Science.gov

Sample records for ache inhibitor donepezil

  1. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors.

    PubMed

    Costanzo, Paola; Cariati, Luca; Desiderio, Doriana; Sgammato, Roberta; Lamberti, Anna; Arcone, Rosaria; Salerno, Raffaele; Nardi, Monica; Masullo, Mariorosario; Oliverio, Manuela

    2016-05-12

    An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged.

  2. Novel AChE Inhibitors for Sustainable Insecticide Resistance Management

    PubMed Central

    Alout, Haoues; Labbé, Pierrick; Berthomieu, Arnaud; Djogbénou, Luc; Leonetti, Jean-Paul; Fort, Philippe; Weill, Mylène

    2012-01-01

    Resistance to insecticides has become a critical issue in pest management and it is particularly chronic in the control of human disease vectors. The gravity of this situation is being exacerbated since there has not been a new insecticide class produced for over twenty years. Reasoned strategies have been developed to limit resistance spread but have proven difficult to implement in the field. Here we propose a new conceptual strategy based on inhibitors that preferentially target mosquitoes already resistant to a currently used insecticide. Application of such inhibitors in rotation with the insecticide against which resistance has been selected initially is expected to restore vector control efficacy and reduce the odds of neo-resistance. We validated this strategy by screening for inhibitors of the G119S mutated acetylcholinesterase-1 (AChE1), which mediates insensitivity to the widely used organophosphates (OP) and carbamates (CX) insecticides. PyrimidineTrione Furan-substituted (PTF) compounds came out as best hits, acting biochemically as reversible and competitive inhibitors of mosquito AChE1 and preferentially inhibiting the mutated form, insensitive to OP and CX. PTF application in bioassays preferentially killed OP-resistant Culex pipiens and Anopheles gambiae larvae as a consequence of AChE1 inhibition. Modeling the evolution of frequencies of wild type and OP-insensitive AChE1 alleles in PTF-treated populations using the selectivity parameters estimated from bioassays predicts a rapid rise in the wild type allele frequency. This study identifies the first compound class that preferentially targets OP-resistant mosquitoes, thus restoring OP-susceptibility, which validates a new prospect of sustainable insecticide resistance management. PMID:23056599

  3. Cognitive effects of the acetylcholinesterase inhibitor, donepezil, in healthy, non-treatment seeking smokers: A pilot feasibility study

    PubMed Central

    Ashare, Rebecca L.; Ray, Riju; Lerman, Caryn; Strasser, Andrew A.

    2012-01-01

    Background There is a need to identify medications to aid in smoking cessation. Reducing withdrawal-related cognitive deficits represents a pharmacological target for new pharmacotherapies. Endogenous acetylcholine levels, which are modulated by acetylcholinesterase inhibitors (AChEIs), play an important role in smoking behavior and cognition. This pilot feasibility study tested whether an AChEI, donepezil, enhanced cognitive performance among healthy smokers. Methods Eighteen non-treatment seeking daily smokers (6 female) received either donepezil (5mg q.d) or placebo (double-blind; 2:1 allocation ratio) for four weeks. Smoking rate, side effects, and neurocognitive measures of working memory (Letter-N-back) and sustained attention (Penn Continuous Performance Task) were assessed weekly. Results For the working memory task, there was a significant group × load × time interaction (p=0.03) indicating that the donepezil group demonstrated an increase in true positives from baseline to week 4 at the highest working memory load (3-back). The placebo group showed no change in accuracy. For the sustained attention task, there was a marginal effect in the same direction for discriminability, or d', p=0.08. There were no significant effects on reaction time during either task. There was also a reduction in cigarettes per day in the placebo group, but not the donepezil group. Conclusions AChEIs, such as donepezil, may have pro-cognitive effects among healthy smokers while they continue to smoke as usual. Given the association between cognitive deficits and relapse, AChEIs should be explored as potential therapeutics for smoking cessation. PMID:22595038

  4. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  5. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  6. Donepezil

    MedlinePlus

    ... AD; a brain disease that slowly destroys the memory and the ability to think, learn, communicate and ... cholinesterase inhibitors. It improves mental function (such as memory, attention, the ability to interact with others, speak, ...

  7. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  8. Donepezil treatment and the subjective effects of intravenous cocaine in dependent individuals.

    PubMed

    Grasing, Kenneth; Mathur, Deepan; Newton, Thomas F; DeSouza, Cherilyn

    2010-02-01

    Acetylcholinesterase (AChE) inhibitors increase synaptic levels of acetylcholine (ACh) by inhibiting its breakdown. Donepezil is a reversible AChE inhibitor that is clinically available and relatively selective for inhibiting AChE but not other cholinesterases. Because AChE inhibitors have been shown to decrease the reinforcing effects of cocaine in animals, our hypothesis was that pretreatment with donepezil would attenuate the perceived value and other positive subjective effects of cocaine. We conducted a within-subject, double-blind, placebo-controlled, laboratory-based evaluation of the subjective effects produced by intravenous cocaine in human subjects receiving oral donepezil. Following three days of daily treatment with 5mg of donepezil or oral placebo, participants received intravenous placebo or cocaine (0.18 and 0.36 mg/kg). After a three-day washout period, participants were crossed over to the opposite oral treatment, which was followed by identical intravenous infusions. Donepezil was well-tolerated with only two drug-related adverse events reported that were mild and self-limiting. Treatment with donepezil increased ratings of 'any' and 'good' drug effect produced by low-dose cocaine, without modifying the response to high-dose cocaine. When collapsed across intravenous dose, treatment with donepezil decreased dysphoric effects and somatic symptoms, but did not modify the value of cocaine injections as determined by the Multiple Choice Questionnaire (MCQ). In summary, pretreatment with donepezil potentiated some measures for nonspecific and positive effects of low-dose cocaine. Across all intravenous treatments, participants receiving donepezil reported fewer somatic-dysphoric effects. Neither of these actions support the value of donepezil as a treatment for cocaine dependence.

  9. Inhibitory effects of cholinesterase inhibitor donepezil on the Kv1.5 potassium channel

    PubMed Central

    Li, Kai; Cheng, Neng; Li, Xian-Tao

    2017-01-01

    Kv1.5 channels carry ultra-rapid delayed rectifier K+ currents in excitable cells, including neurons and cardiac myocytes. In the current study, the effects of cholinesterase inhibitor donepezil on cloned Kv1.5 channels expressed in HEK29 cells were explored using whole-cell recording technique. Exposure to donepezil resulted in a rapid and reversible block of Kv1.5 currents, with an IC50 value of 72.5 μM. The mutant R476V significantly reduced the binding affinity of donepezil to Kv1.5 channels, showing the target site in the outer mouth region. Donepezil produced a significant delay in the duration of activation and deactivation, and mutant R476V potentiated these effects without altering activation curves. In response to slowed deactivation time course, a typical crossover of Kv1.5 tail currents was clearly evident after bath application of donepezil. In addition, both this chemical and mutant R476V accelerated current decay during channel inactivation in a voltage-dependent way, but barely changed the inactivation and recovery curves. The presence of donepezil exhibited the use-dependent block of Kv1.5 currents in response to a series of depolarizing pulses. Our data indicate that donepezil can directly block Kv1.5 channels in its open and closed states. PMID:28198801

  10. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse.

    PubMed

    Provensi, Gustavo; Costa, Alessia; Passani, M Beatrice; Blandina, Patrizio

    2016-10-01

    Histaminergic H3 receptors (H3R) antagonists enhance cognition in preclinical models and modulate neurotransmission, in particular acetylcholine (ACh) release in the cortex and hippocampus, two brain areas involved in memory processing. The cognitive deficits seen in aging and Alzheimer's disease have been associated with brain cholinergic deficits. Donepezil is one of the acetylcholinesterase (AChE) inhibitor approved for use across the full spectrum of these cognitive disorders. We addressed the question if H3R antagonists and donepezil require an intact histamine neuronal system to exert their procognitive effects. The effect of the H3R antagonist ABT-239 and donepezil were evaluated in the object recognition test (ORT), and on the level of glycogen synthase kinase 3 beta (GSK-3β) phosphorylation in normal and histamine-depleted mice. Systemic administration of ABT-239 or donepezil ameliorated the cognitive performance in the ORT. However, these compounds were ineffective in either genetically (histidine decarboxylase knock-out, HDC-KO) or pharmacologically, by means of intracerebroventricular (i.c.v.) injections of the HDC irreversible inhibitor a-fluoromethylhistidine (a-FMHis), histamine-deficient mice. Western blot analysis revealed that ABT-239 or donepezil systemic treatments increased GSK-3β phosphorylation in cortical and hippocampal homogenates of normal, but not of histamine-depleted mice. Furthermore, administration of the PI3K inhibitor LY294002 that blocks GSK-3β phosphorylation, prevented the procognitive effects of both drugs in normal mice. Our results indicate that both donepezil and ABT-239 require the integrity of the brain histaminergic system to exert their procognitive effects and strongly suggest that impairments of PI3K/AKT/GSK-3β intracellular pathway activation is responsible for the inefficacy of both drugs in histamine-deficient animals.

  11. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids

    PubMed Central

    Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José

    2014-01-01

    The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer’s disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13–15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hACh

  12. Neurophysiological predictors of long term response to AChE inhibitors in AD patients

    PubMed Central

    Di, L; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Ghirlanda, S; Ranieri, F; Gainotti, G; Tonali, P

    2005-01-01

    Background: In vivo evaluation of cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with motor cortex TMS (short latency afferent inhibition, SAI). SAI is reduced in Alzheimer's disease (AD) and drugs enhancing cholinergic transmission increase SAI. Methods: We evaluated whether SAI testing, together with SAI test-retest, after a single dose of the acetylcholinesterase (AChE) inhibitor rivastigmine, might be useful in predicting the response after 1 year treatment with rivastigmine in 16 AD patients. Results: Fourteen AD patients had pathologically reduced SAI. SAI was increased after administration of a single oral dose of rivastigmine in AD patients with abnormal baseline SAI, but individual responses to rivastigmine varied widely, with SAI change ranging from an increase in inhibition of ∼50% of test size to no change. Baseline SAI and the increase in SAI after a single dose of rivastigmine were correlated with response to long term treatment. A normal SAI in baseline conditions, or an abnormal SAI in baseline conditions that was not greatly increased by a single oral dose of rivastigmine, were invariably associated with poor response to long term treatment, while an abnormal SAI in baseline conditions in conjunction with a large increase in SAI after a single dose of rivastigmine was associated with good response to long term treatment in most of the patients. Conclusions: Evaluation of SAI may be useful for identifying AD patients likely to respond to treatment with AChE inhibitors. PMID:16024879

  13. Distribution of Intravenously Administered Acetylcholinesterase Inhibitor and Acetylcholinesterase Activity in the Adrenal Gland: 11C-Donepezil PET Study in the Normal Rat

    PubMed Central

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Purpose Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered 11C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. Methods The distribution of 11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220±8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of 11C-DNP (45.0±10.7 MBq). The whole-body distribution of the 11C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. Results The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of 11C-DNP in the body (following the liver) (13.33±1.08 and 19.43±1.29 ml/cm3, respectively), indicating that the distribution of 11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9±1.6, 83.1±3.0, and 38.5±8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. Conclusions We demonstrated the whole-body distribution of 11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of 11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors. PMID:25225806

  14. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer's disease.

    PubMed

    Wang, Li; Esteban, Gerard; Ojima, Masaki; Bautista-Aguilera, Oscar M; Inokuchi, Tsutomu; Moraleda, Ignacio; Iriepa, Isabel; Samadi, Abdelouahid; Youdim, Moussa B H; Romero, Alejandro; Soriano, Elena; Herrero, Raquel; Fernández Fernández, Ana Patricia; Ricardo-Martínez-Murillo; Marco-Contelles, José; Unzeta, Mercedes

    2014-06-10

    The synthesis, biochemical evaluation, ADMET, toxicity and molecular modeling of novel multi-target-directed Donepezil + Propargylamine + 8-Hydroxyquinoline (DPH) hybrids 1-7 for the potential prevention and treatment of Alzheimer's disease is described. The most interesting derivative was racemic α-aminotrile4-(1-benzylpiperidin-4-yl)-2-(((8-hydroxyquinolin-5-yl)methyl)(prop-2-yn-1-yl)amino) butanenitrile (DPH6) [MAO A (IC50 = 6.2 ± 0.7 μM; MAO B (IC50 = 10.2 ± 0.9 μM); AChE (IC50 = 1.8 ± 0.1 μM); BuChE (IC50 = 1.6 ± 0.25 μM)], an irreversible MAO A/B inhibitor and mixed-type AChE inhibitor with metal-chelating properties. According to docking studies, both DPH6 enantiomers interact simultaneously with the catalytic and peripheral site of EeAChE through a linker of appropriate length, supporting the observed mixed-type AChE inhibition. Both enantiomers exhibited a relatively similar position of both hydroxyquinoline and benzyl moieties with the rest of the molecule easily accommodated in the relatively large cavity of MAO A. For MAO B, the quinoline system was hosted at the cavity entrance whereas for MAO A this system occupied the substrate cavity. In this disposition the quinoline moiety interacted directly with the FAD aromatic ring. Very similar binding affinity values were also observed for both enantiomers with ChE and MAO enzymes. DPH derivatives exhibited moderate to good ADMET properties and brain penetration capacity for CNS activity. DPH6 was less toxic than donepezil at high concentrations; while at low concentrations both displayed a similar cell viability profile. Finally, in a passive avoidance task, the antiamnesic effect of DPH6 was tested on mice with experimentally induced amnesia. DPH6 was capable to significantly decrease scopolamine-induced learning deficits in healthy adult mice.

  15. A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    PubMed

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-10-01

    Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).

  16. The protective role of tacrine and donepezil in the retina of acetylcholinesterase knockout mice

    PubMed Central

    Yi, Yun-Min; Cai, Li; Shao, Yi; Xu, Man; Yi, Jing-Lin

    2015-01-01

    AIM To determine the effect of different concentrations of the acetylcholinesterase (AChE) inhibitors tacrine and donepezil on retinal protection in AChE+/− mice (AChE knockout mice) of various ages. METHODS Cultured ARPE-19 cells were treated with hydrogen peroxide (H2O2) at concentrations of 0, 250, 500, 1000 and 2000 µmol/L and protein levels were measured using Western blot. Intraperitoneal injections of tacrine and donepezil (0.1 mg/mL, 0.2 mg/mL and 0.4 mg/mL) were respectively given to AChE+/− mice aged 2mo and 4mo and wild-type S129 mice for 7d; phosphate buffered saline (PBS) was administered to the control group. The mice were sacrificed after 30d by in vitro cardiac perfusion and retinal samples were taken. AChE-deficient mice were identified by polymerase chain reaction (PCR) analysis using specific genotyping protocols obtained from the Jackson Laboratory website. H&E staining, immunofluorescence and Western blot were performed to observe AChE protein expression changes in the retinal pigment epithelial (RPE) cell layer. RESULTS Different concentrations of H2O2 induced AChE expression during RPE cell apoptosis. AChE+/− mice retina were thinner than those in wild-type mice (P<0.05); the retinal structure was still intact at 2mo but became thinner with increasing age (P<0.05); furthermore, AChE+/− mice developed more slowly than wild-type mice (P<0.05). Increased concentrations of tacrine and donepezil did not significantly improve the protection of the retina function and morphology (P>0.05). CONCLUSION In vivo, tacrine and donepezil can inhibit the expression of AChE; the decrease of AChE expression in the retina is beneficial for the development of the retina. PMID:26558196

  17. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual

  18. The combination of donepezil and procyclidine protects against soman-induced seizures in rats

    SciTech Connect

    Haug, Kristin Huse . E-mail: k.h.haug@medisin.uio.no; Myhrer, Trond; Fonnum, Frode

    2007-04-15

    Current treatment of nerve agent poisoning consists of prophylactic administration of pyridostigmine and therapy using atropine, an oxime and a benzodiazepine. Pyridostigmine does however not readily penetrate the blood-brain barrier giving ineffective protection of Brain against centrally mediated seizure activity. In this study, we have evaluated donepezil hydrochloride, a partial reversible inhibitor of acetylcholinesterase (AChE) clinically used for treating Alzheimer's disease, in combination with procyclidine, used in treatment of Parkinson's disease and schizophrenia, as prophylaxis against intoxication by the nerve agent soman. The results demonstrated significant protective efficacy of donepezil (2.5 mg/kg) combined with procyclidine (3 or 6 mg/kg) when given prophylactically against a lethal dose of soman (1.6x LD{sub 50}) in Wistar rats. No neuropathological changes were found in rats treated with this combination 48 h after soman intoxication. Six hours after soman exposure cerebral AChE activity and acetylcholine (ACh) concentration was 5% and 188% of control, respectively. The ACh concentration had returned to basal levels 24 h after soman intoxication, while AChE activity had recovered to 20% of control. Loss of functioning muscarinic ACh receptors (17%) but not nicotinic receptors was evident at this time point. The recovery in brain AChE activity seen in our study may be due to the reversible binding of donepezil to the enzyme. Donepezil is well tolerated in humans, and a combination of donepezil and procyclidine may prove useful as an alternative to the currently used prophylaxis against nerve agent intoxication.

  19. Conformational analysis and parallel QM/MM X-ray refinement of protein bound anti-Alzheimer drug donepezil.

    PubMed

    Fu, Zheng; Li, Xue; Miao, Yipu; Merz, Kenneth M

    2013-12-03

    The recognition and association of donepezil with acetylcholinesterase (AChE) has been extensively studied in the past several decades because of the former's use as a palliative treatment for mild Alzheimer disease. Herein we examine the conformational properties of donepezil and we re-examine the donepezil-AChE crystal structure using combined quantum mechanical/molecular mechanical (QM/MM) X-ray refinement tools. Donepezil's conformational energy surface was explored using the M06 suite of density functionals and with the MP2/complete basis set (CBS) method using the aug-cc-pVXZ (X = D and T) basis sets. The donepezil-AChE complex (PDB 1EVE) was also re-refined through a parallel QM/MM X-ray refinement approach based on an in-house ab initio code QUICK, which uses the message passing interface (MPI) in a distributed SCF algorithm to accelerate the calculation via parallelization. In the QM/MM re-refined donepezil structure, coordinate errors that previously existed in the PDB deposited geometry were improved leading to an improvement of the modeling of the interaction between donepezil and the aromatic side chains located in the AChE active site gorge. As a result of the re-refinement there was a 93% reduction in the donepezil conformational strain energy versus the original PDB structure. The results of the present effort offer further detailed structural and biochemical inhibitor-AChE information for the continued development of more effective and palliative treatments of Alzheimer disease.

  20. Effects of donepezil and serotonin reuptake inhibitor on acute regression during adolescence in Down syndrome.

    PubMed

    Tamasaki, Akiko; Saito, Yoshiaki; Ueda, Riyo; Ohno, Koyo; Yokoyama, Katsutoshi; Satake, Takahiro; Sakuma, Hiroshi; Takahashi, Yukitoshi; Kondoh, Tatsuro; Maegaki, Yoshihiro

    2016-01-01

    A 14-year-old boy with Down syndrome (DS) showed a gradual decline in his daily activities and feeding capacities, and a marked deterioration triggered by a streptococcal infection was observed at the age of 15 years. He became bedridden, accompanied by sleep disturbance, sustained upward gaze, and generalized rigidity. Magnetic resonance imaging showed unremarkable findings, but antiglutamate receptor autoantibodies were positive in his cerebrospinal fluid. Treatment with thiamine infusion and steroid pulse therapy showed little effect, but gross motor dysfunction and appetite loss were ameliorated by the administration of l-DOPA and serotonin reuptake inhibitors. Thereafter, autistic behaviors predominated, including loss of social interaction, oral tendency, water phobia, and aggressiveness. Initiation of donepezil, an acetylcholinesterase inhibitor, resulted in the disappearance of these symptoms and total recovery of the patient to his previous psychosocial levels. We hypothesize that the acute regression in adolescence represents a process closely related to the defects of serotonergic and cholinergic systems that are innate to DS brains and not just a nonspecific comorbidity of depression or limbic encephalitis.

  1. The dual-acting AChE inhibitor and H3 receptor antagonist UW-MD-72 reverses amnesia induced by scopolamine or dizocilpine in passive avoidance paradigm in rats.

    PubMed

    Sadek, Bassem; Khan, Nadia; Darras, Fouad H; Pockes, Steffen; Decker, Michael

    2016-10-15

    Both the acetylcholine esterase (AChE) and the histamine H3 receptor (H3R) are involved in the metabolism and modulation of acetylcholine release and numerous other centrally acting neurotransmitters. Hence, dual-active AChE inhibitors (AChEIs) and H3R antagonists hold potential to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting AChEI and H3R antagonist 7-(3-(piperidin-1-yl)propoxy)-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (UW-MD-72) shows excellent selectivity profiles over the AChE's isoenzyme butyrylcholinesterase (BChE) as well as high and balanced in-vitro affinities at both AChE and hH3R with IC50 of 5.4μM on hAChE and hH3R antagonism with Ki of 2.54μM, respectively. In the current study, the effects of UW-MD-72 (1.25, 2.5, and 5mg/kg, i.p.) on memory deficits induced by the muscarinic cholinergic antagonist scopolamine (SCO) and the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were investigated in a step-through type passive avoidance paradigm in adult male rats applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. The results observed show that SCO (2mg/kg, i.p.) and DIZ (0.1mg/kg, i.p.) significantly impaired learning and memory in rats. However, acute systemic administration of UW-MD-72 significantly ameliorated the SCO- and DIZ-induced amnesic effects. Furthermore, the ameliorating activity of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10mg/kg, i.p.). Moreover, ameliorative effect of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was strongly reversed when rats were pretreated with a combination of ZOL (10mg/kg, i.p.) and SCO (1.0mg/kg, i.p.), indicating that these memory enhancing effects were, in addition to other neural circuits, observed through histaminergic H2R as well as

  2. Atomic insight into designed carbamate-based derivatives as acetylcholine esterase (AChE) inhibitors: a computational study by multiple molecular docking and molecular dynamics simulation.

    PubMed

    Mohammadi, Tecush; Ghayeb, Yousef

    2017-01-11

    Over 100 variants have been designed and studied, using multiple docking methods such as Autodock Vina, ArgusLab, Molegro Virtual Docker, and Hex-Cuda, to study the effect of alteration in the structure of carbamate-based acetylcholyne esterase (AChE) inhibitors. Sixteen selected systems were then subjected to 14 ns molecular dynamics (MD) simulations. Results from all the docking methods are in agreement. Variants that involved biphenyl substituents possess the most negative binding energies in the -37.64 to -39.31 kJ mol(-1) range due to their π-π interactions with AChE aromatic residues. The root mean square deviation values showed that all of these components achieved equilibration after 6 ns. Gyration radius (Rg) and solvent accessibility surface area were calculated to further investigate the AChE conformational changes in the presence of these components. MD simulation results suggested that these components might interact with AChE, possibly with no major changes in AChE secondary and tertiary structures.

  3. Acetylcholinesterase inhibitors for the treatment of Wernicke-Korsakoff syndrome--three further cases show response to donepezil.

    PubMed

    Cochrane, Murray; Cochrane, Ashley; Jauhar, Pramod; Ashton, Elizabeth

    2005-01-01

    Three patients diagnosed with Wernicke-Korsakoff syndrome were treated with the acetylcholinesterase inhibitor, donepezil, for periods of 6 to 8 months. Cognitive testing [Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog), Mini-mental state examination (MMSE), Clock drawing test and six item 2 min recall] and carer questionnaires [Informant Questionnaire (IQ Code), Neuropsychiatric inventory scale (NPI)] were performed at baseline, mid- and endpoint of the treatment period and post-discontinuation. Progressive partial improvement occurred in cognitive measurements through the treatment period, some of which was sustained after discontinuing donepezil. Carer questionnaires also indicated improvement. Confounding factors necessitate caution when attributing improvements to the medication, but these cases suggest that this option merits further investigation.

  4. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics

    PubMed Central

    Cacabelos, Ramón

    2007-01-01

    Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pharmacological profile in terms of cognitive improvement, responders rate (40%–58%), dropout cases (5%–13%), and side-effects (6%–13%) in AD. Although donepezil represents a non cost-effective treatment, most studies convey that this drug can provide a modest benefit on cognition, behavior, and activities of the daily living in both moderate and severe AD, contributing to slow down disease progression and, to a lesser exetnt, to delay institutionalization. Patients with vascular dementia might also benefit from donepezil in a similar fashion to AD patients. Some potential effects of donepezil on the AD brain, leading to reduced cortico-hippocampal atrophy, include the following: AChE inhibition, enhancement of cholinergic neurotransmission and putative modulation of other neurotransmitter systems, protection against glutamate-induced excitotoxicity, activation of neurotrophic mechanisms, promotion of non-amyloidodgenic pathways for APP processing, and indirect effects on cerebrovascular function improving brain perfusion. Recent studies demonstrate that the therapeutic response in AD is genotype-specific. Donepezil is metabolized via CYP-related enzymes, especially CYP2D6, CYP3A4, and CYP1A2. Approximately, 15%–20% of the AD population may exhibit an abnormal metabolism of AChEIs; about 50% of this population cluster would show an ultrarapid metabolism, requiring higher doses of AChEIs to reach a therapeutic threshold, whereas the other 50% of the cluster would exhibit a poor metabolism, displaying potential adverse events at low doses. In AD patients treated with a multifactorial therapy, including donepezil, the best responders are the CYP2D6-related extensive

  5. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  6. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism.

    PubMed

    Kim, Ji-Woon; Seung, Hana; Kwon, Kyung Ja; Ko, Mee Jung; Lee, Eun Joo; Oh, Hyun Ah; Choi, Chang Soon; Kim, Ki Chan; Gonzales, Edson Luck; You, Jueng Soo; Choi, Dong-Hee; Lee, Jongmin; Han, Seol-Heui; Yang, Sung Min; Cheong, Jae Hoon; Shin, Chan Young; Bahn, Geon Ho

    2014-01-01

    Autism spectrum disorder (ASD) is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model). We found that prenatal exposure of valproic acid (VPA) induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE) in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs) such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg) intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.

  7. [Achetylcholinesterase (AChE) inhibition and serum lipokines in Alzheimer's disease: friend or foe?].

    PubMed

    Kovacs, Janos; Pakaski, Magdolna; Juhasz, Anna; Feher, Agnes; Drotos, Gergely; Fazekas, Csilla Orsike; Horvath, Tamas Laszlo; Janka, Zoltan; Kalman, Janos

    2012-03-01

    Throughout the natural progression of Alzheimer's disease (AD), the body mass index (BMI) decreases. This is believed to be brought on by the disturbance in the central lipid metabolism, but the exact mechanism is yet unknown. Adipokines (adiponectin, leptin), hormones produced by the adipose tissue, change glucose and lipid metabolism, and have an anorectic effect through increasing energy consumption in the hypothalamus. The goal of our study was to examine donepezil - an acetylcholinesterase inhibitor (AChEI) currently used in AD therapy -, and to what degree it influences the serum adipokine levels and metabolic parameters of AD patients. During the self-evaluation of 26 clinically diagnosed mild to moderate AD patients, therapy with 10 mg/day donepezil was started according to current protocols. We measured serum adiponectin, leptin, LDL, HDL, trigliceride levels, and BMI and ApoE polymorphism at the beginning of our study, and at 3 and 6-months intervals respectively. All data were analyzed with SPSS 17. In comparison with pre-donepezil therapy values, at the third month interval serum adiponectin levels showed an increasing and leptin levels a decreasing tendency. At the six month interval, adiponectin levels significantly increased (p=0.007), leptin levels decreased (p=0.013), BMI (p=0.001) and abdominal circumference (p=0.017) was significantly lower at 6 months as compared to control values. We did not observe any changes in the lipid profile, and ApoE4 allele carrying showed no association with the parameters. To our knowledge, we are the first to publish that AChEI therapy with donepezil alters lipokine levels, which positively influences the currently known pathomechanism and numerous risk factors of AD. The AChEI treatment-induced weight loss should be considered in the long-term therapy of AD patients.

  8. Reversible and persistent decreases in cocaine self-administration after cholinesterase inhibition: different effects of donepezil and rivastigmine.

    PubMed

    Grasing, Kenneth; Yang, Yungao; He, Shuangteng

    2011-02-01

    We recently observed that pretreatment with the cholinesterase inhibitor, tacrine can produce long-lasting reductions in cocaine-reinforced behavior, described as persistent attenuation. In addition to inhibiting both acetylcholinesterase (AChE) and butyrylcholinesterase, tacrine can potentiate actions of dopamine. This study was carried out to evaluate the effects of donepezil (which selectively inhibits AChE) and rivastigmine (which inhibits both AChE and butyrylcholinesterase) on cocaine self-administration. High self-administration rats self-administered different doses of cocaine under a fixed ratio-5 schedule. Over a 4-day period, vehicle, donepezil, or rivastigmine was infused as animals were maintained in home cages (21 h per day), with signs of cholinergic stimulation (fasciculation, vacuous jaw movements, yawning, and diarrhea) scored by a blinded observer. Both compounds dose-dependently decreased cocaine self-administration, but differed in the potency and temporal pattern of their effects. Self-administration of low-dose cocaine was decreased to a greater degree by rivastigmine than donepezil (50% effective doses of 2.33 and 6.21 mg/kg/day, respectively), but this early effect did not continue beyond sessions immediately after treatment with rivastigmine. Group means for cocaine self-administration were decreased at some time points occurring between 1 and 3 days after the treatment with 10 mg/kg/day of donepezil (late effects), with decreases of more than 80% observed in some individual rats that persisted for 1 week or longer. Early, but not late, effects were correlated with signs of cholinergic stimulation. In summary, pretreatment with donepezil, but not rivastigmine produced persistent reductions in cocaine-reinforced behavior, which were not associated with signs of cholinergic stimulation.

  9. Dietary and donepezil modulation of mTOR signaling and neuroinflammation in the brain

    PubMed Central

    Dasuri, Kalavathi; Zhang, Le; Kim, Sun OK Fernandez; Bruce-Keller, Annadora J.; Keller, Jeffrey N.

    2016-01-01

    Recent clinical and laboratory evidences suggest that high fat diet (HFD) induced obesity and its associated metabolic syndrome conditions promotes neuropathology in aging and age-related neurological disorders. However, the effects of high fat diet on brain pathology are poorly understood, and the effective strategies to overcome these effects remain elusive. In the current study, we examined the effects of HFD on brain pathology and further evaluated whether donepezil, an AChE inhibitor with neuroprotective functions, could suppress the ongoing HFD induced pathological changes in the brain. Our data demonstrates that HFD induced obesity results in increased neuroinflammation and increased AChE activity in the brain when compared with the mice fed on low fat diet (LFD). HFD administration to mice activated mTOR pathway resulting in increased phosphorylation of mTORser2448, AKTthr308 and S6K proteins involved in the signaling. Interestingly, donepezil administration with HFD suppressed HFD induced increases in AChE activity, and partially reversed HFD effects on microglial reactivity and the levels of mTOR signaling proteins in the brain when compared to the mice on LFD alone. However, gross levels of synaptic proteins were not altered in the brain tissues of mice fed either diet with or without donepezil. In conclusion, these results present a new insight in to the detrimental effects of HFD on brain via microglial activation and involvement of mTOR pathway, and further demonstrates the possible therapeutic role for donepezil in ameliorating the early effects of HFD that could help preserve the brain function in metabolic syndrome conditions. PMID:26554604

  10. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  11. Synthesis, Biological Evaluation, and Computational Studies of Tri- and Tetracyclic Nitrogen-Bridgehead Compounds as Potent Dual-Acting AChE Inhibitors and hH3 Receptor Antagonists

    PubMed Central

    2014-01-01

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer’s disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure–activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R. PMID:24422467

  12. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.

  13. Age-Related Decline in Brain and Hepatic Clearance of Amyloid-Beta is Rectified by the Cholinesterase Inhibitors Donepezil and Rivastigmine in Rats.

    PubMed

    Mohamed, Loqman A; Qosa, Hisham; Kaddoumi, Amal

    2015-05-20

    In Alzheimer's disease (AD), accumulation of brain amyloid-β (Aβ) depends on imbalance between production and clearance of Aβ. Several pathways for Aβ clearance have been reported including transport across the blood-brain barrier (BBB) and hepatic clearance. The incidence of AD increases with age and failure of Aβ clearance correlates with AD. The cholinesterase inhibitors (ChEIs) donepezil and rivastigmine are used to ease the symptoms of dementia associated with AD. Besides, both drugs have been reported to provide neuroprotective and disease-modifying effects. Here, we investigated the effect of ChEIs on age-related reduced Aβ clearance. Findings from in vitro and in vivo studies demonstrated donepezil and rivastigmine to enhance (125)I-Aβ40 clearance. Also, the increase in brain and hepatic clearance of (125)I-Aβ40 was more pronounced in aged compared to young rats, and was associated with significant reduction in brain Aβ endogenous levels determined by ELISA. Furthermore, the enhanced clearance was concomitant with up-regulation in the expression of Aβ major transport proteins P-glycoprotein and LRP1. Collectively, our findings that donepezil and rivastigmine enhance Aβ clearance across the BBB and liver are novel and introduce an additional mechanism by which both drugs could affect AD pathology. Thus, optimizing their clinical use could help future drug development by providing new drug targets and possible mechanisms involved in AD pathology.

  14. Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer's disease.

    PubMed

    Abe, Yasuyuki; Aoyagi, Atsushi; Hara, Takao; Abe, Kazumi; Yamazaki, Reina; Kumagae, Yoshihiro; Naruto, Shunji; Koyama, Kazuo; Marumoto, Shinji; Tago, Keiko; Toda, Narihiro; Takami, Kazuko; Yamada, Naho; Ori, Mayuko; Kogen, Hiroshi; Kaneko, Tsugio

    2003-09-01

    A dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT), RS-1259 (4-[1S)-methylamino-3-(4-nitrophenoxy)]propylphenyl N,N-dimethylcarbamate (fumaric acid)(1/2)salt), was newly synthesized. RS-1259 simultaneously inhibited AChE and SERT in the brain following an oral administration in mice and rats. Actual simultaneous elevation of extracellular levels of 5-HT and ACh in the rat hippocampus was confirmed by microdialysis. The compound was as effective as SERT inhibitors such as fluoxetine and fluvoxamine in a 5-hydroxytryptophan-enhancing test in mice. Spatial memory deficits in the two-platform task of a water maze in aged rats were ameliorated by RS-1259 as well as donepezil. Both RS-1259 and donepezil increased the awake episodes in the daytime electroencephalogram of rats. Although RS-1259 was weaker than donepezil in enhancing central cholinergic transmission, as observed by ACh elevation in the hippocampus and memory enhancement in aged rats, the efficacy of RS-1259 on the consciousness level, which reflects the whole activity in the brain, was almost the same as that of donepezil. These results suggest that both cholinergic and serotonergic systems are involved in maintaining brain arousal and that a dual inhibitor of AChE and SERT may be useful for the treatment of cognitive disorders associated with reduced brain activity such as in Alzheimer's disease.

  15. From AChE to BACE1 inhibitors: The role of the amine on the indanone scaffold.

    PubMed

    Rampa, Angela; Mancini, Francesca; De Simone, Angela; Falchi, Federico; Belluti, Federica; Di Martino, Rita Maria Concetta; Gobbi, Silvia; Andrisano, Vincenza; Tarozzi, Andrea; Bartolini, Manuela; Cavalli, Andrea; Bisi, Alessandra

    2015-07-15

    In recent years, a progressive increase in age-related disorders could be observed in most western countries, among which Alzheimer's disease (AD) is one of the most challenging. BACE1 could be seen as an attractive target to develop disease-modifying compounds, and in this context, a new series of hybrid molecules was designed and synthesized, based on a previously identified multitarget lead compound. In particular, the amino side chain was appropriately modified to fit BACE1 as additional target. In vitro testing results pointed out compound 8 (IC50=2.49±0.08 μM), bearing the bulky bis(4-fluorophenyl)methyl)piperazine substituent, as the most potent BACE1 inhibitor of the series.

  16. Treatment with Sildenafil and Donepezil Improves Angiogenesis in Experimentally Induced Critical Limb Ischemia

    PubMed Central

    Constantinescu, Ioana M.; Bolfa, Pompei; Mironiuc, Aurel I.

    2017-01-01

    Objectives. In this study, we aimed to demonstrate the role of sildenafil (an antagonist of phosphodiesterase type 5 (PDE-5)) and donepezil (a specific and reversible inhibitor of acetylcholinesterase (Ach)) in increasing ischemia-induced angiogenesis. Method. Critical limb ischemia was induced by ligation of the common femoral artery followed by ligation of the common iliac artery. The operated animals were divided into 3 groups: receiving sildenafil, receiving donepezil, and surgery alone; the contralateral lower limb was used as a negative control. The results were controlled based on clinical score and Doppler ultrasound. Gastrocnemius muscle samples were taken from all animals, both from the ischemic and nonischemic limb and were used for histopathological and immunohistochemical examination for the evaluation of the number of nuclei/field, endothelial cells (CD31), dividing cells (Ki-67), and vascular endothelial growth factor (VEGFR-3). Results. An increasing tendency of the number of nuclei/field with time was observed both in the case of sildenafil and donepezil treatment. The formation of new capillaries (the angiogenesis process) was more strongly influenced by donepezil treatment compared to sildenafil or no treatment. This treatment significantly influenced the capillary/fiber ratio, which was increased compared to untreated ligated animals. Sildenafil treatment led to a gradual increase in the number of dividing cells, which was significantly compared to the negative control group and compared to the ligation control group. The same effect (increase in the number of Ki-67 positive cells) was more obvious in the case of donepezil treatment. Conclusion. Donepezil treatment has a better effect in ligation-induced ischemia compared to sildenafil, promoting angiogenesis in the first place, and also arteriogenesis. PMID:28243607

  17. Acetylcholinesterase Inhibitors (AChEI's) for the treatment of visual hallucinations in schizophrenia: a case report

    PubMed Central

    2010-01-01

    Background Visual hallucinations are commonly seen in various neurological and psychiatric disorders including schizophrenia. Current models of visual processing and studies in diseases including Parkinsons Disease and Lewy Body Dementia propose that Acetylcholine (Ach) plays a pivotal role in our ability to accurately interpret visual stimuli. Depletion of Ach is thought to be associated with visual hallucination generation. AchEI's have been used in the targeted treatment of visual hallucinations in dementia and Parkinson's Disease patients. In Schizophrenia, it is thought that a similar Ach depletion leads to visual hallucinations and may provide a target for drug treatment Case Presentation We present a case of a patient with Schizophrenia presenting with treatment resistant and significantly distressing visual hallucinations. After optimising treatment for schizophrenia we used Rivastigmine, an AchEI, as an adjunct to treat her symptoms successfully. Conclusions This case is the first to illustrate this novel use of an AchEI in the targeted treatment of visual hallucinations in a patient with Schizophrenia. Targeted therapy of this kind can be considered in challenging cases although more evidence is required in this field. PMID:20822516

  18. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease

    PubMed Central

    Unzeta, Mercedes; Esteban, Gerard; Bolea, Irene; Fogel, Wieslawa A.; Ramsay, Rona R.; Youdim, Moussa B. H.; Tipton, Keith F.; Marco-Contelles, José

    2016-01-01

    HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands

  19. Use of a novel radiometric method to assess the inhibitory effect of donepezil on acetylcholinesterase activity in minimally diluted tissue samples

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya

    2010-01-01

    Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964

  20. New Acetylcholinesterase Inhibitors for Alzheimer's Disease

    PubMed Central

    Mehta, Mona; Adem, Abdu; Sabbagh, Marwan

    2012-01-01

    Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in Alzheimer's disease (AD) because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AchE for myasthenia gravis had effectively proven that AchE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEI) continue to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs in development and their respective mechanisms of actions. This pharmacological approach continues to be active with many promising compounds. PMID:22216416

  1. Effects of Donepezil on Cognitive Functioning in Down Syndrome.

    ERIC Educational Resources Information Center

    Johnson, N.; Fahey, C.; Chicoine, B.; Chong, G.; Gitelman, D.

    2003-01-01

    Donepezil, an acetycholinesterase inhibitor, or a placebo were given to 29 subjects with Down syndrome and no dementia. Measures of cognitive functioning and caregiver ratings indicated no improvement in any cognitive subtests (with the exception of language), behavioral scores, or caregiver ratings. Results suggest donepezil may improve language…

  2. Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors.

    PubMed

    Mantoani, Susimaire P; Chierrito, Talita P C; Vilela, Adriana F L; Cardoso, Carmen L; Martínez, Ana; Carvalho, Ivone

    2016-02-05

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization.

  3. Differential effects of donepezil on methamphetamine and cocaine dependencies.

    PubMed

    Takamatsu, Yukio; Yamanishi, Yoshiharu; Hagino, Yoko; Yamamoto, Hideko; Ikeda, Kazutaka

    2006-08-01

    Donepezil, a choline esterase inhibitor, has been widely used as a medicine for Alzheimer's disease. Recently, a study showed that donepezil inhibited addictive behaviors induced by cocaine, including cocaine-conditioned place preference (CPP) and locomotor sensitization to cocaine. In the present study, we investigated the effects of donepezil on methamphetamine (METH)-induced behavioral changes in mice. In counterbalanced CPP tests, the intraperitoneal (i.p.) administration of 3 mg/kg donepezil prior to 2 mg/kg METH i.p. failed to inhibit METH CPP, whereas pretreatment with 3 mg/kg donepezil abolished the CPP for cocaine (10 mg/kg, i.p.). Similarly, in locomotor sensitization experiments, i.p. administration of 1 mg/kg donepezil prior to 2 mg/kg METH i.p. failed to inhibit locomotor sensitivity to METH, whereas pretreatment with 1 mg/kg donepezil significantly inhibited locomotor sensitivity to cocaine (10 mg/kg, i.p.). These results suggest that donepezil may be a useful tool for treating cocaine dependence but not for treating METH dependence. The differences in the donepezil effects on addictive behaviors induced by METH and cocaine might be due to differences in the involvement of acetylcholine in the mechanisms of METH and cocaine dependencies.

  4. Virtual screening discovery of new acetylcholinesterase inhibitors issued from CERMN chemical library.

    PubMed

    Sopkova-de Oliveira Santos, Jana; Lesnard, Aurelien; Agondanou, Jean-Hugues; Dupont, Nathalie; Godard, Anne-Marie; Stiebing, Silvia; Rochais, Christophe; Fabis, Frederic; Dallemagne, Patrick; Bureau, Ronan; Rault, Sylvain

    2010-03-22

    In our quest to find new inhibitors able to inhibit acetylcholinesterase (AChE) and, at the same time, to protect neurons from beta amyloid toxicity, i.e., inhibitors interacting with the catalytic anionic subsite as well as with the peripherical anionic site of AChE, a virtual screening of the Centre d'Etudes et de Recherche sur le Medicament de Normandie (CERMN) chemical library was carried out. Two complementary approaches were applied, i.e., a ligand- and a structure-based screening. Each screening led to the selection of different compounds, but only two were present in both screening results. In vitro tests on AChE showed that one of those compounds presented a very good inhibition activity, of the same order as Donepezil. This result shows the real complementary of both methods for the discovery of new ligands.

  5. Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer's disease.

    PubMed

    Dias, Kris Simone T; de Paula, Cynthia T; Dos Santos, Thiago; Souza, Isis N O; Boni, Marina S; Guimarães, Marcos J R; da Silva, Fernanda M R; Castro, Newton G; Neves, Gilda A; Veloso, Clarice C; Coelho, Márcio M; de Melo, Ivo Souza F; Giusti, Fabiana C V; Giusti-Paiva, Alexandre; da Silva, Marcelo L; Dardenne, Laurent E; Guedes, Isabella A; Pruccoli, Letizia; Morroni, Fabiana; Tarozzi, Andrea; Viegas, Claudio

    2017-04-21

    A novel series of feruloyl-donepezil hybrid compounds were designed, synthesized and evaluated as multitarget drug candidates for the treatment of Alzheimer's Disease (AD). In vitro results revealed potent acetylcholinesterase (AChE) inhibitory activity for some of these compounds and all of them showed moderate antioxidant properties. Compounds 12a, 12b and 12c were the most potent AChE inhibitors, highlighting 12a with IC50 = 0.46 μM. In addition, these three most promising compounds exhibited significant in vivo anti-inflammatory activity in the mice paw edema, pleurisy and formalin-induced hyperalgesy models, in vitro metal chelator activity for Cu(2+) and Fe(2+), and neuroprotection of human neuronal cells against oxidative damage. Molecular docking studies corroborated the in vitro inhibitory mode of interaction of these active compounds on AChE. Based on these data, compound 12a was identified as a novel promising drug prototype candidate for the treatment of AD with innovative structural feature and multitarget effects.

  6. A new HPLC method to determine Donepezil hydrochloride in tablets.

    PubMed

    Pappa, Horacio; Farrú, Romina; Vilanova, Paula Otaño; Palacios, Marcelo; Pizzorno, María Teresa

    2002-01-01

    A HPLC stability-indicating assay for Donepezil hydrochloride in tablets was developed and validated. Donepezil hydrochloride is a reversible inhibitor of acetylcholinesterase, indicated for the treatment of mild to moderate dementia of the Alzheimer's type. The HPLC method was performed with a reversed phase C18 column, detection at 268 nm and a mixture of methanol, phosphate buffer 0.02 M and triethylamine (50:50:0.5) as mobile phase. Typical retention time for Donepezil was 9 min. The method was statistically validated for linearity, accuracy, precision and selectivity following ICH recommendations. Due to its simplicity and accuracy, the method can be used for routine quality control analysis.

  7. Acetylcholinesterase Inhibitors (AChEI's) for the treatment of visual hallucinations in schizophrenia: A review of the literature

    PubMed Central

    2010-01-01

    Background Visual hallucinations occur in various neurological diseases, but are most prominent in Lewy body dementia, Parkinson's disease and schizophrenia. The lifetime prevalence of visual hallucinations in patients with schizophrenia is much more common than conventionally thought and ranges from 24% to 72%. Cortical acetylcholine (ACh) depletion has been associated with visual hallucinations; the level of depletion being related directly to the severity of the symptoms. Current understanding of neurobiological visual processing and research in diseases with reduced cholinergic function, suggests that AChEI's may prove beneficial in treating visual hallucinations. This offers the potential for targeted drug therapy of clinically symptomatic visual hallucinations in patients with schizophrenia using acetylcholinesterase inhibition. Methods A systematic review was carried out investigating the evidence for the effects of AChEI's in treating visual hallucinations in Schizophrenia. Results No evidence was found relating to the specific role of AChEI's in treating visual hallucinations in this patient group. Discussion Given the use of AChEI's in targeted, symptom specific treatment in other neuropsychiatric disorders, it is surprising to find no related literature in schizophrenia patients. The use of AChEI's in schizophrenia has investigated effects on cognition primarily with non cognitive effects measured more broadly. Conclusions We would suggest that more focused research into the effects of AChEI's on positive symptoms of schizophrenia, specifically visual hallucinations, is needed. PMID:20822517

  8. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  9. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli

    PubMed Central

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  10. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli.

    PubMed

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.

  11. Changes in cerebral neurotransmitters and metabolites induced by acute donepezil and memantine administrations: a microdialysis study.

    PubMed

    Shearman, E; Rossi, S; Szasz, B; Juranyi, Z; Fallon, S; Pomara, N; Sershen, H; Lajtha, A

    2006-03-31

    Cholinesterase inhibitors including donepezil, rivastigmine, and galantamine and the N-methyl-D-aspartate (NMDA) antagonist, memantine are the medications currently approved for the treatment of Alzheimer's disease (AD). In addition to their beneficial effects on cognitive and functional domains typically disrupted in AD, these agents have also been shown to slow down the emergence of behavioral and psychotic symptoms associated with this disease. However, the underlying mechanisms for these therapeutic effects remain poorly understood and could involve effects of these medications on non-cholinergic or non-glutamatergic neurotransmitter systems respectively. These considerations prompted us to initiate a series of investigations to examine the acute and chronic effects of donepezil (Aricept (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]methyl]-1H-inden-1-1 hydrochloride and memantine (1-amino-3,5-dimethyladamantane hydrochloride C12H21N.HCl)). The present study focuses on the acute effects of donepezil and memantine on brain extracellular levels of acetylcholine, dopamine, serotonin, norepinephrine and their metabolites. We assayed changes in the ventral and dorsal hippocampus and the prefrontal and medial temporal cortex by microdialysis. Memantine resulted in significant increases in extracellular dopamine (DA), norepinephrine (NE), and their metabolites, in the cortical regions, and in a reduction of DA in the hippocampus. Donepezil produced an increase in extracellular DA in the cortex and in the dorsal hippocampus. Norepinephrine increased in the cortex; with donepezil it increased in the dorsal hippocampus and the medial temporal cortex, and decreased in the ventral hippocampus. Interestingly both compounds decreased extracellular serotonin (5HT) levels. The metabolites of the neurotransmitters were increased in most areas. We also found an increase in extracellular acetylcholine (ACh) by memantine in the nucleus accumbens and the

  12. A study of donepezil in female breast cancer survivors with self-reported cognitive dysfunction 1 to 5 years following adjuvant chemotherapy

    PubMed Central

    Griffin, L.; Balcueva, E. P.; Groteluschen, D. L.; Samuel, T. A.; Lesser, G. J.; Naughton, M. J.; Case, L. D.; Shaw, E. G.; Rapp, S. R.

    2016-01-01

    Purpose Some breast cancer survivors report cognitive difficulties greater than 1 year after chemotherapy. Acetylcholinesterase inhibitors (AChEI) may improve cognitive impairment. We conducted a randomized, placebo-controlled, pilot study to assess the feasibility of using the AChEI, donepezil, to improve subjective and objective measures of cognitive function in breast cancer survivors. Methods Women who received adjuvant chemotherapy 1–5 years prior with current cognitive dysfunction symptoms were randomized to 5 mg of donepezil/day vs placebo for 6 weeks and if tolerated 10 mg/day for 18 weeks for a total of 24 weeks. A battery of validated measures of attention, memory, language, visuomotor skills, processing speed, executive function, and motor dexterity and speed was administered at baseline and at 24 and 36 weeks. Subjective cognitive function, fatigue, sleep, mood, and health-related quality of life were evaluated at baseline and at 12, 24, and 36 weeks. Results Sixty-two patients were enrolled, 76 % completed the study, self-reported compliance was 98 %, and toxicities were minimal. At the end of treatment, the donepezil group performed significantly better than the control group on two parameters of memory—the Hopkins Verbal Learning Test -Revised (HVLT-R) Total Recall (p=0.033) and HVLT-R Discrimination (p=0.036). There were no significant differences on other cognitive variables or in subjective cognitive function or quality of life. Conclusion Accrual to this feasibility trial was robust, retention was good, compliance was excellent, and toxicities were minimal. Implications for Cancer Survivors Randomized clinical trials in breast cancer survivors to improve cognitive dysfunction are feasible. A phase III trial testing the efficacy of donepezil is warranted given these pilot results. PMID:26130292

  13. Double layer structure-based virtual screening reveals 3'-Hydroxy-A-Naphthoflavone as novel inhibitor candidate of human acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Ichsan, Mochammad; Pangastuti, Ardini; Habibi, Mohammad Wildan; Juliana, Kartika

    2016-03-01

    One of the most effective target for Alzheimer's disease's (AD) treatment is the inhibition of human acetylcholinesterase (hAChE) eventhough it has many side effects. So that, this study was aimed to discover a new candidate of hAChE's inhibitor that has more negative binding affinity than existing drugs. hAChE's 3D model used in this study has a good quality according to its number of residues in most favoured regions (92%), three bad contacts, >50 ERRAT's score (85,870) and successfully passed the VERIFY 3D threshold (>80%). Based on the first layer of SBVS againts more than 12.180.630 ligands, we discovered 11.806 hits and then we found 359 hits from the second layer of SBVS. Based on our previous steps, we found that 3'-Hydroxy-a-Naphthoflavone was the only one candidate, that directly interacted with Trp286 via hydrogen bond and hydrophobic interactions and also has the most negative binding affinity (-10,6 kcal/mol) and also has more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc. 3'-Hydroxy-a-Naphthoflavone is the best candidate of hAChE's inhibitor based on its binding affinity (-10,6 kcal/mol) that is more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc.

  14. Increased libido associated with donepezil treatment: a case report.

    PubMed

    Segrec, Nusa; Zaman, Rashid; Pregelj, Peter

    2016-01-01

    Inappropriate verbal and physical sexual behaviour is not common among individuals with dementia, but when it does occur, it can have profound consequences. We report a case of 79-year-old woman with dementia of the Alzheimer's type who complained of increased libido after an increased dose of donepezil, which was being used along with tianeptine. Donepezil withdrawal led to the resolution of increased libido, but when it was reintroduced, increased libido reappeared once again (Naranjo score: 7). Increased libido was not reported by the patient during the 6-year follow-up period after donepezil withdrawal. A potential mechanism of acetylcholinesterase inhibitor-induced increased libido and the current literature on hypersexuality as a side-effect of donepezil treatment are discussed.

  15. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  16. Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang; Contreras, Jean-Marie; Parrot, Isabelle; Rival, Yveline M.; Wermuth, Camille G.

    2001-05-01

    The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.

  17. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  18. Development and validation of a sample stabilization strategy and a UPLC-MS/MS method for the simultaneous quantitation of acetylcholine (ACh), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF).

    PubMed

    Zhang, Yanhua; Tingley, F David; Tseng, Elaine; Tella, Max; Yang, Xin; Groeber, Elizabeth; Liu, Jianhua; Li, Wenlin; Schmidt, Christopher J; Steenwyk, Rick

    2011-07-15

    A UPLC-MS/MS assay was developed and validated for simultaneous quantification of acetylcholine (ACh), histamine (HA), tele-methylhistamine (t-mHA), and tele-methylimidazolacetic acid (t-MIAA) in rat cerebrospinal fluid (CSF). The biological stability of ACh in rat CSF was investigated. Following fit-for-purpose validation, the method was applied to monitor the drug-induced changes in ACh, HA, t-mHA, and t-MIAA in rat CSF following administration of donepezil or prucalopride. The quantitative method utilizes hydrophilic interaction chromatography (HILIC) Core-Shell HPLC column technology and a UPLC system to achieve separation with detection by positive ESI LC-MS/MS. This UPLC-MS/MS method does not require extraction or derivatization, utilizes a stable isotopically labeled internal standard (IS) for each analyte, and allows for rapid throughput with a 4 min run time. Without an acetylcholinesterase (AChE) inhibitor present, ACh was found to have 1.9±0.4 min in vitro half life in rat CSF. Stability studies and processing modification, including the use of AChE inhibitor eserine, extended this half life to more than 60 min. The UPLC-MS/MS method, including stabilization procedure, was validated over a linear concentration range of 0.025-5 ng/mL for ACh and 0.05-10 ng/mL for HA, t-mHA, and t-MIAA. The intra-run precision and accuracy for all analytes were 1.9-12.3% CV and -10.2 to 9.4% RE, respectively, while inter-run precision and accuracy were 4.0-16.0% CV and -5.3 to 13.4% RE, respectively. By using this developed and validated method, donepezil caused increases in ACh levels at 0.5, 1, 2, and 4h post dose as compared to the corresponding vehicle group, while prucalopride produced approximately 1.6- and 3.1-fold increases in the concentrations of ACh and t-mHA at 1h post dose, respectively, compared to the vehicle control. Overall, this methodology enables investigations into the use of CSF ACh and HA as biomarkers in the study of these neurotransmitter systems

  19. Donepezil in the treatment of opioid-induced sedation: report of six cases.

    PubMed

    Slatkin, N E; Rhiner, M; Bolton, T M

    2001-05-01

    Donepezil, an oral acetylcholinesterase inhibitor approved for the treatment of Alzheimer's disease, was given to 6 cancer pain patients having sedation related to the analgesic use of opioids. Each patient was taking more than 200 mg of oral morphine equivalents per day, and several were receiving complex analgesic regimens consisting of multiple adjuvant medications. Sedation improved at least moderately in 5 of the patients and mildly in 1 after they began taking donepezil. Patients reported a decrease in episodes of spontaneous sleeping during the day, fewer myoclonic twitches, improved daily function and greater social interaction. Several also reported improved sleep at night. Analgesia was not compromised by the use of donepezil, and in some cases it appeared improved. Donepezil may be a valuable alternative to psychostimulants in the treatment of opioid-induced sedation. A prospective controlled trial comparing the treatment effects of psychostimulants and donepezil on patients having opioid-induced sedation is underway.

