 260 patients with type-1 autoimmune hepatitis (AIH) were genotyped for HLA-A, B, DRB1, and DQB1 loci. Anti-gAChR antibodies in the sera form AIH patients were measured using the luciferase immunoprecipitation system, and examined allelic association in patients with or without anti-gAChR antibodies. Methodology/ Methods We detected anti-α3 or -β4 gAChR antibodies in 11.5% (30/260) of patients with AIH. Among AIH patients there was no significant association between HLA-A, B DQB1 alleles and the positivity for anti-gAChR antibodies. Whereas the HLA-DRB1*0403 allele showed a significantly increased frequency in AIH patients with anti-gAChR antibodies compared with those without anti-gAChR antibodies. Conclusions/Significance The frequency of the HLA-DRB1*0403 allele differed among Japanese patients with AIH according to the presence or absence of anti-gAChR antibodies. Our findings suggest that particular HLA class II molecules might control the development of anti-gAChR antibodies in the autoimmune response to gAChR. PMID:26807576

  18. Evaluation of cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma cell-25 cell lines by 3-(4,5-dimethylthiazol-2-Yl) -2,5-diphenyltetrazolium bromide assay and determination of percentage of cell inhibition at G2M phase of cell cycle by flow cytometry: An in vitro study

    PubMed Central

    Magadi, Visveswaraiah Paranjyothi; Ravi, Venkatadasappa; Arpitha, Anantharaju; Litha; Kumaraswamy, Kikkerilakshminarayana; Manjunath, Krishnappa

    2015-01-01

    Introduction: Malignancies constitute a wide variety of disorders having high mortality and morbidity rates. Current protocols for management include surgical intervention, chemotherapy, and radiation which possess numerous adverse effects. Many phytochemicals are available with anticancer properties similar to anticancer drugs. Major benefit of these compounds is apparent lack of toxicity to normal tissues. Graviola (botanical name: Annona Muricata) contain bioactive compound “annonaceous acetogenins” known for anticancer activity on cancer cell lines. Aims: To determine cytotoxicity of Graviola and percentage cell inhibition at G2M phase of cell cycle. Settings and Design: The cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma (SCC-25) cell lines at various concentrations evaluated using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Methods: Graviola Leaves, American Type Culture Collection SCC-25 cell lines were procured from Skanda Laboratories, Bengaluru. The cytotoxicity of aqueous extract of Graviola on SCC-25 cells at various concentrations evaluated using MTT assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Statistical Analysis: Statistical analysis was done using one-way ANOVA. Results: MTT assay showed statistically significant (P < 0.001) dose-dependent inhibition of SCC-25 cell lines by Graviola with IC50 value of 12.42 μg/ml. Flow cytometry revealed that Graviola at 25 and 50 g/ml arrested 53.39% and 52.09% cells in G2M phase of cell cycle respectively, which was statistically significant. Conclusion: Graviola showed significant cytotoxic activity and percentage of cell inhibition at G2M phase cell cycle against SCC-25 cell lines. PMID:26681860

  19. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK

    PubMed Central

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Durmus, Hacer; Poulas, Kostas; Yentur, Sibel P.; Gulsen-Parman, Yesim; Tzartos, Socrates; Marx, Alexander; Tuzun, Erdem; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-01-01

    Neuromuscular transmission failure in myasthenia gravis (MG) is most commonly elicited by autoantibodies (ab) to the acetylcholine receptor or the muscle-specific kinase, constituting AChR-MG and MuSK-MG. It is controversial whether these MG subtypes arise through different T helper (Th) 1, Th2 or Th17 polarized immune reactions and how these reactions are blunted by immunosuppression. To address these questions, plasma levels of cytokines related to various Th subtypes were determined in patients with AChR-MG, MuSK-MG and healthy controls (CON). Peripheral blood mononuclear cells (PBMC) were activated in vitro by anti-CD3, and cytokines were quantified in supernatants. In purified blood CD4+ T cells, RNA of various cytokines, Th subtype specific transcription factors and the co-stimulatory molecule, CD40L, were quantified by qRT-PCR. Plasma levels of Th1, Th2 and Th17 related cytokines were overall not significantly different between MG subtypes and CON. By contrast, in vitro stimulated PBMC from MuSK-MG but not AChR-MG patients showed significantly increased secretion of the Th1, Th17 and T follicular helper cell related cytokines, IFN-γ, IL-17A and IL-21. Stimulated expression of IL-4, IL-6, IL-10 and IL-13 was not significantly different. At the RNA level, expression of CD40L by CD4+ T cells was reduced in both AChR-MG and MuSK-MG patients while expression of Th subset related cytokines and transcription factors were normal. Immunosuppression treatment had two effects: First, it reduced levels of IL12p40 in the plasma of AChR-MG and MuSK-MG patients, leaving other cytokine levels unchanged; second, it reduced spontaneous secretion of IFN-γ and increased secretion of IL-6 and IL-10 by cultured PBMC from AChR-MG, but not MuSK-MG patients. We conclude that Th1 and Th17 immune reactions play a role in MuSK-MG. Immunosuppression attenuates the Th1 response in AChR-MG and MuSK-MG, but otherwise modulates immune responses in AChR-MG and MuSK-MG patients

  20. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK.

