The National Shipbuilding Research Program. Shipyard MACT Implementation Plan and Compliance Tools
1996-06-01
display a currently valid OMB control number. 1. REPORT DATE JUN 1996 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The National...ACHIEVABLE CONTROL TECHNOLOGY SECTION TWO: MODEL SHIPYARD IMPLEMENTATION PLAN SECTION THREE: THINNING RATION CALCULATION SHEETS FOR OPTIONS 2 & 3 AND...INTERPRETATION OF THE SHIPYARD MAXIMUM ACHIEVABLE CONTROL TECHNOLOGY EPA’s Maximum Achievable Control Technology Rule for Shipyards: A Plain English
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Maximum achievable control technology... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Requirements for Control Technology Determinations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Maximum Achievable Control Technology Standards in Region 7
Maximum Achievable Control Technology Standards (MACTs) are applicable requirements under the Title V operating permit program. This is a resource for permit writers and reviewers to learn about the rules and explore other helpful tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available, best available technology economically achievable, best available demonstrated control technology, and best conventional pollutant control technology (the âwater bubbleâ). 420... of best practicable control technology currently available, best available technology economically...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available, best available technology economically achievable, best available demonstrated control technology, and best conventional pollutant control technology (the âwater bubbleâ). 420... of best practicable control technology currently available, best available technology economically...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available, best available technology economically achievable, best available demonstrated control technology, and best conventional pollutant control technology (the âwater bubbleâ). 420... of best practicable control technology currently available, best available technology economically...
Ethylene Production Maximum Achievable Control Technology (MACT) Compliance Manual
This July 2006 document is intended to help owners and operators of ethylene processes understand and comply with EPA's maximum achievable control technology standards promulgated on July 12, 2002, as amended on April 13, 2005 and April 20, 2006.
MULTIPOLLUTANT EMISSION CONTROL TECHNOLOGY OPTIONS FOR COAL-FIRED POWER PLANTS
The report presents and analyzes various existing and novel control technologies designed to achieve multipollutant [sulfur dioxide (SO2), nitrogen oxide (NOX), and mercury (Hg)] emission reductions. Summary descriptions are included of 23 multipollutant control technologies that...
Process Control in Production-Worthy Plasma Doping Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winder, Edmund J.; Fang Ziwei; Arevalo, Edwin
2006-11-13
As the semiconductor industry continues to scale devices of smaller dimensions and improved performance, many ion implantation processes require lower energy and higher doses. Achieving these high doses (in some cases {approx}1x1016 ions/cm2) at low energies (<3 keV) while maintaining throughput is increasingly challenging for traditional beamline implant tools because of space-charge effects that limit achievable beam density at low energies. Plasma doping is recognized as a technology which can overcome this problem. In this paper, we highlight the technology available to achieve process control for all implant parameters associated with modem semiconductor manufacturing.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... Maximum Achievable Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal... Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal). ICR Numbers: EPA... control technology standards for carbon black, ethylene, cyanide and spandex facilities. Estimated Number...
Code of Federal Regulations, 2012 CFR
2012-07-01
... economically achievable (BAT). 420.23 Section 420.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... by the application of the best available technology economically achievable (BAT). Except as provided... of the best available control technology economically achievable (BAT). (a) Sintering operations with...
Code of Federal Regulations, 2011 CFR
2011-07-01
... economically achievable (BAT). 420.23 Section 420.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... by the application of the best available technology economically achievable (BAT). Except as provided... of the best available control technology economically achievable (BAT). (a) Sintering operations with...
Code of Federal Regulations, 2010 CFR
2010-07-01
... economically achievable (BAT). 420.23 Section 420.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... by the application of the best available technology economically achievable (BAT). Except as provided... of the best available control technology economically achievable (BAT). (a) Sintering operations with...
NASA Astrophysics Data System (ADS)
Made Rajendra, I.; Made Sudana, I.
2018-01-01
Interactive multimedia technology empowers the educational process by means of increased interaction between teachers and the students. The utilization of technology in the instructional media development has an important role in the increase of the quality of teaching and learning achievements of students. The application of multimedia technology in the instructional media development is able to integrate aspects of knowledge and skills. The success of multimedia technology has revolutionized teaching and learning methods. The design of the study was quasi-experimental with pre and post. The instrument used is the form of questionnaires and tests This study reports research findings indicated that there is a significance difference between the mean performances of students in the experimental group than those students in the control group. The students in the experimental group performed better in mechanical technology practice and in retention test than those in the control group. The study recommended that multimedia instructional tool is an effective tool to enhance achievement students on practice skills in mechanical Technology.
40 CFR 63.1108 - Compliance with standards and operation and maintenance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation and maintenance requirements. 63.1108 Section 63.1108 Protection of Environment ENVIRONMENTAL... Source Categories: Generic Maximum Achievable Control Technology Standards § 63.1108 Compliance with..., air pollution control technologies, recovery technologies, work practices, pollution prevention...
CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS
The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...
BIOMONITORING TO ACHIEVE CONTROL OF TOXIC EFFLUENTS
This 48 - page Technology Transfer Report provides a case study of how water quality-based toxicity control procedures can be combined with chemical analyses and biological stream surveys to achieve more effective water pollution control. t describes how regulatory agencies used ...
ERIC Educational Resources Information Center
Young, Jamaal; Hamilton, Christina; Cason, Marti
2017-01-01
The purpose of this study was to examine the effects of integrating Interactive Whiteboard (IWB) technology on middle school mathematics achievement in an urban school. Propensity score matching was used to create a comparable control group in order to isolate the effects of IWB technology on mathematics achievement. An initial experimental group…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
..., and control technologies) no less frequently than every 8 years. Section 112(f)(2) of the CAA requires... Classification System. \\2\\ Maximum Achievable Control Technology. C. Where can I get a copy of this document and... areas of air pollution control. Additional information is available on the residual risk and technology...
ERIC Educational Resources Information Center
Serin, Oguz
2011-01-01
This study aims to investigate the effects of the computer-based instruction on the achievements and problem solving skills of the science and technology students. This is a study based on the pre-test/post-test control group design. The participants of the study consist of 52 students; 26 in the experimental group, 26 in the control group. The…
Compact, closed-loop controlled waste incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schadow, K.C.; Seeker, W.R.
1999-07-01
Technologies for solid and liquid waste destruction in compact incinerators are being developed in collaboration between industry, universities, and a Government laboratory. This paper reviews progress on one technology, namely active combustion control to achieve efficient and controlled afterburning of air-starved reaction products. This technology which uses synchronized waste gas injection into acoustically stabilized air vortices was transitioned to a simplified afterburner design and practical operational conditions. The full-scale, simplified afterburner, which achieved CO and NO{sub x} emissions of about 30 ppm with a residence time of less than 50 msec, was integrated with a commercially available marine incinerator tomore » increase throughput and reduce emissions. Closed-loop active control with diode laser sensors and novel control strategies was demonstrated on a sub-scale afterburner.« less
ERIC Educational Resources Information Center
Hill, Darryl V.; Lenard, Matthew A.; Page, Lindsay Coleman
2016-01-01
School districts are increasingly adopting technology-based resources in an attempt to improve student achievement. This paper reports the two-year results from randomized control trial of Achieve3000 in the Wake County Public School System (WCPSS) in Raleigh, North Carolina. Achieve3000 is an early literacy program that differentiates non-fiction…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... fuels, such as coal) satisfy Reasonably Available Control Technology (RACT) requirements. As explained... technology, and fuel type are the same, achievable emission levels may differ significantly from boiler to... limit representing the Best Available Control Technology (BACT) \\7\\ in its District-issued permit, and...
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhang, L.; Ma, W.; Zhang, P.; Zhao, T.
2018-04-01
The First National Geographical Condition Survey is a predecessor task to dynamically master basic situations of the nature, ecology and human activities on the earth's surface and it is the brand-new mapping geographic information engineering. In order to ensure comprehensive, real and accurate survey results and achieve the quality management target which the qualified rate is 100 % and the yield is more than 80 %, it is necessary to carry out the quality control and result inspection for national geographical conditions survey on a national scale. To ensure that achievement quality meets quality target requirements, this paper develops the key technology method of "five-in-one" quality control that is constituted by "quality control system of national geographical condition survey, quality inspection technology system, quality evaluation system, quality inspection information management system and national linked quality control institutions" by aiming at large scale, wide coverage range, more undertaking units, more management levels, technical updating, more production process and obvious regional differences in the national geographical condition survey and combining with novel achievement manifestation, complicated dependency, more special reference data, and large data size. This project fully considering the domestic and foreign related research results and production practice experience, combined with the technology development and the needs of the production, it stipulates the inspection methods and technical requirements of each stage in the quality inspection of the geographical condition survey results, and extends the traditional inspection and acceptance technology, and solves the key technologies that are badly needed in the first national geographic survey.
Examining the Influence of Technology and Project-Supported Thinking Journey on Achievement
ERIC Educational Resources Information Center
Baran, Medine; Maskan, Abdulkadir
2013-01-01
The purpose of this study was to investigate the influence of the technology and project-supported Thinking Journey on 11th grade high school students' achievements in the subject of electricity units. The participants were 68 high school 11th grade students from two different science classes. Control and experimental groups were selected at…
Evaluation of active control technology for short haul aircraft. [cost effectiveness
NASA Technical Reports Server (NTRS)
Renshaw, J. H.; Bennett, J. A.; Harris, O. C.; Honrath, J. F.; Patterson, R. W.
1975-01-01
An evaluation of the economics of short-haul aircraft designed with active controls technology and low wing-loading to achieve short field performance with good ride quality is presented. Results indicate that for such a system incorporating gust load alleviation and augmented stability the direct operating cost is better than for aircraft without active controls.
40 CFR 63.52 - Approval process for new and existing affected sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... affected sources. 63.52 Section 63.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... CATEGORIES Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air... emission reductions that can be achieved if the control technologies or work practices are installed...
A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.
2005-01-01
Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.
NASA Astrophysics Data System (ADS)
Warliani, Resti; Muslim, Setiawan, Wawan
2017-05-01
This study aims to determine the increase in the understanding achievement in senior high school students through the Learning Cycle 7E with technology based constructivist teaching approach (TBCT). This study uses a pretest-posttest control group design. The participants were 67 high school students of eleventh grade in Garut city with two class in control and experiment class. Experiment class applying the Learning Cycle 7E through TBCT approach and control class applying the 7E Learning Cycle through Constructivist Teaching approach (CT). Data collection tools from mechanical wave concept test with totally 22 questions with reability coefficient was found 0,86. The findings show the increase of the understanding achievement of the experiment class is in the amount of 0.51 was higher than the control class that is in the amount of 0.33.
Advanced Smart Structures Flight Experiments for Precision Spacecraft
NASA Astrophysics Data System (ADS)
Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory
2000-07-01
This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.
40 CFR 63.42 - Program requirements governing construction or reconstruction of major sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... construction or reconstruction of major sources. 63.42 Section 63.42 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES Requirements for Control Technology Determinations for Major Sources in... achievable control technology emission limitation for new sources. [61 FR 68400, Dec. 27, 1996, as amended at...
Multifuel evaluation of rich/quench/lean combustor
NASA Technical Reports Server (NTRS)
Notardonato, J. J.; Novick, A. S.; Troth, D. L.
1982-01-01
The fuel flexible combustor technology was developed for application to the Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel-bound nitrogen (FBN), control of NOx can be effected through a staged combustor with a rich initial combustion zone. A rich/quench/lean variable geometry combustor utilizes the technology presented to achieve low NOx from alternate fuels containing FBN. The results focus on emissions and durability for multifuel operation.
Active Structural Control for Aircraft Efficiency with the X-56A Aircraft
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey
2015-01-01
The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.
ERIC Educational Resources Information Center
Turk, Halime Samur; Akyuz, Didem
2016-01-01
This study investigates the effects of dynamic geometry based computer instruction on eighth grade students' achievement in geometry and their attitudes toward geometry and technology compared to traditional instruction. Central to the study was a controlled experiment, which contained experimental and control groups both instructed by the same…
The role of laser technology in materials processing and nondestructive testing in the 21st century
NASA Astrophysics Data System (ADS)
Sheinberg, B. M.
Some of the potential applications of laser technology in the 21st century are explored, and the proposed role of this technology in relation to materials processing, nondestructive testing, and quality control are discussed. Examples illustrating the implementation of this techology include the proposed construction of vehicles and platforms in near and deep space, and construction of underwater platforms. The direction in which today's technology should evolve to pursue the achievement of such goals is indicated. Included in the discussion is an evaluation of laser, robotics, and fiber optics technologies with respect to their ability to achieve a synergistic level of operation.
Design of high precision temperature control system for TO packaged LD
NASA Astrophysics Data System (ADS)
Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan
2017-10-01
Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.
Achieving Helicopter Modernization with Advanced Technology Turbine Engines
1999-04-01
computer modeling of compressor and turbine aerody- digital engine control ( FADEC ) with manual backup. namics. Modern directionally solidified and single...controlled by a dual RAH.66A M channel FADEC , and features a very simple installation "" Improved Gross Weight and significantly reduced pilot...air separation efficiencies as an "advanced technology" engine. Technological meas- high as 97.5%. The FADEC improves acceleration, ures include but
ERIC Educational Resources Information Center
Chantoem, Rewadee; Rattanavich, Saowalak
2016-01-01
This research compares the English language achievements of vocational students, their reading and writing abilities, and their attitudes towards learning English taught with just-in-time teaching techniques through web technologies and conventional methods. The experimental and control groups were formed, a randomized true control group…
Time-optimal control with finite bandwidth
NASA Astrophysics Data System (ADS)
Hirose, M.; Cappellaro, P.
2018-04-01
Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.
Advanced Guidance and Control for Hypersonics and Space Access
NASA Technical Reports Server (NTRS)
Hanson, John M.; Hall, Charles E.; Mulqueen, John A.; Jones, Robert E.
2003-01-01
Advanced guidance and control (AG&C) technologies are critical for meeting safety, reliability, and cost requirements for the next generation of reusable launch vehicle (RLV), whether it is fully rocket-powered or has air- breathing components. This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies could have saved a RLV with the same failure mode, the additional vehicle problems where t h i s technology applies, and the costs and time associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is the point where we can look to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AWC, current technology efforts, and the additional work needed for making this goal a reality. There are a number of approaches to AG&C that have the potential for achieving the desired goals. For some of these methods, we compare the results of tests designed to demonstrate the achievement of the goals. Tests up to now have been focused on rocket-powered vehicles; application to hypersonic air-breathers is planned. We list the test cases used to demonstrate that the desired results are achieved, briefly describe an automated test scoring method, and display results of the tests. Some of the technology components have reached the maturity level where they are ready for application to a new vehicle concept, while others are not far along in development.
Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps)
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Johnson, William C.; Swenson, Harry; Robinson, John E.; Prevot, Thomas; Callantine, Todd; Scardina, John; Greene, Michael
2012-01-01
The operational goal of the ATD-1 ConOps is to enable aircraft, using their onboard FMS capabilities, to fly Optimized Profile Descents (OPDs) from cruise to the runway threshold at a high-density airport, at a high throughput rate, using primarily speed control to maintain in-trail separation and the arrival schedule. The three technologies in the ATD-1 ConOps achieve this by calculating a precise arrival schedule, using controller decision support tools to provide terminal controllers with speeds for aircraft to fly to meet times at a particular meter points, and onboard software providing flight crews with speeds for the aircraft to fly to achieve a particular spacing behind preceding aircraft.
NASA Astrophysics Data System (ADS)
Makahinda, T.
2018-02-01
The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology (BCT). 415.67 Section 415.67 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... conventional pollutant control technology (BCT). (a) Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart and using the mercury cell process must achieve the following...
Application of active controls technology to the NASA Jet Star airplane
NASA Technical Reports Server (NTRS)
Lange, R. H.; Cahill, J. F.; Campion, M. C.; Bradley, E. S.; Macwilkinson, D. G.; Phillips, J. W.
1975-01-01
The feasibility was studied of modifying a Jet Star airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables. Also, an alternate configuration which incorporated composite structures, but not active controls technology, was defined in order to compare the benefits of composite structures with those of active controls technology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... available demonstrated control technology, processes, operating methods, or other alternatives, including... technology currently available as determined by the Administrator pursuant to section 304(b)(1) of the Act... available technology economically achievable which will result in reasonable further progress toward the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards in § 1051.103, considering technology, cost, and other factors. (2) Identify the level of compliance you can achieve, including a description of available emission-control technologies and any constraints that may prevent more effective use of these technologies. (c) You must give us other relevant...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambley, Michael R.; Haves, Philip; McDonald, Sean C.
2005-04-13
Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The othermore » four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.« less
NASA Technical Reports Server (NTRS)
Jones, Michael K.
1998-01-01
Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.
NASA Technical Reports Server (NTRS)
Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan
2000-01-01
Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.
Spatial and temporal control of microwave triggered chemiluminescence: a protein detection platform.
Previte, Michael J R; Aslan, Kadir; Geddes, Chris D
2007-09-15
We have combined the principles of microwave circuitry and antenna design and our recent work in microwave-triggered metal-enhanced chemiluminescence to now "trigger" chemically and enzyme-catalyzed chemiluminescent reactions with spatial and temporal control. With this technology platform, we achieve spatial and temporal control of enzyme and chemically catalyzed chemiluminescence reactions to achieve more than 500-fold increases in "on-demand" photon flux from chemically catalyzed chemiluminescent reactions. We also report a 6-fold increase in photon flux from HRP-catalyzed assays on disposable coverslips functionalized with HRP and placed proximal to the substrates modified with thin-film aluminum triangle disjointed "bow-tie" structures. In addition, we demonstrate the applicability of this technology to develop multiplexed or high-throughput chemiluminescent assays. We also demonstrate the clinical and biological relevance of this technology platform by affixing aluminum structures in proximity to HRP protein immobilized on nitrocellulose to improve the sensitivity for this model Western blot scheme by 50-fold. We believe analytical applications that rely on enzyme-catalyzed chemiluminescence, such as immunoassays, may greatly benefit from this new platform technology.
Research on wheelchair robot control system based on EOG
NASA Astrophysics Data System (ADS)
Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo
2018-04-01
The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.
Fuel cell systems program plan, FY 1990
NASA Astrophysics Data System (ADS)
1989-10-01
A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.
Integrated Tools for Future Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, Randy; Saus, Joseph
2013-01-01
Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.
ERIC Educational Resources Information Center
Piper, Benjamin; Oyanga, Arbogast; Mejia, Jessica; Pouezevara, Sarah
2017-01-01
Previous large-scale education technology interventions have shown only modest impacts on student achievement. Building on results from an earlier randomized controlled trial of three different applications of information and communication technologies (ICTs) on primary education in Kenya, the Tusome Early Grade Reading Activity developed the…
High-speed civil transport flight- and propulsion-control technological issues
NASA Technical Reports Server (NTRS)
Ray, J. K.; Carlin, C. M.; Lambregts, A. A.
1992-01-01
Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team.
NASA Technical Reports Server (NTRS)
Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.
1972-01-01
Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.
Wang, X-Y; He, J; Yang, K; Liang, S
2016-01-01
Schistosomiasis, as the important parasitic disease, has caused serious threats to human health globally. The People's Republic of China has acquired significant achievements based on large-scale interventions and innovational technology. The spatial technology was introduced in 1980s and widely used in the study and control of schistosomiasis in The People's Republic of China. This chapter reviews the progress and application of spatial technology in schistosomiasis control by analysing the spatiotemporal pattern of and the impact of ecological changes on schistosomiasis transmission, which have provided the information to design and select the control strategy, and assisted the establishment of the monitoring and early warning system in The People's Republic of China, especially in the marshland and mountainous regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reducing Barriers To The Use of High-Efficiency Lighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Morante
2005-12-31
With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowedmore » to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and remedial time required by the electrician and end user. (3) Minimize ongoing perceived overhead costs and inconvenience to the end user, or in other words, systems should be simple to understand and use. In addition, we believe that no lighting controls solution is effective or acceptable unless it contributes to, or does not compromise, the following goals: (1) Productivity--Planning, installation, commissioning, maintenance, and use of controls should not decrease business productivity; (2) Energy savings--Lighting controls should save significant amounts of energy and money in relation to the expense involved in using them (acceptable payback period); and/or (3) Reduced power demand--Society as a whole should benefit from the lowered demand for expensive power and for more natural resources. Discussions of technology barriers and developments are insufficient by themselves to achieve higher penetration of lighting controls in the market place. Technology transfer efforts must play a key role in gaining market acceptance. The LRC developed a technology transfer model to better understand what actions are required and by whom to move any technology toward full market acceptance.« less
Control of flexible structures
NASA Technical Reports Server (NTRS)
Russell, R. A.
1985-01-01
The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.
Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.
Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L
2011-06-01
The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.
Flight control systems development and flight test experience with the HiMAT research vehicles
NASA Technical Reports Server (NTRS)
Kempel, Robert W.; Earls, Michael R.
1988-01-01
Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.
Jones, Peter D; Stelzle, Martin
2016-01-01
Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.
Kirk, Timothy V; Marques, Marco Pc; Radhakrishnan, Anand N Pallipurath; Szita, Nicolas
2016-03-01
Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and k L a values of ∼170 h -1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 g dcw L -1 . Oxygen uptake rates of ∼34 mmol L -1 h -1 were achieved. The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Code of Federal Regulations, 2014 CFR
2014-07-01
... achievable (BAT). 420.113 Section 420.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... attainable by the application of the best available technology economically achievable (BAT). The Agency has... adequate control, the Agency is not promulgating more stringent BAT limitations. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... achievable (BAT). 420.73 Section 420.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). The Agency has determined that... control, the Agency is not promulgating more stringent BAT limitations. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... achievable (BAT). 420.73 Section 420.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). The Agency has determined that... control, the Agency is not promulgating more stringent BAT limitations. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... achievable (BAT). 420.113 Section 420.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... attainable by the application of the best available technology economically achievable (BAT). The Agency has... adequate control, the Agency is not promulgating more stringent BAT limitations. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... achievable (BAT). 420.113 Section 420.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... attainable by the application of the best available technology economically achievable (BAT). The Agency has... adequate control, the Agency is not promulgating more stringent BAT limitations. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... achievable (BAT). 420.113 Section 420.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... attainable by the application of the best available technology economically achievable (BAT). The Agency has... adequate control, the Agency is not promulgating more stringent BAT limitations. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... achievable (BAT). 420.73 Section 420.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). The Agency has determined that... control, the Agency is not promulgating more stringent BAT limitations. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... achievable (BAT). 420.73 Section 420.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). The Agency has determined that... control, the Agency is not promulgating more stringent BAT limitations. ...
Leeb, Robert; Perdikis, Serafeim; Tonin, Luca; Biasiucci, Andrea; Tavella, Michele; Creatura, Marco; Molina, Alberto; Al-Khodairy, Abdul; Carlson, Tom; Millán, José D R
2013-10-01
Brain-computer interfaces (BCIs) are no longer only used by healthy participants under controlled conditions in laboratory environments, but also by patients and end-users, controlling applications in their homes or clinics, without the BCI experts around. But are the technology and the field mature enough for this? Especially the successful operation of applications - like text entry systems or assistive mobility devices such as tele-presence robots - requires a good level of BCI control. How much training is needed to achieve such a level? Is it possible to train naïve end-users in 10 days to successfully control such applications? In this work, we report our experiences of training 24 motor-disabled participants at rehabilitation clinics or at the end-users' homes, without BCI experts present. We also share the lessons that we have learned through transferring BCI technologies from the lab to the user's home or clinics. The most important outcome is that 50% of the participants achieved good BCI performance and could successfully control the applications (tele-presence robot and text-entry system). In the case of the tele-presence robot the participants achieved an average performance ratio of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max. 1.0). The lessons learned and the gathered user feedback range from pure BCI problems (technical and handling), to common communication issues among the different people involved, and issues encountered while controlling the applications. The points raised in this paper are very widely applicable and we anticipate that they might be faced similarly by other groups, if they move on to bringing the BCI technology to the end-user, to home environments and towards application prototype control. Copyright © 2013 Elsevier B.V. All rights reserved.
Controlling Variable Emittance (MEMS) Coatings for Space Applications
NASA Technical Reports Server (NTRS)
Farrar, D.; Schneider, W.; Osiander, R.; Champion, J. L.; Darrin, A. G.; Douglas, Donya; Swanson, Ted D.
2003-01-01
Small spacecraft, including micro and nanosats, as they are envisioned for future missions, will require an alternative means to achieve thermal control due to their small power and mass budgets. One of the proposed alternatives is Variable Emittance (Vari-E) Coatings for spacecraft radiators. Space Technology-5 (ST-5) is a technology demonstration mission through NASA Goddard Space Flight Center (GSFC) that will utilize Vari-E Coatings. This mission involves a constellation of three (3) satellites in a highly elliptical orbit with a perigee altitude of approximately 200 kilometers and an apogee of approximately 38,000 kilometers. Such an environment will expose the spacecraft to a wide swing in the thermal and radiation environment of the earth's atmosphere. There are three (3) different technologies associated with this mission. The three technologies are electrophoretic, electrochromic, and Micro ElectroMechanical Systems (MEMS). The ultimate goal is to make use of Van-E coatings, in order to achieve various levels of thermal control. The focus of this paper is to highlight the Vari-E Coating MEMS instrument, with an emphasis on the Electronic Control Unit responsible for operating the MEMS device. The Test & Evaluation approach, along with the results, is specific for application on ST-5, yet the information provides a guideline for future experiments and/or thermal applications on the exterior structure of a spacecraft.