  20. AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure.

    PubMed

    Ren, Zongming; Zhang, Xu; Wang, Xiaoguang; Qi, Pingping; Zhang, Biao; Zeng, Yang; Fu, Rongshu; Miao, Mingsheng

    2015-02-01

    As a key enzyme that hydrolyzes the neurotransmitter acetylcholine in cholinergic synapses of both vertebrates and invertebrates, acetylcholinesterase (AChE) is strongly inhibited by organophosphates. AChE inhibition may induce the decrease of swimming ability. According to previous research, swimming behavior of different aquatic organisms could be affected by different chemicals, and there is a shortage of research on direct correlation analysis between swimming behavior and biochemical indicators. Therefore, swimming behavior and whole-body AChE activity of Daphnia magna under dichlorvos (DDVP) exposure were identified in order to clarify the relationship between behavioral responses and AChE inhibition in this study. In the beginning, AChE activity was similar in all treatments with the control. During all exposures, the tendency of AChE activity inhibition was the same as the behavioral responses of D. magna. The AChE activity of individuals without movement would decrease to about zero in several minutes. The correlation analysis between swimming behavior of D. magna and AChE activity showed that the stepwise behavioral response was mainly decided by AChE activity. All of these results suggested that the toxicity characteristics of DDVP as an inhibitor of AChE on the swimming behavior of organisms were the same, and the AChE activity inhibition could induce loss of the nerve conduction ability, causing hyperactivity, loss of coordination, convulsions, paralysis and other kinds of behavioral changes, which was illustrated by the stepwise behavioral responses under different environmental stresses.

  1. Memantine ER/Donepezil: A Review in Alzheimer's Disease.

    PubMed

    Greig, Sarah L

    2015-11-01

    A once-daily, fixed-dose combination of memantine extended-release (ER)/donepezil 28/10 mg (Namzaric™) is available in the USA for patients with moderate to severe Alzheimer's disease (AD) on stable memantine and donepezil therapy. The fixed-dose formulation is bioequivalent to coadministration of the individual drugs. In a 24-week, phase III trial in patients with moderate to severe AD, addition of memantine ER 28 mg once daily to stable cholinesterase inhibitor (ChEI) therapy was more effective than add-on placebo on measures of cognition, global clinical status, dementia behaviour and semantic processing ability, although between-group differences on a measure of daily function did not significantly differ. In subgroup analyses in donepezil-treated patients, add-on memantine ER was more effective than add-on placebo on measures of cognition, dementia behaviour and semantic processing, although there were no significant between-group differences on measures of global clinical status and daily function. Memantine ER plus ChEI combination therapy was generally well tolerated in the phase III trial, with diarrhoea, dizziness and influenza occurring at least twice as often with add-on memantine ER as add-on placebo in donepezil-treated patients. Thus, memantine ER plus donepezil combination therapy is an effective and well tolerated treatment option for patients with moderate to severe AD. The fixed-dose combination is potentially more convenient than coadministration of the individual agents.

  2. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer's disease.

    PubMed

    Yang, Xia; Qiang, Xiaoming; Li, Yan; Luo, Li; Xu, Rui; Zheng, Yunxiaozhu; Cao, Zhongcheng; Tan, Zhenghuai; Deng, Yong

    2017-04-01

    A series of pyridoxine-resveratrol hybrids Mannich base derivatives as multifunctional agents have been designed, synthesized and evaluated for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activity. To further explore the multifunctional properties of the new derivatives, their antioxidant activities and metal-chelating properties were also tested. The results showed that most of these compounds could selectively inhibit acetylcholinesterase (AChE) and MAO-B. Among them, compounds 7d and 8b exhibited the highest potency for AChE inhibition with IC50 values of 2.11μM and 1.56μM, respectively, and compound 7e exhibited the highest MAO-B inhibition with an IC50 value of 2.68μM. The inhibition kinetic analysis revealed that compound 7d showed a mixed-type inhibition, binding simultaneously to the CAS and PAS of AChE. Molecular modeling study was also performed to investigate the binding mode of these hybrids with MAO-B. In addition, all target compounds displayed good antioxidant and metal-chelating properties. Taken together, these preliminary findings can be a new starting point for further development of multifunctional agents for Alzheimer's disease.

  3. Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds.

    PubMed

    Piazzi, Lorna; Cavalli, Andrea; Colizzi, Francesco; Belluti, Federica; Bartolini, Manuela; Mancini, Francesca; Recanatini, Maurizio; Andrisano, Vincenza; Rampa, Angela

    2008-01-01

    The complex etiology of Alzheimer's disease (AD) prompts scientists to develop multifunctional compounds to combat causes and symptoms of such neurodegeneration. To this aim we designed, synthesized, and tested a series of compounds by introducing halophenylalkylamidic functions on the scaffold of AP2238, which is a dual binding site acetylcholinesterase inhibitor. The inhibitory activity was successfully extended to the beta-site amyloid precursor protein cleavage enzyme, leading to the discovery of a potent inhibitor of this enzyme (3) and affording multifunctional compounds (2, 6, 8) for the treatment of AD.

  4. Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: effect against amyloid-β-induced neurotoxicity.

    PubMed

    Silva, Daniel; Chioua, Mourad; Samadi, Abdelouahid; Agostinho, Paula; Garção, Pedro; Lajarín-Cuesta, Rocío; de Los Ríos, Cristobal; Iriepa, Isabel; Moraleda, Ignacio; Gonzalez-Lafuente, Laura; Mendes, Eduarda; Pérez, Concepción; Rodríguez-Franco, María Isabel; Marco-Contelles, José; Carmo Carreiras, M

    2013-04-17

    The synthesis, molecular modeling, and pharmacological analysis of phenoxyalkylamino-4-phenylnicotinates (2-7), phenoxyalkoxybenzylidenemalononitriles (12, 13), pyridonepezils (14-18), and quinolinodonepezils (19-21) are described. Pyridonepezils 15-18 were found to be selective and moderately potent regarding the inhibition of hAChE, whereas quinolinodonepezils 19-21 were found to be poor inhibitors of hAChE. The most potent and selective hAChE inhibitor was ethyl 6-(4-(1-benzylpiperidin-4-yl)butylamino)-5-cyano-2-methyl-4-phenylnicotinate (18) [IC(50) (hAChE) = 0.25 ± 0.02 μM]. Pyridonepezils 15-18 and quinolinodonepezils 20-21 are more potent selective inhibitors of EeAChE than hAChE. The most potent and selective EeAChE inhibitor was ethyl 6-(2-(1-benzylpiperidin-4-yl)ethylamino)-5-cyano-2-methyl-4-phenylnicotinate (16) [IC(50) (EeAChE) = 0.0167 ± 0.0002 μM], which exhibits the same inhibitory potency as donepezil against hAChE. Compounds 2, 7, 13, 17, 18, 35, and 36 significantly prevented the decrease in cell viability caused by Aβ(1-42). All compounds were effective in preventing the enhancement of AChE activity induced by Aβ(1-42). Compounds 2-7 caused a significant reduction whereas pyridonepezils 17 and 18, and compound 16 also showed some activity. The pyrazolo[3,4-b]quinolines 36 and 38 also prevented the upregulation of AChE induced by Aβ(1-42). Compounds 2, 7, 12, 13, 17, 18, and 36 may act as antagonists of voltage sensitive calcium channels, since they significantly prevented the Ca(2+) influx evoked by KCl depolarization. Docking studies show that compounds 16 and 18 adopted different orientations and conformations inside the active-site gorges of hAChE and hBuChE. The structural and energetic features of the 16-AChE and 18-AChE complexes compared to the 16-BuChE and 18-BuChE complexes account for a higher affinity of the ligand toward AChE. The present data indicate that compounds 2, 7, 17, 18, and 36 may represent attractive multipotent

  5. Effects of donepezil, galantamine and rivastigmine in 938 Italian patients with Alzheimer's disease: a prospective, observational study.

    PubMed

    Santoro, Aurelia; Siviero, Paola; Minicuci, Nadia; Bellavista, Elena; Mishto, Michele; Olivieri, Fabiola; Marchegiani, Francesca; Chiamenti, Andrea Maria; Benussi, Luisa; Ghidoni, Roberta; Nacmias, Benedetta; Bagnoli, Silvia; Ginestroni, Andrea; Scarpino, Osvaldo; Feraco, Emidio; Gianni, Walter; Cruciani, Guido; Paganelli, Roberto; Di Iorio, Angelo; Scognamiglio, Mario; Grimaldi, Luigi Maria Edoardo; Gabelli, Carlo; Sorbi, Sandro; Binetti, Giuliano; Crepaldi, Gaetano; Franceschi, Claudio

    2010-02-01

    Acetylcholinesterase inhibitors (AChEIs) have been used to improve cognitive status and disability in patients with mild to moderate Alzheimer's disease (AD). However, while the efficacy of AChEIs (i.e. how they act in randomized controlled trials) in this setting is widely accepted, their effectiveness (i.e. how they behave in the real world) remains controversial. To compare the effects of three AChEIs, donepezil (Aricept), galantamine (Reminyl) and rivastigmine (Exelon), in an Italian national, prospective, observational study representative of the 'real world' clinical practice of AChEI treatment for AD. 938 patients with mild to moderate AD collected within the framework of the Italian National Cronos Project (CP), involving several UVAs (AD Evaluation Units) spread over the entire national territory, who were receiving donepezil, galantamine or rivastigmine were followed for 36 weeks by measuring: (i) function, as determined by the Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) scales; (ii) cognition, as measured by the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) [primary outcome measures]; and (iii) behaviour, as measured on the Neuropsychiatric Inventory (NPI) and Clinical Dementia Rating (CDR) scale. Moreover, all patients were genotyped for apolipoprotein E (apoE) genetic variants. No statistically significant improvement in the primary outcome measures (MMSE and ADAS-Cog) was observed with drug therapy at 36 weeks, at which point all groups had lost, on average, 1 point on the MMSE and gained 2-3 points on the ADAS-Cog scale compared with baseline. On the secondary outcome measures at week 36, all treatment groups showed a significant worsening on the ADL and IADL scales compared with baseline, while on the NPI scale there were no significant differences from baseline except for the galantamine-treated group which worsened significantly. Moreover

  6. AChE and the amyloid precursor protein (APP) - Cross-talk in Alzheimer's disease.

    PubMed

    Nalivaeva, Natalia N; Turner, Anthony J

    2016-11-25

    The amyloid precursor protein (APP) and acetylcholinesterase (AChE) are multi-faceted proteins with a wide range of vital functions, both crucially linked with the pathogenesis of Alzheimer's disease (AD). APP is the precursor of the Aβ peptide, the pathological agent in AD, while AChE is linked to its pathogenesis either by increasing cholinergic deficit or exacerbating Aβ fibril formation and toxicity. As such, both proteins are the main targets in AD therapeutics with AChE inhibitors being currently the only clinically available AD drugs. In our studies we have demonstrated an important inter-relation in functioning of these proteins. Both can be released from the cell membrane and we have shown that AChE shedding involves a metalloproteinase-mediated mechanism which, like the α-secretase dependent cleavage of APP, is stimulated by cholinergic agonists. Overexpression of the neuronal specific isoform APP695 in neuronal cells substantially decreased levels of the AChE mRNA, protein and catalytic activity accompanied by a similar decrease in mRNA levels of the AChE membrane anchor, PRiMA (proline rich membrane anchor). We further established that this regulation does not involve APP processing and its intracellular domain (AICD) but requires the E1 region of APP, specifically its copper-binding domain. On the contrary, siRNA knock-down of APP in cholinergic SN56 cells resulted in a significant upregulation of AChE mRNA levels. Hence APP may influence AChE physiology while released AChE may regulate amyloidogenesis through multiple mechanisms suggesting novel therapeutic targets.

  7. An HPLC-MS method for the quantification of new acetylcholinesterase inhibitor PC 48 (7-MEOTA-donepezil like compound) in rat plasma: Application to a pharmacokinetic study.

    PubMed

    Mzik, Martin; Korabecny, Jan; Nepovimova, Eugenie; Voříšek, Viktor; Palička, Vladimir; Kuca, Kamil; Zdarova Karasova, Jana

    2016-05-01

    A simple, rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative determination in rat plasma of a new candidate for AD treatment, namely PC 48 (a 7-MEOTA-donepezil like compound) in rat plasma. Sample preparation involved pH adjustment with sodium hydroxide followed by solvent extraction with ethyl acetate:dichloromethane (80:20, v/v). The chromatographic separation was achieved on an Ascentis Express RP-Amide column (75 mm × 2.1mm, 2.7 μm) with a gradient mobile phase consisting of 0.05 M aqueous formic acid and acetonitrile. Detection was carried out using positive-ion electrospray tandem mass spectrometry on an LTQ XL system using the MS/MS CID (collision-induced dissociation) mode. The method was linear in the range 0.1-1000 ng/ml (r(2)=0.999) with a lower limit of quantitation of 0.1 ng/mL. Extraction recovery was in the range 63.5-72.1% for PC 48 and 70.5% for reserpine (internal standard, IS). Intra- and inter-day precisions measured as relative standard deviation were below 10.8% and accuracy was from -7.2% to 7.4%. The method was successfully applied to a pharmacokinetic study involving intramuscular application of 3.86 mg/kg PC 48 to rats for the first time. Pharmacokinetic parameters for PC 48 include Cmax 39.09 ± 4.45 ng/mL,Tmax 5.00 ± 3.08 min, AUC0-t 23374 ± 4045 min ng/mL and t1/2 1065 ± 246 min.

  8. Donepezil and life expectancy in Alzheimer’s disease: A retrospective analysis in the Tajiri Project

    PubMed Central

    2014-01-01

    Background Cholinesterase inhibitors (ChEIs) such as donepezil have the effect of delaying progression of Alzheimer’s disease (AD), but their effect on life expectancy is unclear. We analyzed the influence of donepezil on life expectancy after onset of AD, together with the effects of antipsychotic drugs and residency in a nursing home. Methods All outpatients at the Tajiri Clinic from 1999–2012 with available medical records and death certificates were included in a retrospective analysis. The entry criteria were a dementia diagnosis based on DSM-IV criteria and diagnosis of AD using NINCDS-ADRDA criteria; medical treatment for more than 3 months; and follow up until less than 1 year before death. Results We identified 390 subjects with medical records and death certificates, of whom 275 had a diagnosis of dementia that met the entry criteria. Of 100 patients diagnosed with AD, 52 had taken donepezil and 48 patients had not received the drug due to treatment prior to the introduction of donepezil in 1999 in Japan. The lifetime expectancies after onset were 7.9 years in the donepezil group and 5.3 years in the non-donepezil group. There was a significant drug effect with a significant covariate effect of nursing home residency. Other covariates did not reach a significant level. Conclusions Although this report has the limitation of all retrospective analyses: the lack of randomization, we found a positive effect of donepezil on lifetime expectancy after onset of AD. This may be due to a decreased mortality rate caused by reduction of concomitant diseases such as pneumonia. The similar life expectancies in patients taking donepezil at home and those not taking donepezil in a nursing home indicated a positive health economic effect of the drug. PMID:24720852

  9. Single dose pharmacokinetics of the novel transdermal donepezil patch in healthy volunteers

    PubMed Central

    Kim, Yo Han; Choi, Hee Youn; Lim, Hyeong-Seok; Lee, Shi Hyang; Jeon, Hae Sun; Hong, Donghyun; Kim, Seong Su; Choi, Young Kweon; Bae, Kyun-Seop

    2015-01-01

    Background Donepezil is an acetylcholinesterase inhibitor indicated for Alzheimer’s disease. The aim of this randomized, single-blind, placebo-controlled, single-dose, dose-escalation study was to investigate the safety, tolerability, and pharmacokinetics of the donepezil patch in healthy male subjects. Methods Each healthy male subject received a single transdermal donepezil patch (72 hours patch-on periods) of 43.75 mg/12.5 cm2, 87.5 mg/25 cm2, or 175 mg/50 cm2. Serial blood samples were collected up to 312 hours after patch application. The plasma concentrations of donepezil were determined by using a validated liquid chromatography–tandem mass spectrometry method. Pharmacokinetic parameters were obtained by noncompartmental analysis. Tolerability of the patches and performance of the patches (adhesion, skin irritation, residual donepezil content in the patch) were assessed throughout the study. Results The study was completed by 36 healthy subjects. After patch application, the maximal plasma donepezil concentration (Cmax) and the area under the curve (AUC) increased in a dose-proportional manner. Median time to Cmax was ~74–76 hours (~2–4 hours after patch removal), and mean t1/2β was ~63.77–93.07 hours. The average donepezil residue in the patch after 72 hours was ~73.9%–86.7% of the loading dose. There were neither serious adverse events nor adverse events that lead to discontinuation. Skin adhesion of the patch was good in 97.2% of the subjects. All skin irritations after patch removal were mild and were resolved during the study period. Conclusion The donepezil patch appeared to be generally well tolerated and adhesive. Pharmacokinetic analysis of the donepezil patch demonstrated linear kinetics. PMID:25792802

  10. Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors.

    PubMed

    Kunitachi, Shinsui; Fujita, Yuko; Ishima, Tamaki; Kohno, Mami; Horio, Mao; Tanibuchi, Yuko; Shirayama, Yukihiko; Iyo, Masaomi; Hashimoto, Kenji

    2009-07-07

    This study was undertaken to examine the effects of two acetylcholinesterase inhibitors (donepezil and physostigmine) on cognitive deficits in mice after repeated administration of the NMDA receptor antagonist phencyclidine (PCP). In the novel object recognition test, PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were significantly improved by subsequent subchronic (14 days) administration of donepezil (1.0 mg/kg/day), but not donepezil (0.1 mg/kg/day). Furthermore, the effect of donepezil (1.0 mg/kg/day) on PCP-induced cognitive deficits was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist NE-100 (1.0 mg/kg/day), suggesting the role of sigma-1 receptors in the active mechanisms of donepezil. In contrast, PCP-induced cognitive deficits were not improved by subsequent subchronic (14 days) administration of physostigmine (0.25 mg/kg/day). Moreover, repeated administration of PCP significantly caused the reduction of sigma-1 receptors in the hippocampus. The present study suggests that agonistic activity of donepezil at sigma-1 receptors plays a role in the active mechanisms of donepezil on PCP-induced cognitive deficits in mice. Therefore, it is likely that donepezil would be potential therapeutic drugs for the treatment of the cognitive deficits in schizophrenia.

  11. Acetylcholinesterase Inhibitors Assay Using Colorimetric pH Sensitive Strips and Image Analysis by a Smartphone

    PubMed Central

    Kostelnik, Adam; Cegan, Alexander

    2017-01-01

    Smartphones are widely spread and their usage does not require any trained personnel. Recently, smartphones were successfully used in analytical chemistry as a simple detection tool in some applications. This paper focuses on immobilization of acetylcholinesterase (AChE) onto commercially available pH strips with stabilization in the gelatin membrane. AChE degrades acetylcholine into choline and acetic acid which causes color change of acid-base indicator. Smartphone served as a tool for measurement of indicator color change from red to orange while inhibitors blocked this process. AChE inhibitors were measured with limits of detection, 149 nM and 22.3 nM for galanthamine and donepezil, respectively. Organic solvents were measured for method interferences. Measurement procedure was performed on 3D printed holder and digital photography was evaluated using red-green-blue (RGB) channels. The invented assay was validated to the standard Ellman's test and verified on murine plasma samples spiked with inhibitors. We consider that the assay is fully suitable for practical performance. PMID:28286520

  12. Acetylcholinesterase Inhibitors Assay Using Colorimetric pH Sensitive Strips and Image Analysis by a Smartphone.

    PubMed

    Kostelnik, Adam; Cegan, Alexander; Pohanka, Miroslav

    2017-01-01

    Smartphones are widely spread and their usage does not require any trained personnel. Recently, smartphones were successfully used in analytical chemistry as a simple detection tool in some applications. This paper focuses on immobilization of acetylcholinesterase (AChE) onto commercially available pH strips with stabilization in the gelatin membrane. AChE degrades acetylcholine into choline and acetic acid which causes color change of acid-base indicator. Smartphone served as a tool for measurement of indicator color change from red to orange while inhibitors blocked this process. AChE inhibitors were measured with limits of detection, 149 nM and 22.3 nM for galanthamine and donepezil, respectively. Organic solvents were measured for method interferences. Measurement procedure was performed on 3D printed holder and digital photography was evaluated using red-green-blue (RGB) channels. The invented assay was validated to the standard Ellman's test and verified on murine plasma samples spiked with inhibitors. We consider that the assay is fully suitable for practical performance.

  13. Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments.

    PubMed

    Maurice, Tangui

    2016-01-01

    Drugs activating the sigma-1 (σ1) chaperone protein are anti-amnesic and neuroprotective in neurodegenerative pathologies like Alzheimer's disease (AD). Since these so-called σ1 receptor (σ1R) agonists modulate cholinergic and glutamatergic systems in a variety of physiological responses, we addressed their putative additive/synergistic action in combination with cholinergic or glutamatergic drugs. The selective σ1 agonist PRE-084, or the non-selective σ1 drug ANAVEX2-73 was combined with the acetylcholinesterase inhibitor donepezil or the NMDA receptor antagonist memantine in the nontransgenic mouse model of AD-like memory impairments induced by intracerebroventricular injection of oligomeric Aβ25-35 peptide. Two behavioral tests, spontaneous alternation and passive avoidance response, were used in parallel and both protective and symptomatic effects were examined. After determination of the minimally active doses for each compound, the combinations were tested and the combination index (CI) calculated. Combinations between the σ1 agonists and donepezil showed a synergic protective effect, with CI<1, whereas the combinations with memantine showed an antagonist effect, with CI>1. Symptomatic effects appeared only additive for all combinations, with CI=1. A pharmacological analysis of the PRE-084+donepezil combination revealed that the synergy could be due to an inter-related mechanism involving α7 nicotinic ACh receptors and σ1R. These results demonstrated that σ1 drugs do not only offer a protective potential alone but also in combination with other therapeutic agents. The nature of neuromodulatory molecular chaperone of the σ1R could eventually lead to synergistic combinations.

  14. Donepezil reverses nicotine withdrawal-induced deficits in contextual fear conditioning in C57BL/6J mice.

    PubMed

    Poole, Rachel L; Connor, David A; Gould, Thomas J

    2014-10-01

    Withdrawal from chronic nicotine is associated with cognitive deficits. Therapies that ameliorate cognitive deficits during withdrawal aid in preventing relapse during quit attempts. Withdrawal-induced deficits in contextual learning are associated with nicotinic acetylcholine receptor upregulation. The aim of the present study was to determine if the acetylcholinesterase inhibitor donepezil has the ability to reverse nicotine withdrawal-induced deficits in contextual learning. Results demonstrated that low doses of donepezil, which do not enhance contextual learning or alter locomotor activity/anxiety-related behavior, can reverse nicotine withdrawal-induced deficits in contextual learning. Thus, donepezil may have therapeutic value for ameliorating cognitive deficits associated with nicotine withdrawal and for preventing relapse.

  15. Interactions of AChE with Aβ Aggregates in Alzheimer's Brain: Therapeutic Relevance of IDN 5706.

    PubMed

    Carvajal, Francisco J; Inestrosa, Nibaldo C

    2011-01-01

    Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer's patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE activity in 7-month-old double transgenic mice (APP(SWE)-PS1) and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer's model. We concluded that early treatment with IDN 5706 decreases AChE-Aβ interaction and this effect might be of therapeutic interest in the treatment of AD.

  16. 3D MI-DRAGON: new model for the reconstruction of US FDA drug- target network and theoretical-experimental studies of inhibitors of rasagiline derivatives for AChE.

    PubMed

    Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Alonso, Nerea; Caamaño, Olga; Yañez, Matilde; González-Díaz, Humberto

    2012-01-01

    The number of neurodegenerative diseases has been increasing in recent years. Many of the drug candidates to be used in the treatment of neurodegenerative diseases present specific 3D structural features. An important protein in this sense is the acetylcholinesterase (AChE), which is the target of many Alzheimer's dementia drugs. Consequently, the prediction of Drug-Protein Interactions (DPIs/nDPIs) between new drug candidates and specific 3D structure and targets is of major importance. To this end, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out a rational DPIs prediction. Unfortunately, many previous QSAR models developed to predict DPIs take into consideration only 2D structural information and codify the activity against only one target. To solve this problem we can develop some 3D multi-target QSAR (3D mt-QSAR) models. In this study, using the 3D MI-DRAGON technique, we have introduced a new predictor for DPIs based on two different well-known software. We have used the MARCH-INSIDE (MI) and DRAGON software to calculate 3D structural parameters for drugs and targets respectively. Both classes of 3D parameters were used as input to train Artificial Neuronal Network (ANN) algorithms using as benchmark dataset the complex network (CN) made up of all DPIs between US FDA approved drugs and their targets. The entire dataset was downloaded from the DrugBank database. The best 3D mt-QSAR predictor found was an ANN of Multi-Layer Perceptron-type (MLP) with profile MLP 37:37-24-1:1. This MLP classifies correctly 274 out of 321 DPIs (Sensitivity = 85.35%) and 1041 out of 1190 nDPIs (Specificity = 87.48%), corresponding to training Accuracy = 87.03%. We have validated the model with external predicting series with Sensitivity = 84.16% (542/644 DPIs; Specificity = 87.51% (2039/2330 nDPIs) and Accuracy = 86.78%. The new CNs of DPIs reconstructed from US FDA can be used to explore large DPI databases in order to discover both new drugs

  17. Effects of cognitive-communication stimulation for Alzheimer's disease patients treated with donepezil.

    PubMed

    Chapman, Sandra Bond; Weiner, Myron F; Rackley, Audette; Hynan, Linda S; Zientz, Jennifer

    2004-10-01

    This randomized study evaluated the combined effect of a cognitive-communication program plus an acetylcholinesterase inhibitor (donepezil; donepezil-plus-stimulation group; n = 26), as compared with donepezil alone (donepezil-only group; n = 28) in 54 patients with mild to moderate Alzheimer's disease (AD; Mini-Mental Status Examination score of 12- 28) ranging in age from 54 to 91 years. It was hypothesized that cognitive-communication stimulation in combination with donepezil would positively affect the following: (a) relevance of discourse, (b) performance of functional abilities, (c) emotional symptoms, (d) quality of life, and (e) overall global function, as measured by caregiver and participant report and standardized measures. Cognitive-communication, neuropsychiatric, functional performance, and quality of life evaluations were conducted at baseline and Month 4, the month after the 2-month active stimulation period. Follow-up evaluations were performed at Months 8 and 12. The stimulation program consisted of 12 hr of intervention over an 8-week period and involved participant-led discussions requiring homework, interactive sessions about AD, and discussions using salient life stories. Additive effects of active stimulation with donepezil were examined in 2 ways: (1) comparing mean group performance over time and (2) evaluating change scores from baseline. A Group x Time interaction was found for the donepezil-plus-stimulation group in the emotional symptoms of apathy and irritability as compared with the donepezil-only group. Evaluation of change scores from baseline to 12 months revealed a positive effect for the donepezil-plus-stimulation group on discourse and functional abilities with a trend on apathy, irritability, and patient-reported quality of life. In sum, the research revealed benefits to the donepezil-plus-stimulation group in the areas of discourse abilities, functional abilities, emotional symptoms, and overall global performance. This study

  18. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus – Multiple gene expression presents an opportune model system for elucidation of multiple functions of AChEs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...

  19. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.

    PubMed

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.

  20. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers.

    PubMed

    Ashare, R L; Kimmey, B A; Rupprecht, L E; Bowers, M E; Hayes, M R; Schmidt, H D

    2016-01-19

    Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg(-1) per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg(-1) galantamine and 3.0 mg kg(-1) donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects.

  1. Safety and Efficacy of Donepezil in Children and Adolescents with Autism: Neuropsychological Measures

    PubMed Central

    Johnson, Cynthia R.; McAuliffe-Bellin, Sarah; Murray, Patricia Jo; Hardan, Antonio Y.

    2011-01-01

    Abstract Objective There has been recent interest in the use of cognitive enhancing drugs, such as cholinesterase inhibitors, as a possible treatment for executive functioning (EF) deficits in autism spectrum disorder (ASD). The goal of this study was to assess the tolerability, safety, and efficacy of donepezil on EF in a sample of children and adolescents with ASD. Method Thirty-four children and adolescents with ASD (age range 8–17 years; IQ >75) were enrolled in a 10-week, double-blind, placebo-controlled trial of donepezil (doses of 5 and 10 mg), followed by a 10-week open label trial for placebo nonresponders. Results The effect of donepezil treatment on EF was examined. Despite improvement on a number of EF measures, no statistically significant between-group differences were found (with gains observed for both the placebo and donepezil groups). Conclusions The results suggest that short-term treatment with donepezil may have limited impact on cognitive functioning in ASD. Future controlled trials may need to consider a longer treatment period to detect significant gains on EF measures. PMID:21309696

  2. Effect of donepezil on reversal learning in a touch screen-based operant task.

    PubMed

    Chen, Woei-Shin; Wong, Fong-Kuan; Chapman, Paul F; Pemberton, Darrel J

    2009-10-01

    Impairments in reversal learning, which are commonly observed in patients with psychiatric disorders, remain difficult to treat. There is still a debate over the beneficial effects of cholinergic enhancers on improving behavioural flexibility. The objective of this study was to investigate the effect of an acetylcholinesterase inhibitor, donepezil, on the performance of a rodent Probabilistic Reversal Learning task. Lister-Hooded rats were trained to retrieve food rewards by discriminating two computer-generated stimuli in an automated touch screen-based operant task. When a steady performance was achieved, the stimulus-reward rule was reversed. Each rat was given a 30-min training session daily for 24 days and donepezil was administered 30 min before each training session. Systemic treatment with donepezil had no effect on trial accuracy of the two-stimulus discrimination training. However, the donepezil group showed enhanced performance in the reversal learning. Our result showed that treatment with donepezil significantly enhanced Probabilistic Reversal Learning performance in healthy animals. On the basis of this finding, the inhibition of the central acetylcholinesterase would seem to be a potential therapeutic approach to treat behavioural inflexibility.

  3. Design, synthesis, and AChE inhibitory activity of new benzothiazole-piperazines.

    PubMed

    Demir Özkay, Ümide; Can, Özgür Devrim; Sağlık, Begüm Nurpelin; Acar Çevik, Ulviye; Levent, Serkan; Özkay, Yusuf; Ilgın, Sinem; Atlı, Özlem

    2016-11-15

    In the current study, 14 new benzothiazole-piperazine compounds were designed to meet the structural requirements of acetylcholine esterase (AChE) inhibitors. The target compounds were synthesised in three steps. Structures of the newly synthesised compounds (7-20) were confirmed using IR, (1)H NMR, (13)C NMR, and HRMS methods. The inhibitory potential of the compounds on AChE (E.C.3.1.1.7, from electric eel) was then investigated. Among the compounds, 19 and 20 showed very good activity on AChE enzyme. Kinetics studies were performed to observe the effects of the most active compounds on the substrate-enzyme relationship. Cytotoxicity studies, genotoxicity studies, and theoretical calculation of pharmacokinetics properties were also carried out. The compounds 19 and 20 were found to be nontoxic in both of the toxicity assays. A good pharmacokinetics profile was predicted for the synthesised compounds. Molecular docking studies were performed for the most active compounds, 19 and 20, and interaction modes with enzyme active sites were determined. Docking studies indicated a strong interaction between the active sites of AChE enzyme and the analysed compounds.

  4. Generation of Recombinant Human AChE OP-Scavengers with Extended Circulatory Longevity

    DTIC Science & Technology

    2006-11-01

    glaucoma or myasthenia gravis (Taylor, 1990). Some organophosphorus (OP) inhibitors of ChEs such as malathion and diazinon, act as efficient...2000); site directed mutagenesis and molecular modeling together with kinetic studies of the 7 AChE muteins with substrates and reversible...of the individual lysine residues does not alter the kinetic performance of the enzyme. Based solely on this criterion, any of the lysine residues

  5. Interactions of AChE with Aβ Aggregates in Alzheimer’s Brain: Therapeutic Relevance of IDN 5706

    PubMed Central

    Carvajal, Francisco J.; Inestrosa, Nibaldo C.

    2011-01-01

    Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE activity in 7-month-old double transgenic mice (APPSWE–PS1) and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We concluded that early treatment with IDN 5706 decreases AChE–Aβ interaction and this effect might be of therapeutic interest in the treatment of AD. PMID:21949501

  6. Efficacy of acetylcholinesterase inhibitors versus nootropics in Alzheimer's disease: a retrospective, longitudinal study.

    PubMed

    Tsolaki, M; Pantazi, T; Kazis, A

    2001-01-01

    The aim of this study was to investigate the efficacy of nootropics (piracetam, aniracetam, nimodopine and dihydroergicristine) versus acetylcholinesterase inhibitors (AChE-Is) (tacrine and donepezil) in the treatment of Alzheimer's disease. This is a retrospective study of 510 patients with Alzheimer's disease. To determine clinical efficacy of treatment, we used the mean change over time in scores for the following tests: the Mini-Mental State Examination (MMSE); the Cambridge Cognitive Examination for the Elderly; and the Functional Rating Scale for Symptoms of Dementia. In all patients and in patients with severe Alzheimer's disease (baseline MMSE < 11), no significant differences were seen in the neuropsychological test scores between the two treatment groups. In patients with moderate dementia (baseline MMSE between 11 and 20), however, there was a significantly greater deterioration, as shown on the CAMCOG scale, after 12 months' treatment for patients receiving AChE-Is compared with those receiving nootropics (-4.38 for AChE-Is group versus 1.48 for nootropics group). For patients with mild dementia (baseline MMSE score between 21 and 26), there was a significantly greater deterioration on the MMSE scale for each time-point in the nootropics group compared with the AChE-Is group. In conclusion, we did not find any strong evidence that a difference in efficacy exists between AChE-Is and nootropics in the treatment of Alzheimer's disease.

  7. Concentration of Donepezil in the Cerebrospinal Fluid of AD Patients: Evaluation of Dosage Sufficiency in Standard Treatment Strategy.

    PubMed

    Valis, Martin; Masopust, Jiri; Vysata, Oldrich; Hort, Jakub; Dolezal, Rafael; Tomek, Jiri; Misik, Jan; Kuca, Kamil; Karasova, Jana Zdarova

    2017-01-01

    Although some studies have described the pharmacokinetics and pharmacodynamics of donepezil in the peripheral compartment, studies focused on drug transport across the blood-brain barrier are still very rare. To our knowledge, the fluctuation in the cerebrospinal fluid concentration of donepezil after administration of the drug has not been described in the literature so far. We recruited 16 patients regularly taking a standard therapeutic dose of donepezil (10 mg per day). All patients (Caucasian race) were treated for at least three months with a stable dose of 10 mg per day prior to sample collection. Patients were divided into two groups depending on the time of plasma and cerebrospinal fluid sampling: 12 h (n = 9; 4 M/5F aged 78.68 ± 7.35 years) and 24 h (n = 7; 3 M/4F aged 77.14 ± 5.87 years) after donepezil administration. The cerebrospinal fluid sample was collected by standard lumbar puncture technique using a single-use traumatic needle. The samples were analysed on an Agilent 1260 Series liquid chromatograph comprising a degasser, a quaternary pump, a light-tight autosampler unit set, a thermostated column compartment, and a UV/VIS detector. Agilent ChemStation software, the statistical software Prism4, version 5.0 (GraphPad Software, USA), and IBM(®) SPSS(®) Statistics were used for the analysis of the results. The difference in plasma concentration of donepezil after 12 h (mean ± SEM; 39.99 ± 5.90 ng/ml) and after 24 h (29.38 ± 1.71 ng/ml) was nonsignificant. In contrast, the donepezil concentration in the cerebrospinal fluid was significantly higher in the 24-h interval (7.54 ± 0.55 ng/ml) compared with the 12-h interval (5.19 ± 0.83 ng/ml, which is ~70 % based on mean cerebrospinal fluid values). Based on these data, it is plausible to predict that donepezil might produce a stronger AChE inhibition in the brain at 24 h compared with 12 h following the administration. This information may help physicians

  8. Combination treatment in Alzheimer's disease: results of a randomized, controlled trial with cerebrolysin and donepezil.

    PubMed

    Alvarez, X Antón; Cacabelos, R; Sampedro, C; Couceiro, V; Aleixandre, M; Vargas, M; Linares, C; Granizo, E; García-Fantini, M; Baurecht, W; Doppler, E; Moessler, H

    2011-08-01

    Treatment with neurotrophic agents might enhance and/or prolong the effects of cholinesterase inhibitors (ChEIs) in Alzheimer's disease (AD). We compared the safety and efficacy of the neurotrophic compound Cerebrolysin (10 ml; n=64), donepezil (10 mg; n=66) and a combination of both treatments (n=67) in mild-to-moderate (mini-mental state examination-MMSE score 12-25) probable AD patients enrolled in a randomized, double-blind trial. Primary endpoints were global outcome (Clinician's Interview-Based Impression of Change plus caregiver input; CIBIC+) and cognition (change from baseline in AD Assessment Scale-cognitive subscale+; ADAS-cog+) at week 28. Changes in functioning (AD Cooperative Study-Activities of Daily Living scale, ADCS-ADL) and behaviour (Neuropsychiatric Inventory, NPI) were secondary endpoints. Treatment effects in cognitive, functional and behavioral domains showed no significant group differences; whereas improvements in global outcome favored Cerebrolysin and the combination therapy. Cognitive performance improved in all treatment groups (mean±SD for Cerebrolysin: -1.7±7.5; donepezil: -1.2±6.1; combination: -2.3±6.0) with best scores in the combined therapy group at all study visits. Cerebrolysin was as effective as donepezil, and the combination of neurotrophic (Cerebrolysin) and cholinergic (donepezil) treatment was safe in mild-to-moderate AD. The convenience of exploring long-term synergistic effects of this combined therapy is suggested.

  9. Donepezil effects on hippocampal and prefrontal functional connectivity in Alzheimer’s disease: Preliminary report

    PubMed Central

    Zaidel, Liam; Allen, Greg; Cullum, C. Munro; Briggs, Richard W.; Hynan, Linda S.; Weiner, Myron F.; McColl, Roderick; Gopinath, Kaundinya S.; McDonald, Elizabeth; Rubin, Craig D.

    2013-01-01

    We used functional connectivity magnetic resonance imaging (fcMRI) to investigate changes in interhemispheric brain connectivity in 11 patients with mild Alzheimer’s disease (AD) following eight weeks of treatment with the cholinesterase inhibitor donepezil. We examined functional connectivity between four homologous temporal, frontal, and occipital regions. These regions were selected to represent sites of AD neuropathology, sites of donepezil-related brain activation change in prior studies, and sites that are minimally affected by the pathologic changes of AD. Based on previous findings of selective, localized frontal responses to donepezil, we predicted that frontal connectivity would be most strongly impacted by treatment. Of the areas we examined, we found that treatment had a significant effect only on functional connectivity between right and left dorsolateral prefrontal cortices. Implications for understanding the impact of donepezil treatment on brain functioning and behavior in patients with AD are discussed. This preliminary report suggests that fcMRI may provide a useful index of treatment outcome in diseases affecting brain connectivity. Future research should investigate these treatment-related changes in larger samples of patients and age-matched controls. PMID:22886013

  10. Donepezil in the Treatment of ADHD-Like Symptoms in Youths with Pervasive Developmental Disorder: A Case Series

    ERIC Educational Resources Information Center

    Doyle, Robert L.; Frazier, Jean; Spencer, Thomas J.; Geller, Daniel; Biederman, Joseph; Wilens, Timothy

    2006-01-01

    Background: Recent studies reported ADHD-like symptoms and cognitive deficits in pervasive developmental disorder (PDD). Because work in dementia documents improvement in executive function deficits with the acetylcholinesterase inhibitor donepezil, the authors reason that similar benefits could be obtained in PDD. Method: The authors describe…

  11. Apolipoprotein E epsilon4 allele differentiates the clinical response to donepezil in Alzheimer's disease.

    PubMed

    Bizzarro, A; Marra, C; Acciarri, A; Valenza, A; Tiziano, F D; Brahe, C; Masullo, C

    2005-01-01

    The existence of an association between apolipoprotein E (APOE) and Alzheimer's disease (AD) has been reported in several studies. The possession of an ApoE epsilon4 allele is now considered a genetic risk factor for sporadic AD. There has been a growing agreement about the role exerted by the ApoE epsilon4 allele on the neuropsychological profile and the rate of cognitive decline in AD patients. However, a more controversial issue remains about a possible influence of the APOE genotype on acetylcholinesterase inhibitor therapy response in AD patients. In order to address this issue, 81 patients diagnosed as having probable AD were evaluated by a complete neuropsychological test battery at the time of diagnosis (baseline) and after 12-16 months (retest). Patients were divided into two subgroups: (1) treated with donepezil at a dose of 5 mg once a day (n = 41) and (2) untreated (n = 40). Donepezil therapy was started after baseline evaluation. The APOE genotype was determined according to standardized procedures. We evaluated the possible effect of the APOE genotype on the neuropsychological tasks in relation to donepezil therapy. The statistical analysis of the results showed a global worsening of cognitive performances for all AD patients at the retest. Differences in the clinical outcome were analysed in the four subgroups of AD patients for each neuropsychological task. ApoE epsilon4 carriers/treated patients had improved or unchanged scores at retest evaluation for the following tasks: visual and verbal memory, visual attention and inductive reasoning and Mini Mental State Examination. These results indicate an effect of donepezil on specific cognitive domains (attention and memory) in the ApoE epsilon4 carriers with AD. This might suggest an early identification of AD patients carrying at least one epsilon4 allele as responders to donepezil therapy.

  12. Effect of metoclopramide and ranitidine on the inhibition of human AChE by VX in vitro.

    PubMed

    Bartling, A; Thiermann, H; Szinicz, L; Worek, F

    2005-01-01

    The repeated misuse of highly toxic organophosphorus-type (OP) chemical warfare agents ('nerve agents') emphasizes the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators ('oximes') is considered to be ineffective with certain nerve agents due to low oxime efficacy. Therefore, pretreatment with carbamate-type compounds, e.g. pyridostigmine, was recommended to improve antidotal efficacy. Recently, the clinically used reversible AChE inhibitors metoclopramide (MCP) and ranitidine (RAN) were shown to exhibit some protective effect against the OP pesticide paraoxon in vitro and in vivo. The present study was undertaken to investigate a potential protective effect of MCP and RAN against inhibition of human AChE by the nerve agent VX (O-ethyl S-[2-(diisopropylamino)ethyl)methylphosphonothioate). Hemoglobin-free human erythrocyte membranes were incubated with various, human relevant MCP (0.5-2 microm) and RAN (0.5-5 microm) concentrations starting 1 min before addition of VX (1-40 nm). Both compounds failed to increase VX IC(50) values. In addition, human AChE was incubated with higher than human relevant therapeutic concentrations of MCP (1 microm-1 mm) and RAN (1 microm-2.0 mm) and inhibited by 40 nm VX. At concentrations higher than 100 microm MCP and RAN caused a concentration dependent increase of residual AChE activity 15 min after addition of VX. These data indicate that MCP and RAN may be ineffective in protecting human AChE against inhibition by the nerve agent VX at human relevant doses.

  13. Inhibition of AChE by malathion and some structurally similar compounds.

    PubMed

    Krstić, Danijela Z; Colović, Mirjana; Kralj, Mojca Bavcon; Franko, Mladen; Krinulović, Katarina; Trebse, Polonca; Vasić, Vesna

    2008-08-01

    Inhibition of bovine erythrocyte acetylcholinesterase (free and immobilized on controlled pore glass) by separate and simultaneous exposure to malathion and malathion transformation products which are generally formed during storage or through natural or photochemical degradation was investigated. Increasing concentrations of malathion, its oxidation product malaoxon, and its isomerisation product isomalathion inhibited free and immobilized AChE in a concentration-dependent manner. KI, the dissociation constant for the initial reversible enzyme inhibitor-complex, and k3, the first order rate constant for the conversion of the reversible complex into the irreversibly inhibited enzyme, were determined from the progressive development of inhibition produced by reaction of native AChE with malathion, malaoxon and isomalathion. KI values of 1.3 x 10(-4) M(-1), 5.6 x 10(-6) M(-1) and 7.2 x 10(-6)M(-1) were obtained for malathion, malaoxon and isomalathion, respectively. The IC50 values for free/immobilized AChE, (3.7 +/- 0.2) x 10(-4) M/(1.6 +/-0.1) x 10(-4), (2.4 +/- 0.3) x 10(-6)/(3.4 +/- 0.1) x 10(-6)M and (3.2 +/- 0.3) x 10(-6) M/(2.7 +/- 0.2) x 10(-6) M, were obtained from the inhibition curves induced by malathion, malaoxon and isomalathion, respectively. However, the products formed due to photoinduced degradation, phosphorodithioic O,O,S-trimethyl ester and O,O-dimethyl thiophosphate, did not noticeably affect enzymatic activity, while diethyl maleate inhibited AChE activity at concentrations > 10mM. Inhibition of acetylcholinesterase increased with the time of exposure to malathion and its inhibiting by-products within the interval from 0 to 5 minutes. Through simultaneous exposure of the enzyme to malaoxon and isomalathion, an additive effect was achieved for lower concentrations of the inhibitors (in the presence of malaoxon/isomalathion at concentrations 2 x 10(-7) M/2 x 10(-7) M, 2 x 10(-7) M/3 x 10(-7)M and 2 x 10(-7) M/4.5 x 109-7) M), while an

  14. Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer's dementia.

    PubMed

    Owen, R T

    2016-04-01

    Donepezil (and other cholinesterase inhibitors [ChEIs]) and memantine are the mainstays of treatment in Alzheimer's dementia, addressing respectively, the cholinergic and glutamatergic dysregulation which underlies or results from its pathophysiology. To alleviate the pill burden and swallowing difficulties associated with the condition, a fixed drug combination of extended-release memantine and donepezil was developed. This combination was shown to be both bioequivalent to the components administered separately and could be administered sprinkled over soft food. The mode of action, pharmacokinetics, clinical efficacy and safety and tolerability of the combination are discussed together with the wider, often conflicting trial literature of combination versus monotherapy with memantine and ChEIs, their meta-analyses and treatment guidelines.

  15. How many patients complete an adequate trial of donepezil?

    PubMed

    Roe, Catherine M; Anderson, Michael J; Spivack, Barney

    2002-01-01

    Pharmacy claims data were used to evaluate medication adherence among 59 new users of donepezil aged 65 to 94 years. The probability (+/- 95% confidence interval) of a new user continuing donepezil at 90 days was.797 +/-.103 and at 180 days was.627 +/-.124. Additionally, 13.9% of those who continued therapy for at least 180 days showed gaps in treatment of six weeks or more. These results suggest that adherence with donepezil could be improved in clinical practice.

  16. Donepezil as add-on treatment of psychotic symptoms in patients with dementia of the Alzheimer's type.

    PubMed

    Bergman, Joseph; Brettholz, Izidor; Shneidman, Michael; Lerner, Vladimir

    2003-01-01

    Traditionally, the neuropsychiatric symptoms of Alzheimer's disease (AD) have been managed with neuroleptics or benzodiazepines, which have serious side effects. Preliminary observations suggest the possible value of cholinesterase inhibitors in the amelioration of psychotic symptoms in patients with dementia of the Alzheimer's type, dementia with Lewy bodies, and in patients with Parkinson's disease. Twelve inpatients with AD with psychotic symptoms and lack of improvement of their delusions/hallucinations during perphenazine treatment (8 mg/day) for 3 weeks received random open-label donepezil 5 mg daily in addition to an ongoing treatment of 8 mg/day perphenazine or 16 mg/day perphenazine. Assessments conducted at baseline and after weeks 2 and 4 included the Mini-Mental State Examination, the Global Deterioration Scale, the Positive and Negative Symptoms Scale, and the Clinical Global Impressions scale. Frequency of extrapyramidal symptoms was measured according to the Abnormal Involuntary Movement Scale. The donepezil-perphenazine group exhibited substantially greater and clinical improvements in mental state. At the end of the trial (4 weeks), Positive and Negative Symptoms Scale scores revealed significant differences between both groups (p = 0.006). The Clinical Global Impressions scale and the Mini-Mental State Examination scores also showed significant differences between the donepezil-perphenazine group and the perphenazine group (p = 0.028 and p = 0.027 respectively). No significant differences were found in the Global Deterioration Scale scores. Abnormal Involuntary Movement Scale scores showed a significant deterioration in extrapyramidal symptoms in the perphenazine group compared with the donepezil-perphenazine group (p = 0.016). Donepezil augmentation of neuroleptics may be appropriate for those patients for whom neuroleptic monotherapy either does not lead to symptom remission or is associated with intolerable adverse effects. This was an open

  17. Procognitive effect of AC-3933 in aged mice, and synergistic effect of combination with donepezil in scopolamine-treated mice.

    PubMed

    Hashimoto, Takashi; Hatayama, Yuki; Nakamichi, Keiko; Yoshida, Naoyuki

    2014-12-15

    We have previously reported that AC-3933, a newly developed benzodiazepine receptor partial inverse agonist, facilitates acetylcholine release in the hippocampus and ameliorates scopolamine-induced memory deficits in rats. To further confirm the procognitive effect of AC-3933, we assessed in this study the beneficial effects of this compound in aged mice using the Y-maze and object recognition tests. In addition, we investigated the synergistic effect of AC-3933 and donepezil, a cholinesterase inhibitor, on scopolamine-induced memory impairment in mice. In aged mice, oral administration of AC-3933 at doses of 0.05-0.1 mg/kg and 0.05 mg/kg significantly improved spatial working memory and episodic memory, respectively. In scopolamine-treated mice, both AC-3933 and donepezil significantly ameliorated memory deficits in the Y-maze test at doses of 0.3-3 mg/kg and 10-15 mg/kg, respectively. The beneficial effect of AC-3933, but not that of donepezil, on scopolamine-induced memory impairment was antagonized by flumazenil, a benzodiazepine receptor antagonist, indicating that the procognitive action of AC-3933 arises via a mechanism different from that of donepezil. Co-administration of donepezil at the suboptimal dose of 3 mg/kg with AC-3933 at doses of 0.1-1 mg/kg significantly ameliorated scopolamine-induced memory impairment, suggesting that AC-3933 potentiates the effect of donepezil on memory impairment induced by cholinergic hypofunction. These findings indicate that AC-3933 not only has good potential as a cognitive enhancer by itself, but also is useful as a concomitant drug for the treatment of Alzheimer׳s disease.

  18. Donepezil treatment of older adults with cognitive impairment and depression (DOTCODE study): clinical rationale and design.

    PubMed

    Pelton, Gregory H; Andrews, Howard; Roose, Steven P; Marcus, Sue M; D'Antonio, Kristina; Husn, Hala; Petrella, Jeffrey R; Zannas, Anthony S; Doraiswamy, P Murali; Devanand, D P

    2014-03-01

    Treatment strategies for patients with depression and cognitive impairment (DEP-CI), who are at high risk to develop a clinical diagnosis of dementia, are not established. This issue is addressed in the donepezil treatment of cognitive impairment and depression (DOTCODE) pilot clinical trial. The DOTCODE study is the first long-term treatment trial that assesses differences in conversion to dementia and cognitive change in DEP-CI patients using a study design of open antidepressant medication plus add-on randomized, double-blind, placebo-controlled treatment with the acetylcholinesterase inhibitor donepezil. In Phase 1, DEP-CI patients receive optimized antidepressant treatment for 16 weeks. In Phase 2, antidepressant treatment is continued with the addition of randomized, double-blind treatment with donepezil or placebo. The total study duration for each patient is 78 weeks (18 months). Eighty DEP-CI outpatients (age 55 to 95 years) are recruited: 40 at New York State Psychiatric Institute/Columbia University and 40 at Duke University Medical Center. The primary outcome is conversion to a clinical diagnosis of dementia. The secondary outcomes are cognitive change scores in Selective Reminding Test (SRT) total recall and the modified Alzheimer's Disease Assessment Scale (ADAS-cog). Other key assessments include the 24-item Hamilton Depression Rating Scale and antidepressant response; Clinical Global Impression (CGI) for depression, cognition, and global status; neuropsychological test battery for diagnosis; informant report of functional abilities (Pfeffer FAQ); and Treatment Emergent Symptom Scale (TESS) for somatic side effects. Apolipoprotein E ε4 status, odor identification deficits, and MRI entorhinal/hippocampal cortex atrophy at baseline are evaluated as neurobiological moderators of donepezil treatment effects.

  19. Donepezil regulates energy metabolism and favors bone mass accrual.

    PubMed

    Eimar, Hazem; Alebrahim, Sharifa; Manickam, Garthiga; Al-Subaie, Ahmed; Abu-Nada, Lina; Murshed, Monzur; Tamimi, Faleh

    2016-03-01

    The autonomous nervous system regulates bone mass through the sympathetic and parasympathetic arms. The sympathetic nervous system (SNS) favors bone loss whereas the parasympathetic nervous system (PNS) promotes bone mass accrual. Donepezil, a central-acting cholinergic agonist, has been shown to down-regulate SNS and up-regulate PNS signaling tones. Accordingly, we hypothesize that the use of donepezil could have beneficial effects in regulating bone mass. To test our hypothesis, two groups of healthy female mice were treated either with donepezil or saline. Differences in body metabolism and bone mass of the treated groups were compared. Body and visceral fat weights as well as serum leptin level were increased in donepezil-treated mice compared to control, suggesting that donepezil effects on SNS influenced metabolic activity. Donepezil-treated mice had better bone quality than controls due to a decrease in osteoclasts number. These results indicate that donepezil is able to affect whole body energy metabolism and favors bone mass in young female WT mice.

  20. Treatment of post-electroconvulsive therapy delirium and agitation with donepezil.

    PubMed

    Logan, Christopher J; Stewart, Jonathan T

    2007-03-01

    Delirium and agitation are commonly encountered after administration of electroconvulsive therapy (ECT). Management is generally fairly straightforward, although some patients may have a severe, prolonged, or refractory course. We recently cared for a 65-year-old man who consistently developed severe and very prolonged post-ECT delirium that did not respond to typical pharmacological agents; the duration of delirium was dramatically shortened by the addition of donepezil. Cholinesterase inhibitors may have a place in mitigating severe and prolonged post-ECT delirium.

  1. Donepezil delays progression to AD in MCI subjects with depressive symptoms

    PubMed Central

    Lu, P H.; Edland, S D.; Teng, E; Tingus, K; Petersen, R C.; Cummings, J L.