    PubMed

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Durmus, Hacer; Poulas, Kostas; Yentur, Sibel P; Gulsen-Parman, Yesim; Tzartos, Socrates; Marx, Alexander; Tuzun, Erdem; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-01-01

    Neuromuscular transmission failure in myasthenia gravis (MG) is most commonly elicited by autoantibodies (ab) to the acetylcholine receptor or the muscle-specific kinase, constituting AChR-MG and MuSK-MG. It is controversial whether these MG subtypes arise through different T helper (Th) 1, Th2 or Th17 polarized immune reactions and how these reactions are blunted by immunosuppression. To address these questions, plasma levels of cytokines related to various Th subtypes were determined in patients with AChR-MG, MuSK-MG and healthy controls (CON). Peripheral blood mononuclear cells (PBMC) were activated in vitro by anti-CD3, and cytokines were quantified in supernatants. In purified blood CD4+ T cells, RNA of various cytokines, Th subtype specific transcription factors and the co-stimulatory molecule, CD40L, were quantified by qRT-PCR. Plasma levels of Th1, Th2 and Th17 related cytokines were overall not significantly different between MG subtypes and CON. By contrast, in vitro stimulated PBMC from MuSK-MG but not AChR-MG patients showed significantly increased secretion of the Th1, Th17 and T follicular helper cell related cytokines, IFN-γ, IL-17A and IL-21. Stimulated expression of IL-4, IL-6, IL-10 and IL-13 was not significantly different. At the RNA level, expression of CD40L by CD4+ T cells was reduced in both AChR-MG and MuSK-MG patients while expression of Th subset related cytokines and transcription factors were normal. Immunosuppression treatment had two effects: First, it reduced levels of IL12p40 in the plasma of AChR-MG and MuSK-MG patients, leaving other cytokine levels unchanged; second, it reduced spontaneous secretion of IFN-γ and increased secretion of IL-6 and IL-10 by cultured PBMC from AChR-MG, but not MuSK-MG patients. We conclude that Th1 and Th17 immune reactions play a role in MuSK-MG. Immunosuppression attenuates the Th1 response in AChR-MG and MuSK-MG, but otherwise modulates immune responses in AChR-MG and MuSK-MG patients

  1. Inhibition of rainbow trout acetylcholinesterase by aqueous and suspended particle-associated organophosphorous insecticides.

    PubMed

    Sturm, Armin; Radau, Tanja S; Hahn, Torsten; Schulz, Ralf

    2007-06-01

    Spraydrift and edge-of-field runoff are important routes of pesticide entry into streams. Pesticide contamination originating from spraydrift usually resides in the water phase, while pesticides in contaminated runoff are to a large extent associated with suspended particles (SPs). The effects of two organophosphorous insecticides (OPs), chloropyrifos (CPF) and azinphos-methyl (AZP), on acetylcholinesterase (AChE) activity in rainbow trout were compared between two exposure scenarios, simulating spraydrift- and runoff-borne contamination events in the Lourens River (LR), Western Cape, South Africa. NOECs of brain AChE inhibition, determined after 1h of exposure followed by 24h of recovery, were 0.33microgl(-1) for aqueous CPF, 200mgkg(-1) for SP-associated CPF and 20mgkg(-1) for SP-associated AZP (at 0.5gl(-1) SP). The highest aqueous AZP concentration tested (3.3microgl(-1)) was without significant effects. Previously reported peak levels of aqueous CPF in the LR ( approximately 0.2microgl(-1)) are close to its NOEC (this study), suggesting a significant toxicological risk to fish in the LR. By contrast, reported levels of SP-associated OPs in the LR are 20-200-fold lower than their NOECs (this study). In a comparative in situ study, trout were exposed for seven days at agricultural (LR2, LR3) and upstream reference (LR1) sites. No runoff occurred during the study. Brain AChE was significantly inhibited at LR3. However, OP levels at LR3 (CPF 0.01microgl(-1); AZP 0.14microgl(-1)) were minor compared to concentrations having effects in the laboratory (see above). Additionally, muscle AChE activity was significantly higher in caged trout from LR1 than in animals maintained in laboratory tanks. PMID:17418885

  2. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    PubMed Central

    Jonsson Fagerlund, Malin; Krupp, Johannes; Dabrowski, Michael A.