Systems Engineering and Integration for Advanced Life Support System and HST
NASA Technical Reports Server (NTRS)
Kamarani, Ali K.
2005-01-01
Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.
Use of CDMA access technology in mobile satellite systems
NASA Technical Reports Server (NTRS)
Ramasastry, Jay; Wiedeman, Bob
1995-01-01
Use of Code Division Multiple Access (CDMA) technology in terrestrial wireless systems is fairly well understood. Similarly, design and operation of Power Control in a CDMA-based system in a terrestrial environment is also well established. Terrestrial multipath characteristics, and optimum design of the CDMA receiver to deal with multipath and fading conditions are reliably established. But the satellite environment is different. When the CDMA technology is adopted to the satellite environment, other design features need to be incorporated (for example; interleaving, open-loop and closed-loop power control design, diversity characteristics) to achieve comparable level of system performance. In fact, the GLOBALSTAR LEO/MSS system has incorporated all these features. Contrary to some published reports, CDMA retains the advantages in the satellite environment that are similar to those achieved in the terrestrial environment. This document gives a description of the CDMA waveform and other design features adopted for mobile satellite applications.
NASA Technical Reports Server (NTRS)
Goodyear, M. D.
1987-01-01
NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.
2013-01-01
military use. This article highlights DWFP program accomplishments achieved through its competitive grants process, exemplified by the rodent feed...accomplishments achieved through its competitive grants process exemplified by the rodent feed-through technique with insecticidal baits for controlling...Lima, Peru . The remaining 5% of the DWFP grants have been awarded to other Federal agencies such as the Centers for Disease Control and Prevention
A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture
NASA Technical Reports Server (NTRS)
Culley, Dennis E.
2011-01-01
The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.
Effects of Technology Immersion on Middle School Students' Learning Opportunities and Achievement
ERIC Educational Resources Information Center
Shapley, Kelly; Sheehan, Daniel; Maloney, Catherine; Caranikas-Walker, Fanny
2011-01-01
An experimental study of the Technology Immersion model involved comparisons between 21 middle schools that received laptops for each teacher and student, instructional and learning resources, professional development, and technical and pedagogical support, and 21 control schools. Using hierarchical linear modeling to analyze longitudinal survey…
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using... technology specifically installed to achieve compliance with emission standards of this part; (6) The engine... with itself or its vehicle manufacturer. (2) A test engine should have a maintenance history...
Access control and confidentiality in radiology
NASA Astrophysics Data System (ADS)
Noumeir, Rita; Chafik, Adil
2005-04-01
A medical record contains a large amount of data about the patient such as height, weight and blood pressure. It also contains sensitive information such as fertility, abortion, psychiatric data, sexually transmitted diseases and diagnostic results. Access to this information must be carefully controlled. Information technology has greatly improved patient care. The recent extensive deployment of digital medical images made diagnostic images promptly available to healthcare decision makers, regardless of their geographic location. Medical images are digitally archived, transferred on telecommunication networks, and visualized on computer screens. However, with the widespread use of computing and communication technologies in healthcare, the issue of data security has become increasingly important. Most of the work until now has focused on the security of data communication to ensure its integrity, authentication, confidentiality and user accountability. The mechanisms that have been proposed to achieve the security of data communication are not specific to healthcare. Data integrity can be achieved with data signature. Data authentication can be achieved with certificate exchange. Data confidentiality can be achieved with encryption. User accountability can be achieved with audits. Although these mechanisms are essential to ensure data security during its transfer on the network, access control is needed in order to ensure data confidentiality and privacy within the information system application. In this paper, we present and discuss an access control mechanism that takes into account the notion of a care process. Radiology information is categorized and a model to enforce data privacy is proposed.
Effect of government actions on technological innovation for SO2 control.
Taylor, Margaret R; Rubin, Edward S; Hounshell, David A
2003-10-15
The relationship between government actions and innovation in environmental control technology is important for the design of cost-effective policies to achieve environmental goals. This paper examines such relationships for the case of sulfur dioxide control technology for U.S. coal-fired power plants. The study employs several complementary research methods, including analyses of key government actions, technology patenting activity, technology performance and cost trends, knowledge transfer activities, and expert elicitations. Our results indicate that government regulation appears to be a greater stimulus to inventive activity than government-sponsored research support alone, and that the anticipation of regulation also spurs inventive activity. Regulatory stringency focuses this activity along particular technical pathways and is a key factor in creating markets for environmental technologies. We also find that with greater technology adoption, both new and existing systems experience notable efficiency improvements and capital cost reductions. The important role of government in fostering knowledge transfer via technical conferences and other measures is also seen as an important factor in promoting environmental technology innovation.
Terrestrial Planet Finder Coronagraph and Enabling Technologies
NASA Technical Reports Server (NTRS)
Ford, Virginia G.
2005-01-01
Starlight suppression research is Stowed in Delta IV-H advancing rapidly to approach the required contrast ratio. The current analysis of the TPF Coronagraph system indicates that it is feasible to achieve the stability required by using developing technologies: a) Wave Front Sensing and Control (DMs, control algorithms, and sensing); b) Laser metrology. Yet needed: a) Property data measured with great precision in the required environments; b) Modeling tools that are verified with testbeds.
NASA Astrophysics Data System (ADS)
Kosten, Lora Bechard
The literature suggests that parental involvement in schools results in positive changes in students and that schools need to provide opportunities for parents to share in the learning process. Workshops are an effective method of engaging parents in the education of their children. This dissertation studies the effects of voluntary Family Science and Technology Workshops on elementary children's science interest and achievement, as well as on parents' collaboration in their child's education. The study involved 35 second and third-grade students and their parents who volunteered to participate. The parental volunteers were randomly assigned to either the control group (children attending the workshops without a parent) or the treatment group (children attending the workshops with a parent). The study was conducted in the Fall of 1995 over a four-week period. The Analysis of Variance (ANOVA) and Kruskal-Wallis tests were used to determine the effects of the workshops on children's science achievement and science curiosity, as well as on parents' involvement with their child's education. The study revealed that there was no significant statistical difference at the.05 level between the treatment/control groups in children's science achievement or science curiosity, or in parent's involvement with their children's education. However, the study did focus parental attention on effective education and points the way to more extensive research in this critical learning area. This dual study, that is, the effects of teaching basic technology to young students with the support of their parents, reflects the focus of the Salve Regina University Ph.D. program in which technology is examined in its effects on humans. In essence, this program investigates what it means to be human in an age of advanced technology.
Air-condition Control System of Weaving Workshop Based on LabVIEW
NASA Astrophysics Data System (ADS)
Song, Jian
The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.
Real-Time Minimization of Tracking Error for Aircraft Systems
NASA Technical Reports Server (NTRS)
Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John
2013-01-01
This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.
NASA Astrophysics Data System (ADS)
Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar
2018-05-01
Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.
High-performance computing-based exploration of flow control with micro devices.
Fujii, Kozo
2014-08-13
The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Lyakhovets, M. V.; Wenger, K. G.; Myshlyaev, L. P.; Shipunov, M. V.; Grachev, V. V.; Melkozerov, M. Yu; Fairoshin, Sh A.
2018-05-01
The experience of modernization of the automation control system of technological processes at the preparation plant under the conditions of technical re-equipment of the preparation plant “Barzasskoye Tovarischestvo” LLC (Berezovsky) is considered. The automated process control systems (APCS), the modernization goals and the ways to achieve them are indicated, the main subsystems of the integrated APCS are presented, the enlarged functional and technical structure of the upgraded system is given. The procedure for commissioning an upgraded system is described.
Code of Federal Regulations, 2011 CFR
2011-07-01
... economically achievable (BAT). 420.133 Section 420.133 Protection of Environment ENVIRONMENTAL PROTECTION... (BAT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this... attainable by the application of the best available control technology economically achievable (BAT): (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... economically achievable (BAT). 420.133 Section 420.133 Protection of Environment ENVIRONMENTAL PROTECTION... (BAT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this... attainable by the application of the best available control technology economically achievable (BAT): (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... economically achievable (BAT). 420.133 Section 420.133 Protection of Environment ENVIRONMENTAL PROTECTION... (BAT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this... attainable by the application of the best available control technology economically achievable (BAT): (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... achieving such emission reduction and any non-air quality health and environmental impacts and energy..., and analysis of cost and non-air quality health environmental impacts or energy requirements for the...-day period for submittal of public comment; and (iii) A notice by prominent advertisement in the area...
Code of Federal Regulations, 2014 CFR
2014-07-01
... achieving such emission reduction and any non-air quality health and environmental impacts and energy..., and analysis of cost and non-air quality health environmental impacts or energy requirements for the...-day period for submittal of public comment; and (iii) A notice by prominent advertisement in the area...
Code of Federal Regulations, 2013 CFR
2013-07-01
... achieving such emission reduction and any non-air quality health and environmental impacts and energy..., and analysis of cost and non-air quality health environmental impacts or energy requirements for the...-day period for submittal of public comment; and (iii) A notice by prominent advertisement in the area...
Classroom Connectivity and Algebra 1 Achievement: A Three-Year Longitudinal Study
ERIC Educational Resources Information Center
Irving, Karen E.; Pape, Stephen J.; Owens, Douglas T.; Abrahamson, Louis; Silver, David; Sanalan, Vehbi A.
2016-01-01
Findings from three years of a longitudinal randomized control trial involving a national U.S. sample of Algebra 1 teachers and students are reported. The study examines the effects of a connected classroom technology (CCT) professional development and classroom intervention on student achievement when compared to classroom instruction with…
The 1989 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1991-01-01
The results of the Douglas Aircraft Company system studies related to high speed civil transports (HSCT) are discussed. The studies were conducted to assess the environmental compatibility of a high speed civil transport at a design Mach number of 3.2. Sonic boom minimization, external noise, and engine emissions were assessed together with the effect of the laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that a sonic boom loudness level of 90-PLdB at Mach 3.2 may not be achievable for a practical design; the high flow engine cycle concept shows promise of achieving the sideline FAR Part 36 noise limit, but may not achieve the aircraft range design goal of 6,500 nautical miles; the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO sub x levels when combined with a premixed pilot stage/advanced technology, high power stage duct burner in the Pratt and Whitney variable steam control engine (VSCE); and full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.
The 1989 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1991-01-01
The results are presented for the Douglas Aircraft Company system studies related to high speed civil transports (HSCTs). The system studies were conducted to assess the environmental compatibility of a HSCT at a design Mach number of 3.2. Sonic boom minimization, exterior noise, and engine emissions were assessed together with the effect of a laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that (1) achievement of a 90 PLdB sonic boom loudness level goal at Mach 3.2 may not be practical; (2) the high flow engine cycle concept shows promise of achieving the side line FAR Part 36 noise limit but may not achieve the aircraft range design goal of 6,500 nautical miles; (3) the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO(sub x) levels when combined with a premixed pilot stage/advanced technology high power stage duct burner in the P and W variable stream control engine (VSCE); and (4) full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.
Space Propulsion Synergy Group ETO technology assessments
NASA Astrophysics Data System (ADS)
Bray, James
The Space Propulsion Synergy Group (SPSG), which was chartered to support long-range strategic planning, has, using a broad industry/government team, evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long-term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a priori. The SPSG invented a dual prioritization approach that balances long-term strategic thrusts with current programmatic constraints. This enables individual program managers to make decisions based on both individual project needs and long-term strategic needs. Results indicate that an SSTO using an integrated modular engine has the best long-term potential for a 20 Klb class vehicle, and that health monitoring and control technologies are among the highest dual priority liquid rocket technologies.
Noise management to achieve superiority in quantum information systems
NASA Astrophysics Data System (ADS)
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Dry Cleaning Facilities: National Perchloroethylene Air Emission Standards
Learn about the Maximum Achievable Control Technology (MACT) standards for dry cleaning facilities. Find the rule history information, federal register citations, legal authority, and additional resources.
JPL CMOS Active Pixel Sensor Technology
NASA Technical Reports Server (NTRS)
Fossum, E. R.
1995-01-01
This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.
Simulation of proportional control of hydraulic actuator using digital hydraulic valves
NASA Astrophysics Data System (ADS)
Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.
2017-11-01
Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.
NASA Astrophysics Data System (ADS)
Bruno, Giacomo; Geninatti, Thomas; Hood, R. Lyle; Fine, Daniel; Scorrano, Giovanni; Schmulen, Jeffrey; Hosali, Sharath; Ferrari, Mauro; Grattoni, Alessandro
2015-03-01
General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others.General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06209d
Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2004-01-01
The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.
Biofiltration: an innovative air pollution control technology for VOC emissions.
Leson, G; Winer, A M
1991-08-01
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.
NASA Technical Reports Server (NTRS)
Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.
2005-01-01
The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.
NASA Astrophysics Data System (ADS)
Venables, Jeffrey M.
The literature on microcomputer-based laboratories (MBL) lacks quantitative studies that measure the effect of MBL on student achievement. The purpose of this study was to investigate the effect of MBL systems on the achievement of high school chemistry students. The first research question examined the effect of MBL systems on student achievement in high school chemistry laboratories. The second question analyzed the effect of MBL systems on the academic achievement of students of different genders, ethnicities, and socioeconomic backgrounds. This quasi-experimental quantitative research study evaluated the effects of MBL on student achievement in high school chemistry. The sample consisted of 124 college preparatory chemistry students at two high schools in a South Carolina school district. There were 42 participants in the experimental group and 82 participants in the control group. Both experimental and groups completed a pre- and post-test with MBL being the independent variable. The mean difference score for the experimental group was compared to that of the control group using an independent-measures t test and an analysis of variance. For the second research question, results were analyzed using a two-factor analysis of variance. Participant scores were broken down by gender, ethnicity, and socioeconomic status in order to identify potential differences. The results revealed no significant differences between the experimental and control groups, and no significant differences in effects of MBL on different segments of the population. Future studies should examine students using MBL for longer durations than one unit of study. As society continues to make technological advances, the effective assessment and implementation of technology resources for the classroom are becoming increasingly important.
STREET SURFACE STORAGE FOR CSO CONTROL
This paper presents a discussion of the use of on-street storage as an effective means to control stormwater runoff. It focuses on the success achieved by using street storage in two communities in Illinois and includes a description and evaluation of how this technology elimina...
Thermal management for high power space platform systems
NASA Technical Reports Server (NTRS)
Gualdoni, R. A.
1980-01-01
With future spacecraft power requirements expected to be in the order of 100 to 250 kilowatts and orbital lifetimes in the order of five to ten years, new approaches and concepts will be required that can efficiently and cost effectively provide the required heat rejection and temperature control capabilities. A plan was established to develop the commensurate technologies necessary for the thermal management of a high power space platform representative of future requirements and to achieve technology readiness by 1987. The approach taken in developing the program was to view the thermal requirements of the spacecraft as a spacecraft system rather than each as an isolated thermal problem. The program plan proposes 45 technology tasks required to achieve technology readiness. Of this total, 24 tasks were subsequently identified as being pacing technology tasks and were recommended for initiation in FY 1980 and FY 1981.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Jon Llyod
This Small Business Innovative Research (SBIR) Phase I project will demonstrate the feasibility of an innovative temperature control technology for Metal-Organic Chemical Vapor Deposition (MOCVD) process used in the fabrication of Multi-Quantum Well (MQW) LEDs. The proposed control technology has the strong potential to improve both throughput and performance quality of the manufactured LED. The color of the light emitted by an LED is a strong function of the substrate temperature during the deposition process. Hence, accurate temperature control of the MOCVD process is essential for ensuring that the LED performance matches the design specification. The Gallium Nitride (GaN) epitaxymore » process involves depositing multiple layers at different temperatures. Much of the recipe time is spent ramping from one process temperature to another, adding significant overhead to the production time. To increase throughput, the process temperature must transition over a range of several hundred degrees Centigrade many times with as little overshoot and undershoot as possible, in the face of several sources of process disturbance such as changing emissivities. Any throughput increase achieved by faster ramping must also satisfy the constraint of strict temperature uniformity across the carrier so that yield is not affected. SC Solutions is a leading supplier of embedded real-time temperature control technology for MOCVD systems used in LED manufacturing. SC’s Multiple Input Multiple Output (MIMO) temperature controllers use physics-based models to achieve the performance demanded by our customers. However, to meet DOE’s ambitious goals of cost reduction of LED products, a new generation of temperature controllers has to be developed. SC believes that the proposed control technology will be made feasible by the confluence of mathematical formulation as a convex optimization problem, new efficient and scalable algorithms, and the increase in computational power available for real-time control.« less
Passive and Active Control of Space Structures (PACOSS)
NASA Astrophysics Data System (ADS)
Morosow, G.; Harcrow, H.; Rogers, L.
1985-04-01
Passive and Active Control of Space Structures (PACOSS) is a five-year program designed to investigate highly damped structures in conjunction with active control systems, and in particular to develop technology that integrates passive damping and active control to achieve precise pointing control. Major areas of research include metal matrix composites; viscoelastic materials; damping devices; dynamic test article design, fabrication and testing; and active damping.
40 CFR 63.151 - Initial notification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... this part. (iii) The requirements in § 63.6(i)(8) through (i)(14) of subpart A will govern the review... achieved by the design steam stripper, as specified in § 63.138(g) of this subpart, is or will be applied... design steam stripper as specified in § 63.138(g) of this subpart, or (B) A control technology achieving...
40 CFR 63.151 - Initial notification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... this part. (iii) The requirements in § 63.6(i)(8) through (i)(14) of subpart A will govern the review... achieved by the design steam stripper, as specified in § 63.138(g) of this subpart, is or will be applied... design steam stripper as specified in § 63.138(g) of this subpart, or (B) A control technology achieving...
40 CFR 63.151 - Initial notification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this part. (iii) The requirements in § 63.6(i)(8) through (i)(14) of subpart A will govern the review... achieved by the design steam stripper, as specified in § 63.138(g) of this subpart, is or will be applied... design steam stripper as specified in § 63.138(g) of this subpart, or (B) A control technology achieving...
40 CFR 63.151 - Initial notification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... this part. (iii) The requirements in § 63.6(i)(8) through (i)(14) of subpart A will govern the review... achieved by the design steam stripper, as specified in § 63.138(g) of this subpart, is or will be applied... design steam stripper as specified in § 63.138(g) of this subpart, or (B) A control technology achieving...
Reliability achievement in high technology space systems
NASA Technical Reports Server (NTRS)
Lindstrom, D. L.
1981-01-01
The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.
ERIC Educational Resources Information Center
Ercan, Orhan; Bilen, Kadir; Ural, Evrim
2016-01-01
This study investigated the impact of a web-based teaching method on students' academic achievement and attitudes in the elementary education fifth grade Science and Technology unit, "System of Earth, Sun and Moon". The study was a quasi-experimental study with experimental and control groups comprising 54 fifth grade students attending…
Propulsion/flight control integration technology (PROFIT) software system definition
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.
In-orbit performance of the LISA Pathfinder drag-free and attitude control system
NASA Astrophysics Data System (ADS)
Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.
2018-04-01
LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend the results to the drag-free control system to be designed for future space-based gravity wave observatories like LISA.
The WCSAR telerobotics test bed
NASA Technical Reports Server (NTRS)
Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.
1988-01-01
Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.
40 CFR 52.1072 - Conditional approval.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to provide MOBILE6-based mobile source emission budgets and adopted measures sufficient to achieve... threshold to 25 tons per year. (9) Revises Reasonably Available Control Technology (RACT) rules to include...
Halogenated Solvent Cleaning: National Emission Standards for Hazardous Air Pollutants (NESHAP)
Learn about the Maximum Achievable Control Technology (MACT) standards for halogenated solvent cleaner. Find the rule history information, federal register citations, legal authority, and additional resources.
The art and science of flow control
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance. In this article, methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. Attempts will be made to present a unified view of the different methods of control to achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.
2002-06-01
Interior’s Bureau of Land Management (BLM). Flue - Gas Desulfurization (FGD). Post-combustion sulfur dioxide control technology in which a scrubber...4. Individual Control Strategies for Toxic Pollutants. a. The CWA requires states to identify “impaired” water bodies within their...water quality standards. Thereafter, states must develop “individual control strategies ” (ICSs) to regulate such pollutants and achieve water quality
ERIC Educational Resources Information Center
Dynarski, Mark; Agodini, Roberto; Heaviside, Sheila: Novak, Timothy; Carey, Nancy; Campuzano, Larissa; Means, Barbara; Murphy, Robert; Penuel, William; Javitz, Hal; Emery, Deborah; Sussex, Willow
2007-01-01
The National Center for Education Evaluation and Regional Assistance produced this major study of the effectiveness of education technology. Mandated by Congress, the report uses scientifically based research methods and control groups to focus on the impact of technology on student academic achievement. Thirty-three districts, 132 schools, and…
Autonomous intelligent assembly systems LDRD 105746 final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert J.
2013-04-01
This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control frameworkmore » for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.« less
NASA Astrophysics Data System (ADS)
Mueanploy, Wannapa
2015-06-01
The objective of this research was to offer the way to improve engineering students in Physics topic of vector product. The sampling of this research was the engineering students at Pathumwan Institute of Technology during the first semester of academic year 2013. 1) Select 120 students by random sampling are asked to fill in a satisfaction questionnaire scale, to select size of three dimensions vector card in order to apply in the classroom. 2) Select 60 students by random sampling to do achievement test and take the test to be used in the classroom. The methods used in analysis of achievement test by the Kuder-Richardson Method (KR- 20). The results show that 12 items of achievement test are appropriate to be applied in the classroom. The achievement test gets Difficulty (P) = 0.40-0.67, Discrimination = 0.33-0.73 and Reliability (r) = 0.70.The experimental in the classroom. 3) Select 60 students by random sampling divide into two groups; group one (the controlled group) with 30 students was chosen to study in the vector product lesson by the regular teaching method. Group two (the experimental group) with 30 students was chosen to learn the vector product lesson with three dimensions vector card. 4) Analyzed data between the controlled group and the experimental group, the result showed that experimental group got higher achievement test than the controlled group significant at .01 level.
STREET STORAGE SYSTEM FOR CONTROL OF COMBINED SEWER SURCHARGE
This manual presents a discussion of the use of on-street storage as an effective means to control stormwater runoff. It focuses on the success achieved by using street storage, in 2 communities in IL and includes a description and evaluation of how this technology solved surchar...
Instantaneous Project Controls: Current Status, State of the Art, Benefits, and Strategies
ERIC Educational Resources Information Center
Abbaszadegan, Amin
2016-01-01
Despite advancements in construction and construction-related technology, capital project performance deviations, typically overruns, remain endemic within the capital projects industry. Currently, management is generally unaware of the current status of their projects, and thus monitoring and control of projects are not achieved effectively. In…
NASA Astrophysics Data System (ADS)
Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.
2017-09-01
In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLanc, Katya Le; Powers, David; Joe, Jeffrey
2015-08-01
Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less
Digital Control Technologies for Modular DC-DC Converters
NASA Technical Reports Server (NTRS)
Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon
2002-01-01
Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.
ERIC Educational Resources Information Center
Koksal, Ela Ayse; Berberoglu, Giray
2014-01-01
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design…
The Use of ICT Tools in Mathematics: A Case-Control Study of Best Practice in 9th Grade Classrooms
ERIC Educational Resources Information Center
Thorvaldsen, Steinar; Vavik, Lars; Salomon, Gavriel
2012-01-01
Results are reported from a study in which teachers' views of highly achieving ninth grade classes in Norway (KappAbel national competition winners) were compared with teachers' views of average achievement classes with regard to the use of information and communication technologies (ICT) and pedagogical practices. The main purpose of the study…
The Effects of Using an Interactive Whiteboard on the Academic Achievement of University Students
ERIC Educational Resources Information Center
Akbas, Oktay; Pektas, Huseyin Mirac
2011-01-01
The aim of this study was to identify the effects of the use of an interactive whiteboard on the academic achievement of university students on the topic of electricity in a science and technology laboratory class. The study was designed as a pretest/posttest control group experimental study. Mean, standard deviation and t- tests were used for…
Robotics as Means to Increase Achievement Scores in an Informal Learning Environment
ERIC Educational Resources Information Center
Barker, Bradley S.; Ansorge, John
2007-01-01
This paper reports on a pilot study that examined the use of a science and technology curriculum based on robotics to increase the achievement scores of youth ages 9-11 in an after school program. The study examined and compared the pretest and posttest scores of youth in the robotics intervention with youth in a control group. The results…
Application of advanced technologies to small, short-haul aircraft
NASA Technical Reports Server (NTRS)
Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.
1978-01-01
The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.
A study: Effect of Students Peer Assisted Learning on Magnetic Field Achievement
NASA Astrophysics Data System (ADS)
Mueanploy, Wannapa
2016-04-01
This study is the case study of Physic II Course for students of Pathumwan Institute of Technology. The purpose of this study is: 1) to develop cooperative learning method of peer assisted learning (PAL), 2) to compare the learning achievement before and after studied magnetic field lesson by cooperative learning method of peer assisted learning. The population was engineering students of Pathumwan Institute of Technology (PIT’s students) who registered Physic II Course during year 2014. The sample used in this study was selected from the 72 students who passed in Physic I Course. The control groups learning magnetic fields by Traditional Method (TM) and experimental groups learning magnetic field by method of peers assisted learning. The students do pretest before the lesson and do post-test after the lesson by 20 items achievement tests of magnetic field. The post-test higher than pretest achievement significantly at 0.01 level.