    2009-01-01

    Objective: To determine whether the presence of depression predicts higher rate of progression to Alzheimer disease (AD) in patients with amnestic mild cognitive impairment (aMCI) and whether donepezil treatment beneficially affect this relationship. Methods: The study sample was composed of 756 participants with aMCI from the 3-year, double-blind, placebo-controlled Alzheimer's Disease Cooperative Study drug trial of donepezil and vitamin E. Beck Depression Inventory (BDI) was used to assess depressive symptoms at baseline and participants were followed either to the end of study or to the primary endpoint of progression to probable or possible AD. Results: Cox proportional hazards regression, adjusted for age at baseline, gender, apolipoprotein genotype, and NYU paragraph delayed recall score, showed that higher BDI scores were associated with progression to AD (p = 0.03). The sample was stratified into depressed (BDI score ≥10; n = 208) and nondepressed (BDI <10; n = 548) groups. Kaplan-Meier analysis showed that among the depressed subjects, the proportion progressing to AD was lower for the donepezil group than the combined vitamin E and placebo groups at 1.7 years (p = 0.023), at 2.2 years (p = 0.025), and remained marginally lower at 2.7 years (p = 0.070). The survival curves among the three treatment groups did not differ within the nondepressed participants. Conclusions: Results suggest that depression is predictive of progression from amnestic mild cognitive impairment (aMCI) to Alzheimer disease (AD) and treatment with donepezil delayed progression to AD among depressed subjects with aMCI. Donepezil appears to modulate the increased risk of AD conferred by the presence of depressive symptoms. GLOSSARY AD = Alzheimer disease; ADCS = Alzheimer's Disease Cooperative Study; aMCI = amnestic mild cognitive impairment; BDI = Beck Depression Inventory; CDR = Clinical Dementia Rating; ChEI = cholinesterase inhibitors; DSM-IV = Diagnostic and Statistical Manual

  2. Efficacy and Tolerability of a Combination Treatment of Memantine and Donepezil for Alzheimer’s Disease: A Literature Review Evidence

    PubMed Central

    Riverol, Mario; Slachevsky, Andrea; López, Oscar L.

    2011-01-01

    INTRODUCTION Two types of drugs have been approved for the symptomatic treatment of Alzheimer’s disease (AD): the cholinesterase inhibitors (ChEIs) and memantine. There is a growing interest to know whether the combination of these drugs is safe and if it adds any clinical benefit to patients. OBJECTIVE To systematically review published medical literature assessing the efficacy and tolerability of a combination treatment of memantine and donepezil in AD patients. METHODS We searched PubMed for English and Spanish-language literature, using the terms “Alzheimer’s disease,” “cholinesterase inhibitors,” “donepezil,” and “memantine.” Our review focused on clinical trials and observational studies. RESULTS Eleven publications representing seven unique studies were selected for this review. Three were randomized double-blind, placebo-controlled trials and four were observational studies. CONCLUSIONS Available data revealed that the combination of memantine and donepezil slowed down cognitive decline, prolonged functional independence, and improved behavioral symptoms in patients with moderate to severe AD. The long-term use of the dual therapy decreased the risk of nursing home admission. More longitudinal studies are needed to further examine the role of combined therapy in the management of AD patients. PMID:25302109

  3. Generation of Recombinant Human AChE Op-Scavengers With Extended Circulatory Longevity

    DTIC Science & Technology

    2005-04-01

    AChE PEGylation results in a major reduction of the immunogenicity of the enzyme. In structure -function studies of AChE, we compared the reactivities...BChE). Extensive structural and biochemical analyses of over twenty forms of recombinant AChEs allowed us to determine an hierarchical pattern by...glycan structures that do not conform with the classical complex-type of oligosaccharides typical of animal cell proteins or which were entirely devoid of

  4. Novel assay utilizing fluorochrome-tagged physostigmine (Ph-F) to in situ detect active acetylcholinesterase (AChE) induced during apoptosis.

    PubMed

    Huang, Xuan; Lee, Brian; Johnson, Gary; Naleway, John; Guzikowski, Anthony; Dai, Wei; Darzynkiewicz, Zbigniew

    2005-01-01

    It was recently reported that acetylcholinesterase (AChE) is expressed in cells undergoing apoptosis and that its presence is essential for assembly of the apoptosome and subsequent caspase-9 activation. To obtain a marker of active AChE that could assay this enzyme in live intact cells and be applicable to fluorescence microscopy and cytometry, the fluorescein-tagged physostigmine (Ph-F), high affinity ligand (inhibitor) reactive with the active center of AChE, was constructed and tested for its ability to in situ label AChE and measure its induction during apoptosis. Ph-F inhibited cholinesterase activity in vitro (IC50 = 10(-6) and 5 x 10(-6) M for equine butyrylcholinesterase and human erythrocyte AChE, respectively) and was a selective marker of cells and structures that were AChE-positive. Thus, exposure of mouse bone marrow cells to Ph-F resulted in the exclusive labeling of megakaryocytes, and of the diaphragm muscle, preferential labeling of the nerve-muscle junctions (end-plates). During apoptosis of carcinoma HeLa cells and leukemic HL-60 or Jurkat cells triggered either by the DNA topoisomerase 1 inhibitor topotecan (TPT) or by oxidative stress (H2O2), the cells become reactive with Ph-F. Their Ph-F derived fluorescence was measured by flow and laser scanning cytometry. The appearance of Ph-F binding sites during apoptosis was preceded by the loss of mitochondrial potential, was concurrent with the presence of activated caspases, and was followed by loss of membrane integrity. At a very early stage of apoptosis, when nucleolar segregation was apparent, the Ph-F binding sites were distinctly localized within the nucleolus and at later stages of apoptosis in the cytoplasm. During apoptosis triggered by TPT, Ph-F binding was preferentially induced in S-phase cells. Our data on megakaryocytes and end-plates indicate that Ph-F reacts with active sites of AChE, and can be used to reveal the presence of this enzyme in live cells and possibly to study its

  5. Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions?

    PubMed Central

    Blohberger, J; Kunz, L; Einwang, D; Berg, U; Berg, D; Ojeda, S R; Dissen, G A; Fröhlich, T; Arnold, G J; Soreq, H; Lara, H; Mayerhofer, A

    2015-01-01

    Proliferation, differentiation and death of ovarian cells ensure orderly functioning of the female gonad during the reproductive phase, which ultimately ends with menopause in women. These processes are regulated by several mechanisms, including local signaling via neurotransmitters. Previous studies showed that ovarian non-neuronal endocrine cells produce acetylcholine (ACh), which likely acts as a trophic factor within the ovarian follicle and the corpus luteum via muscarinic ACh receptors. How its actions are restricted was unknown. We identified enzymatically active acetylcholinesterase (AChE) in human ovarian follicular fluid as a product of human granulosa cells. AChE breaks down ACh and thereby attenuates its trophic functions. Blockage of AChE by huperzine A increased the trophic actions as seen in granulosa cells studies. Among ovarian AChE variants, the readthrough isoform AChE-R was identified, which has further, non-enzymatic roles. AChE-R was found in follicular fluid, granulosa and theca cells, as well as luteal cells, implying that such functions occur in vivo. A synthetic AChE-R peptide (ARP) was used to explore such actions and induced in primary, cultured human granulosa cells a caspase-independent form of cell death with a distinct balloon-like morphology and the release of lactate dehydrogenase. The RIPK1 inhibitor necrostatin-1 and the MLKL-blocker necrosulfonamide significantly reduced this form of cell death. Thus a novel non-enzymatic function of AChE-R is to stimulate RIPK1/MLKL-dependent regulated necrosis (necroptosis). The latter complements a cholinergic system in the ovary, which determines life and death of ovarian cells. Necroptosis likely occurs in the primate ovary, as granulosa and luteal cells were immunopositive for phospho-MLKL, and hence necroptosis may contribute to follicular atresia and luteolysis. The results suggest that interference with the enzymatic activities of AChE and/or interference with necroptosis may be novel

  6. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer's disease.

    PubMed

    Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio

    2002-10-03

    Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text

  7. Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus and nucleus accumbens in old rats after chronic donepezil administration

    PubMed Central

    Alcantara-Gonzalez, Faviola; Juarez, Ismael; Solis, Oscar; Martinez-Tellez, Isaura; Camacho-Abrego, Israel; Masliah, Eliezer; Mena, Raul; Flores, Gonzalo

    2010-01-01

    In Alzheimer's disease brains morphological changes in the dendrites of pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been observed. These changes are particularly reflected in the decrement of both the dendritic tree and spine number. Donepezil is a potent and selective acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease. We have studied the effect of oral administration of this drug on the morphology of neuronal cells from the brain of aged rats. We examined dendrites of pyramidal neurons of the PFC, dorsal or ventral hippocampus and medium spiny neurons of the nucleus accumbens (NAcc). Donepezil (1 mg/Kg, vo) was administrated every day for 60 days to rats aged 10 and 18 months. Dendritic morphology was studied by the Golgi-Cox stain procedure followed by Sholl analysis at 12 and 20 months ages, respectively. In all Donepezil treated-rats a significant increment of the dendritic spines number in pyramidal neurons of the PFC, dorsal hippocampus was observed. However, pyramidal neurons of the ventral hippocampus and medium spiny cells of the NAcc only showed an increase in the number of their spines in 12 months old-rats. Our results suggest that Donepezil prevents the alterations of the neuronal dendrite morphology caused by aging. PMID:20336627

  8. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    PubMed

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  9. Diverse age-related effects of Bacopa monnieri and donepezil in vitro on cytokine production, antioxidant enzyme activities, and intracellular targets in splenocytes of F344 male rats.

    PubMed

    Priyanka, Hannah P; Singh, Ran Vijay; Mishra, Miti; ThyagaRajan, Srinivasan

    2013-02-01

    Aged people are more prone to developing neurodegenerative and infectious diseases, autoimmune disorders, and cancer due to impairment of neuroendocrine-immune functions. Neuronal degeneration and immunosuppression aided by increased generation of reactive oxygen species combined with loss of antioxidant enzyme activities promote the aging process. Bacopa monnieri (brahmi), an Ayurvedic herb, and donepezil, a reversible acetylcholinesterase inhibitor, have been used to reverse cognitive dysfunctions in several neurodegenerative diseases. The aim of this study was to investigate the effects of in vitro incubation of lymphocytes from spleens of young (3-month-old), early middle-aged (8- to 9-month-old), and old (18-month-old) F344 rats with brahmi (0.001%, 0.01%, 0.05%, 0.1%, and 1%) and donepezil (5, 10, 25, 50, and 100 μg/ml) on Concanavalin (Con A)-induced proliferation of T lymphocytes and cytokine production, and the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. In addition, the effects of these compounds on the expression of intracellular signaling pathway markers (ERK, p-ERK, CREB, p-CREB, Akt and p-Akt), nitric oxide (NO) production, and the extent of lipid peroxidation were measured in the splenocytes. Age-related decline in Con A-induced proliferation of T lymphocytes was not reversed by treatment with brahmi and donepezil but donepezil alone further reduced the lymphocyte proliferation in young rats. Lower doses of brahmi treatment reversed the age-related decrease in Con A-induced IL-2 and IFN-γ production by the splenocytes while their production by splenocytes was suppressed by treatment with donepezil in the young and early middle-aged rats. An age-associated decline in the activities of SOD, CAT, GPx, and GST was evident in the lymphocytes of spleen. Brahmi enhanced CAT activity of lymphocytes in all the age groups while donepezil increased SOD

  10. Determination of AChE levels and genotoxic effects in farmers occupationally exposed to pesticides.

    PubMed

    Naravaneni, Rambabu; Jamil, Kaiser

    2007-09-01

    Pesticides can cause cytogenetic effects and lower the acetyl cholinesterase (AChE) levels in farmers exposed to pesticides. In this study, 210 farmers exposed to pesticides and 160 non-exposed individuals were enrolled for determining the genotoxicity and AChE levels. The AChE levels were determined in plasma and RBC lysate from blood samples collected from farmers and control subjects. AChE (true and pseudo) estimation done by the colorimetric method revealed that there was a progressive fall in both the RBC and plasma AChE levels in exposed individuals compared to unexposed individuals, which correlated with the severity of exposure (253.5 versus 311.1 and 142.3 versus 152.1; P < 0.001). Cytogenetic studies showed an increase in DNA damage and higher chromosomal aberrations (CAs) in exposed farmers compared to the control subjects (26.13 versus 07.61 and 21.37 versus 1.52; P < 0.001). When comparing the AChE levels with DNA damage and structural CA frequencies, there was a negative linear correlation. Therefore based on these findings, it is concluded that genotoxic biomarkers like CA frequencies, DNA damage data along with AChE levels are important parameters for determining farmer's health who are exposed to pesticides in any situation.

  11. Dose-dependent effect of donepezil administration on long-term enhancement of visually evoked potentials and cholinergic receptor overexpression in rat visual cortex.

    PubMed

    Chamoun, Mira; Groleau, Marianne; Bhat, Menakshi; Vaucher, Elvire

    2016-09-01

    Stimulation of the cholinergic system tightly coupled with periods of visual stimulation boosts the processing of specific visual stimuli via muscarinic and nicotinic receptors in terms of intensity, priority and long-term effect. However, it is not known whether more diffuse pharmacological stimulation with donepezil, a cholinesterase inhibitor, is an efficient tool for enhancing visual processing and perception. The goal of the present study was to potentiate cholinergic transmission with donepezil treatment (0.5 and 1mg/kg) during a 2-week visual training to examine the effect on visually evoked potentials and to profile the expression of cholinergic receptor subtypes. The visual training was performed daily, 10min a day, for 2weeks. One week after the last training session, visual evoked potentials were recorded, or the mRNA expression level of muscarinic (M1-5) and nicotinic (α/β) receptors subunits was determined by quantitative RT-PCR. The visual stimulation coupled with any of the two doses of donepezil produced significant amplitude enhancement of cortical evoked potentials compared to pre-training values. The enhancement induced by the 1mg/kg dose of donepezil was spread to neighboring spatial frequencies, suggesting a better sensitivity near the visual detection threshold. The M3, M4, M5 and α7 receptors mRNA were upregulated in the visual cortex for the higher dose of donepezil but not the lower one, and the receptors expression was stable in the somatosensory (non-visual control) cortex. Therefore, higher levels of acetylcholine within the cortex sustain the increased intensity of the cortical response and trigger the upregulation of cholinergic receptors.

  12. AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer's Disease

    PubMed Central

    Wang, Yu; Wang, Hao; Chen, Hong-zhuan

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in elder people, characterised by a progressive decline in memory as a result of an impairment of cholinergic neurotransmission. To date acetylcholinesterase inhibitors (AChEIs) have become the most prescribed drugs for the symptomatic treatment of mild to moderate AD. However, the traditional “one molecule-one target” paradigm is not sufficient and appropriate to yield the desired therapeutic efficacy since multiple factors, such as amyloid-β (Aβ) deposits, neuroinflammation, oxidative stress, and decreased levels of acetylcholine (ACh) have been thought to play significant roles in the AD pathogenesis. New generation of multi-target drugs is earnestly demanded not only for ameliorating symptoms but also for modifying the disease. Herein, we delineated the catalytic and non-catalytic functions of AChE, and summarized the works of our group and others in research and development of novel AChEI-based multi-target-directed ligands (MTDLs), such as dual binding site AChEIs and multi-target AChEIs inhibiting Aβ aggregation, regulating Aβ procession, antagonizing platelet-activating factor (PAF) receptor, scavenging oxygen radical, chelating metal ions, inhibiting monoamine oxidase B (MAO-B), blocking N-methyl-D-aspartic acid (NMDA) receptor and others. PMID:26786145

  13. Spectral studies of Donepezil release from streched PVA polymer films

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen-Beatrice; Stoica, Iuliana; Closca, Valentina; Dorohoi, Dana-Ortansa

    2013-07-01

    The focus of this research is to obtain poly vinyl alcohol (PVA) polymer foils containing Donepezil in different concentration, in order to be used in controlled drug release as a palliative treatment of mild to moderate Alzheimer's disease. The influence of polymeric foil stretching degree on drug release was analyzed using spectral measurements.

  14. Combination therapy of donepezil and vitamin E in Alzheimer disease.

    PubMed

    Klatte, Emily T; Scharre, Douglas W; Nagaraja, Haikady N; Davis, Rebecca A; Beversdorf, David Q

    2003-01-01

    A retrospective chart review was performed on 130 patients from the Ohio State University Memory Disorders Clinic to examine the long-term effects of combination therapy with donepezil and vitamin E on patients with Alzheimer disease. Subjects were included if they met National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and Related Disorders Association criteria for probable Alzheimer disease, had taken at least 5 mg donepezil and at least 1000 U vitamin E daily, had at least a 1-year follow-up while continuing these medications, and had a Mini-Mental State Examination score of 10-24. The Mini-Mental State Examination was then recorded annually thereafter. These data were compared with the Consortium to Establish a Registry for Alzheimer's Disease database for patients collected prior to the availability of these treatment options. Patients declined at a significantly lower rate as compared with the Consortium to Establish a Registry for Alzheimer's Disease data. The long-term combination therapy of donepezil and vitamin E appears beneficial for patients with Alzheimer disease. Future prospective studies would be needed to compare combination treatment to vitamin E and donepezil alone.

  15. LWH and ACH Helmet Hardware Study

    DTIC Science & Technology

    2015-11-30

    screws and nuts used with the Light Weight Helmet (LWH) and Advanced Combat Helmet (ACH). The testing included basic dimensional measurements, Rockwell...laboratory tests to characterize the properties of helmet screws and nuts used with the Light Weight Helmet (LWH) and Advanced Combat Helmet (ACH). The

  16. Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease.

    PubMed

    Lu, Jin; Wan, Lili; Zhong, Yuan; Yu, Qi; Han, Yonglong; Chen, Pengguo; Wang, Beiyun; Li, Wei; Miao, Ya; Guo, Cheng

    2015-11-01

    The therapeutic response rates of patients to donepezil vary from 20% to 60%, one of the reasons is their genetic differences in donepezil-metabolizing enzymes, which directly influence liver metabolism. However, the mechanism of donepezil metabolism and that of its enantiomers is unknown. This study evaluated CYP2D6 polymorphisms to elucidate the stereoselective metabolism of donepezil and to confirm the association between the steady-state plasma concentrations of the pharmaco-effective S-donepezil and the therapeutic responses of Han Chinese patients with Alzheimer's disease. The in vitro study of the stereoselective metabolism demonstrated that CYP2D6 is the predominant P450 enzyme that metabolizes donepezil and that different CYP2D6 alleles differentially affect donepezil enantiomers metabolism. A total of 77 Han Chinese patients with Alzheimer's disease were recruited to confirm these results, by measuring their steady-state plasma concentrations of S-donepezil. The related CYP2D6 genes were genotyped. Plasma concentrations of S-donepezil (based on CYP2D6 polymorphisms) were significantly associated with therapeutic responses. This finding suggests that plasma concentrations of S-donepezil influence therapeutic outcomes following treatment with donepezil in Han Chinese patients with Alzheimer's disease. Therefore, determining a patient's steady-state plasma concentration of S-donepezil in combination with their CYP2D6 genotype might be useful for clinically monitoring the therapeutic efficacy of donepezil.

  17. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus.

    PubMed

    Menéndez-Helman, Renata J; Ferreyroa, Gisele V; dos Santos Afonso, Maria; Salibián, Alfredo

    2015-01-01

    The use of biomarkers as a tool to assess responses of organisms exposed to pollutants in toxicity bioassays, as well as in aquatic environmental risk assessment protocols, requires the understanding of the natural fluctuation of the particular biomarker. The aim of this study was to characterize the intrinsic variations of acetylcholinesterase (AChE) activity in tissues of a native freshwater teleost fish to be used as biomarker in toxicity tests, taking into account both seasonal influence and fish size. Specific AChE activity was measured by the method of Ellman et al. (1961) in homogenates of fish anterior section finding a seasonal variability. The highest activity was observed in summer, decreasing significantly below 40% in winter. The annual AChE activity cycle in the anterior section was fitted to a sinusoidal function with a period of 11.2 months. Moreover, an inverse relationship between enzymatic activity and the animal size was established. The results showed that both the fish length and seasonal variability affect AChE activity. AChE activity in fish posterior section showed a similar trend to that in the anterior section, while seasonal variations of the activity in midsection were observed but differences were not statistically significant. In addition, no relationship between AChE and total tissue protein was established in the anterior and posterior sections suggesting that the circannual rhythms observed are AChE-specific responses. Results highlight the importance of considering both the fish size and season variations to reach valid conclusions when AChE activity is employed as neurotoxicity biomarker.

  18. Cholinesterases in development: AChE as a firewall to inhibit cell proliferation and support differentiation.

    PubMed

    Layer, Paul G; Klaczinski, Janine; Salfelder, Anika; Sperling, Laura E; Thangaraj, Gopenath; Tuschl, Corina; Vogel-Höpker, Astrid

    2013-03-25

    Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically. Here, we review briefly some of the major ideas and advances of this field, and report on some recent progress from our own experimental work, e.g. that (i) non-neural ChEs have pronounced, predominantly enzymatic effects on early embryonic (limb) development in chick and mouse, that (ii) retinal R28 cells of the rat overexpressing synaptic AChE present a significantly decreased cell proliferation, and that (iii) in developing chick retina ACh-synthesizing and ACh-degrading cells originate from the same postmitotic precursor cells, which later form two locally opposing cell populations. We suggest that such distinct distributions of ChAT(+) vs. AChE(+) cells in the inner half retina provide graded distributions of ACh, which can direct cell differentiation and network formation. Thus, as corroborated by works from many labs, AChE can be considered a highly co-opting protein, which can combine enzymatic and non-enzymatic functions within one molecule.

  19. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity.

  20. Errorless practice as a possible adjuvant to donepezil in Alzheimer's disease.

    PubMed

    Rothi, Leslie J Gonzalez; Fuller, Renee; Leon, Susan A; Kendall, Diane; Moore, Anna; Wu, Samuel S; Crosson, Bruce; Heilman, Kenneth M; Nadeau, Stephen E

    2009-03-01

    Six individuals with probable Alzheimer's disease (AD) participated in a phase 1 study employing a repeated measures, parallel baseline design testing the hypothesis that error-free experience during word production practice combined with an acetyl cholinesterase inhibitor would improve confrontation naming ability. While acetyl cholinesterase inhibitors are safe and delay cognition decline associated with AD, improvement over baseline cognition is less evident; clinically significant cognitive deficits persist and progress. Both animal and clinical research strongly implicate acetylcholine in learning, a form of neuroplasticity. In clinical practice, however, people with AD are given cholinergic medications without concomitant systematic/targeted retraining. In this study six participants with probable AD and taking donepezil participated in targeted word production practice using an errorless learning strategy. Results showed that combining behavioral enrichment training and an acetyl cholinesterase inhibitor resulted in significant improvements in verbal confrontation naming of trained items for three of six participants. Differences in baseline dementia severity, living conditions, and medications may have influenced the training response. Detection of substantial treatment effects in 50% of subjects suggests further language treatment studies in AD in combination with an acetyl cholinesterase inhibitor are warranted and provide useful information on inclusion/exclusion criteria for use in subsequent studies.

  1. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction.

  2. Downregulated expression of microRNA-124 in pediatric intestinal failure patients modulates macrophages activation by inhibiting STAT3 and AChE

    PubMed Central

    Xiao, Yong-Tao; Wang, Jun; Lu, Wei; Cao, Yi; Cai, Wei

    2016-01-01

    Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation. PMID:27977009

  3. Analysis of AchE and LDH in mollusc, Lamellidens marginalis after exposure to chlorpyrifos.

    PubMed

    Amanullah, B; Stalin, A; Prabu, P; Dhanapal, S

    2010-07-01

    The enzymes Acetylcholinesterase (AchE) and Lactatedehydrogenase (LDH) are used as biological markers in the present study. Enzymes are highly sensitive and used to evaluate the biological effects of organophosphate pesticide chlorpyrifos in freshwater mussel Lamellidens marginalis. The test organisms were exposed to sub-lethal concentration (5 ppm) of chlorpyrifos for 30 days and allowed to recover for seven days. A distinct reduction of the enzyme AchE (34 +/- 3.3 U l(-1)) was found in the treated hepatopancreas. A significant increase in LDH activity in gill, hepatopancreas and muscle was observed. There was a significant recovery in AchE and LDH in the different tissues, after seven days recovery period.. Hence, the changes in the enzymes are found as the best biomarkering tool to evaluate the effect of organophosphate pesticide chlorpyrifos on the aquatic biota.

  4. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    PubMed

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT6 receptor (Kb = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC50hAChE = 12 nM, IC50hBuChE = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD.

  5. Neuroprotection against vascular dementia after acupuncture combined with donepezil hydrochloride: P300 event related potential

    PubMed Central

    Liu, Qiang; Wang, Xiu-juan; Zhang, Zhe-cheng; Xue, Rong; Li, Ping; Li, Bo

    2016-01-01

    Acupuncture can be used to treat various nervous system diseases. Here, 168 vascular dementia patients were orally administered donepezil hydrochloride alone (5 mg/day, once a day for 56 days), or combined with acupuncture at Shenting (DU24), Tianzhu (BL10), Sishencong (Extra), Yintang (Extra), Renzhong (DU26), Neiguan (PC6), Shenmen (HT7), Fengchi (GB20), Wangu (GB12) and Baihui (DU20) (once a day for 56 days). Compared with donepezil hydrochloride alone, P300 event related potential latency was shorter with an increased amplitude in patients treated with donepezil hydrochloride and acupuncture. Mini-Mental State Examination score was also higher. Moreover, these differences in P300 latency were identified within different infarcted regions in patients treated with donepezil hydrochloride and acupuncture. These findings indicate that acupuncture combined with donepezil hydrochloride noticeably improves cognitive function in patients with vascular dementia, and exerts neuroprotective effects against vascular dementia. PMID:27127486

  6. Rapid and sustained cognitive recovery in APP/PS1 transgenic mice by co-administration of EPPS and donepezil

    PubMed Central

    Kim, Hye Yun; Kim, Hyunjin Vincent; Lee, Dongkeun K.; Yang, Seung-Hoon; Kim, YoungSoo

    2016-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease characterized by sequential progression of pathological events, such as aggregation of amyloid-β proteins, followed by outward symptoms of cognitive impairments. Given that a combination of different therapeutic strategies often provides more rapid and effective outcomes in diverse areas of clinical treatment, we hypothesized that administration of anti-amyloid drugs with cognitive enhancers would result in synergistic effects in AD treatment. Here, we co-administered 4-(2-hydroxyethyl)-1-piperazinepropane-sulphonic acid (EPPS), an amyloid-clearing chemical, and donepezil, an acetylcholinesterase inhibitor, to determine whether they could serve complementary roles for each other in regards to AD treatment. We found that oral administration of these two molecules led to a rapid and consistent cognitive improvement in APP/PS1 transgenic mice. Although there was no evidence for synergistic effects, our results indicated that EPPS and donepezil function complementary to each other without altering their individual effects. Thus, the combined use of disease-modifying and symptomatic relief drugs may be a promising approach in the treatment of AD. PMID:27796293

  7. n/Ach Among Agricultural and Business Entrepreneurs of Delhi

    ERIC Educational Resources Information Center

    Singh, Narayan Prasad

    1970-01-01

    Given the wide acceptance of n/Ach in current research as a critical non-economic variable affecting entrepreneurship, the present study tests Atkinson's hypothesis of n/Ach--that individuals with high n/Ach are more susceptible to changes in economic opportunities than their counterparts with low n/Ach. (SE)

  8. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors.

    PubMed

    Herkert, Nadja M; Eckert, Saskia; Eyer, Peter; Bumm, Rudolf; Weber, Georg; Thiermann, Horst; Worek, Franz

    2008-04-18

    The efficacy of oxime treatment in soman poisoning is limited due to rapid aging of inhibited acetylcholinesterase (AChE). Pre-treatment with carbamates was shown to improve antidotal treatment substantially. Recently, by using a dynamically working in vitro model with real-time determination of membrane-bound AChE activity, we were able to demonstrate that pre-inhibition of human erythrocyte AChE with pyridostigmine or physostigmine resulted in a markedly higher residual AChE activity after inhibition by soman or paraoxon than in the absence of reversible inhibitors. The purpose of the present study was to compare the effect of carbamate pre-treatment and soman challenge with human erythrocyte and muscle homogenate AChE. Both enzyme sources were immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. AChE activity was continuously analyzed in a flow-through detector. Pre-inhibition of AChE with pyridostigmine or physostigmine resulted in a concentration-dependent increase in carbamylation, residual activity after soman inhibition and fraction of decarbamylation AChE after discontinuation of the inhibitors without differences between human erythrocyte and muscle AChE. This data support the view that human erythrocyte AChE is an adequate surrogate marker for synaptic AChE in OP poisoning.

  9. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE.

    PubMed

    Kovarik, Zrinka; Maček, Nikolina; Sit, Rakesh K; Radić, Zoran; Fokin, Valery V; Barry Sharpless, K; Taylor, Palmer

    2013-03-25

    Organophosphates (OP) inhibit acetylcholinesterase (AChE, EC 3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM.

  10. The acetylcholinesterase (AChE) inhibition analysis of medaka (Oryzias latipes) in the exposure of three insecticides.

    PubMed

    Zhu, Jianping; Huan, Cheng; Si, Guiyun; Yang, Haitang; Yin, Li; Ren, Qing; Ren, Baixiang; Fu, Rongshu; Miao, Mingsheng; Ren, Zongming

    2015-03-01

    The continuous effects on Acetylcholinesterase (AChE) activity of medaka (Oryzias latipes) caused by dichlorvos, methomyl and deltamethrin in vivo were investigated, and the trends of AChE activity inhibition due to the influence of these insecticides were discussed. The LC50-24h of dichlorvos, methomyl and deltamethrin on medaka were 2.3 mg/L, 0.2 mg/L, and 2.9×10(-3) mg/L respectively. The result suggested that at the beginning of the exposure, the AChE activity might increase, and the AChE activity in dead individuals was obviously lower than the live individuals. Though the de novo synthesis of AChE in medaka might help the AChE activity recover, the trends during the exposure in different treatments were downward, and it showed both exposure time and concentration dependent. Meanwhile, higher temperature might cause the AChE inhibition earlier due to the higher metabolic rate. Therefore, as a specific biomarker for organophosphate, carbamate pesticides and pyrethroids, the degree of the AChE inhibition with in vivo conditions is a good tool in continuous monitoring of insecticides, which may induce the nerve conduction disorders.

  11. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE.

  12. Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    PubMed

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-05-01

    We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.

  13. Bioequivalence Study of Donepezil Hydrochloride Tablets in Healthy Male Volunteers

    PubMed Central

    Rojanasthien, Noppamas; Aunmuang, Siriluk; Hanprasertpong, Nutthiya; Roongapinun, Sukit; Teekachunhatean, Supanimit

    2012-01-01

    The objective of this study was to investigate the bioequivalence of two formulations of 5 mg donepezil HCL tablets: Tonizep as the test and Aricept as the reference. The two products were administered as a single oral dose according to a randomized two-phase crossover with a 3-week washout period in 20 healthy Thai Male volunteers. After drug administration, serial blood samples were collected over a period of 216 hours. Plasma donepezil concentrations were measured by high performance liquid chromatography with UV detection. Pharmacokinetic parameters were analyzed based on noncompartmental analysis. The logarithmically transformed data of AUC0–∞ and Cmax were analyzed for 90% confidence intervals (CI) using ANOVA. The mean (90% CI) values for the ratio of AUC0–∞ and Cmax values of the test product over those of the reference product were 1.08 (1.02–1.14) and 1.08 (0.99–1.17), respectively (within the bioequivalence range of 0.8–1.25). The median Tmax for the test product was similar to that of the reference product (2.0 hr), and the 90% CI for the Tmax difference between the two preparations was –0.19 to 0.29 hr and within the bioequivalence range of ± 20% of the Tmax of the reference formulation. Our study demonstrated the bioequivalence of the two preparations. PMID:23209934

  14. Donepezil plus estradiol treatment enhances learning and delay-dependent memory performance by young ovariectomized rats with partial loss of septal cholinergic neurons.

    PubMed

    Gibbs, R B; Chipman, A M; Nelson, D

    2011-04-01

    Effects of estrogen therapy on cognitive performance appear to diminish with age and time following the loss of ovarian function. We hypothesize that this is due to a reduction in basal forebrain cholinergic function and that treatment with a cholinergic enhancer can reverse the effect. This study tested whether combining the cholinesterase inhibitor donepezil with estradiol treatment can enhance/restore estradiol effects on cognitive performance in young ovariectomized rats with selective lesions of septal cholinergic neurons. 192IgG-saporin was injected directly into the medial septum to produce selective cholinergic lesions. Rats were then treated with donepezil (Don, daily injections of 3mg/kg/day, i.p.) or vehicle, and then with 17β-estradiol (E2, administered by silastic capsule implanted s.c.) or an empty capsule. Rats were trained on a delayed matching-to-position (DMP) T-maze task which previous studies have shown is sensitive to ovariectomy and estrogen replacement. Results show that neither estradiol nor donepezil alone significantly enhanced acquisition of the DMP task in rats with cholinergic lesions. Combination therapy was effective, however, depending on the severity of the lesion. Don+E2 significantly enhanced acquisition of the task in rats with partial lesions (<50% loss of cholinergic neurons), but not in rats with severe lesions. This effect was due largely to a reduction in perseverative behavior. Don+E2 also improved working memory in rats with partial lesions, as evidenced by significantly better performance than controls during increased intertrial delays. These findings suggest that even partial loss of septal cholinergic neurons can reduce effects of estrogen therapy on cognitive performance, and demonstrate that combining a cholinesterase inhibitor with estrogen therapy can help to restore beneficial effects on performance. We propose that combination therapy may have similar beneficial effects in women, particularly in older women who

  15. Bis(9)-(-)-nor-meptazinol as a novel dual-binding AChEI potently ameliorates scopolamine-induced cognitive deficits in mice.

    PubMed

    Liu, Ting; Xia, Zheng; Zhang, Wei-Wei; Xu, Jian-rong; Ge, Xin-Xing; Li, Juan; Cui, Yongyao; Qiu, Zhui-Bai; Xu, Jun; Xie, Qiong; Wang, Hao; Chen, Hong-Zhuan

    2013-03-01

    Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder which is characterized by the progressive deterioration of cognition and the emergence of behavioral and psychological symptoms in aging patients. Given that the clinical effectiveness of acetylcholinesterase inhibitors (AChEIs) has still been questioned due to dubious disease-modifying effects, the multi-target directed ligand (MTDL) design has become an emerging strategy for developing new drugs for AD treatment. Bis(9)-(-)-nor-meptazinol (Bis-Mep) was firstly reported by us as a novel MTDL for both potent cholinesterase and amyloid-β aggregation inhibition. In this study, we further explored its AChE inhibition kinetic features and cognitive amelioration. Bis-Mep was found to be a mixed-type inhibitor on electric eel AChE by enzyme kinetic study. Molecular docking revealed that two "water bridges" located at the two wings of Bis-Mep stabilized its interaction with both catalytic and peripheral anionic sites of AChE. Furthermore, subcutaneous administration of Bis-Mep (10, 100 or 1000 ng/kg) significantly reversed the scopolamine-induced memory deficits in a typical bell-shaped dose-response manner. The maximal cognitive amelioration of Bis-Mep was achieved at 100 ng/kg, comparable with the effect of a reference drug Huperzine A at 1 mg/kg and also the relevant AChE inhibition in brain. These findings suggested that Bis-Mep might be a promising dual-binding AChE inhibitor for potential AD therapeutics.

  16. A Rare Case of Acute Renal Failure Secondary to Rhabdomyolysis Probably Induced by Donepezil

    PubMed Central

    Sahin, Osman Zikrullah; Ayaz, Teslime; Yuce, Suleyman; Sumer, Fatih

    2014-01-01

    Introduction. Acute renal failure (ARF) develops in 33% of the patients with rhabdomyolysis. The main etiologic factors are alcoholism, trauma, exercise overexertion, and drugs. In this report we present a rare case of ARF secondary to probably donepezil-induced rhabdomyolysis. Case Presentation. An 84-year-old male patient was admitted to the emergency department with a complaint of generalized weakness and reduced consciousness for two days. He had a history of Alzheimer's disease for one year and he had taken donepezil 5 mg daily for two months. The patient's physical examination revealed apathy, loss of cooperation, and decreased muscle strength. Laboratory studies revealed the following: urea: 128 mg/dL; Creatinine 6.06 mg/dL; creatine kinase: 3613 mg/dL. Donepezil was discontinued and the patient's renal function tests improved gradually. Conclusion. Rhabdomyolysis-induced acute renal failure may develop secondary to donepezil therapy. PMID:24864216

  17. A rare case of acute renal failure secondary to rhabdomyolysis probably induced by donepezil.

    PubMed

    Sahin, Osman Zikrullah; Ayaz, Teslime; Yuce, Suleyman; Sumer, Fatih; Sahin, Serap Baydur

    2014-01-01

    Introduction. Acute renal failure (ARF) develops in 33% of the patients with rhabdomyolysis. The main etiologic factors are alcoholism, trauma, exercise overexertion, and drugs. In this report we present a rare case of ARF secondary to probably donepezil-induced rhabdomyolysis. Case Presentation. An 84-year-old male patient was admitted to the emergency department with a complaint of generalized weakness and reduced consciousness for two days. He had a history of Alzheimer's disease for one year and he had taken donepezil 5 mg daily for two months. The patient's physical examination revealed apathy, loss of cooperation, and decreased muscle strength. Laboratory studies revealed the following: urea: 128 mg/dL; Creatinine 6.06 mg/dL; creatine kinase: 3613 mg/dL. Donepezil was discontinued and the patient's renal function tests improved gradually. Conclusion. Rhabdomyolysis-induced acute renal failure may develop secondary to donepezil therapy.

  18. Olfactory Deficits in MCI as Predictor of Improved Cognition on Donepezil

    DTIC Science & Technology

    2015-04-01

    0 weeks ) will be associated with cognitive improvement (SRT total recall and modified ADAS-cog) from baseline to 26 weeks and 52 weeks of donepezil...treatment. 2. Increase in UPSIT scores from baseline to 8 weeks of donepezil treatment will be associated with cognitive improvement from baseline to...26 and 52 weeks . Exploratory Hypothesis. The acute atropine-induced decrease in UPSIT scores, and increase in UPSIT scores from baseline to 8

  19. The efficacy, safety, and tolerability of donepezil for the treatment of young adults with Down syndrome.

    PubMed

    Kishnani, Priya S; Sommer, Barbara R; Handen, Benjamin L; Seltzer, Benjamin; Capone, George T; Spiridigliozzi, Gail A; Heller, James H; Richardson, Sharon; McRae, Thomas

    2009-08-01

    The objective of our study was to assess the efficacy and safety of donepezil in young adults with Down syndrome (DS) but no evidence of Alzheimer disease (AD). A 12-week, randomized, double-blind, placebo-controlled study with a 12-week, open-label extension was conducted. The intervention consisted of donepezil (5-10 mg/day) in young adults (aged 18-35 years) with DS, but no AD. The primary measure was the Severe Impairment Battery (SIB) test and secondary measures were the Vineland Adaptive Behavior Scales (VABS), the Rivermead Behavioral Memory Test for Children, and the Clinical Evaluation of Language Fundamentals, Third Edition. At baseline, 123 subjects were randomly assigned treatment with donepezil or placebo. During the double-blind phase, SIB scores improved significantly from baseline in both groups, with no significant between-group differences. During the open-label phase, SIB scores in the original donepezil group remained stable; the original placebo group showed an improvement similar to that seen in the double-blind phase. VABS scores improved for donepezil, but not placebo, during the double-blind phase (observed cases, P = 0.03; last observation carried forward, P = 0.07). Post hoc responder analyses were significant for donepezil using three of five response definitions (P < or = 0.045). Adverse event rates were comparable to AD studies. In this first large-scale, multicenter trial of a pharmacological agent for DS, donepezil appears safe. Efficacy interpretation was limited for the primary measure due to apparent learning/practice and ceiling effects. Outcomes in post hoc analyses suggested efficacy in some, but not all subjects, consistent with phenotypic variability of DS. Additional studies are required to confirm potential benefits of donepezil in this population.

  20. America under attack: ACHE affiliates respond.

    PubMed

    Lanser, Ellen G

    2002-01-01

    In the midst of the horror and uncertainty that swept over America on September 11, the healthcare sector helped to keep our nation firmly anchored. Within moments of the terrorist attacks, healthcare organizations in New York, Washington, D.C., and the surrounding areas responded swiftly, calmly, and effectively. Many of these hospitals are led by ACHE affiliates. Following are their accounts of that day, lessons they learned, and plans for the future.

  1. The Effects of Donepezil on 15-Item Geriatric Depression Scale Structure in Patients with Alzheimer Disease

    PubMed Central

    Yang, Youngsoon; Kwak, Yong Tae

    2016-01-01

    Background/Aims In Alzheimer disease (AD), depression is among the most common accompanying neuropsychiatric symptoms and has different clinical manifestations when compared with early-life depression. In patients with drug-naïve AD, we tried to explore the structure of the 15-item Geriatric Depression Scale (GDS15) and the effect of donepezil on these substructures. Methods GDS15, cognitive function, and activities of daily living function tests were administered to 412 patients with probable AD who had not been medicated before visiting the hospital. Using principal component analysis, three factors were identified. The patients with AD who received only donepezil were retrospectively analyzed and we compared the change of cognition and GDS15 subgroup after donepezil medication. Results Our study identified three factors and revealed that the GDS15 may be comprised of a heterogeneous scale. The Barthel index was significantly correlated with factor 1 (positively) and factor 2 (negatively). The Korean version of the MMSE (K-MMSE) was significantly correlated with factor 2 and factor 3. Compared to the baseline state, K-MMSE and GDS15 showed significant improvement after taking donepezil. Among GDS15 subgroups, factor 2 and factor 3 showed significant improvement after donepezil treatment. Conclusions These results suggest that the GDS15 may be comprised of a heterogeneous scale and donepezil differentially affects the GDS15 subgroup in AD. PMID:27790242

  2. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species

    PubMed Central

    2016-01-01

    Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH⁎ activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds. PMID:27803761

  3. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species.

    PubMed

    Załuski, Daniel; Kuźniewski, Rafał

    2016-01-01

    Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH(⁎) activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds.

  4. Design, synthesis, and evaluation of benzophenone derivatives as novel acetylcholinesterase inhibitors.

    PubMed

    Belluti, Federica; Piazzi, Lorna; Bisi, Alessandra; Gobbi, Silvia; Bartolini, Manuela; Cavalli, Andrea; Valenti, Piero; Rampa, Angela

    2009-03-01

    Starting from a structure-based drug design, new acetylcholinesterase inhibitors were designed and synthesized as analogues of donepezil. The compounds were composed by an aromatic function and a tertiary amino moiety connected by a suitable spacer. In particular, the benzophenone nucleus and the N,N-benzylmethylamine function were selected. The easily accessible three-step synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compounds 1 and 10 were the most potent inhibitors of the series.

  5. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  6. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception

    PubMed Central

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Dalmann, Romain; El Guerrab, Abderrahim; Aissouni, Youssef; Graveron-Demilly, Danielle; Chalus, Maryse; Pinguet, Jérémy; Eschalier, Alain; Richard, Damien; Daulhac, Laurence; Balayssac, David

    2015-01-01

    Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS 1H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular

  7. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer's disease.

    PubMed

    Deardorff, William James; Grossberg, George T

    2016-01-01

    Currently available therapies for the treatment of Alzheimer's disease (AD) consist of cholinesterase inhibitors (ChEIs), such as donepezil, and the N-methyl-D-aspartate receptor antagonist memantine. In December 2014, the US Food and Drug Administration approved Namzaric™, a once-daily, fixed-dose combination (FDC) of memantine extended-release (ER) and donepezil for patients with moderate-to-severe AD. The FDC capsule is bioequivalent to the coadministered individual drugs, and its bioavailability is similar when taken fasting, with food, or sprinkled onto applesauce. The combination of memantine and ChEIs in moderate-to-severe AD provides additional benefits to ChEI monotherapy across multiple domains and may delay the time to nursing home admission. A dedicated study of memantine ER compared to placebo in patients on a stable dose of a ChEI found statistically significant benefits on cognition and global status but not functioning. Treatment with memantine ER and donepezil is generally well tolerated, although higher doses of ChEIs are associated with more serious adverse events such as vomiting, syncope, and weight loss. Potential advantages of the FDC include a simpler treatment regimen, reduction in pill burden, and the ability to sprinkle the capsule onto soft foods. Patients who may benefit from the FDC include those with significant dysphagia, a history of poor compliance, or limited caregiver interaction. However, available evidence that these advantages would increase treatment adherence and persistence is conflicting, meaning that the added cost of switching patients from generic options to an FDC may not always be justified.

  8. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease

    PubMed Central

    Deardorff, William James; Grossberg, George T

    2016-01-01

    Currently available therapies for the treatment of Alzheimer’s disease (AD) consist of cholinesterase inhibitors (ChEIs), such as donepezil, and the N-methyl-D-aspartate receptor antagonist memantine. In December 2014, the US Food and Drug Administration approved Namzaric™, a once-daily, fixed-dose combination (FDC) of memantine extended-release (ER) and donepezil for patients with moderate-to-severe AD. The FDC capsule is bioequivalent to the coadministered individual drugs, and its bioavailability is similar when taken fasting, with food, or sprinkled onto applesauce. The combination of memantine and ChEIs in moderate-to-severe AD provides additional benefits to ChEI monotherapy across multiple domains and may delay the time to nursing home admission. A dedicated study of memantine ER compared to placebo in patients on a stable dose of a ChEI found statistically significant benefits on cognition and global status but not functioning. Treatment with memantine ER and donepezil is generally well tolerated, although higher doses of ChEIs are associated with more serious adverse events such as vomiting, syncope, and weight loss. Potential advantages of the FDC include a simpler treatment regimen, reduction in pill burden, and the ability to sprinkle the capsule onto soft foods. Patients who may benefit from the FDC include those with significant dysphagia, a history of poor compliance, or limited caregiver interaction. However, available evidence that these advantages would increase treatment adherence and persistence is conflicting, meaning that the added cost of switching patients from generic options to an FDC may not always be justified. PMID:27757016

  9. 3-year study of donepezil therapy in Alzheimer's disease: effects of early and continuous therapy.

    PubMed

    Winblad, B; Wimo, A; Engedal, K; Soininen, H; Verhey, F; Waldemar, G; Wetterholm, A-L; Haglund, A; Zhang, R; Schindler, R

    2006-01-01

    Delays in the diagnosis of Alzheimer's disease, and, therefore, delays in treatment, may have a detrimental effect on a patient's long-term well-being. This study assessed the effects of postponing donepezil treatment for 1 year by comparing patients treated continuously for 3 years with those who received placebo for 1 year followed by open-label donepezil for 2 years. Patients (n = 286) with possible or probable Alzheimer's disease (according to DSM-IV, NINCDS-ADRDA, and Mini-Mental State Examination criteria; see text) were randomized to receive donepezil (5 mg/day for 4 weeks, 10 mg/day thereafter) or placebo (delayed-start group) for 1 year. Of the 192 completers, 157 began a 2-year, open-label phase of donepezil treatment. Outcome measures were the Gottfries-Bråne-Steen scale, the Mini-Mental State Examination, the Global Deterioration Scale, the Progressive Deterioration Scale, the Neuropsychiatric Inventory, and safety (adverse events). Mixed regression analysis was used to compare changes between the groups over 3 years on the efficacy measures. There was a trend for patients receiving continuous therapy to have less global deterioration (Gottfries-Bråne-Steen scale) than those who had delayed treatment (p = 0.056). Small but statistically significant differences between the groups were observed for the secondary measures of cognitive function (Mini-Mental State Examination; p = 0.004) and cognitive and functional abilities (Global Deterioration Scale; p = 0.0231) in favor of continuous donepezil therapy. Over 90% of the patients in both cohorts experienced one treatment-emergent adverse event; most were considered mild or moderate. In conclusion, patients in whom the start of treatment is delayed may demonstrate slightly reduced benefits as compared with those seen in patients starting donepezil therapy early in the course of Alzheimer's disease. These data support the long-term efficacy and safety of donepezil.

  10. Cholinesterase Inhibitor Therapy in Alzheimer’s: The limits and tolerability of Irreversible CNS-selective Acetylcholinesterase Inhibition in Primates

    PubMed Central

    Moss, Donald E.; Perez, Ruth G.; Kobayashi, Haruo

    2016-01-01

    Irreversible acetylcholinesterase (AChE) inhibition accumulates to high levels in the central nervous system (CNS) because AChE turnover in the brain is much slower than in peripheral tissues. As expected from this CNS selectivity, the irreversible AChE inhibitor methanesulfonyl fluoride (MSF) produces significant cognitive improvement in Alzheimer’s patients without the gastrointestinal toxicity that plagues other AChE inhibitors. However, without dose-limiting gastrointestinal toxicity, one shortcoming of the prior human studies of MSF is that the upper limits of CNS AChE inhibition that might be tolerated could not be tested. Therefore, in this study, monkeys were treated with escalating intramuscular doses of MSF that culminated with several weeks of 1.5 mg/kg dosing, more than eight times the prior human clinical dose, still without signs of toxicity. Brain biopsies showed that ~ 80% AChE inhibition had been produced and that the new synthesis of cortical AChE had a half-time (t1/2) of ~ 12 days. A single IM dose of 1.5 mg/kg MSF produced ~ 59% inhibition in cerebrospinal fluid (CSF) AChE as measured one day later. This corresponds to a peak of ~ 80% inhibition in CSF AChE at the time of the injection, recovering with a t1/2 of 2.4 days. Computational analyses suggest that MSF at clinically relevant doses could theoretically produce a steady-state AChE inhibition between 65% and 85% in the CNS. These data suggest that the full therapeutic advantage of AChE inhibition therapy can be realized without interference from dose-limiting gastrointestinal toxicity if an irreversible inhibitor is employed. PMID:27858711

  11. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    PubMed

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  12. Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    PubMed Central

    Pang, Yuan-Ping; Singh, Sanjay K.; Gao, Yang; Lassiter, T. Leon; Mishra, Rajesh K.; Zhu, Kun Yan; Brimijoin, Stephen

    2009-01-01

    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems. PMID:19194505

  13. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.

    PubMed

    Vitorović-Todorović, Maja D; Koukoulitsa, Catherine; Juranić, Ivan O; Mandić, Ljuba M; Drakulić, Branko J

    2014-06-23

    Congeneric set of thirty-eight 4-aryl-4-oxo-2-(N-aryl/cycloalkyl)butanamides has been designed, synthesized and evaluated for acetyl- and butyrylcholinesterase inhibitory activity. Structural variations included cycloalkylamino group attached to C2 position of butanoyl moiety, and variation of amido moiety of molecules. Twelve compounds, mostly piperidino and imidazolo derivatives, inhibited AChE in low micromolar range, and were inactive toward BChE. Several N-methylpiperazino derivatives showed inhibition of BChE in low micromolar or submicromolar concentrations, and were inactive toward AChE. Therefore, the nature of the cycloalkylamino moiety governs the AChE/BChE selectivity profile of compounds. The most active AChE inhibitor showed mixed-type inhibition modality, indicating its binding to free enzyme and to enzyme-substrate complex. Thorough docking calculations of the seven most potent AChE inhibitors from the set, showed that the hydrogen bond can be formed between amide -NH- moiety of compounds and -OH group of Tyr 124. The 10 ns unconstrained molecular dynamic simulation of the AChE-compound 18 complex shows that this interaction is the most persistent. This is, probably, the major anchoring point for the binding.

  14. Donepezil nanosuspension intended for nose to brain targeting: In vitro and in vivo safety evaluation.

    PubMed

    Bhavna; Md, Shadab; Ali, Mushir; Ali, Rashid; Bhatnagar, Aseem; Baboota, Sanjula; Ali, Javed

    2014-06-01

    The present study was to develop donepezil loaded nanosuspension for direct olfactory administration which reaches the brain and determining safety profile in Sprague-Dawley rats. Nanosuspension was prepared by ionic-crosslinking method. The developed nanosuspension was intranasally instilled into the nostrils of rats with the help of cannula (size 18/20) so that drug reached into the brain directly via nose to brain pathway. The nanosuspension had an average size of 150-200nm with a polydispersity index of 0.341. The donepezil concentration was estimated in the brain homogenate using HPLC method. The Cmax showed concentration of donepezil in brain and plasma as 7.2±0.86 and 82.8±5.42ng/ml, respectively, for drug suspension and concentration of donepezil in brain and plasma as 147.54±25.08 and 183.451±13.45ng/ml, respectively, for nanosuspension at same dose of 0.5mg/ml when administered intranasally (p<0.05). The in vivo safety evaluation studies showed that no mortality, hematological changes, body weight variations and toxicity in animals was observed, when nanosuspension was administered in different doses as compared to control group (normal saline). Donepezil loaded chitosan nanosuspension is a potential new delivery system for treatment of Alzheimer's disease, when transported via olfactory nasal pathway to the brain.

  15. The Synergistic Enhancing-Memory Effect of Donepezil and S 38093 (a Histamine H3 Antagonist) Is Mediated by Increased Neural Activity in the Septo-hippocampal Circuitry in Middle-Aged Mice

    PubMed Central

    Sors, Aurore; Krazem, Ali; Kehr, Jan; Yoshitake, Takashi; Dominguez, Gaelle; Henkous, Nadia; Letondor, Claire; Mocaer, Elisabeth; Béracochéa, Daniel J.

    2016-01-01

    Donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer’s disease patients. An alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both histaminergic and cholinergic pathways, to create a synergistic effect. To that aim, 14 month old C57/Bl6 mice were administered per oesophagy during nine consecutive days with Donepezil (at 0.1 and 0.3 mg/kg) and S 38093 (at 0.1, 0.3, and 1.0 mg/kg), a H3 histaminergic antagonist developed by Servier, alone or in combination and tested for memory in a contextual memory task that modelized the age-induced memory dysfunction. The present study shows that the combination of Donepezil and S 38093 induced a dose-dependent synergistic memory-enhancing effect in middle-aged mice with a statistically higher size of effect never obtained with compounds alone and without any pharmacokinetic interaction between both compounds. We demonstrated that the memory-enhancing effect of the S 38093 and Donepezil combination is mediated by its action on the septo-hippocampal circuitry, since it canceled out the reduction of CREB phosphorylation (pCREB) observed in these brain areas in vehicle-treated middle-aged animals. Overall, the effects of drug combinations on pCREB in the hippocampus indicate that the synergistic promnesiant effects of the combination on memory performance in middle-aged mice stem primarily from an enhancement of neural activity in the septo-hippocampal system. PMID:28066242

  16. Donepezil Rescues Spatial Learning and Memory Deficits following Traumatic Brain Injury Independent of Its Effects on Neurogenesis

    PubMed Central

    Yu, Tzong-Shiue; Kim, Ahleum; Kernie, Steven G.

    2015-01-01

    Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis. PMID:25714524

  17. Effectiveness and safety of donepezil in boys with fragile x syndrome: a double-blind, randomized, controlled pilot study.

    PubMed

    Sahu, Jitendra Kumar; Gulati, Sheffali; Sapra, Savita; Arya, Ravindra; Chauhan, Sandeepa; Chowdhury, Madhumita Roy; Gupta, Neerja; Kabra, Madhulika; Gupta, Y K; Dwivedi, S N; Kalra, Veena

    2013-05-01

    The present study was designed as a 12-week, randomized, double-blind, placebo-controlled pilot study to evaluate the effectiveness and safety of donepezil in boys with fragile X syndrome. Twenty boys with fragile X syndrome were randomized to receive 12 weeks of treatment with either placebo or donepezil (2.5 mg daily for initial 4 weeks followed by 5 mg daily for next 8 weeks). The outcome measures included change in intelligence quotient scores on Stanford-Binet Intelligence Scale (Hindi adaptation by Kulshrestha), change in behavioral scores by Conners 3 Parent Rating Scale (Short) and Childhood Autism Rating Scale, safety, and tolerability of donepezil. The study failed to show significant difference in intelligence quotient and behavioral scales with donepezil therapy over 12 weeks. However, donepezil appeared to be safe and well tolerated.

  18. Donepezil rescues spatial learning and memory deficits following traumatic brain injury independent of its effects on neurogenesis.