    2016-01-01

    Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs) has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses. PMID:26861354

  3. Inactivation of M2 AChR/NF-κB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC)

    PubMed Central

    Gu, Xiajing; Chen, Hongzhuan; Xu, Lu

    2015-01-01

    Non-neuronal cholinergic system is involved in lung physiology and lung cancer. However, the biochemical events downstream acetylcholine (ACh) receptor activation leading to carcinogenesis and tumor progression are not fully understood. Our previous work has shown that non-neuronal ACh acts as an autoparacrine growth factor to stimulate cell proliferation and promote epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) via activation of M2 muscarinic receptor (M2R). The aim of the present study was to delineate the underlying mechanisms linking M2R and lung tumor progression, which may provide potential therapeutic targets to delay lung cancer progression. Inhibition of M2R by antagonist or siRNA suppresses NSCLC cell migratory and invasive capacities, reverses EMT and simultaneously inactivates PI3K/Akt, MAPK ERK and NF-κB p65. On the other hand, M2R activation stimulates NSCLC migration and invasion and promotes EMT via NF-κB p65 activation. Moreover, NF-κB p65 activation induced by M2R activation was partially inhibited by either Akt or ERK inhibitor. Taken together, these results demonstrated for the first time that NF-κB p65 activation is essential in NSCLC progression associated with non-neuronal cholinergic system. Our data suggest that M2R/ERK/Akt/NF-κB axis could be a potential target for NSCLC treatment. PMID:26336823

  4. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    PubMed

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  5. Myopathic changes detected by quantitative electromyography in patients with MuSK and AChR positive myasthenia gravis.

    PubMed

    Nikolic, Ana; Basta, Ivana; Stojanovic, Vidosava Rakocevic; Stevic, Zorica; Peric, Stojan; Lavrnic, Dragana

    2016-05-01

    Myopathic changes are frequent a electrophysiological finding in patients with muscle specific tyrosine kinase (MuSK) positive myasthenia gravis (MG). The aim of this study was to explore the importance of quantitative electromyography (EMG) in the detection of myopathic changes in MuSK MG patients. Classical and quantitative EMG were performed in 31 MuSK and 28 acetylcholine receptor (AChR) positive MG patients, matched by sex, age, disease duration and severity. Classical EMG revealed the presence of myopathic changes more frequently in MuSK MG compared to AChR MG patients, especially in the facial muscles. Quantitative EMG registered myopathic lesions more frequently than classical EMG, but the frequency was similar between MuSK and AChR MG patients. Quantitative EMG revealed myopathic changes in the majority of both MuSK and AChR positive MG patients. This examination is sensitive, but it cannot be used to differentiate between MG patients belonging to the different disease groups. It should not be used in isolation. Rather, it should complement classical EMG in the detection of myopathic changes. PMID:26778359

  6. R86Q, a mutation in BmAChE3 yielding a Rhipicephalus microplus organophosphate-insensitive acetylcholinesterase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations were identified in the sequence encoding the acetylcholinesterase, BmAChE3, in strains of Rhipicephalus (Boophilus) microplus (Canestrini) resistant or susceptible to orgaonphosphorus acaricide. The mutation which appeared most frequently in the organophosphorus-resistant San Román strain...

  7. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

    PubMed Central

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-sang J.; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Guyenet, Patrice G.

    2016-01-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  8. Investigation of the structure and properties of a-C:H coatings with metal and silicon containing interlayers

    NASA Astrophysics Data System (ADS)

    Nöthe, M.; Breuer, U.; Koch, F.; Penkalla, H. J.; Rehbach, W. P.; Bolt, H.

    2001-07-01

    The structure of the interface of a-C:H coatings deposited with metal and Si-containing interlayers has been studied. Carbide forming metals (Al, Ti, Cr) can improve the chemical bonding compared with a substrate material which does not form carbides extensively by itself. In addition, a graded transition zone enlarges the interface between the carbon layer and the interlayer metal. In the present work the metal atoms were evaporated and ionized into a dense Ar plasma and deposited onto Si (100) substrates. A graded interface between the metal interlayer and the a-C:H coating was produced by introducing C 2H 2 with increasing amount into the Ar/He plasma during the PAPVD metal deposition process. The PACVD a-C:H deposition process was continued after the termination of metal evaporation to produce the pure a-C:H top layer. Further to Al-, Cr-, Ti- and Cu-interlayers, Si-containing interlayers were investigated. The Si-containing interlayers were deposited by a PACVD process using tetraethoxysilane Si(OC 2H 5) 4 (TEOS) and tetramethylsilane Si(CH 3) 4 (TMS). The characterization of the deposited layer systems was performed by SIMS, SNMS and XPS analyses as well as SEM and analytical TEM methods.