A Guide to Structured Illumination TIRF Microscopy at High Speed with Multiple Colors
Young, Laurence J.; Ströhl, Florian; Kaminski, Clemens F.
2016-01-01
Optical super-resolution imaging with structured illumination microscopy (SIM) is a key technology for the visualization of processes at the molecular level in the chemical and biomedical sciences. Although commercial SIM systems are available, systems that are custom designed in the laboratory can outperform commercial systems, the latter typically designed for ease of use and general purpose applications, both in terms of imaging fidelity and speed. This article presents an in-depth guide to building a SIM system that uses total internal reflection (TIR) illumination and is capable of imaging at up to 10 Hz in three colors at a resolution reaching 100 nm. Due to the combination of SIM and TIRF, the system provides better image contrast than rival technologies. To achieve these specifications, several optical elements are used to enable automated control over the polarization state and spatial structure of the illumination light for all available excitation wavelengths. Full details on hardware implementation and control are given to achieve synchronization between excitation light pattern generation, wavelength, polarization state, and camera control with an emphasis on achieving maximum acquisition frame rate. A step-by-step protocol for system alignment and calibration is presented and the achievable resolution improvement is validated on ideal test samples. The capability for video-rate super-resolution imaging is demonstrated with living cells. PMID:27285848
2005-09-01
the Interior’s Bureau of Land Management (BLM). Flue - Gas Desulfurization (FGD). Post-combustion sulfur dioxide control technology in which a...8 (3) Special “transitional” classifications will be assigned to eligible areas participating in regional emission control strategies . b) Ozone...42 U.S.C. § 7411(f). C. States develop control strategies in their SIPs to achieve compliance with the NAAQS, but the federal government promulgates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, T.M.
1997-12-31
A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductionsmore » of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.« less
ERIC Educational Resources Information Center
Saltan, Fatih
2017-01-01
The aim of this study is to investigate whether, and if so how, online case-based learning influence pre-service classroom teachers' self-confidence on technological pedagogical content knowledge (TPACK). To achieve the goal, a control group pretest-posttest quasi experimental design was used. Participants of the study consisted of 160 pre-service…
ERIC Educational Resources Information Center
Newman, Denis; Finney, Pamela B.; Bell, Steve; Turner, Herb; Jaciw, Andrew P.; Zacamy, Jenna L.; Gould, Laura Feagans
2012-01-01
This report presents the results of an experiment conducted in Alabama beginning in the 2006/07 school year, to determine the effectiveness of the Alabama Math, Science, and Technology Initiative (AMSTI), which aims to improve mathematics and science achievement in the state's K-12 schools. This study is the first randomized controlled trial…
Information Integration for Concurrent Engineering (IICE) Compendium of Methods Report
1995-06-01
technological, economic, and strategic benefits can be attained through the effective capture, control, and management of information and knowledge ...resources. Like manpower, materials, and machines, information and knowledge assets are recognized as vital resources that can be leveraged to achieve...integrated enterprise. These technologies are designed to leverage information and knowledge resources as the key enablers for high quality systems that
SSC San Diego Biennial Review 2003. Vol 2: Communication and Information Systems
2003-01-01
University, Department of Electrical and Computer Engineering) Michael Jablecki (Science and Technology Corporation) Stochastic Unified Multiple...wearable computers and cellular phones. The technology-transfer process involved a coalition of government and industrial partners, each providing...the design and fabrication of the coupler. SSC San Diego developed a computer -controlled fused fiber fabrication station to achieve the required
Design of temperature monitoring system based on CAN bus
NASA Astrophysics Data System (ADS)
Zhang, Li
2017-10-01
The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.
An Overview of Active Flow Control Enhanced Vertical Tail Technology Development
NASA Technical Reports Server (NTRS)
Lin, John C.; Andino, Marlyn Y.; Alexander, Michael G.; Whalen, Edward A.; Spoor, Marc A.; Tran, John T.; Wygnanski, Israel J.
2016-01-01
This paper summarizes a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency of a vertical tail. Sweeping jet AFC technology was successfully tested on subscale and full-scale models as well as in flight. The subscale test was performed at Caltech on a 14% scale model. More than 50% side force enhancement was achieved by the sweeping jet actuation when the momentum coefficient was 1.7%. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. Subsequently, a full-scale Boeing 757 vertical tail model equipped with sweeping jets was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. There, flow separation control optimization was performed at near flight conditions. Greater than 20% increase in side force were achieved for the maximum rudder deflection of 30deg at the key sideslip angles (0deg and -7.5deg) with a 31-actuator AFC configuration. Based on these tests, the momentum coefficient is shown to be a necessary, but not sufficient parameter to use for design and scaling of sweeping jet AFC from subscale tests to full-scale applications. Leveraging the knowledge gained from the wind tunnel tests, the AFC-enhanced vertical tail technology was successfully flown on the Boeing 757 ecoDemonstrator in the spring of 2015.
Biofiltration: An innovative air pollution control technology for VOC emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leson, G.; Winer, A.M.
1991-08-01
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readilymore » biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.« less
Cloud-based robot remote control system for smart factory
NASA Astrophysics Data System (ADS)
Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei
2015-12-01
With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.
A Wireless Platform for Energy Efficient Building Control Retrofits
2012-08-01
University of Illinois at Urbana Champaign UTRC United Technologies Research Center VFD variable frequency drive WSN wireless sensor network ...demonstration area. .............................................................. 16 Table 4. Cost model for wireless sensor network ...buildings with MPC-based whole-building optimal control and (2) reduction in first costs achievable with a wireless sensor network (WSN)-based
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
... parameters; (2) bag leak detention systems; (3) maintenance plan for air pollution control devices (e.g.... Abstract: The National Emission Standards for Hazardous Air Pollutants (NESHAP) using Maximum Achievable Control Technology were proposed on August 4, 1998, promulgated on May 20, 1999, and amended most recently...
Jones, Andrew P; Hoffmann, Jeffrey W; Smith, Dennis N; Feeley, Thomas J; Murphy, James T
2007-02-15
Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal "above and beyond" the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166000/lb Hg removed.
Life Support System Technologies for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.
2007-01-01
The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.
Process control systems: integrated for future process technologies
NASA Astrophysics Data System (ADS)
Botros, Youssry; Hajj, Hazem M.
2003-06-01
Process Control Systems (PCS) are becoming more crucial to the success of Integrated Circuit makers due to their direct impact on product quality, cost, and Fab output. The primary objective of PCS is to minimize variability by detecting and correcting non optimal performance. Current PCS implementations are considered disparate, where each PCS application is designed, deployed and supported separately. Each implementation targets a specific area of control such as equipment performance, wafer manufacturing, and process health monitoring. With Intel entering the nanometer technology era, tighter process specifications are required for higher yields and lower cost. This requires areas of control to be tightly coupled and integrated to achieve the optimal performance. This requirement can be achieved via consistent design and deployment of the integrated PCS. PCS integration will result in several benefits such as leveraging commonalities, avoiding redundancy, and facilitating sharing between implementations. This paper will address PCS implementations and focus on benefits and requirements of the integrated PCS. Intel integrated PCS Architecture will be then presented and its components will be briefly discussed. Finally, industry direction and efforts to standardize PCS interfaces that enable PCS integration will be presented.
Cellulose Products Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)
Read the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Cellulose Products Manufacturing, see the rule history for this Maximum Achievable Control Technology (MACT), and find Compliance help for this source.
NASA Astrophysics Data System (ADS)
Wang, Meng; Deng, Ming; Luo, Xianhu; Zhao, Qingxian; Chen, Kai; Jing, Jianen
2018-02-01
The marine controlled source electromagnetic (CSEM) method has been recognized as an effective exploration method of shallow hydrocarbons around the world. We developed our own underwater marine CSEM transmitter that consisted of many functional modules with various response times. We previously adopted a centralized software-control technology to design the transmitter circuit topological structure. That structure probably generated a control disorder or malfunction. These undesirable conditions could lead to repeated recovery and deployment of the transmitter, which not only consumed time but also affected data continuity and establishment of stable and continuous CSEM field. We developed an instrument design concept named ‘control technology of hardware parallelism’. In this design, a noteworthy innovation of our new technology is to solve the above-mentioned problems at the physical and fundamental levels. We used several self-contained control-units to simultaneously accomplish the predetermined functions of the transmitter. The new solution relies on two technologies: multi-core embedded technology and multi-channel parallel optical-fiber data transmission technology. The first technology depends on many independent microcontrollers. Every microcontroller is only used to achieve a customized function. The second one relies on several multiple optical-fiber transmission channels realized by a complex programmable logic device and two optical-fiber conversion devices, which are used to establish a communication link between the shipboard monitoring and control-unit and underwater transmitter. We have conducted some marine experiments to verify the reliability and stability of the new method. In particular, the new technology used in the transmitter system could help us obtain more useful measured data in a limited time, improve real-time efficiency, and support the establishment of a stable CSEM field.
Records Reaching Recording Data Technologies
NASA Astrophysics Data System (ADS)
Gresik, G. W. L.; Siebe, S.; Drewello, R.
2013-07-01
The goal of RECORDS (Reaching Recording Data Technologies) is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.
ERIC Educational Resources Information Center
Cunningham, Carlton A.
2011-01-01
Technology enhancements of the past two decades have not successfully overcome the problem of low motivation in Kindergarten through Grade 12 (K-12). Motivation and math achievement have been identified as major factors contributing to the high school dropout problem (30-50% in traditional/online programs). The impact of extrinsic rewards on…
NASA Technical Reports Server (NTRS)
Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad
2016-01-01
Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.
Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology
NASA Astrophysics Data System (ADS)
vanKonynenburg, Peter; Marsland, Stephen; McCoy, James
1987-11-01
A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
ERIC Educational Resources Information Center
Ercan, Orhan; Bilen, Kadir
2014-01-01
Advances in computer technologies and adoption of related methods and techniques in education have developed parallel to each other. This study focuses on the need to utilize more than one teaching method and technique in education rather than focusing on a single teaching method. By using the pre-test post-test and control group semi-experimental…
Review of hybrid laminar flow control systems
NASA Astrophysics Data System (ADS)
Krishnan, K. S. G.; Bertram, O.; Seibel, O.
2017-08-01
The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.
MERCURY SPECIATION AND CAPTURE
In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. Maximum achievable control technology (MACT) requirements are to be proposed by December 2003 and finali...
1999-01-01
August Witt, Massachusetts Institute of Technology, principal investigator for the research program designed to lead to the identification and control of gravitational effects which adversely impact, through their interference with the growth process, the achievement of critical application specific properties in opto-electronic materials.
REDUCING STYRENE EMISSIONS FROM SPRAYED FILLED RESINS
Styrene emissions are coming under increasing study as the U.S. Environmental Protection Agency (EPA) develops maximum achievable control technology standards. During the manufacture of fiber-reinforced plastics/composites products, styrene, a volatile organic compound and a haz...
Formation Control for the Maxim Mission.
NASA Technical Reports Server (NTRS)
Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.
2004-01-01
Over the next twenty years, a wave of change is occurring in the spacebased scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today's technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. The Stellar Imager mission requirements are on the same order of those for MAXIM. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; (2) the formation control architecture devised for such missions; (3) the design of the formation control laws to maintain very high precision relative positions; and (4) the levels of fuel usage required in the duration of these missions. Specific preliminary results are presented for two spacecraft within the MAXIM mission.
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey
Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.« less
ERIC Educational Resources Information Center
Butz, Nikolaus T.; Stupnisky, Robert H.; Pekrun, Reinhard
2015-01-01
Synchronous hybrid delivery (simultaneously teaching on-campus and online students using web conferencing) is becoming more common; however, little is known about how students experience emotions in this learning environment. Based on Pekrun's (2006) control-value theory of emotions, the dual purpose of this study was first to compare synchronous…
Acoustics in Research Facilities--Control of Wanted and Unwanted Sound. Laboratory Design Notes.
ERIC Educational Resources Information Center
Newman, Robert B.
Common and special acoustics problems are discussed in relation to the design and construction of research facilities. Following a brief examination of design criteria for the control of wanted and unwanted sound, the technology for achieving desired results is discussed. Emphasis is given to various design procedures and materials for the control…
Wei, Hua; Fei, Yang; Guo-Hua, Peng
2017-01-16
To improve the management level of patients' information of schistosomiasis control stations in Nanchang City, the B/S three-layer architecture and ASP+SQL technology were applied to formulate the WEB-based management system of chronic schistosomiasis patients' information, so as to achieve the information sharing of chronic schistosomiasis among schistosomiasis control stations.
The application of neural network PID controller to control the light gasoline etherification
NASA Astrophysics Data System (ADS)
Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong
2017-06-01
Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.
ERIC Educational Resources Information Center
Gucluer, Efe; Kesercioglu, Teoman
2012-01-01
The aim of this study is examining the effect of the using scientific literacy development activities on students' achievement. The study was carried out in a primary school in Buca Izmir for 2010-2011 academic years. System of our body was chosen as a study topic in our search which took 6 weeks. Pre-post test semi experimental control model was…
Design of monitoring system for mail-sorting based on the Profibus S7 series PLC
NASA Astrophysics Data System (ADS)
Zhang, W.; Jia, S. H.; Wang, Y. H.; Liu, H.; Tang, G. C.
2017-01-01
With the rapid development of the postal express, the workload of mail sorting is increasing, but the automatic technology of mail sorting is not mature enough. In view of this, the system uses Siemens S7-300 PLC as the main station controller, PLC of Siemens S7-200/400 is from the station controller, through the man-machine interface configuration software MCGS, PROFIBUS-DP communication, RFID technology and mechanical sorting hand achieve mail classification sorting monitoring. Among them, distinguish mail-sorting by scanning RFID posted in the mail electronic bar code (fixed code), the system uses the corresponding controller on the acquisition of information processing, the processed information transmit to the sorting manipulator by PROFIBUS-DP. The system can realize accurate and efficient mail sorting, which will promote the development of mail sorting technology.
Space Propulsion Synergy Group ETO technology assessments
NASA Astrophysics Data System (ADS)
Bray, James
There exists within the aerospace community a widely recognized need to improve future space launch systems. While these needs have been expressed by many national committees, potential solutions have not achieved consensus nor have they endured. Facing the challenge to remain competitive with limited national resources, the U.S. must improve its strategic planning efforts. A nationally accepted strategic plan for space would enable a focused research & development program. The Space Propulsion Synergy Group (SPSG), chartered to support long range strategic planning, has achieved several breakthroughs. First, using a broad industry/government team, the SPSG evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a-priori. Second, realizing that systems having the best long term payoffs can loose support when constraints are tight, the SPSG invented a dual prioritization approach that balances long term strategic thrusts with current programmatic constraints. This breakthrough enables individual program managers to make decisions based on both individual project needs and long term strategic needs. Results indicate that a SSTO using an integrated modular engine has the best long term potential for a 20 Klb class vehicle and that health monitoring and control technologies rank among the highest dual priority liquid rocket technologies.
This January 2004 document contains 14 diagrams illustrating the different compliance options available for those facilities that fall under the Paper and Web Coating Maximum Achievable control Technology (MACT).
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
Best demonstrated control technology for graphic arts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, B.; Vaught, C.
The Graphic Arts Industry is a source of volatile organic compound (VOC) emissions. The study was conducted to document the reported overall control efficiency for VOC at a number of rotogravure and flexographic printing facilities. The primary conclusions from the study are: (1) the use of capture and control systems and the use of water-based ink systems have been demonstrated to be effective and reliable in achieving greater than 90 percent overall VOC reduction rotogravure and flexographic printing facilities; (2) facilities can be retrofitted to achieve 90 percent VOC reductions; and (3) permanent total enclosures meeting EPA criteria have beenmore » successfully installed and operated at rotogravure and flexographic printing facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon
Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.« less
Drainpipe network management information system design based on GIS and SCADA technique
NASA Astrophysics Data System (ADS)
Gu, Ze-Yu; Zhao, De-An
2011-02-01
Achieving urban drainpipe network integration of geographical information system (GIS) and supervisory control and data acquisition (SCADA) technology is described in this paper. The system design's plans are put forward, which have realized GIS and SCADA system supplementary in the technology and strengthened the model visible analysis ability. It is verified by practical cases that the system has more practical values and a good prospect.
Control of autonomous ground vehicles: a brief technical review
NASA Astrophysics Data System (ADS)
Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri
2017-07-01
This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.
The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap
NASA Technical Reports Server (NTRS)
Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.;
2014-01-01
We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.
State-of-the-art cockpit design for the HH-65A helicopters
NASA Technical Reports Server (NTRS)
Castleberry, D. E.; Mcelreath, M. Y.
1982-01-01
In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.
Glioma Surgery: Technological Advances to Achieve a Maximal Safe Resection.
Altieri, Roberto; Zenga, Francesco; Fontanella, Marco Maria; Cofano, Fabio; Agnoletti, Alessandro; Spena, Giannantonio; Crobeddu, Emanuela; Fornaro, Riccardo; Ducati, Alessandro; Garbossa, Diego
2015-11-01
Glioblastoma multiforme (GBM) is the most frequent primary central nervous system (CNS) tumor. Despite the best treatment and advances in therapy, prognosis remains poor. One of the mainstays of therapy in GBM is surgical excision. Several studies have confirmed that the extent of resection (EOR) positively influences overall survival (OS) in patients with high-grade gliomas (HGGs). A literature search was performed using PubMed to assess the useful neurosurgical tools to achieve the best neurosurgical performance. In order to achieve the major extent of resection, preserving neurological function, many tools are now available, especially neuronavigation, intraoperative fluorescence, intraoperative ultrasound, and neuromonitoring. In addition to the maximal excision of tumor, the neurosurgeon can use photodynamic therapy (PTD) and local drug delivery (LDD) to improve the local control and bridge conventional radio and chemotherapy. EOR improves OS in patients with HGGs. There are technological possibilities for achieving a complete resection preserving neurological function, and it is not acceptable to perform only biopsy of these lesions.
An Industry Viewpoint on Electron Energy Distribution Function Control
NASA Astrophysics Data System (ADS)
Ventzek, Peter
2011-10-01
It is trite to note that plasmas play a key role in industrial technology. Lighting, laser, film coating and now medical technology require plasma science for their sustenance. One field stands out by virtue of its economic girth and impact. Semiconductor manufacturing and process science enabling its decades of innovation owe significant debt to progress in low temperature plasma science. Today, technology requires atomic level control from plasmas. Mere layers of atoms delineate good and bad device performance. While plasma sources meet nanoscale specifications over 100s cm scale dimensions, achieving atomic level control from plasmas is hindered by the absence of direct control of species velocity distribution functions. EEDF control translates to precise control of species flux and velocities at surfaces adjacent to the plasma. Electron energy distribution function (eedf) control is a challenge that, if successfully met, will have a huge impact on nanoscale device manufacturing. This lunchtime talk will attempt to provide context to the research advances presented at this Workshop. Touched on will be areas of new opportunity and the risks associated with missing these opportunities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Bonnie; Boddy, Mark; Doyle, Frank
This report presents the results of an expert study to identify research opportunities for Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The research opportunities are prioritized by realizable energy savings. The study encompasses the technology areas of industrial controls, information processing, automation, and robotics. These areas have been central areas of focus of many Industries of the Future (IOF) technology roadmaps. This report identifies opportunities for energy savings as a direct result of advances in these areas and also recognizes indirect means of achieving energy savings, such as product quality improvement,more » productivity improvement, and reduction of recycle.« less
Controlled cooling technology for bar and rod mills -- Computer simulation and operational results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, P.J.; Kruse, M.; Plociennik, U.
The Controlled Cooling Technology (CCT) developed by SMS to simulate the rolling process and automatic control of the water cooling sections is presented. The Controlled Rolling and Cooling Technology (CRCT) model is a key part of the CCT system. It is used to simulate temperature management for the rolling stock on the computer before the actual rolling process takes place. This makes it possible to dispense with extensive rolling tests in the early stages of project planning and to greatly reduce the extent of such tests prior to the start of commercial production in a rolling mill. The CRCT modelmore » has been in use at Von Moos Stahl Ag for three years. It demonstrates that, by targeted improvement of the set-up values in both the technology and the plant, it is possible to improve microstructure quality and achieve better geometrical parameters in the rolled products. Also, the results gained with the CCT system in practical operation at the Kia Steel Bar Mill, Kunsan, Korea, are presented.« less
Read the final rule on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Manufacturing of Nutritional Yeast, see the rule history, and a compliance and enforcement manual on this Maximum Achievable Control Technology.
Potential use of ground-based sensor technologies for weed detection.
Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland
2014-02-01
Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.
Impact of new technologies on diabetes care.
Giani, Elisa; Scaramuzza, Andrea Enzo; Zuccotti, Gian Vincenzo
2015-07-25
Technologies for diabetes management, such as continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) systems, have improved remarkably over the last decades. These developments are impacting the capacity to achieve recommended hemoglobin A1c levels and assisting in preventing the development and progression of micro- and macro vascular complications. While improvements in metabolic control and decreases in risk of severe and moderate hypoglycemia have been described with use of these technologies, large epidemiological international studies show that many patients are still unable to meet their glycemic goals, even when these technologies are used. This editorial will review the impact of technology on glycemic control, hypoglycemia and quality of life in children and youth with type 1 diabetes. Technologies reviewed include CSII, CGM systems and sensor-augmented insulin pumps. In addition, the usefulness of advanced functions such as bolus profiles, bolus calculators and threshold-suspend features will be also discussed. Moreover, the current editorial will explore the challenges of using these technologies. Indeed, despite the evidence currently available of the potential benefits of using advanced technologies in diabetes management, many patients still report barriers to using them. Finally this article will highlight the importance of future studies tailored toward overcome these barriers to optimizing glycemic control and avoiding severe hypoglycemia.
Code of Federal Regulations, 2010 CFR
2010-07-01
... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... limitations reflecting the best available technology economically achievable (BAT). Except as provided in 40... the best available technology economically achievable (BAT). (a) Beginning no later than August 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... Effluent limitations reflecting the best available technology economically achievable (BAT). Except as... application of the best available technology economically achievable (BAT). (a) Beginning no later than August...
Code of Federal Regulations, 2013 CFR
2013-07-01
... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... Effluent limitations reflecting the best available technology economically achievable (BAT). Except as... application of the best available technology economically achievable (BAT). (a) Beginning no later than August...
Code of Federal Regulations, 2011 CFR
2011-07-01
... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... limitations reflecting the best available technology economically achievable (BAT). Except as provided in 40... the best available technology economically achievable (BAT). (a) Beginning no later than August 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... Effluent limitations reflecting the best available technology economically achievable (BAT). Except as... application of the best available technology economically achievable (BAT). (a) Beginning no later than August...
Conservation demands safe gene drive
Esvelt, Kevin M.
2017-01-01
Interest in developing gene drive systems to control invasive species is growing, with New Zealand reportedly considering the nascent technology as a way to locally eliminate the mammalian pests that threaten its unique flora and fauna. If gene drives successfully eradicated these invasive populations, many would rejoice, but what are the possible consequences? Here, we explore the risk of accidental spread posed by self-propagating gene drive technologies, highlight new gene drive designs that might achieve better outcomes, and explain why we need open and international discussions concerning a technology that could have global ramifications. PMID:29145398
Conservation demands safe gene drive.
Esvelt, Kevin M; Gemmell, Neil J
2017-11-01
Interest in developing gene drive systems to control invasive species is growing, with New Zealand reportedly considering the nascent technology as a way to locally eliminate the mammalian pests that threaten its unique flora and fauna. If gene drives successfully eradicated these invasive populations, many would rejoice, but what are the possible consequences? Here, we explore the risk of accidental spread posed by self-propagating gene drive technologies, highlight new gene drive designs that might achieve better outcomes, and explain why we need open and international discussions concerning a technology that could have global ramifications.
NASA Technical Reports Server (NTRS)
Zabinsky, J. M.; Burnham, R. W.; Flora, C. C.; Gotlieb, P.; Grande, D. L.; Gunnarson, D. W.; Howard, W. M.; Hunt, D.; Jakubowski, G. W.; Johnson, P. E.
1975-01-01
An assessment of risk, in terms of delivery delays, cost overrun, and performance achievement, associated with the V/STOL technology airplane is presented. The risk is discussed in terms of weight, structure, aerodynamics, propulsion, mechanical drive, and flight controls. The analysis ensures that risks associated with the design and development of the airplane will be eliminated in the course of the program and a useful technology airplane that meets the predicted cost, schedule, and performance can be produced.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang
2014-10-01
Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.
An IBeacon-Based Location System for Smart Home Control.
Liu, Qinghe; Yang, Xinshuang; Deng, Lizhen
2018-06-11
Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.
Kalcheim, Yoav; Katzir, Eran; Zeides, Felix; Katz, Nadav; Paltiel, Yossi; Millo, Oded
2017-05-10
Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor. Dynamic control has been achieved with scanning probe methods on the single vortex level but these are difficult so scale up. Here, we show that by applying controllable nanopatterned current injection, the superconductor can be locally driven out of equilibrium, creating an artificial vortex potential that can be tuned by the magnitude of the injected current, yielding a unique vortex channeling effect.
ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics
NASA Astrophysics Data System (ADS)
Knapp, M.; Seager, S.; Smith, M. W.; Pong, C. M.