    PubMed

    Yu, Tzong-Shiue; Kim, Ahleum; Kernie, Steven G

    2015-01-01

    Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.

  19. Scopolamine-induced deficits in social memory in mice: reversal by donepezil.

    PubMed

    Riedel, G; Kang, S H; Choi, D Y; Platt, B

    2009-12-01

    Deficits in social behaviour is a characteristic of numerous mental disorders including autism, schizophrenia, depression and Alzheimer's disease. For the assessment of pharmacological and genetic experimental disease models, conventional social interaction tasks bear the uncertainty that any drug-induced abnormality of the investigator may feed back to the drug-free companion modifying its reactions. A considerable technical improvement was recently reported by Moy et al. [Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson T, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behaviours in mice. Genes Brain Behav 2004;3:287-302] in which the drug free partner is confined to a small cage and social contacts of the investigator are recorded uncontaminated of any social reactions of the stranger. Using this novel behavioural paradigm, we here show in C57Bl/6 female mice that sociability (social interaction with a stranger mouse) is not impaired after administration of the anxiolytic diazepam (0.1-1 mg/kg) or the muscarinic antagonist scopolamine hydrobromide (0.1-1 mg/kg). However, social memory tested after a short time interval was impaired by both drugs in a dose-dependent manner (diazepam: > or = 0.5mg/kg; scopolamine: > or = 0.3mg/kg). The scopolamine-induced short-term memory deficit was reversed to normal by the choline esterase inhibitor donepezil (1 mg/kg). Given this dependence of social recognition on the cholinergic system, combined with the clinical observation of reduced social contacts in dementia patients, sociability may offer a novel endpoint biomarker with translational value in experimental models of cognitive dysfunction.

  20. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes.

    PubMed

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind; Huang, Mingjun

    2013-07-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication.

  1. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs

    PubMed Central

    Lin, Bo; Xiang, Shihua; Li, Mengsen

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12–19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads. PMID:27727162

  2. Augmenting atypical antipsychotics with a cognitive enhancer (donepezil) improves regional brain activity in schizophrenia patients: a pilot double-blind placebo controlled BOLD fMRI study.

    PubMed

    Nahas, Ziad; George, Mark S; Horner, Michael D; Markowitz, John S; Li, Xingbao; Lorberbaum, Jeffrey P; Owens, Susan D; McGurk, Susan; DeVane, Lindsay; Risch, S Craig

    2003-06-01

    Cognitive impairments are cardinal features of schizophrenia and predictors of poor vocational and social outcome. Imaging studies with verbal fluency tasks (VFT) lead some to suggest that in schizophrenia, the combination of a failure to deactivate the left temporal lobe and a hypoactive frontal lobe reflects a functional disconnectivity between the left prefrontal cortex and temporal lobe. Others have theorized that an abnormal cingulate gyrus modulates such fronto-temporal connectivity. Thus addition of a cognitive enhancing medication to current antipsychotic therapy might improve functionality of networks necessary in working memory and internal concept generation. To test this hypothesis, we serially measured brain activity in 6 subjects on stable atypical antipsychotics performing a VFT, using BOLD fMRI. Measurements were made at baseline and again after groups were randomized to receive 12 weeks of donepezil (an acetylcholinesterase inhibitor) and placebo in a blind cross-over design. Donepezil addition provided a functional normalization with an increase in left frontal lobe and cingulate activity when compared to placebo and from baseline scans. This pilot study supports the cingulate's role in modulating cognition and neuronal connectivity in schizophrenia.

  3. Multicenter randomized clinical trial of donepezil for memory impairment in multiple sclerosis

    PubMed Central

    Christodoulou, C.; Melville, P.; Scherl, W.F.; Pai, L.-Y.; Muenz, L.R.; He, D.; Benedict, R.H.B.; Goodman, A.; Rizvi, S.; Schwid, S.R.; Weinstock-Guttman, B.; Westervelt, H.J.; Wishart, H.

    2011-01-01

    Objectives: The goal of this study was to determine if memory would be improved by donepezil as compared to placebo in a multicenter, double-blind, randomized clinical trial (RCT). Methods: Donepezil 10 mg daily was compared to placebo to treat memory impairment. Eligibility criteria included the following: age 18–59 years, clinically definite multiple sclerosis (MS), and performance ≤½ SD below published norms on the Rey Auditory Verbal Learning Test (RAVLT). Neuropsychological assessments were performed at baseline and 24 weeks. Primary outcomes were change on the Selective Reminding Test (SRT) of verbal memory and the participant's impression of memory change. Secondary outcomes included changes on other neuropsychological tests and the evaluating clinician's impression of memory change. Results: A total of 120 participants were enrolled and randomized to either donepezil or placebo. No significant treatment effects were found between groups on either primary outcome of memory or any secondary cognitive outcomes. A trend was noted for the clinician's impression of memory change in favor of donepezil (37.7%) vs placebo (23.7%) (p = 0.097). No serious or unanticipated adverse events attributed to study medication developed. Conclusions: Donepezil did not improve memory as compared to placebo on either of the primary outcomes in this study. Classification of evidence: This study provides Class I evidence which does not support the hypothesis that 10 mg of donepezil daily for 24 weeks is superior to placebo in improving cognition as measured by the SRT in people with MS whose baseline RAVLT score was 0.5 SD or more below average. PMID:21519001

  4. Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors.

    PubMed

    Kia, Yalda; Osman, Hasnah; Suresh Kumar, Raju; Basiri, Alireza; Murugaiyah, Vikneswaran

    2014-04-01

    Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.

  5. Relevance of Donepezil in Enhancing Learning and Memory in Special Populations: A Review of the Literature

    ERIC Educational Resources Information Center

    Yoo, J. Helen; Valdovinos, Maria G.; Williams, Dean C.

    2007-01-01

    This review discusses the laboratory and clinical research supporting the rationale for the efficacy of donepezil (Aricept[R] USA) in enhancing cognition in autism, Alzheimer disease, Down syndrome, traumatic brain injury, Attention Deficit Hyperactivity Disorder (ADHD), and schizophrenia. While preliminary animal models have shown effective,…

  6. Efficacy and safety of donepezil in patients with Alzheimer's disease in assisted living facilities.

    PubMed

    Rosenblatt, Adam; Gao, Jeff; Mackell, Joan; Richardson, Sharon

    2010-09-01

    The aim of this 12-week, open-label study was to determine the safety and efficacy of donepezil in participants with Alzheimer's disease (AD) residing in assisted living facilities (ALFs). Participants received 5 mg donepezil daily for 6 weeks followed by 10 mg daily for 6 weeks. Primary and secondary outcomes were change from baseline in Mini-Mental State Examination (MMSE) and Neuropsychiatric Inventory 8 (NPI-8) scores, respectively. Safety was assessed by adverse events (AEs) and laboratory tests. Of the 97 participants, 76 completed the study. Mean MMSE score (18.7 at baseline) improved 1.8 points (P < .0001) at study end. Total NPI-8 score improved 1.8 points (P = .043). The most frequent AEs were nausea and diarrhea. Donepezil improved cognition and behavior and was safe and well tolerated. The results suggest a need for proactive screening and diagnosis of AD and support the value of treatment and use of donepezil in participants residing in ALFs.

  7. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    PubMed

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  8. Integrative Characterization of Toxic Response of Zebra Fish (Danio rerio) to Deltamethrin Based on AChE Activity and Behavior Strength

    PubMed Central

    Ren, Qing; Zhang, Tingting; Li, Shangge; Yang, Meiyi; Pan, Hongwei; Xu, Shiguo; Qi, Li; Chon, Tae-Soo

    2016-01-01

    In order to characterize the toxic response of zebra fish (Danio rerio) to Deltamethrin (DM), behavior strength (BS) and muscle AChE activity of zebra fish were investigated. The results showed that the average values of both BS and AChE activity showed a similarly decreased tendency as DM concentration increased, which confirmed the dose-effect relationship, and high and low levels of AChE and BS partly matched low and high levels of exposure concentrations in self-organizing map. These indicated that AChE and BS had slight different aspects of toxicity although overall trend was similar. Behavior activity suggested a possibility of reviving circadian rhythm in test organisms after exposure to the chemical in lower concentration (0.1 TU). This type of rhythm disappeared in higher concentrations (1.0 TU and 2.0 TU). Time series trend analysis of BS and AChE showed an evident time delayed effect of AChE, and a 2 h AChE inhibition delay with higher correlation coefficients (r) in different treatments was observed. It was confirmed that muscle AChE inhibition of zebra fish is a factor for swimming behavior change, though there was a 2 h delay, and other factors should be investigated to illustrate the detailed behavior response mechanism. PMID:27999812

  9. Neuroprotection of donepezil against morphine-induced apoptosis is mediated through Toll-like receptors.

    PubMed

    Shafie, Alireza; Moradi, Farshid; Izadpanah, Esmael; Mokarizadeh, Aram; Moloudi, Mohammad Raman; Nikzaban, Mehrnoush; Hassanzadeh, Kambiz

    2015-10-05

    Previously, we had shown that donepezil provides anti-apoptotic effects associated with the prevention of morphine tolerance to the analgesic effect. In this regard, the present study aimed to evaluate the molecular mechanisms involved in this effect considering the possible role of Toll-like receptor (TLR) 2,4, and the balance between pre-apoptotic and anti-apoptotic Bcl family proteins. To this end, male Wistar rats received daily morphine in combination with either normal saline or donepezil (0.5, 1, or 1.5 mg/kg, ip). The analgesic effect was assessed by the plantar test apparatus. The latency was recorded when the animal responded to the light stimulus. On the 15th day, when no significant difference was observed between morphine and saline groups in terms of analgesia, the frontal cortex and lumbar spinal cord of the animals were dissected. Then, TLR2 and 4, Bcl2, and Bax mRNA fold changes were calculated using Real-time PCR method. The results indicated no significant analgesic effect in the morphine group compared with the saline treated animals after 15 days of injection, while daily co-administration of donepezil with morphine preserved significant analgesia. Moreover, Quantitative PCR showed that morphine significantly increased TLRs and Bax gene expressions and decreased the anti-apoptotic Bcl2. In contrast, donepezil prevented these morphine induced changes in the mentioned gene expressions. Taken together, the results suggest that the neuroprotective effects of donepezil in attenuating morphine-induced tolerance and apoptosis are mediated by preventing morphine-induced changes in TLR2 and 4 gene expressions.

  10. Donepezil for Irradiated Brain Tumor Survivors: A Phase III Randomized Placebo-Controlled Clinical Trial

    PubMed Central

    Rapp, Stephen R.; Case, L. Doug; Peiffer, Ann; Naughton, Michelle M.; Chan, Michael D.; Stieber, Volker W.; Moore, Dennis F.; Falchuk, Steven C.; Piephoff, James V.; Edenfield, William J.; Giguere, Jeffrey K.; Loghin, Monica E.; Shaw, Edward G.

    2015-01-01

    Purpose Neurotoxic effects of brain irradiation include cognitive impairment in 50% to 90% of patients. Prior studies have suggested that donepezil, a neurotransmitter modulator, may improve cognitive function. Patients and Methods A total of 198 adult brain tumor survivors ≥ 6 months after partial- or whole-brain irradiation were randomly assigned to receive a single daily dose (5 mg for 6 weeks, 10 mg for 18 weeks) of donepezil or placebo. A cognitive test battery assessing memory, attention, language, visuomotor, verbal fluency, and executive functions was administered before random assignment and at 12 and 24 weeks. A cognitive composite score (primary outcome) and individual cognitive domains were evaluated. Results Of this mostly middle-age, married, non-Hispanic white sample, 66% had primary brain tumors, 27% had brain metastases, and 8% underwent prophylactic cranial irradiation. After 24 weeks of treatment, the composite scores did not differ significantly between groups (P = .48); however, significant differences favoring donepezil were observed for memory (recognition, P = .027; discrimination, P = .007) and motor speed and dexterity (P = .016). Significant interactions between pretreatment cognitive function and treatment were found for cognitive composite (P = .01), immediate recall (P = .05), delayed recall (P = .004), attention (P = .01), visuomotor skills (P = .02), and motor speed and dexterity (P < .001), with the benefits of donepezil greater for those who were more cognitively impaired before study treatment. Conclusion Treatment with donepezil did not significantly improve the overall composite score, but it did result in modest improvements in several cognitive functions, especially among patients with greater pretreatment impairments. PMID:25897156

  11. Neuropsychological test performance in healthy volunteers before and after donepezil administration.

    PubMed

    Beglinger, Leigh J; Gaydos, Brenda L; Kareken, David A; Tangphao-Daniels, Oranee; Siemers, Eric R; Mohs, Richard C

    2004-03-01

    Participants in early Phase I clinical trials for drugs designed to enhance cognition are typically healthy volunteers. If improvement can be detected with a battery of cognitive tests in healthy volunteers, such a battery could be a pharmacodynamic marker in the future development of the compound for treatment of cognitive disorders. In the present exploratory study, a battery of neuropsychological (NP) tests was used to determine if changes in cognition from a pharmacological intervention could be detected in healthy volunteers. A drug with known cognitive-enhancing effects in Alzheimer's disease, donepezil, was compared with placebo and no treatment arms. Carry-over effects of repeated test administration were also assessed. In this double-blind study, 27 healthy adults were randomized into one of three arms (eight donepezil, nine placebo and 10 no treatment) and completed 14 days of donepezil (5 mg q.h.s.) or placebo (q.h.s.). A battery of NP tests was administered on days 0, 7, 14 (randomization), 21, 28 (end of treatment) and 42 (washout). There were no differences in performance between the placebo and the no treatment arms. However, on day 21, subjects in the donepezil group performed slightly but significantly worse on some tests of speed, attention and memory (p < 0.05) compared to the pooled control group (placebo and no treatment arms). No improvement in performance was present while on donepezil at days 21 or 28. While the results are counter to expectations, some tests in the battery did detect a cognitive change (transient mild worsening during drug administration) in healthy volunteers.

  12. Spectroscopic studies of solid-state forms of donepezil free base and salt forms with various salicylic acids

    NASA Astrophysics Data System (ADS)

    Brittain, Harry G.

    2014-12-01

    The polymorphic forms of donepezil free base have been studied using X-ray powder diffraction, Fourier transform infrared absorption spectroscopy, and differential scanning calorimetry. None of the free base crystal forms was observed to exhibit detectable fluorescence in the solid state under ambient conditions. Crystalline salt products were obtained by the reaction of donepezil with salicylic and methyl-substituted salicylic acids, with the salicylate and 4-methylsalicylate salts being obtained as non-solvated products, and the 3-methylsalicylate and 5-methylsalicylate salts being obtained as methanol solvated products. The intensity of solid-state fluorescence from donepezil salicylate and donepezil 4-methylsalicylate was found to be reduced relative to the fluorescence intensity of the corresponding free acids, while the solid-state fluorescence intensity of donepezil 3-methylsalicylate methanolate and donepezil 5-methylsalicylate methanolate was greatly increased relative to the fluorescence intensity of the corresponding free acids. Desolvation of the solvated salt products led to formation of glassy solids that exhibited strong green fluorescence.

  13. Acetylcholinesterase inhibitors and Gulf War illnesses

    PubMed Central

    Golomb, Beatrice Alexandra

    2008-01-01

    Increasing evidence suggests excess illness in Persian Gulf War veterans (GWV) can be explained in part by exposure of GWV to organophosphate and carbamate acetylcholinesterase inhibitors (AChEis), including pyridostigmine bromide (PB), pesticides, and nerve agents. Evidence germane to the relation of AChEis to illness in GWV was assessed. Many epidemiological studies reported a link between AChEi exposure and chronic symptoms in GWV. The link is buttressed by a dose–response relation of PB pill number to chronic symptoms in GWV and by a relation between avidity of AChEi clearance and illness, based on genotypes, concentrations, and activity levels of enzymes that detoxify AChEis. Triangulating evidence derives from studies linking occupational exposure to AChEis to chronic health symptoms that mirror those of ill GWV. Illness is again linked to lower activity of AChEi detoxifying enzymes and genotypes conferring less-avid AChEi detoxification. AChEi exposure satisfies Hill's presumptive criteria for causality, suggesting this exposure may be causally linked to excess health problems in GWV. PMID:18332428

  14. Cholinesterase inhibitors: SAR and enzyme inhibitory activity of 3-[omega-(benzylmethylamino)alkoxy]xanthen-9-ones.

    PubMed

    Piazzi, Lorna; Belluti, Federica; Bisi, Alessandra; Gobbi, Silvia; Rizzo, Stefano; Bartolini, Manuela; Andrisano, Vincenza; Recanatini, Maurizio; Rampa, Angela

    2007-01-01

    In this work, we further investigated a previously introduced class of cholinesterase inhibitors. The removal of the carbamic function from the lead compound xanthostigmine led to a reversible cholinesterase inhibitors 3. Some new 3-[omega-(benzylmethylamino)alkoxy]xanthen-9-one analogs were designed, synthesized, and evaluated for their inhibitory activity against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The length of the alkoxy chain of compound 3 was increased and different substituents were introduced. From the IC(50) values, it clearly appears that the carbamic residue is crucial to obtain highly potent AChE inhibitors. On the other hand, peculiarity of these compounds is the high selectivity toward BuChE with respect to AChE, being compound 12 the most selective one (6000-fold). The development of selective BuChE inhibitors may be of great interest to clarify the physiological role of this enzyme and to provide novel therapeutics for various diseases.

  15. Clinical Recommendations for the Use of Donepezil 23 mg in Moderate-to-Severe Alzheimer's Disease in the Asia-Pacific Region

    PubMed Central

    Sabbagh, Marwan; Han, SeolHeui; Kim, SangYun; Na, Hae-Ri; Lee, Jae-Hong; Kandiah, Nagaendran; Phanthumchinda, Kammant; Suthisisang, Chuthamanee; Senanarong, Vorapun; Pai, Ming-Chyi; Narilastri, Diatri; Sowani, Ajit M.; Ampil, Encarnita; Dash, Amitabh

    2016-01-01

    Background The ‘Asia-Pacific Expert Panel (APEX) for donepezil 23 mg’ met in November 2015 to review evidence for the recently approved high dose of donepezil and to provide recommendations to help physicians in Asia make informed clinical decisions about using donepezil 23 mg in patients with moderate-to-severe Alzheimer's disease (AD). Summary In a global phase III study (study 326) in patients with moderate-to-severe AD, donepezil 23 mg/day demonstrated significantly greater cognitive benefits versus donepezil 10 mg/day, with a between-treatment difference in mean change in the Severe Impairment Battery score of 2.2 points (p < 0.001) in the overall population and 3.1 points (p < 0.001) in patients with advanced AD. A subanalysis of study 326 demonstrated that the benefits and risks associated with donepezil 23 mg/day versus donepezil 10 mg/day in Asian patients with moderate-to-severe AD were comparable to those in the global study population. Key Message Donepezil 23 mg is a valuable treatment for patients with AD, particularly those with advanced disease. The APEX emphasized the importance of patient selection (AD severity, tolerability of lower doses of donepezil, and absence of contraindications), a stepwise titration strategy for dose escalation, and appropriate monitoring and counseling of patients and caregivers in the management of patients with AD. PMID:27703471

  16. Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Abuhamdah, Sawsan; Habash, Maha; Taha, Mutasem O.

    2013-12-01

    Inhibition of the enzyme acetylcholinesterase (AChE) has been shown to alleviate neurodegenerative diseases prompting several attempts to discover and optimize new AChE inhibitors. In this direction, we explored the pharmacophoric space of 85 AChE inhibitors to identify high quality pharmacophores. Subsequently, we implemented genetic algorithm-based quantitative structure-activity relationship (QSAR) modeling to select optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of explaining bioactivity variation among training compounds ( {{r}}^{ 2}_{ 6 8} = 0. 9 4 , F-statistic = 125.8, {{r}}^{ 2}_{{LOO}} { = 0} . 9 2 , {{r}}^{ 2}_{{PRESS}} against 17 external test inhibitors = 0.84). Two orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least two binding modes accessible to ligands within AChE binding pocket. The successful pharmacophores were comparable with crystallographically resolved AChE binding pocket. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute list of compounds. Twenty-four low micromolar AChE inhibitors were identified. The most potent gave IC50 value of 1.0 μM.

  17. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  18. Anticancer drugs induce hypomethylation of the acetylcholinesterase promoter via a phosphorylated-p38-DNMT1-AChE pathway in apoptotic hepatocellular carcinoma cells.

    PubMed

    Xi, Qiliang; Gao, Ning; Yang, Yang; Ye, Weiyuan; Zhang, Bo; Wu, Jun; Jiang, Gening; Zhang, Xuejun

    2015-11-01

    Apoptosis, also known as programmed cell death, plays an essential role in eliminating excessive, damaged or harmful cells. Previous work has demonstrated that anticancer drugs induce cell apoptosis by inducing cytotoxicity. In recent years, several reports demonstrated modulated expression of DNA methyltransferases 1 (DNMT1) and acetylcholinesterase (AChE) in a variety of tumors. In this study, we showed that the expression of DNMT1 was decreased and the methylation of CpGs in the promoter of AChE was reduced in anticancer drugs-induced apoptotic hepatocellular carcinoma cells. Silencing of DNMT1 expression by AZA or RNA interference (RNAi) restored AChE production and inhibition of AChE expression by RNAi protected HCC cells from anticancer drugs-induced apoptosis. Furthermore, we demonstrated that the regulation of AChE by DNMT1 was involved in the phosphorylated p38 pathway in anticancer drugs-induced apoptosis. In addition, immunohistochemical staining showed that P-p38, DNMT1 and AChE were aberrantly expressed in a subset of HCC tumors. Taken together, we demonstrated the regulation of AChE by DNMT1 and further, we found that this regulation was involved in the phosphorylated p38 pathway in anticancer drugs-induced apoptosis.

  19. Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction.

    PubMed

    Lin, T; Simchovitz, A; Shenhar-Tsarfaty, S; Vaisvaser, S; Admon, R; Hanin, G; Hanan, M; Kliper, E; Bar-Haim, Y; Shomron, N; Fernandez, G; Lubin, G; Fruchter, E; Hendler, T; Soreq, H

    2016-05-03

    Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome-neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility.

  20. Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction

    PubMed Central

    Lin, T; Simchovitz, A; Shenhar-Tsarfaty, S; Vaisvaser, S; Admon, R; Hanin, G; Hanan, M; Kliper, E; Bar-Haim, Y; Shomron, N; Fernandez, G; Lubin, G; Fruchter, E; Hendler, T; Soreq, H

    2016-01-01

    Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome–neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility. PMID:27138800

  1. Reactivation of organophosphate-inhibited human AChE by combinations of obidoxime and HI 6 in vitro.

    PubMed

    Worek, F; Aurbek, N; Thiermann, H

    2007-01-01

    Highly toxic organophosphorus-type (OP) chemical warfare agents (nerve agents) and OP pesticides may be used by terrorists and during military conflicts emphasizing the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators (oximes) is considered to be ineffective with certain nerve agents due to low oxime efficacy. Despite research over decades none of the oximes has turned out to be a broad spectrum reactivator to cover the whole range of potential threat agents. The prospective oxime HI 6 is a weak reactivator of tabun- and pesticide-inhibited AChE, while the established oxime obidoxime mainly lacks efficacy with cyclosarin-inhibited enzyme. In order to investigate the feasibility of combining obidoxime and HI 6, human AChE inhibited by sarin, cyclosarin, VX, tabun and paraoxon was reactivated by these oximes either alone or in combination. Two major findings of this study were that a combination of HI 6 and obidoxime did not impair reactivation, compared with HI 6 or obidoxime alone, but broadened the spectrum compared with the individual oximes. By using different oxime concentrations a combination of oxime doses may be suggested which could be an alternative to individual obidoxime or HI 6 autoinjectors.

  2. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems.

  3. Does time difference of the acetylcholinesterase (AChE) inhibition in different tissues exist? A case study of zebra fish (Danio rerio) exposed to cadmium chloride and deltamethrin.

    PubMed

    Zhang, Tingting; Yang, Meiyi; Pan, Hongwei; Li, Shangge; Ren, Baigang; Ren, Zongming; Xing, Na; Qi, Luhuizi; Ren, Qing; Xu, Shiguo; Song, Jie; Ma, Jingchun

    2017-02-01

    In order to illustrate time difference in toxic effects of cadmium chloride (CdCl2) and deltamethrin (DM), AChE activities were measured in different tissues, liver, muscle, brain, and gill, of Zebra fish (Danio rerio) across different concentrations in this research. The average AChE activity decreased comparing to 0.0 TU with DM (82.81% in 0.1 TU, 56.14% in 1.0 TU and 44.68% in 2.0 TU) and with CdCl2 (74.68% in 0.1 TU, 52.05% in 1.0 TU and 50.14% in 2.0 TU) showed an overall decrease with the increase of exposure concentrations. According to Self-Organizing Map (SOM), the AChE activities were characterized in relation with experimental conditions, showing an inverse relationship with exposure time. As the exposure time was longer, the AChE activities were correspondingly lower. The AChE inhibition showed time delay in sublethal treatments (0.1 TU) in different tissues: the AChE was first inhibited in brain by chemicals followed by gill, muscle and liver (brain > gill > muscle > liver). The AChE activity was almost inhibited synchronously in higher environmental stress (1.0 TU and 2.0 TU). As the AChE inhibition can induce abnormal of behavior movement, these results will be helpful to the mechanism of stepwise behavior responses according to the time difference in different tissues rather than the whole body AChE activity.

  4. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  5. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme.

  6. GOOD or BAD Responder? Behavioural and Neuroanatomical Markers of Clinical Response to Donepezil in Dementia

    PubMed Central

    Bottini, Gabriella; Berlingeri, Manuela; Basilico, Stefania; Passoni, Serena; Danelli, Laura; Colombo, Nadia; Sberna, Maurizio; Franceschi, Massimo; Sterzi, Roberto; Paulesu, Eraldo

    2012-01-01

    We explored the neuropsychological and neuromorphometrical differences between probable Alzheimer's disease patients showing a good or a bad response to nine months treatment with donepezil. Before treatment, the neuropsychological profile of the two patient groups was perfectly matched. By the ninth month after treatment, the BAD-responders showed a decline of the MMSE score together with a progressive impairment of executive functions. A voxel-based morphometry investigation (VBM), at the time of the second neuropsychological assessment, showed that the BAD-responders had larger grey and white matter atrophies involving the substantia innominata of Meynert bilaterally, the ventral part of caudate nuclei and the left uncinate fasciculus, brain areas belonging to the cholinergic pathways. A more widespread degeneration of the central cholinergic pathways may explain the lack of donepezil efficacy in those patients not responding to a treatment that operates on the grounds that some degree of endogeneous release of acetylcholine is still available. PMID:22530263

  7. Olfactory Deficits in MCI as Predictor of Improved Cognition on Donepezil

    DTIC Science & Technology

    2013-04-01

    University in City of New York New York, NY 10032-3725 REPORT DATE: April 2013 TYPE OF REPORT: Annual Report PREPARED FOR: U.S. Army Medical...this report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so...1-0142 Olfactory Deficits in MCI as Predictor of Improved Cognition on Donepezil. 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S

  8. Discovery of Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors: 2-Aminoindan β-Lactam Derivatives

    PubMed Central

    Genç, Hayriye; Kalin, Ramazan; Köksal, Zeynep; Sadeghian, Nastaran; Kocyigit, Umit M.; Zengin, Mustafa; Gülçin, İlhami; Özdemir, Hasan

    2016-01-01

    β-Lactams are pharmacologically important compounds because of their various biological uses, including antibiotic and so on. β-Lactams were synthesized from benzylidene-inden derivatives and acetoxyacetyl chloride. The inhibitory effect of these compounds was examined for human carbonic anhydrase I and II (hCA I, and II) and acetylcholinesterase (AChE). The results reveal that β-lactams are inhibitors of hCA I, II and AChE. The Ki values of β-lactams (2a–k) were 0.44–6.29 nM against hCA I, 0.93–8.34 nM against hCA II, and 0.25–1.13 nM against AChE. Our findings indicate that β-lactams (2a–k) inhibit both carbonic anhydrases (CA) isoenzymes and AChE at low nanomolar concentrations. PMID:27775608

  9. Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes.

    PubMed

    Grønlien, Jens Halvard; Håkerud, Monika; Ween, Hilde; Thorin-Hagene, Kirsten; Briggs, Clark A; Gopalakrishnan, Murali; Malysz, John

    2007-09-01

    Selective modulation of alpha7 nicotinic acetylcholine receptors (nAChRs) is thought to regulate processes impaired in schizophrenia, Alzheimer's disease, and other dementias. One approach to target alpha7 nAChRs is by positive allosteric modulation. Structurally diverse compounds, including PNU-120596, 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS), and 5-hydroxyindole (5-HI) have been identified as positive allosteric modulators (PAMs), but their receptor interactions and pharmacological profiles remain to be fully elucidated. In this study, we investigated interactions of these compounds at human alpha7 nAChRs, expressed in Xenopus laevis oocytes, along with genistein, a tyrosine kinase inhibitor. Genistein was found to function as a PAM. Two types of PAM profiles were observed. 5-HI and genistein predominantly affected the apparent peak current (type I) whereas PNU-120596 and TQS increased the apparent peak current and evoked a distinct weakly decaying current (type II). Concentration-responses to agonists [ACh, 3-[(3E)-3-[(2,4-dimethoxyphenyl)methylidene]-5,6-dihydro-4H-pyridin-2-yl]pyridine dihydrochloride (GTS-21), and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)] were potentiated by both types, although type II PAMs had greater effects. When applied after alpha7 nAChRs were desensitized, type II, but not type I, PAMs could reactivate alpha7 currents. Both types of PAMs also increased the ACh-evoked alpha7 window currents, with type II PAMs generally showing larger potentiation. None of the PAMs tested increased nicotine-evoked Ca(2+) transients in human embryonic kidney 293 cells expressing human alpha4beta2 or alpha3beta4 nAChRs, although some inhibition was noted for 5-HI, genistein, and TQS. In summary, our studies reveal two distinct alpha7 PAM profiles, which could offer unique opportunities for modulating alpha7 nAChRs in vivo and in the development of novel

  10. Inhibitor profile of bis(n)-tacrines and N-methylcarbamates on acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    PubMed Central

    Swale, Daniel R.; Tong, Fan; Temeyer, Kevin B.; Li, Andrew; Lam, Polo C-H.; Totrov, Maxim M.; Carlier, Paul R.; Pérez de León, Adalberto A.; Bloomquist, Jeffrey R.

    2013-01-01

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAChE) compared to human and bovine AChE, in order to identify divergent pharmacology that might lead to selective inhibitors. Results indicate that BmAChE has low sensitivity (IC50 = 200 μM) toward tacrine, a monovalent catalytic site inhibitor with sub micromolar blocking potency in all previous species tested. Similarly, a series of bis(n)-tacrine dimer series, bivalent inhibitors and peripheral site AChE inhibitors possess poor potency toward BmAChE. Molecular homology models suggest the rBmAChE enzyme possesses a W384F orthologous substitution near the catalytic site, where the larger tryptophan side chain obstructs the access of larger ligands to the active site, but functional analysis of this mutation suggests it only partially explains the low sensitivity to tacrine. In addition, BmAChE1 and PpAChE have low nanomolar sensitivity to some experimental carbamate anticholinesterases originally designed for control of the malaria mosquito, Anopheles gambiae. One experimental compound, 2-((2-ethylbutyl)thio)phenyl methylcarbamate, possesses >300-fold selectivity for BmAChE1 and PpAChE over human AChE, and a mouse oral LD50 of >1500 mg/kg, thus providing an excellent new lead for vector control. PMID:24187393

  11. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  12. Screening of acetylcholinesterase inhibitors by CE after enzymatic reaction at capillary inlet.

    PubMed

    Martín-Biosca, Yolanda; Asensi-Bernardi, Lucia; Villanueva-Camañas, Rosa M; Sagrado, Salvador; Medina-Hernández, Maria J

    2009-05-01

    In this study the development of a procedure based on capillary electrophoresis after enzymatic reaction at capillary inlet methodology for the screening and in vitro evaluation of the biological activity of acetylcholinesterase (AChE) inhibitors is presented. The progress of the enzymatic reaction of the hydrolysis of acetylthiocholine at pH 8 in the presence of AChE and the inhibitor studied is determined by measuring at 230 nm the peak area of the reaction product thiocholine (TCh). In the method employed the capillary was first filled with 30 mM borate-phosphate buffer (pH 8.0) and subsequently, plugs of: (i) water, (ii) AChE solution, (iii) substrate solution with or without inhibitor, (iv) AChE solution, and (v) water, were hydrodynamically injected into the capillary, and were allowed to stand (and react) during a waiting period of 2 min. The applicability of the proposed methodology to estimate different kinetic parameters of interest such as inhibition constants K(i), identification of inhibitory action mechanism and IC(50), is evaluated using compounds with known activity, tacrine edrophonium, and neostigmine. The results obtained are compared with bibliographic values and confirm the effectiveness of the methodology proposed. Finally a method for AChE Inhibitor screening is proposed.

  13. In vitro effect of H2O 2, some transition metals and hydroxyl radical produced via fenton and fenton-like reactions, on the catalytic activity of AChE and the hydrolysis of ACh.

    PubMed

    Méndez-Garrido, Armando; Hernández-Rodríguez, Maricarmen; Zamorano-Ulloa, Rafael; Correa-Basurto, José; Mendieta-Wejebe, Jessica Elena; Ramírez-Rosales, Daniel; Rosales-Hernández, Martha Cecilia

    2014-11-01

    It is well known that the principal biomolecules involved in Alzheimer's disease (AD) are acetylcholinesterase (AChE), acetylcholine (ACh) and the amyloid beta peptide of 42 amino acid residues (Aβ42). ACh plays an important role in human memory and learning, but it is susceptible to hydrolysis by AChE, while the aggregation of Aβ42 forms oligomers and fibrils, which form senile plaques in the brain. The Aβ42 oligomers are able to produce hydrogen peroxide (H2O2), which reacts with metals (Fe(2+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)) present at high concentrations in the brain of AD patients, generating the hydroxyl radical ((·)OH) via Fenton (FR) and Fenton-like (FLR) reactions. This mechanism generates high levels of free radicals and, hence, oxidative stress, which has been correlated with the generation and progression of AD. Therefore, we have studied in vitro how AChE catalytic activity and ACh levels are affected by the presence of metals (Fe(3+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)), H2O2 (without Aβ42), and (·) OH radicals produced from FR and FLR. The results showed that the H2O2 and the metals do not modify the AChE catalytic activity, but the (·)OH radical causes a decrease in it. On the other hand, metals, H2O2 and (·)OH radicals, increase the ACh hydrolysis. This finding suggests that when H2O2, the metals and the (·)OH radicals are present, both, the AChE catalytic activity and ACh levels diminish. Furthermore, in the future it may be interesting to study whether these effects are observed when H2O2 is produced directly from Aβ42.

  14. Subgroup analysis of US and non-US patients in a global study of high-dose donepezil (23 mg) in moderate and severe Alzheimer's disease.

    PubMed

    Salloway, Stephen; Mintzer, Jacobo; Cummings, Jeffrey L; Geldmacher, David; Sun, Yijun; Yardley, Jane; Mackell, Joan

    2012-09-01

    To better understand responses in the large number of US-based patients included in a global trial of donepezil 23 mg/d versus 10 mg/d for moderate-to-severe Alzheimer's disease (AD), post hoc exploratory analyses were performed to assess the efficacy and safety in US and non-US (rest of the world [RoW]) patient subgroups. In both subgroups, donepezil 23 mg/d was associated with significantly greater cognitive benefits than donepezil 10 mg/d. Significant global function benefits of donepezil 23 mg/d over 10 mg/d were also observed in the US subgroup only. Compared with RoW patients, US patients had relatively more severe AD, had been treated with donepezil 10 mg/d for longer periods prior to the start of the study, and a higher proportion took concomitant memantine. In both subgroups, donepezil had acceptable tolerability; overall incidence of treatment-emergent adverse events was higher in patients receiving donepezil 23 mg/d compared with donepezil 10 mg/d.

  15. Acetylcholinesterase inhibition reveals endogenous nicotinic modulation of glutamate inputs to CA1 stratum radiatum interneurons in hippocampal slices.

    PubMed

    Alkondon, Manickavasagom; Albuquerque, Edson X; Pereira, Edna F R

    2013-05-01

    The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20-100ms) inter-event intervals. Donepezil's effects were suppressed significantly in presence of 10μM mecamylamine or 10nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman.

  16. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  17. Normal Hearing Ability but Impaired Auditory Selective Attention Associated with Prediction of Response to Donepezil in Patients with Alzheimer's Disease

    PubMed Central

    Ouchi, Yoshitaka; Meguro, Kenichi; Akanuma, Kyoko; Kato, Yuriko; Yamaguchi, Satoshi

    2015-01-01

    Background. Alzheimer's disease (AD) patients have a poor response to the voices of caregivers. After administration of donepezil, caregivers often find that patients respond more frequently, whereas they had previously pretended to be “deaf.” We investigated whether auditory selective attention is associated with response to donepezil. Methods. The subjects were40 AD patients, 20 elderly healthy controls (HCs), and 15 young HCs. Pure tone audiometry was conducted and an original Auditory Selective Attention (ASA) test was performed with a MoCA vigilance test. Reassessment of the AD group was performed after donepezil treatment for 3 months. Results. Hearing level of the AD group was the same as that of the elderly HC group. However, ASA test scores decreased in the AD group and were correlated with the vigilance test scores. Donepezil responders (MMSE 3+) also showed improvement on the ASA test. At baseline, the responders had higher vigilance and lower ASA test scores. Conclusion. Contrary to the common view, AD patients had a similar level of hearing ability to healthy elderly. Auditory attention was impaired in AD patients, which suggests that unnecessary sounds should be avoided in nursing homes. Auditory selective attention is associated with response to donepezil in AD. PMID:26161001

  18. AChE and EROD activities in two echinoderms, Holothuria leucospilota and Holoturia atra (Holothuroidea), in a coral reef (Reunion Island, South-western Indian Ocean).

    PubMed

    Kolasinski, Joanna; Taddei, Dorothée; Cuet, Pascale; Frouin, Patrick

    2010-01-01

    AChE and EROD activities were investigated in two holothurian species, Holothuria leucospilota and Holoturia atra, from a tropical coral reef. These organisms were collected from 3 back-reef stations, where temperature and salinity were homogeneous. The activity levels of both AChE and EROD varied significantly between the two species, but were in the range of values determined in other echinoderm species. AChE activity levels were higher in the longitudinal muscle than in the tentacle tegument. Among the several tissues tested, the digestive tract wall exhibited higher EROD activity levels. Sex did not influence AChE and EROD activity levels in both species. Animal biomass and EROD activity levels were only correlated in the tegument tissue of H. atra, and we hypothesize a possible influence of age. EROD activity did not show intraspecific variability. A significant relationship was found between AChE activity and Cuvierian tubules time of expulsion in Holothuria leucospilota. Individuals collected at the southern site presented both lower AChE activity levels and Cuvierian tubules time of expulsion, indicating possible neural disturbance. More information on holothurians biology and physiology is needed to further assess biomarkers in these key species. This study is the first of its kind performed in the coastal waters of Reunion Island and data obtained represent reference values.

  19. Determination of donepezil in serum samples using molecularly imprinted polymer nanoparticles followed by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Khansari, Mehdi Rajabnia; Bikloo, Shahrzad; Shahreza, Sara

    2016-03-01

    A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid-phase extraction. The optimal conditions for solid-phase extraction were provided by cartridge conditioning using acidified water purified from a Milli-Q system, sample loading under basic aqueous conditions, clean-up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90-102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.

  20. Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine.

    PubMed

    Benetti, Fernando; Mello, Pâmela Billig; Bonini, Juliana Sartori; Monteiro, Siomara; Cammarota, Martín; Izquierdo, Iván

    2009-02-01

    Early postnatal maternal deprivation is known to cause long-lasting neurobiological effects. Here, we investigated whether some of the cognitive aspects of these deficits might be related to a disruption of the cholinergic system. Pregnant Wistar rats were individually housed and maintained on a 12:12h light/dark cycle with food and water freely available. The mothers were separated from their pups for 3h per day from postnatal day 1 (PND-1) to PND-10. To do that, the dams were moved to a different cage and the pups maintained in the original home cage, which was transferred to a different room kept at 32 degrees C. After they reached 120-150 days of age, maternal-deprived and non-deprived animals were either sacrificed for brain acetylcholinesterase measurement, or trained and tested in an object recognition task and in a social recognition task as described by Rossato et al. (2007) [Rossato, J.I., Bevilaqua, L. R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., Cammarota, M. 2007. On the role hippocampal synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36-46] and Lévy et al. (2003) [Lévy, F., Melo. A.I., Galef. B.G. Jr., Madden, M., Fleming. A.S. 2003. Complete maternal deprivation affects social, but not spatial, learning in adult rats. Dev. Psychobiol. 43, 177-191], respectively. There was increased acetylcholinesterase activity in hippocampus and perirhinal cortex of the deprived animals. In addition, they showed a clear impairment in memory of the two recognition tasks measured 24h after training. Oral administration of the acetylcholinesterase inhibitors, donepezil or galantamine (1mg/kg) 30min before training reversed the memory impairments caused by maternal deprivation. The findings suggest that maternal deprivation affects memory processing at adulthood through a change in brain cholinergic systems.

  1. The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies.

    PubMed

    Lo, Rabindranath; Chandar, Nellore Bhanu; Ghosh, Shibaji; Ganguly, Bishwajit

    2016-04-01

    A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods. The overall study shows that after mutagenesis (Y337A), the reactivator can approach more freely towards the phosphorylated active site of serine without any significant steric hindrance in the presence of tabun compared to the wild type and double mutant. Furthermore, the poor binding of Ortho-7 with the peripheral residues of mAChE in the case of the single mutant compared to that of the wild-type and double mutant (Y337A/F338A) can contribute to better efficacy in the former case. Ortho-7 has formed a greater number of hydrogen bonds with the active site surrounding residues His447 and Phe295 in the case of the single mutant (Y337A), and that stabilizes the drug molecule for an effective reactivation process. The DFT M05-2X/6-31+G(d) level of theory shows that the binding energy of Ortho-7 with the single mutant (Y337A) is energetically more preferred (-19.8 kcal mol(-1)) than the wild-type (-8.1 kcal mol(-1)) and double mutant (Y337A/F338A) (-16.0 kcal mol(-1)). The study reveals that both the orientation of the oxime reactivator for nucleophilic attack and the stabilization of the reactivator at the active site would be crucial for the design of an efficient reactivator.

  2. A Novel Application of Multiscale Entropy in Electroencephalography to Predict the Efficacy of Acetylcholinesterase Inhibitor in Alzheimer's Disease

    PubMed Central

    Tsai, Ping-Huang; Chang, Shih-Chieh; Liu, Fang-Chun; Tsao, Jenho; Wang, Yung-Hung; Lo, Men-Tzung

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia. According to one hypothesis, AD is caused by the reduced synthesis of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) inhibitors are considered to be an effective therapy. For clinicians, however, AChE inhibitors are not a predictable treatment for individual patients. We aimed to disclose the difference by biosignal processing. In this study, we used multiscale entropy (MSE) analysis, which can disclose the embedded information in different time scales, in electroencephalography (EEG), in an attempt to predict the efficacy of AChE inhibitors. Seventeen newly diagnosed AD patients were enrolled, with an initial minimental state examination (MMSE) score of 18.8 ± 4.5. After 12 months of AChE inhibitor therapy, 7 patients were responsive and 10 patients were nonresponsive. The major difference between these two groups is Slope 2 (MSE6 to 20). The area below the receiver operating characteristic (ROC) curve of Slope 2 is 0.871 (95% CI = 0.69–1). The sensitivity is 85.7% and the specificity is 60%, whereas the cut-off value of Slope 2 is −0.024. Therefore, MSE analysis of EEG signals, especially Slope 2, provides a potential tool for predicting the efficacy of AChE inhibitors prior to therapy. PMID:26120358

  3. Complete Genome Sequence of Agrobacterium tumefaciens Ach5

    PubMed Central

    Huang, Ya-Yi; Cho, Shu-Ting; Lo, Wen-Sui; Wang, Yi-Chieh; Lai, Erh-Min

    2015-01-01

    Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease. The strain Ach5 was isolated from yarrow (Achillea ptarmica L.) and is the wild-type progenitor of other derived strains widely used for plant transformation. Here, we report the complete genome sequence of this bacterium. PMID:26044425

  4. Effect of acetylcholinesterase (AChE) point-of-care testing in OP poisoning on knowledge, attitudes and practices of treating physicians in Sri Lanka

    PubMed Central

    2014-01-01

    Background Toxicology and Emergency medicine textbooks recommend measurement of acetylcholinesterase (AChE) in all symptomatic cases of organophosphorus (OP) poisoning but laboratory facilities are limited in rural Asia. The accuracy of point-of-care (POC) acetylcholinesterase testing has been demonstrated but it remains to be shown whether results would be valued by clinicians. This study aims to assess the effect of seeing AChE POC test results on the knowledge, attitudes and practices of doctors who frequently manage OP poisoning. Methods We surveyed 23 clinicians, who had different levels of exposure to seeing AChE levels in OP poisoned patients, on a) knowledge of OP poisoning and biomarker interpretation, b) attitudes towards AChE in guiding poison management, oxime therapy and discharge decisions, and c) practices of ordering AChE in poisoning scenarios. Results An overall high proportion of doctors valued the test (68-89%). However, we paradoxically found that doctors who were more experienced in seeing AChE results valued the test less. Lower proportions valued the test in guidance of acute poisoning management (50%, p = 0.015) and guidance of oxime therapy (25%, p = 0.008), and it was apparent it would not generally be used to facilitate early discharge. The highest proportion of respondents valued it on admission (p < 0.001). A lack of correlation of test results with the clinical picture, and a perception that the test was a waste of money when compared to clinical observation alone were also comments raised by some of the respondents. Greater experience with seeing AChE test results was associated with increased knowledge (p = 0.034). However, a disproportionate lack of knowledge on interpretation of biomarkers and the pharmacology of oxime therapy (12-50%) was noted, when compared with knowledge on the mechanism of OP poisoning and management (78-90%). Conclusions Our findings suggest an AChE POC test may not be valued by rural doctors. The practical

  5. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II).

    PubMed

    Hung, Tran Manh; Lee, Joo Sang; Chuong, Nguyen Ngoc; Kim, Jeong Ah; Oh, Sang Ho; Woo, Mi Hee; Choi, Jae Sue; Min, Byung Sun

    2015-10-05

    Acetylcholinesterase (AChE) inhibitors increase the availability of acetylcholine in central cholinergic synapses and are the most promising drugs currently available for the treatment of Alzheimer's disease (AD). Our screening study indicated that the water fraction of the methanolic extract of Lycopodiella cernua (L.) Pic. Serm. significantly inhibited AChE in vitro. Bioassay-guided fractionation led to the isolation of a new lignan glycoside, lycocernuaside A (12), and fourteen known compounds (1-11 and 13-15). Compound 7 exhibited the most potent AChE inhibitory activity with an IC50 value of 0.23 μM. Compound 15 had the most potent inhibitory activity against BChE and BACE1 with IC50 values of 0.62 and 2.16 μM, respectively. Compounds 4 and 7 showed mixed- and competitive-type AChE inhibition. Compound 7 noncompetitively inhibited BChE whereas 15 showed competitive and 8, 13, and 14 showed mixed-type inhibition. The docking results for complexes with AChE or BChE revealed that inhibitors 4, 7, and 15 stably positioned themselves in several pocket/catalytic domains of the AChE and BChE residues.

  6. Acetylcholine esterase inhibitors in effluents from oil production platforms in the North Sea.

    PubMed

    Holth, T F; Tollefsen, K E

    2012-05-15

    Inhibition of acetylcholine esterase (AChE) activity is a biomarker for the exposure to neurotoxic compounds such as organophosphates and is intimately associated with the toxicity of several pesticides. In the present study, the AChE inhibiting potential of organic extracts of production water (produced water) from oil and gas production platforms in the Norwegian sector of the North Sea was determined in an in vitro bioassay based on commercially available purified AChE from the electric organ of Electrophorus electricus (L.). The results from the studies show that produced water contains a combination of AChE inhibiting compounds and compounds stimulating AChE enzymatic activity. The AChE inhibition was predominantly caused by unidentified aromatic compounds in the oil/particulate fraction of produced water, whereas polar compounds in both the water soluble and oil/particulate fraction of produced water caused an apparent stimulation of AChE activity. Substrate saturation studies with fixed concentrations of produced water extracts confirmed that the inhibition occurred in a non-destructive and competitive manner. The concentrations of AChE inhibitors (7.9-453 ng paraoxon-equivalents L⁻¹, 2.2-178 μg dichlorvos-equivalents L⁻¹) were in many cases found to be several orders of magnitude higher than background levels. The findings demonstrate that produced water contains potentially neurotoxic compounds and suggest that further laboratory studies with fish or field studies in the vicinity of oil production facilities are highly warranted.

  7. Functional Analysis and Molecular Docking studies of Medicinal Compounds for AChE and BChE in Alzheimer’s Disease and Type 2 Diabetes Mellitus

    PubMed Central

    Kaladhar, Dowluru SVGK; Yarla, Nagendra Sastry; Anusha, N.

    2013-01-01

    Acetylcholinesterase and Butyrylcholinesterase share unravelling link with components of metabolic syndromes that’s characterised by low levels of HDL cholesterol, obesity, high fast aldohexose levels, hyper-trigliceridaemia and high blood pressure, by regulation of cholinergic transmission and therefore the enzyme activity within a living system. The phosphomotifs associated with amino acid and tyrosine binding motifs in AChE and BChE were known to be common. Phylogenetic tree was constructed to these proteins usinf UPGMA and Maximum Likelihood methods in MEGA software has shown interaction of AChE and BChE with ageing diseases like Alzheimer’s disease and Diabetes. AChE has shown closely related to BChE, retinol dehydrogenase and β-polypeptide. The present studies is also accomplished that AChE, BChE, COLQ, HAND1, APP, NLGN2 and NGF proteins has interactions with diseases such as Alzheimer’s and D2M using Pathwaylinker and STRING. Medicinal compounds like Ortho-7, Dibucaine and HI-6 are predicted as good targets for modeled AChE and BChE proteins based on docking studies. Hence perceptive studies of cholinesterase structure and the biological mechanisms of inhibition are necessary for effective drug development. PMID:23936743

  8. Synthesis and in vitro kinetic study of novel mono-pyridinium oximes as reactivators of organophosphorus (OP) inhibited human acetylcholinesterase (hAChE).

    PubMed

    Valiveti, Aditya Kapil; Bhalerao, Uma M; Acharya, Jyotiranjan; Karade, Hitendra N; Gundapu, Raviraju; Halve, Anand K; Kaushik, Mahabir Parshad

    2015-07-25

    A series of mono pyridinium oximes linked with arenylacetamides as side chains were synthesized and their in vitro reactivation potential was evaluated against human acetylcholinesterase (hAChE) inhibited by organophosphorus inhibitors (OP) such as sarin, VX and tabun. The reactivation data of the synthesized compounds were compared with those obtained with standard reactivators such as 2-PAM and obidoxime. The dissociation constant (KD) and specific reactivity (kr) of the oximes were also determined by performing reactivation kinetics against OP inhibited hAChE. Among the synthesized compounds, oximes 1-(2-(4-cyanophenylamino)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium chloride (12a) and 4-((hydroxyimino)methyl)-1-(2-(4-methoxyphenylamino)-2-oxoethyl)pyridinium chloride (2a) were found most potent reactivators for hAChE inhibited by sarin. In case of VX inhibited hAChE majority of the oximes have shown good reactivation efficacies. Among these oximes 1-(2-(benzylamino)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium chloride (18a), 4-((hydroxyimino)methyl)-1-(2-(4-(methoxycarbonyl)phenylamino)-2-oxoethyl)pyridinium-chloride (14a) and 12a were found to surpass the reactivation potential of 2-PAM and obidoxime. However, the synthesized oximes showed marginal reactivation efficacies in case of tabun inhibited hAChE. The pKa value of the oximes were determined and correlated with their observed reactivation potential.

  9. Identification of novel α4β2-nicotinic acetylcholine receptor (nAChR) agonists based on an isoxazole ether scaffold that demonstrate antidepressant-like activity.

    PubMed

    Yu, Li-Fang; Tückmantel, Werner; Eaton, J Brek; Caldarone, Barbara; Fedolak, Allison; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J; Kozikowski, Alan P

    2012-01-26

    There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening toward other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested.

  10. Applications of Integrated Data Mining Methods to Exploring Natural Product Space for Acetylcholinesterase Inhibitors

    PubMed Central

    Schuster, Daniela; Kern, Lisa; Hristozov, Dimitar P.; Terfloth, Lothar; Bienfait, Bruno; Laggner, Christian; Kirchmair, Johannes; Grienke, Ulrike; Wolber, Gerhard; Langer, Thierry; Stuppner, Hermann; Gasteiger, Johann; Rollinger, Judith M.

    2013-01-01

    Nature, especially the plant kingdom, is a rich source for novel bioactive compounds that can be used as lead compounds for drug development. In order to exploit this resource, the two neural network-based virtual screening techniques novelty detection with self-organizing maps (SOMs) and counterpropagation neural network were evaluated as tools for efficient lead structure discovery. As application scenario, significant descriptors for acetylcholinesterase (AChE) inhibitors were determined and used for model building, theoretical model validation, and virtual screening. Top-ranked virtual hits from both approaches were docked into the AChE binding site to approve the initial hits. Finally, in vitro testing of selected compounds led to the identification of forsythoside A and (+)-sesamolin as novel AChE inhibitors. PMID:20214575

  11. Virtual Screening of Acetylcholinesterase Inhibitors Using the Lipinski's Rule of Five and ZINC Databank

    PubMed Central

    Nogara, Pablo Andrei; Saraiva, Rogério de Aquino; Caeran Bueno, Diones; Lissner, Lílian Juliana; Lenz Dalla Corte, Cristiane; Braga, Marcos M.; Rosemberg, Denis Broock; Rocha, João Batista Teixeira

    2015-01-01

    Alzheimer's disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinski's rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1) aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE) activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE) from Equus ferus (EfBChE), with IC50 ranging from 1.69 ± 0.46 to 5.64 ± 2.47 µM. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms. PMID:25685814

  12. The Anti-dementia Effects of Donepezil Involve miR-206-3p in the Hippocampus and Cortex.

    PubMed

    Wang, Cheng-Niu; Wang, Ying-Jie; Wang, Hao; Song, Lu; Chen, Yu; Wang, Jin-Liang; Ye, Ying; Jiang, Bo

    2017-04-01

    Alzheimer's disease (AD) is a most serious age-related neurodegenerative disorder accompanied with significant memory impairments in this world. Recently, microRNAs (miRNAs) have been reported to be invlolved in the pathophysiology of AD. Previous studies have shown that miRNA-206 (miR-206) is implicated in the pathogenesis of AD via suppressing the expression of brain-derived neurotrophic factor (BDNF) in the brain. Here, we examined the miR-206-3p and miR-206-5p expression in the hippocampus and cortex of Abeta precursor protein (APP)/presenilin-1 (PS1) transgenic mice treated with donepezil, a drug approved for treating AD in clinic. We found that the expression of miR-206-3p was significantly up-regulated in the hippocampus and cortex of APP/PS1 mice, while donepezil administration significantly reversed this dysfunction. In addition, enhancing the miR-206-3p level by the usage of AgomiR-206-3p significantly attenuated the anti-dementia effects of donepezil in APP/PS1 mice. Together, these results suggested that miR-206-3p is involved in the anti-dementia effects of donepezil, and could be a novel pharmacological target for treating AD.

  13. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation.