  9. New insights on the molecular recognition of imidacloprid with Aplysia californica AChBP: a computational study.

    PubMed

    Cerón-Carrasco, José P; Jacquemin, Denis; Graton, Jérôme; Thany, Steeve; Le Questel, Jean-Yves

    2013-04-18

    The binding of imidacloprid (IMI), the forerunner of neonicotinoid insecticides, with the acetylcholine binding protein (AChBP) from Aplysia californica, the established model for the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a two-layer ONIOM partition approach (M06-2X/6-311G(d):PM6). Our calculations allow delineating the contributions of the key residues of AChBP for IMI binding. In particular, the importance of Trp147 and Cys190-191, through weak CH···π interactions and both van der Waals and hydrogen-bond (H-bond) interactions, respectively, are highlighted. Furthermore, H-bonds between hydroxyl groups of both Ser189 and Tyr55 and the IMI nitro group are pointed out. The participation of Ile118, whose main chain NH and carbonyl group are hydrogen-bonded with the IMI pyridinic nitrogen through a water molecule, is characterized. Our simulations also indicate the presence of a significant contribution of this residue through van der Waals interactions. The various trends obtained by the calculations of the pairwise interaction energies are confirmed through a complementary noncovalent interaction (NCI) analysis of selected IMI-AChBP amino acid pairs. Indeed, the contribution of a halogen-bond interaction between IMI and AChBP, recently proposed in the literature, is corroborated by our NCI analysis. PMID:23521537

  10. Geological Mapping of the Ac-H-9 Occator Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra; Williams, David; Scully, Jennifer; Mest, Scott; Crown, David; Aileen Yingst, R.; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Marchi, Simone; De Sanctis, M. Cristina; Raymond, Carol; Russell, Chris

    2016-04-01

    As was done at Vesta [1], the Dawn Science Team is conducting a geological mapping cam-paign at Ceres during the nominal mission, including iterative mapping using data obtained dur-ing each orbital phase. We are using geological mapping as a method to identify the geologic processes that have modified the surface of dwarf planet Ceres. We here present the geology of the Ac-H-9 Occator quadrangle, located between 22°S-22°N and 216-288°E. The Ac-H-9 map area is completely within the topographically high region on Ceres named Erntedank Planum. It is one of two longitudinally distinct regions where ESA Herschel space telescope data suggested a release of water vapor [2]. The quadrangle includes several other notable features, including those discussed below. Occator is the 92 km diameter crater that hosts the "Bright Spot 5" that was identified in Hubble Space Telescope data [3], which is actually comprised of multiple bright spots on the crater floor. The floor of Occator is cut by linear fractures, while circumferential fractures are found in the ejecta and on the crater walls. The bright spots are noticeably associated with the floor fractures, although the brightest spot is associated with a central pit [4]. Multiple lobate flows are observed on the crater floor; these appear to be sourced from the center of the crater. The crater has a scalloped rim that is cut by regional linear structures, displaying a cross-section of one structure in the crater wall. Color data show that the Occator ejecta have multiple colors, generally related to changes in morphology. Azacca is a 50 km diameter crater that has a central peak and bright spots on its floor and within its ejecta. Like Occator, Azacca has both floor fractures and circumferential fractures in its ejecta and crater walls. Also like Occator, the Azacca ejecta is multi-colored with variable morphology. Linear structures - including grooves, pit crater chains, fractures and troughs - cross much of the eastern

  11. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  12. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells.

    PubMed

    Hasebe, Masaharu; Yoshino, Masami

    2016-06-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na(+)-activated K(+) (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  13. Pharmacology of cortical inhibition

    PubMed Central

    Krnjević, K.; Randić, Mirjana; Straughan, D. W.

    1966-01-01

    1. We have studied the effects of various pharmacological agents on the cortical inhibitory process described in the previous two papers (Krnjević, Randić & Straughan, 1966a, b); the drugs were mostly administered directly by iontophoresis from micropipettes and by systemic injection (I.V.). 2. Strychnine given by iontophoresis or by the application of a strong solution to the cortical surface potentiated excitatory effects, but very large iontophoretic doses also depressed neuronal firing. Subconvulsive and even convulsive systemic doses had little or no effect at the cortical level. There was no evidence, with any method of application, that strychnine directly interferes with the inhibitory process. 3. Tetanus toxin, obtained from two different sources and injected into the cortex 12-48 hr previously, also failed to block cortical inhibition selectively. As with strychnine, there was some evidence of increased responses to excitatory inputs. 4. Other convulsant drugs which failed to block cortical inhibition included picrotoxin, pentamethylene tetrazole, thiosemicarbazide, longchain ω-amino acids and morphine. 5. The inhibition was not obviously affected by cholinomimetic agents or by antagonists of ACh. 6. α- and β-antagonists of adrenergic transmission were also ineffective. 7. Cortical inhibition was fully developed in the presence of several general anaesthetics, including ether, Dial, pentobarbitone, Mg and chloralose. A temporary reduction in inhibition which is sometimes observed after systemic doses of pentobarbitone, is probably secondary to a fall in blood pressure. 8. Several central excitants such as amphetamine, caffeine and lobeline also failed to show any specific antagonistic action on cortical inhibition. 9. In view of the possibility that GABA is the chemical agent mediating cortical inhibition, an attempt was made to find a selective antagonist of its depressant action on cortical neurones. None of the agents listed above, nor any other