2017-12-01
ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics) is a technology demonstration and opportunistic science mission to advance the state of the art in CubeSat capabilities for astrophysical measurements. The goal of ASTERIA is to achieve arcsecond-level line of sight pointing error and highly stable focal plane temperature control. These technologies will enable precision photometry, i.e. the careful measurement of stellar brightness over time. This in turn provides a way to study stellar activity, transiting exoplanets, and other astrophysical phenomena, both during the ASTERIA mission and in future CubeSat constellations. ASTERIA is a 6U CubeSat (roughly 10 x 20 x 30 cm, 12 kg) that will operate in low-Earth orbit. The payload consists of a lens and baffle assembly, a CMOS imager, and a two-axis piezoelectric positioning stage on which the focal plane is mounted. A set of commercial reaction wheels provides coarse attitude control. Fine pointing control is achieved by tracking a set of guide stars on the CMOS sensor and moving the piezoelectric stage to compensate for residual pointing errors. Precision thermal control is achieved by isolating the payload from the spacecraft bus, passively cooling the detector, and using trim heaters to perform small temperature corrections over the course of an observation. The ASTERIA project is a collaboration with MIT and is funded at JPL through the Phaeton Program for training early career employees. Flight hardware was delivered in June 2017, with launch expected in August 2017 and deployment targeted for October 2017.
NASA Astrophysics Data System (ADS)
Thames, Tasha Herrington
The advancement in technology integration is laying the groundwork of a paradigm shift in the higher education system (Noonoo, 2011). The National Dropout Prevention Center (n.d.) claims that technology offers some of the best opportunities for presenting instruction to engage students in meaningful education, addressing multiple intelligences, and adjusting to students' various learning styles. The purpose of this study was to investigate if implementing clicker technology would have a statistically significant difference on student retention and student achievement, while controlling for learning styles, for students in non-major biology courses who were and were not subjected to the technology. This study also sought to identify if students perceived the use of clickers as beneficial to their learning. A quantitative quasi-experimental research design was utilized to determine the significance of differences in pre/posttest achievement scores between students who participated during the fall semester in 2014. Overall, 118 students (n = 118) voluntarily enrolled in the researcher's fall non-major Biology course at a southern community college. A total of 71 students were assigned to the experimental group who participated in instruction incorporating the ConcepTest Process with clicker technology along with traditional lecture. The remaining 51 students were assigned to the control group who participated in a traditional lecture format with peer instruction embedded. Statistical analysis revealed the experimental clicker courses did have higher posttest scores than the non-clicker control courses, but this was not significant (p >.05). Results also implied that clickers did not statistically help retain students to complete the course. Lastly, the results indicated that there were no significant statistical difference in student's clicker perception scores between the different learning style preferences.
Health information technology impact on productivity.
Eastaugh, Steven R
2012-01-01
Managers work to achieve the greatest output for the least input effort, better balancing all factors of delivery to achieve the most with the smallest resource effort. Documentation of actual health information technology (HIT) cost savings has been elusive. Information technology and linear programming help to control hospital costs without harming service quality or staff morale. This study presents production function results from a study of hospital output during the period 2008-2011. The results suggest that productivity varies widely among the 58 hospitals as a function of staffing patterns, methods of organization, and the degree of reliance on information support systems. Financial incentives help to enhance productivity. Incentive pay for staff based on actual productivity gains is associated with improved productivity. HIT can enhance the marginal value product of nurses and staff, so that they concentrate their workday around patient care activities. The implementation of electronic health records (EHR) was associated with a 1.6 percent improvement in productivity.
Sensor Technologies for Intelligent Transportation Systems
Guerrero-Ibáñez, Juan; Zeadally, Sherali
2018-01-01
Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524
Sensor Technologies for Intelligent Transportation Systems.
Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan
2018-04-16
Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.
Integrated, Automated Distributed Generation Technologies Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin
2014-09-01
The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kWmore » new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.« less
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.; Gaeta, R.
2005-01-01
Circulation Control technology is a very effective way of achieving high lift forces required by aircraft during take-off and landing. This technology can also directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate comparable or higher lift forces during take-off/landing with fewer or no moving parts and much less complexity. In this work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to Circulation Control Wing configurations. The effects of 2-D steady jets and 2-D pulsed jets on the aerodynamic performance of CCW airfoils have been investigated. It is found that a steady jet can generate very high lift at zero angle of attack without stall, and that a small amount of blowing can eliminate vortex shedding at the trailing edge, a potential noise source. It is also found that a pulsed jet can achieve the same high lift as a steady jet at lower mass flow rates, especially at a high frequency, and that the Strouhal number has a more dominant effect on the pulsed jet performance than just the frequency or the free-stream velocity.
Development of Protection and Control Unit for Distribution Substation
NASA Astrophysics Data System (ADS)
Iguchi, Fumiaki; Hayashi, Hideyuki; Takeuchi, Motohiro; Kido, Mitsuyasu; Kobayashi, Takashi; Yanaoka, Atsushi
The Recently, electronics and IT technologies have been rapidly innovated and have been introduced to power system protection & control system to achieve high reliability, maintainability and more functionality. Concerning the distribution substation application, digital relays have been applied for more than 10 years. Because of a number of electronic devices used for it, product cost becomes higher. Also, products installed during the past high-growth period will be at the end of lifetime and will be replaced. Therefore, replacing market is expected to grow and the reduction of cost is demanded. Considering above mentioned background, second generation digital protection and control unit as a successor is designed to have following concepts. Functional integration based on advanced digital technologies, Ethernet LAN based indoor communication network, cost reduction and downsizing. Pondering above concepts, integration of protection and control function is adopted in contrary to the functional segregation applied to the previous system in order to achieve one-unit concept. Also the adoption of Ethernet LAN for inter-unit communication is objective. This report shows the development of second-generation digital relay for distribution substation, which is equipped with control function and Ethernet LAN by reducing the size of auxiliary transformer unit and the same size as previous product is realized.
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Mauzerall, Denise L.
Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the use of advanced coal gasification technology. Without such controls, the impacts of air pollution on public health, presently considerable, will increase substantially by 2020.
A Design Basis for Spacecraft Cabin Trace Contaminant Control
NASA Technical Reports Server (NTRS)
Perry, Jay L.
2009-01-01
Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.
From linear to nonlinear control means: a practical progression.
Gao, Zhiqiang
2002-04-01
With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.
The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System
NASA Technical Reports Server (NTRS)
Montgomery, Edward E, IV; Johnson, Charles Les
2004-01-01
This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.
This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emissionmore » reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.« less
Technology achievements and projections for communication satellites of the future
NASA Technical Reports Server (NTRS)
Bagwell, J. W.
1986-01-01
Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMIC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 80 to 90 deg. wide angle scanning and precise beam forming under wide ranging environments will be required. Satelllite systems using these dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected.
Recent developments in smart freezing technology applied to fresh foods.
Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu
2017-09-02
Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.
The application of CAD / CAM technology in Dentistry
NASA Astrophysics Data System (ADS)
Susic, I.; Travar, M.; Susic, M.
2017-05-01
Information and communication technologies have found their application in the healthcare sector, including the frameworks of modern dentistry. CAD / CAM application in dentistry is the process by which is attained finished dental restoration through fine milling process of ready ceramic blocks. CAD / CAM is an acronym of english words Computer-Aided-Design (CAD) / Computer-Aided-Manufacture (CAM), respectively dental computer aided design and computer aided manufacture of inlays, onlays, crowns and bridges. CAD / CAM technology essentially allows you to create a two-dimensional and three-dimensional models and their materialization by numerical controlled machines. In order to operate more efficiently, reduce costs, increase user/patient satisfaction and ultimately achieve profits, many dental offices in the world have their attention focused on implementation of modern IT solutions in everyday practice. In addition to the specialized clinic management software, inventory control, etc., or hardware such as the use of lasers in cosmetic dentistry or intraoral scanning, recently the importance is given to the application of CAD / CAM technology in the field of prosthetic. After the removal of pathologically altered tooth structure, it is necessary to achieve restoration that will be most similar to the anatomy of a natural tooth. Applying CAD / CAM technology on applicable ceramic blocks it can be obtained very quick, but also very accurate restoration, in the forms of inlays, onlays, bridges and crowns. The paper presents the advantages of using this technology as well as satisfaction of the patients and dentists by using systems as: Cercon, Celay, Cerec, Lava, Everest, which represent imperative of modern dentistry in creating fixed dental restorations.
NASA Astrophysics Data System (ADS)
Termos, Mohamad Hani
2011-12-01
The Classroom Performance System (CPS) is an instructional technology tool that increases student performance and addresses different learning styles. Instructional technologies are used to promote active learning; however, student embarrassment issue in a multicultural setting is not addressed. This study assessed the effect of the CPS on student participation, attendance, and achievement in multicultural college-level anatomy and physiology classes at South Texas College, where the first spoken language is not English. Quantitative method and quasi-experimental design were employed and comparative statistic methods and pre-post tests were used to collect the data. Participants were college students and sections of study were selected by convenient sampling. Participation was 100% during most of the lectures held and participation rate did not strike above 68% in control group. Attendance was significantly higher in CPS sections than the control group as shown by t-tests. Experimental sections had a higher increase in the pre-post test scores and student averages on lecture exams increased at a higher rate as compared to the control group. Therefore, the CPS increased student participation, attendance, and achievement in multicultural anatomy and physiology classes. The CPS can be studied in other settings where the first spoken language is English or in other programs, such as special education programs. Additionally, other variables can be studied and other methodologies can be employed.
Automatic laser welding and milling with in situ inline coherent imaging.
Webster, P J L; Wright, L G; Ji, Y; Galbraith, C M; Kinross, A W; Van Vlack, C; Fraser, J M
2014-11-01
Although new affordable high-power laser technologies enable many processing applications in science and industry, depth control remains a serious technical challenge. In this Letter we show that inline coherent imaging (ICI), with line rates up to 312 kHz and microsecond-duration capture times, is capable of directly measuring laser penetration depth, in a process as violent as kW-class keyhole welding. We exploit ICI's high speed, high dynamic range, and robustness to interference from other optical sources to achieve automatic, adaptive control of laser welding, as well as ablation, achieving 3D micron-scale sculpting in vastly different heterogeneous biological materials.
Approaches to resource recovery in controlled ecological life support systems
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.; Wydeven, T.
1994-01-01
Recovery of resources from waste streams in a space habitat is essential to minimize the resupply burden and achieve self sufficiency. The ultimate goal of a Controlled Ecological Life Support System (CELSS) is to achieve the greatest practical level of mass recycle and provide self sufficiency and safety for humans. Several mission scenarios leading to the ultimate application could employ CELSS component technologies or subsystems with initial emphasis on recycle of the largest mass components of the waste stream. Candidate physical/chemical and biological processes for resource recovery from liquid and solid waste streams are discussed and the current fundamental recovery potentials are estimated.
NASA Astrophysics Data System (ADS)
Valiya Peedikakkal, Liyana; Cadby, Ashley
2017-02-01
Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.
The research of automatic speed control algorithm based on Green CBTC
NASA Astrophysics Data System (ADS)
Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi
2017-06-01
Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.
Aerial applications dispersal systems control requirements study. [agriculture
NASA Technical Reports Server (NTRS)
Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.
1980-01-01
Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.
Hsu, William C; Lau, Ka Hei Karen; Huang, Ruyi; Ghiloni, Suzanne; Le, Hung; Gilroy, Scott; Abrahamson, Martin; Moore, John
2016-02-01
Overseeing proper insulin initiation and titration remains a challenging task in diabetes care. Recent advances in mobile technology have enabled new models of collaborative care between patients and healthcare providers (HCPs). We hypothesized that the adoption of such technology could help individuals starting basal insulin achieve better glycemic control compared with standard clinical practice. This was a 12 ± 2-week randomized controlled study with 40 individuals with type 2 diabetes who were starting basal insulin due to poor glycemic control. The control group (n = 20) received standard face-to-face care and phone follow-up as needed in a tertiary center, whereas the intervention group (n = 20) received care through the cloud-based diabetes management program where regular communications about glycemic control and insulin doses were conducted via patient self-tracking tools, shared decision-making interfaces, secure text messages, and virtual visits (audio, video, and shared screen control) instead of office visits. By intention-to-treat analysis, the intervention group achieved a greater hemoglobin A1c decline compared with the control group (3.2 ± 1.5% vs. 2.0% ± 2.0%; P = 0.048). The Diabetes Treatment Satisfaction Questionnaire showed a significant improvement in the intervention group compared with the control group (an increase of 10.1 ± 11.7 vs. 2.1 ± 6.5 points; P = 0.01). HCPs spent less time with patients in the intervention group compared with those in the control group (65.9 min per subject vs. 81.6 min per subject). However, the intervention group required additional training time to use the mobile device. Mobile health technology could be an effective tool in sharing data, enhancing communication, and improving glycemic control while enabling collaborative decision making in diabetes care.
The Advanced Technology Operations System: ATOS
NASA Technical Reports Server (NTRS)
Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.
1993-01-01
Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.
JPRS Report, Science & Technology: Europe.
1992-11-10
Electrochromic, photochromic, and thermochromic layers , which provide targeted control over the degree of transparency; the latter includes the...22 Research Into Reducing Eastern German Air Pollution Advances [Bonn BMFT JOURNAL, No 4, Aug 92] 22 German Institute: Solar Hydrogen Will Reduce...the aerodynam- icists will have to rely on the trick of boundary layer control at the rudder unit in order to achieve the longest possible laminar
A Trust Based Framework for Information Sharing Behavior in Command and Control Environments
2013-06-01
organizations under certain environmental contexts using the ELICIT multiplayer intelligence game . Like other existing work dealing with com- parative... multiplayer intelligence game ,” in Proc. 12th Int?l Command and Control Research and Technology Symposium, 2007. ...dictated by a combination of personality traits, organizational rules and the need to achieve mission objectives. For example, cooperation games often show
Enhancing Command and Control (C2) Assessment through Semantic Systems
2011-06-01
distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the 16th International Command and Control Research and Technology Symposium (ICCRTS 2011...University Press, Washington, D.C., April 2008) 3 present complex contingencies that will require significant capabilities in which the power of the...cycle elements are not being brought forward and presented in ways that effectively frame and support good decisions that maximize achievement of
Formation Control for the MAXIM Mission
NASA Technical Reports Server (NTRS)
Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.
2004-01-01
Over the next twenty years, a wave of change is occurring in the space-based scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today s technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. MAXIM formation flying requirements are on the order of microns, while Stellar Imager mission requirements are on the order of nanometers. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; and (2) the development of linearized equations of relative motion for a formation operating in an n-body gravitational field. Linearized equations of motion provide the ground work for linear formation control designs.
System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.
2016-01-01
The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.
SCOS 2: ESA's new generation of mission control system
NASA Technical Reports Server (NTRS)
Jones, M.; Head, N. C.; Keyte, K.; Howard, P.; Lynenskjold, S.
1994-01-01
New mission-control infrastructure is currently being developed by ESOC, which will constitute the second generation of the Spacecraft Control Operations system (SCOS 2). The financial, functional and strategic requirements lying behind the new development are explained. The SCOS 2 approach is described. The technological implications of these approaches is described: in particular it is explained how this leads to the use of object oriented techniques to provide the required 'building block' approach. The paper summarizes the way in which the financial, functional and strategic requirements have been met through this combination of solutions. Finally, the paper outlines the development process to date, noting how risk reduction was achieved in the approach to new technologies and summarizes the current status future plans.
Advance innovations of an intelligent sprayer for nursery and fruit tree crops
USDA-ARS?s Scientific Manuscript database
Conventional spray application technology requires excessive amounts of pesticide use to achieve effective pest control in floral, nursery, and other specialty crop productions. This onerous challenge is now overcome by our newly developed automated variable-rate, air-assisted precision sprayer. Thi...
40 CFR 63.1107 - Equipment leaks: applicability assessment procedures and methods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Equipment leaks: applicability assessment procedures and methods. 63.1107 Section 63.1107 Protection of Environment ENVIRONMENTAL PROTECTION... Categories: Generic Maximum Achievable Control Technology Standards § 63.1107 Equipment leaks: applicability...
ATD-1 ATM Technology Demonstration-1 and Integrated Scheduling
NASA Technical Reports Server (NTRS)
Quon, Leighton
2014-01-01
Enabling efficient arrivals for the NextGen Air Traffic Management System and developing a set of integrated decision support tools to reduce the high cognitive workload so that controllers are able to simultaneously achieve safe, efficient, and expedient operations at high traffic demand levels.
Report #2005-P-00003, February 3, 2005. Evidence indicates that EPA senior management instructed EPA staff to develop a Maximum Achievable Control Technology (MACT) standard for mercury that would result in national emissions of 34 tons annually.
Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures.
Mishchenko, A; Tu, J S; Cao, Y; Gorbachev, R V; Wallbank, J R; Greenaway, M T; Morozov, V E; Morozov, S V; Zhu, M J; Wong, S L; Withers, F; Woods, C R; Kim, Y-J; Watanabe, K; Taniguchi, T; Vdovin, E E; Makarovsky, O; Fromhold, T M; Fal'ko, V I; Geim, A K; Eaves, L; Novoselov, K S
2014-10-01
Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.; Yu, Y.
1973-01-01
Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.
A low jitter all - digital phase - locked loop in 180 nm CMOS technology
NASA Astrophysics Data System (ADS)
Shumkin, O. V.; Butuzov, V. A.; Normanov, D. D.; Ivanov, P. Yu
2016-02-01
An all-digital phase locked loop (ADPLL) was implemented in 180 nm CMOS technology. The proposed ADPLL uses a digitally controlled oscillator to achieve 3 ps resolution. The pure digital phase locked loop is attractive because it is less sensitive to noise and operating conditions than its analog counterpart. The proposed ADPLL can be easily applied to different process as a soft IP block, making it very suitable for system-on-chip applications.
2013-03-01
within the Global information Grid ( GiG ) (AFDD6-0, 2011). JP 1-02 describes the GiG : 10 The GIG is the globally interconnected, end-to-end set of...to warfighters, policy makers, and support personnel. The GIG includes all owned and leased communications and computing systems and services...software (including applications), data, security services, and other 19 associated services necessary to achieve information superiority. The GIG
Animated Pedagogical Agents in Interactive Learning Environment: The Future of Air Force Training?
2008-02-01
confusion and disorder. Players enhance their skills of strategy and tactics as they advance through the game and destroy the enemy (Prensky, 2001b...based learning, individual learners control avatars in a 3D world where a CBRNE event has occurred. Participants can also be dispersed. Learners ...how effective the technology is for achieving training goals or 7 where it would be best to apply the technology. Johnson, Rickel, and Lester (2000
Technology Integration Initiative In Support of Outage Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Weatherby; David Gertman
2012-07-01
Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Often, command and control during outages is maintained in the outage control center where many of the underlying technologies supporting outage control are the same as those used in the 1980’s. This research reports on the use of advanced integrating software technologies and hand held mobile devices as a means by which to reduce cycle time, improve accuracy, and enhance transparency among outage team members. This paper reports on the first phase of research supported by the DOE Light Water Reactor Sustainability (LWRS)more » Program that is performed in close collaboration with industry to examine the introduction of newly available technology allowing for safe and efficient outage performance. It is thought that this research will result in: improved resource management among various plant stakeholder groups, reduced paper work, and enhanced overall situation awareness for the outage control center management team. A description of field data collection methods, including personnel interview data, success factors, end-user evaluation and integration of hand held devices in achieving an integrated design are also evaluated. Finally, the necessity of obtaining operations cooperation support in field studies and technology evaluation is acknowledged.« less
Methodology and Results of Mathematical Modelling of Complex Technological Processes
NASA Astrophysics Data System (ADS)
Mokrova, Nataliya V.
2018-03-01
The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.
EVALUATION OF BARRIERS TO THE USE OF RADIATION-CURED COATINGS IN SCREEN PRINTING
The report gives results of an evaluation of barriers to the use of radiation-cured coatings in screen printing. In support of the Source Reduction Review Project (SRRP), maximum achievable control technology (MACT) standards development, and the Pollution Prevention Act, EPA is ...
This manual provides a compliance checklist, and overview of emissions limitations, how to do performance tests, and an overview of applicability of general provisions for the Nutritional Yeast NESHAP.
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Woo, Simon S.; James, Mark; Paloulian, George K.
2012-01-01
As communication and networking technologies advance, networks will become highly complex and heterogeneous, interconnecting different network domains. There is a need to provide user authentication and data protection in order to further facilitate critical mission operations, especially in the tactical and mission-critical net-centric networking environment. The Autonomous Information Unit (AIU) technology was designed to provide the fine-grain data access and user control in a net-centric system-testing environment to meet these objectives. The AIU is a fundamental capability designed to enable fine-grain data access and user control in the cross-domain networking environments, where an AIU is composed of the mission data, metadata, and policy. An AIU provides a mechanism to establish trust among deployed AIUs based on recombining shared secrets, authentication and verify users with a username, X.509 certificate, enclave information, and classification level. AIU achieves data protection through (1) splitting data into multiple information pieces using the Shamir's secret sharing algorithm, (2) encrypting each individual information piece using military-grade AES-256 encryption, and (3) randomizing the position of the encrypted data based on the unbiased and memory efficient in-place Fisher-Yates shuffle method. Therefore, it becomes virtually impossible for attackers to compromise data since attackers need to obtain all distributed information as well as the encryption key and the random seeds to properly arrange the data. In addition, since policy can be associated with data in the AIU, different user access and data control strategies can be included. The AIU technology can greatly enhance information assurance and security management in the bandwidth-limited and ad hoc net-centric environments. In addition, AIU technology can be applicable to general complex network domains and applications where distributed user authentication and data protection are necessary. AIU achieves fine-grain data access and user control, reducing the security risk significantly, simplifying the complexity of various security operations, and providing the high information assurance across different network domains.
Psychology, technology, and diabetes management.
Gonder-Frederick, Linda A; Shepard, Jaclyn A; Grabman, Jesse H; Ritterband, Lee M
2016-10-01
Use of technology in diabetes management is rapidly advancing and has the potential to help individuals with diabetes achieve optimal glycemic control. Over the past 40 years, several devices have been developed and refined, including the blood glucose meter, insulin pump, and continuous glucose monitor. When used in tandem, the insulin pump and continuous glucose monitor have prompted the Artificial Pancreas initiative, aimed at developing control system for fully automating glucose monitoring and insulin delivery. In addition to devices, modern technology, such as the Internet and mobile phone applications, have been used to promote patient education, support, and intervention to address the behavioral and emotional challenges of diabetes management. These state-of-the-art technologies not only have the potential to improve clinical outcomes, but there are possible psychological benefits, such as improved quality of life, as well. However, practical and psychosocial limitations related to advanced technology exist and, in the context of several technology-related theoretical frameworks, can influence patient adoption and continued use. It is essential for future diabetes technology research to address these barriers given that the clinical benefits appear to largely depend on patient engagement and consistence of technology use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Mepilex Ag: an antimicrobial, absorbent foam dressing with Safetac technology.
Barrett, Simon
This article examines the role of a unique dressing-Mepilex Ag--that incorporates the rapid and sustained antimicrobial action of ionic silver with the benefits of Safetac soft silicone adhesive technology. The combined attributes of each component of this dressing allow both the control of pain and infection to be achieved simultaneously. This dual approach to the management of wounds is of significance since the evidence suggests that wound infection and the release of pro-inflammatory modulators result in both local pain and delayed healing. In this respect the control and treatment of pain is as important as the treatment of infection itself. A review of the clinical evidence relating to Safetac technology clearly demonstrates that it can be used to prevent dressing-related trauma, minimize pain at dressing change, and control exudate when used on a wide range of wound types and skin injuries. In combination with silver, this technology has been shown in in-vitro studies to have an almost instant and sustainable antimicrobial effect on a broad range of pathogens associated with delayed healing. Finally, in small clinical and case studies, Mepilex Ag has been shown to control wound bioburden and improve healing rates.
Control technology for Richard Klinger, Inc. , Sidney, Ohio. Indepth survey report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitbrink, W.A.
1984-06-25
Environmental and breathing zone samples were analyzed for asbestos (1332214) at Richard Klinger Incorporated (SIC-3069), Sidney, Ohio in August 1983 as part of an in depth study of dust control during bag opening, dumping, and disposal. Asbestos control technology was inspected. Control of asbestos at the facility was achieved by using an automatic cleaner to clean spills and routinely remove settled and spilled asbestos from the floor. During periods of peak exposure, workers wore NIOSH approved respirators and disposable coveralls. Air sampling was used to identify any asbestos control problems. Closed bales of asbestos were torn. The author concludes thatmore » operation of the bag slitter does not increase asbestos concentrations. Closed bales of asbestos may be an emission source. Improving the quality of the wrapping around the bales and handling techniques during shipment are recommended.« less
Multimode marine engine room simulation system based on field bus technology
NASA Astrophysics Data System (ADS)
Zheng, Huayao; Deng, Linlin; Guo, Yi
2003-09-01
Developing multi mode MER (Marine Engine Room) Labs is the main work in Marine Simulation Center, which is the key lab of Communication Ministry of China. It includes FPP (Fixed Pitch Propeller) and CPP (Controllable Pitch Propeller) mode MER simulation systems, integrated electrical propulsion mode MER simulation system, physical mode MER lab, etc. FPP mode simulation system, which was oriented to large container ship, had been completed since 1999, and got second level of Shanghai Municipal Science and Technical Progress award. This paper mainly introduces the recent development and achievements of Marine Simulation Center. Based on the Lon Works field bus, the structure characteristics and control strategies of completely distributed intelligent control network are discussed. The experiment mode of multi-nodes field bus detection and control system is described. Besides, intelligent fault diagnosis technology about some mechatronics integration control systems explored is also involved.