    PubMed

    Wu, Ming-Yu; Esteban, Gerard; Brogi, Simone; Shionoya, Masahi; Wang, Li; Campiani, Giuseppe; Unzeta, Mercedes; Inokuchi, Tsutomu; Butini, Stefania; Marco-Contelles, Jose

    2016-10-04

    Currently available drugs against Alzheimer's disease (AD) are only able to ameliorate the disease symptoms resulting in a moderate improvement in memory and cognitive function without any efficacy in preventing and inhibiting the progression of the pathology. In an effort to obtain disease-modifying anti-Alzheimer's drugs (DMAADs) following the multifactorial nature of AD, we have recently developed multifunctional compounds. We herein describe the design, synthesis, molecular modeling and biological evaluation of a new series of donepezil-related compounds possessing metal chelating properties, and being capable of targeting different enzymatic systems related to AD (cholinesterases, ChEs, and monoamine oxidase A, MAO-A). Among this set of analogues compound 5f showed excellent ChEs inhibition potency and a selective MAO-A inhibition (vs MAO-B) coupled to strong complexing properties for zinc and copper ions, both known to be involved in the progression of AD. Moreover, 5f exhibited moderate antioxidant properties as found by in vitro assessment. This compound represents a novel donepezil-hydroxyquinoline hybrid with DMAAD profile paving the way to the development of a novel class of drugs potentially able to treat AD.

  14. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  15. Fluorescence Quenching Determination of Uranium (VI) Binding Properties by Two Functional Proteins: Acetylcholinesterase (AChE) and Vitellogenin (Vtg).

    PubMed

    Coppin, Frédéric; Michon, Jérôme; Garnier, Cédric; Frelon, Sandrine

    2015-05-01

    The interactions between uranium and two functional proteins (AChE and Vtg) were investigated using fluorescence quenching measurements. The combined use of a microplate spectrofluorometer and logarithmic additions of uranium into protein solutions allowed us to define the fluorescence quenching over a wide range of [U]/[Pi] ratios (from 1 to 3235) at physiologically relevant conditions of pH. Results showed that fluorescence from the two functional proteins was quenched by UO2 (2+). Stoichiometry reactions, fluorescence quenching mechanisms and complexing properties of proteins, i.e. binding constants and binding sites densities, were determined using classic fluorescence quenching methods and curve-fitting software (PROSECE). It was demonstrated that in our test conditions, the protein complexation by uranium could be simulated by two specific sites (L1 and L2). The obtained complexation constant values are log K1 = 5.7 (±1.0), log K2 = 4.9 (±1.1); L1 = 83 (±2), L2 = 2220 (±150) for U(VI) - Vtg and log K1 = 8.1 (±0.9), log K2 = 6.6 (±0.5), L1 = 115 (±16), L2 = 530 (±23) for U(VI)-AChE (Li is expressed in mol/mol of protein).

  16. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies

    PubMed Central

    2011-01-01

    Background Alzheimer's disease (AD) is the most common cause of dementia characterized by progressive cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system, and hence, inhibition of AChE has emerged as one of the most promising strategies for the treatment of AD. Methods In this study, we suggest a workflow for the identification and prioritization of potential compounds targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5) program based on a set of known AChE inhibitors. Results The best five-features pharmacophore model, which includes one hydrogen bond donor and four hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of R = 0.851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R2 = 0.830. Our pharmacophore model also has a high Güner-Henry score and enrichment factor. Virtual screening performed on the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from Aβ toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological activity scores. These compounds showed interactions with important residues at the active site. Conclusions The information gained from this study may assist in the discovery of potential AChE inhibitors that are highly selective for its dual binding sites. PMID:21251245

  17. Photodegradation of organophosphorus insecticides - investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay.

    PubMed

    Bavcon Kralj, M; Franko, M; Trebse, P

    2007-02-01

    Four organophosphorus compounds: azinphos-methyl, chlorpyrifos, malathion and malaoxon in aqueous solution were degraded by using a 125 W xenon parabolic lamp. Gas chromatography-mass spectrometry (GC-MS) was used to monitor the disappearance of starting compounds and formation of degradation products as a function of time. AChE-thermal lens spectrometric bioassay was employed to assess the toxicity of photoproducts. The photodegradation kinetics can be described by a first-order degradation curve C=C0e(-kt), resulting in the following half lives: 2.5min for azinphos-methyl, 11.6 min for malathion, 13.3 min for chlorpyrifos and 45.5 min for malaoxon, under given experimental conditions. During the photoprocess several intermediates were identified by GC-MS suggesting the pathway of OP degradation. The oxidation of chlorpyrifos results in the formation of chlorpyrifos-oxon as the main identified photoproduct. In case of malathion and azinphos-methyl the corresponding oxon analogues were not detected. The formation of diethyl (dimethoxy-phosphoryl) succinate in traces was observed during photodegradation of malaoxon and malathion. Several other photoproducts including trimethyl phosphate esters, which are known to be AChE inhibitors and 1,2,3-benzotriazin-4(3H)-one as a member of triazine compounds were identified in photodegraded samples of malathion, malaoxon, and azinphos-methyl. Based on this, two main degradation pathways can be proposed, both result of the (P-S-C) bond cleavage taking place at the side of leaving group. The enhanced inhibition of AChE observed with the TLS bioassay during the initial 30 min of photodegradation in case of all four OPs, confirmed the formation of toxic intermediates. With the continuation of irradiation, the AChE inhibition decreased, indicating that the formed toxic compounds were further degraded to AChE non-inhibiting products. The presented results demonstrate the importance of toxicity monitoring during the degradation of

  18. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals

    PubMed Central

    Amat-ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  19. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    PubMed

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  20. Clinical Response to Donepezil in Mild and Moderate Dementia: Relationship to Drug Plasma Concentration and CYP2D6 and APOE Genetic Polymorphisms.

    PubMed

    Miranda, Luís F J R; Gomes, Karina B; Tito, Pedro A L; Silveira, Josianne N; Pianetti, Gerson A; Byrro, Ricardo M D; Peles, Patrícia R H; Pereira, Fernando H; Santos, Thiago R; Assini, Arthur G; Ribeiro, Valéria V; Moraes, Edgar N; Caramelli, Paulo

    2017-01-01

    The clinical response to donepezil in patients with mild and moderate dementia was investigated in relation to the drug plasma concentration and APOE and CYP2D6 polymorphisms. In a prospective naturalistic observational study, 42 patients with Alzheimer's disease (AD) and AD with cerebrovascular disease who took donepezil (10 mg) for 12 months were evaluated. Their DNA was genotyped, and the donepezil plasma concentrations were measured after 3, 6, and 12 months. Good responders scored ≥-1 on the Mini-Mental State Examination at 12 months in comparison to the baseline score. The study results indicated the good response pattern was influenced by the concentration of donepezil, but not by APOE and CYP2D6 polymorphisms.

  1. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation

    PubMed Central

    Bourne, Yves; Kolb, Hartmuth C.; Radić, Zoran; Sharpless, K. Barry; Taylor, Palmer; Marchot, Pascale

    2004-01-01

    The 1,3-dipolar cycloaddition reaction between unactivated azides and acetylenes proceeds exceedingly slowly at room temperature. However, considerable rate acceleration is observed when this reaction occurs inside the active center gorge of acetylcholinesterase (AChE) between certain azide and acetylene reactants, attached via methylene chains to specific inhibitor moieties selective for the active center and peripheral site of the enzyme. AChE catalyzes the formation of its own inhibitor in a highly selective fashion: only a single syn1-triazole regioisomer with defined substitution positions and linker distances is generated from a series of reagent combinations. Inhibition measurements revealed this syn1-triazole isomer to be the highest affinity reversible organic inhibitor of AChE with association rate constants near the diffusion limit. The corresponding anti1 isomer, not formed by the enzyme, proved to be a respectable but weaker inhibitor. The crystal structures of the syn1- and anti1-mouse AChE complexes at 2.45- to 2.65-Å resolution reveal not only substantial binding contributions from the triazole moieties, but also that binding of the syn1 isomer induces large and unprecedented enzyme conformational changes not observed in the anti1 complex nor predicted from structures of the apoenzyme and complexes with the precursor reactants. Hence, the freeze-frame reaction offers both a strategically original approach for drug discovery and a means for kinetically controlled capture, as a high-affinity complex between the enzyme and its self-created inhibitor, of a highly reactive minor abundance conformer of a fluctuating protein template. PMID:14757816

  2. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation.

    PubMed

    Bourne, Yves; Kolb, Hartmuth C; Radić, Zoran; Sharpless, K Barry; Taylor, Palmer; Marchot, Pascale

    2004-02-10

    The 1,3-dipolar cycloaddition reaction between unactivated azides and acetylenes proceeds exceedingly slowly at room temperature. However, considerable rate acceleration is observed when this reaction occurs inside the active center gorge of acetylcholinesterase (AChE) between certain azide and acetylene reactants, attached via methylene chains to specific inhibitor moieties selective for the active center and peripheral site of the enzyme. AChE catalyzes the formation of its own inhibitor in a highly selective fashion: only a single syn1-triazole regioisomer with defined substitution positions and linker distances is generated from a series of reagent combinations. Inhibition measurements revealed this syn1-triazole isomer to be the highest affinity reversible organic inhibitor of AChE with association rate constants near the diffusion limit. The corresponding anti1 isomer, not formed by the enzyme, proved to be a respectable but weaker inhibitor. The crystal structures of the syn1- and anti1-mouse AChE complexes at 2.45- to 2.65-A resolution reveal not only substantial binding contributions from the triazole moieties, but also that binding of the syn1 isomer induces large and unprecedented enzyme conformational changes not observed in the anti1 complex nor predicted from structures of the apoenzyme and complexes with the precursor reactants. Hence, the freeze-frame reaction offers both a strategically original approach for drug discovery and a means for kinetically controlled capture, as a high-affinity complex between the enzyme and its self-created inhibitor, of a highly reactive minor abundance conformer of a fluctuating protein template.

  3. Circadian Rhythms of Heart Rate and Locomotion After Treatment With Low-Dose Acetylcholinesterase Inhibitors

    DTIC Science & Technology

    2006-01-01

    on the barrier under the experimental conditions used in this heart pacemaker due to peripheral AChE inhibition, report ( Grauer et al., 2000...cgi-bin/getrpt?GAO-03-833T 112 May 20061. Jenden DJ. 2005. Low-dose cholinesterase inhibitors do not induce Grauer E, Alkalai D, Kapon J, Cohen G

  4. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase.

    PubMed

    Sun, Qi; Peng, Da-Yong; Yang, Sheng-Gang; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu

    2014-09-01

    Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer's disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.

  5. The physicochemical properties and the in vivo AChE inhibition of two potential anti-Alzheimer agents, bis(12)-hupyridone and bis(7)-tacrine.

    PubMed

    Yu, Hua; Li, Wen-Ming; Kan, Kelvin K W; Ho, Jason M K; Carlier, Paul R; Pang, Yuan-Ping; Gu, Zhe-Ming; Zhong, Zuo; Chan, Kelvin; Wang, Yi-Tao; Han, Yi-Fan

    2008-01-07

    The lipophilicity and solubility profiles of bis(12)-hupyridone (B12H) and bis(7)-tacrine (B7T), two novel acetylcholinesterase inhibitors dimerized from huperzine A fragments and tacrine, respectively, were investigated over a broad pH range. Lipophilicity was assessed by both shake flask method with 1-octanol-water system and a reverse-phase HPLC system with methanol-water as mobile phase. The former method was used for determining the lipophilicities of the ionized forms (log D) of the dimers while the latter method was used for that of the neutral forms (log P). The log P values for B12H and B7T were found to be 5.4 and 8.2, respectively, indicating that the two dimers are highly lipophilic. The solubilities of both dimers were found to be affected by pH. The solubility of B12H was >1.41 mg/ml when the pH was <7, but <0.06 mg/ml when the pH was >8. The solubility of B7T was >0.26 mg/ml when the pH was <9, but <0.005 mg/ml when the pH was >12. The ionic strength of a solution could affect the solubilities considerably (11.16 mg/ml for B12H and 12.71 mg/ml for B7T in water; 2.07 mg/ml for B12H and 0.36 mg/ml for B7T in saline). The ionization constants (pK(a)) of the two dimers were determined by UV spectrophotometry. Both dimers were found to have two pK(a) values: 7.5+/-0.1 (pK(a1)) and 10.0+/-0.2 (pK(a2)) for B12H; and 8.7+/-0.1 (pK(a1)) and 10.7+/-0.4 (pK(a2)) for B7T. Furthermore, an in vivo pharmacological assay conducted in mice showed that a maximum AChE inhibition occurred 15 min after the single-dose and intraperitoneal administration of either dimer. This indicates that the two dimers may easily cross the blood-brain barrier. In summary, these physiochemical characteristics suggest that the two dimers may be promising candidates for the development of better drugs for Alzheimer's disease.

  6. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-09

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  7. Acetylcholinesterase Inhibitors with Photoswitchable Inhibition of β-Amyloid Aggregation

    PubMed Central

    2014-01-01

    Photochromic cholinesterase inhibitors were obtained from cis-1,2-α-dithienylethene-based compounds by incorporating one or two aminopolymethylene tacrine groups. All target compounds are potent acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors in the nanomolar concentration range. Compound 11b bearing an octylene linker exhibited interactions with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Yet upon irradiation with light, the mechanism of interaction varied from one photochromic form to another, which was investigated by kinetic studies and proved “photoswitchable”. The AChE-induced β-amyloid (Aβ) aggregation assay gave further experimental support to this finding: Aβ1–40 aggregation catalyzed by the PAS of AChE might be inhibited by compound 11b in a concentration-dependent manner and seems to occur only with one photochromic form. Computational docking studies provided potential binding modes of the compound. Docking studies and molecular dynamics (MD) simulations for the ring-open and -closed form indicate a difference in binding. Although both forms can interact with the PAS, more stable interactions are observed for the ring-open form based upon stabilization of a water molecule network within the enzyme, whereas the ring-closed form lacks the required conformational flexibility for an analogous binding mode. The photoswitchable inhibitor identified might serve as valuable molecular tool to investigate the different biological properties of AChE as well as its role in pathogenesis of AD in in vitro assays. PMID:24628027

  8. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer's disease: acetylcholinesterase inhibitors.

    PubMed

    Russo, P; Frustaci, A; Del Bufalo, A; Fini, M; Cesario, A

    2013-01-01

    The leading Alzheimer's disease (AD) therapeutics to date involves inhibitors of acetylcholinesterase (AChE), which should, in principle, elevate cholinergic signaling and limit inflammation. In spite of the effectiveness in 20%-30% of AD patients, more attention has been paid to find new anti-AChE agents from medicinal plants. Galanthamine, contained in the bulbs and flowers of Galanthus and related genera like Narcissus, represents a good example. The aim of this study is to review the role of possible AChE inhibitors (AChEI) present in plants traditionally used in European medicine for improving memory. Starting from Galanthamine, properties of Melissa species, Salvia officinalis, Arnica chamissonis and Ruta graveolens are discussed to point to the role of these plants as potential sources for the development of therapeutic agents for AD.

  9. In silico studies in probing the role of kinetic and structural effects of different drugs for the reactivation of tabun-inhibited AChE.

    PubMed

    Lo, Rabindranath; Chandar, Nellore Bhanu; Kesharwani, Manoj K; Jain, Aastha; Ganguly, Bishwajit

    2013-01-01

    We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong O(…)H and N(…)H hydrogen bonding and C-H(…)π non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun

  10. In Silico Studies in Probing the Role of Kinetic and Structural Effects of Different Drugs for the Reactivation of Tabun-Inhibited AChE

    PubMed Central

    Lo, Rabindranath; Chandar, Nellore Bhanu; Kesharwani, Manoj K.; Jain, Aastha; Ganguly, Bishwajit

    2013-01-01

    We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong O…H and N…H hydrogen bonding and C-H…π non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun-inhibited enzyme

  11. Donepezil Enhances Frontal Functional Connectivity in Alzheimer's Disease: A Pilot Study

    PubMed Central

    Griffanti, Ludovica; Wilcock, Gordon K.; Voets, Natalie; Bonifacio, Guendalina; Mackay, Clare E.; Jenkinson, Mark; Zamboni, Giovanna

    2016-01-01

    Background We have previously shown that increased resting-state functional magnetic resonance imaging (fMRI)-based functional connectivity (FC) within the frontal resting-state networks in Alzheimer's disease (AD) patients reflects residual, possibly compensatory, function. This suggests that symptomatic treatments should aim to enhance FC specifically in these networks. Methods 18 patients with probable AD underwent brain MRI and neuropsychological assessment at baseline and after 12 weeks of treatment with donepezil. We tested if changes in cognitive performance after treatment correlated with changes in FC in resting-state networks known to be altered in AD. Results We found increases in FC in the orbitofrontal network that correlated with cognitive improvement after treatment. The increased FC was greatest in patients who responded most to treatment. Conclusion This ‘proof of concept’ study suggests that changes in network-specific FC might be a biomarker of pharmacological intervention efficacy in AD. PMID:27920795

  12. Donepezil 23 mg: a brief insight on efficacy and safety concerns.

    PubMed

    Nguyen, Minh D; Salbu, Rebecca L

    2013-12-01

    As life expectancy increases, it is imperative that health care providers recognize the importance of safe medication use within an aging geriatric population. Dealing with a cohort that has different biological and medical demands requires pharmacists to pay particular attention to details when treating this subset of individuals. In particular, this manuscript will focus on Alzheimer's disease (AD) and considerations when dealing with new treatment options. The Food and Drug Administration's recent approval of the increased dosage strength, donepezil 23 mg, previously only available in 5 mg and 10 mg strengths, has raised efficacy and safety concerns. Reservations stem from unproven superiority along with an increased incidence of adverse events. The purpose of the manuscript is to provide a brief insight into these concerns and provide readers the knowledge necessary to make a clinically sound decision when treating patients with moderate-to-severe AD.

  13. Increased ratio of rapsyn to ACh receptor stabilizes postsynaptic receptors at the mouse neuromuscular synapse

    PubMed Central

    Gervásio, Othon L; Phillips, William D

    2005-01-01

    The metabolic turnover of nicotinic ACh receptors (AChR) at the neuromuscular synapse is regulated over a tenfold range by innervation status, muscle electrical activity and neural agrin, but the downstream effector of such changes has not been defined. The AChR-associated protein rapsyn is essential for forming AChR clusters during development. Here, rapsyn was tagged with enhanced green fluorescent protein (EGFP) to begin to probe its influence at the adult synapse. In C2 myotubes, rapsyn–EGFP participated with AChR in agrin-induced AChR cluster formation. When electroporated into the tibialis anterior muscle of young adult mice, rapsyn–EGFP accumulated in discrete subcellular structures, many of which colocalized with Golgi markers, consistent with the idea that rapsyn assembles with AChR in the exocytic pathway. Rapsyn–EGFP also targeted directly to the postsynaptic membrane where it occupied previously vacant rapsyn binding sites, thereby increasing the rapsyn to AChR ratio. At endplates displaying rapsyn–EGFP, the metabolic turnover of AChR (labelled with rhodamine-α-bungarotoxin) was slowed. Thus, the metabolic half-life of receptors at the synapse may be modulated by local changes in the subsynaptic ratio of rapsyn to AChR. PMID:15550459

  14. Changes in cognitive domains during three years in patients with Alzheimer's disease treated with donepezil

    PubMed Central

    Persson, Cecilia M; Wallin, Åsa K; Levander, Sten; Minthon, Lennart

    2009-01-01

    Background The objective was to identify separate cognitive domains in the standard assessment tools (MMSE, ADAS-Cog) and analyze the process of decline within domains during three years in Alzheimer's disease (AD) patients with donepezil treatment. Method AD patients (n = 421) were recruited from a clinical multi-centre study program in Sweden. Patients were assessed every six months during three years. All patients received donepezil starting directly after study entry. After dropouts, 158 patients remained for analyses over three years. Data for the other patients were analysed until they dropped out (4 groups based on length in study). Results Factor analyses of all items suggested that there were three intercorrelated factors: a General, a Memory and a Spatial factor for which we constructed corresponding domains. Overall there was a cognitive improvement at six months followed by a linear drop over time for the three domains. Some group and domain differences were identified. Patients who remained longer in the study had better initial performance and a slower deterioration rate. The early dropouts showed no improvement at six months and many dropped out due to side effects. The other groups displayed a performance improvement at six months that was less pronounced in the Memory domain. Before dropping out, deterioration accelerated, particularly in the Spatial domain. Conclusion The course of illness in the three domains was heterogeneous among the patients. We were not able to identify any clinically relevant correlates of this heterogeneity. As an aid we constructed three algorithms corresponding to the cognitive domains, which can be used to characterize patients initially, identify rapid decliners and follow the course of the disease. PMID:19208247

  15. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs)

    PubMed Central

    Abraham, Nikita; Paul, Blessy; Ragnarsson, Lotten; Lewis, Richard J.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies. PMID:27304486

  16. 1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.

    PubMed

    Di Pietro, Ornella; Viayna, Elisabet; Vicente-García, Esther; Bartolini, Manuela; Ramón, Rosario; Juárez-Jiménez, Jordi; Clos, M Victòria; Pérez, Belén; Andrisano, Vincenza; Luque, F Javier; Lavilla, Rodolfo; Muñoz-Torrero, Diego

    2014-02-12

    A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (>11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.

  17. Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations

    PubMed Central

    Pecic, Stevan; McAnuff, Marie A.; Harding, Wayne W.

    2015-01-01

    Nantenine, as well as a number of flexible analogs, were evaluated for acetylcholinesterase (AChE) inhibitory activity in microplate spectrophotometric assays based on Ellman’s method. It was found that the rigid aporphine core of nantenine is an important structural requirement for its anticholinesterase activity. Nantenine showed mixed inhibition kinetics in enzyme assays. Molecular docking experiments suggest that nantenine binds preferentially to the catalytic site of AChE but is also capable of interacting with the peripheral anionic site (PAS) of the enzyme, thus accounting for its mixed inhibition profile. The aporphine core of nantenine may thus be a useful template for the design of novel PAS or dual-site AChE inhibitors. Inhibiting the PAS is desirable for prevention of aggregation of the amyloid peptide Aβ, a major causative factor in the progression of Alzheimer’s disease (AD). PMID:20583856

  18. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation.

    PubMed

    Belluti, Federica; Rampa, Angela; Piazzi, Lorna; Bisi, Alessandra; Gobbi, Silvia; Bartolini, Manuela; Andrisano, Vincenza; Cavalli, Andrea; Recanatini, Maurizio; Valenti, Piero

    2005-06-30

    In continuing research that led us to identify a new class of carbamate derivatives acting as potent (Rampa et al. J. Med. Chem. 1998, 41, 3976) and long-lasting (Rampa et al. J. Med. Chem. 2001, 44, 3810) acetylcholinesterase (AChE) inhibitors, we obtained some analogues able to simultaneously block both the catalytic and the beta-amyloid (Abeta) proaggregatory activities of AChE. The key feature of these derivatives is a 2-arylidenebenzocycloalkanone moiety that provides the ability to bind at the AChE peripheral site responsible for promoting the Abeta aggregation. The new carbamates were tested in vitro for the inhibition of both cholinesterases and also for the ability to prevent the AChE-induced Abeta aggregation. All of the compounds had AChE IC(50) values in the nanomolar range and showed the ability to block the AChE-induced Abeta aggregation, thus supporting the feasibility of this new strategy in the search of compounds for the treatment of Alzheimer's disease.

  19. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases

    NASA Astrophysics Data System (ADS)

    Dou, Dengfeng; Park, Jewn Giew; Rana, Sandeep; Madden, Benjamin J.; Jiang, Haobo; Pang, Yuan-Ping

    2013-01-01

    We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604-458,597 M-1sec-1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M-1sec-1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.

  20. Cognitive Results of CANTAB Tests and Their Change Due to the First Dose of Donepezil May Predict Treatment Efficacy in Alzheimer Disease

    PubMed Central

    Kuzmickienė, Jurgita; Kaubrys, Gintaras

    2015-01-01

    Background Ability to predict the efficacy of treatment in Alzheimer disease (AD) may be very useful in clinical practice. Cognitive predictors should be investigated alongside with the demographic, genetic, and other predictors of treatment efficacy. The aim of this study was to establish whether the baseline measures of CANTAB tests and their changes due to the first donepezil dose are able to predict the efficacy of treatment after 4 months of therapy. We also compared the predictive value of cognitive, clinical, and demographic predictors of treatment efficacy in AD. Material/Methods Seventy-two AD patients (62 treatment-naïve and 10 donepezil-treated) and 30 controls were enrolled in this prospective, randomized, rater-blinded, follow-up study. Treatment-naïve AD patients were randomized to 2 groups to take the first donepezil dose after the first or second CANTAB testing, separated by 4 hours. Follow-up Test 3 was performed 4 months after the initial assessment. Results The groups were similar in age, education, gender, Hachinski index, and depression. General Regression Models (GRM) have shown that cognitive changes after the first dose of donepezil in PAL (t-values for regression coefficients from 3.43 to 6.44), PRMd (t=4.33), SWM (t=5.85) test scores, and baseline results of PAL (t=2.57–2.86), PRM (t=3.08), and CRT (t=3.42) tests were significant predictors of long-term donepezil efficacy in AD (p<0.05). Conclusions The cognitive changes produced by the first donepezil dose in CANTAB PAL, PRM, and SWM test measures are able to predict the long-term efficacy of donepezil in AD. Baseline PAL, PRM, and CRT test results were significant predictors. PMID:26656642

  1. Cognitive Results of CANTAB Tests and Their Change Due to the First Dose of Donepezil May Predict Treatment Efficacy in Alzheimer Disease.

    PubMed

    Kuzmickienė, Jurgita; Kaubrys, Gintaras

    2015-12-14

    BACKGROUND Ability to predict the efficacy of treatment in Alzheimer disease (AD) may be very useful in clinical practice. Cognitive predictors should be investigated alongside with the demographic, genetic, and other predictors of treatment efficacy. The aim of this study was to establish whether the baseline measures of CANTAB tests and their changes due to the first donepezil dose are able to predict the efficacy of treatment after 4 months of therapy. We also compared the predictive value of cognitive, clinical, and demographic predictors of treatment efficacy in AD. MATERIAL AND METHODS Seventy-two AD patients (62 treatment-naïve and 10 donepezil-treated) and 30 controls were enrolled in this prospective, randomized, rater-blinded, follow-up study. Treatment-naïve AD patients were randomized to 2 groups to take the first donepezil dose after the first or second CANTAB testing, separated by 4 hours. Follow-up Test 3 was performed 4 months after the initial assessment. RESULTS The groups were similar in age, education, gender, Hachinski index, and depression. General Regression Models (GRM) have shown that cognitive changes after the first dose of donepezil in PAL (t-values for regression coefficients from 3.43 to 6.44), PRMd (t=4.33), SWM (t=5.85) test scores, and baseline results of PAL (t=2.57-2.86), PRM (t=3.08), and CRT (t=3.42) tests were significant predictors of long-term donepezil efficacy in AD (p<0.05). CONCLUSIONS The cognitive changes produced by the first donepezil dose in CANTAB PAL, PRM, and SWM test measures are able to predict the long-term efficacy of donepezil in AD. Baseline PAL, PRM, and CRT test results were significant predictors.

  2. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine.

    PubMed

    Samadi, Abdelouahid; de los Ríos, Cristóbal; Bolea, Irene; Chioua, Mourad; Iriepa, Isabel; Moraleda, Ignacio; Bartolini, Manuela; Andrisano, Vincenza; Gálvez, Enrique; Valderas, Carolina; Unzeta, Mercedes; Marco-Contelles, José

    2012-06-01

    The synthesis, pharmacological evaluation and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amines 1-7 of type I, and 9-12 of type II, designed as multipotent inhibitors able to simultaneously inhibit monoamine oxidases (MAO-A/B) as well as cholinesterase (AChE/BuChE) enzymes, as potential drugs for the treatment of Alzheimer's disease, are described. Indole derivatives 1-7 of type I are well known MAO inhibitors whose capacity to inhibit AChE and BuChE was here investigated for the first time. As a result, compound 7 was identified as a MAO-B inhibitor (IC(50) = 31 ± 2 nM) and a moderately selective eqBuChE inhibitor (IC(50) = 4.7 ± 0.2 μM). Conversely, the new and readily available 5-amino-7-(prop-2-yn-1-yl)-6,7,8,9-tetrahydropyrido[2,3-b][1,6]naphthyridine derivatives 9-13 of type II are poor MAO inhibitors, but showed AChE selective inhibition, compound 12 being the most attractive as it acts as a non-competitive inhibitor on EeAChE (IC(50) = 25 ± 3 nM, K(i) = 65 nM). The ability of this compound to interact with the AChE peripheral binding site was confirmed by kinetic studies and by molecular modeling investigation. Studies on human ChEs confirmed that 12 is a selective AChE inhibitor with inhibitory potency in the submicromolar range. Moreover, in agreement with its mode of action, 12 was shown to be able to inhibit Aβ aggregation induced by hAChE by 30.6%.

  3. Antisense miR-132 blockade via the AChE-R splice variant mitigates cortical inflammation

    PubMed Central

    Mishra, Nibha; Friedson, Lyndon; Hanin, Geula; Bekenstein, Uriya; Volovich, Meshi; Bennett, Estelle R.; Greenberg, David S.; Soreq, Hermona

    2017-01-01

    MicroRNA (miR)-132 brain-to-body messages suppress inflammation by targeting acetylcholinesterase (AChE), but the target specificity of 3’-AChE splice variants and the signaling pathways involved remain unknown. Using surface plasmon resonance (SPR), we identified preferential miR-132 targeting of soluble AChE-R over synaptic-bound AChE-S, potentiating miR-132-mediated brain and body cholinergic suppression of pro-inflammatory cytokines. Inversely, bacterial lipopolysaccharide (LPS) reduced multiple miR-132 targets, suppressed AChE-S more than AChE-R and elevated inflammatory hallmarks. Furthermore, blockade of peripheral miR-132 by chemically protected AM132 antisense oligonucleotide elevated muscle AChE-R 10-fold over AChE-S, and cortical miRNA-sequencing demonstrated inverse brain changes by AM132 and LPS in immune-related miRs and neurotransmission and cholinergic signaling pathways. In neuromuscular junctions, AM132 co-elevated the nicotinic acetylcholine receptor and AChE, re-balancing neurotransmission and reaching mild muscle incoordination. Our findings demonstrate preferential miR-132-induced modulation of AChE-R which ignites bidirectional brain and body anti-inflammatory regulation, underscoring splice-variant miR-132 specificity as a new complexity level in inflammatory surveillance. PMID:28209997

  4. Inhibitor Profile of bis(n)-tacrines and N-methylcarbamates on Acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAchE) compared to h...

  5. An overview of the current and novel drugs for Alzheimer's disease with particular reference to anti-cholinesterase compounds.

    PubMed

    Colombres, Marcela; Sagal, Juan Paulo; Inestrosa, Nibaldo C

    2004-01-01

    Several cellular processes could be targeted if the complex nature of Alzheimer's disease (AD) was already understood. Most of AD treatments have been focused on the inhibition of acetylcholinesterase (AChE) in order to raise the levels of its substrate, i.e. the neurotransmitter acetylcholine (ACh), to augment cognitive functions of affected patients. Effectiveness in AChE inhibition and side-effect issues of clinical (tacrine, donepezil, galanthamine and rivastigmine) as well as of novel inhibitors is reviewed here. Novel design methods for the inhibition of AChE include the use of in silico tools to predict the interactions between AChE and the desired compound, both at the active site of the enzyme, responsible of hydrolysing ACh and with the peripheral anionic site (PAS), which has been described as a promoting agent of the amyloid beta-peptide (A beta) aggregation present in the senile plaques of the brain of AD individuals.

  6. Nicotine activates YAP1 through nAChRs mediated signaling in esophageal squamous cell cancer (ESCC).

    PubMed

    Zhao, Yue; Zhou, Wei; Xue, Liyan; Zhang, Weimin; Zhan, Qimin

    2014-01-01

    Cigarette smoking is an established risk factor for esophageal cancers. Yes-associated protein 1 (YAP1), the key transcription factor of the mammalian Hippo pathway, has been reported to be an oncogenic factor for many cancers. In this study, we find nicotine administration can induce nuclear translocation and activation of YAP1 in ESCC. Consistently, we observed nuclear translocation and activation of YAP1 by knockdown of CHRNA3, which is a negative regulator of nicotine signaling in bronchial and esophageal cancer cells. Nicotine administration or CHRNA3 depletion substantially increased proliferation and migration in esophageal cancer cells. Interestingly, we find that YAP1 physically interacts with nAChRs, and nAChRs-signaling dissociates YAP1 from its negative regulatory complex composed with α-catenin, β-catenin and 14-3-3 in the cytoplasm, leading to upregulation and nuclear translocation of YAP1. This process likely requires PKC activation, as PKC specific inhibitor Enzastaurin can block nicotine induced YAP1 activation. In addition, we find nicotine signaling also inhibits the interaction of YAP1 with P63, which contributes to the inhibitory effect of nicotine on apoptosis. Using immunohistochemistry analysis we observed upregulation of YAP1 in a significant portion of esophageal cancer samples. Consistently, we have found a significant association between YAP1 upregulation and cigarette smoking in the clinical esophageal cancer samples. Together, these findings suggest that the nicotine activated nAChRs signaling pathway which further activates YAP1 plays an important role in the development of esophageal cancer, and this mechanism may be of a general significance for the carcinogenesis of smoking related cancers.

  7. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  8. The 3D-QSAR study of 110 diverse, dual binding, acetylcholinesterase inhibitors based on alignment independent descriptors (GRIND-2). The effects of conformation on predictive power and interpretability of the models.

    PubMed

    Vitorović-Todorović, Maja D; Cvijetić, Ilija N; Juranić, Ivan O; Drakulić, Branko J

    2012-09-01

    The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models were built, based on different conformations, generated following next criteria: (i) minimum energy conformations, (ii) conformation most similar to the co-crystalized ligand conformation, and (iii) docked conformation. We found that regardless on conformation used, all the three models had good statistic and predictivity. The models revealed the importance of protonated pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD interactions as highly important for the potency. This was revealed by the variables associated with protonated pyridinium nitrogen, and the two amino groups of the linker. MIFs calculated with the N1 (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to establish the relationship between amino acid residues within AChE active site and the variables having high impact on models. External predictive power of the models was tested on the set of 40 AChE reversible inhibitors, most of them structurally different from the training set. Some of those compounds were tested on the different enzyme source. We found that external predictivity was highly sensitive on conformations used. Model based on docked conformations had superior predictive ability, emphasizing the need for the employment of conformations built by taking into account geometrical restrictions of AChE active site gorge.

  9. Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) α5 Subunits and/or variants modulate function of α6*-nAChR.

    PubMed

    Dash, Bhagirathi; Chang, Yongchang; Lukas, Ronald J

    2011-11-04

    To further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3(V9)'(S) subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*-nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3(V9)'(S) subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3(V9)'(S) subunits has a gain-of-function effect more pronounced than that in the presence of α5(V9)'(S) subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*-nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases.

  10. Modulation of recombinant, α2*, α3* or α4*-nicotinic acetylcholine receptor (nAChR) function by nAChR β3 subunits.

    PubMed

    Dash, Bhagirathi; Bhakta, Minoti; Chang, Yongchang; Lukas, Ronald J

    2012-05-01

    The nicotinic acetylcholine receptor (nAChR) β3 subunit is thought to serve an accessory role in nAChR subtypes expressed in dopaminergic regions implicated in drug dependence and reward. When β3 subunits are expressed in excess, they have a dominant-negative effect on function of selected nAChR subtypes. In this study, we show, in Xenopus oocytes expressing α2, α3 or α4 plus either β2 or β4 subunits, that in the presumed presence of similar amounts of each nAChR subunit, co-expression with wild-type β3 subunits generally (except for α3*-nAChR) lowers amplitudes of agonist-evoked, inward peak currents by 20-50% without having dramatic effects (≤ 2-fold) on agonist potencies. By contrast, co-expression with mutant β3(V9'S) subunits generally (except for α4β2*-nAChR) increases agonist potencies, consistent with an expected gain-of-function effect. This most dramatically demonstrates formation of complexes containing three kinds of subunit. Moreover, for oocytes expressing nAChR containing any α subunit plus β4 and β3(V9'S) subunits, there is spontaneous channel opening sensitive to blockade by the open channel blocker, atropine. Collectively, the results indicate that β3 subunits integrate into all of the studied receptor assemblies and suggest that natural co-expression with β3 subunits can influence levels of expression and agonist sensitivities of several nAChR subtypes.

  11. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  12. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  13. Exploration of the susceptibility of AChE from the poultry red mite Dermanyssus gallinae (Acari: Mesostigmata) to organophosphates in field isolates from France.

    PubMed

    Roy, Lise; Chauve, Claude; Delaporte, Jean; Inizan, Gilbert; Buronfosse, Thierry

    2009-06-01

    The red fowl mite Dermanyssus gallinae (De Geer, 1778) is a hematophagous mite species, which is very commonly found in layer facilities in Europe. The economic and animal health impact of this parasite is quite important. In laying hen houses, organophosphates are almost the only legally usable chemicals. Detecting a target resistance can be useful in order to limit the emergence of resistant populations. The acetylcholinesterase (AChE) activity and the enzyme sensitivity to paraoxon was investigated in 39 field samples and compared to a susceptible reference strain (SSK). Insensitivity factor values (expressed as IC50 ratio) obtained from field isolates compared to SSK revealed some polymorphism but not exceeding a 6-fold difference. The kinetic characteristics of AChE from some field samples showed some difference in KM values for acetylthiocholine and inhibition kinetics performed with diethyl paraoxon exhibited a 5.5-fold difference in the bimolecular rate constant in one field isolate. Taken together, these data suggested that differences in AChE susceptibility to organophosphates may exist in D. gallinae but no resistant population was found.

  14. Sperm Epidermal Growth Factor Receptor (EGFR) Mediates α7 Acetylcholine Receptor (AChR) Activation to Promote Fertilization

    PubMed Central

    Jaldety, Yael; Glick, Yair; Orr-Urtreger, Avi; Ickowicz, Debby; Gerber, Doron; Breitbart, Haim

    2012-01-01

    To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca2+ influx, and the acrosome reaction. PMID:22577141

  15. Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis.

    PubMed

    Artursson, Elisabet; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Ekström, Fredrik

    2009-11-30

    The nerve agent tabun inhibits the essential enzyme acetylcholinesterase (AChE) by a rapid phosphoramidation of the catalytic serine residue. Oximes, such as K027 and HLö-7, can reactivate tabun-inhibited human AChE (tabun-hAChE) whereas the activity of their close structural analogue HI-6 is notably low. To investigate HI-6, K027 and HLö-7, residues lining the active-site gorge of hAChE were substituted and the effects on kinetic parameters for reactivation were determined. None of the mutants (Asp74Asn, Asp74Glu, Tyr124Phe, Tyr337Ala, Tyr337Phe, Phe338Val and Tyr341Ala) were able to facilitate HI-6-mediated reactivation of tabun-hAChE. In contrast, Tyr124Phe and Tyr337Phe induce a 2-2.5-fold enhancement of the bimolecular rate constant for K027 and HLö-7. The largest effects on the dissociation constant (3.5-fold increase) and rate constant (20-fold decrease) were observed for Tyr341Ala and Asp74Asn, respectively. These findings demonstrate the importance of residues located distant from the conjugate during the reactivation of tabun-hAChE.

  16. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

    PubMed Central

    Gupta, Shikhar; Mohan, C. Gopi

    2014-01-01

    In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of AChE and BuChE enzyme inhibitors have been developed from xanthostigmine derivatives through HypoGen and validated using test set, Fischer's randomization technique. The best acetylcholinesterase and butyrylcholinesterase inhibitors pharmacophore hypotheses Hypo1_A and Hypo1_B, with high correlation coefficient of 0.96 and 0.94, respectively, were used as 3D query for screening the Zinc database. The screened hits were then subjected to the ADME/T and molecular docking study to prioritise the compounds. Finally, 18 compounds were identified as potential leads against AChE enzyme, showing good predicted activities and promising ADME/T properties. PMID:25050335

  17. Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) - Methods

    PubMed Central

    Birnbaum, L.S.; Dutton, N.D.; Cusack, C.; Mennemeyer, S.T.; Pavuk, M.

    2015-01-01

    High serum concentrations of polychlorinated biphenyls (PCBs) have been reported previously among residents of Anniston, Alabama, where a PCB production facility was located in the past. As the second of two cross-sectional studies of these Anniston residents, the Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) will yield repeated measurements to be used to evaluate changes over time in ortho-PCB concentrations and selected health indicators in study participants. Dioxins, non-ortho PCBs, other chemicals, heavy metals, and a variety of additional clinical tests not previously measured in the original ACHS cohort will be examined in ACHS-II. The follow-up study also incorporates a questionnaire with extended sections on diet and occupational history for a more comprehensive assessment of possible exposure sources. Data collection for ACHS-II from 359 eligible participants took place in 2014, seven to nine years after ACHS. PMID:25982988

  18. Anniston community health survey: Follow-up and dioxin analyses (ACHS-II)--methods.

    PubMed

    Birnbaum, Linda S; Dutton, N D; Cusack, C; Mennemeyer, S T; Pavuk, M

    2016-02-01

    High serum concentrations of polychlorinated biphenyls (PCBs) have been reported previously among residents of Anniston, Alabama, where a PCB production facility was located in the past. As the second of two cross-sectional studies of these Anniston residents, the Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) will yield repeated measurements to be used to evaluate changes over time in ortho-PCB concentrations and selected health indicators in study participants. Dioxins, non-ortho PCBs, other chemicals, heavy metals, and a variety of additional clinical tests not previously measured in the original ACHS cohort will be examined in ACHS-II. The follow-up study also incorporates a questionnaire with extended sections on diet and occupational history for a more comprehensive assessment of possible exposure sources. Data collection for ACHS-II from 359 eligible participants took place in 2014, 7 to 9 years after ACHS.

  19. THE ACHES THAT TAKE YOUR BREATH (AND TEARS) AWAY.

    PubMed

    Becerril, J; Gonzales, H; Saketkoo, L A

    2015-01-01

    An 80-year-old man presented with a complaint of three months of fatigue and aching of his shoulders and hips, as well as pain, swelling, and stiffness in bilateral fingers that was worse in the morning but improved with movement. Associated symptoms included worsening dry mouth and eyes, dysphagia, exertional dyspnea, and right foot drop. Physical exam was significant for edematous and tender bilateral proximal interphalangeal joints, metacarpophalangeal joints and wrists with decreased grip, extension and flexion, as well as bilateral pulmonary crackles. Laboratory analysis revealed Anti-Ro (SSA) and Anti-La (SSB) positivity with elevated erythrocyte sedimentation rate (70mm/hr) and C-reactive peptide (13mg/L). Pulmonary function testing was notable for a forced vital capacity (FVC) of 64% and carbon monoxide diffusing capacity (DLCO) of 44%. High resolution chest computed tomography demonstrated fibrotic changes consistent with nonspecific interstitial pneumonitis. The patient was started on mycophenolate mofetil, hydroxychloroquine, and prednisone for Sjögren's syndrome (SjS). Symptoms improved and repeat FVC revealed a 20 percent improvement, however subsequent tapering of prednisone resulted in worsening dyspnea and increase of FVC to 60 prcent. Prednisone was restarted and rituximab 2g divided in two doses was administered with overall symptom improvement. Symptoms and FVC continued to wax and wane over the following 18 months requiring re-dosing of rituximab with most recent FVC improved to 71 percent and DLCO 41 percent.

  20. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Järvinen, Päivi; Karlsson, Daniela; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-02-15

    Dual binding site acetylcholinesterase (AChE) inhibitors are promising for the treatment of Alzheimer's disease (AD). They alleviate the cognitive deficits and AD-modifying agents, by inhibiting the β-amyloid (Aβ) peptide aggregation, through binding to both the catalytic and peripheral anionic sites, the so called dual binding site of the AChE enzyme. In this Letter, chemical features based 3D-pharmacophore models were developed based on the eight potent and structurally diverse AChE inhibitors (I-VIII) obtained from high-throughput in vitro screening technique. The best 3D-pharmacophore model, Hypo1, consists of two hydrogen-bond acceptor lipid, one hydrophobe, and two hydrophobic aliphatic features obtained by Catalyst/HIPHOP algorithm adopted in Discovery studio program. Hypo1 was used as a 3D query in sequential virtual screening study to filter three small compound databases. Further, a total of nine compounds were selected and followed on in vitro analysis. Finally, we identified two leads--Specs1 (IC(50)=3.279 μM) and Spec2 (IC(50)=5.986 μM) dual binding site compounds from Specs database, having good AChE enzyme inhibitory activity.

  1. Recent developments in the synthesis of acetylcholinesterase inhibitors.

    PubMed

    Marco, José L; Carreiras, M Carmo

    2003-09-01

    The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of a series of pyrano[2,3-b]quinolines (2, 3), [1,8]naphthyridines (5, 6), 4-amino-2,3-diaryl-5,6,7,8-tetrahydrofuro[2,3-b]quinolines (11-13)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]furo[2,3-b]pyridine (14), 4-amino-5,6,7,8-tetrahydro-2,3-diphenylthieno[2,3-b]quinoline (15)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]thieno[2,3-b]pyridine (16) are described. These compounds are tacrine analogues that have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyran]-3-carboxylates (9, 10), ethyl [6-amino-5-cyanopyridine]-3-carboxylates (7, 8), 2-amino-3-cyano-4,5-diarylfurans (17-19) and 2-amino-3-cyano-4,5-diphenylthiophene (20) via Friedländer condensation with selected ketones. These compounds are competitive and, in a few cases, non-competitive inhibitors for AChE, the most potent being compound (14), though three-fold less active than tacrine. The BuChE inhibitory activity is only significant in compounds 11 and 14, ten-fold less active than tacrine. Furthermore, the products 12 and 13 are selective and moderate AChE inhibitors.

  2. Dihydroquinoline Carbamate Derivatives as "Bio-oxidizable" Prodrugs for Brain Delivery of Acetylcholinesterase Inhibitors: [¹¹C] Radiosynthesis and Biological Evaluation.

    PubMed

    Bohn, Pierre; Gourand, Fabienne; Papamicaël, Cyril; Ibazizène, Méziane; Dhilly, Martine; Gembus, Vincent; Alix, Florent; Ţînţaş, Mihaela-Liliana; Marsais, Francis; Barré, Louisa; Levacher, Vincent

    2015-05-20

    With the aim of improving the efficiency of marketed acetylcholinesterase (AChE) inhibitors in the symptomatic treatment of Alzheimer's disease, plagued by adverse effects arising from peripheral cholinergic activation, this work reports a biological evaluation of new central AChE inhibitors based on an original "bio-oxidizable" prodrug strategy. After peripheral injection of the prodrug 1a [IC50 > 1 mM (hAChE)] in mice, monitoring markers of central and peripheral cholinergic activation provided in vivo proof-of-concept for brain delivery of the drug 2a [IC50 = 20 nM (hAChE)] through central redox activation of 1a. Interestingly, peripheral cholinergic activation has been shown to be limited in time, likely due to the presence of a permanent positive charge in 2a promoting rapid elimination of the AChE inhibitor from the circulation of mice. To support these assumptions, the radiosynthesis with carbon-11 of prodrug 1a was developed for additional ex vivo studies in rats. Whole-body biodistribution of radioactivity revealed high accumulation in excretory organs along with moderate but rapid brain uptake. Radio-HPLC analyses of brain samples confirm rapid CNS penetration of [(11)C]1a, while identification of [(11)C]2a and [(11)C]3a both accounts for central redox activation of 1a and pseudoirreversible inhibition of AChE, respectively. Finally, Caco-2 permeability assays predicted metabolite 3a as a substrate for efflux transporters (P-gp inter alia), suggesting that metabolite 3a might possibly be actively transported out of the brain. Overall, a large body of evidence from in vivo and ex vivo studies on small animals has been collected to validate this "bio-oxidizable" prodrug approach, emerging as a very promising strategy in the rational design of selective central AChE inhibitors.

  3. Esterase detoxification of acetylcholinesterase inhibitors by ...

    EPA Pesticide Factsheets

    Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON) are considered factors underlying age-related sensitivity differences. We used an in vitro system to measure detoxification of AChE-inhibiting pesticides mediated via these esterases. Recombinant human AChE was used as a bioassay of inhibitor concentration following incubation with detoxifying tissue: liver plus Ca+2 (to stimulate PONs, measuring activity of both esterases) or EGTA (to inhibit PONs, thereby measuring CaE activity). Inhibitory concentrations of aldicarb, chlorpyrifos oxon, malaoxon, methamidophos, oxamyl, paraoxon, and methyl paraoxon were incubated with liver from adult male rat or one of 20 commercially provided human (11-83 years of age) liver samples. Detoxification was the difference in inhibition produced by the pesticide alone or in combination with liver plus Ca+2 or EGTA. Generally, rat liver produced more detoxification than did the human samples. There were large detoxification differences, which were not correlated with age or sex, across human samples for some pesticides (especially malaoxon, chlorpyrifos oxon) but not for others (e.g., aldicarb, methamidophos). Chlorpyrifos oxon was detoxified only in the presence of Ca+2 in both rat and human livers. Detoxification of pa

  4. Acetylcholinesterase inhibitors: SAR and kinetic studies on omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl derivatives.

    PubMed

    Rampa, A; Piazzi, L; Belluti, F; Gobbi, S; Bisi, A; Bartolini, M; Andrisano, V; Cavrini, V; Cavalli, A; Recanatini, M; Valenti, P

    2001-11-08

    In this work, we further investigated a class of carbamic cholinesterase inhibitors introduced in a previous paper (Rampa et al. J. Med. Chem. 1998, 41, 3976). Some new omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl analogues were designed, synthesized, and evaluated for their inhibitory activity against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The structure of the lead compound (xanthostigmine) was systematically varied with the aim to optimize the different parts of the molecule. Moreover, such a structure-activity relationships (SAR) study was integrated with a kinetic analysis of the mechanism of AChE inhibition for two representative compounds. The structural modifications lead to a compound (12b) showing an IC(50) value for the AChE inhibition of 0.32 +/- 0.09 nM and to a group of BuChE inhibitors also active at the nanomolar level, the most potent of which (15d) was characterized by an IC(50) value of 3.3 +/- 0.4 nM. The kinetic analysis allowed for clarification of the role played by different molecular moieties with regard to the rate of AChE carbamoylation and the duration of inhibition. On the basis of the results presented here, it was concluded that the cholinesterase inhibitors of this class possess promising characteristics in view of a potential development as drugs for the treatment of Alzheimer's disease.

  5. Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies.

    PubMed

    Kia, Yalda; Osman, Hasnah; Kumar, Raju Suresh; Basiri, Alireza; Murugaiyah, Vikneswaran

    2014-02-15

    One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC₅₀ values of 2.36-9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC₅₀ values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC₅₀ values of 7.44-19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC₅₀ values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC₅₀ values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.

  6. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin

    PubMed Central

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun’ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B.

    2008-01-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs. PMID:18338186

  7. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  8. Natural cholinesterase inhibitors from Myristica cinnamomea King.

    PubMed

    Abdul Wahab, Siti Mariam; Sivasothy, Yasodha; Liew, Sook Yee; Litaudon, Marc; Mohamad, Jamaludin; Awang, Khalijah

    2016-08-01

    A new acylphenol, malabaricone E (1) together with the known malabaricones A-C (2-4), maingayones A and B (5 and 6) and maingayic acid B (7) were isolated from the ethyl acetate extract of the fruits of Myristica cinnamomea King. Their structures were determined by 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 3 (1.84±0.19 and 1.76±0.21μM, respectively) and 4 (1.94±0.27 and 2.80±0.49μM, respectively) were identified as dual inhibitors, with almost equal acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibiting potentials. The Lineweaver-Burk plots of compounds 3 and 4 indicated that they were mixed-mode inhibitors. Based on the molecular docking studies, compounds 3 and 4 interacted with the peripheral anionic site (PAS), the catalytic triad and the oxyanion hole of the AChE. As for the BChE, while compound 3 interacted with the PAS, the catalytic triad and the oxyanion hole, compound 4 only interacted with the catalytic triad and the oxyanion hole.

  9. Dispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism.

    PubMed

    Bloch, R J

    1979-09-01

    The effects of energy metabolism inhibitors on the distribution of acetylcholine receptors (AChRs) in the surface membranes of non-innervated, cultured rat myotubes were studied by visualizing the AChRs with monotetramethylrhodamine-alpha-bungarotoxin. Incubation of myotubes with inhibitors of energy metabolism causes a large decrease in the fraction of myotubes displaying clusters of AChR. This decrease is reversible, and is dependent on temperature, the concentration of inhibitor, and the duration of treatment. Cluster dispersal is probably not the result of secondary effects on Ca++ or cyclic nucleotide metabolism, membrane potential, cytoskeletal elements, or protein synthesis. Sequential observations of identified cells treated with sodium azide showed that clusters appear to disperse by movements of receptors within the sarcolemma without accompanying changes in cell shape. AChR clusters dispersed by pretreating cells with sodium azide rapidly reform upon removal of the inhibitor. Reclustering involves the formation of small aggregates of AChR, which act as foci for further aggregation and which appear to be precursors of large AChR clusters. Small AChR aggregates also appear to be precursors of clusters which form on myotubes never exposed to azide. Reclustering after azide treatment does not necessarily occur at the same sites occupied by clusters before dispersal, nor does it employ only receptors which had previously been in clusters. Cluster reformation can be blocked by cycloheximide, colchicine, and drugs which alter the intracellular cation composition.

  10. Natural products as sources of new lead compounds for the treatment of Alzheimer's disease.

    PubMed

    Huang, Ling; Su, Tao; Li, Xingshu

    2013-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia and affects approximately 24 million people worldwide. One possible approach for the treatment of this disease is the restoration of the level of acetylcholine (ACh) through the inhibition of acetylcholinesterase (AChE) with reversible inhibitors. Naturally occurring alkaloids are an important source of AChE inhibitors. Galantamine and huperzine A have been used for the clinical treatment of AD patients. In this review, we summarise the natural products and their derivatives that were reported to act as AChE inhibitors for the treatment of AD in 2010-2013. Several characteristics were summarised from the literature results: 1) Amongst all of the natural products with AChE inhibitory activity, alkaloids appear to be the most promising compound class. 2) Coumarins, flavonoids, stilbenes, and other natural products are also important AChE inhibitors from natural products. Among these inhibitors, 146 (IC50 = 0.573 µM) was identified as the most potent AChE inhibitor. 3) A coumarin derivative (117, IC50 = 0.11 nM) exhibited more than 100-fold superior activity compared with the reference drug donepezil hydrochloride (IC50 = 14 nM). In conclusion, natural products and their derivatives are promising leads for the development of new drugs for the future treatment of AD.

  11. Myasthenia Gravis and the Tops and Bottoms of AChRs Antigenic Structure of the MIR and Specific Immunosuppression of EAMG Using AChR Cytoplasmic Domains

    PubMed Central

    Lindstrom, Jon; Luo, Jie; Kuryatov, Alexander

    2009-01-01

    The main immunogenic region (MIR), against which half or more of the autoantibodies to acetylcholine receptors (AChRs) in myasthenia gravis (MG) or experimental autoimmune MG (EAMG) are directed, is located at the extracellular end of α1 subunits. Rat monoclonal antibodies (mAbs) to the MIR efficiently compete with MG patient autoantibodies for binding to human muscle AChRs. Antibodies bound to the MIR do not interfere with cholinergic ligand binding or AChR function, but target complement and trigger antigenic modulation. Rat mAbs to the MIR also bind to human ganglionic AChR α3 subunits, but MG patient antibodies do not. By making chimeras of α1 subunits with α7 subunits or ACh binding protein, the structure of the MIR and its functional effects are being investigated. Many mAbs to the MIR bind only to the native conformation of α1 subunits because they bind to sequences that are adjacent only in the native structure. The MIR epitopes recognized by these mAbs are not recognized by most patient antibodies whose epitopes must be nearby. The presence of the MIR epitopes in α1/α7 chimeras greatly promotes AChR expression and sensitivity to activation. EAMG can be suppressed by treatment with denatured, bacterially expressed mixtures of extracellular and cytoplasmic domains of human α1, β1, γ, δ, and ε subunits. A mixture of only the cytoplasmic domains not only avoids the potential liability of provoking formation antibodies to pathologically significant epitopes on the extracellular surface, but also potently suppresses the development of EAMG. PMID:18567851

  12. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer's disease.