  14. Cholinergic inhibition of neocortical pyramidal neurons.

    PubMed

    Gulledge, Allan T; Stuart, Greg J

    2005-11-01

    Acetylcholine (ACh) is a central neurotransmitter critical for normal cognitive function. Here we show that transient muscarinic acetylcholine receptor activation directly inhibits neocortical layer 5 pyramidal neurons. Using whole-cell and cell-attached recordings from neurons in slices of rat somatosensory cortex, we demonstrate that transient activation of M1-type muscarinic receptors induces calcium release from IP3-sensitive intracellular calcium stores and subsequent activation of an apamin-sensitive, SK-type calcium-activated potassium conductance. ACh-induced hyperpolarizing responses were blocked by atropine and pirenzepine but not by methoctramine or GABA receptor antagonists (picrotoxin, SR 95531 [2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide], and CGP 55845 [(2S)-3-[[(15)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid]). Responses were associated with a 31 +/- 5% increase in membrane conductance, had a reversal potential of -93 +/- 1 mV, and were eliminated after internal calcium chelation with BAPTA, blockade of IP3 receptors, or extracellular application of cadmium but not by sodium channel blockade with tetrodotoxin. Calcium-imaging experiments demonstrated that ACh-induced hyperpolarizing, but not depolarizing, responses were correlated with large increases in intracellular calcium. Surprisingly, transient increases in muscarinic receptor activation were capable of generating hyperpolarizing responses even during periods of tonic muscarinic activation sufficient to depolarize neurons to action potential threshold. Furthermore, eserine, an acetylcholinesterase inhibitor similar to those used therapeutically in the treatment of Alzheimer's disease, disproportionately enhanced the excitatory actions of acetylcholine while reducing the ability of acetylcholine to generate inhibitory responses during repeated applications of ACh. These data demonstrate that acetylcholine can directly inhibit the

  15. Continuing Education in the Era of Quantum Change. 2003 ACHE Proceedings. (65th Annual Meeting, Charlottesville, VA, November 8-12, 2003)

    ERIC Educational Resources Information Center

    Barrineau, Irene T., Ed.

    2003-01-01

    This document presents the proceedings of the 2003 annual meeting of the Association for Continuing Higher Education (ACHE). These proceedings record the 65th Annual Meeting of ACHE held in Charlottesville, Virginia. President Allen Varner's theme for this annual meeting was, "Continuing Education in the Era of Quantum Change." The theme was…

  16. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer.

    PubMed

    Kouvatsos, Nikolaos; Giastas, Petros; Chroni-Tzartou, Dafni; Poulopoulou, Cornelia; Tzartos, Socrates J

    2016-08-23

    In this study we report the X-ray crystal structure of the extracellular domain (ECD) of the human neuronal α2 nicotinic acetylcholine receptor (nAChR) subunit in complex with the agonist epibatidine at 3.2 Å. Interestingly, α2 was crystallized as a pentamer, revealing the intersubunit interactions in a wild type neuronal nAChR ECD and the full ligand binding pocket conferred by two adjacent α subunits. The pentameric assembly presents the conserved structural scaffold observed in homologous proteins, as well as distinctive features, providing unique structural information of the binding site between principal and complementary faces. Structure-guided mutagenesis and electrophysiological data confirmed the presence of the α2(+)/α2(-) binding site on the heteromeric low sensitivity α2β2 nAChR and validated the functional importance of specific residues in α2 and β2 nAChR subunits. Given the pathological importance of the α2 nAChR subunit and the high sequence identity with α4 (78%) and other neuronal nAChR subunits, our findings offer valuable information for modeling several nAChRs and ultimately for structure-based design of subtype specific drugs against the nAChR associated diseases. PMID:27493220

  17. Rinodina sophodes (Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur City, India.

    PubMed

    Satya; Upreti, Dalip K; Patel, D K

    2012-01-01

    The aim of this study is to determine the possibility of using Rinodina sophodes (Ach.) Massal., a crustose lichen as polycyclic aromatic hydrocarbons (PAHs) bioaccumulator for evaluation of atmospheric pollution in tropical areas of India, where few species of lichens are able to grow. PAHs were identified, quantified and compared to evaluate the potential utility of R. sophodes. The limit of detection for different PAHs was found to be 0.008-0.050 μg g( - 1). The total PAHs in different sites were ranged between 0.189 ± 0.029 and 0.494 ± 0.105 μg g( - 1). The major sources of PAHs were combustion of organic materials, traffic and vehicular exhaust (diesel and gasoline engine). Significantly higher concentration of acenaphthylene and phenanthrene indicates road traffic as major source of PAH pollution in the city. Two-way ANOVA also confirms that all PAHs content showed significant differences between all sampling sites (P 1%). This study establishes the utility of R. sophodes in monitoring the PAHs accumulation potentiality for development of effective tool and explores the most potential traits resistant to the hazardous environmental conditions in the tropical regions of north India, where no such other effective way of biomonitoring is known so far. PMID:21465135