Thermal Optimization of an On-Orbit Long Duration Cryogenic Propellant Depot
NASA Technical Reports Server (NTRS)
Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Gary
2012-01-01
A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA's space exploration efforts. These benefits include elongation/extension of spacecraft missions and requirement reduction of launch vehicle up-mass. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with the new development of spacecraft hardware. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.
Thermal Optimization and Assessment of a Long Duration Cryogenic Propellant Depot
NASA Technical Reports Server (NTRS)
Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Bernard
2012-01-01
A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA space exploration efforts. These benefits include elongation/extension of spacecraft missions and reduction of launch vehicle up-mass requirements. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with new spacecraft hardware development. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.
Flight Control Laws for NASA's Hyper-X Research Vehicle
NASA Technical Reports Server (NTRS)
Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.
1999-01-01
The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.
Ning, Su; Yong-Jie, Xu
2016-12-13
Relevant projects carried out within the Yangtze River economic belt on the impact of schistosomiasis epidemic and transmission are important issues for "ecological priority" in the process of implementing the strategy. The key problems of schistosomiasis epidemic risk, epidemic happening repeatedly, difficulty of rehabilitating Oncomelania hupensis snail control and schistosomiasis prevention forest, lag of evaluation system and platform construction, lack of basic research, et al. were analyzed in the Yangtze River economic belt taking "ecological priority" as the basis in this paper. Then corresponding countermeasures to these challenges were put forward so as to provide the reference for the national forestry schistosomiasis control programs, which include: execution of the comprehensive prevention and control strategy, scheming of the new round of forestry schistosomiasis control programs, strengthening schistosomiasis prevention and control, promoting productivity in existing forestry to consolidate and improve the achievements of previous forestry schistosomiasis control programs, and promoting the intensity of technological innovation to improve the technological level of forestry schistosomiasis control programs.
Li, Rundong; Li, Yanlong; Yang, Tianhua; Wang, Lei; Wang, Weiyun
2015-05-30
Evaluations of technologies for heavy metal control mainly examine the residual and leaching rates of a single heavy metal, such that developed evaluation method have no coordination or uniqueness and are therefore unsuitable for hazard control effect evaluation. An overall pollution toxicity index (OPTI) was established in this paper, based on the developed index, an integrated evaluation method of heavy metal pollution control was established. Application of this method in the melting and sintering of fly ash revealed the following results: The integrated control efficiency of the melting process was higher in all instances than that of the sintering process. The lowest integrated control efficiency of melting was 56.2%, and the highest integrated control efficiency of sintering was 46.6%. Using the same technology, higher integrated control efficiency conditions were all achieved with lower temperatures and shorter times. This study demonstrated the unification and consistency of this method. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.
2014-01-01
The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.
Structural Acoustic Prediction and Interior Noise Control Technology
NASA Technical Reports Server (NTRS)
Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)
2001-01-01
This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.
Lambert-Messerlian, Geralyn; Kloza, Edward M; Williams, John; Loucky, Jaroslav; O'Brien, Barbara; Wilkins-Haug, Louise; Mahoney, Maurice J; De Biasio, Pierangela; Borrell, Antoni; Ehrich, Mathias; van den Boom, Dirk; Bombard, Allan T; Deciu, Cosmin; Palomaki, Glenn E
2014-05-01
We sought to compare measurements of circulating cell-free DNA as well as Down syndrome test results in women with naturally conceived pregnancies with those conceived using assisted reproductive technologies. Data regarding assisted reproductive technologies were readily available from seven enrollment sites participating in an external clinical validation trial of nested case/control design. Measurements of circulating cell-free fetal and total DNA, fetal fraction (ratio of fetal to total DNA), chromosome-specific z-scores, and karyotype results were available for analysis. Analyses were restricted to 632 euploid (5.2% assisted reproductive technologies) and 73 Down syndrome (13.7% assisted reproductive technologies), including 16 twin pregnancies. No differences were found for fetal or total circulating cell-free DNA, or for the fetal fraction in euploid (P = 0.70) or Down syndrome (P = 0.58) pregnancies by method of conception. There appeared to be systematic z-score reductions for chromosomes 21, 18, and 13 in assisted reproductive technologies versus natural euploid pregnancies (P = 0.048, 0.0032, and 0.36, respectively). Assisted reproductive technologies and naturally conceived pregnancies contribute similar levels of circulating cell-free DNA into maternal circulation. Small differences in the z-scores of pregnancies achieved by assisted reproductive technologies were observed and do not appear to be test-related artifacts. However, the findings need confirmation before any consideration of changes to testing and reporting protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez, J.P.; Rueter, C.O.; Beitler, C.M.
1995-12-01
lncreasing regulatory pressure has made emissions of benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) and total volatile organic compounds (VOC) from glycol dehydration units a major concern for the natural gas industry since there are over 40,000 of these units in operation. The Clean Air Act Amendments (CAAA) of 1990 have been the impetus for air toxics regulations, and the Maximum Achievable Control Technology (MACT) standards for the oil and gas industry will be proposed in June, 1995, and will include glycol dehydrators. In addition, several states are regulating or considering regulation of these units. The most commonmore » control systems that have been applied to glycol dehydrators are combustion or condensation systems. Combustion systems suffer from high operating costs since they do not recover the hydrocarbon for sale and require supplemental fuel. Many of the condensation systems may not achieve sufficiently low condenser temperatures to meet regulatory control limits. The R-BTEX{sup TM} process addresses this shortcoming by recovering the steam from the glycol dehydrator and converting it to cooling water; this allows R-BTEX to achieve the lowest condenser temperature possible without refrigeration. The Gas Research Institute (GRI) is conducting a field test program to demonstrate the process under a variety of conditions. Under this program, testing has been completed at one site in south Texas and at another site in western Colorado. Startup of a third unit at a Gulf Coast site in Texas should occur in late 1994. This paper presents the testing results for the first two sites and includes a side-by-side comparison of the R-BTEX process with other available control technologies.« less
Environment and health: Probes and sensors for environment digital control
NASA Astrophysics Data System (ADS)
Schettini, Chiara
2014-05-01
The idea of studying the environment using New Technologies (NT) came from a MIUR (Ministry of Education of the Italian Government) notice that allocated funds for the realization of innovative school science projects. The "Environment and Health" project uses probes and sensors for digital control of environment (water, air and soil). The working group was composed of 4 Science teachers from 'Liceo Statale G. Mazzini ', under the coordination of teacher Chiara Schettini. The Didactic Section of Naples City of Sciences helped the teachers in developing the project and it organized a refresher course for them on the utilization of digital control sensors. The project connects Environment and Technology because the study of the natural aspects and the analysis of the chemical-physical parameters give students and teachers skills for studying the environment based on the utilization of NT in computing data elaboration. During the practical project, samples of air, water and soil are gathered in different contexts. Sample analysis was done in the school's scientific laboratory with digitally controlled sensors. The data are elaborated with specific software and the results have been written in a booklet and in a computing database. During the first year, the project involved 6 school classes (age of the students 14—15 years), under the coordination of Science teachers. The project aims are: 1) making students more aware about environmental matters 2) achieving basic skills for evaluating air, water and soil quality. 3) achieving strong skills for the utilization of digitally controlled sensors. 4) achieving computing skills for elaborating and presenting data. The project aims to develop a large environmental conscience and the need of a ' good ' environment for defending our health. Moreover it would increase the importance of NT as an instrument of knowledge.
STOVL aircraft simulation for integrated flight and propulsion control research
NASA Technical Reports Server (NTRS)
Mihaloew, James R.; Drummond, Colin K.
1989-01-01
The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison
2018-04-01
Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.
Space Technology 5 Launch and Operations
NASA Technical Reports Server (NTRS)
O'Donnell, James R.; Concha, Marco A.; Morrissey, James R.; Placanica, Samuel J.; Russo, Angela M.; Tsai, Dean C.
2007-01-01
The three spacecraft that made up the Space Technology 5 (ST5) mission were successfully launched and deployed from their Pegasus launch vehicle on March 22, 2006. Final contact with the spacecraft occurred on June 30, 2006, with all Level 1 requirements met. By the end of the mission, all ST5 technologies had been validated, all on-board attitude control system (ACS) modes had been successfully demonstrated, and the desired constellation configurations had been achieved to demonstrate the ability of small spacecraft to take quality science measurements, However, during those 100 days (ST5 was planned to be a 90-day mission), there were a number of anomalies that made achieving the mission goals very challenging. This paper will discuss: the chronology of the ST5 launch and early operations, work performed to diagnose and work-around a sun sensor anomaly, spacecraft tests devised to demonstrate correct operation of all onboard ACS modes, the maneuver plan performed to achieve the desired constellation, investigations performed by members of the ST5 GN&C and Science teams of an anomalous spin down condition, and the end-of-life orbit and passivating operations performed on the three spacecraft.
Research on the application of BIM technology in the whole life cycle of construction projects
NASA Astrophysics Data System (ADS)
Chang-liu, CHEN; Wei-wei, KOU; Shuai-hua, YE
2018-05-01
BIM technology can realize information sharing, and good BIM application will reduce the whole life cycle cost of construction projects. The popularization of BIM technology challenges the application of BIM technology at all stages of the whole life cycle of the construction project. It will give full play to the value of BIM, if developing a reasonable BIM project execution plan, defining BIM requirements, specifying Level of Development, determining the BIM quality control plan and clearing BIM application content of each stage, and will provide a unified method for project stakeholders, realize the whole life cycle of construction projects, and achieve the desired information sharing in construction project.
Understanding and enhancing user acceptance of computer technology
NASA Technical Reports Server (NTRS)
Rouse, William B.; Morris, Nancy M.
1986-01-01
Technology-driven efforts to implement computer technology often encounter problems due to lack of acceptance or begrudging acceptance of the personnel involved. It is argued that individuals' acceptance of automation, in terms of either computerization or computer aiding, is heavily influenced by their perceptions of the impact of the automation on their discretion in performing their jobs. It is suggested that desired levels of discretion reflect needs to feel in control and achieve self-satisfaction in task performance, as well as perceptions of inadequacies of computer technology. Discussion of these factors leads to a structured set of considerations for performing front-end analysis, deciding what to automate, and implementing the resulting changes.
Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 2.0
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Johnson, William C.; Swenson, Harry N.; Robinson, John E.; Prevot, Tom; Callantine, Todd J.; Scardina, John; Greene, Michael
2013-01-01
This document is an update to the operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) integrates three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to the Final Approach Fix. These arrival streams are Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and their implantation into an operational environment. The ATD-1 goals include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.
NASA Technical Reports Server (NTRS)
1981-01-01
This report summarizes the Wing Planform Study Task and Final Configuration Selection of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology (except for ACT), takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail sizes), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3590 km) (1938 nmi), this amounts to 10% block fuel reduction. Good takeoff performance at high-altitude airports on a hot day was also achieved. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation and begin the required control system development and testing.
NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.
2012-01-01
This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.
NASA Astrophysics Data System (ADS)
Sugiyarto, K. H.; Ikhsan, J.; Lukman, I. R.
2018-05-01
The use of information and communication technology (ICT) in learning process resulted in positive impact to students’ output. This research investigated the difference of improvement of students’ creativity and cognitive achievement due to the use of android-based games on Chemistry Nomenclature in learning method of team-assisted individualization (TAI) into the improvement of students’ creativity and cognitive achievement. This was an quasi experiment research with non-equivalent pretest-posttest control group design involving 2 groups of students of X grade of a senior high school in Yogyakarta, Indonesia, SMAN 1 Seyegan, Sleman. The groups were experiment and control which were chosen randomly, involving 32 students in each group. The difference of learning model in the two groups were the use of android-based games within learning model of TAI in the experiment group, but it was only the use of TAI model in control group. The android-based games were developed and validated previously in this investigation, and were excellent in quality for the use in Chemistry learning process, and were reported separately. The data of both students’ creativity and cognitive achievement were measured before and after learning process. Data of students’ creativity were collected with the instruments of questionnaire and observation sheets, and the data of cognitive achievement were collected with a set of test. Statistical analysis of MANOVA was used to analyze data to measure the difference of the improvement of students’ creativity and cognitive achievement between experiment and control groups. The results showed that the improvement of creativity and cognitive achievement of students in the experiment group was higher significantly than that in control group.
Dopant-controlled single-electron pumping through a metallic island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenz, Tobias, E-mail: tobias.wenz@ptb.de; Hohls, Frank, E-mail: frank.hohls@ptb.de; Jehl, Xavier
We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.
Combustion oscillation: Chemical control showing mechanistic link to recirculation zone purge time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemmen, R.S.; Richards, G.A.; Yip, M.J.
1995-12-01
Active control mechanisms are being examined for lean premix combustion applications, such as gas turbine generators. Lean premix combustors are susceptible to large combustion oscillations, particularly when driven very lean to achieve low NOx. While past design work has been focussed on understanding the source of the oscillation and modifying the combustor to avoid such oscillations, commercial combustion designers have more recently considered applying new control elements. As part of the U.S. Department of Energy`s Advanced Gas Turbine Systems Program, the Morgantown Energy Technology Center is investigating various active control techniques. This paper presents results from experiments studying the effectmore » of pilot fuel modulation on combustor oscillation and pollutant emissions for a pilot stabilized dump swirl combustor, typical of gas turbine combustors. The results show that a significant level of attenuation can be achieved in the combustor pressure oscillation (50 to 90 percent) while only moderately affecting pollutant emissions. The control mechanism producing the attenuation is shown to be purely chemical in nature, rather than fluid mechanic. In addition, the frequency region over which control is obtained is shown to be related to the recirculation zone purge time. For this reason, control can be achieved at control frequencies much lower than the frequency of oscillation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... Advisory Board Scientific and Technological Achievement Awards Committee AGENCY: Environmental Protection... Scientific and Technological Achievement Awards (STAA) for 2012-2015. DATES: Nominations should be submitted... scientific and technological achievements by EPA employees. The STAA program is administered and managed by...
Kinematically redundant robot manipulators
NASA Technical Reports Server (NTRS)
Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.
1987-01-01
Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.
Integrated NO{sub x} control at New England Power, Salem Harbor Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frish, M.B.; Johnson, S.A.; Comer, J.P.
Selective non-catalytic reduction (SNCR) is a viable technology for reducing NO{sub x} emissions from coal-fired boilers, especially those older units where large capital expenditures for alternative technologies may not be justified. However, NO{sub x} reduction efficiency of the SNCR process is maximized when the proper amount of reagent is injected at the proper temperature and dispersed rapidly enough to avoid ammonia slip. Early NEP experience at Salem Harbor station indicated that NO{sub x} reductions of 60% were achievable with SNCR. However, less NO{sub x} reductions were tolerated to avoid NH{sub 3} slip and subsequent flyash contamination and visible stack plumemore » resulting from excess ammonia. Preliminary tests by PSI Environmental showed that ammonia slip could be monitored in real time using their patented SpectraScan{trademark}-NH{sub 3} instrument, and that furnace exit temperature could be continuously monitored and controlled using GasTemp{trademark} another PSI Environmental product. Based on this information, detailed tests were planned to show integrated control over the SNCR process. A goal of the project was to achieve lower NO{sub x} with less reagent! This paper describes the status of the project.« less
La conception, la modelisation et la simulation du systeme VSC-HVDC offshore
NASA Astrophysics Data System (ADS)
Benhalima, Seghir
Wind energy is recognized worldwide as a proven technology to meet the growing demands of green sustainable energy. To exploit this stochastic energy source and put together with the conventional energy sources without affecting the performance of existing electrical grids, several research projects have been achieved. In addition, at ocean level, wind energy has a great potential. It means that the production of this energy will increase in the world. The optimal extraction of this energy source needs to be connected to the grid via a voltage source converter which plays the role of interface. To minimise losses due to the transport of energy at very long distances, the technology called High Voltage Direct Current based on Voltage Source Converter (VSC-HVDC) is used. To achieve this goal, a new topology is designed with a new control algorithm based on control of power generated by the wind farm, the DC voltage regulation and the synchronization between wind farm and VSC-HVDC (based on NPC). The proposed topology and its control technique are validated using the "MATLAB/Simulink program". The results are promising, because the THD is less than 5% and the power factor is close to one.
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Roberts, R.; Peduzzi, A.; Vitti, G. E.
1976-01-01
Combustor pollution reduction technology for commercial CTOL engines was generated and this technology was demonstrated in a full-scale JT9D engine in 1976. Component rig refinement of the two best combustor concepts were tested. These concepts are the vorbix combustor, and a hybrid combustor which combines the pilot zone of the staged premix combustor and the main zone of the swirl-can combustor. Both concepts significantly reduced all pollutant emissions relative to the JT9D-7 engine combustor. However, neither concept met all program goals. The hybrid combustor met pollution goals for unburned hydrocarbons and carbon monoxide but did not achieve the oxides of nitrogen goal. This combustor had significant performance deficiencies. The Vorbix combustor met goals for unburned hydrocarbons and oxides of nitrogen but did not achieve the carbon monoxide goal. Performance of the vorbix combustor approached the engine requirements. On the basis of these results, the vorbix combustor was selected for the engine demonstration program. A control study was conducted to establish fuel control requirements imposed by the low-emission combustor concepts and to identify conceptual control system designs. Concurrent efforts were also completed on two addendums: an alternate fuels addendum and a combustion noise addendum.
Code of Federal Regulations, 2011 CFR
2011-07-01
... best practicable control technology currently available (BPT): Subpart AD—Calcium Carbonate Milk of... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.302 Effluent limitations guidelines... point source subject to this subpart and using the milk of lime process must achieve the following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. 424.43 Section 424.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Carbide Furnaces With Wet Air Pollution Control Devices Subcategory § 424.43 Effluent limitations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...
Code of Federal Regulations, 2010 CFR
2010-07-01
... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... Classification System. \\2\\ Maximum Achievable Control Technology. Table 2 is not intended to be exhaustive, but..., methods, systems, or techniques that reduce the volume of or eliminate HAP emissions through process changes, substitution of materials, or other modifications; enclose systems or processes to eliminate...
JPL space station telerobotic engineering prototype development FY 91 status/achievements
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne
1991-01-01
The topics covered are presented in view graph form and include: (1) streamlining intravehicular activity (IVA) teleoperation activities on the Space Station Freedom (SSF); (2) enhancing SSF utilization during the man-tended phase; (3) telerobotic ground remote operations (TGRO); and (4) advanced telerobotics system technology (shared control).
40 CFR 63.325 - Determination of equivalent emission control technology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... other than the specific system(s) examined; and (7) Information on the cross-media impacts (to water and..., and submit to the Administrator the following information to show that the alternative achieves...) and their ancillary equipment during each portion of the normal dry cleaning cycle; (2) Information...
40 CFR 63.325 - Determination of equivalent emission control technology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other than the specific system(s) examined; and (7) Information on the cross-media impacts (to water and..., and submit to the Administrator the following information to show that the alternative achieves...) and their ancillary equipment during each portion of the normal dry cleaning cycle; (2) Information...
40 CFR 63.325 - Determination of equivalent emission control technology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other than the specific system(s) examined; and (7) Information on the cross-media impacts (to water and..., and submit to the Administrator the following information to show that the alternative achieves...) and their ancillary equipment during each portion of the normal dry cleaning cycle; (2) Information...
40 CFR 63.325 - Determination of equivalent emission control technology.
Code of Federal Regulations, 2014 CFR
2014-07-01
... other than the specific system(s) examined; and (7) Information on the cross-media impacts (to water and..., and submit to the Administrator the following information to show that the alternative achieves...) and their ancillary equipment during each portion of the normal dry cleaning cycle; (2) Information...
This April 2004 document is a table that details the various requirements of the Paper and Other Web Coating NESHAP, broken down by category. This table covers applicability, recordkeeping, emission limits, work practice standards, and other requirements
40 CFR 63.1113 - Procedures for approval of alternative means of emission limitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Procedures for approval of alternative means of emission limitation. 63.1113 Section 63.1113 Protection of Environment ENVIRONMENTAL PROTECTION... Categories: Generic Maximum Achievable Control Technology Standards § 63.1113 Procedures for approval of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... sources subject to case-by-case determination of equivalent emission limitations. (a) Requirements for... hazardous air pollutant emissions limitations equivalent to the limitations that would apply if an emission...
Releasing Playfulness in the Adult through Creative Drama.
ERIC Educational Resources Information Center
Monaghan, Therese A.
This dissertation explores the possibilities for releasing playfulness in adults through creative drama. A playful attitude, the capacity to enjoy action for its own sake, is difficult to maintain in a technological society which demands rational control, achievement, and conformity. Creative drama can provide a way to develop playfulness in our…
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp... quality of pollutants or pollutant properties, controlled by this section, which may be discharged by a... technology economically achievable: (a) [Reserved] (b) Any manufacturing plant which frosts incandescent lamp...
Learning from adaptive neural dynamic surface control of strict-feedback systems.
Wang, Min; Wang, Cong
2015-06-01
Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.
NASA Astrophysics Data System (ADS)
Jin, Zhang; Yuling, Liu; Chenqi, Yan; Yangang, He; Baohong, Gao
2016-04-01
The replacement metal gate (RMG) defectivity performance control is very challenging in high-k metal gate (HKMG) chemical mechanical polishing (CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad, pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Natural Science Foundation for the Youth of Hebei Province (Nos. F2012202094, F2015202267), and the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology (No. 2013010).
NASA Astrophysics Data System (ADS)
Tsuji, Takao; Hara, Ryoichi; Oyama, Tsutomu; Yasuda, Keiichiro
A super distributed energy system is a future energy system in which the large part of its demand is fed by a huge number of distributed generators. At one time some nodes in the super distributed energy system behave as load, however, at other times they behave as generator - the characteristic of each node depends on the customers' decision. In such situation, it is very difficult to regulate voltage profile over the system due to the complexity of power flows. This paper proposes a novel control method of distributed generators that can achieve the autonomous decentralized voltage profile regulation by using multi-agent technology. The proposed multi-agent system employs two types of agent; a control agent and a mobile agent. Control agents generate or consume reactive power to regulate the voltage profile of neighboring nodes and mobile agents transmit the information necessary for VQ-control among the control agents. The proposed control method is tested through numerical simulations.
Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; ...
2016-03-07
The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquidmore » nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.« less
Propulsion/flight control integration technology (PROFIT) design analysis status
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.
Management of the Atmosphere Resource Recovery and Environmental Monitoring Project
NASA Technical Reports Server (NTRS)
Roman, Monsi; Perry, Jay; Howard, David
2013-01-01
The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.
TRL-6 for JWST wavefront sensing and control
NASA Astrophysics Data System (ADS)
Feinberg, Lee D.; Dean, Bruce H.; Aronstein, David L.; Bowers, Charles W.; Hayden, William; Lyon, Richard G.; Shiri, Ron; Smith, J. Scott; Acton, D. Scott; Carey, Larkin; Contos, Adam; Sabatke, Erin; Schwenker, John; Shields, Duncan; Towell, Tim; Shi, Fang; Meza, Luis
2007-09-01
NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.
Renal Sympathetic Denervation – A Review of Applications in Current Practice
Kapil, Vikas; Jain, Ajay K
2014-01-01
Resistant hypertension is associated with high morbidity and mortality despite numerous pharmacological strategies. A wealth of preclinical and clinical data have demonstrated that resistant hypertension is associated with elevated renal and central sympathetic tone. The development of interventional therapies to modulate the sympathetic nervous system potentially represents a paradigm shift in the strategy for blood pressure control in this subset of patients. Initial first-in-man and pivotal, randomised controlled trials of endovascular, radio-frequency renal sympathetic denervation have spawned numerous iterations of similar technology, as well as many novel concepts for achieving effective renal sympatholysis. This review details the current knowledge of these devices and the evidence base behind each technology. PMID:29588780
TRL-6 for JWST Wavefront Sensing and Control
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan;
2007-01-01
NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.
1998-01-01
This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.
NASA Technical Reports Server (NTRS)
1982-01-01
The Final ACT Configuration Evaluation Task of the Integrated Application of Active Controls (IAAC) technology project within the energy efficient transport program is summarized. The Final ACT Configuration, through application of Active Controls Technology (ACT) in combination with increased wing span, exhibits significant performance improvements over the conventional baseline configuration. At the design range for these configurations, 3590 km, the block fuel used is 10% less for the Final ACT Configuration, with significant reductions in fuel usage at all operational ranges. Results of this improved fuel usage and additional system and airframe costs and the complexity required to achieve it were analyzed to determine its economic effects. For a 926 km mission, the incremental return on investment is nearly 25% at 1980 fuel prices. For longer range missions or increased fuel prices, the return is greater. The technical risks encountered in the Final ACT Configuration design and the research and development effort required to reduce these risks to levels acceptable for commercial airplane design are identified.