    PubMed

    Kuppusamy, Asokkumar; Arumugam, Madeswaran; George, Sonia

    2017-02-01

    The current objective of the study is to identify inhibitory affinity potential of the certain commercially available flavonoids, against crystal structure of acetylcholinesterase (AChE) enzyme using in silico and in vitro studies. The inhibitory profiles of the compounds have been compared with standard AChE inhibitor donepezil. In the docking studies, conformational site analysis and docking parameters like binding energy, inhibition constant and intermolecular energy were determined using AutoDock 4.2. Docking studies conducted with diosmin, silibinin, scopoletin, taxifolin and tricetin exhibited tight binding forces prevailing with the enzyme than between donepezil. Based on the in silico studies, compounds were selected for the in vitro AChE inhibitory assay. In vitro results showed that all the selected flavonoids displayed excellent concentration-dependant inhibition of AChE. Scopoletin was found to be the most potent and specific inhibitor of the enzyme with IC50 values of 10.18±0.68μM. Scopoletin showed several strong hydrogen bonds to several important amino acid residues against target enzyme. A number of hydrophobic interactions could also explain the potency of the compounds to inhibit AChE. These molecular docking and in vitro analyses could lead to the further development of potent acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.

  13. Goal setting and attainment in Alzheimer's disease patients treated with donepezil

    PubMed Central

    Rockwood, K; Graham, J; Fay, S

    2002-01-01

    Objectives: To understand the treatment goals of Alzheimer's disease (AD) patients, carers, and physicians; to estimate whether clinically important goals are met during treatment with donepezil; and to compare a measure of goal attainment with standard measures used to evaluate AD treatment. Methods: In a 12 month phase IV trial, 108 patients with mild to moderate AD, their primary carers, and treating physicians set goals assigned to five domains, using Goal Attainment Scaling (GAS) as the primary outcome. Goal attainment was assessed quarterly. GAS scores were correlated with standard outcomes, including the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-cog), and the Clinician's Interview-Based Impression of Change-Plus (CIBIC-plus). Results: Physicians set fewer goals (342, mean (SD) per patient=3 (1)) than patients/carers (855, mean=9 (3)), particularly in leisure (20% by physicians compared with 76% by patients/carers), and social interaction (24% versus 49%). Physicians observed statistically significant improvement in global goal attainment for six months, and patients/carers for nine months. Patients/carers described consistent goal attainment, whereas physicians observed variable effects, such as decline in cognition but improved social interaction and behaviour. Physician global GAS scores correlated highly with the CIBIC-plus at weeks 12 (r= -0.82) and 52 (r=-0.80), but not with the ADAS-cog (r=0.12 and r=-0.45, respectively). Patient/carer global GAS scores correlated moderately with the physician's CIBIC-plus (week 12 r=-0.51; week 52 r=-0.56), and nominally with the ADAS-cog. Conclusions: Patients/carers and physicians differ in their expectations and impressions of treatment effects. Clinically important changes correlated only modestly with psychometric tests. Attainment of treatment goals does not accord with a simplistic model in which successful AD treatment means that all declines uniformly improve. PMID:12397141

  14. Remarkably increased resistin levels in anti-AChR antibody-positive myasthenia gravis.

    PubMed

    Zhang, Da-Qi; Wang, Rong; Li, Ting; Li, Xin; Qi, Yuan; Wang, Jing; Yang, Li

    2015-06-15

    Resistin is a pro-inflammatory cytokine involved in the pathogenesis of autoimmune diseases. To investigate serum resistin levels in patients with myasthenia gravis (MG) and determine if there are associations between resistin levels and disease severity, we measured serum resistin levels in 102 patients with anti-acetylcholine receptor antibody-positive MG (AChR-MG). We further analyzed associations between serum resistin levels and clinical variables in patients with MG. Our findings demonstrate that serum resistin levels are elevated in patients with AChR-generalized MG and AChR-MG with thymoma and are correlated with disease severity. Resistin has potential as a useful serum biomarker for inflammation in AChR-MG.

  15. Chronic treatment with varenicline changes expression of four nAChR binding sites in mice

    PubMed Central

    Marks, Michael J.; O’Neill, Heidi C.; Wynalda-Camozzi, Kelly M.; Ortiz, Nick C.; Simmons, Emily E.; Short, Caitlin A.; Butt, Christopher M.; McIntosh, J. Michael; Grady, Sharon R.

    2015-01-01

    Introduction Chronic treatment with nicotine is known to increase the α4β2-nAChR sites in brain, to decrease α6β2-nAChR sites and to have minimal effect on α3β4- and α7-nAChR populations. Varenicline is now used as a smoking cessation treatment, with and without continued smoking or nicotine replacement therapy. Varenicline, like nicotine, upregulates the α4β2-nAChR sites; however, it is not known whether varenicline treatment changes expression of the other nAChR subtypes. Methods Using a mouse model, chronic treatments (10 days) with varenicline (0.12mg/kg/hr) and/or nicotine (1 mg/kg/hr), alone or in combination, were compared for plasma and brain levels of drugs, tolerance to subsequent acute nicotine and expression of four subtypes of nAChR using autoradiography. Results The upregulation of α4β2-nAChR sites elicited by chronic varenicline was very similar to that elicited by chronic nicotine. Treatment with both drugs somewhat increased up-regulation, indicating that these doses were not quite at maximum effect. Similar down-regulation was seen for α6β2-nAChR sites. Varenicline significantly increased both α3β4- and α7-nAChR sites while nicotine had less effect on these sites. The drug combination was similar to varenicline alone for α3β4-nAChR sites, while for α7 sites the drug combination was less effective than varenicline alone. Varenicline had small but significant effects on tolerance to acute nicotine. Conclusions Effects of varenicline in vivo may not be limited to the α4β2*-nAChR subtype. In addition, smoking cessation treatment with varenicline may not allow receptor numbers to be restored to baseline and may, in addition, change expression of other receptor subtypes. PMID:26192545

  16. Synergistic Increase of Serum BDNF in Alzheimer Patients Treated with Cerebrolysin and Donepezil: Association with Cognitive Improvement in ApoE4 Cases

    PubMed Central

    Alvarez, Irene; Iglesias, Olalla; Crespo, Ignacio; Figueroa, Jesus; Aleixandre, Manuel; Linares, Carlos; Granizo, Elias; Garcia-Fantini, Manuel; Marey, Jose; Masliah, Eliezer; Winter, Stefan; Muresanu, Dafin; Moessler, Herbert

    2016-01-01

    Background: Low circulating brain derived neurotrophic factor may promote cognitive deterioration, but the effects of neurotrophic and combination drug therapies on serum brain derived neurotrophic factor were not previously investigated in Alzheimer’s disease. Methods: We evaluated the effects of Cerebrolysin, donepezil, and the combined therapy on brain derived neurotrophic factor serum levels at week 16 (end of Cerebrolysin treatment) and week 28 (endpoint) in mild-to-moderate Alzheimer’s disease patients. Results: Cerebrolysin, but not donepezil, increased serum brain derived neurotrophic factor at week 16, while the combination therapy enhanced it at both week 16 and study endpoint. Brain derived neurotrophic factor responses were significantly higher in the combination therapy group than in donepezil and Cerebrolysin groups at week 16 and week 28, respectively. Brain derived neurotrophic factor increases were greater in apolipoprotein E epsilon-4 allele carriers, and higher brain derived neurotrophic factor levels were associated with better cognitive improvements in apolipoprotein E epsilon-4 allele patients treated with Cerebrolysin and the combined therapy. Conclusion: Our results indicate a synergistic action of Cerebrolysin and donepezil to increase serum brain derived neurotrophic factor and delaying cognitive decline, particularly in Alzheimer’s disease cases with apolipoprotein E epsilon-4 allele. PMID:27207906

  17. Ethynylphenyl carbonates and carbamates as dual-action acetylcholinesterase inhibitors and anti-inflammatory agents.

    PubMed

    Saxena, Jaya; Meloni, David; Huang, Mou-Tuan; Heck, Diane E; Laskin, Jeffrey D; Heindel, Ned D; Young, Sherri C

    2015-12-01

    Novel ethynylphenyl carbonates and carbamates containing carbon- and silicon-based choline mimics were synthesized from their respective phenol and aniline precursors and screened for anticholinesterase and anti-inflammatory activities. All molecules were micromolar inhibitors of acetylcholinesterase (AChE), with IC50s of 28-86 μM; the carbamates were two-fold more potent than the carbonates. Two of the most potent AChE inhibitors suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation by 40%. Furthermore, these molecules have physicochemical properties in the range of other CNS drugs. These molecules have the potential to treat inflammation; they could also dually target Alzheimer's disease through restoration of cholinergic balance and inflammation suppression.

  18. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR

    PubMed Central

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E.; Tsetlin, Victor I.; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  19. Kinetics and Molecular Docking Study of an Anti-diabetic Drug Glimepiride as Acetylcholinesterase Inhibitor: Implication for Alzheimer's Disease-Diabetes Dual Therapy.

    PubMed

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Naaz, Deeba; Shakil, Shazi; Ahmad, Adnan; Haneef, Mohd; Abuzenadah, Adel M

    2016-06-01

    At the present time, treatment of two most common degenerative disorders of elderly population i.e., Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD) is a major concern worldwide. As there are several evidences that proved strong linkages between these two disorders, the idea of using dual therapeutic agent for both the diseases might be considered as a good initiative. Earlier reports have revealed that oral anti-diabetic drugs such as peroxisome proliferator activated receptor γ (PPARγ) agonists (thiazolidinediones) when used in T2DM patients suffering from AD showed improved memory and cognition. However, the underlying mechanism still needs to be deciphered. Therefore, the present study was carried out to find whether glimepiride, an oral antidiabetic drug which is a PPARγ agonist could inhibit the activity of acetylcholine esterase (AChE) enzyme. Actually, AChE inhibitors seize the breakdown of acetylcholine which forms the main therapeutic strategy for AD. Here, glimepiride showed dose dependent inhibitory activity against AChE enzyme with IC50 value of 235 μM. Kinetic analysis showed competitive inhibition, which was verified by in silico docking studies. Glimepiride was found to interact with AChE enzyme at the same locus as that of substrate acetylcholine iodide (AChI). Interestingly, amino acid residues, Q71, Y72, V73, D74, W86, N87, Y124, S125, W286, F295, F297, Y337, F338 and Y341 of AChE were found to be common for 'glimepiride-AChE interaction' as well as 'AChI-AChE interaction'. Thus the present computational and kinetics study concludes that glimepiride and other thiazolidinediones derivatives could form the basis of future dual therapy against diabetes associated neurological disorders.

  20. In vitro reactivation of sarin-inhibited human acetylcholinesterase (AChE) by bis-pyridinium oximes connected by xylene linkers.

    PubMed

    Acharya, Jyotiranjan; Dubey, Devendra Kumar; Srivastava, Ashish Kumar; Raza, Syed Kalbey

    2011-02-01

    A series of bis-pyridinium oximes connected by xylene linkers were synthesized and their in vitro reactivation potential was evaluated against human acetylcholinesterase (hAChE) inhibited by nerve agent sarin and the data were compared with 2-PAM and obidoxime. Among the synthesized compounds, N,N'-p-xylene-bis-[(2,2'-hydroxyiminomethyl)pyridinium] dibromide (3c) was found to be the most potent reactivator for hAChE inhibited by sarin. The oxime 3c exhibited 45% regeneration of inhibited hAChE, in comparison to 34% and 24% regeneration by 2-PAM and obidoxime, respectively, at a concentration of 10(-3) M within 10 min. The higher reactivation efficacies of these oximes were attributed to their acid dissociation constants (pKa). The pKa values of all the oximes were determined spectrophotometrically and correlated with their observed reactivation potential. This method involving the in vitro reactivation of inhibited hAChE may be useful for the screening of new oximes as reactivators.

  1. A facile stereoselective synthesis of dispiro-indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids and evaluation of their antimycobacterial, anticancer and AchE inhibitory activities.

    PubMed

    Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu

    2016-11-15

    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC50 <1.56μM) and 6l (IC50=2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC50 values of 1.10 and 1.16μmol/L respectively.

  2. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.

    PubMed

    Killi, Uday K; Wsol, Vladimir; Soukup, Ondrej; Kuca, Kamil; Winder, Michael; Tobin, Gunnar

    2014-02-01

    Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 μmol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 μmol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 μmol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 μmol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime.

  3. The influence of donepezil and EGb 761 on the innate immunity of human leukocytes: effect on the NF-κB system.

    PubMed

    Sochocka, Marta; Zaczyńska, Ewa; Taboł, Agnieszka; Czarny, Anna; Leszek, Jerzy; Sobczyński, Maciej

    2010-12-01

    Ginkgo biloba special extract EGb 761 and donepezil are drugs used in Alzheimer therapy. The influence of donepezil and EGb 761 on two mechanisms of innate immunity, natural antiviral resistance of human leukocytes ex vivo and NF-κB activation, was studied. Correlation between the innate immunity of leukocytes and NF-κB activation was investigated. The effect of the two drugs on resistance of human leukocytes to vesicular stomatitis virus (VSV) infection was also assessed. Two groups of healthy blood donors (n=30) were distinguished: one with resistant leukocytes (n=15) and one (n=15) with leukocytes sensitive to VSV. The degree of natural resistance of human peripheral blood leukocytes (PBLs) was determined by studying the kinetics of VSV replication. NF-κB activation was assayed by immunocytochemical staining. Efficiency of donepezil and EGb 761 was determined by a special regression model. The toxicity of the preparations to PBLs and the cell lines L(929) and A(549) and their effect on the different viruses was established. Results showed that donepezil used in concentrations of 10-50 μg/ml and EGb761 of 25-100 μg/ml stimulated resistance of human leukocytes. At the same concentrations both preparations decreased activation of transcriptional factor NF-κB. Correlation between innate immunity of PBLs and NF-κB activation was observed. Comparison of the effects of these two drugs showed that EGb 761 is more effective in stimulating leukocyte resistance. Donepezil and EGb 761 regulated innate immunity of human leukocytes by stimulating resistance and modulating NF-κB activation. The natural drug was more efficient in stimulating innate antiviral immunity of human leukocytes.

  4. Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs.

    PubMed

    Araujo, Joseph A; Greig, Nigel H; Ingram, Donald K; Sandin, Johan; de Rivera, Christina; Milgram, Norton W

    2011-01-01

    Similar to patients with Alzheimer's disease (AD), dogs exhibit age-dependent cognitive decline, amyloid-β (Aβ) pathology, and evidence of cholinergic hypofunction. The present study sought to further investigate the role of cholinergic hypofunction in the canine model by examining the effect of the cholinesterase inhibitors phenserine and donepezil on performance of two tasks, a delayed non-matching-to-position task (DNMP) designed to assess working memory, and an oddity discrimination learning task designed to assess complex learning, in aged dogs. Phenserine (0.5 mg/kg; PO) significantly improved performance on the DNMP at the longest delay compared to wash-out and partially attenuated scopolamine-induced deficits (15 μg/kg; SC). Phenserine also improved learning on a difficult version of an oddity discrimination task compared to placebo, but had no effect on an easier version. We also examined the effects of three doses of donepezil (0.75, 1.5, and 6 mg/kg; PO) on performance of the DNMP. Similar to the results with phenserine, 1.5 mg/kg of donepezil improved performance at the longest delay compared to baseline and wash-out, indicative of memory enhancement. These results further extend the findings of cholinergic hypofunction in aged dogs and provide pharmacological validation of the canine model with a cholinesterase inhibitor approved for use in AD. Collectively, these studies support utilizing the aged dog in future screening of therapeutics for AD, as well as for investigating the links among cholinergic function, Aβ pathology, and cognitive decline.

  5. 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: Resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae

    PubMed Central

    Verma, Astha; Wong, Dawn M.; Islam, Rafique; Tong, Fan; Ghavami, Maryam; Mutunga, James M.; Slebodnick, Carla; Li, Jianyong; Viayna, Elisabet; Lam, Polo C.-H.; Totrov, Maxim M.; Bloomquist, Jeffrey R.; Carlier, Paul R.

    2015-01-01

    To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification. PMID:25684426

  6. Identification of Potential Herbal Inhibitor of Acetylcholinesterase Associated Alzheimer's Disorders Using Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential. PMID:25054066

  7. Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer's disorders using molecular docking and molecular dynamics simulation.

    PubMed

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential.

  8. Immigrant background and medicine use for aches: national representative study of adolescents

    PubMed Central

    2014-01-01

    Objectives The aims of the study were to examine the association between immigrant background and medicine use for headache and stomach-ache among adolescents, and whether symptoms of headache and stomach-ache could explain the differences in medicine use. Methods We used data from the Danish contribution to the WHO-affiliated international cross-sectional survey Health Behaviour in School-aged Children (HBSC) in 2006. Among boys, a total of 4170 ethnic Danes, 244 descendants of immigrants, and 224 immigrants participated. Among girls, 4310 ethnic Danes, 264 descendants of immigrants, and 232 immigrants were included. The associations between migrant background and medicine use for headache and stomach-ache by means of multilevel multivariate logistic regression analyses adjusted for age group, symptoms and the clustering effect of school and stratified by sex due to interactions. Results Among boys, the risk of medicine use for stomach-ache was higher for immigrants (odds ratio (OR), 1.54; 95% confidence intervals (CI), 0.99-2.44)) and descendants (OR, 1.97 (1.33-2.94)) compared to ethnic Danes. Similar associations were found for use of medicine for stomach-ache for immigrant girls (OR, 1.55 (1.12-2.15) and use of medicine for headache among boys (immigrants (OR, 1.36 (1.02-1.97 and descendants (1.48 (1.12-1.97)). Symptoms of aches were all independently associated with medicine use. After adjusting for these factors the association between immigrant background and medicine use attenuated slightly. Conclusion Among adolescents in Denmark, the risk of medicine use for headache and stomach-ache was higher for immigrants and descendants as compared to ethnic Danes, with the exception of medicine use for headache among girls. PMID:25848541

  9. Optogenetic Release of ACh Induces Rhythmic Bursts of Perisomatic IPSCs in Hippocampus

    PubMed Central

    Karson, Miranda A.; Klugmann, Matthias; Alger, Bradley E.

    2011-01-01

    Acetylcholine (ACh) influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2), was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB) of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT) promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs) in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs), and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs) of local field potentials (LFPs) were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach may be a

  10. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  11. Acetylcholinesterase (AChE)--amyloid-beta-peptide complexes in Alzheimer's disease. the Wnt signaling pathway.

    PubMed

    Inestrosa, Nibaldo C; Urra, Soledad; Colombres, Marcela

    2004-11-01

    Alzheimer's disease (AD) is characterized by selective neuronal cell death, which is probably caused by amyloid beta-peptide (Abeta) oligomers and fibrils. We have found that acetylcholinesterase (AChE), a senile plaque component, increases amyloid fibril assembly with the formation of highly toxic complexes (Abeta-AChE). The neurotoxic effect induced by Abeta-AChE complexes was higher than that induced by the Abeta peptide alone as shown both in vitro (hippocampal neurons) and in vivo (rats injected with Abeta peptide in the dorsal hippocampus). Interestingly, treatment with Abeta-AChE complexes decreases the cytoplasmic beta-catenin level, a key component of Wnt signaling. Conversely, the activation of this signaling pathway by Wnt-3a promotes neuronal survival and rescues changes in Wnt components (activation or subcellular localization). Moreover Frzb-1, a Wnt antagonist reverses the Wnt-3a neuroprotection effect against Abeta neurotoxicity. Compounds that mimic the Wnt signaling or modulate the cross-talking with this pathway could be used as neuroprotective agents for therapeutic strategies in AD patients.

  12. Further studies on the control of ACh sensitivity by muscle activity in the rat.

    PubMed Central

    Lomo, T; Westgaard, R H

    1975-01-01

    1. Denervated rat soleus muscles were stimulated directly through chronically implanted electrodes and the influence of different amounts and patterns of stimuli on the acetylcholine (ACh) sensitivity of the muscle was studied. The number of stimuli was varied by giving similar trains of stimuli (10 Hz for 10 sec) at different intervals (0 to 12 hr). The pattern of stimulation was varied by giving different trains of stimuli (100 Hz for 1 sec, 10 Hz for 10 sec and 1 Hz continuously) as the same average frequency of stimulation (1 Hz). 2. Stimulation usually started 5 days after the denervation when ACh hypersensitivity was fully developed. Most stimulation procedures reduced extrajunctional ACh sensitivity to normal or below normal values within 5-21 days, and these levels were maintained on prolonged stimulation. 3. The rate at which ACh hypersensitivity disappeared increased with increasing amount and frequency of stimulation. However, as few as 100 stimuli given every 5-5 hr for 3 weeks caused a tenfold reduction of sensitivity. 4. The stimulation had little or no effect on the ACh sensitivity at the end plate. Along the rest of the fibre the sensitivity was reduced at approximately the same rate except near the tendons where it appeared to fall more slowly in some fibres. 5. The stimulation restored the resting membrane potential of the denervated fibres to normal. PMID:1206569

  13. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    SciTech Connect

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  14. Differential effects of lysophosphatidylcholine and ACh on muscarinic K+, non-selective cation and Ca2+ currents in guinea-pig atrial cells

    PubMed Central

    Li, Libing; Matsuoka, Isao; Sakamoto, Kazuho; Kimura, Junko

    2016-01-01

    Abstract We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh). PMID:26911304

  15. Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na(+), K(+)-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice.

    PubMed

    Baldissera, Matheus D; Souza, Carine F; Grando, Thirssa H; Moreira, Karen L S; Schafer, Andressa S; Cossetin, Luciana F; da Silva, Ana P T; da Veiga, Marcelo L; da Rocha, Maria Izabel U M; Stefani, Lenita M; da Silva, Aleksandro S; Monteiro, Silvia G

    2017-02-01

    The aim of this study was to investigate the effect of nerolidol-loaded nanospheres (N-NS) on the treatment of memory impairment caused by Trypanosoma evansi in mice, as well as oxidative stress, and Na(+), K(+)-ATPase and acetylcholinesterase (AChE) activities in brain tissue. Animals were submitted to behavioral tasks (inhibitory avoidance task and open-field test) 4 days postinfection (PI). Reactive oxygen species (ROS) and thiobarbituric acid-reactive substance (TBARS) levels and catalase (CAT), superoxide dismutase (SOD), Na(+), K(+)-ATPase and AChE activities were measured on the fifth-day PI. T. evansi-infected mice showed memory deficit, increased ROS and TBARS levels and SOD and AChE activities, and decreased CAT and Na(+), K(+)-ATPase activities compared to uninfected mice. N-NS prevented memory impairment and oxidative stress parameters (except SOD activity), while free nerolidol (N-F) restored only CAT activity. Also, N-NS treatment was able to prevent alterations in Na(+), K(+)-ATPase and AChE activities caused by T. evansi infection. A significantly negative correlation was observed between memory and ROS production (p < 0.001; r = -0.941), as well as between memory and AChE activity (p < 0.05; r = -0.774). On the contrary, a significantly positive correlation between memory and Na(+), K(+)-ATPase activity was observed (p < 0.01; r = 0.844). In conclusion, N-NS was able to reverse memory impairment and to prevent increased ROS and TBARS levels due to amelioration of Na(+), K(+)-ATPase and AChE activities and to activation of the antioxidant enzymes, respectively. These results suggest that N-NS treatment may be a useful strategy to treat memory dysfunction and oxidative stress caused by T. evansi infection.

  16. Tobacco nitrosamine N-nitrosonornicotine as inhibitor of neuronal nicotinic acetylcholine receptors.

    PubMed

    Nunes-Alves, Ariane; Nery, Arthur A; Ulrich, Henning

    2013-01-01

    Nitrosamines are well known for their carcinogenic potential. Recently, it was found that some of them may also interact with human nicotinic acetylcholine receptor (nAChR) subtypes. This work studied the effects of N-nitrosonornicotine (NNN) on recombinant rat α3β4 nAChR in HEK cells as well as on nAChR endogenously expressed in PC12 pheochromocytoma cells and in BC3H1 muscle-type cells. Whole-cell recording in combination with the cell-flow technique for agonist and inhibitor application in the millisecond time region revealed that NNN inhibits the activity of neuronal nAChR expressed in HEK or PC12, whereas weak inhibitory effects on muscle-type nAChR were observed at NNN concentrations up to 3 mM. Pharmacological actions of NNN and the inhibition mechanism were studied in detail using recombinant α3β4 nAChR expressed in HEK cells as a model. NNN-induced inhibition of nicotine-evoked α3β4 nAChR activity was dose-dependent with an inhibitory constant (IC(50)) of 0.92 ± 0.05 mM. Analysis based on mathematical models indicated a noncompetitive inhibition mechanism of the rat α3β4 nAChR by NNN. NNN's mechanism of action involves acceleration of conversion of the receptor from active to desensitized forms. In summary, this work shows that NNN inhibits rat α3β4 nAChR in a noncompetitive way and interacts weakly with muscular nAChR.

  17. Altruistic cooperation during foraging by the Ache, and the evolved human predisposition to cooperate.

    PubMed

    Hill, Kim

    2002-03-01

    This paper presents quantitative data on altruistic cooperation during food acquisition by Ache foragers. Cooperative activities are defined as those that entail a cost of time and energy to the donor but primarily lead to an increase in the foraging success of the recipient. Data show that Ache men and women spend about 10% of all foraging time engaged in altruistic cooperation on average, and that on some days they may spend more than 50% of their foraging time in such activities. The most time-consuming cooperative activity for both sexes is helping during the pursuit of game animals, a pattern that is probably linked to the widespread sharing of game by Ache foragers. Cooperative food acquisition and subsequent food redistribution in hunter-gatherer societies are critical behaviors that probably helped shape universal, evolved, cooperative tendencies that are well illustrated in modern experimental economics.

  18. Relationship between alpha 7 nAChR and apoptosis in human lymphocytes.

    PubMed

    De Rosa, María José; Esandi, María Del Carmen; Garelli, Andrés; Rayes, Diego; Bouzat, Cecilia

    2005-03-01

    The presence of nicotinic receptors (nAChRs) in blood cells has been demonstrated. However, little is known about their functional roles. We have detected mRNA of alpha7 nAChR in peripheral human lymphocytes and determined that its expression is highly variable among individuals and within the same individual at different times. Upregulation of alpha7 is systematically observed after incubation of lymphocytes with nicotine or alpha-bungarotoxin. In addition, the incubation with these drugs decreases the percentage of apoptotic cells induced by the exposure to cortisol. Our results suggest that alpha7 nAChRs are involved in the modulation of cortisol-induced apoptosis.

  19. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease.

    PubMed

    Ismaili, Lhassane; Refouvelet, Bernard; Benchekroun, Mohamed; Brogi, Simone; Brindisi, Margherita; Gemma, Sandra; Campiani, Giuseppe; Filipic, Slavica; Agbaba, Danica; Esteban, Gerard; Unzeta, Mercedes; Nikolic, Katarina; Butini, Stefania; Marco-Contelles, José

    2017-04-01

    Alzheimer's disease is a multifactorial and fatal neurodegenerative disorder characterized by decline of cholinergic function, deregulation of other neurotransmitter systems, β-amyloid fibril deposition, and β-amyloid oligomers formation. Based on the involvement of a relevant number of biological systems in Alzheimer's disease progression, multitarget compounds may enable therapeutic efficacy. Accordingly, compounds possessing, besides anticholinergic activity and β-amyloid aggregation inhibition properties, metal chelating and/or nitric oxide releasing properties with additional antioxidant capacity were developed. Other targets relevant to Alzheimer's disease have also been considered in the last years for producing multitarget compounds such as β-secretase, monoamino oxidases, serotonin receptors and sigma 1 receptors. The purpose of this review will be to highlight recent reports on the development of multitarget compounds for Alzheimer's disease published within the last years focusing on multifunctional ligands characterized by tacrine-like and donepezil-like structures.

  20. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  1. Synthesis and in silico evaluation of 1N-methyl-1S-methyl-2-nitroethylene (NMSM) derivatives against Alzheimer disease: to understand their interacting mechanism with acetylcholinesterase.

    PubMed

    Kannan, M; Manivel, P; Geetha, K; Muthukumaran, J; Rao, H Surya Prakash; Krishna, R

    2012-01-01

    Anomalous action of human acetylcholinesterase (hAChE) in Alzheimer's disease (AD) was restrained by various AChE inhibitors, of which the specific and potent lead candidate Donepezil is used for treating the disease AD. Besides the specificity, the observed undesirable side effects caused by Donepezil invoked the quest for new lead molecules with the increased potency and specificity for AChE. The present study elucidates the potency of six 1N-methyl-1S-methyl-2-nitroethylene (NMSM) derivatives to form a specific interaction with the peripheral anionic site and catalytic anionic subsite residues of hAChE. The NMSMs were prepared in good yield from 1,1-di(methylsulfanyl)-2-nitroethylene and primary amine (or) amino acid esters. In silico interaction analysis reveals specific and potent interactions between hAChE and selected ligand molecules. The site-specific interactions formed between these molecules also results in a conformational change in the orientation of active site residues of hAChE, which prevents them from being accessed by beta-amyloid protein (Aβ), which is a causative agent for amyloid plaque formation and acetylcholine (ACh). In silico interaction analysis between the ligand-bounded hAChE with Aß and ACh confirms this observation. The variation in the conformation of hAChE associated with the decreased ability of Aβ and ACh to access the respective functional residues of hAChE induced by the novel NMSMs favors their selection for in vivo analysis to present themselves as new members of hAChE inhibitors.

  2. Synthetic peptides mimicking the binding site of human acetylcholinesterase for its inhibitor fasciculin 2.

    PubMed

    Kafurke, Uwe; Erijman, Ariel; Aizner, Yonatan; Shifman, Julia M; Eichler, Jutta

    2015-09-01

    Molecules capable of mimicking protein binding and/or functional sites present useful tools for a range of biomedical applications, including the inhibition of protein-ligand interactions. Such mimics of protein binding sites can currently be generated through structure-based design and chemical synthesis. Computational protein design could be further used to optimize protein binding site mimetics through rationally designed mutations that improve intermolecular interactions or peptide stability. Here, as a model for the study, we chose an interaction between human acetylcholinesterase (hAChE) and its inhibitor fasciculin-2 (Fas) because the structure and function of this complex is well understood. Structure-based design of mimics of the hAChE binding site for Fas yielded a peptide that binds to Fas at micromolar concentrations. Replacement of hAChE residues known to be essential for its interaction with Fas with alanine, in this peptide, resulted in almost complete loss of binding to Fas. Computational optimization of the hAChE mimetic peptide yielded a variant with slightly improved affinity to Fas, indicating that more rounds of computational optimization will be required to obtain peptide variants with greatly improved affinity for Fas. CD spectra in the absence and presence of Fas point to conformational changes in the peptide upon binding to Fas. Furthermore, binding of the optimized hAChE mimetic peptide to Fas could be inhibited by hAChE, providing evidence for a hAChE-specific peptide-Fas interaction.

  3. Exploration of a Library of 3,4-(Methylenedioxy)aniline-Derived Semicarbazones as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase: Design, Synthesis, and Evaluation.

    PubMed

    Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R

    2016-06-06

    A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics.

  4. [Cation ions modulate the ACh-sensitive current in type II vestibular hair cells of guinea pigs].

    PubMed

    Guo, Chang-Kai; Zhang, Song; Kong, Wei-Jia; Li, Qing-Tian; Li, Zhi-Wang

    2006-04-25

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-nAChR) in cochlear hair cells and frog saccular hair cells. In this study, the properties of the ACh-sensitive current were investigated by whole-cell patch clamp technique in isolated type II vestibular hair cells of guinea pigs. The direct effect of extracellular ACh was to induce a hyperpolarization effect in type II vestibular hair cells. Type II vestibular hair cells displayed a sustained outward current in response to the perfusion of ACh. It took about 60 s for the ACh-sensitive current to get a complete re-activation. The reversal potential of the ACh-sensitive current was (-66 +/- 8) mV, which indicated that potassium ion was the main carrier of this current. The blocking effect by the submillimolar concentration of tetraethylammonium (TEA) further indicated that extracellular ACh stimulated the calcium-dependent potassium current. Following replacement of the compartment of NaCl in the normal external solution with TrisCl, LiCl or saccharose respectively, the amplitude of the ACh-sensitive current was not affected. Blocking of the release of intracellular Ca(2+) stores by intracellular application of heparin failed to inhibit the ACh-sensitive current. Therefore, extracellular Na(+)and the inositol 1,4,5-trisphosphate (IP(3))-dependent intracellular Ca(2+)release were not involved in the activation of the ACh-sensitive current. However, the ACh-sensitive current was strongly affected by the concentration of the extracellular K(+), extracellular Ca(2+) and intracellular Mg(2+). The amplitude of the ACh- sensitive current was strongly inhibited by high concentration of extracellular K

  5. A fluorometric assay for acetylcholinesterase activity and inhibitor detection based on DNA-templated copper/silver nanoclusters.

    PubMed

    Li, Wenhua; Li, Wang; Hu, Yufang; Xia, Yalin; Shen, Qinpeng; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-09-15

    A novel label-free, rapid, cost-effective, and highly sensitive fluorometric sensor has been constructed for the detection of acetylcholinesterase (AChE) activity and its inhibitor based on the fluorescence quenching of DNA-templated copper/silver nanoclusters (DNA-Cu/AgNCs). In this assay, AChE catalyzes the hydrolysis of acetylthiocholine (ATCh) to form thiocholine which induces fluorescence quenching of DNA-Cu/AgNCs. The AChE activity could be detected as low as 0.05mU/mL and with a linear range from 0.05 to 2.0mU/mL. This assay offers a very convenient "mix and detect" approach for AChE activity. On the other hand, tacrine and organophosphorus pesticides (OPPs) were employed to inhibit the hydrolysis of ATCh, which could eliminate the fluorescence quenching of DNA-Cu/AgNCs. The IC50 of tacrine and methamidophos were estimated to be 16.9nM and 0.075mg/L, respectively. This method was also used to detect spiked OPPs in agricultural products successfully. The present work may expand the use of DNA-Cu/AgNCs to the field of enzyme sensors.

  6. Computational analysis of novel drugs designed for use as acetylcholinesterase inhibitors and histamine H3 receptor antagonists for Alzheimer's disease by docking, scoring and de novo evolution.

    PubMed

    Chen, Po-Yuan; Tsai, Ching-Tsan; Ou, Che-Yen; Hsu, Wei-Tse; Jhuo, Mien-De; Wu, Chieh-Hsi; Shih, Tzu-Ching; Cheng, Tzu-Hurng; Chung, Jing-Gung

    2012-04-01

    Alzheimer's disease (AD) was first described by Alois Alzheimer in 1907. AD is the most prevalent dementia- related disease, affecting over 20 million individuals worldwide. Currently, however, only a handful of drugs are available and they are at best only able to offer some relief of symptoms. Acetylcholinesterase (AChE) inhibitors, antioxidants, metal chelators, monoamine oxidase inhibitors, anti-inflammatory drugs and NMDA inhibitors are usually used to attempt to cure this disease. AChE inhibitors are the most effective therapy for AD at present. Researchers have found that histamine H3 receptor antagonists decrease re-uptake of acetylcholine and the nervous transmitter substance acetylcholine increases. In this study, we designed compounds by using docking, de novo evolution and adsorption, distribution, metabolism, excretion and toxicity (ADMET) analysis to AChE inhibitors as well as histamine H3 receptor antagonists to forward drug research and investigate the potent compounds which can pass through the blood-brain barrier. The novel drugs may be useful for the treatment of AD, based on the results of this theoretical calculation study. We will subsequently examine them in future experiments.

  7. Inhibitor Profile of bis(n)-tacrines and N-methylcarbamates on Acetylcholinesterase from Rhipicephalus (Boophilus) Microplus and Phlebotomus Papatasi

    DTIC Science & Technology

    2013-03-28

    against rBmAChE (Table 2), but is 43-fold less effective against rPpAChE (Table 2). Commercial carbamate insecticides ( propoxur , carbaryl , and...85–92 87 the most active carbamate was carbofuran, whereas in the tick propoxur was the least active, and for the sandfly it was carbaryl . Although...populations. 2. Methods 2.1. Inhibitors, solvents, and assay reagents Propoxur (purity P 99%), bendiocarb (purity P 99%), edropho- nium (purity P 98

  8. The Strategies-for-Achievement Approach (stACH) for Teaching "Study Skills."

    ERIC Educational Resources Information Center

    Tuckman, Bruce W.

    A complete course, curriculum, and textbook were developed to teach college level "study skills" using an educational, psychology-based strategies-for-achievement (stACH) approach. The approach involved teaching students four major achievement strategies: (1) taking reasonable risk; (2) taking responsibility for outcomes; (3) searching…

  9. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  10. 77 FR 40148 - Proposed Collection of Information: ACH Vendor/Miscellaneous Payment Enrollment Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... comments concerning the SF 3881 ``ACH Vendor/Miscellaneous Payment Enrollment Form.'' DATES: Written... the Paperwork Reduction Act of 1995, (44 U.S.C. 3506(c)(2)(A)), the Financial Management Service... Enrollment Form. OMB Number: 1510-0056. Form Number: SF 3881. Abstract: This form is used to collect...

  11. Neuronal GABA release and GABA inhibition of ACh release in guinea pig urinary bladder.

    PubMed

    Kusunoki, M; Taniyama, K; Tanaka, C

    1984-04-01

    gamma-Aminobutyric acid (GABA) and glutamate decarboxylase (GAD) are present in the urinary bladder of guinea pigs, and the possible correlation in regional distribution between GABA, GAD, and the number of vesical ganglion cells was studied. Electrical stimulation of the bladder strips produced an increase in the calcium-dependent and tetrodotoxin-sensitive [3H]GABA release and contractions in the strips preloaded with [3H]GABA. Nicotine, acetylcholine chloride (ACh), and hexamethonium did not significantly alter the release of [3H]GABA. Bicuculline significantly enhanced [3H]ACh release and cholinergic components of contractions evoked by electrical stimulation of the bladder strips preloaded with [3H]choline, thereby suggesting that this compound antagonizes the effect of endogenous GABA released during stimulation. GABA and muscimol but not baclofen reduced both the [3H]ACh release and contractions evoked by nicotine. These effects of GABA were antagonized by bicuculline and furosemide but not by alpha- and beta-adrenergic blockers. These findings suggest that GABA may be a noncholinergic nonadrenergic inhibitory neurotransmitter in the urinary bladder. The motility of the urinary bladder is thus inhibited by reducing the release of ACh from the postganglionic cholinergic neurons through bicuculline-sensitive GABA receptors probably associated with the chloride ion channel.

  12. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation.

    PubMed

    Alamiddine, Zakaria; Selvam, Balaji; Cerón-Carrasco, José P; Mathé-Allainmat, Monique; Lebreton, Jacques; Thany, Steeve H; Laurent, Adèle D; Graton, Jérôme; Le Questel, Jean-Yves

    2015-12-01

    The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein (Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI-Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI-Ac-AChBP amino acid pairs.

  13. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation

    NASA Astrophysics Data System (ADS)

    Alamiddine, Zakaria; Selvam, Balaji; Cerón-Carrasco, José P.; Mathé-Allainmat, Monique; Lebreton, Jacques; Thany, Steeve H.; Laurent, Adèle D.; Graton, Jérôme; Le Questel, Jean-Yves

    2015-12-01

    The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein ( Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI- Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI- Ac-AChBP amino acid pairs.

  14. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    PubMed Central

    Ye, Jun; Ren, Chong; Shan, Xiexie

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  15. Measurement of p-nitrophenyl acetate esterase activity (EA), total antioxidant capacity (TAC), total oxidant status (TOS) and acetylcholinesterase (AChE) in gills and digestive gland of Mytilus galloprovincialis exposed to binary mixtures of Pb, Cd and Cu.

    PubMed

    Franco-Martinez, Lorena; Romero, Diego; García-Navarro, José A; Tecles, Fernando; Teles, Mariana; Tvarijonaviciute, Asta

    2016-12-01

    The aims of the present work were (1) to evaluate oxidative stress biomarkers and AChE in two tissues of wild mussel (Mytilus galloprovincialis) of high biochemical activity and accumulation capacity (gills and digestive gland) and (2) to study the behaviour of these biomarkers in presence of heavy metals. For this, EA, TOS, TAC and AChE were measured in tissues of mussels exposed to binary combination of Pb, Cd and Cu. Mussels (n = 36) were exposed to one of the binary mixtures of Pb (1000 μg L(-1)), Cd (100 μg L(-1)) and Cu (100 μg L(-1)) for 7 days, under controlled conditions. Gills and digestive gland were extracted and frozen at -80 °C until analysis. The automatic methods employed for the measurement of EA, TAC, TOS and AChE in M. galloprovincialis revealed higher levels of these biomarkers in digestive gland than gills. Study results suggest that gills would be the tissue of election for study oxidative stress markers, whereas digestive tissue should be selected for AChE measurements in case of evaluation of combined metal toxicity in mussels.

  16. Furoquinoline Alkaloids from the Leaves of Evodia lepta as Potential Cholinesterase Inhibitors and their Molecular Docking.

    PubMed

    Sichaem, Jirapast; Rojpitikul, Thanawan; Sawasdee, Pattara; Lugsannangarm, Kiattisak; Santi, Tip-pyang

    2015-08-01

    Nine furoquinoline alkaloids (1-9) were isolated from the leaves of Evodia lepta based on bioassay-guided fractionation and chromatographic techniques. All isolates were evaluated for their cholinesterase (ChEs) inhibitory activities, in which kokusaginine (7) and melineurine (5) exhibited the highest activity toward AChE and BChE, respectively. Lineweaver-Burk plots indicated that 5 and 7 were mixed mode inhibitors of both ChE enzymes. Molecular docking studies on the binding sites of AChE and BChE were performed in order to afford a molecular insight into the mode of action of these active compounds. From this study these compounds have emerged as promising molecules for Alzheimer's disease therapy.

  17. Longitudinal study of tuberculosis outcomes among immunologically naive Aché natives of Paraguay.

    PubMed

    Hurtado, A Magdalena; Hill, Kim R; Rosenblatt, Wilhelm; Bender, Jacquelyn; Scharmen, Tom

    2003-06-01

    This study documents the course of a tuberculosis epidemic in an immunologically naive group of South American Indians within fewer than 20 years after first sustained contact with outsiders. Groups of Northern Aché (ah-CHAY) of eastern Paraguay were contacted and settled on reservations between 1971-1979. Not surprisingly, the Aché are very susceptible to tuberculosis, and the epidemiological characteristics of the disease are quite different from those of populations that have had tuberculosis for centuries. Within 6 years of the first detected case of tuberculosis among the Aché, the prevalence rate of active tuberculosis cases reached 18.2%, and of infected cases among adults, 64.6%, some of the highest rates ever reported for any human group. Remarkably, males and females are equally likely to have been diagnosed with active tuberculosis, Aché children between birth and 5 years of age are least vulnerable to tuberculosis, high nutritional and socioeconomic status do not decrease the risk of disease or infection, and children immunized with BCG are less responsive to tuberculin challenge than are other children. Moreover, similar to the Yanomamö, but unlike populations of European or African descent, a high percentage of Aché with active disease test negative on tuberculin challenge tests (purified protein derivative; PPD). These differences may be due to a high prevalence of diminished cell-mediated immunity, and T-helper 2 dominance. We also hypothesize that these immunological characteristics, low genetic diversity, hostile intergroup interactions, and behavioral noncompliance to treatment protocols together contribute to the high rates of active disease observed. Existing tuberculosis control programs are poorly equipped to handle the impact of these causal complexities on the course of recent tuberculosis epidemics that have quickly spread throughout native communities of Latin America during the last decade.

  18. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    PubMed

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChRα7, α4 and β2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p < 0.05). While 8-hydroxy-2-deoxyguanosine and malondialdehyde levels were significantly decreased, NR2B and nAChRα7 expressions were significantly increased in the aspirin+ascorbic acid group as compared to the control group (p < 0.05). Subchronic treatment with aspirin+ascorbic acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process.

  19. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using paraoxon.

    PubMed

    Petroianu, Georg A; Nurulain, Syed M; Shafiullah, Mohamed; Hasan, Mohamed Y; Kuča, Kamil; Lorke, Dietrich E

    2013-09-01

    Reversible acetylcholinesterase (AChE) inhibitors can protect against the lethal effects of irreversible organophosphorus AChE inhibitors (OPCs), when administered before OPC exposure. We have assessed in vivo the mortality-reducing efficacy of a group of known AChE inhibitors, when given in equitoxic dosage before exposure to the OPC paraoxon. Protection was quantified in rats by determining the relative risk (RR) of death. Best in vivo protection from paraoxon-induced mortality was observed after prophylactic administration of physostigmine (RR = 0.30) or the oxime K-27 (RR = 0.34); both treatments were significantly superior to the pre-treatment with all other tested compounds, including the established substance pyridostigmine. Tacrine (RR = 0.67), ranitidine (RR = 0.72), pyridostigmine (RR = 0.76), tiapride (RR = 0.80) and 7-MEOTA (RR = 0.86) also significantly reduced the relative risk of paraoxon-induced death, but to a lesser degree. Methylene blue, amiloride and metoclopramide had an unfavorable effect (RR ≥ 1), significantly increasing mortality. When CNS penetration by prophylactic is undesirable K-27 is a promising alternative to pyridostigmine.

  20. Effects of Cognitive-Communication Stimulation for Alzheimer's Disease Patients Treated with Donepezil.

    ERIC Educational Resources Information Center

    Chapman, Sandra Bond; Weiner, Myron F.; Rackley, Audette; Hynan, Linda S.; Zientz, Jennifer

    2004-01-01

    ds to growing evidence that active cognitive stimulation may slow the rate of verbal and functional decline and decrease negative emotional symptoms in AD when combined with acetylcholinesterase inhibitors, indicating a need to advance research in the area of cognitive treatments. The fact that AD is a progressive brain disease should not preclude…

  1. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors.

    PubMed

    Kračmarová, Alžběta; Drtinová, Lucie; Pohanka, Miroslav

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.

  2. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer's disease- diabetes type 2 linkage via an enzoinformatics study.

    PubMed

    Rizvi, Syed M D; Shakil, Shahnawaz; Biswas, Deboshree; Shakil, Shazi; Shaikh, Sibhghatulla; Bagga, Paramdeep; Kamal, Mohammad A

    2014-04-01

    Acetylcholinesterase (AChE) is a primary target for Alzheimer's therapy while recently sodium glucose cotransporter 2 (SGLT2) has gained importance as a potential target for Type 2 Diabetes Mellitus (T2DM) therapy. The present study emphasizes the molecular interactions between a new Food and Drug Administration (FDA) approved antidiabetic drug 'Invokana' (chemically known as Canagliflozin) with AChE and SGLT2 to establish a link between the treatment of T2DM and Alzheimer's Disease (AD). Docking study was performed using 'Autodock4.2'. Both hydrophobic and π-π interactions play an important role in the correct positioning of Canagliflozin within SGLT2 and catalytic site (CAS) of AChE to permit docking. Free energy of binding (ΔG) for 'Canagliflozin-SGLT2' interaction and 'Canagliflozin - CAS domain of AChE' interaction were found to be -10.03 kcal/mol and -9.40 kcal/mol, respectively. During 'Canagliflozin-SGLT2' interaction, Canagliflozin was found to interact with the most important amino acid residue Q457 of SGLT2. This residue is known for its interaction with glucose during reabsorption in kidney. However, 'Canagliflozin-CAS domain of AChE' interaction revealed that out of the three amino acids constituting the catalytic triad (S203, H447 and E334), two amino acid residues (S203 and H447) interact with Canagliflozin. Hence, Invokana (Canagliflozin) might act as a potent dual inhibitor of AChE and SGLT2. However, scope still remains in the determination of the three-dimensional structure of SGLT2-Canagliflozin and AChE-Canagliflozin complexes by X-ray crystallography to validate the described data. Since the development of diabetes is associated with AD, the design of new AChE inhibitors based on antidiabetic drug scaffolds would be particularly beneficial. Moreover, the present computational study reveals that Invokana (Canagliflozin) is expected to form the basis of a future dual therapy against diabetes associated neurological disorders.

  3. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-04-12

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.Neuropsychopharmacology accepted article preview online, 12 April 2017. doi:10.1038/npp.2017.72.

  4. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII&D

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-06-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII&D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys. 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  5. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  6. Two rare variations, D478N and D478E, that occur at the same amino acid residue in nicotinic acetylcholine receptor (nAChR) α2 subunit influence nAChR function.

    PubMed

    Dash, Bhagirathi; Li, Ming D

    2014-10-01

    There occur two rare variations, Asp(D)478Asn(N) and Asp(D)478Glu(E), in the putative cytoplasmic amphipathic α-helices of human nicotinic acetylcholine receptor (nAChR) α2 subunit as a result of mutation in the 1st (G → A: rs141072985) and 3rd (C → A: rs56344740) nucleotide of its 478th triplet codon (GAC). We assessed the effects of these two variations on the function of α2β2- and α2β4-nAChRs as they could alter the electronegativity and/or the structure of the cytoplasmic 'portals' (framed by subunit amphipathic α-helices) necessary for obligate ion permeation from extracellular space to cytoplasm. We injected decreasing ratio of subunit cRNAs (α:β; 10:1, 1:1 and 1:10) into Xenopus oocytes to express putative low-sensitivity (LS; 10:1), intermediate-sensitivity (IS; 1:1) and high sensitivity (HS; 1:10) isoforms of wild type and variant α2β2- and α2β4-nAChRs. Two-electrode voltage clamp analyses indicate that the agonist (ACh or nicotine) induced peak current responses (Imax) of α2β2-nAChR isoforms and those of α2β4-nAChR isoforms are increased (1.3-4.7-fold) as a result of D478E variation. The α2 subunit D478N variation only increases the Imax of IS (∼2-fold) or HS (1.4-2.1-fold) α2β2-nAChRs. Concentration-response curves constructed indicate no effect on agonist sensitivities of LS and HS isoforms of α2β2- or α2β4-nAChRs as a result of either variation in α2 subunit. Between the two variant nAChRs, α2(D478E)*-nAChR isoforms generally yield higher Imax than those of respective α2(D478N)*-nAChR isoforms. These effects could be attributed to alteration in cytoplasmic 'portals' and/or ion permeation through it owing to change in amino acid electronegativity (D → N) and side chain length (D → E) in nAChR α2 subunit.

  7. The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery.

    PubMed

    Papke, Roger L; Dwoskin, Linda P; Crooks, Peter A

    2007-04-01

    Cigarette smoking and other forms of tobacco use deliver an array of pharmacologically active alkaloids, including nicotine and ultimately various metabolites of these substances. While nornicotine is a significant component in tobacco as well as a minor systemic metabolite of nicotine, nornicotine appears to be N-demethylated locally in the brain where it accumulates at relatively high levels after chronic nicotine administration. We have now examined the effects of nornicotine on specific combinations of neuronal nicotinic acetylcholine receptor (nAChR) subunits expressed in Xenopus oocytes and compared these responses to those evoked by acetylcholine and nicotine. Of the nAChR subtypes studied, we have found that alpha7 receptors are very responsive to nornicotine (EC50 approximately 17 micromol/L I(max) 50%, compared with acetylcholine (ACh)). nAChRs containing the ligand-binding domain of the alpha6 subunits (in the form of an alpha6/alpha3 chimera) are also strongly responsive to nornicotine (EC50 approximately 4 micromol/L I(max) 50%, compared with ACh). Alpha7-type nAChRs have been suggested to be potential therapeutic targets for Alzheimer's disease, schizophrenia and possibly other pathologies. nAChRs containing alpha6 subunits have been suggested to have a role in nicotine-evoked dopamine release. Thus, understanding the actions of nornicotine in the brain may have significance for both emerging therapeutics and the management of nicotine dependence.

  8. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  9. Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates.

    PubMed

    Radić, Zoran; Sit, Rakesh K; Garcia, Edzna; Zhang, Limin; Berend, Suzana; Kovarik, Zrinka; Amitai, Gabriel; Fokin, Valery V; Barry Sharpless, K; Taylor, Palmer

    2013-03-25

    A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.

  10. Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay).

    PubMed

    Libertini, G

    2013-09-01

    In the late seventies, a small tribal population of Paraguay, the Ache, living under natural conditions, was studied. Data from this population turn out to be useful for considerations about evolutionary hypotheses on the aging phenomenon. 1) Ache show an age-related increasing mortality, which strongly limits the mean duration of life, as observed in other studies on mammal and bird species. 2) According to current theories on aging, in the wild very few or no individual reach old age and, so, aging cannot be directly influenced by natural selection. However, data from our population show that a significant proportion of the population reaches in the wild 60 and 70 years of age. 3) Data from Ache are also in agreement with the observation about an inverse correlation between extrinsic mortality and deaths due to the age-related increasing mortality. 4) For many gerontologists, the age-related decline of vital functions is a consequence of the gradual decline of cell turnover, genetically determined and regulated by the declining duplication capacities of stem cells. The current interpretation is that these restrictions are a general defense against the proliferation of any tumoral mass. However, among wild Ache cancer is virtually unknown in non-elderly subjects, and only among older individuals are there deaths attributable to oncological diseases. Moreover, fitness decline begins long before oncological diseases have fatal effects in significant numbers. This completely disproves the current hypothesis, because a supposed defense against a deadly disease cannot exterminate a population before the disease begins to kill. These data are consistent with similar data from other species studied under natural conditions, and they bring new arguments against the non-adaptive interpretation of aging and in support of the adaptive interpretation.

  11. Electron cyclotron resonance deposition of a-Si:H and a-C:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Yang, C. L.; Allevato, C. E.; Pool, F. S.

    1989-01-01

    Amorphous silicon (a-Si:H) and amorphous carbon (a-C:H) films have been deposited by electron cyclotron resonance (ECR) microwave plasma enhanced CVD. A high deposition rate of 25 A/sec and a light-to-dark conductivity ratio of 500,000 for a-Si:H films have been achieved by the ECR process using a pure silane plasma. ECR microwave plasmas have been analyzed by in situ optical emission spectroscopy (OES) and have shown a strong H-asterisk emission at 434 nm indicating higher chemical reactivity than RF plasmas. The linear correlation between the film deposition rate and the SiH-asterisk emission intensity of ECR silane plasma suggests that SiH-asterisk species are related to the neutral radicals which are responsible for the a-Si:H film deposition. Hard and soft a-C:H films have been deposited by ECR with and without RF bias power, respectively. The RF bias to the substrate is found to play a critical role in determining the film structure and the carbon bonding configuration of ECR deposited a-C:H films. Raman spectra of these films indicate that ECR deposition conditions can be optimized to produce diamond films.

  12. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    PubMed

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes.