  18. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  19. Adsorption of alcohols and fatty acids onto hydrogenated (a-C:H) DLC coatings

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.; Kovač, J.; Jakša, G.

    2016-02-01

    Information about the interactions between lubricants and DLC coatings is scarce, despite there having been many studies over the years. In this investigation we used ToF-SIMS, XPS and contact-angle analyses to examine the adsorption ability and mechanisms with respect to two oiliness additives, i.e., hexadecanol and hexadecanoic acid, on an a-C:H coating. In addition, we analyzed the resistance of the adsorbed films to external influences like solvent cleaning. The results show that both molecules adsorb onto surface oxides and hydroxides present on the initial DLC surface and shield these structures with their hydrocarbon tails. This makes the surfaces less polar, which is manifested in a smaller polar component of the surface energy. We also showed that ultrasonic cleaning in heptane has no significant effect on the quantity of adsorbed molecules or on their chemical state. This not only shows the relatively strong adsorption of these molecules, but also provides useful information for future experimental work. Of the two examined molecules, the acid showed a greater adsorption ability than the alcohol, which explains some of the previously reported better tribological properties in the case of the acid with respect to the alcohol.

  20. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking

    PubMed Central

    Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    Alzheimer’s disease (AD) is a chronic neurodegenerative disease which leads to the gradual loss of neuronal cells. Several hypotheses for AD exists (e.g., cholinergic, amyloid, tau hypotheses, etc.). As per the cholinergic hypothesis, the deficiency of choline is responsible for AD; therefore, the inhibition of AChE is a lucrative therapeutic strategy for the treatment of AD. Acetylcholinesterase (AChE) is an enzyme that catalyzes the breakdown of the neurotransmitter acetylcholine that is essential for cognition and memory. A large non-redundant data set of 2,570 compounds with reported IC50 values against AChE was obtained from ChEMBL and employed in quantitative structure-activity relationship (QSAR) study so as to gain insights on their origin of bioactivity. AChE inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 different data splits using random forest. Generated models afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{CV }}^{2}$\\end{document}QCV2 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{Ext}}^{2}$\\end{document}QExt2 values in ranges of 0.66–0.93, 0.55–0.79 and 0.56–0.81 for the training set, 10-fold cross-validated set and external set, respectively. The best model built using the substructure count was selected according to the OECD guidelines and it afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage

  1. Assessment of competitive and mechanism-based inhibition by clarithromycin: use of domperidone as a CYP3A probe-drug substrate and various enzymatic sources including a new cell-based assay with freshly isolated human hepatocytes.

    PubMed

    Michaud, Veronique; Turgeon, Jacques

    2010-04-01

    Clarithromycin is involved in a large number of clinically relevant drug-drug interactions. Discrepancies are observed between the magnitude of drug interactions predicted from in vitro competitive inhibition studies and changes observed clinically in the plasma levels of affected CYP3A substrates. The formation of metabolic-intermediate complexes has been proposed to explain these differences. The objectives of our study were: 1) to determine the competitive inhibition potency of clarithromycin on the metabolism of domperidone as a CYP3A probe drug using human recombinant CYP3A4 and CYP3A5 isoenzymes, human liver microsomes and cultured human hepatocytes; 2) to establish the modulatory role of cytochrome b5 on the competitive inhibition potency of clarithromycin; 3) to demonstrate the clarithromycin-induced formation of CYP450 metabolic-intermediate complexes in human liver microsomes; and 4) to determine the extent of CYP3A inhibition due to metabolic-intermediate complex formation using human liver microsomes and cultured human hepatocytes. At high concentrations (100 µM), clarithromycin had weak competitive inhibition potency towards CYP3A4 and CYP3A5. Inhibition potency was further decreased by the addition of cytochrome b5 (9-19%). Clarithromycin-induced metabolic-intermediate complexes were revealed by spectrophotometry analysis using human liver microsomes while time- and concentration-dependent mechanism-based inhibitions were quantified using isolated hepatocytes. These results indicate that mechanism-based but not competitive inhibition of CYP3As is the major underlying mechanism of drug-drug interactions observed clinically with clarithromycin. Drug interactions between clarithromycin and several CYP3A substrates are predicted to be insidious; the risk of severe adverse events should increase over time and persist for a few days after cessation of the drug. PMID:20446912