Rinne, Paul; Mace, Michael; Nakornchai, Tagore; Zimmerman, Karl; Fayer, Susannah; Sharma, Pankaj; Liardon, Jean-Luc; Burdet, Etienne; Bentley, Paul
2016-01-01
Motor-training software on tablets or smartphones (Apps) offer a low-cost, widely-available solution to supplement arm physiotherapy after stroke. We assessed the proportions of hemiplegic stroke patients who, with their plegic hand, could meaningfully engage with mobile-gaming devices using a range of standard control-methods, as well as by using a novel wireless grip-controller, adapted for neurodisability. We screened all newly-diagnosed hemiplegic stroke patients presenting to a stroke centre over 6 months. Subjects were compared on their ability to control a tablet or smartphone cursor using: finger-swipe, tap, joystick, screen-tilt, and an adapted handgrip. Cursor control was graded as: no movement (0); less than full-range movement (1); full-range movement (2); directed movement (3). In total, we screened 345 patients, of which 87 satisfied recruitment criteria and completed testing. The commonest reason for exclusion was cognitive impairment. Using conventional controls, the proportion of patients able to direct cursor movement was 38–48%; and to move it full-range was 55–67% (controller comparison: p>0.1). By comparison, handgrip enabled directed control in 75%, and full-range movement in 93% (controller comparison: p<0.001). This difference between controllers was most apparent amongst severely-disabled subjects, with 0% achieving directed or full-range control with conventional controls, compared to 58% and 83% achieving these two levels of movement, respectively, with handgrip. In conclusion, hand, or arm, training Apps played on conventional mobile devices are likely to be accessible only to mildly-disabled stroke patients. Technological adaptations such as grip-control can enable more severely affected subjects to engage with self-training software. PMID:27706248
DeJournett, Leon; DeJournett, Jeremy
2016-11-01
Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). Artificial intelligence (AI)-based closed loop glucose controllers may have the ability to achieve control that improves on the results achieved by either PID or MPC controllers. We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This controller was tested using a mathematical model of the ICU patient's glucose-insulin system. A total of 126 000 unique 5-day simulations were carried out, resulting in 107 million glucose values for analysis. For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%. This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this AI-based controller could be used to create an artificial pancreas system for use in the ICU setting. © 2016 Diabetes Technology Society.
Assessment of brain-machine interfaces from the perspective of people with paralysis.
Blabe, Christine H; Gilja, Vikash; Chestek, Cindy A; Shenoy, Krishna V; Anderson, Kim D; Henderson, Jaimie M
2015-08-01
One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as 'likely' to be adopted as their wired equivalents. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both restoration of upper extremity function and control of external devices such as communication interfaces.
Phase-synchroniser based on gm-C all-pass filter chain with sliding mode control
NASA Astrophysics Data System (ADS)
Mitić, Darko B.; Jovanović, Goran S.; Stojčev, Mile K.; Antić, Dragan S.
2015-03-01
Phase-synchronisers have many applications in VLSI circuit designs. They are used in CMOS RF circuits including phase (de)modulators, phase recovery circuits, multiphase synthesis, etc. In this article, a phase-synchroniser based on gm-C all-pass filter chain with sliding mode control is presented. The filter chain provides good controllable delay characteristics over the full range of phase and frequency regulation, without deterioration of input signal amplitude and waveform, while the sliding mode control enables us to achieve fast and predetermined finite locking time. IHP 0.25 µm SiGe BiCMOS technology has been used in design and verification processes. The circuit operates in the frequency range from 33 MHz up to 150 MHz. Simulation results indicate that it is possible to achieve very fast synchronisation time period, which is approximately four time intervals of the input signal during normal operation, and 20 time intervals during power-on.
Form control in atmospheric pressure plasma processing of ground fused silica
NASA Astrophysics Data System (ADS)
Li, Duo; Wang, Bo; Xin, Qiang; Jin, Huiliang; Wang, Jun; Dong, Wenxia
2014-08-01
Atmospheric Pressure Plasma Processing (APPP) using inductively coupled plasma has demonstrated that it can achieve comparable removal rate on the optical surface of fused silica under the atmosphere pressure and has the advantage of inducing no sub-surface damage for its non-contact and chemical etching mechanism. APPP technology is a cost effective way, compared with traditional mechanical polishing, magnetorheological finishing and ion beam figuring. Thus, due to these advantages, this technology is being tested to fabricate large aperture optics of fused silica to help shorten the polishing time in optics fabrication chain. Now our group proposes to use inductively coupled plasma processing technology to fabricate ground surface of fused silica directly after the grinding stage. In this paper, form control method and several processing parameters are investigated to evaluate the removal efficiency and the surface quality, including the robustness of removal function, velocity control mode and tool path strategy. However, because of the high heat flux of inductively coupled plasma, the removal depth with time can be non-linear and the ground surface evolvement will be affected. The heat polishing phenomenon is founded. The value of surface roughness is reduced greatly, which is very helpful to reduce the time of follow-up mechanical polishing. Finally, conformal and deterministic polishing experiments are analyzed and discussed. The form error is less 3%, before and after the APPP, when 10μm depth of uniform removal is achieved on a 60×60mm ground fused silica. Also, a basin feature is fabricated to demonstrate the figuring capability and stability. Thus, APPP is a promising technology in processing the large aperture optics.
Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin
2012-01-01
A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.
A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities
NASA Technical Reports Server (NTRS)
Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.;
2015-01-01
We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.
High-speed reference-beam-angle control technique for holographic memory drive
NASA Astrophysics Data System (ADS)
Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi
2016-09-01
We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.
UltraSail - Ultra-Lightweight Solar Sail Concept
NASA Technical Reports Server (NTRS)
Burton, Rodney L.; Coverstone, Victoria L.; Hargens-Rysanek, Jennifer; Ertmer, Kevin M.; Botter, Thierry; Benavides, Gabriel; Woo, Byoungsam; Carroll, David L.; Gierow, Paul A.; Farmer, Greg
2005-01-01
UltraSail is a next-generation high-risk, high-payoff sail system for the launch, deployment, stabilization and control of very large (sq km class) solar sails enabling high payload mass fractions for high (Delta)V. Ultrasail is an innovative, non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation-flying micro-satellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 sq km, sail subsystem area densities approaching 1 g/sq m, and thrust levels many times those of ion thrusters used for comparable deep space missions. Ultrasail can achieve outer planetary rendezvous, a deep space capability now reserved for high-mass nuclear and chemical systems. One of the primary innovations is the near-elimination of sail supporting structures by attaching each blade tip to a formation-flying micro-satellite which deploys the sail, and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These tip micro-satellites are controlled by 3-axis micro-thruster propulsion and an on-board metrology system. It is shown that an optimum spin rate exists which maximizes payload mass.
Microfluidic proportional flow controller
Prentice-Mott, Harrison; Toner, Mehmet; Irimia, Daniel
2011-01-01
Precise flow control in microfluidic chips is important for many biochemical assays and experiments at microscale. While several technologies for controlling fluid flow have been implemented either on- or off-chip, these can provide either high-speed or high-precision control, but seldom could accomplish both at the same time. Here we describe a new on-chip, pneumatically activated flow controller that allows for fast and precise control of the flow rate through a microfluidic channel. Experimental results show that the new proportional flow controllers exhibited a response time of approximately 250 ms, while our numerical simulations suggest that faster actuation down to approximately 50 ms could be achieved with alternative actuation schemes. PMID:21874096
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.; Hund, F.
1986-12-01
The document presents the technical rationale for best conventional technology (BCI) effluent limitations guidelines for the pharmaceutical manufacturing point-source category as required by the Clean Water Act of 1977 (P.L. 95-217, the Act). The document describes the technologies considered as the bases for BCT limitations. Section II of this document summarizes the rulemaking process. Sections III through V describe the technical data and engineering analyses used to develop the regulatory technology options. The costs and removals associated with each technology option for each plant and the application of the BCT cost test methodology are presented in Section VI. BCI limitationsmore » bases on the best conventional pollutant control technology are to be achieved by existing direct-discharging facilities.« less
The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)
NASA Technical Reports Server (NTRS)
Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.
2009-01-01
Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies.
Sánchez-Prieto, J; Sabatel, F; Villarrubia Mendez, G; Divisón, J A; Garcia-Donaire, J A; Rodríguez-Padial, L
Arterial hypertension is a highly important cardiovascular risk factor, with low control percentages. New technologies can help to obtain a better control of this disease. The intention is to know if a mobile application can help achieve this goal. A mobile phone application is used to give feedback to physicians with the aim of generate competitiveness in achieving objectives. The application could, at any time, determine the rate of controlled patients (<140/90mmHg) by each physician, and compare them with the mean number of the patients controlled by the group. The possible changes in the therapeutic attitude of physicians are also analysed and the differences in achieving objectives are compared based on specific characteristics of patients. The study included 220 patients aged 18-80 years, with mean blood pressure>140/90mmHg, despite medical treatment, tracked for 4 visits. At the end of the follow-up, 69.03% achieved good control, compared to 12.8% in the baseline study (P<.001), with no differences between gender (control of 68.6 and 69.29% of women and men, respectively), nor among the different levels of cardiovascular risk. The use of interactive tools that allow the dynamic process of feedback on the results fosters the motivation and improves the therapeutic inertia in the control of blood pressure. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
Internet of Things technology-based management methods for environmental specimen banks.
Peng, Lihong; Wang, Qian; Yu, Ang
2015-02-01
The establishment and management of environmental specimen banks (ESBs) has long been a problem worldwide. The complexity of specimen environment has made the management of ESB likewise complex. Through an analysis of the development and management of ESBs worldwide and in light of the sophisticated Internet of Things (IOT) technology, this paper presents IOT technology-based ESB management methods. An IOT technology-based ESB management system can significantly facilitate ESB ingress and egress management as well as long-term storage management under quality control. This paper elaborates on the design of IOT technology-based modules, which can be used in ESB management to achieve standardized, smart, information-based ESB management. ESB management has far-reaching implications for environmental management and for research in environmental science.
Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.
2012-01-01
NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.
Human Exploration and Avionic Technology Challenges
NASA Technical Reports Server (NTRS)
Benjamin, Andrew L.
2005-01-01
For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.
NOx Control for Utility Boiler OTR Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid Farzan
Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner ismore » designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.« less
Mastinu, Enzo; Doguet, Pascal; Botquin, Yohan; Hakansson, Bo; Ortiz-Catalan, Max
2017-08-01
Despite the technological progress in robotics achieved in the last decades, prosthetic limbs still lack functionality, reliability, and comfort. Recently, an implanted neuromusculoskeletal interface built upon osseointegration was developed and tested in humans, namely the Osseointegrated Human-Machine Gateway. Here, we present an embedded system to exploit the advantages of this technology. Our artificial limb controller allows for bioelectric signals acquisition, processing, decoding of motor intent, prosthetic control, and sensory feedback. It includes a neurostimulator to provide direct neural feedback based on sensory information. The system was validated using real-time tasks characterization, power consumption evaluation, and myoelectric pattern recognition performance. Functionality was proven in a first pilot patient from whom results of daily usage were obtained. The system was designed to be reliably used in activities of daily living, as well as a research platform to monitor prosthesis usage and training, machine-learning-based control algorithms, and neural stimulation paradigms.
Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology
NASA Astrophysics Data System (ADS)
Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian
In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.
The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
CSPMS supported by information technology
NASA Astrophysics Data System (ADS)
Zhang, Hudan; Wu, Heng
This paper will propose a whole new viewpoint about building a CSPMS(Coal-mine Safety Production Management System) by means of information technology. This system whose core part is a four-grade automatic triggered warning system achieves the goal that information transmission will be smooth, nondestructive and in time. At the same time, the system provides a comprehensive and collective technology platform for various Public Management Organizations and coal-mine production units to deal with safety management, advance warning, unexpected incidents, preplan implementation, and resource deployment at different levels. The database of this system will support national related industry's resource control, plan, statistics, tax and the construction of laws and regulations effectively.
Research and Development Trend of Shape Control for Cold Rolling Strip
NASA Astrophysics Data System (ADS)
Wang, Dong-Cheng; Liu, Hong-Min; Liu, Jun
2017-09-01
Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape control system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll optimization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully industrial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general, the four expected development trends of shape control for cold rolling strip in the future are intelligentization, coordination, refinement, and standardization. The proposed research provides new breakthrough directions for improving shape quality.
Radiosurgery of Glomus Jugulare Tumors: A Meta-Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guss, Zachary D.; Batra, Sachin; Limb, Charles J.
2011-11-15
Purpose: During the past two decades, radiosurgery has arisen as a promising approach to the management of glomus jugulare. In the present study, we report on a systematic review and meta-analysis of the available published data on the radiosurgical management of glomus jugulare tumors. Methods and Materials: To identify eligible studies, systematic searches of all glomus jugulare tumors treated with radiosurgery were conducted in major scientific publication databases. The data search yielded 19 studies, which were included in the meta-analysis. The data from 335 glomus jugulare patients were extracted. The fixed effects pooled proportions were calculated from the data whenmore » Cochrane's statistic was statistically insignificant and the inconsistency among studies was <25%. Bias was assessed using the Egger funnel plot test. Results: Across all studies, 97% of patients achieved tumor control, and 95% of patients achieved clinical control. Eight studies reported a mean or median follow-up time of >36 months. In these studies, 95% of patients achieved clinical control and 96% achieved tumor control. The gamma knife, linear accelerator, and CyberKnife technologies all exhibited high rates of tumor and clinical control. Conclusions: The present study reports the results of a meta-analysis for the radiosurgical management of glomus jugulare. Because of its high effectiveness, we suggest considering radiosurgery for the primary management of glomus jugulare tumors.« less
Beltrán Ortega, Julio; Martínez Gila, Diego M; Aguilera Puerto, Daniel; Gámez García, Javier; Gómez Ortega, Juan
2016-11-01
The quality of virgin olive oil is related to the agronomic conditions of the olive fruits and the process variables of the production process. Nowadays, food markets demand better products in terms of safety, health and organoleptic properties with competitive prices. Innovative techniques for process control, inspection and classification have been developed in order to to achieve these requirements. This paper presents a review of the most significant sensing technologies which are increasingly used in the olive oil industry to supervise and control the virgin olive oil production process. Throughout the present work, the main research studies in the literature that employ non-invasive technologies such as infrared spectroscopy, computer vision, machine olfaction technology, electronic tongues and dielectric spectroscopy are analysed and their main results and conclusions are presented. These technologies are used on olive fruit, olive slurry and olive oil to determine parameters such as acidity, peroxide indexes, ripening indexes, organoleptic properties and minor components, among others. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.
Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana
2016-06-01
Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.
Non-Toxic Reaction Control System for the Reusable First Stage Vehicle
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1999-01-01
This paper presents the Boeing Reusable Space Systems vision of a Reaction Control System (RCS) for the Reusable First Stage (RFS) being considered as a replacement for the Solid Rocket Booster for the Space Shuttle. The requirement is to achieve reliable vehicle control during the upper atmospheric portion of the RFS trajectory while enabling more efficient ground operations, unhindered by constraints caused by operating with highly toxic RCS propellants. Boeing's objective for this effort is to develop a safer, more efficient and environmentally friendly RCS design approach that is suitable for the RFS concept of operations, including a low cost, efficient turnaround cycle. The Boeing RCS concept utilizes ethanol and liquid oxygen in place of the highly toxic, suspected carcinogen, ozone-depleting mono-methyl-hydrazine and highly toxic nitrogen tetroxide. The Space Shuttle Upgrade program, under the leadership of the NASA Johnson Space Flight Center, is currently developing liquid oxygen and ethanol (ethyl alcohol) technology for use as non-toxic orbital maneuvering system (OMS) and RCS. The development of this liquid oxygen and ethanol technology for the Space Shuttle offers a significant leverage to select much of the same technology for the RFS program. There are significant design and development issues involved with bringing this liquid oxygen and ethanol technology to a state of maturity suitable for an operational RCS. The risks associated with a new LOX and Ethanol RCS are mitigated by maintaining kerosene and hydrogen peroxide RCS technology as an alternative. These issues, presented within this paper, include managing the oxygen supply and achieving reliable ignition in the short pulse mode of engine operation. Performance, reliability and operations requirements are presented along with a specific RCS design concept to satisfying these requirements. The work reported in this paper was performed under NASA Marshall Space Flight Center Contract Number NAS8-97272 to define Reusable First Stage design concepts for the Space Shuttle.
Non-Toxic Reaction Control System for the Reusable First Stage Vehicle
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1999-01-01
This paper presents the Boeing Reusable Space Systems vision of a Reaction Control System (RCS) for the Reusable First Stage (RFS) being considered as a replacement for the Solid Rocket Booster for the Space Shuttle. The requirement is to,achieve reliable vehicle control during the upper atmospheric portion of the RFS trajectory while enabling more efficient ground operations, unhindered by constraints caused by operating with highly toxic RCS propellants. Boeing's objective for this effort is to develop a safer, more efficient and environmentally friendly RCS design approach that is suitable for the RFS concept of operations, including a low cost, efficient turnaround cycle. The Boeing RCS concept utilizes ethanol and liquid oxygen in place of the highly toxic, suspected carcinogen, ozone- depleting mono-methyl-hydrazine and highly toxic nitrogen tetroxide. The Space Shuttle Upgrade program, under the leadership of the NASA Johnson Space Flight Center, is currently developing liquid oxygen and ethanol (ethyl alcohol) technology for use as non-toxic orbital maneuvering system (OMS) and RCS. The development of this liquid oxygen and ethanol technology for the Space Shuffle offers a significant leverage to select much of the same technology for the RFS program. There are significant design and development issues involved with bringing this liquid oxygen and ethanol technology to a state of maturity suitable for an operational RCS, The risks associated with a new LOX and Ethanol RCS are mitigated by maintaining kerosene and hydrogen peroxide RCS technology as an alternative. These issues, presented within this paper, include managing the oxygen supply and achieving reliable ignition in the short pulse mode of engine operation. Performance, reliability and operations requirements are presented along with a specific RCS design concept to satisfying these requirements. The work reported in this paper was performed under NASA Marshall Space Flight Center Contract to define Reusable First Stage design concepts for the Space Shuttle.
Novel Active Combustion Control Valve
NASA Technical Reports Server (NTRS)
Caspermeyer, Matt
2014-01-01
This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... determinations for alternative operating scenarios. Approval of such determinations satisfies the requirements of section 112(g) of each such scenario. (4) Regardless of the review process, the MACT emission limitation... determined by the permitting authority. (2) Based upon available information, as defined in this subpart, the...
40 CFR 63.1100 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...(h). a Maximum achievable control technology. b Fiber spinning lines using spinning solution or suspension containing acrylonitrile. c Heat exchange systems as defined in § 63.1103(e)(2). d Fiber spinning... Modacrylic Fibers Production Yes Yes No Yes Yes Yes b § 63.1103(b) Carbon Black Production No Yes No No No No...
40 CFR 63.1100 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...(h). a Maximum achievable control technology. b Fiber spinning lines using spinning solution or suspension containing acrylonitrile. c Heat exchange systems as defined in § 63.1103(e)(2). d Fiber spinning... Modacrylic Fibers Production Yes Yes No Yes Yes Yes b § 63.1103(b) Carbon Black Production No Yes No No No No...
Code of Federal Regulations, 2011 CFR
2011-07-01
....018 Fecal Coliform (2) (3) O&G 4 0.012 0.006 TSS 0.044 0.022 1 Pounds per 1000 lbs (or g/kg) of... million pounds per year of finished products must achieve the limitations for BOD5, fecal coliform, O&G...
Code of Federal Regulations, 2011 CFR
2011-07-01
....31 Fecal Coliform (2) (3) O&G 4 0.22 0.11 TSS 0.74 0.37 1 Pounds per 1000 lbs (or g/kg) of finished... million pounds per year of finished products must achieve the limitations for BOD5, fecal coliform, O&G...
Code of Federal Regulations, 2011 CFR
2011-07-01
....37 Fecal Coliform (2) (3) O&G 4 0.26 0.13 TSS 0.90 0.45 1 Pounds per 1000 lbs (or g/kg) of finished... million pounds per year of finished products must achieve the limitations for BOD5, fecal coliform, O&G...
Code of Federal Regulations, 2010 CFR
2010-07-01
....31 Fecal Coliform (2) (3) O&G 4 0.22 0.11 TSS 0.74 0.37 1 Pounds per 1000 lbs (or g/kg) of finished... million pounds per year of finished products must achieve the limitations for BOD5, fecal coliform, O&G...
NASA Astrophysics Data System (ADS)
Pan, Min; Plummer, Andrew
2018-06-01
This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.
Learn about the NESHAP for GMACT for acetal resins, hydrogen fluoride, polycarbonate, ethylene production and cyanide chemicals. Find the rule history information, federal register citations, legal authority, rule summary, and additional resources
Smart Houses and Uncomfortable Homes.
Alm, Norman; Arnott, John
2015-01-01
In order for smart houses to achieve acceptance from potential beneficiaries they will need to match the users' expectation that their house is also their home, with the sense of privacy and control that this implies. Designers of this technology will need to be aware of findings in this regard from fields such as architecture and design ethnography.
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
ERIC Educational Resources Information Center
Center for Research and Reform in Education, 2012
2012-01-01
This review summarizes research on the effects of technology use on mathematics achievement in K-12 classrooms. The main research questions included: (1) Do education technology applications improve mathematics achievement in K-12 classrooms as compared to traditional teaching methods without education technology?; and (2) What study and research…
NASA Astrophysics Data System (ADS)
Eardley, Julie Anne
The purpose of this study was to determine the effect of different instructional media (computer assisted instruction (CAI) tutorial vs. traditional textbook) on student attitudes toward science and computers and achievement scores in a team-taught integrated science course, ENS 1001, "The Whole Earth Course," which was offered at Florida Institute of Technology during the Fall 2000 term. The effect of gender on student attitudes toward science and computers and achievement scores was also investigated. This study employed a randomized pretest-posttest control group experimental research design with a sample of 30 students (12 males and 18 females). Students had registered for weekly lab sessions that accompanied the course and had been randomly assigned to the treatment or control group. The treatment group used a CAI tutorial for completing homework assignments and the control group used the required textbook for completing homework assignments. The Attitude toward Science and Computers Questionnaire and Achievement Test were the two instruments administered during this study to measure students' attitudes and achievement score changes. A multivariate analysis of covariance (MANCOVA), using hierarchical multiple regression/correlation (MRC), was employed to determine: (1) treatment versus control group attitude and achievement differences; and (2) male versus female attitude and achievement differences. The differences between the treatment group's and control group's homework averages were determined by t test analyses. The overall MANCOVA model was found to be significant at p < .05. Examining research factor set independent variables separately resulted in gender being the only variable that significantly contributed in explaining the variability in a dependent variable, attitudes toward science and computers. T test analyses of the homework averages showed no significant differences. Contradictory to the findings of this study, anecdotal information from personal communication, course evaluations, and homework assignments indicated favorable attitudes and higher achievement scores for a majority of the students in the treatment group.
The future for weed control and technology.
Shaner, Dale L; Beckie, Hugh J
2014-09-01
This review is both a retrospective (what have we missed?) and prospective (where are we going?) examination of weed control and technology, particularly as it applies to herbicide-resistant weed management (RWM). Major obstacles to RWM are discussed, including lack of diversity in weed management, unwillingness of many weed researchers to conduct real integrated weed management research or growers to accept recommendations, influence or role of agrichemical marketing and governmental policy and lack of multidisciplinary research. We then look ahead to new technologies that are needed for future weed control in general and RWM in particular, in areas such as non-chemical and chemical weed management, novel herbicides, site-specific weed management, drones for monitoring large areas, wider application of 'omics' and simulation model development. Finally, we discuss implementation strategies for integrated weed management to achieve RWM, development of RWM for developing countries, a new classification of herbicides based on mode of metabolism to facilitate greater stewardship and greater global exchange of information to focus efforts on areas that maximize progress in weed control and RWM. There is little doubt that new or emerging technologies will provide novel tools for RMW in the future, but will they arrive in time? © 2013 Her Majesty the Queen in Right of Canada Pest Management Science © 2013 Society of Chemical Industry.
Digital microfluidics – a new paradigm for radiochemistry
Keng, Pei Yuin; van Dam, R. Michael
2016-01-01
The emerging technology of digital microfluidics is opening up the possibility to perform radiochemistry at the microliter scale to produce tracers for positron emission tomography (PET) labeled with fluorine-18 or other isotopes. Working at this volume scale not only reduces reagent costs, but also improves specific activity (SA) by reduction of contamination by the stable isotope. This technology could provide a practical means to routinely prepare high SA tracers for applications such as neuroimaging, and could make it possible to routinely achieve high SA using synthesis strategies such as isotopic exchange. Reagent droplets are controlled electronically, providing high reliability, a compact control system, and flexibility for diverse syntheses with a single chip design. The compact size may enable the development of a self-shielded synthesizer that does not require a hot cell. This article reviews the progress of this technology and its application to the synthesis of PET tracers. PMID:26650206
Wafer-level vacuum/hermetic packaging technologies for MEMS
NASA Astrophysics Data System (ADS)
Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil
2010-02-01
An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.
The role of new technologies in treating children and adolescents with type 1 diabetes mellitus.
Shalitin, S; Phillip, M
2007-10-01
Given the physiological and psychological impact of type 1 diabetes in children and adolescents, these patients present special challenges to pediatric health care providers. The goals of intensive management of diabetes have been clearly established since the publication of the Diabetes Control and Complication Trial (DCCT) in 1993, which demonstrated that tight metabolic control achieved with intensive insulin therapy is superior to conventional treatment in reducing the risk of long-term microvascular complications. Thus, current recommendations mandate that youth with type 1 diabetes should aim to achieve metabolic control as close to normal as possible. However, strict glycemic control is hard to achieve requiring frequent blood glucose measurements and several insulin injections per day, and in addition is associated with an increased risk of severe hypoglycemia. Recurrent episodes of hypoglycemia, especially at young ages, may cause adverse effects on neurocognitive function, may lead to hypoglycemia unawareness, and may be associated with significant emotional morbidity for the child and parents. Since the discovery of insulin in 1921 there has been constant progress in the way patients with type 1 diabetes are treated. The introduction of recombinant insulin and insulin analogs as well as new insulin delivery systems and glucose monitoring devices enhanced the ability of both patients and medical teams to better define the therapeutic goals and to develop more effective therapeutic strategies. Recent advances in devices for insulin administration and glucose monitoring and the introduction of telemedicine are having a profound effect on the lives of youth with type 1 diabetes. This review focuses on the new technologies which have been developed for treating children and adolescents with type 1 diabetes.