  13. The atypical antipsychotic olanzapine disturbs depotentiation by modulating mAChRs and impairs reversal learning.

    PubMed

    Song, Woo Seok; Cha, Jin Hee; Yoon, Sang Ho; Cho, Young Seon; Park, Kyeong-Yeol; Kim, Myoung-Hwan

    2017-03-01

    Antipsychotic medication is an essential component for treating schizophrenia, which is a serious mental disorder that affects approximately 1% of the global population. Olanzapine (Olz), one of the most frequently prescribed atypical antipsychotics, is generally considered a first-line drug for treating schizophrenia. In contrast to psychotic symptoms, the effects of Olz on cognitive symptoms of schizophrenia are still unclear. In addition, the mechanisms by which Olz affects the neural circuits associated with cognitive function are unknown. Here we show that Olz interrupts depotentiation (reversal of long-term potentiation) without disturbing de novo LTP (long-term potentiation) and LTD (long-term depression). At hippocampal SC-CA1 synapses, inhibition of NMDARs (N-methyl-d-aspartate receptors), mGluRs (metabotropic glutamate receptors), or mAChRs (muscarinic acetylcholine receptors) disrupted depotentiation. In addition, co-activation of NMDARs, mGluRs, and mAChRs reversed stably expressed LTP. Olz inhibits the activation of mAChRs, which amplifies glutamate signaling through enhanced NMDAR opening and Gq (Gq class of G protein)-mediated signal transduction. Behaviorally, Olz impairs spatial reversal learning of mice in the Morris water maze test. Our results uncover a novel mechanism underpinning the cognitive modulation of Olz and show that the anticholinergic property of Olz affects glutamate signaling and synaptic plasticity.

  14. Does Your Patient’s Urine Turns Dark? Alkaptonuria and Low Back Ache: A Literature Review

    PubMed Central

    Kanniyan, Kalaivanan; Pathak, Aditya C; Dhammi, Ish Kumar; Jain, Anil Kumar

    2014-01-01

    Introduction: Alkaptonuria is a very rare inborn error of amino acid metabolism due to deficient homogentisic acid (HGA) oxidase enzyme leading to accumulation of HGA in plasma, cartilage, other tissues of human body and its excretion in urine. It has both systemic and peripheral signs and symptoms. Though low back is a common symptom of alkaptonuria but, in the absence of ochronosis it is rare. Alkaptonuria itself is very rare occurrence with no specific treatment option available to reverse the effect as yet. Case Report: A 38-year-old male, embroidery worker presented with chronic low back ache with history of staining of clothes in infancy. Later on laboratory and the radiological investigation patient was diagnosed to have alkaptonuria without ochronosis. No other systemic manifestation was present. Patient was treated conservatively and responded well. Conclusion: Though alkaptonuria is a very rare disease, and the occurrence of low back-ache in absence of ochronosis is much rarer. One must be aware of this inborn error of metabolism. Early diagnosis though being “diagnosis of exclusion” for low back-ache, high index of suspicion is advantageous as symptomatic treatment of the alkaptonuria can be initiated and evaluation of other systemic organs can be done in early stages itself. PMID:27298997

  15. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration.

  16. Conformational remodeling of femtomolar inhibitor-acetylcholinesterase complexes in the crystalline state

    PubMed Central

    Bourne, Yves; Radic, Zoran; Taylor, Palmer; Marchot, Pascale

    2010-01-01

    The active center of acetylcholinesterase (AChE), a target site for competitive inhibitors, resides centrosymmetric to the subunit at the base of a deep, narrow gorge lined by aromatic residues. At the gorge entry, a peripheral site encompasses overlapping binding loci for non-competitive inhibitors, which alter substrate access to the gorge. The click-chemistry inhibitor TZ2PA6 links the active center ligand, tacrine, to the peripheral site ligand, propidium, through a biorthogonal reaction of an acetylene and an azide that forms either a syn1 or an anti1 triazole. Compared with wild-type mouse AChE, a Tyr337Ala mutant displays full catalytic activity, albeit with two to three orders of magnitude higher affinities for the TZ2PA6 syn1 and anti1 regioisomers, reflected in low femtomolar Kd values, diffusion-limited association and dissociation half-times greater than one month and one week, respectively. Three structures of each of the co-crystallized syn1 and anti1 complexes of the Tyr337Ala mutant were solved at three distinct times of crystal maturation, consistent with or exceeding the half-lives of the complexes in solution, while crystalline complexes obtained from soaked Tyr337Ala crystals led to picturing “freshly formed” complexes. The structures, at 2.55-2.75Å resolution, reveal a range of unprecedented conformations of the bound regioisomers, not observed in the wild-type AChE complexes, associated with concerted positional rearrangements of side chains in the enzyme gorge. Moreover, time-dependent conformational remodeling of the crystalline complexes appears to correlate with the dissociation half-times of the solution complexes. Hence for the tight-binding TZ2PA6 inhibitors, the initial complexes kinetically driven in solution slowly form more stable complexes governed by thermodynamic equilibrium and observable in mature crystals. PMID:21090615

  17. Structure-activity relationships and binding mode in the human acetylcholinesterase active site of pseudo-irreversible inhibitors related to xanthostigmine.

    PubMed

    Rizzo, Stefano; Cavalli, Andrea; Ceccarini, Luisa; Bartolini, Manuela; Belluti, Federica; Bisi, Alessandra; Andrisano, Vincenza; Recanatini, Maurizio; Rampa, Angela

    2009-04-01

    Structure-activity relationship studies on acetylcholinesterase (AChE) inhibitors were extended to newly synthesized compounds derived from the lead compound xantostigmine (1). The xanthone ring of compound 1 was replaced with several different scaffolds based on the benzopyran skeleton, linked to the tertiary amino nitrogen through an heptyloxy chain. These modifications resulted in 19 new compounds, most of them showing activity in the nanomolar-subnanomolar range. Docking and molecular dynamics simulations were carried out to both define a new computational protocol for the simulation of pseudo-irreversibile AChE covalent inhibitors, and to acquire a better understanding of the structure-activity relationships of the present series of compounds. The results of this computational work prompted us to to evaluate the ability of compounds 5 and 13 to inhibit acetylcholinesterase-induced Abeta aggregation.

  18. Immune responses to HTLV-I(ACH) during acute infection of pig-tailed macaques.

    PubMed

    McGinn, Therese M; Wei, Qing; Stallworth, Jackie; Fultz, Patricia N

    2004-04-01

    Human T cell lymphotropic virus type 1 (HTLV-I) is causally linked to adult T cell leukemia/lymphoma (ATL) and a chronic progressive neurological disease, HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A nonhuman primate model that reproduces disease symptoms seen in HTLV-I-infected humans might facilitate identification of initial immune responses to the virus and an understanding of pathogenic mechanisms in HTLV-I-related disease. Previously, we showed that infection of pig-tailed macaques with HTLV-I(ACH) is associated with multiple signs of disease characteristic of both HAM/TSP and ATL. We report here that within the first few weeks after HTLV-I(ACH) infection of pig-tailed macaques, serum concentrations of interferon (IFN)-alpha increased and interleukin-12 decreased transiently, levels of nitric oxide were elevated, and activation of CD4(+) and CD8(+) lymphocytes and CD16(+) natural killer cells in peripheral blood were observed. HTLV-I(ACH) infection elicited virus-specific antibodies in all four animals within 4 to 6 weeks; however, Tax-specific lymphoproliferative responses were not detected until 25-29 weeks after infection in all four macaques. IFN-gamma production by peripheral blood cells stimulated with a Tax or Gag peptide was detected to varying degrees in all four animals by ELISPOT assay. Peripheral blood lymphocytes from one animal that developed only a marginal antigen-specific cellular response were unresponsive to mitogen stimulation during the last few weeks preceding its death from a rapidly progressive disease syndrome associated with HTLV-I(ACH) infection of pig-tailed macaques. The results show that during the first few months after HTLV-I(ACH) infection, activation of both innate and adaptive immunity, limited virus-specific cellular responses, sustained immune system activation, and, in some cases, immunodeficiency were evident. Thus, this animal model might be valuable for understanding early stages of infection

  19. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Gandía, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; López, M. G.; Martínez-Sierra, R.; Borges, R.; García, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by

  20. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    PubMed

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-04

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine.

  1. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  2. Schwann cells and myasthenia gravis. Preferential uptake of soluble and membrane-bound AChR by normal and immortalized Schwann cells, and immunogenic presentation to AChR-specific T line lymphocytes.

    PubMed Central

    Zhang, Y. P.; Porter, S.; Wekerle, H.

    1990-01-01

    The normal neuromuscular synapse is formed by the intimate association of nerve endings, postsynaptic end-plate foldings in the muscle fiber, and nonmyelinating Schwann cells (SC) sealing the synaptic ramifications. Because SC have been recognized recently to have an immunogenic potential inducible to present protein autoantigens to autoimmune T lymphocytes, and considering their close proximity to the acetylcholine receptor (AChR)-bearing postsynaptic membranes, presentation of soluble and membrane vesicle-bound AChR to appropriate T cells was investigated. Short-term monolayer cultures of SC isolated from neonatal rat sciatic nerves, as well as cells of an immortalized SC line of similar origin, were fully able to present the relevant molecular epitopes to major histocompatibility complex (MHC) compatible AChR-specific T line lymphocytes immunogenically. Presentation of AChR was restricted by RT1.B (I-A) MHC class II products. Both types of cultured rat SC were inducible to expression of MHC class I and II products, and they were able to phagocytose AChR-enriched membrane vesicles preferentially. In contrast, phagocytosis of latex particles by SC was negligible. These data qualify perisynaptic SC as potential presenter cells of autoimmunogenic AChR in myasthenia gravis. Thus, SC may play a critical and as-yet unpredicted regulatory role in the cellular pathogenesis of myasthenia gravis. Images Figure 5 Figure 3 Figure 6 PMID:1688688

  3. Sympathetic α₃β₂-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine.

    PubMed

    Lee, Reggie Hui-Chao; Liu, Yi-Qing; Chen, Po-Yi; Liu, Chin-Hung; Chen, Mei-Fang; Lin, Hung-Wen; Kuo, Jon-Son; Premkumar, Louis S; Lee, Tony Jer-Fu

    2011-08-01

    The α(7)-nicotinic ACh receptor (α(7)-nAChR) on sympathetic neurons innervating basilar arteries of pigs crossed bred between Landrace and Yorkshire (LY) is known to mediate nicotine-induced, β-amyloid (Aβ)-sensitive nitrergic neurogenic vasodilation. Preliminary studies, however, demonstrated that nicotine-induced cerebral vasodilation in pigs crossbred among Landrace, Yorkshire, and Duroc (LYD) was insensitive to Aβ and α-bungarotoxin (α-BGTX). We investigated nAChR subtype on sympathetic neurons innervating LYD basilar arteries. Nicotine-induced relaxation of porcine isolated basilar arteries was examined by tissue bath myography, inward currents on nAChR-expressing oocytes by two-electrode voltage recording, and mRNA and protein expression in the superior cervical ganglion (SCG) and middle cervical ganglion (MCG) by reverse transcription PCR and Western blotting. Nicotine-induced basilar arterial relaxation was not affected by Aβ, α-BGTX, and α-conotoxin IMI (α(7)-nAChR antagonists), or α-conotoxin AuIB (α(3)β(4)-nAChR antagonist) but was inhibited by tropinone and tropane (α(3)-containing nAChR antagonists) and α-conotoxin MII (selective α(3)β(2)-nAChR antagonist). Nicotine-induced inward currents in α(3)β(2)-nAChR-expressing oocytes were inhibited by α-conotoxin MII but not by α-BGTX, Aβ, or α-conotoxin AuIB. mRNAs of α(3)-, α(7)-, β(2)-, and β(4)-subunits were expressed in both SCGs and MCGs with significantly higher mRNAs of α(3)-, β(2)-, and β(4)-subunits than that of α(7)-subunit. The Aβ-insensitive sympathetic α(3)β(2)-nAChR mediates nicotine-induced cerebral nitrergic neurogenic vasodilation in LYD pigs. The different finding from Aβ-sensitive α(7)-nAChR in basilar arteries of LY pigs may offer a partial explanation for different sensitivities of individuals to Aβ in causing diminished cerebral nitrergic vasodilation in diseases involving Aβ.

  4. Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer's disease (AD).

    PubMed

    Bahrani, Hirbod; Mohamad, Jamaludin; Paydar, Mohammad Javad; Rothan, Hussin A

    2014-02-01

    Aquilaria subintegra, locally known as "Gaharu", belongs to the Thymelaeceae family. This plant's leaves have been claimed to be effective for the treatment of Alzheimer's disease (AD) by Malay traditional practitioner in Malaysia. In this research, the chloroform extracts of the leaves and stem of A. subintegra were tested for acetylcholinesterase (AChE) inhibitory activity. The Thin Layer Chromatography (TLC) results indicated the presence of phenols, flavonoids, terpenoids, and alkaloids compounds in the extracts. Analysis of the stem chloroform extracts with LCMS/MS displayed that it contains kaempferol 3,4,7-trimethyl ether. The AChE inhibitory activity of leaves and stem chloroform extracts and kaempferol were 80%, 93% and 85.8%, respectively. The Brine Shrimp Lethality Assay (BSLA) exhibited low to moderate toxicity of the chloroform extract from leaves (LC50=531.18 ± 49.53 μg/ml), the stem chloroform extract (LC50=407.34 ± 68.05 μg/ml) and kaempferol (LC50=762.41 ± 45.09 μg/ml). The extracts and kaempferol were not cytotoxic to human umbilical vein endothelial cells (HUVEC), human normal gastric epithelial cell line (GES-1) and human normal hepatic cell line (WRL-68). The effect of leaf and stem chloroform extracts and kaempferol were determined in the Radial Arm Maze (RAM) after administration by oral gavage to ICR male and female mice with valium-impaired memory. Administration of kaempferol to the mice significantly reduced the number of repeated entries into the arms of maze in males and females. In conclusion, the inhibition of AChE by leaf and stem chloroform extracts of A. subintegra could be due to the presence of kaempferol. This extract is safe for use as a natural AChE inhibitor as an alternative to berberine for the treatment of AD.

  5. [Cl-]i modulation of Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells of guinea pig.

    PubMed

    Shimamoto, Chikao; Umegaki, Eiji; Katsu, Ken-ichi; Kato, Masumi; Fujiwara, Shoko; Kubota, Takahiro; Nakahari, Takashi

    2007-10-01

    The effects of intracellular Cl- concentration ([Cl-]i) on acetylcholine (ACh)-stimulated exocytosis were studied in guinea pig antral mucous cells by video microscopy. ACh activated Ca2+-regulated exocytosis (an initial phase followed by a sustained phase). Bumetanide (20 microM) or a Cl- -free (NO3-) solution enhanced it; in contrast, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl- channel blocker) decreased it and eliminated the enhancement induced by bumetanide or NO3- solution. ACh and Ca2+ dose-response studies demonstrated that NO3- solution does not shift their dose-response curves, and ATP depletion studies by dinitrophenol or anoxia demonstrated that exposure of NO3- solution prior to ATP depletion induced an enhanced initial phase followed by a sustained phase, whereas exposure of NO3- solution after ATP depletion induced only a sustained phase. Intracellular Ca2+ concentration ([Ca2+]i) measurements showed that bumetanide and NO3- solution enhanced the ACh-stimulated [Ca2+]i increase. Measurements of [Cl-]i revealed that ACh decreases [Cl-]i and that bumetanide and NO3- solution decreased [Cl-]i and enhanced the ACh-evoked [Cl-]i decrease; in contrast, NPPB increased [Cl-]i and inhibited the [Cl-]i decrease induced by ACh, bumetanide, or NO3- solution. These suggest that [Cl-]i modulates [Ca2+]i increase and ATP-dependent priming. In conclusion, a decrease in [Cl-]i accelerates ATP-dependent priming and [Ca2+]i increase, which enhance Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells.

  6. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection.

    PubMed

    Egea, Javier; Buendia, Izaskun; Parada, Esther; Navarro, Elisa; León, Rafael; Lopez, Manuela G

    2015-10-15

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system, being expressed in neurons and non-neuronal cells, where they participate in a variety of physiological responses like memory, learning, locomotion, attention, among others. We will focus on the α7 nAChR subtype, which has been implicated in neuroprotection, synaptic plasticity and neuronal survival, and is considered as a potential therapeutic target for several neurological diseases. Oxidative stress and neuroinflammation are currently considered as two of the most important pathological mechanisms common in neurodegenerative diseases such as Alzheimer, Parkinson or Huntington diseases. In this review, we will first analysed the distribution and expression of nAChR in mammalian brain. Then, we focused on the function of the α7 nAChR subtype in neuronal and non-neuronal cells and its role in immune responses (cholinergic anti-inflammatory pathway). Finally, we will revise the anti-inflammatory pathway promoted via α7 nAChR activation that is related to recruitment and activation of Jak2/STAT3 pathway, which on the one hand inhibits NF-κB nuclear translocation, and on the other hand, activates the master regulator of oxidative stress Nrf2/HO-1. This review provides a profound insight into the role of the α7 nAChR subtype in microglia and point out to microglial α7/HO-1 pathway as an anti-inflammatory therapeutic target.

  7. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria.

    PubMed

    Schrey, Silvia D; Schellhammer, Michael; Ecke, Margret; Hampp, Rüdiger; Tarkka, Mika T

    2005-10-01

    The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric (Amanita muscaria) and spruce (Picea abies) was investigated. The effects of both bacteria on the mycelial growth of different ectomycorrhizal fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture with AcH 505 were determined. The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances.

  8. Halogen-directed drug design for Alzheimer's disease: a combined density functional and molecular docking study.

    PubMed

    Rahman, Adhip; Ali, Mohammad Tuhin; Shawan, Mohammad Mahfuz Ali Khan; Sarwar, Mohammed Golam; Khan, Mohammad A K; Halim, Mohammad A

    2016-01-01

    A series of halogen-directed donepezil drugs has been designed to inhibit acetyl cholinesterase (AChE). Density Functional theory (DFT) has been employed to optimize the chair as well as boat conformers of the parent drug and modified ligands at B3LYP/MidiX and B3LYP/6-311G + (d,p) level of theories. Charge distribution, dipole moment, enthalpy, free energy and molecular orbitals of these ligands are also investigated to understand how the halogen-directed modifications impact the ligand structure and govern the non-bonding interactions with the receptors. Molecular docking calculation has been performed to understand the similarities and differences between the binding modes of unmodified and halogenated chair-formed ligands. Molecular docking indicated donepezil and modified ligands had non-covalent interactions with hydrophobic gorges and anionic subsites of AChE. The -CF3-directed ligand possessed the most negative binding affinity. Non-covalent interactions within the ligand-receptor systems were found to be mostly hydrophobic and π- stacking type. F, Cl and -CF3 containing ligands emerge as effective and selective AChE inhibitors, which can strongly interact with the two active sites of AChE. In addition, we have also investigated selected pharmacokinetic parameters of the parent and modified ligands.

  9. Hypocretin-1 causes G protein activation and increases ACh release in rat pons.

    PubMed

    Bernard, René; Lydic, Ralph; Baghdoyan, Helen A

    2003-10-01

    The effects of the arousal-promoting peptide hypocretin on brain stem G protein activation and ACh release were examined using 16 adult Sprague-Dawley rats. In vitro[35S]GTPgammaS autoradiography was used to test the hypothesis that hypocretin-1-stimulated G protein activation is concentration-dependent and blocked by the hypocretin receptor antagonist SB-334867. Activated G proteins were quantified in dorsal raphe nucleus (DR), locus coeruleus (LC) and pontine reticular nucleus oral part (PnO) and caudal part (PnC). Concentration-response data revealed a significant (P < 0.001) effect of hypocretin-1 (2-2000 nm) in all brain regions examined. Maximal increases over control levels of [35S]GTPgammaS binding were 37% (DR), 58% (LC), 52% (PnO) and 44% (PnC). SB-334867 (2 micro m) significantly (P < 0.002) blocked hypocretin-1 (200 nm)-stimulated [35S]GTPgammaS binding in all four nuclei. This is the first autoradiographic demonstration that hypocretin-1 activates G proteins in arousal-related brain stem nuclei as a result of specific receptor interactions. This finding suggests that some hypocretin receptors in brain stem couple to inhibitory G proteins. In vivo microdialysis was used to test the hypothesis that PnO administration of hypocretin-1 increases ACh release in PnO. Dialysis delivery of hypocretin-1 (100 micro m) significantly (P < 0.002) increased (87%) ACh release. This finding is consistent with the interpretation that one mechanism by which hypocretin promotes arousal is by enhancing cholinergic neurotransmission in the pontine reticular formation.

  10. In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens.

    PubMed

    Pucci, Michael J; Podos, Steven D; Thanassi, Jane A; Leggio, Melissa J; Bradbury, Barton J; Deshpande, Milind

    2011-06-01

    ACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency against Haemophilus influenzae, Moraxella catarrhalis, and a Neisseria sp. but was less active against members of the Enterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well as Legionella pneumophila and Mycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10 × MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple. In vivo efficacy was demonstrated against S. aureus with murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (≤0.25 μg/ml) against staphylococcal strains with single mutations in both gyrA and grlA (parC), retention of good antibacterial activity (MICs of ≤0.5 μg/ml) against staphylococcal strains with two mutations in both gyrA and grlA, and low frequencies for the selection of higher-level resistance (<10⁻¹⁰). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates.

  11. In Vitro Activity of a New Isothiazoloquinolone, ACH-702, against Mycobacterium tuberculosis and Other Mycobacteria▿

    PubMed Central

    Molina-Torres, Carmen A.; Ocampo-Candiani, Jorge; Rendón, Adrian; Pucci, Michael J.; Vera-Cabrera, Lucio

    2010-01-01

    In this work, we describe the activity of ACH-702 against clinical isolates of Mycobacterium tuberculosis and six different nontuberculous mycobacteria. The MIC50 and MIC90 of both susceptible and drug-resistant M. tuberculosis strains tested were 0.0625 and 0.125 μg/ml, respectively. The MIC50 and MIC90 values for Mycobacterium fortuitum isolates were 0.0625 μg/ml in both cases; Mycobacterium avium complex isolates showed MIC50 and MIC90 values of 0.25 and 4 μg/ml, respectively. PMID:20231398

  12. Preliminary Geological Maps of the Ac-H-10 Rongo and Ac-H-15 Zadeni Quadrangles: An integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Platz, T.; Nathues, A.; Crown, D. A.; Mest, S. C.; Williams, D. A.; Hoffmann, M.; Schäfer, M.; Sizemore, H. G.; Yingst, R. A.; Ruesch, O.; Buczkowski, D.; Kneissl, T.; Schmedemann, N.; Hughson, K.; Preusker, F.; Russell, C. T.

    2015-12-01

    We used geologic mapping applied to Dawn spacecraft data as a tool to understand the geologic history of the Ac-H-10 Rongo and Ac-H-15 Zadeni quadrangles of dwarf planet Ceres. These regions, Rongo and Zadeni, are located between 22°S-22°N and 288°-360°E and 65-90°S and 0°-360°E, respectively. The Rongo Quadrangle hosts a number of features: 1) the southwest portion is dissected by curvilinear structures likely caused by Yalode basin formation; 2) the central part is marked by dome-like constructs up to 100 km across; 3) a peculiar bright, c.4 km tall, conical structure informally known as the 'pyramid'; 4) impact craters of various diameters appear moderately to highly degraded or are partially buried; and 5) bright material is primarily exposed in the central portion and often associated with craters. Rongo crater (68 km across) exhibits a central peak and scalloped walls indicative of its degraded appearance. The Zadeni Quadrangle is characterised by impact craters up to 130 km in diameter of which Zadeni crater is the largest. Impact craters across all sizes exhibit fresh to highly degraded morphologies or are partially buried. Many craters developed central peaks. Inter-crater plains are generally hummocky with isolated regions of smooth-textured surfaces. The south pole area (85-90°S) is poorly illuminated and may host a large impact structure. At the time of this writing geologic mapping was performed on Framing Camera (FC) mosaics from Approach (1.3 km/px) and Survey (415 m/px) orbits, including clear filter and colour images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by Low Altitude Mapping Orbit (35 m/px) starting in December 2015. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA through the Dawn project, and from the German and Italian Space Agencies.

  13. Simvastatin prevents β-amyloid(25-35)-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate.

    PubMed

    Wang, Conghui; Chen, Tingting; Li, Guoxi; Zhou, Libin; Sha, Sha; Chen, Ling

    2015-10-01

    Simvastatin (SV) is reported to improve cognition and slow progression of Alzheimer's disease (AD), however underlying mechanism still remains unclear. In hippocampal dentate gyrus (DG), β-amyloid (Aβ) selectively impairs survival and neurite growth of newborn neurons in the 2(nd) week after birth. The aim of this study was to examine the effects of SV on the impairment of neurogenesis and the spatial cognitive deficits in Aβ25-35 (3 nmol)-injected (i.c.v.) mice (Aβ25-35-mice). Herein, we reported that the SV-treatment (20 mg/kg) on days 2-14 after BrdU-injection could dose-dependently protect the survival and neurite growth of newborn neurons, which was blocked by the α7nAChR antagonist MLA or the farnesol (FOH) that can convert to farnesyl pyrophosphate (FPP), but not the α4β2nAChR antagonist DHβE. The SV-treatment in Aβ25-35-mice rescued the decline of Akt phosphorylation and increased the ERK1/2 phosphorylation in hippocampus, which was sensitive to MLA and FOH. The PI3K inhibitor LY294002 could abolish the SV-protected neurogenesis in Aβ25-35-mice, but the MEK inhibitor U0126 had no effects. The SV-treatment could correct the decline of hippocampal BDNF concentration in Aβ25-35-mice, which was blocked by MLA and FOH. Using Morris water maze and Y-maze tasks, we further observed that the SV-treatment in Aβ25-35-mice could improve their spatial cognitive deficits, which was sensitive to the application of FOH. The results indicate that the SV-treatment in Aβ25-35-mice via reduction of FPP can protect neurogenesis through α7nAChR-cascading PI3K-Akt and increasing BDNF, which may improve spatial cognitive function.

  14. [Development of therapies for Alzheimer's disease based on cholinergic hypothesis-status quo and future directions].

    PubMed

    Shimohama, Shun

    2013-01-01

    Numerous approaches have been explored to treat individuals with Alzheimer's disease (AD). General approaches include the following treatment; treatment of cognitive symptoms, slowing decline, delaying onset of disease, and primary prevention. 2011 is the new era for the drug therapy for AD in Japan, because three anti-dementia drugs, galantamine, rivastigmine and memantine, were admitted to use for AD in addition to donepezil. Donepezil, galantamine and rivastigmine has been developed based on cholinergic hypothesis that acetylcholine (ACh) acts a chief neurotransmitter as a cognitive neurotransmitter. Donepezil a specific acetylcholinesterase inhibitor (AChEI). Galantamine acts as an allosteric potentiating ligand of nicotinic acetylcholine receptors in addition to the function of AChEI. Rivastigmine increase acetylcholine in the cholinergic synapse by inhibition of both AChE and butyrylcholinesterase. Recent study shows that these anti-dementia drugs afford symptomatic effect and also act as disease-modifiers which inhibit neuronal death and abnormal amyloid-beta deposition. These effects can slow the rate of decline of the disease. While in the past many of our attempts have been to treat secondary symptoms or improve the cognitive deficits, future attempts are likely to focus on slowing the rate of decline, delaying the onset of appearance, or preventing the disease.

  15. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs.

  16. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  17. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  18. Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs.

    PubMed

    Murthy, Vidya; Taranda, Julián; Elgoyhen, A Belén; Vetter, Douglas E

    2009-12-01

    Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) alpha9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR alpha9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in alpha9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the alpha9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult alpha9 null mice. Finally, by using mice expressing the nondesensitizing alpha9 L9'T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation.

  19. Methadone's effect on nAChRs--a link between methadone use and smoking?

    PubMed

    Talka, Reeta; Tuominen, Raimo K; Salminen, Outi

    2015-10-15

    Methadone is a long-acting opioid agonist that is frequently prescribed as a treatment for opioid addiction. Almost all methadone maintenance patients are smokers, and there is a correlation between smoking habit and use of methadone. Methadone administration increases tobacco smoking, and heavy smokers use higher doses of methadone. Nevertheless, methadone maintenance patients are willing to quit smoking although their quit rates are low. Studies on nicotine-methadone interactions provide an example of the bedside-to-bench approach, i.e., observations in clinical settings have been studied experimentally in vivo and in vitro. In vivo studies have revealed the interplay between nicotine and the endogenous opioid system. At the receptor level, methadone has been shown to be an agonist of human α7 nAChRs and a non-competitive antagonist of human α4β2 and α3* nAChRs. These drugs do not have significant interactions at the level of drug metabolism, and thus the interaction is most likely pharmacodynamic. The net effect of the interaction may depend on individual characteristics because pharmacogenetic factors influence the disposition of both methadone and nicotine.

  20. [Effects of the association of sulbutiamine with an acetylcholinesterase inhibitor in early stage and moderate Alzheimer disease].

    PubMed

    Ollat, H; Laurent, B; Bakchine, S; Michel, B-F; Touchon, J; Dubois, B

    2007-01-01

    The efficacy of the inhibitors of acetylcholinesterase in Alzheimer's Disease (AD) is moderated and some patients do not respond to these treatments. Sulbutiamine potentializes cholinergic and glutamatergic transmissions, mainly in hippocampus and prefrontal cortex. This multicentric, randomized and double-blind trial evaluates the effects of the association of sulbutiamine to an anticholinesterasic drug in cognitive functions in patients with AD at an early stage (episodic memory, working memory, executive functions, attention). Patients had first donepezil (D) or sulbutiamine (S) during three months. During this period, only attention improved in both groups. During the three following months, a placebo (P) in patients D and donepezil in patients S were added. Compared to entry results, episodic memory decreased in group D + P but improved in group S + D. At the same time the improvement of attention persisted in both groups. Daylife activities only improved in group S + D. In conclusion sulbutiamine can be an adjuvant to treatment in early stage and moderate AD by anticholinesterasic drugs.

  1. Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries.

    PubMed

    Lee, Reggie Hui-Chao; Tseng, Ting-Yi; Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu

    2012-01-01

    Memantine, an NMDA receptor antagonist used for treatment of Alzheimer's disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer's disease.

  2. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    PubMed Central

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; D’Souza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  3. Geological Mapping of the Ac-H-10 Rongo and Ac-H-15 Zadeni quadrangles of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Ruesch, Ottaviano; Hoffmann, Martin; Schaefer, Michael; Crown, David; Mest, Scott; Aileen Yingst, R.; Williams, David; Buczkowski, Debra; Hughson, Kynan; Kneissl, Thomas; Schmedemann, Nico; Schorghofer, Norbert; Nass, Andrea; Preusker, Frank; Russell, Christopher

    2016-04-01

    On March 6, 2015 NASA's Dawn spacecraft arrived at (1) Ceres, the largest object in the main asteroid belt. Dawn is studying the dwarf planet more than one year through successively lower orbits at increasing resolution. Main orbital phases include Survey Orbit, High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO) where Framing Camera (FC) [1] resolution increased from c.400 m/px to c.140 m/px and c.35 m/px, respectively. The Dawn Science Team is conducting geological mapping campaigns for Ceres (as done before for Vesta [2,3]) and includes the production of a Survey/HAMO-based global geological map and a series of 15 LAMO-based geological quadrangle maps. This abstract presents HAMO-based geological maps of Ac-H-10 Rongo (22°N-22°S, 288-360°E) and Ac-H-15 Zadeni (65°-90°S, 0°-360°E) quadrangles. The Rongo Quadrangle is located at the equatorial region and comprises the unique isolated mountain Ahuna Mons (10.5°S/316.0°E; formerly known as the pyramid), abundant impact craters spanning a range in diameters and states of preservation - from fresh to highly degraded - , and a number of tholi, which may represent surface expressions of sub-surface diapir intrusions. The SW portion of the quandrangle is characterised by Yalode (D=260 km) sourced ejecta. The Zadeni Quadrangle is dominated by the 122-km-diameter crater Zadeni located at 70.2°S/37.4°E) and a suite of mid-sized craters whose morphologies range from fresh to highly degraded. Portions of the quadrangle are covered by Urvara [4] and Yalode [5] ejecta materials. The South Polar Region is poorly illuminated and the South Pole itself is likely located within a larger impact structure. Future work of this mapping campaign includes revision of HAMO-based line work (e.g., contacts) with higher resolution LAMO data. Final interpretations regarding the geological histories of these two quadrangles will also be based on FC colour and stereo-derived topography data, VIR spectra as well

  4. Geologic Mapping of the Ac-H-1 quadrangle of Ceres from NASA's Dawn mission

    NASA Astrophysics Data System (ADS)

    Rüsch, Ottaviano; McFadden, Lucy A.; Hiesinger, Harald; Scully, Jennifer; Kneissl, Thomas; Hughson, Kynan; Williams, David A.; Roatsch, Thomas; Platz, Thomas; Preusker, Frank; Schmedemann, Nico; Marchi, Simone; Jaumann, Ralf; Nathues, Andreas; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta (1, 2), including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract, we present the geologic map and geologic evolution of the Ac-H-1 Asari Quadrangle. At the time of writing, LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and HAMO and Survey (400 m/pixel) digital terrain models (for topographic information) (3). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. Ac-H-1 quadrangle covers the North Pole area: 65°N-90°N. Key characteristics of the study area are: (i) a high density of impact craters and (ii) only moderate topographic variations across the quadrangle. We measured a crater density of 9.8E-04 km-2 for crater diameters >10 km, the highest on Ceres measured so far. Topographic lows, reaching -4 km, correspond to the floors of impact craters with diameters up to 64 km. A few isolated topographic highs (plateaus), reaching ~5 km in altitude relative to the ellipsoid are present. Their irregular shape is often sculpted by impacts. A peculiar topographic rise is represented by Ysolo Mons: a ~5 km high and ~20 km wide mountain. No downslope striations are preserved on the Mons flanks, indicating an older surface relative to Ahuna Mons, a similar but morphologically fresh appearing mountain at the equator (quadrangle Ac-H-10, (4)). Several impact craters show central peaks and/or mass wasting deposits on their floor. Crater rims often display terraces. These morphologies show varying degrees of degradation. Uncommon crater morphologies are a smooth crater floor (crater located at 79°N-170°E) and a large mass wasting landform inside

  5. Activation of volume-regulated Cl− channels by ACh and ATP in Xenopus follicles

    PubMed Central

    Pérez-Samartín, Alberto L; Miledi, Ricardo; Arellano, Rogelio O

    2000-01-01

    Osmolarity-dependent ionic currents from follicle-enclosed Xenopus oocytes (follicles) were studied using electrophysiological techniques. Whole follicle currents were monitored using a two-electrode voltage clamp and single-channel activity was measured using the patch-clamp technique.In follicles held at -60 mV two chloride currents were activated in external hyposmotic solutions. One was the habitual volume-regulated current elicited by external hyposmolarity (ICl,swell), and the second was a slow and smooth current (Sin) generated by ACh or ATP application.In follicles, the permeability ratios for different anions with respect to Cl− were similar for both ICl,swell and Sin, with a sequence of: SCN− > I− > Br−≥ NO3−≥ Cl− > gluconate ≥ cyclamate > acetate > SO42−.Extracellular ATP blocked the outward component of Sin. Also, extracellular pH modulated the inactivation kinetics of Sin elicited by ACh; e.g. inactivation at +80 mV was ∼100% slower at pH 8.0 compared with that at pH 6.0.Lanthanides inhibited ICl,swell and Sin. La3+ completely inhibited ICl,swell with a half-maximal inhibitory concentration (IC50) of 17 ± 1.9 μm, while Sin was blocked up to 55% with an apparent IC50 of 36 ± 2.6 μm.Patch-clamp recordings in follicular cells showed that hyposmotic challenge opened inward single-channel currents. The single channel conductance (4.7 ± 0.4 pS) had a linear current-voltage relationship with a reversal membrane potential close to −20 mV. This single-channel activity was increased by application of ACh or ATP.The ICl,swell generation was not affected by pirenzepine or metoctramine, and did not affect the purinergic activation of the chloride current named Fin. Thus, ICl,swell was not generated via neurotransmitters released during cellular swelling.All together, equal discrimination for different anions, similar modulatory effects by extracellular pH, the blocking effects by ATP and La3+, and the same single-channel activity

  6. Synthesis, biological evaluation and docking studies of 2,3-dihydroquinazolin-4(1H)-one derivatives as inhibitors of cholinesterases.

    PubMed

    Sarfraz, Muhammad; Sultana, Nargis; Rashid, Umer; Akram, Muhammad Safwan; Sadiq, Abdul; Tariq, Muhammad Ilyas

    2017-01-17

    In search of potent inhibitors of cholinesterases, we have synthesized and evaluate a number of 2,3-dihydroquinazolin-4(1H)-one derivatives. The synthetic approach provided an efficient synthesis of the target molecules with excellent yield. All the tested compounds showed activity against both the enzymes in micromolar range. In many case, the inhibition of both enzymes are higher than or comparable to the standard drug galatamine. With the selectivity index of 2.3 for AChE, compound 5f can be considered as a potential lead compound with a feature of dual AChE/BChE inhibition with IC50=1.6±0.10μM (AChE) and 3.7±0.18μM (BChE). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. The computed binding modes of these compounds in the active site of AChE and BChE provide an insight into the mechanism of inhibition of these two enzyme.

  7. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  8. Acetylcholinesterase inhibitors as a starting point towards improved Alzheimer's disease therapeutics.

    PubMed

    Recanatini, Maurizio; Valenti, Piero

    2004-01-01

    The knowledge about the pathogenesis and the development of the neurodegeneration associated with Alzheimer's disease (AD) has been organised throughout the years into two theories, namely the cholinergic and the amyloid hypotheses. The loss of cholinergic neurotransmission and the abnormal aggregation and deposition of the amyloid-beta peptide (A beta) in the brain are retained as the central events by the two theories, respectively. These phenomena and their pathological consequences are the main targets of the drug discovery strategies based on each hypothesis. However, the two paradigms share some common aspects as shown by several experimental evidences, such that they might even fit into a unifying scenario of neuropathology and neurodegeneration. In this context, in a perspective of drug discovery, the enzyme acetylcholinesterase (AChE) holds a key position, as it is a main target for cholinomimetic AD drugs being responsible for the breakdown of the neurotransmitter, and it is also involved in the aggregation of A beta and the formation of the neurotoxic fibrils. Following this view, in recent years, a drug design strategy has emerged, directed to finding molecules able to inhibit both of these actions exerted by AChE. In this review, we will briefly introduce the biological basis of this strategy, and then will account for the early results obtained in this field in our and in other laboratories. The main focus will be on potential lead compounds for which some experimental evidence exists supporting the hypothesis of their dual action, as AChE inhibitors and blockers of the AChE-induced A beta aggregation.

  9. Angiogenesis Inhibitors

    MedlinePlus

    ... inhibitors: current strategies and future prospects. CA: A Cancer Journal for Clinicians 2010; 60(4):222–243. [PubMed Abstract] Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nature Reviews Clinical Oncology 2009; 6(8):465– ...

  10. Carboxylesterase inhibitors

    PubMed Central

    Hatfield, M. Jason; Potter, Philip M.

    2011-01-01

    Introduction Carboxylesterases play major roles in the hydrolysis of numerous therapeutically active compounds. This is, in part, due to the prevalence of the ester moiety in these small molecules. However, the impact these enzymes may play on drug stability and pharmacokinetics is rarely considered prior to molecule development. Therefore, the application of selective inhibitors of this class of proteins may have utility in modulating the metabolism, distribution and toxicity of agents that are subjected to enzyme hydrolysis. Areas covered This review details the development of all such compounds dating back to 1986, but principally focuses on the very recent identification of selective human carboxylesterases inhibitors. Expert opinion The implementation of carboxylesterase inhibitors may significantly revolutionize drug discovery. Such molecules may allow for improved efficacy of compounds inactivated by this class of enzymes and/or reduce the toxicity of agents that are activated by these proteins. Furthermore, since lack of carboxylesterase activity appears to have no obvious biological consequence, these compounds could be applied in combination with virtually any esterified drug. Therefore, inhibitors of these proteins may have utility in altering drug hydrolysis and distribution in vivo. The characteristics, chemical and biological properties, and potential uses of such agents, are discussed here. PMID:21609191

  11. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum.

    PubMed Central

    Clarke, P. B.; Reuben, M.; el-Bizri, H.

    1994-01-01

    1. The acetylcholinesterase inhibitors physostigmine, neostigmine, tetrahydroaminoacridine (tacrine; THA) and diisopropylfluorophosphate (DFP) were tested for possible direct nicotinic actions in rat striatal synaptosomes preloaded with [3H]-dopamine. In this preparation, nicotinic cholinoceptor activation evoked [3H]-dopamine release. 2. Antagonist activity was examined by giving a brief nicotine (1 microM) challenge after 30 min superfusion with an acetylcholinesterase (AChE) inhibitor (0.3-300 microM). Physostigmine, neostigmine and tacrine produced a concentration-dependent blockade. Physostigmine and tacrine were particularly potent (IC50S approx. 10 microM and 1 microM, respectively). DFP reduced nicotinic responses only at the highest concentration tested (300 microM). 3. Nicotinic blockade produced by superfusion with physostigmine (30 microM) was insurmountable when tested against nicotine (0.1-100 microM). 4. Physostigmine (30 microM) also reduced responses to the nicotinic agonists 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) and cytisine, but did not alter responses to high K+ or (+)-amphetamine. A higher concentration of physostigmine (300 microM) completely blocked responses to nicotine, somewhat reduced responses to amphetamine, and did not alter responses to high K+. Tacrine (3 microM) reduced responses to nicotine and to high K+ but did not affect responses to amphetamine. 5. Physostigmine (0.3-300 microM), given as a brief pulse, did not produce a nicotinic agonist-like effect. 6. Physostigmine, neostigmine, tacrine and DFP (all at 30 microM) each produced near-total (> 96%) inhibition of AChE activity. However, DFP at a concentration (60 microM) that produced a degree of AChE inhibition equal to that of physostigmine 30 microM, did not significantly reduce nicotine-induced dopamine release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8019748

  12. α7nAChR is expressed in satellite cells at different myogenic status during skeletal muscle wound healing in rats.

    PubMed

    Tian, Zhi-Ling; Jiang, Shu-Kun; Zhang, Miao; Wang, Meng; Li, Jiao-Yong; Zhao, Rui; Wang, Lin-Lin; Liu, Min; Li, Shan-Shan; Zhang, Meng-Zhou; Guan, Da-Wei

    2015-12-01

    Recent study has reported that α7 nicotine acetylcholine receptor (α7nAChR) is expressed in regenerated multinucleated myotubes. But the distribution of α7nAChR in satellite cells in different myogenic status is unknown. A preliminary study on the dynamic distribution of α7nAChR in satellite cells was performed by double indirect immunofluorescent procedures during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17 and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. In normal muscle specimens, weak immunoreactivity for α7nAChR was detected in a few satellite cells (considered as quiescent). α7nAChR-positive signals were observed in proliferated and differentiated satellite cells and regenerated multinucleated myotubes in the wounded areas. By morphometric analysis, the average number of α7nAChR+/Pax7+ and α7nAChR+/MyoD+ cells climaxed at 5 days post-injury. The average number of α7nAChR+/myogenin+ cells was significantly increased from 3 to 9 days post-injury as compared with other posttraumatic intervals. The protein level of α7nAChR maximized at 9 days post-injury, which implies that α7nAChR was associated with the satellite cells status. Our observations on expression of α7nAChR in satellite cells from quiescence to myotube formation suggest that α7nAChR may be involved in muscle regeneration by regulating satellite cell status.

  13. Serum leptin levels and anthropometric correlates in Ache Amerindians of eastern Paraguay.

    PubMed

    Bribiescas, R G

    2001-08-01

    Leptin is a recently discovered peptide hormone secreted primarily from adipocytes in humans and other mammals; it is a reflection of fat stores, and has been associated with reproductive function. However, few leptin measurements are available from nonindustrialized populations, including contemporary hunter/gatherer communities undergoing the transition to sedentary agriculture. This investigation reports single-sample serum leptin measurements in healthy Ache Amerindian males (n = 21; average age, 32.8 +/- 3.4 SE) and females (n = 12; average age, 31.3 +/- 4.3) in eastern Paraguay. Ache leptin concentrations were much lower than in industrialized populations, although significant sexual dimorphism was evident (female 5.64 ng/ml +/- 0.91 SE vs. male 1.13 ng/ml +/- 0.08; P < 0.0001). Indeed, female leptin levels were similar to those of anorexic women, despite apparently adequate adiposity. Controlling for fat percentage, no significant sex difference was evident, suggesting that adiposity was the primary source of leptin variation. Body fat percentage was highly correlated with leptin in females (r2 = 0.72; P < 0.0005) but not males, who exhibited a modest negative correlation (r2 = 0.25; P < 0.03). Weight (r2 = 0.45; P = 0.02) and BMI (kg/m2) (r2 = 0.81; P < 0.0001) were also significantly correlated in females but not males. These results suggest that: 1) clinical leptin norms based on industrialized populations may represent the highest range of human variation and may not be representative of most human populations; 2) hormonal priming may underlie population variation in leptin profiles; and 3) the relative importance of leptin as a proximate mechanism regulating reproductive effort during human evolution may have been modest.

  14. Calcium signalling mediated through α7 and non-α7 nAChR stimulation is differentially regulated in bovine chromaffin cells to induce catecholamine release

    PubMed Central

    del Barrio, Laura; Egea, Javier; León, Rafael; Romero, Alejandro; Ruiz, Ana; Montero, Mayte; Álvarez, Javier; López, Manuela G

    2011-01-01

    BACKGROUND AND PURPOSE Ca2+ signalling and exocytosis mediated by nicotinic receptor (nAChR) subtypes, especially the α7 nAChR, in bovine chromaffin cells are still matters of debate. EXPERIMENTAL APPROACH We have used chromaffin cell cultures loaded with Fluo-4 or transfected with aequorins directed to the cytosol or mitochondria, several nAChR agonists (nicotine, 5-iodo-A-85380, PNU282987 and choline), and the α7 nAChR allosteric modulator PNU120596. KEY RESULTS Minimal [Ca2+]c transients, induced by low concentrations of selective α7 nAChR agonists and nicotine, were markedly increased by the α7 nAChR allosteric modulator PNU120596. These potentiated responses were completely blocked by the α7 nAChR antagonist α-bungarotoxin (α7-modulated-response). Conversely, high concentrations of the α7 nAChR agonists, nicotine or 5-iodo-A-85380 induced larger [Ca2+]c transients, that were blocked by mecamylamine but were unaffected by α-bungarotoxin (non-α7 response). [Ca2+]c increases mediated by α7 nAChR were related to Ca2+ entry through non-L-type Ca2+ channels, whereas non-α7 nAChR-mediated signals were related to L-type Ca2+ channels; Ca2+-induced Ca2+-release contributed to both responses. Mitochondrial involvement in the control of [Ca2+]c transients, mediated by either receptor, was minimal. Catecholamine release coupled to α7 nAChRs was more efficient in terms of catecholamine released/[Ca2+]c. CONCLUSIONS AND IMPLICATIONS [Ca2+]c and catecholamine release mediated by α7 nAChRs required an allosteric modulator and low doses of the agonist. At higher agonist concentrations, the α7 nAChR response was lost and the non-α7 nAChRs were activated. Catecholamine release might therefore be regulated by different nAChR subtypes, depending on agonist concentrations and the presence of allosteric modulators of α7 nAChRs. PMID:20840468

  15. Benzophenone-based derivatives: a novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.

    PubMed

    Belluti, Federica; Bartolini, Manuela; Bottegoni, Giovanni; Bisi, Alessandra; Cavalli, Andrea; Andrisano, Vincenza; Rampa, Angela

    2011-05-01

    The leading mechanistic theory of Alzheimer's disease (AD) is the "amyloid hypothesis" which states that the accumulation of the amyloid β protein (Aβ), and its subsequent aggregation into plaques, is responsible for the initiation of a cascade of events resulting in neurodegeneration and dementia. The anti-amyloid disease-modifying approach, based on the decrease in the production of Aβ, gained thus a paramount importance. The aim of this study was the design and synthesis of a new series of acetylcholinesterase inhibitors (AChEIs) endowed with anti-Aβ aggregating capability. These dual binding inhibitors, being able to interact both with the peripheral anionic site (PAS) of AChE and the catalytic subsite, proved to be able to inhibit the AChE-induced Aβ aggregation. Thus, starting from the lead compound 1, an AChEI composed by a benzophenone scaffold and a N,N'-methylbenzylamino group, a substantial modification aimed at targeting the PAS was performed. To this aim, different amino-terminal side chains were incorporated into this main framework, in order to mimic the diethylmethylammonium alkyl moiety of the pure PAS ligand propidium. The synthesized compounds proved to effectively and selectively inhibit AChE. Moreover, compounds 16a-c and 18a,b, with a propoxy and a hexyloxy tether respectively, showed a good activity against the AChE-induced Aβ aggregation. In particular, molecular modeling studies confirmed that compounds carrying the diethylaminopropoxy and the diethylaminohexyloxy side chains (compounds 16a and 19a, respectively) could suitably contact the PAS pocket of the enzyme.

  16. Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of Ca2+ channels and nicotinic receptors.

    PubMed

    Marco, José L; de los Ríos, Cristóbal; García, Antonio G; Villarroya, Mercedes; Carreiras, M Carmo; Martins, Carla; Eleutério, Ana; Morreale, Antonio; Orozco, M; Luque, F Javier

    2004-05-01

    The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.

  17. Nicotinic and muscarinic agonists and acetylcholinesterase inhibitors stimulate a common pathway to enhance GluN2B-NMDAR responses

    PubMed Central

    Ishibashi, Masaru; Yamazaki, Yoshihiko; Miledi, Ricardo; Sumikawa, Katumi

    2014-01-01

    Nicotinic and muscarinic ACh receptor agonists and acetylcholinesterase inhibitors (AChEIs) can enhance cognitive function. However, it is unknown whether a common signaling pathway is involved in the effect. Here, we show that in vivo administration of nicotine, AChEIs, and an m1 muscarinic (m1) agonist increase glutamate receptor, ionotropic, N-methyl D-aspartate 2B (GluN2B)-containing NMDA receptor (NR2B-NMDAR) responses, a necessary component in memory formation, in hippocampal CA1 pyramidal cells, and that coadministration of the m1 antagonist pirenzepine prevents the effect of cholinergic drugs. These observations suggest that the effect of nicotine is secondary to increased release of ACh via the activation of nicotinic ACh receptors (nAChRs) and involves m1 receptor activation through ACh. In vitro activation of m1 receptors causes the selective enhancement of NR2B-NMDAR responses in CA1 pyramidal cells, and in vivo exposure to cholinergic drugs occludes the in vitro effect. Furthermore, in vivo exposure to cholinergic drugs suppresses the potentiating effect of Src on NMDAR responses in vitro. These results suggest that exposure to cholinergic drugs maximally stimulates the m1/guanine nucleotide-binding protein subunit alpha q/PKC/proline-rich tyrosine kinase 2/Src signaling pathway for the potentiation of NMDAR responses in vivo, occluding the in vitro effects of m1 activation and Src. Thus, our results indicate not only that nAChRs, ACh, and m1 receptors are on the same pathway involving Src signaling but also that NR2B-NMDARs are a point of convergence of cholinergic and glutamatergic pathways involved in learning and memory. PMID:25114227

  18. Effect of nicotinic acetylcholine receptor alpha 1 (nAChRα1) peptides on rabies virus infection in neuronal cells.

    PubMed

    Sajjanar, Basavaraj; Saxena, Shikha; Bisht, Deepika; Singh, Arvind Kumar; Manjunatha Reddy, G B; Singh, Rajendra; Singh, R P; Kumar, Satish

    2016-06-01

    Rabies virus (RABV) is neurotropic and causes acute progressive encephalitis. Herein, we report the interaction of nAChRα1-subunit peptides with RABV and the effect of these peptides on RABV infection in cultured neuronal cells. Peptide sequences derived from torpedo, bovine, human and rats were synthesized and studied for their interactions with RABV using virus capture ELISA and peptide immunofluorescence. The results showed specific binding of the nAChRα1-subunit peptides to the RABV. In the virus adsorption assay, these peptides were found to inhibit the attachment of the RABV to the neuronal cells. The nAChRα1-subunit peptides inhibited the RABV infection and reduced viral gene expression in the cultured neuroblastoma (N2A) cells. Torpedo peptide sequence (T-32) had highest antiviral effect (IC50=14±3.01μM) compared to the other peptides studied. The results of the study indicated that nAChRα1-subunit peptides may act as receptor decoy molecules and inhibit the binding of virus to the native host cell receptors and hence may reduce viral infection.

  19. Myopathic changes detected by quantitative electromyography in patients with MuSK and AChR positive myasthenia gravis.

    PubMed

    Nikolic, Ana; Basta, Ivana; Stojanovic, Vidosava Rakocevic; Stevic, Zorica; Peric, Stojan; Lavrnic, Dragana

    2016-05-01

    Myopathic changes are frequent a electrophysiological finding in patients with muscle specific tyrosine kinase (MuSK) positive myasthenia gravis (MG). The aim of this study was to explore the importance of quantitative electromyography (EMG) in the detection of myopathic changes in MuSK MG patients. Classical and quantitative EMG were performed in 31 MuSK and 28 acetylcholine receptor (AChR) positive MG patients, matched by sex, age, disease duration and severity. Classical EMG revealed the presence of myopathic changes more frequently in MuSK MG compared to AChR MG patients, especially in the facial muscles. Quantitative EMG registered myopathic lesions more frequently than classical EMG, but the frequency was similar between MuSK and AChR MG patients. Quantitative EMG revealed myopathic changes in the majority of both MuSK and AChR positive MG patients. This examination is sensitive, but it cannot be used to differentiate between MG patients belonging to the different disease groups. It should not be used in isolation. Rather, it should complement classical EMG in the detection of myopathic changes.

  20. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

    PubMed Central

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-sang J.; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Guyenet, Patrice G.

    2016-01-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  1. Binding Analysis of Some Classical Acetylcholinesterase Inhibitors: Insights for a Rational Design Using Free Energy Perturbation Method Calculations with QM/MM MD Simulations.

    PubMed

    Nascimento, Érica C M; Oliva, Mónica; Świderek, Katarzyna; Martins, João B L; Andrés, Juan

    2017-04-13

    In the present study, the binding free energy of some classical inhibitors (DMT, DNP, GNT, HUP, THA) with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation (FEP) method based on hybrid quantum mechanics and molecular mechanics (QM/MM) potentials. The results highlight the key role of the van der Waals interaction for the inhibition process, since the contribution of this term to the binding free energy is almost as decisive as the electrostatic one. The analysis of the geometrical parameters and the interaction energy per residue along the QM/MM molecular dynamics (MD) simulations highlights the most relevant interactions in the different AChE-ligand systems, showing that the charged residues with a more prominent contribution to the interaction energy are Asp72 and Glu199, although the relative importance depends on the molecular size of the ligand. A correlation between the binding free energy and the number of cation-π interactions present in the systems has been established, DMT being the most potent inhibitor, capable of forming four cation-π interactions. A layer of water molecules surrounding the inhibitors has been observed, which act as bridges along a network formed by the ligands and the residues of the gorge and also between different residues. Although several hydrogen bonds between ligands and AChE do appear, no significant values of BIEs have been recorded. This behavior can be accounted for by the special features of AChE, such as the presence of several subsites of different natures in the gorge or the existence of several water molecules that act as bridges in the electrostatic interactions.