  2. Inhibition of Acetylcholinesterase Modulates NMDA Receptor Antagonist Mediated Alterations in the Developing Brain

    PubMed Central

    Bendix, Ivo; Serdar, Meray; Herz, Josephine; von Haefen, Clarissa; Nasser, Fatme; Rohrer, Benjamin; Endesfelder, Stefanie; Felderhoff-Mueser, Ursula; Spies, Claudia D.; Sifringer, Marco

    2014-01-01

    Exposure to N-methyl-d-aspartate (NMDA) receptor antagonists has been demonstrated to induce neurodegeneration in newborn rats. However, in clinical practice the use of NMDA receptor antagonists as anesthetics and sedatives cannot always be avoided. The present study investigated the effect of the indirect cholinergic agonist physostigmine on neurotrophin expression and the extracellular matrix during NMDA receptor antagonist induced injury to the immature rat brain. The aim was to investigate matrix metalloproteinase (MMP)-2 activity, as well as expression of tissue inhibitor of metalloproteinase (TIMP)-2 and brain-derived neurotrophic factor (BDNF) after co-administration of the non-competitive NMDA receptor antagonist MK801 (dizocilpine) and the acetylcholinesterase (AChE) inhibitor physostigmine. The AChE inhibitor physostigmine ameliorated the MK801-induced reduction of BDNF mRNA and protein levels, reduced MK801-triggered MMP-2 activity and prevented decreased TIMP-2 mRNA expression. Our results indicate that AChE inhibition may prevent newborn rats from MK801-mediated brain damage by enhancing neurotrophin-associated signaling pathways and by modulating the extracellular matrix. PMID:24595240

  3. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests.

    PubMed

    Diamantino, T C; Guilhermino, L; Almeida, E; Soares, A M

    2000-03-01

    As a result of a widespread application in numerous industrial processes, chromium is a contaminant of many environmental systems. Chromium and their compounds are toxic to both invertebrates and vertebrates and, for this reason, there has been a search for suitable and less toxic alternatives. Molybdenum compounds have been studied as alternative to chromium compounds for some industrial applications. The toxicity of chromium is well known but the effects of molybdenum and molybdenum mining on natural populations and communities of freshwater invertebrates have not often been studied. However, chromium, and molybdenum (and their compounds) are included in the same list (List II) of European Union dangerous substances. In this study, the acute and chronic effects of sodium molybdate and sodium dichromate to Daphnia magna Straus were evaluated. Furthermore, in vitro and in vivo effects of these two metals on acetylcholinesterase (AChE) activity of D. magna Straus were investigated. LC(50) values determined at 48 h were 0.29 and 2847.5 mg L(-1) for chromium (as sodium dichromate) and molybdenum (as sodium molybdate), respectively. No significant in vitro effects of both metals on AChE were found. However, both toxicants inhibited AChE in vivo at concentrations under the respective 48-h LC(50) values. Both sodium dichromate and sodium molybdate inhibited the reproduction and growth of D. magna, but the concentrations inducing significant effects were different for the two chemicals. Sodium molybdate had significant lower toxicity to D. magna Straus than sodium dichromate. PMID:10702344

  4. Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus.

    PubMed

    Endo, Toshiaki; Yanagawa, Yuchio; Obata, Kunihiko; Isa, Tadashi

    2005-12-01

    The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for alpha3beta2- and alpha6beta2-containing receptors, alpha-conotoxin MII (alphaCtxMII). A subset of these neurons exhibited a faster alpha-bungarotoxin-sensitive inward current component, indicating the expression of alpha7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABA(A) receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by alphaCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC. PMID:16107532

  5. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2015-08-01

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation

  6. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    SciTech Connect

    Hirata, Yuki; Choi, Junho

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  7. Evaluation of compounds as barriers to dermal penetration of organophosphates using acetylcholinesterase inhibition. (Reannouncement with new availability information)

    SciTech Connect

    Olson, C.T.; Feder, P.I.; Hobson, D.W.; Kiser, R.C.; Joiner, R.L.

    1991-12-31

    An efficient, objective method for evaluating the efficacy of barrier compounds in preventing dermal penetration of organophosphates (OP) in rabbits was developed using time-dependent reduction in erythrocyte (RBC) acetylcholinesterase (AChE) activity as an endpoint. Anesthetized rabbits, with or without a dermal application of a mixture of high- and low-molecular-weight polyethylene glycols (mean molecular weight of 540 daltons; PEG 540), were exposed to different percutaneous doses of 3 highly toxic OP compounds. Dose-response curves were generated for RBC AChE inhibition as a function of percutaneous dose for each OP test material over time. From data generated, a single dose of each OP was selected to challenge PEG-540-protected and unprotected animals to validate the method as a means of differentiating effective from ineffective barriers to skin penetration. Data for a complete evaluation of a PEG 540 test barrier application were obtained within 4 h and anesthesia was maintained for the entire period.

  8. Structural and Functional Characterization of a Novel α-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR α3β2, α9α10 and α6/α3β2β3 Subtypes

    PubMed Central

    Wang, Shuo; Zhao, Cong; Liu, Zhuguo; Wang, Xuesong; Liu, Na; Du, Weihong; Dai, Qiuyun

    2015-01-01

    In the present study, we synthesized and, structurally and functionally characterized a novel α4/7-conotoxin Mr1.7 (PECCTHPACHVSHPELC-NH2), which was previously identified by cDNA libraries from Conus marmoreus in our lab. The NMR solution structure showed that Mr1.7 contained a 310-helix from residues Pro7 to His10 and a type I β-turn from residues Pro14 to Cys17. Electrophysiological results showed that Mr1.7 selectively inhibited the α3β2, α9α10 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors (nAChRs) with an IC50 of 53.1 nM, 185.7 nM and 284.2 nM, respectively, but showed no inhibitory activity on other nAChR subtypes. Further structure-activity studies of Mr1.7 demonstrated that the PE residues at the N-terminal sequence of Mr1.7 were important for modulating its selectivity, and the replacement of Glu2 by Ala resulted in a significant increase in potency and selectivity to the α3β2 nAChR. Furthermore, the substitution of Ser12 with Asn in the loop2 significantly increased the binding of Mr1.7 to α3β2, α3β4, α2β4 and α7 nAChR subtypes. Taken together, this work expanded our knowledge of selectivity and provided a new way to improve the potency and selectivity of inhibitors for nAChR subtypes. PMID:26023835

  9. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  10. Activation of muscarinic receptors by ACh release in hippocampal CA1 depolarizes VIP but has varying effects on parvalbumin-expressing basket cells

    PubMed Central

    Bell, L Andrew; Bell, Karen A; McQuiston, A Rory

    2015-01-01

    We investigated the effect of acetylcholine release on mouse hippocampal CA1 perisomatically projecting interneurons. Acetylcholine was optogenetically released in hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated virally mediated transfection. The effect of optogenetically released acetylcholine was assessed on interneurons expressing Cre recombinase in vasoactive intestinal peptide (VIP) or parvalbumin (PV) interneurons using whole cell patch clamp methods. Acetylcholine released onto VIP interneurons that innervate pyramidal neuron perisomatic regions (basket cells, BCs) were depolarized by muscarinic receptors. Although PV BCs were also excited by muscarinic receptor activation, they more frequently responded with hyperpolarizing or biphasic responses. Muscarinic receptor activation resulting from ACh release increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in downstream hippocampal CA1 pyramidal neurons with peak instantaneous frequencies occurring in both the gamma and theta bandwidths. Both PV and VIP BCs contributed to the increased sIPSC frequency in pyramidal neurons and optogenetic suppression of PV or VIP BCs inhibited sIPSCs occurring in the gamma range. Therefore, we propose acetylcholine release in CA1 has a complex effect on CA1 pyramidal neuron output through varying effects on perisomatically projecting interneurons. PMID:25556796

  11. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact

  12. Heritability and Fitness Correlates of Personality in the Ache, a Natural-Fertility Population in Paraguay

    PubMed Central

    Bailey, Drew H.; Walker, Robert S.; Blomquist, Gregory E.; Hill, Kim R.; Hurtado, A. Magdalena; Geary, David C.

    2013-01-01

    The current study assessed the heritability of personality in a traditional natural-fertility population, the Ache of eastern Paraguay. Self-reports (n = 110) and other-reports (n = 66) on the commonly used Big Five Personality Inventory (i.e., extraversion, agreeableness, conscientiousness, neuroticism, openness) were collected. Self-reports did not support the Five Factor Model developed with Western samples, and did not correlate with other-reports for three of the five measured personality factors. Heritability was assessed using factors that were consistent across self- and other-reports and factors assessed using other-reports that showed reliabilities similar to those found in Western samples. Analyses of these items in combination with a multi-generation pedigree (n = 2,132) revealed heritability estimates similar to those found in most Western samples, although we were not able to separately estimate the influence of the common environment on these traits. We also assessed relations between personality and reproductive success (RS), allowing for a test of several mechanisms that might be maintaining heritable variation in personality. Phenotypic analyses, based largely on other-reports, revealed that extraverted men had higher RS than other men, but no other dimensions of personality predicted RS in either sex. Mothers with more agreeable children had more children, and parents mated assortatively on personality. Of the evolutionary processes proposed to maintain variation in personality, assortative mating, selective neutrality, and temporal variation in selection pressures received the most support. However, the current study does not rule out other processes affecting the evolution and maintenance of individual differences in human personality. PMID:23527163