Achievements in optical data storage and retrieval
NASA Technical Reports Server (NTRS)
Nelson, R. H.; Shuman, C. A.
1977-01-01
The present paper deals with the current achievements in two technology efforts, one of which is a wideband holographic recorder which uses multichannel recording of data in the form of holograms on roll film for storage and retrieval of large unit records at hundreds of megabit per second. The second effort involves a system (termed DIGIMEN) which uses binary spot recording on photographic film in the form of microfiche to provide a mass storage capability with automatic computer-controlled random access to stored records. Some potential design improvements are noted.
2008-05-09
using better technology as a means might be an effective strategy to achieve desired effects and to reduce risk. Tim Berners - Lee , founder of the World...of information disclosure persecution. Tim Berners - Lee advises, “human communication scales up only if we can be tolerant of the differences while we...the government to define intended use Figure 1: Slide by Tim Berners - Lee at http://www.w3.org/2000/Talks/1206-xml2k- tbl.27 The Author added the
A review of technology-based interventions to maintain weight loss.
Lee, Sohye; Lindquist, Ruth
2015-03-01
For many decades, healthcare providers and researchers have developed weight-loss interventions to help people achieve weight loss. Unfortunately, it is typical for people to lose weight quickly during the intervention period but then slowly regain weight until they return to their approximate baseline. Technology-based maintenance interventions are among the newest approaches to long-term weight loss. Several advantages make technology helpful for maintaining weight loss. The purpose of this article was to review and critique the randomized controlled trials of technology-based weight-loss maintenance interventions (WLMIs) for adults. A systematic search through electronic databases and a manual citation search were conducted. Limited numbers of controlled trials published since 2000 that included randomization, and technology-based WLMIs were identified. The characteristics of the eight studies were diverse. The average score of study design quality was moderate. The results of the effectiveness of technology-based WLMIs were mixed. Technology-based WLMIs are more likely to be effective than usual care but not more effective than personal contact. Based on the review, guidelines were established for the selection and potential success of technology-based WLMIs. The effectiveness of technology-based maintenance interventions for weight loss varied, and potential strategies and approaches are discussed to improve their effectiveness. Further studies are needed to better evaluate and refine the efficacy of technology-based WLMIs.
NASA Astrophysics Data System (ADS)
Golter, David; Oo, Thein; Amezcua, Maira; Wang, Hailin
Micro-electromechanical systems research is producing increasingly sophisticated tools for nanophononic applications. Such technology is well-suited for achieving chip-based, integrated acoustic control of solid-state quantum systems. We demonstrate such acoustic control in an important solid-state qubit, the diamond nitrogen-vacancy (NV) center. Using an interdigitated transducer to generate a surface acoustic wave (SAW) field in a bulk diamond, we observe phonon-assisted sidebands in the optical excitation spectrum of a single NV center. This exploits the strong strain sensitivity of the NV excited states. The mechanical frequencies far exceed the relevant optical linewidths, reaching the resolved-sideband regime. This enables us to use the SAW field for driving Rabi oscillations on the phonon-assisted optical transition. These results stimulate the further integration of SAW-based technologies with the NV center system.
The all electric airplane-benefits and challenges
NASA Technical Reports Server (NTRS)
Spitzer, C. R.; Hood, R. V.
1982-01-01
The all electric aircraft considered in the present investigation is an aircraft which has digital flight crucial controls, electromechanical actuators, and electrical secondary power. There are no hydraulic or pneumatic systems. The characteristics of an all electric aircraft are related to reduced acquisition cost, reduced weight, reduced fuel consumption, increased reliability, reduced support equipment, simpler maintenance, an expanded flight envelope, and improved survivability. An additional benefit is the dramatically increased design flexibility and mission adaptability. However, the implementation of the all electric aircraft concept requires the resolution of a number of major technology issues. Issues in the digital flight controls area are related to achieving the required levels of safety and reliability in a cost effective manner. Other challenges which have to be met are concerned with electromechanical actuators, environmental control and ice protection systems, and engine technology.
Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; ...
2015-05-27
We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype,more » we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.« less
Programmable chemical controllers made from DNA.
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Programmable chemical controllers made from DNA
NASA Astrophysics Data System (ADS)
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Programmable chemical controllers made from DNA
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2014-01-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language', and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents. PMID:24077029
NASA Technical Reports Server (NTRS)
Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.
1987-01-01
Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).
Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle
NASA Astrophysics Data System (ADS)
Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.
2017-12-01
Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.
An embedded laser marking controller based on ARM and FPGA processors.
Dongyun, Wang; Xinpiao, Ye
2014-01-01
Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking.
MEMS device for spacecraft thermal control applications
NASA Technical Reports Server (NTRS)
Swanson, Theordore D. (Inventor)
2003-01-01
A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.
Prototype microprocessor controller. [for STDN antennas
NASA Technical Reports Server (NTRS)
Zarur, J.; Kraeuter, R.
1980-01-01
A microcomputer controller for STDN antennas was developed. The microcomputer technology reduces the system's physical size by the implementation in firmware of functions. The reduction in the number of components increases system reliability and similar benefit is derived when a graphic video display is substituted for several control and indicator panels. A substantial reduction in the number of cables, connectors, and mechanical switches is achieved. The microcomputer based system is programmed to perform calibration and diagnostics, to update the satellite orbital vector, and to communicate with other network systems. The design is applicable to antennas and lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallstrom, Jason O.; Ni, Zheng Richard
This STTR Phase I project assessed the feasibility of a new CO 2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO 2 concentrations, as well as themore » electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO 2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO 2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO 2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States.« less
Development of Diesel Exhaust Aftertreatment System for Tier II Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.
2002-06-01
Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringentmore » emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)« less
The Cyber War: Maintaining and Controlling the Key Cyber Terrain of the Cyberspace Domain
2016-06-26
solution strategy to assess options that will enable the commander to realize the Air Force’s cyber mission. Recommendations will be made that will...will present a solution to assist the JFC in achieving cyberspace dominance. Background In the modern world of advanced technology, control of...the solutions are: 1) timely identification of key cyber terrain, 2) accurate mapping of the cyber terrain, 3) defense of key cyber terrain, and 4
Beyond the Illusion of Symmetry: How to Think about Arms Control
1988-05-01
Proliferation Treaty of 1970, the ABM Treaty of 1972 and the SALT I Interim Offensive Agreement of 1972. (48:206) It is significant to point out as Joe...34destabilizing" aspects of the ABM system. (76:222) These are the fundamental principles of the next phase of arms control. The SALT Negotiations As...Emerging Soviet capabilities plus ABM and MIRV technologies seriously threatened strategic stability. As the Soviet jnion achieved strategic parity with
A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity.
Reverte-Ors, Juan D; Pedreño-Molina, Juan L; Fernández, Pablo S; Lozano-Guerrero, Antonio J; Periago, Paula M; Díaz-Morcillo, Alejandro
2017-06-07
In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs) for different food samples (laboratory medium, soup, or fish-based animal by-products). The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures.
A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity
Reverte-Ors, Juan D.; Pedreño-Molina, Juan L.; Fernández, Pablo S.; Lozano-Guerrero, Antonio J.; Periago, Paula M.; Díaz-Morcillo, Alejandro
2017-01-01
In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs) for different food samples (laboratory medium, soup, or fish-based animal by-products). The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures. PMID:28590423
Statistical process management: An essential element of quality improvement
NASA Astrophysics Data System (ADS)
Buckner, M. R.
Successful quality improvement requires a balanced program involving the three elements that control quality: organization, people and technology. The focus of the SPC/SPM User's Group is to advance the technology component of Total Quality by networking within the Group and by providing an outreach within Westinghouse to foster the appropriate use of statistic techniques to achieve Total Quality. SPM encompasses the disciplines by which a process is measured against its intrinsic design capability, in the face of measurement noise and other obscuring variability. SPM tools facilitate decisions about the process that generated the data. SPM deals typically with manufacturing processes, but with some flexibility of definition and technique it accommodates many administrative processes as well. The techniques of SPM are those of Statistical Process Control, Statistical Quality Control, Measurement Control, and Experimental Design. In addition, techniques such as job and task analysis, and concurrent engineering are important elements of systematic planning and analysis that are needed early in the design process to ensure success. The SPC/SPM User's Group is endeavoring to achieve its objectives by sharing successes that have occurred within the member's own Westinghouse department as well as within other US and foreign industry. In addition, failures are reviewed to establish lessons learned in order to improve future applications. In broader terms, the Group is interested in making SPM the accepted way of doing business within Westinghouse.
NASA Astrophysics Data System (ADS)
Picard, Francis; Ilias, Samir; Asselin, Daniel; Boucher, Marc-André; Duchesne, François; Jacob, Michel; Larouche, Carl; Vachon, Carl; Niall, Keith K.; Jerominek, Hubert
2011-02-01
A MEMS based technology for projection display is reviewed. This technology relies on mechanically flexible and reflective microbridges made of aluminum alloy. A linear array of such micromirrors is combined with illumination and Schlieren optics to produce a pixels line. Each microbridge in the array is individually controlled using electrostatic actuation to adjust the pixels intensities. Results of the simulation, fabrication and characterization of these microdevices are presented. Activation voltages below 250 V with response times below 10 μs were obtained for 25 μm × 25 μm micromirrors. With appropriate actuation voltage waveforms, response times of 5 μs and less are achievable. A damage threshold of the mirrors above 8 kW/cm2 has been evaluated. Development of the technology has produced projector engines demonstrating this light modulation principle. The most recent of these engines is DVI compatible and displays VGA video streams at 60 Hz. Recently applications have emerged that impose more stringent requirements on the dimensions of the MEMS array and associated optical system. This triggered a scale down study to evaluate the minimum micromirror size achievable, the impact of this reduced size on the damage threshold and the achievable minimum size of the associated optical system. Preliminary results of this scale down study are reported. FRAM with active surface as small as 5 μm × 5 μm have been investigated. Simulations have shown that such micromirrors could be activated with 107 V to achieve f-number of 1.25. The damage threshold has been estimated for various FRAM sizes. Finally, design of a conceptual miniaturized projector based on 1000×1 array of 5 μm × 5 μm micromirrors is presented. The volume of this projector concept is about 12 cm3.
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
Technology Advancement of the Visible Nulling Coronagraph
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve
2010-01-01
The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.
Auto identification technology and its impact on patient safety in the Operating Room of the Future.
Egan, Marie T; Sandberg, Warren S
2007-03-01
Automatic identification technologies, such as bar coding and radio frequency identification, are ubiquitous in everyday life but virtually nonexistent in the operating room. User expectations, based on everyday experience with automatic identification technologies, have generated much anticipation that these systems will improve readiness, workflow, and safety in the operating room, with minimal training requirements. We report, in narrative form, a multi-year experience with various automatic identification technologies in the Operating Room of the Future Project at Massachusetts General Hospital. In each case, the additional human labor required to make these ;labor-saving' technologies function in the medical environment has proved to be their undoing. We conclude that while automatic identification technologies show promise, significant barriers to realizing their potential still exist. Nevertheless, overcoming these obstacles is necessary if the vision of an operating room of the future in which all processes are monitored, controlled, and optimized is to be achieved.
Vibration isolation technology: An executive summary of systems development and demonstration
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Vibration isolation technology - An executive summary of systems development and demonstration
NASA Astrophysics Data System (ADS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Code of Federal Regulations, 2012 CFR
2012-07-01
... best available technology economically achievable (BAT). 449.10 Section 449.10 Protection of... available technology economically achievable (BAT). Except as provided in 40 CFR 125.30 through 125.32, any... following requirements representing the degree of effluent reduction attainable by the application of BAT...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable (BAT). 437.13 Section 437.13 Protection... attainable by the application of the best available technology economically achievable (BAT). (a) Except as... must achieve the following effluent limitations representing the application of BAT: Limitations for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application of best available technology economically achievable (BAT). 439.44 Section 439.44 Protection of... limitations attainable by the application of best available technology economically achievable (BAT). Except... achieve the following effluent limitations representing the application of BAT: The limitations for COD...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application of the best available technology economically achievable (BAT). 432.93 Section 432.93 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... must achieve the following effluent limitations representing the application of BAT: (a) Facilities...
Code of Federal Regulations, 2014 CFR
2014-07-01
... best available technology economically achievable (BAT). 449.10 Section 449.10 Protection of... available technology economically achievable (BAT). Except as provided in 40 CFR 125.30 through 125.32, any... following requirements representing the degree of effluent reduction attainable by the application of BAT...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best available technology economically achievable (BAT). 437.33 Section 437.33 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... this subpart must achieve limitations representing the application of BAT: Limitations for copper, zinc...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best available technology economically achievable (BAT). 437.13 Section 437.13 Protection... attainable by the application of the best available technology economically achievable (BAT). (a) Except as... must achieve the following effluent limitations representing the application of BAT: Limitations for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application of the best available technology economically achievable (BAT). 432.93 Section 432.93 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... must achieve the following effluent limitations representing the application of BAT: (a) Facilities...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best available technology economically achievable (BAT). 444.15 Section 444.15 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... must achieve the following effluent limitations representing the application of BAT: Limitations for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application of best available technology economically achievable (BAT). 439.44 Section 439.44 Protection of... limitations attainable by the application of best available technology economically achievable (BAT). Except... achieve the following effluent limitations representing the application of BAT: The limitations for COD...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best available technology economically achievable (BAT). 437.23 Section 437.23 Protection... attainable by the application of the best available technology economically achievable (BAT). Except as... must achieve the following effluent limitations by the application of BAT: Limitations for arsenic...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable (BAT). 437.33 Section 437.33 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... this subpart must achieve limitations representing the application of BAT: Limitations for copper, zinc...
Code of Federal Regulations, 2013 CFR
2013-07-01
... best available technology economically achievable (BAT). 449.10 Section 449.10 Protection of... available technology economically achievable (BAT). Except as provided in 40 CFR 125.30 through 125.32, any... following requirements representing the degree of effluent reduction attainable by the application of BAT...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable (BAT). 444.15 Section 444.15 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... must achieve the following effluent limitations representing the application of BAT: Limitations for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application of the best available technology economically achievable (BAT). 432.93 Section 432.93 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... must achieve the following effluent limitations representing the application of BAT: (a) Facilities...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application of best available technology economically achievable (BAT). 439.44 Section 439.44 Protection of... limitations attainable by the application of best available technology economically achievable (BAT). Except... achieve the following effluent limitations representing the application of BAT: The limitations for COD...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable (BAT). 437.23 Section 437.23 Protection... attainable by the application of the best available technology economically achievable (BAT). Except as... must achieve the following effluent limitations by the application of BAT: Limitations for arsenic...
ESA Technologies for Space Debris Remediation
NASA Astrophysics Data System (ADS)
Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.
2013-08-01
Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L
2016-10-20
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (T c ), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn x Ge 1-x nanomeshes fabricated by nanosphere lithography, in which a T c above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high T c in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.
Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaba, R.L.; Petrie, T.W.
1999-03-16
The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed costmore » and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.« less
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L.
2016-01-01
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1−x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications. PMID:27762320
Microeconomics of process control in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.
2003-06-01
Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.
A Novel Network Attack Audit System based on Multi-Agent Technology
NASA Astrophysics Data System (ADS)
Jianping, Wang; Min, Chen; Xianwen, Wu
A network attack audit system which includes network attack audit Agent, host audit Agent and management control center audit Agent is proposed. And the improved multi-agent technology is carried out in the network attack audit Agent which has achieved satisfactory audit results. The audit system in terms of network attack is just in-depth, and with the function improvement of network attack audit Agent, different attack will be better analyzed and audit. In addition, the management control center Agent should manage and analyze audit results from AA (or HA) and audit data on time. And the history files of network packets and host log data should also be audit to find deeper violations that cannot be found in real time.
Integrated dry NO{sub x}/SO{sub 2} emissions control system performance summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, T.; Muzio, L.J.; Smith, R.
1997-12-31
The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System was installed at Public Service Company of Colorado`s Arapahoe 4 generating station in 1992 in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). This full-scale 100 MWe demonstration combines low-NO{sub x} burners, overfire, air, and selective non-catalytic reduction (SNCR) for NO{sub x} control and dry sorbent injection (DSI) with or without humidification for SO{sub 2} control. Operation and testing of the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System began in August 1992 and will continue through 1996. Results of the NO{sub x} controlmore » technologies show that the original system goal of 70% NO{sub x} removal has been easily met and the combustion and SNCR systems can achieve NO{sub x} removals of up to 80% at full load. Duct injection of commercial calcium hydroxide has achieved a maximum SO{sub 2} removal of nearly 40% while humidifying the flue gas to a 20 F approach to saturation. Sodium-based dry sorbent injection has provided SO{sub 2} removal of over 70% without the occurrence of a visible NO{sub 2} plume. Recent test work has improved SNCR performance at low loads and has demonstrated that combined dry sodium injection and SNCR yields both lower NO{sub 2} levels and NH{sub 3} slip than either technology alone.« less
Genome Engineering and Agriculture: Opportunities and Challenges.
Baltes, Nicholas J; Gil-Humanes, Javier; Voytas, Daniel F
2017-01-01
In recent years, plant biotechnology has witnessed unprecedented technological change. Advances in high-throughput sequencing technologies have provided insight into the location and structure of functional elements within plant DNA. At the same time, improvements in genome engineering tools have enabled unprecedented control over genetic material. These technologies, combined with a growing understanding of plant systems biology, will irrevocably alter the way we create new crop varieties. As the first wave of genome-edited products emerge, we are just getting a glimpse of the immense opportunities the technology provides. We are also seeing its challenges and limitations. It is clear that genome editing will play an increased role in crop improvement and will help us to achieve food security in the coming decades; however, certain challenges and limitations must be overcome to realize the technology's full potential. © 2017 Elsevier Inc. All rights reserved.
Investigation on the electromagnetic centring technique in compressor with labyrinth seal structure
NASA Astrophysics Data System (ADS)
Zhang, W.; Feng, C.; Cheng, J.; Feng, Q.; Wu, W.
2017-08-01
At present, the piston of compressors with labyrinth seal structure generally runs eccentrically, which causes uneven radial clearance, serious leakages and lower volumetric efficiency. This has become an urgent problem in the development of labyrinth compressors. In this study, electromagnetic levitation technology was introduced to achieve concentric centering between the piston and cylinder, and the conventional cantilever structure for the piston centering was replaced by a simple support structure using the through-piston rod. Furthermore, the simulation model of the electromagnetic centering system was established and the experimental prototype was built. The mathematical simulation model was verified by comparing simulated and tested results. Then, the centering effect of the system was assessed and the variation of the leakage in the compressor was studied by models using dynamic mesh technology. The results showed that the radial clearance between piston and cylinder can be maintained in the range of -0.3 mm to 0.3 mm through the electromagnetic centering control. In addition, the inner leakage of the compressor was quite appreciable without the electromagnetic control. However, it was reduced by 1.8 times with the introduction of the electromagnetic control. Thus, it can be concluded that the precise centering between the piston and the cylinder can be achieved by the introduction of the electromagnetic centering technique.
Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.
Geidobler, R; Winter, G
2013-10-01
In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Autonomous Control of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, H.
2003-10-20
A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less
Bett, B; Randolph, T F; Irungu, P; Nyamwaro, S O; Kitala, P; Gathuma, J; Grace, D; Vale, G; Hargrove, J; McDermott, J
2010-12-01
We conducted a field trial among Maasai cattle-keepers in Nkuruman and Nkineji areas of Kenya to evaluate the effectiveness of a synthetic tsetse-repellent technology developed for the control of trypanosomosis in cattle. The technology was a repellent (2-methoxy 4-methylphenol) emitted from dispensers attached to collars worn by cattle. Treatment was allocated at the herd level to ensure adequate protection of all the animals in a herd, with measurements of effectiveness conducted at the individual-animal level. The trial began in April 2005 and ran for 16 months including a baseline phase of 4 months. We recruited 12 herds in each area using a restricted random-sampling technique and distributed them equally into intervention (repellent) and control groups. Sample size was determined using a formal power calculation. Effectiveness or minimal worthwhile difference was defined as a 50% reduction in the incidence of trypanosome infection in the treated versus control group (effectiveness below which the technology was considered by experts as not viable compared to existing control techniques). All the animals in the recruited herds were screened monthly (buffy-coat technique) for trypanosome infections. The analysis followed the principle of intention-to-treat by which subjects are analysed according to their initial treatment assignment, regardless of the mechanical performance of the device. Crude and adjusted effects of the technology were 23% (p<0.001) and 18% (p=0.08) reduction in the infection incidence in the treatment compared to the control groups, respectively. The impact of the technology estimated in this study did not achieve the threshold of 50% reduction in the trypanosome infection incidence set a priori to indicate effectiveness (p<0.001). We therefore concluded that the prototype repellent technology package was not sufficiently effective in reducing trypanosome infection incidence under natural tsetse challenge to merit commercial development. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.; Proffitt, Melissa S.
1994-01-01
This paper describes the design and evaluation of a stochastic optimal feed-forward and feedback technology (SOFFT) control architecture with emphasis on the feed-forward controller design. The SOFFT approach allows the designer to independently design the feed-forward and feedback controllers to meet separate objectives and then integrate the two controllers. The feed-forward controller has been integrated with an existing high-angle-of-attack (high-alpha) feedback controller. The feed-forward controller includes a variable command model with parameters selected to satisfy level 1 flying qualities with a high-alpha adjustment to achieve desired agility guidelines, a nonlinear interpolation approach that scales entire matrices for approximation of the plant model, and equations for calculating feed-forward gains developed for perfect plant-model tracking. The SOFFT design was applied to a nonlinear batch simulation model of an F/A-18 aircraft modified for thrust vectoring. Simulation results show that agility guidelines are met and that the SOFFT controller filters undesired pilot-induced frequencies more effectively during a tracking task than a flight controller that has the same feedback control law but does not have the SOFFT feed-forward control.
Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.
Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei
2016-08-01
To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.
Functional safety for the Advanced Technology Solar Telescope
NASA Astrophysics Data System (ADS)
Bulau, Scott; Williams, Timothy R.
2012-09-01
Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.
Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing
Ay, Chyung; Young, Chao-Wang; Chen, Jhong-Yin
2013-01-01
The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method. PMID:23698272
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
....regulations.gov index. Although listed in the index, some information is not publicly available, e.g., CBI or... compliance with the Federal Maximum Achievable Control Technology (MACT) limits on volatile organic compounds... by non-atomized guns, and 33.4% HAPs for the gelcoat composition. These emission limits are...
40 CFR 63.7522 - Can I use emissions averaging to comply with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitored for each averaging group; (iii) The specific control technology or pollution prevention measure to... section. You may not include new boilers or process heaters in an emissions average. (b) For a group of... heater in the averaging group, the emission rate achieved during the initial compliance test for the HAP...
The purpose of this July 2012 economic impact analysis (EIA) is to present the results of the Agency’s evaluation of the cost, economic impacts, and benefits from compliance with the requirements of these Maximum Achievable Control Technologies (MACT).
Code of Federal Regulations, 2011 CFR
2011-07-01
... BOD5 0.56 0.28 Fecal Coliform (2) (3) O&G 4 0.20 0.10 TSS 0.68 0.34 1 Pounds per 1000 lbs (or g/kg) of... million pounds per year of finished products must achieve the limitations for BOD5, fecal coliform, O&G...
40 CFR 63.7522 - Can I use emissions averaging to comply with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitored for each averaging group; (iii) The specific control technology or pollution prevention measure to... section. You may not include new boilers or process heaters in an emissions average. (b) For a group of... heater in the averaging group, the emission rate achieved during the initial compliance test for the HAP...
Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement
ERIC Educational Resources Information Center
Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.
2013-01-01
We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…
Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)
NASA Technical Reports Server (NTRS)
Hunt, James L.; Martin, John G.
1989-01-01
The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.
Technology development towards WFIRST-AFTA coronagraph
NASA Astrophysics Data System (ADS)
Poberezhskiy, Ilya; Zhao, Feng; An, Xin; Balasubramanian, Kunjithapatham; Belikov, Ruslan; Cady, Eric; Demers, Richard; Diaz, Rosemary; Gong, Qian; Gordon, Brian; Goullioud, Renaud; Greer, Frank; Guyon, Olivier; Hoenk, Michael; Kasdin, N. Jeremy; Kern, Brian; Krist, John; Kuhnert, Andreas; McElwain, Michael; Mennesson, Bertrand; Moody, Dwight; Muller, Richard; Nemati, Bijan; Patterson, Keith; Riggs, A. J.; Ryan, Daniel; Seo, Byoung-Joon; Shaklan, Stuart; Sidick, Erkin; Shi, Fang; Siegler, Nicholas; Soummer, Rémi; Tang, Hong; Trauger, John; Wallace, J. Kent; Wang, Xu; White, Victor; Wilson, Daniel; Yee, Karl; Zhou, Hanying; Zimmerman, Neil
2014-08-01
NASA's WFIRST-AFTA mission concept includes the first high-contrast stellar coronagraph in space. This coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. In this paper we present the plan for maturing coronagraph technology to TRL5 in 2014-2016, and the results achieved in the first 6 months of the technology development work. The specific areas that are discussed include coronagraph testbed demonstrations in static and simulated dynamic environment, design and fabrication of occulting masks and apodizers used for starlight suppression, low-order wavefront sensing and control subsystem, deformable mirrors, ultra-low-noise spectrograph detector, and data post-processing.
Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie
2010-01-01
Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. 2010 Diabetes Technology Society.
Industrial Inspection with Open Eyes: Advance with Machine Vision Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Niel, Kurt
Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less
Control-Structure-Interaction (CSI) technologies and trends to future NASA missions
NASA Technical Reports Server (NTRS)
1990-01-01
Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.
NASA Technical Reports Server (NTRS)
Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.
1985-01-01
A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.
Reversible Rigidity Control Using Low Melting Temperature Alloys
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
2018-01-30
algorithms. Due to this, Fusion was built with the goal of extensibility throughout the architecture. The Fusion infrastructure enables software...DISTRIBUTION STATEMENT A: Approved for public release. Cleared, 88PA, Case# 2018-0820. b. Trigger a Highly Mobile ...modes were developed in IMPACT (i.e., normal full coverage patrol (NFCP) and highly mobile (HM)). In both NFCP and HM, all UxVs patrol their assigned
The CF6 Jet Engine Performance Improvement - Low Pressure Turbine Active Clearance Control
NASA Technical Reports Server (NTRS)
Beck, B. D.; Fasching, W. A.
1982-01-01
A low pressure turbine (LPT) active clearance control (ACC) cooling system was developed to reduce the fuel consumption of current CF6-50 turbofan engines for wide bodied commercial aircraft. The program performance improvement goal of 0.3% delta sfc was determined to be achievable with an improved impingement cooling system. The technology enables the design of an optimized manifold and piping system which is capable of a performance gain of 0.45% delta sfc.
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-01-01
Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.
3-D bioprinting law regulation perspectives.
Pashkov, Vitalii; Harkusha, Andrii
Achieved level of technical progress moves us closer and closer to practical use of 3-d bioprinting technologies in real life. Such perspective raise a wide variety of crucial legal issues from the acceptable model of regulation of the science and its' societal effects to problems of the commercialization of the technology and potential restrictions of its use. Some key points on concept of legal regulation of abovementioned sphere is a base of this study. Scientific discussion on 3-D bioprinting, European Union`s and US experience in patenting of 3-D bioprinting technologies, European Medicine Agency (EMA) or the US Food and Drug Administration (FDA) regulations, European Medical Technology Industry Association (EUCOMED) Acts. Article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. General debate of last few years comes down to an attempt to resolve hesitation between legal attempts for regulation of 3-D biobrinting and concept of complete prohibition of such activities. An adequate response to the mentioned challenge is a reasonable position between some aspects of prohibition and self-regulation, resulting in a moderate number of regulations and standards for developing and marketing. Such regulations may concern an intellectual property (IP) rights, regulation of distribution, premarket restrictions, control mechanism etc. Scientific approach and regulatory settlement of 3-D bioprinting sphere must unite to achieve a fair balance between the interests of humanity and of individuals - on the one hand, and development of science and business benefits for stakeholders - on the other. The main instruments for this must be balanced regulation of intellectual property (IP) rights, regulation of access and distribution, premarket restrictions, control mechanism etc.
Miyamoto, Sheridan W; Henderson, Stuart; Young, Heather M; Pande, Amit; Han, Jay J
2016-01-20
Despite the recent explosion of the mobile health (mHealth) industry and consumer acquisition of mHealth tools such as wearable sensors and applications (apps), limited information is known about how this technology can sustain health behavior change and be integrated into health care. The objective of the study was to understand potential users' views of mHealth technology, the role this technology may have in promoting individual activity goals aimed at improving health, and the value of integrating mHealth technology with traditional health care. Four focus groups were conducted with adults interested in sharing their views on how mHealth technology could support wellness programs and improve health. Participants (n=30) were enrolled from an employee population at an academic health institution. Qualitative thematic analysis was used to code transcripts and identify overarching themes. Our findings suggest that tracking health data alone may result in heightened awareness of daily activity, yet may not be sufficient to sustain use of mHealth technology and apps, which often have low reuse rates. Participants suggested that context, meaning, and health care partnerships need to be incorporated to engage and retain users. In addition to these findings, drivers for mHealth technology previously identified in the literature, including integration and control of health data were confirmed in this study. This study explores ways that mHealth technologies may be used to not only track data, but to encourage sustained engagement to achieve individual health goals. Implications of these findings include recommendations for mHealth technology design and health care partnership models to sustain motivation and engagement, allowing individuals to achieve meaningful behavior change.
Young, Heather M; Pande, Amit; Han, Jay J
2016-01-01
Background Despite the recent explosion of the mobile health (mHealth) industry and consumer acquisition of mHealth tools such as wearable sensors and applications (apps), limited information is known about how this technology can sustain health behavior change and be integrated into health care. Objective The objective of the study was to understand potential users’ views of mHealth technology, the role this technology may have in promoting individual activity goals aimed at improving health, and the value of integrating mHealth technology with traditional health care. Methods Four focus groups were conducted with adults interested in sharing their views on how mHealth technology could support wellness programs and improve health. Participants (n=30) were enrolled from an employee population at an academic health institution. Qualitative thematic analysis was used to code transcripts and identify overarching themes. Results Our findings suggest that tracking health data alone may result in heightened awareness of daily activity, yet may not be sufficient to sustain use of mHealth technology and apps, which often have low reuse rates. Participants suggested that context, meaning, and health care partnerships need to be incorporated to engage and retain users. In addition to these findings, drivers for mHealth technology previously identified in the literature, including integration and control of health data were confirmed in this study. Conclusions This study explores ways that mHealth technologies may be used to not only track data, but to encourage sustained engagement to achieve individual health goals. Implications of these findings include recommendations for mHealth technology design and health care partnership models to sustain motivation and engagement, allowing individuals to achieve meaningful behavior change. PMID:26792225
On-board processing satellite network architecture and control study
NASA Technical Reports Server (NTRS)
Campanella, S. Joseph; Pontano, Benjamin A.; Chalmers, Harvey
1987-01-01
The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented.
Portable nucleic acid thermocyclers.
Almassian, David R; Cockrell, Lisa M; Nelson, William M
2013-11-21
A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart
We study the impact of achieving technology innovation goals, representing significant technology cost reductions and performance improvements, in both the electric power and end-use sectors by comparing outputs from four energy-economic models through the year 2050. We harmonize model input assumptions and then compare results in scenarios that vary natural gas prices, technology cost and performance metrics, and the implementation of a representative national electricity sector carbon dioxide (CO 2) policy. Achieving the representative technology innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more costmore » competitive. For the models that include domestic natural gas markets, achieving the technology innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices but fewer coal capacity retirements. Some of the models include energy efficiency improvements as part of achieving the high-technology goals. Absent these energy efficiency improvements, low-cost electricity facilitates greater electricity consumption. The effect of implementing a representative electricity sector CO 2 policy differs considerably depending on the cost and performance of generating and end-use technologies. The CO 2 policy influences electric sector evolution in the cases with reference technology assumptions but has little to no influence in the cases that achieve the technology innovation goals. This outcome implies that meeting the representative technology innovation goals achieves a generation mix with similar CO 2 emissions to the representative CO 2 policy but with smaller increases to wholesale electricity prices. Finally, higher natural gas prices, achieving the representative technology innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less
Awotwe Otoo, David; Agarabi, Cyrus; Khan, Mansoor A
2014-07-01
The aim of the present study was to apply an integrated process analytical technology (PAT) approach to control and monitor the effect of the degree of supercooling on critical process and product parameters of a lyophilization cycle. Two concentrations of a mAb formulation were used as models for lyophilization. ControLyo™ technology was applied to control the onset of ice nucleation, whereas tunable diode laser absorption spectroscopy (TDLAS) was utilized as a noninvasive tool for the inline monitoring of the water vapor concentration and vapor flow velocity in the spool during primary drying. The instantaneous measurements were then used to determine the effect of the degree of supercooling on critical process and product parameters. Controlled nucleation resulted in uniform nucleation at lower degrees of supercooling for both formulations, higher sublimation rates, lower mass transfer resistance, lower product temperatures at the sublimation interface, and shorter primary drying times compared with the conventional shelf-ramped freezing. Controlled nucleation also resulted in lyophilized cakes with more elegant and porous structure with no visible collapse or shrinkage, lower specific surface area, and shorter reconstitution times compared with the uncontrolled nucleation. Uncontrolled nucleation however resulted in lyophilized cakes with relatively lower residual moisture contents compared with controlled nucleation. TDLAS proved to be an efficient tool to determine the endpoint of primary drying. There was good agreement between data obtained from TDLAS-based measurements and SMART™ technology. ControLyo™ technology and TDLAS showed great potential as PAT tools to achieve enhanced process monitoring and control during lyophilization cycles. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
SMART-1, Platform Design and Project Status
NASA Astrophysics Data System (ADS)
Sjoberg, F.
SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.
Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research
NASA Technical Reports Server (NTRS)
Miller, Christopher
2014-01-01
At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST vehicle is a flexible laboratory for nascent technologies that would benefit from early life cycle flight research data It provides a robust and safe environment where innovative techniques can be explored in a fly-fix-fly rapid prototyping paradigm IRAC Simple adaptive control technologies can provide real benefits without undo complexity Adverse pilot/adaptive system interactions can be mitigated and tools have been developed to evaluate those interactions ICP Substantial fuel savings can be achieved over a broad range of vehicles and configurations with intelligent control solutions LVAC The AAC design is robust and effective for the SLS mission, and promises to provide benefits to other platforms as well OCLA Hopefully will show that structural feedback can be seamlessly integrated with performance and stability objectives All of these control technologies have been implemented into the same baseline control law and could be combined into one control solution that answers many pressing questions for modern vehicle configurations
NASA Technical Reports Server (NTRS)
Leifer, Larry; Michalowski, Stefan; Vanderloos, Machiel
1991-01-01
The Stanford/VA Interactive Robotics Laboratory set out in 1978 to test the hypothesis that industrial robotics technology could be applied to serve the manipulation needs of severely impaired individuals. Five generations of hardware, three generations of system software, and over 125 experimental subjects later, we believe that genuine utility is achievable. The experience includes development of over 65 task applications using voiced command, joystick control, natural language command and 3D object designation technology. A brief foray into virtual environments, using flight simulator technology, was instructive. If reality and virtuality come for comparable prices, you cannot beat reality. A detailed review of assistive robot anatomy and the performance specifications needed to achieve cost/beneficial utility will be used to support discussion of the future of rehabilitation telerobotics. Poised on the threshold of commercial viability, but constrained by the high cost of technically adequate manipulators, this worthy application domain flounders temporarily. In the long run, it will be the user interface that governs utility.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)
2001-01-01
Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,
The DNAPL challenge: Is there a case for partial source removal?
NASA Astrophysics Data System (ADS)
Kavanaugh, M. C.; Rao, P. S. C.
2003-04-01
Despite significant advances in the science and technology of DNAPL source zone characterization, and DNAPL removal technologies over the past two decades, source remediation has not become a standard objective at most DNAPL sites. Few documented cases of DNAPL source removal have been published, and achievement of the usual cleanup metric in these source zones, namely, meeting Maximum Contaminant Levels ("MCLs") is rare. At most DNAPL sites, removal of sufficient amounts of DNAPL from the source zones to achieve MCLs is considered technically impracticable, taking cost into consideration. Leaving substantial quantities of DNAPL in source zones and instituting appropriate technologies to eliminate continued migration of groundwater plumes emanating from these source zones requires long-term reliability of barrier technologies (hydraulic or physical), and the permanence institutional controls. This strategy runs the risk of technical or institutional failures and possible liabilities associated with natural resource damage claims. To address this challenge, the U.S. Environmental Protection Agency ("EPA") established a panel of experts ("Panel") on DNAPL issues to provide their opinions on the overarching question of whether DNAPL source remediation is feasible. This Panel, co-chaired by the authors of this paper, has now prepared a report summarizing the opinions of the Panel on the key question of whether DNAPL source removal is achievable. This paper will present the findings of the Panel, addressing such issues as the current status of DNAPL source characterization and remediation technologies, alternative metrics of success for DNAPL source remediation, the potential benefits of partial DNAPL source depletion, and research needs to address data gaps that hinder the more widespread implementation of source removal strategies.
Acurex Parabolic Dish Concentrator (PDC-2)
NASA Technical Reports Server (NTRS)
Overly, P.; Bedard, R.
1982-01-01
The design approach, rationale for the selected configuration, and the development status of a cost effective point-focus solar concentrator are discussed. The low-cost concentrator reflective surface design is based on the use of a thin, backsilvered mirror glass reflector bonded to a molded structural plastic substrate. The foundation, support, and drive subassembles are described. A hybrid, two-axis, Sun tracking control system based on microprocessor technology was selected. Coarse synthetic tracking is achieved through a microcomputer-based control system to calculate Sun position for transient periods of cloud cover as well as sundown and sunrise positioning. Accurate active tracking is achieved by two-axis optical sensors. Results of the reflective panel demonstration tests investigating slope error, hail impact survivability, temperature/humidity cycling, longitudinal strength/bending stiffness, and torsional stiffness are discussed.
Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.
Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y
2013-10-07
We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.
Three Axes MEMS Combined Sensor for Electronic Stability Control System
NASA Astrophysics Data System (ADS)
Jeong, Heewon; Goto, Yasushi; Aono, Takanori; Nakamura, Toshiaki; Hayashi, Masahide
A microelectromechanical systems (MEMS) combined sensor measuring two-axis accelerations and an angular rate (rotation) has been developed for an electronic stability control system of automobiles. With the recent trend to mount the combined sensors in the engine compartment, the operation temperature range increased drastically, with the request of immunity to environmental disturbances such as vibration. In this paper, we report the combined sensor which has a gyroscopic part and two acceleration parts in single die. A deformation-robust MEMS structure has been adopted to achieve stable operation under wide temperature range (-40 to 125°C) in the engine compartment. A package as small as 10 × 19 × 4 mm is achieved by adopting TSV (through silicon via) and WLP (wafer-level package) technologies with enough performance as automotive grade.
Bird, M L; Cannell, J; Callisaya, M L; Moles, E; Rathjen, A; Lane, K; Tyson, A; Smith, S
2016-04-16
Stroke results in significant disability, which can be reduced by physical rehabilitation. High levels of repetition and activity are required in rehabilitation, but patients are typically sedentary. Using clinically relevant and fun computer games may be one way to achieve increased activity in rehabilitation. A single-blind randomized controlled trial will be conducted to evaluate the feasibility, efficacy and safety of novel stroke-specific rehabilitation software. This software uses controller-free client interaction and inertial motion sensors. Elements of feasibility include recruitment into the trial, ongoing participation (adherence and dropout), perceived benefit, enjoyment and ease of use of the games. Efficacy will be determined by measuring activity and using upper-limb tasks as well as measures of balance and mobility. The hypothesis that the intervention group will have increased levels of physical activity within rehabilitation and improved physical outcomes compared with the control group will be tested. Results from this study will provide a basis for discussion of feasibility of this interactive video technological solution in an inpatient situation. Differences in activity levels between groups will be the primary measure of efficacy. It will also provide data on measures of upper-limb function, balance and mobility. ACTRN12614000427673 . Prospectively registered 17 April 2014.
Assessment of brain-machine interfaces from the perspective of people with paralysis
NASA Astrophysics Data System (ADS)
Blabe, Christine H.; Gilja, Vikash; Chestek, Cindy A.; Shenoy, Krishna V.; Anderson, Kim D.; Henderson, Jaimie M.
2015-08-01
Objective. One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. Approach. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Main Results. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as ‘likely’ to be adopted as their wired equivalents. Significance. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both restoration of upper extremity function and control of external devices such as communication interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George
2015-03-11
Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less
Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control
NASA Astrophysics Data System (ADS)
Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa
2015-09-01
In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.
Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui
2015-02-23
PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.
NASA Astrophysics Data System (ADS)
Koksal, Ela Ayse; Berberoglu, Giray
2014-01-01
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.
An Embedded Laser Marking Controller Based on ARM and FPGA Processors
Dongyun, Wang; Xinpiao, Ye
2014-01-01
Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking. PMID:24772028
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.; Paul, Heather L.; Waguespack, Glenn M.
2010-01-01
This presentation summarized the results of a trade study that evaluated whether trace contaminant control within the Constellation Spacesuit PLSS could be achieved without a Trace Contaminant Control System (TCCS) by relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Mallory Jennings and Dr. Glenn Waguespack studied trace contaminant generation rates to verify that values reflected the latest designs for Constellation spacesuit system pressure garment materials and PLSS hardware. They also calculated TCCS sizing and conducted a literature survey to review the latest developments in trace contaminant technologies.
Task oriented nonlinear control laws for telerobotic assembly operations
NASA Technical Reports Server (NTRS)
Walker, R. A.; Ward, L. S.; Elia, C. F.
1987-01-01
The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.
NASA Technical Reports Server (NTRS)
Klem, Mark D.; Smith, Timothy D.
2008-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.
Development of an Optimal Controller and Validation Test Stand for Fuel Efficient Engine Operation
NASA Astrophysics Data System (ADS)
Rehn, Jack G., III
There are numerous motivations for improvements in automotive fuel efficiency. As concerns over the environment grow at a rate unmatched by hybrid and electric automotive technologies, the need for reductions in fuel consumed by current road vehicles has never been more present. Studies have shown that a major cause of poor fuel consumption in automobiles is improper driving behavior, which cannot be mitigated by purely technological means. The emergence of autonomous driving technologies has provided an opportunity to alleviate this inefficiency by removing the necessity of a driver. Before autonomous technology can be relied upon to reduce gasoline consumption on a large scale, robust programming strategies must be designed and tested. The goal of this thesis work was to design and deploy an autonomous control algorithm to navigate a four cylinder, gasoline combustion engine through a series of changing load profiles in a manner that prioritizes fuel efficiency. The experimental setup is analogous to a passenger vehicle driving over hilly terrain at highway speeds. The proposed approach accomplishes this using a model-predictive, real-time optimization algorithm that was calibrated to the engine. Performance of the optimal control algorithm was tested on the engine against contemporary cruise control. Results indicate that the "efficient'' strategy achieved one to two percent reductions in total fuel consumed for all load profiles tested. The consumption data gathered also suggests that further improvements could be realized on a different subject engine and using extended models and a slightly modified optimal control approach.
Laminar-flow wind tunnel experiments
NASA Technical Reports Server (NTRS)
Harvey, William D.; Harris, Charles D.; Sewall, William G.; Stack, John P.
1989-01-01
Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.
Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li
2017-10-01
To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.
Linear-constraint wavefront control for exoplanet coronagraphic imaging systems
NASA Astrophysics Data System (ADS)
Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean
2017-01-01
A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.
Layered Architectures for Quantum Computers and Quantum Repeaters
NASA Astrophysics Data System (ADS)
Jones, Nathan C.
This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.
X-29A flight control system performance during flight test
NASA Technical Reports Server (NTRS)
Chin, J.; Chacon, V.; Gera, J.
1987-01-01
An account is given of flight control system performance results for the X-29A forward-swept wing 'Advanced Technology Demonstrator' fighter aircraft, with attention to its software and hardware components' achievement of the requisite levels of system stability and desirable aircraft handling qualities. The Automatic Camber Control Logic is found to be well integrated with the stability loop of the aircraft. A number of flight test support software programs developed by NASA facilitated monitoring of the X-29A's stability in real time, and allowed the test team to clear the envelope with confidence.
Jits, Roman Y; Walberg, Gerald D
2004-03-01
A guidance scheme designed for coping with significant dispersion in the vehicle's state and atmospheric conditions is presented. In order to expand the flyable aerocapture envelope, control of the vehicle is realized through bank angle and angle-of-attack modulation. Thus, blended control of the vehicle is achieved, where the lateral and vertical motions of the vehicle are decoupled. The overall implementation approach is described, together with the guidance algorithm macrologic and structure. Results of guidance algorithm tests in the presence of various single and multiple off-nominal conditions are presented and discussed. c2003 Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Lee, Szu Hsin; Tseng, Hui Ching
2008-01-01
In today's studies of how computer technologies are used in college art lessons, limited examples are focused on both digital instructional technology design and learning achievement. This study attempts to measure the learning achievement of college students from two intact groups in an art class when a multimedia form of instruction was utilized…
ERIC Educational Resources Information Center
Cakir, Hasan; Delialioglu, Omer; Dennis, Alan; Duffy, Thomas
2009-01-01
Student achievement gap between urban and suburban regions are a major issue in U.S. schools. Technology enhanced learning environments that support teaching and learning process with advanced technology may close this achievement gap. This paper examines the impact of student and school factors with an emphasis on schools' geographic location on…
An Introduction to Atomic Layer Deposition
NASA Technical Reports Server (NTRS)
Dwivedi, Vivek H.
2017-01-01
Atomic Layer Deposition has been instrumental in providing a deposition method for multiple space flight applications. It is well known that ALD is a cost effective nanoadditive-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases, thin films can be deposited on a myriad of substrates from flat surfaces to those with significant topography. By providing atomic layer control, where single layers of atoms can be deposited, the fabrication of metal transparent films, precise nano-laminates, and coatings of nano-channels, pores and particles is achievable. The feasibility of this technology for NASA line of business applications range from thermal systems, optics, sensors, to environmental protection. An overview of this technology will be presented.
Design of an anti-Rician-fading modem for mobile satellite communication systems
NASA Technical Reports Server (NTRS)
Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi
1995-01-01
To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
NASA Technical Reports Server (NTRS)
Montgomery, Edward E.
1991-01-01
The primary issues studied were how the transition from a physical/chemical (P/C) to hybrid to a Closed Ecological Life Support System (CELSS) could be achieved, what sensors and monitors are needed for a P/C -CELSS hybrid system, and how a CELSS could be automated and what controls would be needed to do so.
ERIC Educational Resources Information Center
Kullgren, Jeffrey T.; Harkins, Kristin A.; Bellamy, Scarlett L.; Gonzales, Amy; Tao, Yuanyuan; Zhu, Jingsan; Volpp, Kevin G.; Asch, David A.; Heisler, Michele; Karlawish, Jason
2014-01-01
Background: Financial incentives and peer networks could be delivered through eHealth technologies to encourage older adults to walk more. Methods: We conducted a 24-week randomized trial in which 92 older adults with a computer and Internet access received a pedometer, daily walking goals, and weekly feedback on goal achievement. Participants…
Code of Federal Regulations, 2014 CFR
2014-07-01
... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...
Code of Federal Regulations, 2010 CFR
2010-07-01
... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...
Code of Federal Regulations, 2013 CFR
2013-07-01
... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...
Code of Federal Regulations, 2010 CFR
2010-07-01
... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...
Code of Federal Regulations, 2011 CFR
2011-07-01
... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... maximum monthly average limitation. 4 May be measured as hexane extractable material (HEM). (2) In... facilities must achieve the following effluent limitation for ammonia (as N): Effluent Limitations [BPT] Regulatedparameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L (ppm). (2) In the case of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... at any time. 4 No maximum monthly average limitation. 5 May be measured as hexane extractable... limitations: (1) All facilities must achieve the following effluent limitations for ammonia (as N): Effluent Limitations [BPT] Regulated parameter Maximum daily 1 Maximum monthly avg. 1 Ammonia (as N) 8.0 4.0 1 mg/L...
Krueger, Wesley W O
2011-01-01
An eyewear mounted visual display ("User-worn see-through display") projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-posttest design for patients in vestibular rehabilitation. Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales, whereas 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to posttherapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial benefit for individuals susceptible to motion intolerance and spatial disorientation and those undergoing vestibular rehabilitation. The technology developed has applications in any environment where motion sensitivity affects human performance.
Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir
2017-01-01
Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Perkins, Curtis; Smith, Aaron
The next wave of LED lighting technology is likely to be tunable white lighting (TWL) devices which can adjust the colour of the emitted light between warm white (~ 2700 K) and cool white (~ 6500 K). This type of lighting system uses LED assemblies of two or more colours each controlled by separate driver channels that independently adjust the current levels to achieve the desired lighting colour. Drivers used in TWL devices are inherently more complex than those found in simple SSL devices, due to the number of electrical components in the driver required to achieve this level ofmore » control. The reliability of such lighting systems can only be studied using accelerated stress tests (AST) that accelerate the aging process to time frames that can be accommodated in laboratory testing. This paper describes AST methods and findings developed from AST data that provide insights into the lifetime of the main components of one-channel and multi-channel LED devices. The use of AST protocols to confirm product reliability is necessary to ensure that the technology can meet the performance and lifetime requirements of the intended application.« less
Schwartz, David M
2014-01-01
Assistive technologies provide significant capabilities for improving student achievement. Improved accessibility, cost, and diversity of applications make integration of technology a powerful tool to compensate for executive function weaknesses and deficits and their impact on student performance, learning, and achievement. These tools can be used to compensate for decreased working memory, poor time management, poor planning and organization, poor initiation, and decreased memory. Assistive technology provides mechanisms to assist students with diverse strengths and weaknesses in mastering core curricular concepts.