  2. Geological Mapping of the Ac-H-9 Occator Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra; Williams, David; Scully, Jennifer; Mest, Scott; Crown, David; Aileen Yingst, R.; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Marchi, Simone; De Sanctis, M. Cristina; Raymond, Carol; Russell, Chris

    2016-04-01

    As was done at Vesta [1], the Dawn Science Team is conducting a geological mapping cam-paign at Ceres during the nominal mission, including iterative mapping using data obtained dur-ing each orbital phase. We are using geological mapping as a method to identify the geologic processes that have modified the surface of dwarf planet Ceres. We here present the geology of the Ac-H-9 Occator quadrangle, located between 22°S-22°N and 216-288°E. The Ac-H-9 map area is completely within the topographically high region on Ceres named Erntedank Planum. It is one of two longitudinally distinct regions where ESA Herschel space telescope data suggested a release of water vapor [2]. The quadrangle includes several other notable features, including those discussed below. Occator is the 92 km diameter crater that hosts the "Bright Spot 5" that was identified in Hubble Space Telescope data [3], which is actually comprised of multiple bright spots on the crater floor. The floor of Occator is cut by linear fractures, while circumferential fractures are found in the ejecta and on the crater walls. The bright spots are noticeably associated with the floor fractures, although the brightest spot is associated with a central pit [4]. Multiple lobate flows are observed on the crater floor; these appear to be sourced from the center of the crater. The crater has a scalloped rim that is cut by regional linear structures, displaying a cross-section of one structure in the crater wall. Color data show that the Occator ejecta have multiple colors, generally related to changes in morphology. Azacca is a 50 km diameter crater that has a central peak and bright spots on its floor and within its ejecta. Like Occator, Azacca has both floor fractures and circumferential fractures in its ejecta and crater walls. Also like Occator, the Azacca ejecta is multi-colored with variable morphology. Linear structures - including grooves, pit crater chains, fractures and troughs - cross much of the eastern

  3. DL0410 Ameliorates Memory and Cognitive Impairments Induced by Scopolamine via Increasing Cholinergic Neurotransmission in Mice.

    PubMed

    Lian, Wenwen; Fang, Jiansong; Xu, Lvjie; Zhou, Wei; Kang, De; Xiong, Wandi; Jia, Hao; Liu, Ai-Lin; Du, Guan-Hua

    2017-03-06

    Deficiency of the cholinergic system is thought to play a vital role in cognitive impairment of dementia. DL0410 was discovered as a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinestease (BuChE), with potent efficiency in in-vitro experiments, but its in vivo effect on the cholinergic model has not been evaluated, and its action mechanism has also not been illustrated. In the present study, the capability of DL0410 in ameliorating the amnesia induced by scopolamine was investigated, and its effect on the cholinergic system in the hippocampus and its binding mode in the active site of AChE was also explored. Mice were administrated DL0410 (3 mg/kg, 10 mg/kg, and 30 mg/kg), and mice treated with donepezil were used as a positive control. The Morris water maze, escape learning task, and passive avoidance task were used as behavioral tests. The test results indicated that DL0410 could significantly improve the learning and memory impairments induced by scopolamine, with 10 mg/kg performing best. Further, DL0410 inhibited the AChE activity and increased acetylcholine (ACh) levels in a dose-dependent manner, and interacted with the active site of AChE in a similar manner as donepezil. However, no difference in the activity of BuChE was found in this study. All of the evidence indicated that its AChE inhibition is an important mechanism in the anti-amnesia effect. In conclusion, DL0410 could be an effective therapeutic drug for the treatment of dementia, especially Alzheimer's disease.

  4. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: current trends and perspectives

    PubMed Central

    Parikh, Vinay; Kutlu, Munir Gunes; Gould, Thomas J.

    2016-01-01

    Introduction The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. Methods Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 275 articles were used for the qualitative synthesis of this review. Results Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. Conclusions The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence. PMID:26803692

  5. AQW051, a novel, potent and selective α7 nicotinic ACh receptor partial agonist: pharmacological characterization and phase I evaluation

    PubMed Central

    Feuerbach, Dominik; Pezous, Nicole; Weiss, Markus; Shakeri-Nejad, Kasra; Lingenhoehl, Kurt; Hoyer, Daniel; Hurth, Konstanze; Bilbe, Graeme; Pryce, Christopher R; McAllister, Kevin; Chaperon, Frederique; Kucher, Klaus; Johns, Donald; Blaettler, Thomas; Lopez Lopez, Cristina

    2015-01-01

    Background and Purpose Activation of the α7 nicotinic ACh receptor (nACh receptor) is considered an attractive target for the treatment of cognitive impairment associated with neurological disorders. Here we describe the novel α7-nACh receptor agonist AQW051 as a promising drug candidate for this indication. Experimental Approach AQW051 was functionally characterized in vitro and cognitive effects evaluated in rodent behavioural models. Pharmacokinetics and tolerability were evaluated in three phase I placebo-controlled studies in 180 healthy subjects. Key Results In vitro, AQW051 bound with high affinity to α7-nACh receptors and stimulated calcium influx in cells recombinantly expressing the human α7-nACh receptor. In vivo, AQW051 demonstrated good oral bioavailability and rapid penetration into the rodent brain. AQW051 administered over a broad dose range facilitated learning/memory performance in the object recognition and social recognition test in mice and the water maze model in aged rats. Clinically, AQW051 was well tolerated in healthy young and elderly subjects, with an adverse event (AE) profile comparable with placebo. No serious AEs were reported and all AEs were either mild or moderate in severity at single oral doses up to 200 mg and multiple daily doses up to 75 mg. Once-daily oral administration of AQW051 resulted in continuous exposure and a two- to threefold accumulation compared with steady state was achieved by 1 week. Conclusions and Implications These data support further development of AQW051 as a cognitive-enhancing agent, as a therapeutic, for example, in Alzheimer's disease or schizophrenia. PMID:25363835

  6. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  7. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer

    PubMed Central

    Kouvatsos, Nikolaos; Giastas, Petros; Chroni-Tzartou, Dafni; Poulopoulou, Cornelia; Tzartos, Socrates J.

    2016-01-01

    In this study we report the X-ray crystal structure of the extracellular domain (ECD) of the human neuronal α2 nicotinic acetylcholine receptor (nAChR) subunit in complex with the agonist epibatidine at 3.2 Å. Interestingly, α2 was crystallized as a pentamer, revealing the intersubunit interactions in a wild type neuronal nAChR ECD and the full ligand binding pocket conferred by two adjacent α subunits. The pentameric assembly presents the conserved structural scaffold observed in homologous proteins, as well as distinctive features, providing unique structural information of the binding site between principal and complementary faces. Structure-guided mutagenesis and electrophysiological data confirmed the presence of the α2(+)/α2(−) binding site on the heteromeric low sensitivity α2β2 nAChR and validated the functional importance of specific residues in α2 and β2 nAChR subunits. Given the pathological importance of the α2 nAChR subunit and the high sequence identity with α4 (78%) and other neuronal nAChR subunits, our findings offer valuable information for modeling several nAChRs and ultimately for structure-based design of subtype specific drugs against the nAChR associated diseases. PMID:27493220

  8. Continuing Education in the Era of Quantum Change. 2003 ACHE Proceedings. (65th Annual Meeting, Charlottesville, VA, November 8-12, 2003)

    ERIC Educational Resources Information Center

    Barrineau, Irene T., Ed.

    2003-01-01

    This document presents the proceedings of the 2003 annual meeting of the Association for Continuing Higher Education (ACHE). These proceedings record the 65th Annual Meeting of ACHE held in Charlottesville, Virginia. President Allen Varner's theme for this annual meeting was, "Continuing Education in the Era of Quantum Change." The theme…

  9. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-01-04

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  10. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  11. New-generation radiotracers for nAChR and NET.

    PubMed

    Ding, Yu-Shin; Fowler, Joanna

    2005-10-01

    Advances in radiotracer chemistry and instrumentation have merged to make positron emission tomography (PET) a powerful tool in the biomedical sciences. Positron emission tomography has found increased application in the study of drugs affecting the brain and whole body, including the measurement of drug pharmacokinetics (using a positron-emitter-labeled drug) and drug pharmacodynamics (using a labeled tracer). Thus, radiotracers are major scientific tools enabling investigations of molecular phenomena, which are at the heart of understanding human disease and developing effective treatments; however, there is evidently a bottleneck in translating basic research to clinical practice. In the meantime, the poor ability to predict the in vivo behavior of chemical compounds based on their log P's and affinities emphasizes the need for more knowledge in this area. In this article, we focus on the development and translation of radiotracers for PET studies of the nicotinic acetylcholine receptor (nAChR) and the norepinephrine transporter (NET), two molecular systems that urgently need such an important tool to better understand their functional significance in the living human brain.

  12. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    SciTech Connect

    Hirata, Yuki; Choi, Junho

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  13. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2015-08-01

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation

  14. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  15. Autophagy inhibitors.

    PubMed

    Pasquier, Benoit

    2016-03-01

    Autophagy is a lysosome-dependent mechanism of intracellular degradation. The cellular and molecular mechanisms underlying this process are highly complex and involve multiple proteins, including the kinases ULK1 and Vps34. The main function of autophagy is the maintenance of cell survival when modifications occur in the cellular environment. During the past decade, extensive studies have greatly improved our knowledge and autophagy has exploded as a research field. This process is now widely implicated in pathophysiological processes such as cancer, metabolic, and neurodegenerative disorders, making it an attractive target for drug discovery. In this review, we will summarize the different types of inhibitors that affect the autophagy machinery and provide some potential therapeutic perspectives.

  16. In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048.

    PubMed

    Chandar, Nellore Bhanu; Ghosh, Shibaji; Lo, Rabindranath; Banjo, Semire; Ganguly, Bishwajit

    2015-12-05

    Organophosphorus compound (OP) tabun is resistant to reactivate by many oxime drugs after the formation of OP-conjugate with AChE. The reactivation of tabun-inhibited mAChE and site-directed mutants by bispyridinium oxime, K048 (N-[4-(4-hydroxyiminomethylpyridinio)butyl]-4-carbamoylpyridinium dibromide) showed that the mutations significantly poor the overall reactivation efficacy of K048. We have unravelled the lowered efficacy of K048 with the tabun-mutant mAChE(Y337A) using docking and steered molecular dynamics (SMD) simulations. The computed results showed some interesting features for the interaction of drug molecule K048 with tabun-mAChE(wild-type) and tabun-mutant mAChE(Y337A). The SMD simulations showed that the active pyridinium ring of K048 is directed towards the phosphorus atom conjugated to the active serine (SUN203) of tabun-mAChE(wild-type). The cradle shaped residues Tyr337-Phe338 present in the choline binding site stabilize the active pyridinium ring of K048 with π-π interaction and the residue Trp86 involved in T-shaped cation-π interaction. However, in the case of tabun-mutant mAChE(Y337A).K048 conjugate, the replacement of aromatic Tyr337 with the aliphatic alanine unit in the choline binding site, however, loses one of the π-π interaction between the active pyridinium ring of K048 and the Tyr337. The placement of aliphatic alanine unit resulted in the displacement of the side chain of Phe338 towards the His447. Such displacement is causing the inaccessibility of the drug towards the phosphorus atom conjugated to the active serine (SUN203) of tabun-mutant mAChE(Y337A). Furthermore, the unbinding of the K048 with SMD studies showed that the active pyridinium ring of the drug undergoes a complete turn along the gorge axis and is directed away from the phosphorus atom conjugated to the active serine of the tabun-mutant mAChE(Y337A). Such effects inside the gorge of tabun-mutant mAChE(Y337A) would lower the efficacy of the drug molecule (K048

  17. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact

  18. Dual inhibitors of β-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates.

    PubMed

    Viayna, Elisabet; Sabate, Raimon; Muñoz-Torrero, Diego

    2013-01-01

    Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer's disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multitarget anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.

  19. Prophylactic administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using terbufos sulfone.

    PubMed

    Lorke, Dietrich E; Nurulain, Syed M; Hasan, Mohamed Y; Kuča, Kamil; Petroianu, Georg A

    2014-10-01

    Poisoning with organophosphorus compounds (OPCs) poses a serious threat worldwide. OPC-induced mortality can be significantly reduced by prophylactic administration of reversible acetylcholinesterase (AChE) inhibitors. The only American Food and Drug Administration (FDA)-approved substance for such pre-treatment (to soman exposure) is presently pyridostigmine, although its efficacy is controversial. In search for more efficacious and broad-spectrum alternatives, we have assessed in vivo the mortality-reducing efficacy of a group of five compounds with known AChE inhibitory activity (pyridostigmine, physostigmine, ranitidine, tacrine and K-27), when given in equitoxic dosage (25% of LD01 ) 30 min before exposure to the OPC terbufos sulfone. Protection was quantified in rats by determining the relative risk of death (RR) using Cox analysis, with RR = 1 for animals given only terbufos sulfone, but no pre-treatment. All tested AChE inhibitors reduced terbufos sulfone-induced mortality significantly (p ≤ 0.05) as compared with the non-treatment group (RR = 1: terbufos sulfone only). Best in vivo protection from terbufos sulfone-induced mortality was achieved, when K-27 was given before terbufos sulfone exposure (RR = 0.06), which was significantly (P ≤ 0.05) superior to the pre-treatment with all other tested compounds, for example tacrine (RR = 0.21), pyridostigmine (RR = 0.28), physostigmine (RR = 0.29) and ranitidine (RR = 0.33). The differences in efficacy between tacrine, pyridostigmine, physostigmine and ranitidine were not statistically significant. Prophylactic administration of an oxime (such as K-27) in case of imminent OPC exposure may be a viable option.

  20. Heritability and Fitness Correlates of Personality in the Ache, a Natural-Fertility Population in Paraguay

    PubMed Central

    Bailey, Drew H.; Walker, Robert S.; Blomquist, Gregory E.; Hill, Kim R.; Hurtado, A. Magdalena; Geary, David C.

    2013-01-01

    The current study assessed the heritability of personality in a traditional natural-fertility population, the Ache of eastern Paraguay. Self-reports (n = 110) and other-reports (n = 66) on the commonly used Big Five Personality Inventory (i.e., extraversion, agreeableness, conscientiousness, neuroticism, openness) were collected. Self-reports did not support the Five Factor Model developed with Western samples, and did not correlate with other-reports for three of the five measured personality factors. Heritability was assessed using factors that were consistent across self- and other-reports and factors assessed using other-reports that showed reliabilities similar to those found in Western samples. Analyses of these items in combination with a multi-generation pedigree (n = 2,132) revealed heritability estimates similar to those found in most Western samples, although we were not able to separately estimate the influence of the common environment on these traits. We also assessed relations between personality and reproductive success (RS), allowing for a test of several mechanisms that might be maintaining heritable variation in personality. Phenotypic analyses, based largely on other-reports, revealed that extraverted men had higher RS than other men, but no other dimensions of personality predicted RS in either sex. Mothers with more agreeable children had more children, and parents mated assortatively on personality. Of the evolutionary processes proposed to maintain variation in personality, assortative mating, selective neutrality, and temporal variation in selection pressures received the most support. However, the current study does not rule out other processes affecting the evolution and maintenance of individual differences in human personality. PMID:23527163

  1. Heritability and fitness correlates of personality in the Ache, a natural-fertility population in Paraguay.

    PubMed

    Bailey, Drew H; Walker, Robert S; Blomquist, Gregory E; Hill, Kim R; Hurtado, A Magdalena; Geary, David C

    2013-01-01

    The current study assessed the heritability of personality in a traditional natural-fertility population, the Ache of eastern Paraguay. Self-reports (n = 110) and other-reports (n = 66) on the commonly used Big Five Personality Inventory (i.e., extraversion, agreeableness, conscientiousness, neuroticism, openness) were collected. Self-reports did not support the Five Factor Model developed with Western samples, and did not correlate with other-reports for three of the five measured personality factors. Heritability was assessed using factors that were consistent across self- and other-reports and factors assessed using other-reports that showed reliabilities similar to those found in Western samples. Analyses of these items in combination with a multi-generation pedigree (n = 2,132) revealed heritability estimates similar to those found in most Western samples, although we were not able to separately estimate the influence of the common environment on these traits. We also assessed relations between personality and reproductive success (RS), allowing for a test of several mechanisms that might be maintaining heritable variation in personality. Phenotypic analyses, based largely on other-reports, revealed that extraverted men had higher RS than other men, but no other dimensions of personality predicted RS in either sex. Mothers with more agreeable children had more children, and parents mated assortatively on personality. Of the evolutionary processes proposed to maintain variation in personality, assortative mating, selective neutrality, and temporal variation in selection pressures received the most support. However, the current study does not rule out other processes affecting the evolution and maintenance of individual differences in human personality.

  2. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Yang, P.; Kwok, S. C. H.; Chu, P. K.; Leng, Y. X.; Chen, J. Y.; Wang, J.; Huang, N.

    2003-05-01

    Diamond-like-carbon has attracted much attention recently as a potential biomaterial in blood contacting biomedical devices. However, previous reports in this area have not adequately addressed the biocompatibility and acceptability of the materials in blood contacting applications. In this study, hydrogenated amorphous carbon (a-C:H) films were fabricated on silicon wafers (1 0 0) using plasma immersion ion implantation-deposition. A series of a-C:H films with different structures and chemical bonds were fabricated under different substrate voltages. The results indicate that film graphitization is promoted at higher substrate bias. The film deposited at a lower substrate bias of -75 V possesses better blood compatibility than the films at higher bias and stainless steel. Our results suggest two possible paths to improve the blood compatibility, suppression of the endogenic clotting system and reduction of platelet activation.

  3. Activation of Functional α7-Containing nAChRs in Hippocampal CA1 Pyramidal Neurons by Physiological Levels of Choline in the Presence of PNU-120596

    PubMed Central

    Kalappa, Bopanna I.; Gusev, Alexander G.; Uteshev, Victor V.

    2010-01-01

    Background The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. Methodology/Principal Findings An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal

  4. Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]octanes as Selective α4β2-nAChR Ligands

    PubMed Central

    2014-01-01

    We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at α4β2-nicotinic acetylcholine receptor (nAChR) subtype. Structure–activity relationship studies revealed that incorporation of a cyclopropane-containing side chain at the 5-position of the pyridine ring provides ligands with improved subtype selectivity for nAChR β2 subunit-containing nAChR subtypes (β2*-nAChRs) over β4*-nAChRs compared to the parent compound 4. Compound 15 exhibited subnanomolar binding affinity for α4β2- and α4β2*-nAChRs with negligible interaction. Functional assays confirm selectivity for α4β2-nAChRs. Furthermore, using the SmartCube assay system, this ligand showed antidepressant, anxiolytic, and antipsychotic features, while mouse forced-swim assay further confirm the antidepressant-like property of 15. PMID:25408831

  5. Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]octanes as Selective α4β2-nAChR Ligands.

    PubMed

    Onajole, Oluseye K; Eaton, J Brek; Lukas, Ronald J; Brunner, Dani; Thiede, Lucinda; Caldarone, Barbara J; Kozikowski, Alan P

    2014-11-13

    We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at α4β2-nicotinic acetylcholine receptor (nAChR) subtype. Structure-activity relationship studies revealed that incorporation of a cyclopropane-containing side chain at the 5-position of the pyridine ring provides ligands with improved subtype selectivity for nAChR β2 subunit-containing nAChR subtypes (β2*-nAChRs) over β4*-nAChRs compared to the parent compound 4. Compound 15 exhibited subnanomolar binding affinity for α4β2- and α4β2*-nAChRs with negligible interaction. Functional assays confirm selectivity for α4β2-nAChRs. Furthermore, using the SmartCube assay system, this ligand showed antidepressant, anxiolytic, and antipsychotic features, while mouse forced-swim assay further confirm the antidepressant-like property of 15.

  6. Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2.

    PubMed

    Thany, Steeve H; Courjaret, Raphael; Lapied, Bruno

    2008-06-27

    Two distinct native alpha-bungarotoxin (alpha-Bgt)-insensitive nicotinic acetylcholine receptors (nAChRs), named nAChR1 and nAChR2, were identified in the cockroach Periplaneta americana dorsal unpaired median (DUM) neurons. They differed in their electrophysiological, pharmacological properties and intracellular regulation pathways. nAChR2 being an atypical nicotinic receptor closed upon agonist application and its current-voltage relationship resulted from a reduction in potassium conductance. In this study, using whole-cell patch-clamp technique, we demonstrated that calcium modulated nAChR2-mediated nicotine response. Under 0.5 microM alpha-Bgt and 20 mM d-tubocurarine, the nicotine-induced inward current amplitude was strongly reduced in the presence of intracellularly applied BAPTA or bath application of calcium-free solution. In addition, using cadmium chloride, we showed that nicotine response was modulated by extracellular calcium through plasma membrane calcium channels. Moreover, extracellular application of caffeine and thapsigargin reduced nAChR2-mediated response. Together these experiments revealed a complex calcium-dependent regulation of nAChR2.

  7. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels.

  8. Development of M1 mAChR Allosteric and Bitopic Ligands: Prospective Therapeutics for the Treatment of Cognitive Deficits

    PubMed Central

    2013-01-01

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer’s disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues. PMID:23659787

  9. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits.

    PubMed

    Davie, Briana J; Christopoulos, Arthur; Scammells, Peter J

    2013-07-17

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer's disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues.

  10. Synthesis, biological assessment and molecular modeling of new multipotent MAO and cholinesterase inhibitors as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Samadi, Abdelouahid; Chioua, Mourad; Bolea, Irene; de Los Ríos, Cristóbal; Iriepa, Isabel; Moraleda, Ignacio; Bastida, Agatha; Esteban, Gerard; Unzeta, Mercedes; Gálvez, Enrique; Marco-Contelles, José

    2011-09-01

    The synthesis, biological evaluation and molecular modeling of new multipotent inhibitors of type I and type II, able to simultaneously inhibit monoamine oxidases (MAO) as well as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), is described. Compounds of type I were prepared by sequential reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (14) [or 2,6-dichloropyridine-3,5-dicarbonitrile (15)] with prop-2-yn-1-amine (or N-methylprop-2-yn-1-amine) and 2-(1-benzyl-piperidin-4-yl)alkylamines 22-25. Compounds of type II were prepared by Friedländer type reaction of 6-amino-5-formyl-2-(methyl(prop-2-yn-1-yl)amino)nicotinonitriles 32 and 33 with 4-(1-benzylpiperidin-4-yl)butan-2-one (31). The biological evaluation of molecules 1-11 showed that most of these compounds are potent, in the nanomolar range, and selective AChEI, with moderate and equipotent selectivity for MAO-A and MAO-B inhibition. Kinetic studies of compound 8 proved that this is a EeAChE mixed type inhibitor (IC(50) = 16 ± 2; Ki = 12 ± 3 nM). Molecular modeling investigation on compound 8 confirmed its dual AChE inhibitory profile, binding simultaneously at the catalytic active site (CAS) and at the peripheric anionic site (PAS). In overall, compound 11, as a potent and selective dual AChEI, showing a moderate and selective MAO-A inhibitory profile, can be considered as an attractive multipotent drug for further development on two key pharmacological targets playing key roles in the therapy of Alzheimer's disease.

  11. Raman Spectroscopy of a-C:H Films Deposited Using Ar + H2 + C7H8 Plasma CVD

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Koga, Kazunori; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Setsuhara, Yuichi; Sekine, Makoto; Hori, Masaru

    2015-09-01

    We investigated the effects of ion energy on Raman spectra of a-C:H films prepared by Ar + H2 + C7H8 plasma CVD. Raman spectra were measured with a laser Raman spectrometer (JASCO NRS-3100). Both the D-peak position and G-peak position shift toward higher wavenumbers as ion energy increases. The intensity ratio of the D-peak and G-peak, ID/IG increases with increasing the ion energy, indicating that the amount of ring-like sp2 clusters increases. The H content in a-C:H derived from photoluminescence (PL) background decreases with increasing the ion energy. The full width at half maximum of the G-peak, FWHMG related to the C-C sp3 content and H content increases with increasing the ion energy to 100 eV, whereas it decreases with increasing further the ion energy to 105 eV. The variation of FWHMG is consistent with that of mass density. There results indicate that the structure of a-C:H films transforms from polymer-like carbon to diamond-like one with increasing the ion energy above the threshold value of ~ 100 eV.

  12. Effects of a7nAChR agonist on the tissue estrogen receptor expression of castrated rats

    PubMed Central

    Ma, Feng; Gong, Fan; Lv, Jinhan; Gao, Jun; Ma, Jingzu

    2015-01-01

    Osteoporosis is one common disease in postmenopausal women due to depressed estrogen level. It has been known that inflammatory factors are involved in osteoporosis pathogenesis. One regulator of inflammatory cascade reaction, a7-nicotinic acetylcholine receptor (a7nAChR), therefore, may exert certain role in osteoporosis. This study thus investigated this question on an osteoporosis rat model after castration. Rats were firstly castrated to induce osteoporosis, and then received a7nAChR agonist (PNU-282987), diethylstilbestrol or saline via intraperitoneal injection. After 6 or 12 weeks, bone samples were collected for counting osteoblast number, bone density and estrogen receptor (ERα and ERβ) expression, in addition to the serum laboratory of inflammatory factors. Bone density, osteoclast number, ERα and ERβ expression level were significantly depressed in model group, and were remarkable potentiated in the drug treatment group (P<0.05). The levels of BGP and PTH in drug treatment group were decreased compared to diethylstilbestrol group, while E2 and IGF-1 showed up-regulation. Agonist of a7nAChR can up-regulate estrogen receptor expression and may prevent the occurrence and development of osteoporosis. PMID:26722551

  13. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP).

    PubMed

    Artali, Roberto; Bombieri, Gabriella; Meneghetti, Fiorella

    2005-04-01

    The crystal structure of Acetylcholine Binding Protein (AChBP), homolog of the ligand binding domain of nAChR, has been used as model for computational investigations on the ligand-receptor interactions of derivatives of 6-chloropyridazine substituted at C3 with 3,8-diazabicyclo[3.2.1]octane, 2,5-diazabicyclo[2.2.1]heptane and with piperazine and homopiperazine, substituted or not at N4. The ligand-receptor complexes have been analyzed by docking techniques using the binding site of HEPES complexed with AChBP as template. The good relationship between the observed binding affinity and the calculated docking energy confirms that this model provides a good starting point for understanding the binding domain of neuronal nicotinic receptors. An analysis of the possible factors significant for the ligand recognition has evidenced, besides the cation-pi interaction, the distance between the chlorine atom of the pyridazinyl group and the carbonylic oxygen of Leu B112 as an important parameter in the modulation of the binding energy.

  14. Efficient Expression of Functional (α6β2)2β3 AChRs in Xenopus Oocytes from Free Subunits Using Slightly Modified α6 Subunits

    PubMed Central

    Ley, Carson Kai-Kwong; Kuryatov, Alexander; Wang, Jingyi; Lindstrom, Jon Martin

    2014-01-01

    Human (α6β2)(α4β2)β3 nicotinic acetylcholine receptors (AChRs) are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6β2)2β3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with β2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing β3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6β2)2β3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells. PMID:25068303

  15. Efficient expression of functional (α6β2)2β3 AChRs in Xenopus oocytes from free subunits using slightly modified α6 subunits.

    PubMed

    Ley, Carson Kai-Kwong; Kuryatov, Alexander; Wang, Jingyi; Lindstrom, Jon Martin

    2014-01-01

    Human (α6β2)(α4β2)β3 nicotinic acetylcholine receptors (AChRs) are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6β2)2β3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with β2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing β3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6β2)2β3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells.

  16. Contribution of α4β2 nAChR in nicotine-induced intracellular calcium response and excitability of MSDB neurons.

    PubMed

    Wang, Jiangang; Wang, Yali; Wang, Yang; Wang, Ran; Zhang, Yunpeng; Zhang, Qian; Lu, Chengbiao

    2014-12-10

    The neurons of medial septal diagonal band of broca (MSDB) project to hippocampus and play an important role in MSDB-hippocampal synaptic transmission, plasticity and network oscillation. Nicotinic acetylcholine receptor (nAChR) subunits, α4β2 and α7 nAChRs, are expressed in MSDB neurons and permeable to calcium ions, which may modulate the function of MSDB neurons. The aims of this study are to determine the roles of selective nAChR activation on the calcium responses and membrane currents in MSDB neurons. Our results showed that nicotine increased calcium responses in the majority of MSDB neurons, pre-treatment of MSDB slices with a α4β2 nAChR antagonist, DhβE but not a α7 nAChR antagonist, MLA prevented nicotine-induced calcium responses. The whole cell patch clamp recordings showed that nicotine-induced inward current and acetylcholine (ACh) induced-firing activity can be largely reduced or prevented by DhβE in MSDB neurons. Surprisingly, post-treatment of α4β2 or α7 nAChR antagonists failed to block nicotine׳s role, they increased calcium responses instead. Application of calcium chelator EGTA reduced calcium responses in all neurons tested. These results suggest that there was a subtype specific modulation of nAChRs on calcium signaling and membrane currents in MSDB neurons and nAChR antagonists were also able to induce calcium responses involving a distinct mechanism.

  17. Systematic Review: Representativeness of Participants in RCTs of Acetylcholinesterase Inhibitors

    PubMed Central

    Leinonen, Anne; Koponen, Marjaana; Hartikainen, Sirpa

    2015-01-01

    Objective To determine whether there are differences in age and sex distribution and presence of comorbidities between participants included in randomized controlled trials of acetylcholinesterase inhibitors and nationwide cohort of persons with Alzheimer’s disease. Methods PubMed, Scopus and Cochrane Library databases were searched for original articles from their inception to January 4, 2015. Double-blind randomized controlled trials with donepezil, rivastigmine or galantamine compared to placebo in participants with Alzheimer’s disease were included. Data from a nationwide cohort of persons with clinically verified diagnoses of Alzheimer’s disease was defined as a reference population. Results 128 full-text articles were assessed for eligibility, 31 of them fulfilled criteria. Mean age of participants in randomized controlled trials (n = 15,032) was 5.8 years lower (95% CI 5.7 to 5.9, P < 0.001), compared to the mean age of 79.7 years in the reference population with Alzheimer’s disease (n = 28,093). Most of the articles did not report age distribution of participants. The proportion of women was 63.2% (9,475/14,991) in randomized controlled trials and 67.8% (19,043/28,093) (P < 0.001) in the reference population. Information on comorbidities and use of concomitant drugs were lacking or poorly reported in most articles. Conclusions There is a discrepancy between participants in randomized controlled trials of acetylcholinesterase inhibitors and real-life population with Alzheimer’s disease. Participants in randomized controlled trials were significantly younger. Further, more detailed reporting of age distribution, comorbidities and concomitant drugs would be important information for clinicians when evaluating conclusions from randomized controlled trials to real-life practice. The existing recommendations of inclusion of older people should be followed to ensure safe pharmacotherapy for older people. PMID:25933023

  18. Molecular design and synthesis of novel peptides from amphibians skin acting as inhibitors of cholinesterase enzymes.

    PubMed

    Siano, Alvaro; Garibotto, Francisco F; Andujar, Sebastian A; Baldoni, Hector A; Tonarelli, Georgina G; Enriz, Ricardo D

    2017-03-01

    Cholinesterases are a family of enzymes that catalyze the hydrolysis of neurotransmitter acetylcholine. There are two types of cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which differ in their distribution in the body. Currently, cholinesterase inhibitors (ChEI) represent the treatment of choice for Alzheimer's disease (AD). In this paper, we report the synthesis and inhibitory effect on both enzymes of four new peptides structurally related to P1-Hp-1971 (amphibian skin peptide found in our previous work. Sequence: TKPTLLGLPLGAGPAAGPGKR-NH2 ). The bioassay data and cytotoxicity test show that some of the compounds possess a significant AChE and BChE inhibition and no toxic effect. The present work demonstrates that diminution of the size of the original peptide could potentially result in new compounds with significant cholinesterase inhibition activity, although it appears that there is an optimal size for the sequence. We also conducted an exhaustive molecular modeling study to better understand the mechanism of action of these compounds by combining docking techniques with molecular dynamics simulations on BChE. This is the first report about amphibian peptides and the second one of natural peptides with ChE inhibitory activity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  19. 2-Benzoyl-6-benzylidenecyclohexanone analogs as potent dual inhibitors of acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Leong, Sze Wei; Abas, Faridah; Lam, Kok Wai; Shaari, Khozirah; Lajis, Nordin H

    2016-08-15

    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.

  20. Geological Mapping of the Ac-H-11 Sintana Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Schulzeck, Franziska; Krohn, Katrin; Jaumann, Ralf; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; Gathen, Isabel v. d.; Kersten, Elke; Matz, Klaus-Dieter; Naß, Andrea; Otto, Katharina; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria C.; Schenk, Paul; Schröder, Stefanus; Stephan, Katrin; Wagner, Roland

    2016-04-01

    In December 2015, the Dawn spacecraft delivered the first images of the Low Altitude Mapping Orbit (LAMO) of the dwarf planet Ceres at a resolution of 35 m/pixel. This data will be used to finish the geological mapping of Ceres' surface in order to identify composition and surface forming processes. Mapping was already done using Survey Orbit and High Altitude Mapping Orbit (HAMO) data. With the new images, an updated map will be presented. To this point, the data material consists of a HAMO clear-filter mosaic (140 m/pixel) [1], a digital elevation model (DTM) [2] derived from Survey orbit (415 m/pixel) data, color-filter ratios and photometrically corrected images. Ceres' surface has been divided into 15 mapping quadrangles. The Ac-H-11 Sintana quadrangle is located in the southern hemisphere of Ceres between 21 66°S and 0 90°E. Geological units identified so far are cratered terrain, which covers most of the area, and a younger unit of relatively smooth material. The latter is characterized by a low crater density. Material of the same unit was found in adjacent quadrangles as well. Interest is taken in the diversity of crater shapes. Many craters show different forms of asymmetries. One and the same crater for instance displays different stages of rim degradation and some crater walls are partly terraced and their slopes' steepness is varying alongside the crater rim. Several mass wasting features, which partly cause the observed asymmetries, have been identified. Next to the multiple collapsed rims, landslides due to later cratering on the primary crater rim are observed. Whereas collapse structures are mostly blocky, single landslides are characterized by lobate margins. Occurrence and type of mass wasting feature might hint to subsurface differences. Further, there is a diversity of inner crater structures, like relaxed crater floors, ridges, central peaks, mounds and smooth plains. Processes like mass wasting and relaxation have modified many craters

  1. Geological Mapping of the Ac-H-13 Urvara Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Sizemore, Hanna; Williams, David; Platz, Thomas; Mest, Scott; Yingst, Aileen; Crown, David; O'Brien, David; Buczkowski, Debra; Schenk, Paul; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; De Sanctis, Maria Cristina; Russell, Christopher; Raymond, Carol

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-13 Urvara Quadrangle. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital ter-rain models (for topographic information). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. The Urvara Quadrangle is dominated by the 170-km diameter impact basin Urvara (46.4°S, 248.6°E) and includes cratered terrain to the west. Named features include the impact craters Meanderi (40.9°S, 193.7°E, 103 km diameter), Sekhet (66.4°S, 254.9°E, 41 km diameter), and Fluusa (31.5°S, 277.9°E), as well as the crater chains Gerber Catena (38.1°S, 214.8°E) and Sam-hain Catena (19.6°S, 210.3°E). Based on preliminary geologic mapping [3,4], we interpret the two prominent catenae as pit craters associated with large scale tectonism rather than secondary impacts. We interpret two large curvilinear depressions near the eastern quadrangle boundary as secondary crater chains resulting from the Urvara impact. Textural and morphological asymme-tries in crater materials within the quadrangle indicate heterogeneities in subsurface composition and volatile content. Features on the Urvara basin floor are consistent with impact fluidization of target materials; post impact extrusion of volatile rich material may have also played a minor role. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23. [3] Sizemore et al. (2015) GSA Abstracts with Program

  2. Geological Mapping of the Ac-H-7 Kerwan Quadrangle of Ceres from NASA Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Williams, David; Mest, Scott; Kneissl, Thomas; Hendrik Pasckert, Jan; Hiesinger, Harald; Neesemann, Adrian; Schmedemann, Nico; Buczkowski, Debra; Scully, Jennifer; Marchi, Simone; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Schaefer, Michael; Hoffmann, Martin; Raymond, Carol; Russell, Christopher

    2016-04-01

    NASA's Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. Ac-H-7 Kerwan Quadrangle is located between 22°S-22°N and 72-144°E, and hosts several primary features and terrains: 1) The 280 km diameter impact basin Kerwan occur in the center and SE corner of the quad-rangle. Kerwan's rim is very degraded and there is no obvious ejecta field, indicating it is one of the oldest visible large impact basins on Ceres. Kerwan's interior is filled with a 'smooth terrain' that also extends beyond the rim to the east and west. This smooth terrain hosts a significantly lower impact crater density than most of the rest of Ceres' surface. Preliminary crater counts of the Kerwan smooth terrain derive cratering model ages of ~3 Ga using the lunar-derived chronology and ~600-800 Ma using the asteroid flux-derived chronology (H. Hiesinger, pers. comm., 2016). Our working interpretation is that the Kerwan impact occurred when Ceres' crust had a greater proportion of ice than at present, and that impact heating melted crustal material resulting in resurfacing of the Kerwan region by an icy impact melt, or possibly initiated cryovolcanic flows. There are hints of possible flow margins on the Kerwan floor in HAMO images, that have to be confirmed or denied by study of LAMO images. 2) Part of the 126 km diameter crater Dantu and its ejecta field covers the NE corner of the quadrangle. FC color data show both bright and dark materials in the ejecta field, suggesting ex-cavation of terrains of different compositions. Alternatively, because Dantu is one of two longitudes on Ceres where water vapor release has been detected [3], another interpretation is that the bright and/or dark deposits in the Dantu region could result from explosive cryovolcanism. Further study of LAMO data is required to investigate these hypotheses. 3) Other features include the

  3. When the Earth has a Belly-Ache: Young Seismologists at School

    NASA Astrophysics Data System (ADS)

    Burrato, P.; Nostro, C.; Tertulliani, A.; Winkler, A.; Casale, P.; Marsili, A.; Castellano, C.; Cultrera, G.; Scarlato, P.; Alfonsi, L.; Ciaccio, M.; Frepoli, A.

    2004-12-01

    The INGV cohoperates with schools of different grades to promote Earth science programs and geophysical knowledge. This is particularly important in areas prone to seismic and volcanic hazards, like Italy. The E&O Group organizes every year school visits to the scientific laboratories of the INGV center of Rome, during which more than 4,000 students interact with scientists and learn about the dynamic Earth. Besides that the E&O Group brings on the road educational activities, carring out projects with schools and partecipating to science festivals. In March 2000 a small size earthquake hit the towns of Subiaco and Agosta, near Rome. This event was strongly felt by teachers and students of the local primary schools, and sprang the idea of a project focused on earthquakes. The aim of the project was to gain knowledge of what causes earthquakes and to familiarize with a phenomenon considered random and unforeseeable. Another goal was to train students and teachers to behave properly during the occurrence of an earthquake. The project was developed starting from the personal experience of the students, with theoretical lessons and practical experiments. The INGV researchers partecipated giving talks and producing educational materials. During the talks they showed that earthquakes are not phenomena so rare and random as thought by most people. They also showed the instruments used to register seismicity, and encouraged kids to produce their own earthquakes jumping close to a portable seismometer. In a second phase the students were divided in groups that investigated different topics of the seismic event, giving a talk to their school mates at the end of the research. The teachers used a cooperative learning approach to stimulate the ability of the kids to team up and work in cooperation. At the end of the project the kids published a book (When the Earth has a belly-ache) and a calendar, that tell about earthquakes using the kid's original drawings. The book

  4. Geological Mapping of the Ac-H-2 Coniraya Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Hendrik Pasckert, Jan; Hiesinger, Harald; Williams, David; Crown, David; Mest, Scott; Buczkowski, Debra; Scully, Jennifer; Schmedemann, Nico; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Naß, Andrea; Nathues, Andreas; Hoffmann, Martin; Schäfer, Michael; De Sanctis, Maria Cristina; Raymond, Carol; Russell, Christopher

    2016-04-01

    Dwarf planet Ceres (˜950 km) is located at ˜2.8 AU in the main asteroid belt [1], and is currently orbited by NASA's Dawn spacecraft. Similar to Vesta [2], the 15 quadrangles of Ceres will be mapped on the basis of Framing Camera mosaics from Low Altitude Mapping Orbits (LAMO) with a spatial resolution of ˜35 m/px. Here we report on our preliminary geological map of the Ac-H-2 Coniraya Quadrangle (located between 21-66 ° N and 0-90 ° E) based on High Altitude Mapping Orbit (HAMO) data (˜120 m/px), as LAMO images are just becoming available. The Coniraya Quadrangle is dominated by craters of different sizes and degradation stages. Most of the craters are highly degraded and no ejecta blankets are visible (e.g., Coniraya: 136 km; 65.8° E/40.5° N). Only some craters like Gaue and Ikapati seem to be relatively fresh, and still have ejecta blankets. Such fresher impact craters could already be mapped in detail on HAMO data, and subdivided into crater ejecta, crater wall, crater floor, and crater central peak materials. At the crater floor and around Ikapati crater we also identified smooth materials that fill local depressions. The formation of the smooth material seems to be related to the formation of the impact crater, as crater densities of the smooth materials and the ejecta blanket are similar, as are their absolute model ages (AMAs), derived from crater size-frequency distribution (CSFD) measurements. Using the lunar derived chronology, CSFD measurements of Ikapati's ejecta blanket and the smooth materials located in and around the crater show AMAs of 300 to 390 Ma. CSFD measurements of Gaue crater show AMAs of 910-980 Ma. Both craters show background AMAs of 3.1 to 3.5 Ga, which might be related to old large craters (e.g., Coniraya or Kerwan). Apart from crater related units, we identified one dome-like structure (˜65 km wide; ˜3 km high) at the crater floor of a large degraded crater at the western edge of this quadrangle. This might be an indication

  5. Selective inhibition of human acetylcholinesterase by xanthine derivatives: in vitro inhibition and molecular modeling investigations.

    PubMed

    Mohamed, Tarek; Osman, Wesseem; Tin, Gary; Rao, Praveen P N

    2013-08-01

    The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC₅₀=6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC₅₀=7.25 μM)AChE IC₅₀=6.60 μM) ≤ propentofylline (hAChE IC₅₀=6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC₅₀=0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC₅₀>50 μM) relative to the reference agent donepezil (hBuChE IC₅₀=13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.

  6. Hepatitis C virus NS5A inhibitors and drug resistance mutations.

    PubMed

    Nakamoto, Shingo; Kanda, Tatsuo; Wu, Shuang; Shirasawa, Hiroshi; Yokosuka, Osamu

    2014-03-21

    Some direct-acting antiviral agents for hepatitis C virus (HCV), such as telaprevir and boceprevir have been available since 2011. It was reported that HCV NS5A is associated with interferon signaling related to HCV replication and hepatocarcinogenesis. HCV NS5A inhibitors efficiently inhibited HCV replication in vitro. Human studies showed that dual, triple and quad regimens with HCV NS5A inhibitors, such as daclatasvir and ledipasvir, in combination with other direct-acting antiviral agents against other regions of HCV with or without peginterferon/ribavirin, could efficiently inhibit HCV replication according to HCV genotypes. These combinations might be a powerful tool for "difficult-to-treat" HCV-infected patients. "First generation" HCV NS5A inhibitors such as daclatasvir, ledipasvir and ABT-267, which are now in phase III clinical trials, could result in resistance mutations. "Second generation" NS5A inhibitors such as GS-5816, ACH-3102, and MK-8742, have displayed improvements in the genetic barrier while maintaining potency. HCV NS5A inhibitors are safe at low concentrations, which make them attractive for use despite low genetic barriers, although, in fact, HCV NS5A inhibitors should be used with HCV NS3/4A inhibitors, HCV NS5B inhibitors or peginterferon plus ribavirin. This review article describes HCV NS5A inhibitor resistance mutations and recommends that HCV NS5A inhibitors be used in combination regimens potent enough to prevent the emergence of resistant variants.

  7. The effects of fluorine substitution on the chemical properties and inhibitory capacity of Donepezil anti-Alzheimer drug; density functional theory and molecular docking calculations.

    PubMed

    Khosravan, Azita; Marani, Safora; Sadeghi Googheri, Mohammad Sadegh

    2017-01-01

    Drug fluorination has the potential to reproduce useful drugs with decreasing the side effect of them. Identifying the effect of this improvement on the chemical properties and biological interactions of drug symbolizes a meaningful progress in drug design. Here the fluorination of Donepezil as an anti-Alzheimer drug, including 7 fluorinated derivatives of it, was investigated computationally. In the first part of our calculations, the most important chemical properties of drug that affects the drug efficiency were investigated by applying the M06/6-31g (d, p) and M062X/6-31g (d, p) levels of theories. Findings showed that the fluorine substitution changed the drug stability as altered the solubility and molecular polarity. Furthermore, the intramolecular hydrogen bonding, charge distribution and electron delocalization of the drug were affected by this replacement. In the second section, the effect of fluorination on the drug⋯enzyme interactions was evaluated by using two effective methods Based on the molecular docking and density functional theory (DFT) calculations fluorine substitution influenced the Donepezil⋯Acetylcholinesterase interactions. Calculated binding energies by two computational methods displayed that the fluorine replacement changed the binding affinity of drug. Finally, the most significant non-bonded interactions between drugs and involved residues were investigated by bond length data analysis.

  8. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-01-01

    In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex

  9. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells

    PubMed Central

    Qian, Jie; Mummalaneni, Shobha K.; Alkahtani, Reem M.; Mahavadi, Sunila; Murthy, Karnam S.; Grider, John R.

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells. PMID:27846263

  10. A combined molecular docking and charge density analysis is a new approach for medicinal research to understand drug-receptor interaction: curcumin-AChE model.

    PubMed

    Renuga Parameswari, A; Rajalakshmi, G; Kumaradhas, P

    2015-01-05

    In the present study, a molecular docking analysis has been performed on diketone form of curcumin molecule with acetylcholinesterase (AChE). The calculated lowest docked energy of curcumin molecule in the active site of AChE is -11.21 kcal/mol; this high negative value indicates that the molecule exhibits large binding affinity towards AChE. When the curcumin molecule present in the active site of AChE, subsequently, its conformation has altered significantly and the molecule adopts a U-shape geometry as it is linear in gas phase (before entering into the active site). This conformational transition facilitates curcumin to form strong interaction with Phe330 of acyl-binding pocket and the choline binding site with indole ring of Trp84 and Asp72. The gas phase and the active site analysis of curcumin allows to understand the conformational geometry, nature of molecular flexibility, charge density redistribution and the variation of electrostatic properties of curcumin in the active site. To obtain the gas phase structure, the curcumin molecule was optimized using Hartree-Fock and density functional methods (B3LYP) with the basis set 6-311G(∗∗). A charge density analysis on both gas phase as well as the molecule lifted from the active site was carried out using Bader's theory of atoms in molecules (AIM). The difference in molecular electrostatic potential between the two forms of curcumin displays the difference in charge distribution. The large dipole moment of curcumin (7.54 D) in the active site reflects the charge redistribution as it is much less in the gas phase (4.34 D).

  11. High therapeutic potential of positive allosteric modulation of α7 nAChRs in a rat model of traumatic brain injury: Proof-of-concept

    PubMed Central

    Gatson, Joshua W.; Simpkins, James W.; Uteshev, Victor V.

    2015-01-01

    There are currently no clinically-efficacious drug therapies to treat brain damage secondary to traumatic brain injury (TBI). In this proof-of-concept study, we used a controlled cortical impact model of TBI in young adult rats to explore a novel promising approach that utilizes PNU-120596, a previously-reported highly selective Type-II positive allosteric modulator (α7-PAM) of α7 nicotinic acetylcholine receptors (nAChRs). α7-PAMs enhance and prolong α7 nAChR activation, but do not activate α7 nAChRs when administered without an agonist. The rational basis for the use of an α7-PAM as a post-TBI treatment is tripartite and arises from: 1) the intrinsic ability of brain injury to elevate extracellular levels of choline (a ubiquitous cell membrane-building material and a selective endogenous agonist of α7 nAChRs) due to the breakdown of cell membranes near the site and time of injury; 2) the ubiquitous expression of functional α7 nAChRs in neuronal and glial/immune brain cells; and 3) the potent neuroprotective and anti-inflammatory effects of α7 nAChR activation. Therefore, both neuroprotective and anti-inflammatory effects can be achieved post-TBI by targeting only a single player (i.e., the α7 nAChR) using α7-PAMs to enhance the activation of α7 nAChRs by injury-elevated extracellular choline. Our data support this hypothesis and demonstrate that subcutaneous administration of PNU-120596 post-TBI in young adult rats significantly reduces both brain cell damage and reactive gliosis. Therefore, our results introduce post-TBI systemic administration of α7-PAMs as a promising therapeutic intervention that could significantly restrict brain injury post-TBI and facilitate recovery of TBI patients. PMID:25647232

  12. NSC23766, a widely used inhibitor of Rac1 activation, additionally acts as a competitive antagonist at muscarinic acetylcholine receptors.

    PubMed

    Levay, Magdolna; Krobert, Kurt Allen; Wittig, Karola; Voigt, Niels; Bermudez, Marcel; Wolber, Gerhard; Dobrev, Dobromir; Levy, Finn Olav; Wieland, Thomas

    2013-10-01

    Small molecules interfering with Rac1 activation are considered as potential drugs and are already studied in animal models. A widely used inhibitor without reported attenuation of RhoA activity is NSC23766 [(N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride]. We found that NSC23766 inhibits the M2 muscarinic acetylcholine receptor (M2 mAChR)-induced Rac1 activation in neonatal rat cardiac myocytes. Surprisingly, NSC27366 concomitantly suppressed the carbachol-induced RhoA activation and a M2 mAChR-induced inotropic response in isolated neonatal rat hearts requiring the activation of Rho-dependent kinases. We therefore aimed to identify the mechanisms by which NSC23766 interferes with the differentially mediated, M2 mAChR-induced responses. Interestingly, NSC23766 caused a rightward shift of the carbachol concentration response curve for the positive inotropic response without modifying carbachol efficacy. To analyze the specificity of NSC23766, we compared the carbachol and the similarly Giβγ-mediated, adenosine-induced activation of Gi protein-regulated potassium channel (GIRK) channels in human atrial myocytes. Application of NSC23766 blocked the carbachol-induced K(+) current but had no effect on the adenosine-induced GIRK current. Similarly, an adenosine A1 receptor-induced positive inotropic response in neonatal rat hearts was not attenuated by NSC23766. To investigate its specificity toward the different mAChR types, we studied the carbachol-induced elevation of intracellular Ca(2+) concentrations in human embryonic kidney 293 (HEK-293) cells expressing M1, M2, or M3 mAChRs. NSC23766 caused a concentration-dependent rightward shift of the carbachol concentration response curves at all mAChRs. Thus, NSC23766 is not only an inhibitor of Rac1 activation, but it is within the same concentration range a competitive antagonist at mAChRs. Molecular docking analysis at M2 and M3 mAChR crystal

  13. Geological Mapping of the Ac-H-14 Yalode Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Crown, David; Yingst, Aileen; Mest, Scott; Platz, Thomas; Sizemore, Hanna; Berman, Daniel; Williams, David; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Hoffman, Martin; Schäfer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres that includes production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-14 Yalode Quadrangle (21-66°S, 270-360°E). The current geologic map was produced using ArcGIS software based on HAMO images (140 m/pixel) for surface morphology and stratigraphic relationships, Survey (400 m/pixel) digital terrain models for topographic information, and Dawn Framing Camera (FC) color images as context for map unit identification. The map will be updated through analysis of LAMO images (35 m/pixel) that are just becoming available. The Yalode Quadrangle is dominated by the 260-km diameter impact basin Yalode (42.3°S, 293.6°E) and includes rugged and smooth terrains to the east. Preliminary geologic mapping defined two regional units (cratered terrain and smooth material), which dominate the quadrangle, as well as a series of impact crater material units. Mapped geologic features include crater rims, graben, ridges, troughs, scarp, lineaments, and impact crater chains. Geologic contacts are typically not distinct in Survey and HAMO images. Impact craters in Yalode Quadrangle display a range of preservation states. Degraded features, including Yalode basin and numerous smaller craters, exhibit subdued rims, lack discrete ejecta deposits, and have infilled interiors. More pristine features (including Mondamin, Besua, Lono and craters on the Yalode basin floor) have well-defined, quasi-circular forms with prominent rims and in some cases discernible ejecta. Some of these craters have bowl-shaped interiors, and others contain hills or mounds on their floors that are interpreted as central peaks. Yalode basin has a variably preserved rim, which is continuous and sharply defined to the north/northwest and is irregular or degraded

  14. Geological Mapping of the Ac-H-5 Fejokoo Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Hughson, Kynan; Russell, Christopher; Williams, David; Buczkowski, Debra; Mest, Scott; Scully, Jennifer; Kneissl, Thomas; Ruesch, Ottaviano; Frigeri, Alessandro; Combe, Jean-Philippe; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Park, Ryan; Marchi, Simone; Raymond, Carol

    2016-04-01

    NASA's Dawn spacecraft arrived at Ceres on March 6, 2015, and has been studying the dwarf planet through a series of successively lower orbits, obtaining morphological & topographical image, mineralogical, elemental abundance, and gravity data. Ceres is the largest object in the asteroid belt with a mean diameter of ~950 km. The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for the asteroid Vesta [1, 2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we present the LAMO-based geologic map of the Ac-H-5 Fejokoo quadrangle (21-66 °N and 270-360 °E) and discuss its geologic evolution. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (~140 m/pixel) and Survey (~400 m/pixel) digital terrain models (for topographic information) [3, 4]. Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images (~35 m/pixel). The Fejokoo quadrangle hosts six primary geologic features: (1) the centrally located, ~80 km diameter, distinctly hexagonal impact crater Fejokoo; (2) Victa crater with its large exterior dark lobate flow feature, and interior lobate and furrowed deposits; (3) Abellio crater, which exhibits a well formed ejecta blanket and has an arcuately textured infilled floor whose morphology is similar to those of homologously sized craters on some of the icy Saturnian satellites [5]; (4) Cozobi crater, whose floor is filled with an unusually bulbous and smooth deposit, thin sheeted multi-lobed flow-like features that are reminiscent of fluidized ejecta as seen on Mars are also observed to be emanating outwards from the N and S rims of this crater [6]; (5) the peculiar Oxo crater on the eastern

  15. Geological Mapping of the Ac-H-3 Dantu Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Kneissl, Thomas; Schmedemann, Nico; Neesemann, Adrian; Williams, David A.; Crown, David A.; Mest, Scott C.; Buczkowski, Debra L.; Scully, Jennifer E. C.; Frigeri, Allessandro; Ruesch, Ottaviano; Hiesinger, Harald; Walter, Sebastian H. G.; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Kersten, Elke; Naß, Andrea; Nathues, Andreas; Platz, Thomas; Russell, Chistopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-3 Dantu Quadrangle. The current map is based on a Framing Camera (FC) clear-filter image mosaic from HAMO data (~140 m/px) as well as a digital terrain model (DTM) derived from imagery of the Survey phase [3]. Albedo variations were identified and mapped using a mosaic of photometrically corrected HAMO images provided by DLR. FC color images provided further context for map unit identification. LAMO images (35m/pixel), which have just become available at the time of writing, will be used to update the map to be presented as a poster. The quadrangle is located between 21-66°N and 90-180°E in a large-scale depression north of the impact basin Kerwan. The northern and southeastern parts of the quadrangle are characterized by cratered terrain while the south and southwest are dominated by the partially smooth ejecta blankets of craters Dantu and Gaue. East-west oriented pit/crater chains in the southern half of the quadrangle might be related to tectonic processes [4,5]. Dantu crater (d=~126 km) is a complex impact crater showing slump terraces and a partially smooth crater floor with concentric and radial fractures. Furthermore, Dantu shows a central pit structure with pitted terrain on its floor as well as several bright spots in the interior and exterior of the crater. High-resolution measurements of crater size-frequency distributions (CSFDs) superposed on Dantu indicate a formation/modification age of ~200 - 700 Ma. Most of the ejecta appear to be relatively bright and correspond to parts of the #2 high albedo region observed with the Hubble Space Telescope [6]. However, the southwestern portion of the ejecta blanket is

  16. {alpha}7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis.