Science.gov

Sample records for achievable signal-to-noise ratio

  1. Enhanced signal-to-noise ratios in frog hearing can be achieved through amplitude death

    PubMed Central

    Ahn, Kang-Hun

    2013-01-01

    In the ear, hair cells transform mechanical stimuli into neuronal signals with great sensitivity, relying on certain active processes. Individual hair cell bundles of non-mammals such as frogs and turtles are known to show spontaneous oscillation. However, hair bundles in vivo must be quiet in the absence of stimuli, otherwise the signal is drowned in intrinsic noise. Thus, a certain mechanism is required in order to suppress intrinsic noise. Here, through a model study of elastically coupled hair bundles of bullfrog sacculi, we show that a low stimulus threshold and a high signal-to-noise ratio (SNR) can be achieved through the amplitude death phenomenon (the cessation of spontaneous oscillations by coupling). This phenomenon occurs only when the coupled hair bundles have inhomogeneous distribution, which is likely to be the case in biological systems. We show that the SNR has non-monotonic dependence on the mass of the overlying membrane, and find out that the SNR has maximum value in the region of amplitude death. The low threshold of stimulus through amplitude death may account for the experimentally observed high sensitivity of frog sacculi in detecting vibration. The hair bundles' amplitude death mechanism provides a smart engineering design for low-noise amplification. PMID:23883956

  2. Signal-to-noise ratios in coherent soft limiters

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1973-01-01

    Expressions for the output signal-to-noise power ratio of a bandpass soft limiter followed by a coherent detection device are presented and discussed. It is found that a significant improvement in the output signal-to-noise ratio at low input SNRs can be achieved by such soft limiters as compared to hard limiters. This indicates that the soft limiter may be of some use in the area of threshold extension. Approximation methods for determining output signal-to-noise spectral densities are also presented.

  3. Focal overlap gating in velocity map imaging to achieve high signal-to-noise ratio in photo-ion pump-probe experiments

    NASA Astrophysics Data System (ADS)

    Shivaram, Niranjan; Champenois, Elio G.; Cryan, James P.; Wright, Travis; Wingard, Taylor; Belkacem, Ali

    2016-12-01

    We demonstrate a technique in velocity map imaging (VMI) that allows spatial gating of the laser focal overlap region in time resolved pump-probe experiments. This significantly enhances signal-to-noise ratio by eliminating background signal arising outside the region of spatial overlap of pump and probe beams. This enhancement is achieved by tilting the laser beams with respect to the surface of the VMI electrodes which creates a gradient in flight time for particles born at different points along the beam. By suitably pulsing our microchannel plate detector, we can select particles born only where the laser beams overlap. This spatial gating in velocity map imaging can benefit nearly all photo-ion pump-probe VMI experiments especially when extreme-ultraviolet light or X-rays are involved which produce large background signals on their own.

  4. Optical signal to noise ratio improvement through unbalanced noise beating in phase-sensitive parametric amplifiers.

    PubMed

    Malik, R; Kumpera, A; Olsson, S L I; Andrekson, P A; Karlsson, M

    2014-05-05

    We investigate the beating of signal and idler waves, which have imbalanced signal to noise ratios, in a phase-sensitive parametric amplifier. Imbalanced signal to noise ratios are achieved in two ways; first by imbalanced noise loading; second by varying idler to signal input power ratio. In the case of imbalanced noise loading the phase-sensitive amplifier improved the signal to noise ratio from 3 to 6 dB, and in the case of varying idler to signal input power ratio, the signal to noise ratio improved from 3 to in excess of 20 dB.

  5. Algorithm for astronomical, point source, signal to noise ratio calculations

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.; Schroeder, D. J.

    1984-01-01

    An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

  6. Automated Signal-to-Noise Ratio Measurement

    NASA Technical Reports Server (NTRS)

    Pineda, J. E.

    1986-01-01

    Computer-controlled spectrum analysis gives rapid results for communication systems. Locates carrier signal in intermediate-frequency band and measures both carrier amplitude and amplitude of noise in several channels near carrier frequency. Computer then computes ratio of signal to average noise. Because measurements and calculations are rapid, system used in fading communication channels.

  7. SYSTEM IMPROVEMENT USING SIGNAL-TO-NOISE RATIO ESTIMATION.

    DTIC Science & Technology

    systems by using signal-to-noise ratio ( SNR ) estimation of the received signal. Such SNR estimates can be used to adaptively control important system...parameters whose design explicitly depends on SNR . The results of this investigation show, for certain types of systems, performance can indeed be...substantially improved by SNR estimation. The analysis of the report is basically in two parts. In the first part consideration is given to the design

  8. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect

    Doerry, Armin Walter; Marquette, Brandeis

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  9. Signal-to-noise ratio limitations for intensity correlation imaging.

    PubMed

    Fried, David L; Riker, Jim; Agrawal, Brij

    2014-07-01

    tΔν≫1, which condition it would be hard to violate. It is estimated that for a D=3.16 m diameter satellite, with a pair of D=1.0 m diameter telescopes (which value of D probably represents an upper limit on allowable aperture diameter since the telescope aperture must be much too small to even resolve the size of the satellite) at least N=2.55×10(16) separate pairs of (one integration time, pde count) measurement values must be collected to achieve just a 10 dB signal-to-noise ratio. Working with 10 pairs of telescopes (all with the same separation), and with 10 nearly adjacent and each very narrow spectral bands extracted from the light collected by each of the telescope-so that for each measurement integration time there would be 100 pairs of measurement values available-and with an integration time as short as Δt=1 ns, it would take T=2.55×10(5) s or about 71 h to collect the data for just a single spatial frequency component of the image of the satellite. It is on this basis that it is concluded that the ICI concept does not seem likely to be able to provide a timely responsive capability for the imaging of geosynchronous satellites.

  10. Signal-to-noise ratio in parametrically driven oscillators.

    PubMed

    Batista, Adriano A; Moreira, Raoni S N

    2011-12-01

    We report a theoretical model based on Green's functions and averaging techniques that gives analytical estimates to the signal-to-noise ratio (SNR) near the first parametric instability zone in parametrically driven oscillators in the presence of added ac drive and added thermal noise. The signal term is given by the response of the parametrically driven oscillator to the added ac drive, while the noise term has two different measures: one is dc and the other is ac. The dc measure of noise is given by a time average of the statistically averaged fluctuations of the displacement from equilibrium in the parametric oscillator due to thermal noise. The ac measure of noise is given by the amplitude of the statistically averaged fluctuations at the frequency of the parametric pump. We observe a strong dependence of the SNR on the phase between the external drive and the parametric pump. For some range of the phase there is a high SNR, while for other values of phase the SNR remains flat or decreases with increasing pump amplitude. Very good agreement between analytical estimates and numerical results is achieved.

  11. Estimating the signal-to-noise ratio of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.

    1988-01-01

    To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.

  12. Projection method for improving signal to noise ratio of localized surface plasmon resonance biosensors

    PubMed Central

    Abumazwed, Ahmed; Kubo, Wakana; Shen, Chen; Tanaka, Takuo; Kirk, Andrew G.

    2016-01-01

    This paper presents a simple and accurate method (the projection method) to improve the signal to noise ratio of localized surface plasmon resonance (LSPR). The nanostructures presented in the paper can be readily fabricated by nanoimprint lithography. The finite difference time domain method is used to simulate the structures and generate a reference matrix for the method. The results are validated against experimental data and the proposed method is compared against several other recently published signal processing techniques. We also apply the projection method to biotin-streptavidin binding experimental data and determine the limit of detection (LoD). The method improves the signal to noise ratio (SNR) by one order of magnitude, and hence decreases the limit of detection when compared to the direct measurement of the transmission-dip. The projection method outperforms the established methods in terms of accuracy and achieves the best combination of signal to noise ratio and limit of detection. PMID:28101430

  13. Imaging signal-to-noise ratio of synthetic aperture ladar

    NASA Astrophysics Data System (ADS)

    Liu, Liren

    2015-09-01

    On the basis of the Poisson photocurrent statistics in the photon-limited heterodyne detection, in this paper, the signal-to-noise ratios in the receiver in the time domain and on the focused 1-D image and 2-D image in the space domain are derived for both the down-looking and side-looking synthetic aperture imaging ladars using PIN or APD photodiodes. The major shot noises in the down-looking SAIL and the side-looking SAIL are, respectively, from the dark current of photodiode and the local beam current. It is found that the ratio of 1-D image SNR to receiver SNR is proportional to the number of resolution elements in the cross direction of travel and the ratio of 2-D image SNR to 1-D image SNR is proportional to the number of resolution elements in the travel direction. And the sensitivity, the effect of Fourier transform of sampled signal, and the influence of time response of detection circuit are discussed, too. The study will help to correctly design a SAIL system.

  14. Signal-to-noise ratio in neuro activation PET studies

    SciTech Connect

    Votaw, J.R.

    1996-04-01

    It has become commonplace to compare scanner sensitivity characteristics by comparing noise equivalent count rate curves. However, because a 20-cm diameter uniform phantom is drastically difference from a human brain, these curves give misleading information when planning a neuro activation PET experiment. Signal-to-noise ratio (SNR) calculations have been performed using measured data (Siemens 921 scanner) from the three-dimensional (3-D) Hoffman brain phantom for the purpose of determining the optimal injection and scanning protocol for [{sup 15}O] labeled activation experiments. Region of interest (ROI) values along with the variance due to prompt (trues plus randoms) and random events were determined for various regions and radioactivity concentrations. Calculated attenuation correction was used throughout. Scatter correction was not used when calculating the SNR in activation studies because the number of scattered events is almost identical in each data acquisition and hence cancels. The results indicate that randoms correction should not be performed and that rather than being limited by the scanner capabilities, neuro activation experiments are limited by the amount of radioactivity that can be injected and the length of time the patient can stay in the scanner.

  15. Graphene Nanogrids FET Immunosensor: Signal to Noise Ratio Enhancement

    PubMed Central

    Basu, Jayeeta; RoyChaudhuri, Chirasree

    2016-01-01

    Recently, a reproducible and scalable chemical method for fabrication of smooth graphene nanogrids has been reported which addresses the challenges of graphene nanoribbons (GNR). These nanogrids have been found to be capable of attomolar detection of biomolecules in field effect transistor (FET) mode. However, for detection of sub-femtomolar concentrations of target molecule in complex mixtures with reasonable accuracy, it is not sufficient to only explore the steady state sensitivities, but is also necessary to investigate the flicker noise which dominates at frequencies below 100 kHz. This low frequency noise is dependent on the exposure time of the graphene layer in the buffer solution and concentration of charged impurities at the surface. In this paper, the functionalization strategy of graphene nanogrids has been optimized with respect to concentration and incubation time of the cross linker for an enhancement in signal to noise ratio (SNR). It has been interestingly observed that as the sensitivity and noise power change at different rates with the functionalization parameters, SNR does not vary monotonically but is maximum corresponding to a particular parameter. The optimized parameter has improved the SNR by 50% which has enabled a detection of 0.05 fM Hep-B virus molecules with a sensitivity of around 30% and a standard deviation within 3%. Further, the SNR enhancement has resulted in improvement of quantification accuracy by five times and selectivity by two orders of magnitude. PMID:27740605

  16. Note: One order of magnitude better signal-to-noise ratio for neutron backscattering

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard

    2017-03-01

    We report on a new achievement which allows increasing the signal-to-noise ratio of reactor backscattering spectrometers by more than one order of magnitude by sacrificing at most 50% of the count rate. This method was recently tested on the backscattering instrument IN16B at ILL, where signal-to-noise ratios of more than 10 000 for standard samples and up to 40 000 for strong scatterers were measured with only 37% reduction in intensity. The described method is applicable at any reactor backscattering spectrometer equipped with a so-called background chopper which can optionally function as a pulse suppression chopper and presents a major advancement for high energy resolution spectroscopy with neutrons.

  17. Application of the CLEAN Detector to Low Signal to Noise Ratio Targets

    DTIC Science & Technology

    2010-05-01

    address low signal to noise ( SNR ) targets. The Reformulated CLEAN Detector is presented which is shown to allow the detection of low SNR targets in the...results of the author’s two previous papers on application of the CLEAN Algorithm to the condition of low signal to noise ratio ( SNR ) targets. The first...paper expands on the author?s previous work by adapting the CLEAN algorithm to address low signal to noise ( SNR ) targets. The Reformulated CLEAN

  18. Imaging resolution signal-to-noise ratio in transverse phase amplification from classical information theory

    NASA Astrophysics Data System (ADS)

    French, Doug; Huang, Zun; Pao, Hsueh-Yuan; Jovanovic, Igor

    2009-03-01

    A quantum phase amplifier operated in the spatial domain can improve the signal-to-noise ratio in imaging beyond the classical limit. The scaling of the signal-to-noise ratio with the gain of the quantum phase amplifier is derived from classical information theory.

  19. Signal to Noise Ratios of Pulsed and Sinewave Modulated Direct Detection Lidar for IPDA Measurements

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    The signal-to-noise ratios have been derived for IPDA lidar using a direct detection receiver for both pulsed and sinewave laser modulation techniques, and the results and laboratory measurements are presented

  20. Improving signal-to-noise ratio of fetal magnetocardiograph by third order flux transformer

    NASA Astrophysics Data System (ADS)

    Bachir, Wesam; Dunajski, Zbigniew

    2003-10-01

    The application of SQUIDS and superconducting radiometers in clinical biomagnetic instrumentation for fetal magnetocardiography is presented. The paper focuses on the characteristics and performance of the third order flux transformer for fetal magnetocardiography with a good signal to noise ratio. An optimum figure of merit of the third order flux transformer was determined. The optimal signal-to-noise ratio (SNR) was used as the optimization criterion.

  1. Mechanism for improving the signal-to-noise ratio in scanning optical microscopes

    NASA Astrophysics Data System (ADS)

    Milster, Tom D.; Walker, Edwin P.

    1996-08-01

    We demonstrate an improved signal-to-noise ratio in a scanning optical microscope used to read out information from a magneto-optical data storage layer. By placing a shading band in the return path of the optical system we can reduce noise by as much as 3 dB in certain spatial frequency ranges. The signal-to-noise ratio improvement arises from differences in the signal and noise distributions in the pupil of the optical system. Although the experimental results are shown only in one dimension, the concept is applicable to two-dimensional scanning of low-contrast samples.

  2. Automatic computation of signal-to-noise ratio for magnetic resonances images

    NASA Astrophysics Data System (ADS)

    Vazquez, J. F.; Rodríguez, A. O.

    2012-10-01

    An automatic method to measure the signal-to-noise ratio of images is proposed. The region of interest in a phantom image is reliably determined by the image contour by the Sobel operator. With these data, the signal-to-noise ratio was computed using two phantom images. Results showed very good agreement with those reported in the literature. This scheme can be implemented in line to save a great deal of effort and time when assessing the performance of RF coils, B0 uniformity, image quality, etc.

  3. Symbol signal-to-noise ratio loss in square-wave subcarrier downconversion

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Statman, J.

    1993-01-01

    This article presents the simulated results of the signal-to-noise ratio (SNR) loss in the process of a square-wave subcarrier down conversion. In a previous article, the SNR degradation was evaluated at the output of the down converter based on the signal and noise power change. Unlike in the previous article, the SNR loss is defined here as the difference between the actual and theoretical symbol SNR's for the same symbol-error rate at the output of the symbol matched filter. The results show that an average SNR loss of 0.3 dB can be achieved with tenth-order infinite impulse response (IIR) filters. This loss is a 0.2-dB increase over the SNR degradation in the previous analysis where neither the signal distortion nor the symbol detector was considered.

  4. The analysis of signal-to-noise ratio of airborne LIDAR system under state of motion

    NASA Astrophysics Data System (ADS)

    Hao, Huang; Lan, Tian; Zhang, Yingchao; Ni, Guoqiang

    2010-11-01

    This article gives an overview of airborne LIDAR (laser light detection and ranging) system and its application. By analyzing the transmission and reception process of laser signal, the article constructs a model of echo signal of the LIDAR system, and gives some basic formulas which make up the relationship of signal-to-noise ratio, for example, the received power, the dark noise power and so on. And this article carefully studies and analyzes the impact of some important parameters in the equation on the signal-to-noise ratio, such as the atmospheric transmittance coefficient, the work distance. And the matlab software is used to simulate the detection environment, and obtains a series values of signal-to-noise (SNR) ratio under different circumstances such as sunny day, cloudy day, day, night. And the figures which describe how the SNR of LIDAR system is influenced by the critical factors are shown in the article. Finally according to the series values of signal-to-noise ratio and the figures, the SNR of LIDAR system decreases as the distance increases, and the atmospheric transmittance coefficient caused by bad weather, and also high work temperature drops the SNR. Depending on these conclusions, the LIDAR system will work even better.

  5. Precision limits of lock-in amplifiers below unity signal-to-noise ratios

    SciTech Connect

    Gillies, G.T.; Allison, S.W.

    1986-02-01

    An investigation of noise-related performance limits of commercial-grade lock-in amplifiers has been carried out. The dependence of the output measurement error on the input signal-to-noise ratio was established in each case and measurements of noise-related gain variations were made.

  6. A Comparison of Multi-Frame Blind Deconvolution and Speckle Imaging Energy Spectrum Signal-to-Noise Ratios (Preprint)

    DTIC Science & Technology

    2008-09-11

    in the SPIE proceedings Vol. 7108, Fall 2008. “Government Purpose Rights” 14. ABSTRACT An analytical signal-to-noise ratio ( SNR ) expression is...expression cannot, in general, be derived, Cramer-Rao lower bounds are used in place of the variances. As a result, the SNR expression provided upper bounds...to the achievable SNR’s that are independent of the NFBD algorithm implementation. The SNR expression is evaluated for the scenario of ground-based

  7. Periodic variations in the signal-to-noise ratios of signals received from the ICE spacecraft

    NASA Technical Reports Server (NTRS)

    Nadeau, T.

    1986-01-01

    Data from the ICE probe to comet Giacobini-Zinner are analyzed to determine the effects of spacecraft rotation upon the signal to noise ratio (SNR) for the two channels of data. In addition, long-term variations from sources other than rotations are considered. Results include a pronounced SNR variation over a period of three seconds (one rotation) and a lesser effect over a two minute period (possibly due to the receiving antenna conscan).

  8. Signal-to-Noise Ratio Prediction and Validation for Space Shuttle GPS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Adkins, Antha A.; Loh, Yin-Chung; Brown, Lisa C.; Sham, Catherine C.; Kroll, Quin D.

    2002-01-01

    A deterministic method for Space Station Global Positioning System (GPS) Signal-To- Noise Ratio (SNR) predictions is proposed. The complex electromagnetic interactions between GPS antennas and surrounding Space Station structures are taken into account by computational electromagnetic technique. This computer simulator is capable of taking into account multipath effects from dynamically changed solar panels and thermal radiators. A comparison with recent collected Space Station GPS system flight experiment data is presented. The simulation results are in close agreement with flight data.

  9. Enhancement of Signal to Noise Ratio Using Bispectrum. A Quantitative Analysis for Very Low SNR

    DTIC Science & Technology

    2001-10-25

    Enhancement of Signal to Noise Ratio Using Bispectrum A Quantitative Analysis for Very Low SNR Payam Yeganeh, Mohammad H. Moradi, Ali Reshad...Dept. of Biomedical Engineering, AMIR KABIR University of Technology Abstract- Bispectrum has been widely used to enhance the SNR . This is based...consider the use of Bispectrum techniques when repeated measurements are made of a deterministic signal embedded in random noise where SNR is in the

  10. Signal-To-Noise Ratio Considerations in Modified Matched Spatial Filters,

    DTIC Science & Technology

    General expressions are derived for the degradation in the signal to noise ratio ( SNR ) as a function of rotation and scale distortions for modified...demonstrate the effects of training set size, input noise level, and image space bandwidth product (SBWP) on the resulting SNR . The SNR for distorted input...images is shown to improve, whereas the SNR for undistorted inputs degrades, as the number of training set images is increased. If the number of training

  11. Optical signal to noise ratio monitoring using variable phase difference phase portrait with software synchronization.

    PubMed

    Yu, Yi; Yu, Changyuan

    2015-05-04

    In this paper, a novel optical signal to noise ratio (OSNR) monitoring method using 2-dimension (2-D) phase portrait is proposed and demonstrated, which is generated by using a single low-speed sampling channel with software synchronization technique. Moreover, variable phase difference is proposed to generate the X-Y pairs, which increases the tolerance of synchronization accuracy significantly. This method is a cost effective solution with simple system setup.

  12. Approximate expression to estimate signal-to-noise ratio improvement in cylindrical near-field measurements

    NASA Astrophysics Data System (ADS)

    Romeu, Jordi; Jofre, Lluis; Cardama, Angel

    1994-07-01

    A very simple approximate expression for the process gain (PG) for the cylindrical case is derived. The different approximations and assumptions required to obtain this expression are shown. This expression might be useful for most practical cylindrical near-field measurements, providing a very simple mean to assess the near-field dynamic range requirements to obtain a desired far-field signal-to-noise ratio (SNR).

  13. Increasing signal-to-noise ratio of marine seismic data: A case study from offshore Korea

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoun; Jang, Seonghyung

    2016-11-01

    Subsurface imaging is difficult without removing the multiples intrinsic to most marine seismic data. Choosing the right multiple suppression method when working with marine data depends on the type of multiples and sometimes involves trial and error. A major amount of multiple energy in seismic data is related to the large reflectivity of the surface. Surface-related multiple elimination (SRME) is effective for suppressing free-surface-related multiples. Although SRME has some limitations, it is widely used because it requires no assumptions about the subsurface velocities, positions, and reflection coefficients of the reflector causing the multiples. The common reflector surface (CRS) stacking technique uses CRS reflectors rather than common mid-point (CMP) reflectors. It stacks more traces than conventional stacking methods and increases the signal-to-noise ratio. The purpose of this study is to address a process issue for multiple suppression with SRME and Radon filtering, and to increase the signal-to-noise ratio by using CRS stacking on seismic data from the eastern continental margin of Korea. To remove free surface multiples, SRME and Radon filtering are applied to attenuate the interbed multiples. Results obtained using synthetic data and field data show that the combination of SRME and Radon filtering is effective for suppressing free-surface multiples and peg-leg multiples. Applying CRS stacking to seismic data in which multiples have been eliminated increases the signal-to-noise ratio for the area examined, which is being considered for carbon dioxide capture and storage.

  14. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  15. Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction.

    PubMed

    Mauger, Stefan J; Dawson, Pam W; Hersbach, Adam A

    2012-01-01

    Noise reduction in cochlear implants has achieved significant speech perception improvements through spectral subtraction and signal-to-noise ratio based noise reduction techniques. Current methods use gain functions derived through mathematical optimization or motivated by normal listening psychoacoustic experiments. Although these gain functions have been able to improve speech perception, recent studies have indicated that they are not optimal for cochlear implant noise reduction. This study systematically investigates cochlear implant recipients' speech perception and listening preference of noise reduction with a range of gain functions. Results suggest an advantageous gain function and show that gain functions currently used for noise reduction are not optimal for cochlear implant recipients. Using the cochlear implant optimised gain function, a 27% improvement over the current advanced combination encoder (ACE) stimulation strategy in speech weighted noise and a 7% improvement over current noise reduction strategies were observed in babble noise conditions. The optimized gain function was also most preferred by cochlear implant recipients. The CI specific gain function derived from this study can be easily incorporated into existing noise reduction strategies, to further improve listening performance for CI recipients in challenging environments.

  16. Enhancing scatterometry CD signal-to-noise ratio for 1x logic and memory challenges

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Derrick; Krishnan, Shankar; Wei, Lanhua; Shchegrov, Andrei V.

    2013-04-01

    The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.

  17. Signal to noise ratio in water balance maps with different resolution

    NASA Astrophysics Data System (ADS)

    Yan, Ziqi; Gottschalk, Lars; Wang, Jianhua

    2016-12-01

    What is the best resolution of annual water balance maps for a correct balance between the basic spatial signal in the observations of precipitation, actual evapotranspiration and runoff across a larger drainage basin and the error in estimates for grid cells in the map to avoid giving a false impression of accuracy? To answer this question an approach based a signal to noise ratio is proposed, which allows finding the optimal resolution maximizing the signal in the map. The approach is demonstrated on gauge data in the Huai River Basin, China. Stochastic interpolation methods were applied to create grid maps of long-term mean values, as well as for estimating variances of the three water balance components in a range of scales from 5 × 5 km to 200 × 200 km2 grid cells. Interpolation algorithms using covariances of long-term means of data with different spatial support were developed. The identified optimal resolutions by the signal to noise ratio appeared to be very different - 10 × 10, 50 × 50, and 30 × 30 km2 for precipitation, actual evapotranspiration, and runoff, respectively. These values are directly linked to the observation network densities. The magnitude of the signal to noise ratio shows similar strong differences with values 34, 3.7, and 5.4, respectively. It gives a direct indication of the reliability of the map, which can be considered as satisfactory only for precipitation for the data available for the present study. The critical factors for this magnitude are parameters characterising the spatial covariance in data and the network density.

  18. Calculation of mutual information for nonlinear communication channel at large signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Terekhov, I. S.; Reznichenko, A. V.; Turitsyn, S. K.

    2016-10-01

    Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications—the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.

  19. Signal to Noise Ratio Estimations for a Volcanic ASH Detection Lidar. Case Study: The Met Office

    NASA Astrophysics Data System (ADS)

    Georgoussis, George; Adam, Mariana; Avdikos, George

    2016-06-01

    In this paper we calculate the Signal-to-Noise (SNR) ratio of a 3-channel commercial (Raymetics) volcanic ash detection system, (LR111-D300), already operating under Met Office organization. The methodology for the accurate estimation is presented for day and nighttime conditions. The results show that SNR values are higher than 10 for ranges up to 13 km for both nighttime and daytime conditions. This is a quite good result compared with other values presented in bibliography and proves that such system is able to detect volcanic ash over a range of 20 km.

  20. The concept of signal-to-noise ratio in the modulation domain and speech intelligibility.

    PubMed

    Dubbelboer, Finn; Houtgast, Tammo

    2008-12-01

    A new concept is proposed that relates to intelligibility of speech in noise. The concept combines traditional estimations of signal-to-noise ratios (S/N) with elements from the modulation transfer function model, which results in the definition of the signal-to-noise ratio in the modulation domain: the (SN)(mod). It is argued that this (SN)(mod), quantifying the strength of speech modulations relative to a floor of spurious modulations arising from the speech-noise interaction, is the key factor in relation to speech intelligibility. It is shown that, by using a specific test signal, the strength of these spurious modulations can be measured, allowing an estimation of the (SN)(mod) for various conditions of additive noise, noise suppression, and amplitude compression. By relating these results to intelligibility data for these same conditions, the relevance of the (SN)(mod) as the key factor underlying speech intelligibility is clearly illustrated. For instance, it is shown that the commonly observed limited effect of noise suppression on speech intelligibility is correctly "predicted" by the (SN)(mod), whereas traditional measures such as the speech transmission index, considering only the changes in the speech modulations, fall short in this respect. It is argued that (SN)(mod) may provide a relevant tool in the design of successful noise-suppression systems.

  1. Impact of amplitude jitter and signal-to-noise ratio on the nonlinear spectral compression in optical fibres

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Fatome, Julien; Finot, Christophe

    2017-04-01

    We numerically study the effects of amplitude fluctuations and signal-to-noise ratio degradation of the seed pulses on the spectral compression process arising from nonlinear propagation in an optical fibre. The unveiled quite good stability of the process against these pulse degradation factors is assessed in the context of optical regeneration of intensity-modulated signals, by combining nonlinear spectral compression with centered bandpass optical filtering. The results show that the proposed nonlinear processing scheme indeed achieves mitigation of the signal's amplitude noise. However, in the presence of a jitter of the temporal duration of the pulses, the performance of the device deteriorates. © 2016 Elsevier

  2. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz-1 cm-1). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep

  3. Worldwide Uncertainty Assessments of Ladar and Radar Signal-to-Noise Ratio Performance for Diverse Low Altitude Atmospheric Environments

    DTIC Science & Technology

    2009-05-01

    interrogation. Results are presented in the form of worldwide plots of notional signal to noise ratio. The ladar and 95 GHz system types exhibit similar SNR ...signal to noise ratio. The ladar and 95 GHz system types exhibit similar SNR performance for forward oblique clear air operation. 1.557 µm ladar...good to very good SNR performance for both oblique and vertical paths for both fog and stratus conditions. 1.1 HELEEOS Worldwide Seasonal, Diurnal

  4. Effects of Signal-to-Noise Ratio on Auditory Cortical Frequency Processing

    PubMed Central

    Teschner, Magnus J.; Seybold, Bryan A.; Malone, Brian J.; Hüning, Jana

    2016-01-01

    The neural mechanisms that support the robust processing of acoustic signals in the presence of background noise in the auditory system remain largely unresolved. Psychophysical experiments have shown that signal detection is influenced by the signal-to-noise ratio (SNR) and the overall stimulus level, but this relationship has not been fully characterized. We evaluated the neural representation of frequency in rat primary auditory cortex by constructing tonal frequency response areas (FRAs) in primary auditory cortex for different SNRs, tone levels, and noise levels. We show that response strength and selectivity for frequency and sound level depend on interactions between SNRs and tone levels. At low SNRs, jointly increasing the tone and noise levels reduced firing rates and narrowed FRA bandwidths; at higher SNRs, however, increasing the tone and noise levels increased firing rates and expanded bandwidths, as is usually seen for FRAs obtained without background noise. These changes in frequency and intensity tuning decreased tone level and tone frequency discriminability at low SNRs. By contrast, neither response onset latencies nor noise-driven steady-state firing rates meaningfully interacted with SNRs or overall sound levels. Speech detection performance in humans was also shown to depend on the interaction between overall sound level and SNR. Together, these results indicate that signal processing difficulties imposed by high noise levels are quite general and suggest that the neurophysiological changes we see for simple sounds generalize to more complex stimuli. SIGNIFICANCE STATEMENT Effective processing of sounds in background noise is an important feature of the mammalian auditory system and a necessary feature for successful hearing in many listening conditions. Even mild hearing loss strongly affects this ability in humans, seriously degrading the ability to communicate. The mechanisms involved in achieving high performance in background noise are not

  5. Effect of range sidelobe reduction on signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Prabhu, K. M. M.

    It is well-known that the matched-filter waveform associated with the linear FM pulse-compression signal essentially has a (sin x)/x shape, with time or range sidelobes extending on either side of the compressed pulse. These Doppler sidelobes may be partially controlled by varying the amplitudes of the pulses upon transmission and/or reception. However, this reduces the signal-to-noise ratio and range resolution under peak power limitation. In this paper, general expressions are given for the loss factor for the three cases considered and numerical results are presented for the physically realizable weighting functions having excellent characteristics. General weighting function data are also included.

  6. An Investigation of Preliminary Feature Screening Using Signal-To-Noise Ratios

    DTIC Science & Technology

    1996-03-01

    Aptovd kvpnk &󈧏’,e DEPARTMENT OF THE AIR FORCE AIR UNIVERSITYL) AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio AFIT/GOR...USING SIGNAL-TO-NOISE RATIOS THESIS Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air University...Variable 1 and Variable 2, and the second 60 0.7 0.6- 0.4 EU .0 0.4- 0 Epoc U) 0- 10 I N 1 10 r E 9- E-E E Epoch 151 0.8 0.7 w 0.4 S -I 0 2 0.3 o 0.2

  7. Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2014-08-01

    Geiger-mode avalanche photodiodes (GM-APDs) use the avalanche mechanism of semiconductors to amplify signals in individual pixels. With proper thresholding, a pixel will be either "on" (avalanching) or "off." This discrete detection scheme eliminates read noise, which makes these devices capable of counting single photons. Using these detectors for imaging applications requires a well-developed and comprehensive expression for the expected signal-to-noise ratio (SNR). This paper derives the expected SNR of a GM-APD detector in gated operation based on gate length, number of samples, signal flux, dark count rate, photon detection efficiency, and afterpulsing probability. To verify the theoretical results, carrier-level Monte Carlo simulation results are compared to the derived equations and found to be in good agreement.

  8. A complex symbol signal-to-noise ratio estimator and its performance

    NASA Technical Reports Server (NTRS)

    Feria, Y.

    1994-01-01

    This article presents an algorithm for estimating the signal-to-noise ratio (SNR) of signals that contain data on a downconverted suppressed carrier or the first harmonic of a square-wave subcarrier. This algorithm can be used to determine the performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-GHz) mission by measuring the input and output symbol SNR. A performance analysis of the algorithm shows that the estimator can estimate the complex symbol SNR using 10,000 symbols at a true symbol SNR of -5 dB with a mean of -4.9985 dB and a standard deviation of 0.2454 dB, and these analytical results are checked by simulations of 100 runs with a mean of -5.06 dB and a standard deviation of 0.2506 dB.

  9. Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy

    SciTech Connect

    Castello, Marco; Diaspro, Alberto; Vicidomini, Giuseppe

    2014-12-08

    Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated and experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution.

  10. Photoacoustic correlation signal-to-noise ratio enhancement by coherent averaging and optical waveform optimization.

    PubMed

    Telenkov, Sergey A; Alwi, Rudolf; Mandelis, Andreas

    2013-10-01

    Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q-switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be addressed if optical excitation is modulated using custom waveforms and correlation processing is employed to increase SNR through signal compression. This work investigates the effect of the parameters of the modulation waveform on the resulting correlation signal and offers a practical means for optimizing PA signal detection. The advantage of coherent signal averaging is demonstrated using theoretical analysis and a numerical model of PA generation. It was shown that an additional 5-10 dB of SNR can be gained through waveform engineering by adjusting the parameters and profile of optical modulation waveforms.

  11. Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations.

    PubMed

    Kamada, Keigo; Ito, Yosuke; Ichihara, Sunao; Mizutani, Natsuhiko; Kobayashi, Tetsuo

    2015-03-09

    In the field of biomagnetic measurement, optically-pumped atomic magnetometers (OPAMs) have attracted significant attention. With the improvement of signal response and the reduction of sensor noise, the sensitivity of OPAMs is limited mainly by environmental magnetic noise. To reduce this magnetic noise, we developed the optical gradiometer, in which the differential output of two distinct measurement areas inside a glass cell was obtained directly via the magneto-optical rotation of one probe beam. When operating in appropriate conditions, the sensitivity was improved by the differential measurement of the optical gradiometer. In addition, measurements of the pseudo-magnetic noise and signal showed the improvement of the signal-to-noise ratio. These results demonstrate the feasibility of our optical gradiometer as an efficient method for reducing the magnetic noise.

  12. Pilot Signal Design for Massive MIMO Systems: A Received Signal-To-Noise-Ratio-Based Approach

    NASA Astrophysics Data System (ADS)

    So, Jungho; Kim, Donggun; Lee, Yuni; Sung, Youngchul

    2015-05-01

    In this paper, the pilot signal design for massive MIMO systems to maximize the training-based received signal-to-noise ratio (SNR) is considered under two channel models: block Gauss-Markov and block independent and identically distributed (i.i.d.) channel models. First, it is shown that under the block Gauss-Markov channel model, the optimal pilot design problem reduces to a semi-definite programming (SDP) problem, which can be solved numerically by a standard convex optimization tool. Second, under the block i.i.d. channel model, an optimal solution is obtained in closed form. Numerical results show that the proposed method yields noticeably better performance than other existing pilot design methods in terms of received SNR.

  13. Degradation of signal-to-noise ratio due to amplitude distortion

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shahshahani, Mehrdad; Hurd, William J.

    1989-01-01

    The effect of filtering on the signal-to-noise ratio (SNR) of a coherently demodulated band-limited signal is determined in the presence of worst-case amplitude ripple. The problem is formulated as an optimizaton in the Hilbert space L2. The form of the worst-case amplitude ripple is specified, and the degradation in the SNR is derived in closed form. It is shown that, when the maximum passband amplitude ripple is 2Delta (peak-to-peak), the SNR is degraded by at most (1-Delta-squared), even when the ripple is unknown or uncompensated. For example, an SNR loss of less than 0.01 dB due to amplitude ripple can be assured by keeping the amplitude ripple under 0.42 dB.

  14. Possible breakthrough: Significant improvement of signal to noise ratio by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Kiss, L. B.

    1996-06-01

    The simplest stochastic resonator is used, a level crossing detector (LCD), to investigate key properties of stochastic resonance (SR). It is pointed out that successful signal processing and biological applications of SR require to work in the large signal limit (nonlinear transfer limit) which requires a completely new approach: wide band input signal and a new, generalised definition of output noise. The new way of approach is illustrated by a new arrangement. The arrangement employs a special LCD, white input noise and a special, large, subthreshold wide band signal. First time in the history of SR (for a wide band input noise), the signal to noise ratio becomes much higher at the output of a stochastic resonator than at its input. In that way, SR is proven to have a potential to improve signal transfer. Note, that the new arrangement seems to have resemblance to neurone models, therefore, it has a potential also for biological applications.

  15. A stochastic resonator is able to greatly improve signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Loerincz, K.; Gingl, Z.; Kiss, L. B.

    1996-02-01

    After a decade of doubts, for the first time in the history of stochastic resonance (SR), we demonstrate that a simple stochastic resonator does greatly improve the signal-to-noise ratio (SNR) of a periodic signal with additive Gaussian noise. The particular stochastic resonator is a level-crossing detector (LCD) driven by the sum of a periodic spike train signal and a band-limited Gaussian white noise. To reach the improvement of the SNR, the stochastic resonator has to work in the strongly nonlinear response limit and the noise has to have a high cut-off frequency compared to the reciprocal duration of the spikes. We demonstrate by analog and computer simulations that the SNR gain goes beyond four orders of magnitude at practical conditions. These findings get a particular importance due the fact that simplest neurone models behave very similarly to our arrangement, so the results might have direct applications in neural systems.

  16. The behavior of quantization spectra as a function of signal-to-noise ratio

    NASA Technical Reports Server (NTRS)

    Flanagan, M. J.

    1991-01-01

    An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.

  17. Signal processing considerations for low signal to noise ratio laser Doppler and phase Doppler signals

    NASA Technical Reports Server (NTRS)

    Ibrahim, K. M.; Wertheimer, G. D.; Bachalo, William D.

    1991-01-01

    The relative performance of current methods used for estimating the phase and the frequency in LDV and phase Doppler applications in low signal to noise ratio conditions is analyzed. These methods include the Fourier analysis and the correlation techniques. Three methods that use the correlation function for frequency and phase estimations are evaluated in terms of accuracy and speed of processing. These methods include: (1) the frequency estimation using zero crossings counting of the auto-correlation function, (2) the Blackman-Tukey method, and (3) the AutoRegressive method (AR). The relative performance of these methods is evaluated and compared with the Fourier analysis method which provides the optimum performance in terms of the Maximum Likelihood (ML) criteria.

  18. Attitude determination for small satellites using GPS signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Peters, Daniel

    An embedded system for GPS-based attitude determination (AD) using signal-to-noise (SNR) measurements was developed for CubeSat applications. The design serves as an evaluation testbed for conducting ground based experiments using various computational methods and antenna types to determine the optimum AD accuracy. Raw GPS data is also stored to non-volatile memory for downloading and post analysis. Two low-power microcontrollers are used for processing and to display information on a graphic screen for real-time performance evaluations. A new parallel inter-processor communication protocol was developed that is faster and uses less power than existing standard protocols. A shorted annular patch (SAP) antenna was fabricated for the initial ground-based AD experiments with the testbed. Static AD estimations with RMS errors in the range of 2.5° to 4.8° were achieved over a range of off-zenith attitudes.

  19. Measuring multielectron beam imaging fidelity with a signal-to-noise ratio analysis

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Bunday, Benjamin D.; Quoi, Kathy; Malloy, Matt; Thiel, Brad

    2016-07-01

    Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with the ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for an aggressively scaled FinFET-type design. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure, the effect of detection chain noise and frequency-dependent system response can be made, allowing for targeting of best recipe parameters for multielectron beam inspection validation experiments. Ultimately, these results should lead to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing.

  20. Phenomenology of amplitude-corrected post-Newtonian gravitational waveforms for compact binary inspiral: I. Signal-to-noise ratios

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, Chris; Sengupta, Anand S.

    2007-01-01

    We study the phenomenological consequences of amplitude-corrected post-Newtonian (PN) gravitational waveforms, as opposed to the more commonly used restricted PN waveforms, for the quasi-circular, adiabatic inspiral of compact binary objects. In the case of initial detectors it has been shown that the use of amplitude-corrected waveforms for detection templates would lead to significantly lower signal-to-noise ratios (SNRs) than those suggested by simulations based exclusively on restricted waveforms. We further elucidate the origin of the effect by an in-depth analytic treatment. The discussion is extended to advanced detectors, where new features emerge. Non-restricted waveforms are linear combinations of harmonics in the orbital phase, and in the frequency domain the kth harmonic is cut off at kfLSO, with fLSO the orbital frequency at the last stable orbit. As a result, with non-restricted templates it is possible to achieve sizeable signal-to-noise ratios in cases where the dominant harmonic (which is the one at twice the orbital phase) does not enter the detector's bandwidth. This will have important repercussions on the detection of binary inspirals involving intermediate-mass black holes. For sources at a distance of 100 Mpc, taking into account the higher harmonics will double the mass reach of Advanced LIGO, and that of EGO gets tripled. Conservative estimates indicate that the restricted waveforms underestimate detection rates for intermediate mass binary inspirals by at least a factor of 20.

  1. Analog-digital conversion signal-to-noise ratio analysis for synthetic aperture interferometric radiometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Li, Zhiping; Zheng, Cheng; Yao, Xianxun; Yang, Baohua; Shang, Xiaozhou; Miao, Jungang

    2014-01-01

    A nontrivial analog-digital conversion (ADC) signal-to-noise ratio (SNR) analysis for synthetic aperture interferometric radiometers for microwave remote sensing is presented. Correlation uncertainty is a key issue in the digital processing of radiometric signals. The ADC digitizes the analog intermediate frequency signal to perform digital correlations, hence the ADC noise is critical for radiometric performance, but this effect has lacked sufficient analysis. First, the ADC SNR requirement is drawn, and ADC SNR degradation is attributed to input noise, quantization noise, and sampling jitter. Second, it is proved that the input and the quantization noise have negligible effects on visibility uncertainty. Third, it is shown that the sampling jitter should be stringently controlled by Gaussian noise digitization SNR requirement. The sampling clock jitter is the dominant contributor in jitter caused SNR, and is evaluated by the long-term statistical time interval error jitter. Finally, the sampling jitter, the realized ADC SNR ratio and visibility uncertainties are tested on BHU-2D-U radiometer to verify the demonstrations. The analysis results can be used as a guideline in the digital correlation design of polarimetric or synthetic aperture radiometric systems.

  2. Normal-hearing listener preferences of music as a function of signal-to-noise-ratio

    NASA Astrophysics Data System (ADS)

    Barrett, Jillian G.

    2005-04-01

    Optimal signal-to-noise ratios (SNR) for speech discrimination are well-known, well-documented phenomena. Discrimination preferences and functions have been studied for both normal-hearing and hard-of-hearing populations, and information from these studies has provided clearer indices on additional factors affecting speech discrimination ability and SNR preferences. This knowledge lends itself to improvements in hearing aids and amplification devices, telephones, television and radio transmissions, and a wide arena of recorded media such as movies and music. This investigation was designed to identify the preferred signal-to-background ratio (SBR) of normal-hearing listeners in a musical setting. The signal was the singer's voice, and music was considered the background. Subjects listened to an unfamiliar ballad with a female singer, and rated seven different SBR treatments. When listening to melodic motifs with linguistic content, results indicated subjects preferred SBRs similar to those in conventional speech discrimination applications. However, unlike traditional speech discrimination studies, subjects did not prefer increased levels of SBR. Additionally, subjects had a much larger acceptable range of SBR in melodic motifs where the singer's voice was not intended to communicate via linguistic means, but by the pseudo-paralinguistic means of vocal timbre and harmonic arrangements. Results indicate further studies investigating perception of singing are warranted.

  3. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  4. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Ji, Lei; Zhang, Li; Rover, Jennifer; Wylie, Bruce K.; Chen, Xuexia

    2014-10-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  5. Discretization in time gives rise to noise-induced improvement of the signal-to-noise ratio in static nonlinearities

    NASA Astrophysics Data System (ADS)

    Davidović, A.; Huntington, E. H.; Frater, M. R.

    2009-07-01

    For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-induced performance improvement occurs in those systems as a consequence of discretization in time with the achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental results bring closer two different theoretical models for the same class of nonlinearities and shed light on the behavior of static nonlinear discrete-time systems.

  6. Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography.

    PubMed

    Goldenholz, Daniel M; Ahlfors, Seppo P; Hämäläinen, Matti S; Sharon, Dahlia; Ishitobi, Mamiko; Vaina, Lucia M; Stufflebeam, Steven M

    2009-04-01

    Although magnetoencephalography (MEG) and electroencephalography (EEG) have been available for decades, their relative merits are still debated. We examined regional differences in signal-to-noise-ratios (SNRs) of cortical sources in MEG and EEG. Data from four subjects were used to simulate focal and extended sources located on the cortical surface reconstructed from high-resolution magnetic resonance images. The SNR maps for MEG and EEG were found to be complementary. The SNR of deep sources was larger in EEG than in MEG, whereas the opposite was typically the case for superficial sources. Overall, the SNR maps were more uniform for EEG than for MEG. When using a noise model based on uniformly distributed random sources on the cortex, the SNR in MEG was found to be underestimated, compared with the maps obtained with noise estimated from actual recorded MEG and EEG data. With extended sources, the total area of cortex in which the SNR was higher in EEG than in MEG was larger than with focal sources. Clinically, SNR maps in a patient explained differential sensitivity of MEG and EEG in detecting epileptic activity. Our results emphasize the benefits of recording MEG and EEG simultaneously.

  7. Mapping the Signal-To-Noise-Ratios of Cortical Sources in Magnetoencephalography and Electroencephalography

    PubMed Central

    Goldenholz, Daniel M.; Ahlfors, Seppo P.; Hämäläinen, Matti S.; Sharon, Dahlia; Ishitobi, Mamiko; Vaina, Lucia M.; Stufflebeam, Steven M.

    2010-01-01

    Although magnetoencephalography (MEG) and electroencephalography (EEG) have been available for decades, their relative merits are still debated. We examined regional differences in signal-to-noise-ratios (SNRs) of cortical sources in MEG and EEG. Data from four subjects were used to simulate focal and extended sources located on the cortical surface reconstructed from high-resolution magnetic resonance images. The SNR maps for MEG and EEG were found to be complementary. The SNR of deep sources was larger in EEG than in MEG, whereas the opposite was typically the case for superficial sources. Overall, the SNR maps were more uniform for EEG than for MEG. When using a noise model based on uniformly distributed random sources on the cortex, the SNR in MEG was found to be underestimated, compared with the maps obtained with noise estimated from actual recorded MEG and EEG data. With extended sources, the total area of cortex in which the SNR was higher in EEG than in MEG was larger than with focal sources. Clinically, SNR maps in a patient explained differential sensitivity of MEG and EEG in detecting epileptic activity. Our results emphasize the benefits of recording MEG and EEG simultaneously. PMID:18465745

  8. Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors

    SciTech Connect

    Jain, Ankit; Alam, Muhammad Ashraful

    2014-08-25

    A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

  9. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    SciTech Connect

    Liu, Jinzhen; Li, Gang; Lin, Ling; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  10. Signal-to-noise ratio adaptive post-filtering method for intelligibility enhancement of telephone speech.

    PubMed

    Jokinen, Emma; Yrttiaho, Santeri; Pulakka, Hannu; Vainio, Martti; Alku, Paavo

    2012-12-01

    Post-filtering can be utilized to improve the quality and intelligibility of telephone speech. Previous studies have shown that energy reallocation with a high-pass type filter works effectively in improving the intelligibility of speech in difficult noise conditions. The present study introduces a signal-to-noise ratio adaptive post-filtering method that utilizes energy reallocation to transfer energy from the first formant to higher frequencies. The proposed method adapts to the level of the background noise so that, in favorable noise conditions, the post-filter has a flat frequency response and the effect of the post-filtering is increased as the level of the ambient noise increases. The performance of the proposed method is compared with a similar post-filtering algorithm and unprocessed speech in subjective listening tests which evaluate both intelligibility and listener preference. The results indicate that both of the post-filtering methods maintain the quality of speech in negligible noise conditions and are able to provide intelligibility improvement over unprocessed speech in adverse noise conditions. Furthermore, the proposed post-filtering algorithm performs better than the other post-filtering method under evaluation in moderate to difficult noise conditions, where intelligibility improvement is mostly required.

  11. Local Area Signal-to-Noise Ratio (LASNR) algorithm for Image Segmentation

    SciTech Connect

    Kegelmeyer, L; Fong, P; Glenn, S; Liebman, J

    2007-07-03

    Many automated image-based applications have need of finding small spots in a variably noisy image. For humans, it is relatively easy to distinguish objects from local surroundings no matter what else may be in the image. We attempt to capture this distinguishing capability computationally by calculating a measurement that estimates the strength of signal within an object versus the noise in its local neighborhood. First, we hypothesize various sizes for the object and corresponding background areas. Then, we compute the Local Area Signal to Noise Ratio (LASNR) at every pixel in the image, resulting in a new image with LASNR values for each pixel. All pixels exceeding a pre-selected LASNR value become seed pixels, or initiation points, and are grown to include the full area extent of the object. Since growing the seed is a separate operation from finding the seed, each object can be any size and shape. Thus, the overall process is a 2-stage segmentation method that first finds object seeds and then grows them to find the full extent of the object. This algorithm was designed, optimized and is in daily use for the accurate and rapid inspection of optics from a large laser system (National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA), which includes images with background noise, ghost reflections, different illumination and other sources of variation.

  12. Paradoxical Effect of the Signal-to-Noise Ratio of GRAPPA Calibration Lines: A Quantitative Study

    PubMed Central

    Ding, Yu; Xue, Hui; Ahmad, Rizwan; Chang, Ti-chiun; Ting, Samuel T.; Simonetti, Orlando P.

    2015-01-01

    Purpose Intuitively, GRAPPA auto-calibration signal (ACS) lines with higher signal-to-noise ratio (SNR) may be expected to boost the accuracy of kernel estimation and increase the SNR of GRAPPA reconstructed images. Paradoxically, Sodickson and his colleagues pointed out that using ACS lines with high SNR may actually lead to lower SNR in the GRAPPA reconstructed images. A quantitative study of how the noise in the ACS lines affects the SNR of the GRAPPA reconstructed images is presented. Methods In a phantom, the singular values of the GRAPPA encoding matrix and the root-mean-square error of GRAPPA reconstruction were evaluated using multiple sets of ACS lines with variant SNR. In volunteers, ACS lines with high and low SNR were estimated, and the SNR of corresponding TGRAPPA reconstructed images was evaluated. Results We show that the condition number of the GRAPPA kernel estimation equations is proportional to the SNR of the ACS lines. In dynamic image series reconstructed with TGRAPPA, high SNR ACS lines result in reduced SNR if appropriate regularization is not applied. Conclusion Noise has a similar effect to Tikhonov regularization. Without appropriate regularization, a GRAPPA kernel estimated from ACS lines with higher SNR amplifies random noise in the GRAPPA reconstruction. PMID:25078425

  13. Estimating the image spectrum signal-to-noise ratio for imaging through scattering media

    NASA Astrophysics Data System (ADS)

    Hanafy, Mohamed E.; Roggemann, Michael C.; Guney, Durdu O.

    2015-01-01

    The image spectrum signal-to-noise ratio (SNR) provides a means of estimating the noise effective spatial resolution of an imaging system and a means of estimating the highest spatial frequency which can be reconstructed with a postdetection image reconstruction algorithm. Previous work has addressed the effects of aerosol scattering on the overall point spread function (PSF). Here, we seek to extend these results to also account for the effects of measurement noise and to then estimate the noise effective resolution of the system, which accounts for scattering effects on the PSF and measurement noise in the detector. We use a previously published approach to estimating the effective PSF and radiometric calculations to estimate the mean numbers of direct and scattered photons detected by an imaging system due to reflected radiation in the visible and near-infrared, and emitted radiation in mid-infrared (MIR) band, for a horizontal near-ground imaging scenario. The analysis of the image spectrum SNR presented here shows a reduction in the value of noise effective cutoff spatial frequency for images taken through fog aerosol media, and hence emphasizes the degrading effect of fog aerosol models on the spatial resolution of imaging systems.

  14. Post-embedding tem signal-to-noise ratio of S-100

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Lee, D. H.; Martin, D.

    1994-01-01

    We assessed the reactivity of purified S-100 antiserum in immuno-electron microscopy by counting the number of gold particles per microns 2 over inner ear tissues embedded in different media. Sections containing predominantly Schwann's cell cytoplasm and nucleus, afferent fiber axoplasm and myelin sheath of chick cochleae were reacted with anti-S-100 IgG, an antibody to a calcium binding protein of neuronal tissues, then labeled with anti-IgG-gold conjugate. This investigation was conducted because previously published procedures, unmodified, did not yield acceptable results. Preparation of all specimens was identical. Only the medium (PolyBed 812, Araldite or Spurr epoxies; and LR White, LR Gold or Lowicryl plastics) was changed. The medium was made the changing variable because antigens available in post-embedding immuno-electron microscopy are decreased by heat, either used and/or released during polymerization of the embedding medium. The results indicate that: (a) none of the embedding media above provided optimal signal-to-noise ratio for all parts of the nerve stained in the same section; (b) aggregation of gold particles over cells was highest in embedding media with high background labeling over areas devoid of tissue (noise); (c) aggregation occurred randomly throughout both cellular and acellular regions; and (d) particles aggregated less and were distributed more evenly in tissues from media yielding good ultrastructural integrity.

  15. Threshold value for acceptable video quality using signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Vaahteranoksa, Mikko; Vuori, Tero

    2007-01-01

    Noise decreases video quality considerably, particularly in dark environments. In a video clip, noise can be seen as an unwanted spatial or temporal variation in pixel values. The object of the study was to find a threshold value for signal-to-noise ratio (SNR) in which the video quality is perceived to be good enough. Different illumination levels for video shooting were studied using both subjective and objective (SNR measurements) methodologies. Five camcorders were selected to cover different sensor technologies, recording formats and price categories. The test material for the subjective test was recorded in an environment simulator, where it was possible to adjust lighting levels. Double staircase test was used as the subjective test method. The test videos for objective measurements were recorded using an ISO 15739 based environment. There was a correlation found between objective and subjective measurements, between measured SNR and perceived quality. Good enough video quality was reached between SNR values of 15.3 dB and 17.2 dB. With 3CCD and super HAD-CCD technologies, video quality was brighter, less noisy, and the SNR was better in low light conditions compared to the quality with conventional CCDs.

  16. Downhole microseismic monitoring for low signal-to-noise ratio events

    NASA Astrophysics Data System (ADS)

    Zhou, Hang; Zhang, Wei; Zhang, Jie

    2016-10-01

    Microseismic monitoring plays an important role in the process of hydraulic fracturing for shale gas/oil production. The accuracy of event location is an essential issue in microseismic monitoring. The data obtained from downhole monitoring system usually show a higher signal-to-noise ratio (SNR) than the recorded data from the surface. For small microseismic events, however, P waves recorded in a downhole array may be very weak, while S waves are generally dominant and strong. Numerical experiments suggest that inverting S-wave arrival times alone is not sufficient to constrain event locations. In this study, we perform extensive location tests with various noise effects using a grid search method that matches the travel time data of the S wave across a recording array. We conclude that fitting S-wave travel time data along with at least one P-wave travel time of the same event can significantly improve location accuracy. In practice, picking S-wave arrival time data and at least one P-wave pick is possible for many small events. We demonstrate that fitting the combination of the travel time data is a robust approach, which can help increase the number of microseismic events to be located accurately during hydraulic fracturing.

  17. A method to analyze low signal-to-noise ratio functional magnetic resonance imaging data.

    PubMed

    Zhu, Xi; Kayali, M Amin; Jansen, Ben H

    2015-09-01

    The current practice of using a single, representative hemodynamic response function (canonical HRF) to model functional magnetic resonance imaging (fMRI) data is questionable given the trial-to-trial variability of the brain's responses. In addition, the changes in blood-oxygenation level due to sensory stimulation may be small, especially when auditory stimuli are used. Here we introduce a correlation-based single trial analysis method for fMRI data analysis to deal with the low signal-to-noise (SNR) ratio and variability of the HRF in response to repeated, identical auditory stimuli. The correlation technique identifies the "active" trials, i.e., those showing a robust hemodynamic response among all single trials. Using data collected from 14 healthy subjects, it was found that the correlation method can find significant differences between brain areas and brain states in actual fMRI data. Also, the correlation-based method confirmed that the superior temporal gyrus (STG), inferior frontal gyrus (IFG), dorsolateral prefrontal cortex (DLPFC) and thalamus (THA) are involved in auditory information processing in general, and the involvement of the bilateral STG, right THA and left DLPFC in sensory gating. In contrast, conventional analysis failed to find any regions involved in sensory gating. The findings suggest that our single trial analysis method can increase the sensitivity of fMRI data analysis.

  18. Dye screening and signal-to-noise ratio for retrogradely transported voltage-sensitive dyes.

    PubMed

    Tsau, Y; Wenner, P; O'Donovan, M J; Cohen, L B; Loew, L M; Wuskell, J P

    1996-12-28

    Using a novel method for retrogradely labeling specific neuronal populations, we tested different styryl dyes in attempt to find dyes whose staining would be specific, rapid, and lead to large activity dependent signals. The dyes were injected into the ventral roots of the isolated chick spinal cord from embryos at days E9-E12. The voltage-sensitive dye signals were recorded from synaptically activated motoneurons using a 464 element photodiode array. The best labeling and optical signals were obtained using the relatively hydrophobic dyes di-8-ANEPPQ and di-12-ANEPEQ. Over the 24 h period we examined, these dyes bound specifically to the cells with axons in the ventral roots. The dyes responded with an increase in fluorescence of 1-3% (delta F/F) in response to synaptic depolarization of the motoneurons. The signal-to-noise ratio obtained in a single trial from a detector that received light from a 14 x 14 microns2 area of the motoneuron population was about 10:1. Nonetheless, signals on neighboring diodes were similar, suggesting that we were not detecting the activity of individual neurons. Retrograde labeling and optical recording with voltage-sensitive dyes provides a means for monitoring the activity of identified neurons in situations where microelectrode recordings are not feasible.

  19. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  20. Modeling the effects of distortion, contrast, and signal-to-noise ratio on stereophotogrammetric range mapping

    NASA Astrophysics Data System (ADS)

    Sellar, R. Glenn; Deen, Robert G.; Huffman, William C.; Willson, Reginald G.

    2016-09-01

    Stereophotogrammetry typically employs a pair of cameras, or a single moving camera, to acquire pairs of images from different camera positions, in order to create a three dimensional `range map' of the area being observed. Applications of this technique for building three-dimensional shape models include aerial surveying, remote sensing, machine vision, and robotics. Factors that would be expected to affect the quality of the range maps include the projection function (distortion) of the lenses and the contrast (modulation) and signal-to-noise ratio (SNR) of the acquired image pairs. Basic models of the precision with which the range can be measured assume a pinhole-camera model of the geometry, i.e. that the lenses provide perspective projection with zero distortion. Very-wide-angle or `fisheye' lenses, however (for e.g. those used by robotic vehicles) typically exhibit projection functions that differ significantly from this assumption. To predict the stereophotogrammetric range precision for such applications, we extend the model to the case of an equidistant lens projection function suitable for a very-wide-angle lens. To predict the effects of contrast and SNR on range precision, we perform numerical simulations using stereo image pairs acquired by a stereo camera pair on NASA's Mars rover Curiosity. Contrast is degraded and noise is added to these data in a controlled fashion and the effects on the quality of the resulting range maps are assessed.

  1. Signal to noise ratio analysis of maximum length sequence deconvolution of overlapping evoked potentials.

    PubMed

    Bohórquez, Jorge; Ozdamar, Ozcan

    2006-05-01

    In this study a general formula for the signal to noise ratio (SNR) of the maximum length sequence (MLS) deconvolution averaging is developed using the frequency domain framework of the generalized continuous loop averaging deconvolution procedure [Ozdamar and Bohórquez, J. Acoust. Soc. Am. 119, 429-438 (2006)]. This formulation takes advantage of the well known equivalency of energies in the time and frequency domains (Parseval's theorem) to show that in MLS deconvolution, SNR increases with the square root of half of the number of stimuli in the sweep. This increase is less than that of conventional averaging which is the square root of the number of sweeps averaged. Unlike arbitrary stimulus sequences that can attenuate or amplify phase unlocked noise depending on the frequency characteristics, the MLS deconvolution attenuates noise in all frequencies consistently. Furthermore, MLS and its zero-padded variations present optimal attenuation of noise at all frequencies yet they present a highly jittered stimulus sequence. In real recordings of evoked potentials, the time advantage gained by noise attenuation could be lost by the signal amplitude attenuation due to neural adaptation at high stimulus rates.

  2. Coherent dual-comb spectroscopy at high signal-to-noise ratio

    SciTech Connect

    Coddington, I.; Swann, W. C.; Newbury, N. R.

    2010-10-15

    Two coherent frequency combs are used to measure the full complex response of a sample in a configuration analogous to a dispersive Fourier transform spectrometer, infrared time domain spectrometer, or a multiheterodyne laser spectrometer. This dual-comb spectrometer retains the frequency accuracy and resolution of the reference underlying the stabilized combs. We discuss the specific design of our coherent dual-comb spectrometer and demonstrate the potential of this technique by measuring the overtone vibration of hydrogen cyanide, centered at 194 THz (1545 nm). We measure the fully normalized, complex response of the gas over a 9 THz bandwidth at 220 MHz frequency resolution yielding 41,000 resolution elements. The average spectral signal-to-noise ratio (SNR) over the 9 THz bandwidth is 2500 for both the magnitude and phase of the measured spectral response and the peak SNR is 4000. This peak SNR corresponds to a fractional absorption sensitivity of 0.05% and a phase sensitivity of 250 microradians. As the spectral coverage of combs expands, coherent dual-comb spectroscopy could provide high-frequency accuracy and resolution measurements of a complex sample response across a range of spectral regions. Work of U. S. government, not subject to copyright.

  3. Optimizing the Intrinsic Signal-to-Noise Ratio of MRI Strip Detectors

    PubMed Central

    Kumar, Ananda; Bottomley, Paul A.

    2007-01-01

    An MRI detector is formed from a conducting strip separated by a dielectric substrate from a ground plane, and tuned to a quarter-wavelength. By distributing discrete tuning elements along the strip, the geometric design may be adjusted to optimize the signal-to-noise ratio (SNR) for a given application. Here a numerical electromagnetic (EM) method of moments (MoM) is applied to determine the length, width, substrate thickness, dielectric constant, and number of tuning elements that yield the best intrinsic SNR (ISNR) of the strip detector at 1.5 Tesla. The central question of how strip performance compares with that of a conventional optimized loop coil is also addressed. The numerical method is validated against the known ISNR performance of loop coils, and its ability to predict the tuning capacitances and performance of seven experimental strip detectors of varying length, width, substrate thickness, and dielectric constant. We find that strip detectors with low-dielectric constant, moderately thin-substrate, and length about 1.3 (±0.2) times the depth of interest perform best. The ISNR of strips is comparable to that of loops (i.e., higher close to the detector but lower at depth). The SNR improves with two inherently-decoupled strips, whose sensitivity profile is well-suited to parallel MRI. The findings are summarized as design “rules of thumb.” PMID:16724302

  4. Measurement and study on signal-to-noise ratio of a spaceborne camera

    NASA Astrophysics Data System (ADS)

    Chen, Yuheng; Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2011-11-01

    The developed spaceborne camera is an exclusive functional load of a micro satellite. The signal-to-noise ratio (SNR) reflects its radiance response and is the parameter that directly associates with the quality of its acquired images. The SNR determination task of the spaceborne camera mainly consists of two parts: As is reported before firstly the spatial environment is simulated and the atmosphere transmission mode is built with MODTRAN to calculate and predict the SNR of the speceborne camera under aerial working condition. In this paper, the in-lab measuring experiment is carried out to measure the theoretical imaging performance of the camera before its aerial use. An integrating sphere is utilized to supply well-proportioned illumination, and a number of images are acquired by the spaceborne camera under different luminance conditions. The images are processed in use of certain algorithm and a special filter to extract the noise. The SNRs corresponding to different illumination conditions are calculated so that full-scale radiance response feature of the camera can be gained. The dynamic range is another parameter that characterizes the imaging capacity of a camera. The relationship between dynamic range and SNR of a camera is to be explored in this paper. Different dynamic configurations are set and the SNRs of different dynamic range configurations are tested, which experimentally reveals the dynamic range's influence on SNR.

  5. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation.

    PubMed

    Chen, Shuo; Lin, Xiaoqian; Yuen, Clement; Padmanabhan, Saraswathi; Beuerman, Roger W; Liu, Quan

    2014-05-19

    Raman spectroscopy is a powerful non-destructive technique for qualitatively and quantitatively characterizing materials. However, noise often obscures interesting Raman peaks due to the inherently weak Raman signal, especially in biological samples. In this study, we develop a method based on spectral reconstruction to recover Raman spectra with low signal-to-noise ratio (SNR). The synthesis of narrow-band measurements from low-SNR Raman spectra eliminates the effect of noise by integrating the Raman signal along the wavenumber dimension, which is followed by spectral reconstruction based on Wiener estimation to recover the Raman spectrum with high spectral resolution. Non-negative principal components based filters are used in the synthesis to ensure that most variance contained in the original Raman measurements are retained. A total of 25 agar phantoms and 20 bacteria samples were measured and data were used to validate our method. Four commonly used de-noising methods in Raman spectroscopy, i.e. Savitzky-Golay (SG) algorithm, finite impulse response (FIR) filtration, wavelet transform and factor analysis, were also evaluated on the same set of data in addition to the proposed method for comparison. The proposed method showed the superior accuracy in the recovery of Raman spectra from measurements with extremely low SNR, compared with the four commonly used de-noising methods.

  6. Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm

    USGS Publications Warehouse

    Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.H.; Gorelick, N.S.

    2003-01-01

    Estimates of spectrometer band pass, sampling interval, and signal-to-noise ratio required for identification of pure minerals and plants were derived using reflectance spectra convolved to AVIRIS, HYDICE, MIVIS, VIMS, and other imaging spectrometers. For each spectral simulation, various levels of random noise were added to the reflectance spectra after convolution, and then each was analyzed with the Tetracorder spectra identification algorithm [Clark et al., 2003]. The outcome of each identification attempt was tabulated to provide an estimate of the signal-to-noise ratio at which a given percentage of the noisy spectra were identified correctly. Results show that spectral identification is most sensitive to the signal-to-noise ratio at narrow sampling interval values but is more sensitive to the sampling interval itself at broad sampling interval values because of spectral aliasing, a condition when absorption features of different materials can resemble one another. The band pass is less critical to spectral identification than the sampling interval or signal-to-noise ratio because broadening the band pass does not induce spectral aliasing. These conclusions are empirically corroborated by analysis of mineral maps of AVIRIS data collected at Cuprite, Nevada, between 1990 and 1995, a period during which the sensor signal-to-noise ratio increased up to sixfold. There are values of spectrometer sampling and band pass beyond which spectral identification of materials will require an abrupt increase in sensor signal-to-noise ratio due to the effects of spectral aliasing. Factors that control this threshold are the uniqueness of a material's diagnostic absorptions in terms of shape and wavelength isolation, and the spectral diversity of the materials found in nature and in the spectral library used for comparison. Array spectrometers provide the best data for identification when they critically sample spectra. The sampling interval should not be broadened to

  7. Improvement of the signal-to-noise ratio in static-mode down-looking synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyong; Sun, Jianfeng; Zhang, Ning; Zhou, Yu; Cai, Guangyu; Liu, Liren

    2015-09-01

    The static-mode down-looking synthetic aperture imaging ladar (SAIL) can keep the target and carrying-platform still during the collection process. Improvement of the signal-to-noise ratio in static-mode down-looking SAIL is investigated. The signal-to-noise ratio is improved by increasing scanning time and sampling rate in static-mode down-looking SAIL. In the experiment, the targets are reconstructed in different scanning time and different sampling rate. As the increasing of the scanning time and sampling rate, the reconstructed images become clearer. These techniques have a great potential for applications in extensive synthetic aperture imaging ladar fields.

  8. Resolution and signal-to-noise ratio improvement in confocal fluorescence microscopy using array detection and maximum-likelihood processing

    NASA Astrophysics Data System (ADS)

    Kakade, Rohan; Walker, John G.; Phillips, Andrew J.

    2016-08-01

    Confocal fluorescence microscopy (CFM) is widely used in biological sciences because of its enhanced 3D resolution that allows image sectioning and removal of out-of-focus blur. This is achieved by rejection of the light outside a detection pinhole in a plane confocal with the illuminated object. In this paper, an alternative detection arrangement is examined in which the entire detection/image plane is recorded using an array detector rather than a pinhole detector. Using this recorded data an attempt is then made to recover the object from the whole set of recorded photon array data; in this paper maximum-likelihood estimation has been applied. The recovered object estimates are shown (through computer simulation) to have good resolution, image sectioning and signal-to-noise ratio compared with conventional pinhole CFM images.

  9. Wide-angle narrow-bandpass optical detection system optimally designed to have a large signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Schweitzer, Naftali; Arieli, Yoel

    2000-02-01

    A method for achieving optimal design of a wide-angle narrow-bandpass optical detection system composed of a spherical interference filter and a circular photodetector is introduced. It was found that there is an optimal photodetector diameter that maximizes the signal-to-noise ratio (SNR) for a given filter configuration. We show how to optimize optical detection systems based on spherical interference filters for all the important parameters simultaneously. The SNR values of these systems are compared with the SNR values of spherical-step-filter-based detection systems. When large silicon photodetectors are used, the two systems have equal SNR values so that the more economical step-filter systems are preferable. The results given here in the near-infrared region can be used for the optimization of any configuration of a detection system based on a spherical interference filter and a silicon photodetector working at the same wavelength range, without further calculations.

  10. Performance of signal-to-noise ratio estimation for scanning electron microscope using autocorrelation Levinson-Durbin recursion model.

    PubMed

    Sim, K S; Lim, M S; Yeap, Z X

    2016-07-01

    A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation.

  11. Optimization of polarizer azimuth in improving signal-to-noise ratio in Kerr microscopy.

    PubMed

    Wang, X; Lian, J; Xu, X J; Li, X; Li, P; Li, M M; Wang, Y; Liu, Y X

    2016-03-01

    The magneto optical Kerr effect (MOKE) is a widely used technique in magnetic domain imaging for its high surface sensitivity and external magnetic compatibility. Optimization of Kerr microscopy will improve the detecting sensitivity and provide high-quality domain images. In this work, we provide a method to optimize the polarizer azimuth in improving the signal-to-noise ratio (S/N) in longitudinal Kerr microscopy with the generalized magneto optical ellipsometry. Detailed analysis of the MOKE signal and the noise components are provided to study the optimum polarizer and analyzer azimuth combinations. Results show that, for a fixed polarizer angle 1°, the laser intensity noise and the shot noise, which vary with the input laser power, have a similar amplitude and decline with the analyzer azimuth increasing. When the analyzer is set at the extinction place, the Johnson noise plays a dominate role in the total noise. Then, the S/N values are calculated to find the optimum polarizer and analyzer azimuth. Results show that the optimum polarizer and analyzer azimuth combination for Permalloy is (18.35°, 68.35°) under an incident angle of 45°. After that, the S/N of 200 nm Permalloy at different analyzer angles with the polarizer azimuth set at 18.35° is measured to verify the validity of the simulation results. At last, the S/N at different incident angles is calculated. Results show that the optimum incident angle of 200 nm Permalloy film to improve the S/N is 70.35° under the polarizer and analyzer angles set at the optimal combinations (18.35°, 68.35°).

  12. Kalman Filters in Improving the Signal to Noise Ratio of Full Tensor Gravity Gradiometry Data

    NASA Astrophysics Data System (ADS)

    Sepehrmanesh, M.; Ravat, D.

    2014-12-01

    We have applied several extensions and optimal smoothing approaches of the Kalman filter, one of the best known recursive data processing techniques, on the Full Tensor Gradiometry (FTG) data acquired by Bell Geospace over the Vinton salt dome located in southwest Louisiana. We used the filter to improve the signal-to-noise ratio of gravity gradiometry components. We tested the standard Kalman filter and Fading memory and Constrained Kalman filter extensions with Fixed-lag and Forward-Backward smoothing methods to maintain symmetry. Our most meaningful results were obtained through the Kalman filter with the constraint of Laplace's equation combined with the Forward-Backward filter operations. Laplace's equation constraint was incorporated using two separate strategies: Model reduction and Perfect constraint (or Perfect measurement). In general, Kalman filter processed data have greater dynamic range than previously filtered data and also have the ability to extract signal from noisy data without having to remove a band of wavenumbers. In addition, our constrained Kalman filter also has the ability to force the Laplace's equation constraint. These characteristics enable the Kalman filter to investigate short wavelength signals associated with near-surface lateral density variations. In analyzing two dimensional maps for geologic variations, our workflow includes leveling and decorrugation, both procedures necessary for data processed along profiles. Several previously mapped near-subsurface geologic features like faults and their continuity in the Vinton dome area are more readily apparent in our Kalman filter processed components. Since the processed data generally agree with the previously mapped and interpreted structures, the interpretation could be extended to previously unmapped areas. The use of Kalman filtering in combination with Laplace's equation in applications such as gravity and magnetic gradiometry could be useful in determining more precisely the

  13. Signal-to-Noise Ratio Analysis of a Phase-Sensitive Voltmeter for Electrical Impedance Tomography.

    PubMed

    Murphy, Ethan K; Takhti, Mohammad; Skinner, Joseph; Halter, Ryan J; Odame, Kofi

    2017-04-01

    In this paper, thorough analysis along with mathematical derivations of the matched filter for a voltmeter used in electrical impedance tomography systems are presented. The effect of the random noise in the system prior to the matched filter, generated by other components, are considered. Employing the presented equations allow system/circuit designers to find the maximum tolerable noise prior to the matched filter that leads to the target signal-to-noise ratio (SNR) of the voltmeter, without having to over-design internal components. A practical model was developed that should fall within 2 dB and 5 dB of the median SNR measurements of signal amplitude and phase, respectively. In order to validate our claims, simulation and experimental measurements have been performed with an analog-to-digital converter (ADC) followed by a digital matched filter, while the noise of the whole system was modeled as the input referred at the ADC input. The input signal was contaminated by a known value of additive white Gaussian noise (AWGN) noise, and the noise level was swept from 3% to 75% of the least significant bit (LSB) of the ADC. Differences between experimental and both simulated and analytical SNR values were less than 0.59 and 0.35 dB for RMS values ≥ 20% of an LSB and less than 1.45 and 2.58 dB for RMS values < 20% of an LSB for the amplitude and phase, respectively. Overall, this study provides a practical model for circuit designers in EIT, and a more accurate error analysis that was previously missing in EIT literature.

  14. A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Christensen, L.; Fynbo, J. P. U.; Prochaska, J. X.; Jakobsson, P.

    2011-02-01

    We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35 < z < 6.7 observed with low-resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 A in the rest frame and has a mean signal-to-noise ratio of 150 per 1 A pixel and reaches a maximum of {approx}300 in the range 2500-3500 A. Equivalent widths are measured from metal absorption lines from the Ly{alpha} line to {approx}5200 A, and associated metal and hydrogen lines are identified between the Lyman break and Ly{alpha} line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine-structure lines when dividing the sample into bursts observed within 2 hr from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high- or low-prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong Ca II and Mg II absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine-structure lines, while metal absorption lines are weaker.

  15. Garonne River monitoring from Signal-to-Noise Ratio data collected by a single geodetic receiver

    NASA Astrophysics Data System (ADS)

    Roussel, Nicolas; Frappart, Frédéric; Darrozes, José; Ramillien, Guillaume; Bonneton, Philippe; Bonneton, Natalie; Detandt, Guillaume; Roques, Manon; Orseau, Thomas

    2016-04-01

    GNSS-Reflectometry (GNSS-R) altimetry has demonstrated a strong potential for water level monitoring through the last decades. Interference Pattern Technique (IPT) based on the analysis of the Signal-to-Noise Ratio (SNR) estimated by a GNSS receiver, presents the main advantage of being applicable everywhere by using a single geodetic antenna and a classical GNSS receiver. Such a technique has already been tested in various configurations of acquisition of surface-reflected GNSS signals with an accuracy of a few centimeters. Nevertheless, classical SNR analysis method used to estimate the variations of the reflecting surface height h(t) has a limited domain of validity due to its variation rate dh/dt(t) assumed to be negligible. In [1], authors solve this problem with a "dynamic SNR method" taking the dynamic of the surface into account to conjointly estimate h(t) and dh/dt(t) over areas characterized by high amplitudes of tides. If the performance of this dynamic SNR method is already well-established for ocean monitoring [1], it was not validated in continental areas (i.e., river monitoring). We carried out a field study during 3 days in August and September, 2015, using a GNSS antenna to measure the water level variations in the Garonne River (France) in Podensac located 140 km downstream of the estuary mouth. In this site, the semi-diurnal tide amplitude reaches ~5 m. The antenna was located ~10 m above the water surface, and reflections of the GNSS electromagnetic waves on the Garonne River occur until 140 m from the antenna. Both classical SNR method and dynamic SNR method are tested and results are compared. [1] N. Roussel, G. Ramillien, F. Frappart, J. Darrozes, A. Gay, R. Biancale, N. Striebig, V. Hanquiez, X. Bertin, D. Allain : "Sea level monitoring and sea state estimate using a single geodetic receiver", Remote Sensing of Environment 171 (2015) 261-277.

  16. The Effect of Classroom Amplification on the Signal-to-Noise Ratio in Classrooms while Class Is in Session

    ERIC Educational Resources Information Center

    Larsen, Jeffery B.; Blair, James C.

    2008-01-01

    Purpose: The purpose of this study was to measure the signal-to-noise ratios in classrooms while class was in session and students were interacting with the teacher and each other. Method: Measurements of noise and reverberation were collected for 5 different classrooms in 3 different schools while class was in session. Activities taking place…

  17. A Measure of the Signal-to-Noise Ratio of Microarray Samples and Studies Using Gene Correlations

    PubMed Central

    Venet, David; Detours, Vincent; Bersini, Hugues

    2012-01-01

    Background The quality of gene expression data can vary dramatically from platform to platform, study to study, and sample to sample. As reliable statistical analysis rests on reliable data, determining such quality is of the utmost importance. Quality measures to spot problematic samples exist, but they are platform-specific, and cannot be used to compare studies. Results As a proxy for quality, we propose a signal-to-noise ratio for microarray data, the “Signal-to-Noise Applied to Gene Expression Experiments”, or SNAGEE. SNAGEE is based on the consistency of gene-gene correlations. We applied SNAGEE to a compendium of 80 large datasets on 37 platforms, for a total of 24,380 samples, and assessed the signal-to-noise ratio of studies and samples. This allowed us to discover serious issues with three studies. We show that signal-to-noise ratios of both studies and samples are linked to the statistical significance of the biological results. Conclusions We showed that SNAGEE is an effective way to measure data quality for most types of gene expression studies, and that it often outperforms existing techniques. Furthermore, SNAGEE is platform-independent and does not require raw data files. The SNAGEE R package is available in BioConductor. PMID:23251415

  18. Techniques and software tools for estimating ultrasonic signal-to-noise ratios

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; McKillip, Matthew; Engle, Brady J.; Roberts, Ronald A.

    2016-02-01

    At Iowa State University's Center for Nondestructive Evaluation (ISU CNDE), the use of models to simulate ultrasonic inspections has played a key role in R&D efforts for over 30 years. To this end a series of wave propagation models, flaw response models, and microstructural backscatter models have been developed to address inspection problems of interest. One use of the combined models is the estimation of signal-to-noise ratios (S/N) in circumstances where backscatter from the microstructure (grain noise) acts to mask sonic echoes from internal defects. Such S/N models have been used in the past to address questions of inspection optimization and reliability. Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was recently initiated to improve existing research-grade software by adding graphical user interface (GUI) to become user friendly tools for the rapid estimation of S/N for ultrasonic inspections of metals. The software combines: (1) a Python-based GUI for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signal and backscattered grain noise characteristics. The latter makes use of several models including: the Multi-Gaussian Beam Model for computing sonic fields radiated by commercial transducers; the Thompson-Gray Model for the response from an internal defect; the Independent Scatterer Model for backscattered grain noise; and the Stanke-Kino Unified Model for attenuation. The initial emphasis was on reformulating the research-grade code into a suitable modular form, adding the graphical user interface and performing computations rapidly and robustly. Thus the initial inspection problem being addressed is relatively simple. A normal-incidence pulse/echo immersion inspection is simulated for a curved metal component having a non-uniform microstructure, specifically an equiaxed, untextured microstructure in which the average

  19. Enhanced signal-to-noise ratio estimation for tropospheric lidar channels

    NASA Astrophysics Data System (ADS)

    Saeed, Umar; Barragan, Rubén; Rocadenbosch, Francesc

    2016-04-01

    This works combines the fields of tropospheric lidar remote sensing and signal processing to come up with a robust signal-to-noise ratio (SNR) estimator apt for elastic and Raman channels. The estimator uses a combined low-pass / high-pass filtering scheme along with high-order statistics (kurtosis) to estimate the range-dependent signal and noise components with minimum distortion. While low-pass filtering is used to estimate the range-dependent signal level, high-pass filtering is used to estimate the noise component with minimum distortion. From this noise component estimate (a random realization) the noise level (e.g., variance) is computed as a function of range along with error bars. The minimum-distortion specification determines the optimal cut-off de-noising filter frequency and, in turn, the spatial resolution of the SNR estimation algorithm. The proposed SNR estimator has a much wider dynamic range of operation than well-known classic SNR estimation techniques, in which the SNR is directly computed from the mean and standard deviation of the measured noise-corrupted lidar signal along successive adjacent range intervals and where the spatial resolution is just a subjective input from the user's side. Aligned with ACTRIS (http://www.actris.net) WP on "optimization of the processing chain and Single-Calculus Chain (SCC)" the proposed topic is of application to assess lidar reception channel performance and confidence on the detected atmospheric morphology (e.g., cloud base and top, and location of aerosol layers). The SNR algorithm is tested against the classic SNR estimation approach using test-bed synthetic lidar data modelling the UPC multi-spectral lidar. Towards this end, the Nd:YAG UPC elastic-Raman lidar provides aerosol channels in the near-infrared (1064 nm), visible (532 nm), and ultra-violet (355 nm) as well as aerosol Raman and water-vapour channels with fairly varying SNR levels. The SNR estimator is also used to compare SNR levels between

  20. The Effect of Vegetation on Soil Moisture Retrievals from GPS Signal-to-Noise Ratio Data

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Small, E. E.; Larson, K. M.; Zavorotny, V.

    2012-12-01

    GPS-Interferometric Reflectometry (GPS-IR) is a method of environmental monitoring that relates changes in ground-reflected (multipath) GPS signals to changes in surface soil moisture and vegetative state for an area of approximately 1000 m2 surrounding a GPS antenna. GPS-IR operates as a bi-static radar: L2C frequency signals transmitted by GPS satellites and subsequent reflections (multipath) are measured by antennas at permanent GPS stations. Changes in multipath signals are seen in signal-to-noise ratio (SNR) interferograms, which are recorded by the GPS receiver. Results from previous field studies have shown that shallow soil moisture can be estimated from SNR phase for bare soil conditions or when vegetation is sparse. Vegetation surrounding a GPS antenna affects the phase shift, amplitude, and frequency/apparent reflector height of SNR oscillations. Therefore, it is necessary to quantify the vegetation conditions, for example vegetation height or water content, that preclude retrieval of soil moisture estimates using GPS-IR. We use both field data and an electrodynamic model that simulates SNR interferograms for variable soil and vegetation conditions to: 1. Determine how changes in vegetation height, biomass, and water content affect GPS phase, amplitude, and apparent reflector height and 2. Quantify the amount of vegetation that obscures the soil moisture signal in SNR data. We report results for rangeland and agricultural sites. At the rangeland sites, vegetation water content only varies between 0 and 0.6 kg/m2. Both observed and simulated SNR data from these sites show that apparent reflector height is nearly constant. Therefore, SNR interferograms are strongly affected by permittivity at the soil surface, and thus soil moisture can be retrieved. Even though reflector height does not change, SNR phase shift and amplitude are affected by fluctuations in rangeland vegetation and must be accounted for in soil moisture retrievals. At several agricultural

  1. Signal-to-Noise Ratio Measures Efficacy of Biological Computing Devices and Circuits

    PubMed Central

    Beal, Jacob

    2015-01-01

    Engineering biological cells to perform computations has a broad range of important potential applications, including precision medical therapies, biosynthesis process control, and environmental sensing. Implementing predictable and effective computation, however, has been extremely difficult to date, due to a combination of poor composability of available parts and of insufficient characterization of parts and their interactions with the complex environment in which they operate. In this paper, the author argues that this situation can be improved by quantitative signal-to-noise analysis of the relationship between computational abstractions and the variation and uncertainty endemic in biological organisms. This analysis takes the form of a ΔSNRdB function for each computational device, which can be computed from measurements of a device’s input/output curve and expression noise. These functions can then be combined to predict how well a circuit will implement an intended computation, as well as evaluating the general suitability of biological devices for engineering computational circuits. Applying signal-to-noise analysis to current repressor libraries shows that no library is currently sufficient for general circuit engineering, but also indicates key targets to remedy this situation and vastly improve the range of computations that can be used effectively in the implementation of biological applications. PMID:26177070

  2. Analysis of signal to noise ratio for atmospheric ultraviolet remote sensing on geostationary orbit with variations of solar incident angles

    NASA Astrophysics Data System (ADS)

    Lyu, Chun-guang; Yang, Wen-bo; Tian, Qing-jiu; Zhou, Yang; Liu, Zong-ming; Zhang, Han-mo

    2014-11-01

    Ultraviolet (UV) sensors on a geostationary orbit (GEO) have important potential value in atmospheric remote sensing, but the satellites orbit mode of it is quit different from sun-synchronous orbit satellites, which result in the significant diurnal and seasonal variations in radiation environment of earth observation and radiation signal of sensors, therefore, the effect to sensor radiometric performance, such as signal to noise ratio for atmospheric ultraviolet remote sensing caused by variations of solar angle is significant in the performance design of sensors. The synthetic ultraviolet sensor is set at the geostationary orbit, 36000 km away from the sea level of the Equator with 8.75 degree field of view, and the subsatellite track point of which is located at 90 degrees east longitude and Equator. The Satellite scanning angles (SA) from 0 to 8.648 degree that cover the earth surface are selected corresponding to the 10 degrees equal interval view zenith angle, and the SA from 8.648 to 8.785 degree cover the earth lamb 100 km far away from earth tangent point. Based on the MODTRAN4 model, on normal atmospheric conditions, the distributions of the UV upwelling radiance from surface or limb viewing path of the earth could be simulated with the change of sun's right ascension. Moreover, the average signal to noise ratio to the atmospheric sounding is obtained in different UV spectra using the Sensor signal to noise ratio model. The results show that the thresholds range, tendency and shape of signal to noise ratio have a variety of features affected by variation of Sun hour angles and declinations. These result and conclusions could contribute to performance design of UV sensors on the geostationary orbit.

  3. High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu

    2016-03-01

    We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.

  4. Real-time Signal-to-noise Ratio (SNR) Estimation for BPSK and QPSK Modulation Using the Active Communications Channel

    NASA Technical Reports Server (NTRS)

    Manning, Robert M. (Inventor)

    2007-01-01

    Method and apparatus for estimating signal-to-noise ratio (SNR) gamma of a composite input signal e(t) on a phase modulated (e.g., BPSK) communications link. A first demodulator receives the composite input signal and a stable carrier signal and outputs an in-phase output signal; a second demodulator receives the composite input signal and a phase-shifted version of the carrier signal and outputs a quadrature-phase output signal; and phase error theta(sub E)(t) contained within the composite input signal e(t) is calculated from the outputs of the first and second demodulators. A time series of statistically independent phase error measurements theta(sub E)(t(sub 1)), theta (sub E)(t(sub 2)),..., theta (sub E)(t(sub k)) is obtained from the composite input signal subtending a time interval delta t = t(sub k) - t(sub 1) whose value is small enough such that gamma(t) and sigma(t) can be taken to be constant in delta t. A biased estimate gamma(sup *) for the signal-to-noise ratio (SNR) gamma if the composite input signal is calculated using maximum likelihood (ML) estimation techniques, and an unbiased estimate gamma(sup ^) for the signal-to-noise ratio (SNR) gamma of the composite input signal is determined from the biased estimate gamma(sup *), such as by use of a look-up table.

  5. Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; McWilliams, Sean T.; Gair, Jonathan R.; Taylor, Stephen R.

    2015-09-01

    We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to quantify the impact of eccentricity in the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing arrays. Building upon the work of Phinney (arXiv:astro-ph/0108028) and Enoki and Nagashima [Prog. Theor. Phys. 117, 241 (2007)], we present an analytical framework that enables the construction of rapid spectra for a stochastic gravitational-wave background generated by a cosmological population of eccentric sources. We confirm previous findings which indicate that, relative to a population of quasicircular binaries, the strain of a stochastic, isotropic gravitational-wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms of signal-to-noise ratios in a pulsar timing array.

  6. Speech intelligibility in reverberation with ideal binary masking: effects of early reflections and signal-to-noise ratio threshold.

    PubMed

    Roman, Nicoleta; Woodruff, John

    2013-03-01

    Ideal binary masking is a signal processing technique that separates a desired signal from a mixture by retaining only the time-frequency units where the signal-to-noise ratio (SNR) exceeds a predetermined threshold. In reverberant conditions there are multiple possible definitions of the ideal binary mask in that one may choose to treat the target early reflections as either desired signal or noise. The ideal binary mask may therefore be parameterized by the reflection boundary, a predetermined division point between early and late reflections. Another important parameter is the local SNR threshold used in labeling the time-frequency units as either target or background. Two experiments were designed to assess the impact of these two parameters on speech intelligibility with ideal binary masking for normal-hearing listeners in reverberant conditions. Experiment 1 shows that in order to achieve intelligibility improvements only the early reflections should be preserved by the binary mask. Moreover, it shows that the effective SNR should be accounted for when deciding the local threshold optimal range. Experiment 2 shows that with long reverberation times, intelligibility improvements are only obtained when the reflection boundary is 100 ms or less. Also, the experiment suggests that binary masking can be used for dereverberation.

  7. Signal-to-noise ratios in IUE SWP-LO spectra of chromospheric emission-line sources

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    1990-12-01

    The short-wavelength-prime (SWP) detector of the International Ultraviolet Explorer should operate near the photon-counting limit, but the noise levels in flat-field images are several times higher. The exaggerated noise can be traced to the incomplete removal of the pixel-to-pixel granularity of the television frames by the prevailing spectral image processing system. An empirical noise model for the current-epoch photometric linearization strategy and one for a hypothetical processing system that achieves complete flat fielding of the raw images are derived. A formula is then proposed to predict the signal-to-noise ratio in the measured flux of an emission line (possibly superimposed on a smooth continuum) in an IUE low-dispersion (5 A resolution) far-ultraviolet (1150 A-1950 A) spectrum as recorded with the SWP camera. For illustration, the formula is specialized to the important C IV 1549 A feature of F-K stars. The S/N relation permits one to determine sensitivity limits, upper limits in faint exposures, and optimum exposure times.

  8. Signal-to-noise ratio estimation on SEM images using cubic spline interpolation with Savitzky-Golay smoothing.

    PubMed

    Sim, K S; Kiani, M A; Nia, M E; Tso, C P

    2014-01-01

    A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.

  9. A Signal-to-Noise-Ratio, Bearing-Deviation-Indicator Meter Unit Utilizing Clipper-Correlator Circuitry.

    DTIC Science & Technology

    This report describes a sonar test unit combining a signal-to-noise ratio ( SNR ) meter and a bearing deviation indicator (BDI) that has been designed...and constructed at this facility. The SNR meter operates by clipper correlating the left-half and right-half sonar-array outputs and then converting...the correlation coefficient to SNR ; the BDI operates with a clipper correlator that has a 90 deg phase-shifted input signal. Calibration, installation, and trouble-shooting procedures for the unit are presented. (Author)

  10. [Study of the effect of light source stability on the signal to noise ratio in degenerate four wave mixing experiment].

    PubMed

    Wang, Wei-Bo; Chen, De-Ying; Fan, Rong-Wei; Xia, Yuan-Qin

    2010-02-01

    The effects of the stability of dye laser on the signal to noise ratio in degenerate four-wave mixing (DFWM) were first investigated in iodine vapor using forward geometries. Frequency-doubled outputs from a multi-mode Nd : YAG laser pumped dye laser with laser dye PM580 dissolved in ethanol was used. With the help of forward compensated beam-split technique and imaging detecting system, the saturation intensity of DFWM spectrum in the iodine vapor at 5 554.013 nm was first measured to be 290 microJ under the condition of atmospheric pressure and room temperature. The features of the dye laser such as wavelength ranges, beam quality and energy conversion efficiency decreased gradually with increasing pumping service use, pulse number and intensity. Additionally, with the comparison of the stable and unstable dye laser output, it was found that the instability of dye laser output had greatly influenced the DFWM signal and decreased the signal to background noise ratio. Shot to shot jitter and the broadening in the output frequency leads to an effective broadening of the recorded spectrum and loss of the DFWM signal to noise ratio under the same pumping intensity at different time. The study is of importance to the detection of trace atom, molecule and radical in combustion diagnosis.

  11. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  12. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat

    NASA Astrophysics Data System (ADS)

    Lin, Kuan-Ting; Komiyama, Susumu; Kim, Sunmi; Kawamura, Ken-ichi; Kajihara, Yusuke

    2017-01-01

    We have developed a passive long-wavelength infrared (LWIR) scattering-type scanning near-field optical microscope (s-SNOM) installed in a helium-free mechanically cooled cryostat, which facilitates cooling of an LWIR detector and optical elements to 4.5 K. To reduce mechanical vibration propagation from a compressor unit, we have introduced a metal bellows damper and a helium gas damper. These dampers ensure the performance of the s-SNOM to be free from mechanical vibration. Furthermore, we have introduced a solid immersion lens to improve the confocal microscope performance. To demonstrate the passive s-SNOM capability, we measured thermally excited surface evanescent waves on Au/SiO2 gratings. A near-field signal-to-noise ratio is 4.5 times the improvement with an acquisition time of 1 s/pixel. These improvements have made the passive s-SNOM a more convenient and higher-performance experimental tool with a higher signal-to-noise ratio for a shorter acquisition time of 0.1 s.

  13. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  14. Emotional content of an image attracts attention more than visually salient features in various signal-to-noise ratio conditions.

    PubMed

    Pilarczyk, Joanna; Kuniecki, Michał

    2014-10-07

    Emotional images are processed in a prioritized manner, attracting attention almost immediately. In the present study we used eye tracking to reveal what type of features within neutral, positive, and negative images attract early visual attention: semantics, visual saliency, or their interaction. Semantic regions of interest were selected by observers, while visual saliency was determined using the Graph-Based Visual Saliency model. Images were transformed by adding pink noise in several proportions to be presented in a sequence of increasing and decreasing clarity. Locations of the first two fixations were analyzed. The results showed dominance of semantic features over visual saliency in attracting attention. This dominance was linearly related to the signal-to-noise ratio. Semantic regions were fixated more often in emotional images than in neutral ones, if signal-to-noise ratio was high enough to allow participants to comprehend the gist of a scene. Visual saliency on its own did not attract attention above chance, even in the case of pure noise images. Regions both visually salient and semantically relevant attracted a similar amount of fixation compared to semantic regions alone, or even more in the case of neutral pictures. Results provide evidence for fast and robust detection of semantically relevant features.

  15. [Position dependent influence that sensitivity correction processing gives the signal-to-noise ratio measurement in parallel imaging].

    PubMed

    Murakami, Koichi; Yoshida, Koji; Yanagimoto, Shinichi

    2012-01-01

    We studied the position dependent influence that sensitivity correction processing gave the signal-to-noise ratio (SNR) measurement of parallel imaging (PI). Sensitivity correction processing that referred to the sensitivity distribution of the body coil improved regional uniformity more than the sensitivity uniformity correction filter with a fixed correction factor. In addition, the position dependent influence to give the SNR measurement in PI was different from the sensitivity correction processing. Therefore, if we divide SNR of the sensitivity correction processing image by SNR of the original image in each pixel and calculate SNR ratio, we can show the position dependent influence that sensitivity correction processing gives the SNR measurement in PI. It is with an index of the sensitivity correction processing precision.

  16. Measures of performance in nonlinear estimation tasks: prediction of estimation performance at low signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Müller, Stefan P.; Abbey, Craig K.; Rybicki, Frank J.; Moore, Stephen C.; Foley Kijewski, Marie

    2005-08-01

    Maximum-likelihood (ML) estimation is an established paradigm for the assessment of imaging system performance in nonlinear quantitation tasks. At high signal-to-noise ratio (SNR), ML estimates are asymptotically Gaussian-distributed, unbiased and efficient, thereby attaining the Cramer-Rao bound (CRB). Therefore, at high SNR the CRB is useful as a predictor of the variance of ML estimates and, consequently, as a basis for measures of estimation performance. At low SNR, however, the achievable parameter variances are often substantially larger than the CRB and the estimates are no longer Gaussian-distributed. These departures imply that inference about the estimates that is based on the CRB and the assumption of a normal distribution will not be valid. We have found previously that for some tasks these effects arise at noise levels considered clinically acceptable. We have derived the mathematical relationship between a new measure, χ2pdf-ML, and the expected probability density of the ML estimates, and have justified the use of χ2pdf-ML-isocontours in parameter space to describe the ML estimates. We validated this approach by simulation experiments using spherical objects imaged with a Gaussian point spread function. The parameters, activity concentration and size, were estimated simultaneously by ML, and variances and covariances calculated over 1000 replications per condition from 3D image volumes and from 2D tomographic projections of the same object. At low SNR, where the CRB is no longer achievable, χ2pdf-ML-isocontours provide a robust prediction of the distribution of the ML estimates. At high SNR, the χ2pdf-ML-isocontours asymptotically approach the analogous χ2pdf-F-contours derived from the Fisher information matrix. The χ2pdf-ML model appears to be suitable for characterization of the influence of the noise level and characteristics, the task, and the object on the shape of the probability density of the ML estimates at low SNR. Furthermore, it

  17. Sea level estimate from multi-frequency signal-to-noise ratio data collected by a single geodetic receiver

    NASA Astrophysics Data System (ADS)

    Roussel, Nicolas; Frappart, Frédéric; Ramillien, Guillaume; Darrozes, José; Cornu, Gwendolyne; Koummarasy, Khanithalath

    2016-04-01

    GNSS-Reflectometry (GNSS-R) altimetry has demonstrated a strong potential for sea level monitoring. Interference Pattern Technique (IPT) based on the analysis of the Signal-to-Noise Ratio (SNR) estimated by a GNSS receiver, presents the main advantage of being applicable everywhere by using a single geodetic antenna and receiver, transforming them to real tide gauges. Such a technique has already been tested in various configurations of acquisition of surface-reflected GNSS signals with an accuracy of a few centimeters. Nevertheless, the classical SNR analysis method for estimating the reflecting surface-antenna height is limited by an approximation: the vertical velocity of the reflecting surface must be negligible. Authors present a significant improvement of the SNR technique to solve this problem and broaden the scope of SNR-based tide monitoring. The performances achieved on the different GNSS frequency band (L1, L2 and L5) are analyzed. The method is based on a Least-Mean Square Resolution Method (LSM), combining simultaneous measurements from different GNSS constellations (GPS, GLONASS), which permits to take the dynamic of the surface into account. It was validated in situ [1], with an antenna placed at 60 meters above the Atlantic Ocean surface with variations reaching ±3 meters, and amplitude rate of the semi-diurnal tide up to 0.5 mm/s. Over the three months of SNR records on L1 frequency band for sea level determination, we found linear correlations of 0.94 by comparing with a classical tide gauge record. Our SNR-based time series was also compared to a tide theoretical model and amplitudes and phases of the main astronomical periods (6-, 12- and 24-h) were perfectly well detected. Waves and swell are also likely to be detected. If the validity of our method is already well-established with L1 band [1], the aim of our current study is to analyze the results obtained with the other GNSS frequency band: L2 and L5. L1 band seems to provide the best sea

  18. Stacked phased array coils for increasing the signal-to-noise ratio in magnetic resonance imaging.

    PubMed

    Dandan Liang; Hon Tat Hui; Tat Soon Yeo; Bing Keong Li

    2013-02-01

    A new concept of using a stacked phased coil array to increase the signal-to-circuit noise ratio (SCNR) in magnetic resonance imaging (MRI) is introduced. Unlike conventional phased coil arrays, the proposed stacked phased coil array is constructed by stacking the coil elements closely together in the vertical direction. Through a proper combination of the coil terminal voltages, the SCNR is shown to increase with the square root of the number of coil elements. A prototype two-element array is constructed and an experimental method is designed to determine the combiner coefficients in a simulated MRI electromagnetic field environment. The experimental results show that the mutual coupling effect among the array coils can be totally removed and the combiner output voltage increases with the number of coil elements. This demonstrates the feasibility of the proposed method.

  19. Approaches to Increasing Surface Stress for Improving Signal-to-Noise Ratio of Microcantilever Sensors

    PubMed Central

    Ji, Hai-Feng; Armon, Benjamin D.

    2010-01-01

    Summary Microcantilever sensor technology has been steadily growing for the last fifteen years. While we have gained a great amount of knowledge in microcantilever bending due to surface stress changes, which is a unique property of microcantilever sensors, we are still in the early stages of understanding the fundamental surface chemistries of surface-stress-based microcantilever sensors. In general, increasing surface stress, which is caused by interactions on the microcantilever surfaces, would improve the S/N ratio, and subsequently the sensitivity and reliability of microcantilever sensors. In this review, we will summarize: A) the conditions under which a large surface stress can readily be attained, and B) the strategies to increase surface stress in case a large surface stress can not readily be reached. We will also discuss our perspectives on microcantilever sensors based on surface stress changes. PMID:20128621

  20. Measuring PET scanner sensitivity; Relating count rates to image signal-to-noise ratios using noise equivalent counts

    SciTech Connect

    Strother, S.C. ); Casey, M.E. ); Hoffman, E.J. . Nuclear Medicine Lab.)

    1990-04-01

    Sensitivity parameters derived from a plot of a scanner's true coincidence count (TCC) rates as a function of activity in a 20 cm cylindrical phantom have no direct link to image quality. Noise equivalent count (NEC) rate curves, which incorporate the noise effects of subtracting the randoms and scatter count components provide a direct link between image signal-to-noise ratios and the scatter, randoms and trues coincidence count rates. The authors have measured TCC and NEC curves with a standardized 20 cm diameter nylon cylinder for five different PET scanners with several scanner-collimator combinations. In addition, the authors have compared TCC and NEC curves on one scanner with those from an Alderson brain phantom.

  1. Note: A signal-to-noise ratio enhancement based on wafer light irradiation system for optical modulation spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Chouaib, H.; Kelly, P. V.

    2012-02-01

    We have recently found that the magnitude of the photoreflectance (PR) signal ΔR/R on silicon wafers depends on the duration of continuous probe or pump beams irradiation. This temporal behavior of the ΔR/R signal is attributed to the defects related electronic states at the Si/ SiO2 interface, which could be modified by the optical irradiation. Prior to the actual measurement, an optical irradiation of the silicon on insulator or ion implanted Si wafer can significantly enhance the signal-to-noise ratio of the PR intensity and, therefore, improve the goodness of fit. Such phenomena can be exclusively seen using a rapid detection system. A new design of the method is reported.

  2. Improving the signal-to-noise ratio of an ECL-based sensor using ad hoc carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Sanginario, A.; Giorcelli, M.; Tagliaferro, A.; Demarchi, D.

    2012-07-01

    In this paper, we demonstrate that mechanically modified cylinder-shaped carbon nanotube (CNT) working electrodes (WEs), combined with an averaging processing algorithm, can increase electrogenerated chemiluminescence (ECL) limit of detection by more than one order of magnitude, compared to gold electrodes. With CNT WEs, we obtained a stable light emission that lasts for hundreds of voltammetric cycles. This stability was further exploited to increase the detection limit with a simple algorithm, based on mean calculation. Ad hoc fabricated sensors are characterized with a full-custom potentiostat testbed and software platform, using tris(2,2-bipyridyl)ruthenium (II) as ECL labels. Our measurement results show that the signal-to-noise ratio (SNR) improves by a factor of larger than 20 compared to standard gold WEs to reach a detection limit up to 40 pg μl-1.

  3. Seamless Data-Rate Change Using Punctured Convolutional Codes for a Time-Varying Signal-to-Noise Ratio

    NASA Technical Reports Server (NTRS)

    Feria, Ying; Cheung, Kar-Ming

    1995-01-01

    In a time-varying signal-to-noise-ratio (SNR) environment, symbol rate is changed to maximize data return. However, the symbol-rate changes may cause the receiver symbol loop to lose lock, thus losing real-time data. We propose an alternate way of varying the data rate in a seamless fashion by puncturing the convolutionally encoded symbol stream and transmitting the punctured encoded symbols with a constant symbol rate. We systematically searched for good puncturing patterns for the Galileo (14,1/4) convolutional code and changed the data rates by using the punctured codes to match the Galileo SNR profile of November 9, 1997. We concluded that this scheme reduces the symbol-rate changes from 9 to 2 and provides a larger data return and a higher symbol SNR during most of the day.

  4. Superior signal-to-noise ratio of a new AA1 sequence for random-modulation continuous-wave lidar.

    PubMed

    Rybaltowski, Adam; Taflove, Allen

    2004-08-01

    In an earlier work [Proc. SPIE 4484, 216 (2001)] we proposed a new AA1 modulation sequence for random-modulation continuous-wave lidar. It possesses significantly better signal properties than other pseudorandom codes (the M, A1, and A2 sequences). We derive and compare the signal-to-noise ratio (SNR) of the new AA1 sequence with those of previous modulation sequences. Using a figure of merit proposed for pseudorandom sequences in additive (and generally colored) noise, we show that the SNR of the AA1 sequence in 1/f noise can be as much as 50 times better than that of the commonly used M sequence. This improved SNR should permit as much as a 7:1 increase of the maximum lidar sensing range in baseband-modulation direct-detection infrared lidar with no significant changes to the transmitter and receiver.

  5. Comparisons of jitter, shimmer, and signal-to-noise ratio from directly digitized versus taped voice samples.

    PubMed

    Gelfer, M P; Fendel, D M

    1995-12-01

    The purpose of this study was to compare jitter, shimmer, and signal-to-noise ratio (SNR) measures obtained from tape-recorded samples with the same measures made on directly digitized voice samples, with use of the CSpeech acoustic analysis program. Subjects included 30 young women who phonated the vowel /a/ at a comfortable pitch and loudness level. Voice samples were simultaneously recorded and digitized, and the resulting perturbation measures for the two conditions were compared. Results indicated that there were small but statistically significant differences between percent jitter, percent shimmer, and SNR calculated from taped samples compared with the same measures calculated from directly digitized samples. It was concluded that direct digitization for clinical measures of vocal perturbation was most desirable, but that taped samples could be used, if necessary, with some caution.

  6. Seamless Data-Rate Change Using Punctured Convolutional Codes for Time-Varying Signal-to-Noise Ratio

    NASA Technical Reports Server (NTRS)

    Feria, Ying

    1995-01-01

    In a time-varying signal-to-noise (SNR) environment, symbol rate is often changed to maximize ata return. However, the symbol-rate change has some undesirable effects such as changing the ransmission bandwidth and perhaps causing the receiver symbol loop to lose lock temporarily, thus osing some data. In this article, we are proposing an alternate way of varying the data rate without hanging the symbol rate and therefore the transmission bandwidth. The data rate change is achieved n a seamless fashion by puncturing the convolutionally encoded symbol stream to adapt to the hanging SNR environment. We have also derived an exact expression to enumerate the number of nique puncturing patterns. To demonstrate this seamless rate-change capability, we searched for good uncturing patterns for the Galileo (14, 1/4) convolutional code and changed the data rates by using the unctured codes to match the Galileo SNR profile of November 9, 1997.

  7. Possible breakthrough: Significant improvement of signal to noise ratio by stochastic resonance

    SciTech Connect

    Kiss, L.B.

    1996-06-01

    The {ital simplest} {ital stochastic} {ital resonator} {ital is} {ital used}, {ital a} {ital level} {ital crossing} {ital detector} (LCD), to investigate key properties of stochastic resonance (SR). It is pointed out that successful signal processing and biological applications of SR require to work in the {ital large} {ital signal} {ital limit} (nonlinear transfer limit) which requires a completely new approach: {ital wide} {ital band} {ital input} {ital signal} and a {ital new}, {ital generalised} {ital definition} {ital of} {ital output} {ital noise}. The new way of approach is illustrated by a new arrangement. The arrangement employs a special LCD, white input noise and a special, large, subthreshold wide band signal. {ital First} {ital time} {ital in} {ital the} {ital history} {ital of} {ital SR} (for a wide band input noise), the {ital signal} {ital to} {ital noise} {ital ratio} {ital becomes} {ital much} {ital higher} {ital at} {ital the} {ital output} of a stochastic resonator than {ital at} {ital its} {ital input}. In that way, SR is proven to have a potential to improve signal transfer. Note, that the new arrangement seems to have resemblance to {ital neurone} {ital models}, therefore, it has a potential also for biological applications. {copyright} {ital 1996 American Institute of Physics.}

  8. Acoustical inverse problems regularization: Direct definition of filter factors using Signal-to-Noise Ratio

    NASA Astrophysics Data System (ADS)

    Gauthier, P.-A.; Gérard, A.; Camier, C.; Berry, A.

    2014-02-01

    Acoustic imaging aims at localization and characterization of sound sources using microphone arrays. In this paper a new regularization method for acoustic imaging by inverse approach is proposed. The method first relies on the singular value decomposition of the plant matrix and on the projection of the measured data on the corresponding singular vectors. In place of regularization using classical methods such as truncated singular value decomposition and Tikhonov regularization, the proposed method involves the direct definition of the filter factors on the basis of a thresholding operation, defined from the estimated measurement noise. The thresholding operation is achieved using modified filter functions. The originality of the approach is to propose the definition of a filter factor which provides more damping to the singular components dominated by noise than that given by the Tikhonov filter. This has the advantage of potentially simplifying the selection of the best regularization amount in inverse problems. Theoretical results show that this method is comparatively more accurate than Tikhonov regularization and truncated singular value decomposition.

  9. Spectral parameters and signal-to-noise ratio requirement for TANSAT hyper spectral remote sensor of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yang, Zhong-Dong; Bi, Yan-Meng

    2014-11-01

    , the results indicate that sampling ratio should exceed 2 pixels/FWHM to ensure the accuracy of CO2 spectrum. Signal-to-noise ratio is one of the most important parameters of hyper spectral CO2 detectors to ensure the reliability of CO2 signal. SNR requirements of CO2 detector to different detection precisions are explored based on the radiance sensitivity factors. The results show that it is difficult to achieve the SNR to detect 1×10-6-4×10-6 CO2 concentration change in the boundary layer by solar shortwave infrared passive remote sensing, limited by the instrument development at present. However, the instrument SNR to detect 1% change in the CO2 column concentration is attainable. The results of this study are not only conductive to universal applications and guides on developing grating spectrometer, but also helpful to have a better understanding of the complexity of CO2 retrieval.

  10. Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection

    NASA Astrophysics Data System (ADS)

    Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.

    2015-03-01

    All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. We are here applying a consistent approach based on auto- and cross-covariance functions to quantifying the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time-lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time-lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining datasets from several analysers and using simulations we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time-lag eliminates these effects (provided the time-lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time-lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise

  11. Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection

    NASA Astrophysics Data System (ADS)

    Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.

    2015-10-01

    All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. Here, we are applying a consistent approach based on auto- and cross-covariance functions to quantify the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining data sets from several analysers and using simulations, we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time lag eliminates these effects (provided the time lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise

  12. Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis.

    PubMed

    He, Zhili; Zhou, Jizhong

    2008-05-01

    Signal-to-noise-ratio (SNR) thresholds for microarray data analysis were experimentally determined with an oligonucleotide array that contained perfect-match (PM) and mismatch (MM) probes based upon four genes from Shewanella oneidensis MR-1. A new SNR calculation, called the signal-to-both-standard-deviations ratio (SSDR), was developed and evaluated, along with other two methods, the signal-to-standard-deviation ratio (SSR) and the signal-to-background ratio (SBR). At a low stringency, the thresholds of the SSR, SBR, and SSDR were 2.5, 1.60, and 0.80 with an oligonucleotide and a PCR amplicon as target templates and 2.0, 1.60, and 0.70 with genomic DNAs as target templates. Slightly higher thresholds were obtained under high-stringency conditions. The thresholds of the SSR and SSDR decreased with an increase in the complexity of targets (e.g., target types) and the presence of background DNA and a decrease in the compositions of targets, while the SBR remained unchanged in all situations. The lowest percentage of false positives and false negatives was observed with the SSDR calculation method, suggesting that it may be a better SNR calculation for more accurate determination of SNR thresholds. Positive spots identified by SNR thresholds were verified by the Student t test, and consistent results were observed. This study provides general guidance for users to select appropriate SNR thresholds for different samples under different hybridization conditions.

  13. Empirical Evaluation of a New Method for Calculating Signal to Noise Ratio (SNR) for Microarray Data Analysis

    SciTech Connect

    Zhou, Jizhong; He, Zhili; Zhou, Jizhong

    2008-03-06

    Signal-to-noise-ratio (SNR) thresholds for microarray data analysis were experimentally determined with an oligonucleotide array that contained perfect match (PM) and mismatch (MM) probes based upon four genes from Shewanella oneidensis MR-1. A new SNR calculation, called signal to both standard deviations ratio (SSDR) was developed, and evaluated along with other two methods, signal to standard deviation ratio (SSR), and signal to background ratio (SBR). At a low stringency, the thresholds of SSR, SBR, and SSDR were 2.5, 1.60 and 0.80 with oligonucleotide and PCR amplicon as target templates, and 2.0, 1.60 and 0.70 with genomic DNA as target templates. Slightly higher thresholds were obtained at the high stringency condition. The thresholds of SSR and SSDR decreased with an increase in the complexity of targets (e.g., target types), and the presence of background DNA, and a decrease in the composition of targets, while SBR remained unchanged under all situations. The lowest percentage of false positives (FP) and false negatives (FN) was observed with the SSDR calculation method, suggesting that it may be a better SNR calculation for more accurate determination of SNR thresholds. Positive spots identified by SNR thresholds were verified by the Student t-test, and consistent results were observed. This study provides general guidance for users to select appropriate SNR thresholds for different samples under different hybridization conditions.

  14. IMPROVING DISPLACEMENT SIGNAL-TO-NOISE RATIO FOR LOW-SIGNAL RADIATION FORCE ELASTICITY IMAGING USING BAYESIAN TECHNIQUES

    PubMed Central

    Dumont, Douglas M.; Walsh, Kristy M.; Byram, Brett C.

    2017-01-01

    Radiation force-based elasticity imaging is currently being investigated as a possible diagnostic modality for a number of clinical tasks, including liver fibrosis staging and the characterization of cardiovascular tissue. In this study, we evaluate the relationship between peak displacement magnitude and image quality and propose using a Bayesian estimator to overcome the challenge of obtaining viable data in low displacement signal environments. Displacement data quality were quantified for two common radiation force-based applications, acoustic radiation force impulse imaging, which measures the displacement within the region of excitation, and shear wave elasticity imaging, which measures displacements outside the region of excitation. Performance as a function of peak displacement magnitude for acoustic radiation force impulse imaging was assessed in simulations and lesion phantoms by quantifying signal-to-noise ratio (SNR) and contrast-to-noise ratio for varying peak displacement magnitudes. Overall performance for shear wave elasticity imaging was assessed in ex vivo chicken breast samples by measuring the displacement SNR as a function of distance from the excitation source. The results show that for any given displacement magnitude level, the Bayesian estimator can increase the SNR by approximately 9 dB over normalized cross-correlation and the contrast-to-noise ratio by a factor of two. We conclude from the results that a Bayesian estimator may be useful for increasing data quality in SNR-limited imaging environments. PMID:27157861

  15. Modeling Signal-to-Noise Ratio of Otoacoustic Emissions in Workers Exposed to Different Industrial Noise Levels

    PubMed Central

    Nassiri, Parvin; Zare, Sajad; Monazzam, Mohammad R.; Pourbakht, Akram; Azam, Kamal; Golmohammadi, Taghi

    2016-01-01

    Introduction: Noise is considered as the most common cause of harmful physical effects in the workplace. A sound that is generated from within the inner ear is known as an otoacoustic emission (OAE). Distortion-product otoacoustic emissions (DPOAEs) assess evoked emission and hearing capacity. The aim of this study was to assess the signal-to-noise ratio in different frequencies and at different times of the shift work in workers exposed to various levels of noise. It was also aimed to provide a statistical model for signal-to-noise ratio (SNR) of OAEs in different frequencies based on the two variables of sound pressure level (SPL) and exposure time. Materials and Methods: This case–control study was conducted on 45 workers during autumn 2014. The workers were divided into three groups based on the level of noise exposure. The SNR was measured in frequencies of 1000, 2000, 3000, 4000, and 6000 Hz in both ears, and in three different time intervals during the shift work. According to the inclusion criterion, SNR of 6 dB or greater was included in the study. The analysis was performed using repeated measurements of analysis of variance, spearman correlation coefficient, and paired samples t-test. Results: The results showed that there was no statistically significant difference between the three exposed groups in terms of the mean values of SNR (P > 0.05). Only in signal pressure levels of 88 dBA with an interval time of 10:30–11:00 AM, there was a statistically significant difference between the right and left ears with the mean SNR values of 3000 frequency (P = 0.038). The SPL had a significant effect on the SNR in both the right and left ears (P = 0.023, P = 0.041). The effect of the duration of measurement on the SNR was statistically significant in both the right and left ears (P = 0.027, P < 0.001). Conclusion: The findings of this study demonstrated that after noise exposure during the shift, SNR of OAEs reduced from the beginning to the end of the shift

  16. Improving Signal-to-Noise Ratio in Susceptibility Weighted Imaging: A Novel Multicomponent Non-Local Approach

    PubMed Central

    Borrelli, Pasquale; Palma, Giuseppe; Tedeschi, Enrico; Cocozza, Sirio; Comerci, Marco; Alfano, Bruno; Haacke, E. Mark; Salvatore, Marco

    2015-01-01

    In susceptibility-weighted imaging (SWI), the high resolution required to obtain a proper contrast generation leads to a reduced signal-to-noise ratio (SNR). The application of a denoising filter to produce images with higher SNR and still preserve small structures from excessive blurring is therefore extremely desirable. However, as the distributions of magnitude and phase noise may introduce biases during image restoration, the application of a denoising filter is non-trivial. Taking advantage of the potential multispectral nature of MR images, a multicomponent approach using a Non-Local Means (MNLM) denoising filter may perform better than a component-by-component image restoration method. Here we present a new MNLM-based method (Multicomponent-Imaginary-Real-SWI, hereafter MIR-SWI) to produce SWI images with high SNR and improved conspicuity. Both qualitative and quantitative comparisons of MIR-SWI with the original SWI scheme and previously proposed SWI restoring pipelines showed that MIR-SWI fared consistently better than the other approaches. Noise removal with MIR-SWI also provided improvement in contrast-to-noise ratio (CNR) and vessel conspicuity at higher factors of phase mask multiplications than the one suggested in the literature for SWI vessel imaging. We conclude that a proper handling of noise in the complex MR dataset may lead to improved image quality for SWI data. PMID:26030293

  17. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing.

    PubMed

    Jørgensen, Søren; Dau, Torsten

    2011-09-01

    A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The model estimates the speech-to-noise envelope power ratio, SNR(env), at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech-shaped noise. The model was further tested in conditions with noisy speech subjected to reverberation and spectral subtraction. Good agreement between predictions and data was found in all cases. For spectral subtraction, an analysis of the model's internal representation of the stimuli revealed that the predicted decrease of intelligibility was caused by the estimated noise envelope power exceeding that of the speech. The classical concept of the speech transmission index fails in this condition. The results strongly suggest that the signal-to-noise ratio at the output of a modulation frequency selective process provides a key measure of speech intelligibility.

  18. Symbolic Data Analysis to Defy Low Signal-to-Noise Ratio in Microarray Data for Breast Cancer Prognosis

    PubMed Central

    Le Lann, Marie-Veronique; Kempowsky, Tatiana; Dalenc, Florence; Aguilar-Martin, Joseph; Favre, Gilles

    2013-01-01

    Abstract Microarray profiling has recently generated the hope to gain new insights into breast cancer biology and thereby improve the performance of current prognostic tools. However, it also poses several serious challenges to classical data analysis techniques related to the characteristics of resulting data, mainly high dimensionality and low signal-to-noise ratio. Despite the tremendous research work performed to handle the first challenge in the feature selection framework, very little attention has been directed to address the second one. We propose in this article to address both issues simultaneously based on symbolic data analysis capabilities in order to derive more accurate genetic marker–based prognostic models. In particular, interval data representation is employed to model various uncertainties in microarray measurements. A recent feature selection algorithm that handles symbolic interval data is used then to derive a genetic signature. The predictive value of the derived signature is then assessed by following a rigorous experimental setup and compared with existing prognostic approaches in terms of predictive performance and estimated survival probability. It is shown that the derived signature (GenSym) performs significantly better than other prognostic models, including the 70-gene signature, St. Gallen, and National Institutes of Health criteria. PMID:23899014

  19. Measurement of duration and signal-to-noise ratio of astronomical transients using a Spectral Kurtosis spectrometer

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Gary, Dale E.

    2016-08-01

    Following our prior theoretical and instrumental work addressing the problem of automatic real-time radio frequency interference (RFI) detection and excision from astronomical signals, the wideband Spectral Kurtosis (SK) spectrometer design we proposed is currently being considered as an alternative to the traditional spectrometers when building the new generation of radio instruments. The unique characteristic of an SK spectrometer is that it accumulates both power and power-squared, which are then used to compute an SK statistical estimator proven to be very effective in detecting and excising certain types of RFI signals. In this paper we introduce a novel measurement technique that exploits the power and power square statistics of an SK spectrometer to determine durations and signal-to-noise ratios of transient signals, whether they are RFI or natural signals, even when they are below the time resolution of the instrument. We demonstrate this novel experimental technique by analyzing a segment of data recorded by the Expanded Owens Valley Solar Array Subsystem Testbed (EST) during a solar radio burst in which microwave spike bursts occurred with durations shorter than the 20 ms time resolution of the instrument. The duration of one well-observed spike is quantitatively shown to be within a few percent of 8 ms despite the 20 ms resolution of the data.

  20. Temporal and spatial binning of TCSPC data to improve signal-to-noise ratio and imaging speed

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Beier, Hope T.

    2016-03-01

    Time-correlated single photon counting (TCSPC) is the most robust method for fluorescence lifetime imaging using laser scanning microscopes. However, TCSPC is inherently slow making it ineffective to capture rapid events due to the single photon product per laser pulse causing extensive acquisition time limitations and the requirement of low fluorescence emission efficiency to avoid bias of measurement towards short lifetimes. Furthermore, thousands of photons per pixel are required for traditional instrument response deconvolution and fluorescence lifetime exponential decay estimation. Instrument response deconvolution and fluorescence exponential decay estimation can be performed in several ways including iterative least squares minimization and Laguerre deconvolution. This paper compares the limitations and accuracy of these fluorescence decay analysis techniques to accurately estimate double exponential decays across many data characteristics including various lifetime values, lifetime component weights, signal-to-noise ratios, and number of photons detected. Furthermore, techniques to improve data fitting, including binning data temporally and spatially, are evaluated as methods to improve decay fits and reduce image acquisition time. Simulation results demonstrate that binning temporally to 36 or 42 time bins, improves accuracy of fits for low photon count data. Such a technique reduces the required number of photons for accurate component estimation if lifetime values are known, such as for commercial fluorescent dyes and FRET experiments, and improve imaging speed 10-fold.

  1. Significant improvement of signal-to-noise ratio in capillary electrophoresis through optimization of aperture width for UV absorption detection.

    PubMed

    Kitagishi, K; Sato, Y

    2001-10-01

    In capillary electrophoresis (CE), light flux passes through a capillary cell and is in most cases detected photometrically. Due to the thinness of the cell, a part of the light passes through the wall and misses hitting the sample. In most CE apparatuses, incident light is focused by converging lenses in order to condense light beams passing through the capillary. Considering the aberration of lenses and lens effects of capillary, we assumed that light beams inside were approximately parallel. Although the path lengths of light beams vary depending on their tracks, we could estimate the virtual light path length, L, by measuring absorbance when concentration and molar absorptivity of the sample solution were known. A light-restricting device consisting of narrow slits makes effectively L longer and signal intensity higher. On the other hand, noise increases as light width narrows. The signal-to-noise ratio showed a maximum at 68 microm of light width for a capillary with diameter of 75 microm. The optimized L was evaluated by the simulation. The experimental data verified it even in indirect UV detection. Our approach could help to design the optics of CE apparatuses.

  2. Diffraction efficiency and signal-to-noise ratio of multiplexed volume phase holograms recorded in a photographic emulsion

    NASA Astrophysics Data System (ADS)

    Fuentes, R.; Bélendez, A.; Fimia, A.

    1996-07-01

    The problems related to noise that arise during recording and reconstruction of holograms used in optical data storage or in massive optical interconnection systems are quite similar and can be analyzed in order to improve the quality of the images that these optical systems provide. In this paper, we will analyze noise in cases in which several coherent object waves are simultaneously stored in a phase recording material in a way that allows us to obtain information about the relationship that exists between the recording material and the number of waves that are being stored. The material used in this study is Agfa Gevaert 8E75 HD holographic film processed with a rehalogenating—type bleach bath without a fixation step. Additionally, we show experimentally that it is possible to holographically store more than 400 waves at the same time (in a coherent fashion) using the same storage geometry, with a signal-to-noise ratio larger than 20 and an average diffraction efficiency of 15%.

  3. Measurement of Low Signal-To-Noise Ratio Solar p-Modes in Spatially Resolved Helioseismic Data

    NASA Astrophysics Data System (ADS)

    Salabert, D.; Leibacher, J.; Appourchaux, T.; Hill, F.

    2009-05-01

    We present an adaptation of the rotation-corrected, m-averaged spectrum technique designed to observe low signal-to-noise ratio (S/N), low-frequency solar p-modes. The frequency shift of each of the 2l + 1 m spectra of a given (n, l) multiplet is chosen that maximizes the likelihood of the m-averaged spectrum. A high S/N can result from combining individual low S/N, individual-m spectra, none of which would yield a strong enough peak to measure. We apply the technique to Global Oscillation Network Group and Michelson Doppler Imager data and show that it allows us to measure modes with lower frequencies than those obtained with classic peak-fitting analysis of the individual-m spectra. We measure their central frequencies, splittings, asymmetries, lifetimes, and amplitudes. The low frequency, low- and intermediate-angular degrees rendered accessible by this new method correspond to modes that are sensitive to the deep solar interior down to the core (l <= 3) and to the radiative interior (4 <= l <= 35). Moreover, the low-frequency modes have deeper upper turning points, and are thus less sensitive to the turbulence and magnetic fields of the outer layers, as well as uncertainties in the nature of the external boundary condition. As a result of their longer lifetimes (narrower linewidths) at the same S/N the determination of the frequencies of lower frequency modes is more accurate, and the resulting inversions should be more precise.

  4. No-reference peak signal to noise ratio estimation based on generalized Gaussian modeling of transform coefficient distributions

    NASA Astrophysics Data System (ADS)

    Ryu, Ji-Woo; Lee, Seon-Oh; Sim, Dong-Gyu; Han, Jong-Ki

    2012-02-01

    We present a no-reference peak signal to noise ratio (PSNR) estimation algorithm based on discrete cosine transform (DCT) coefficient distributions from H.264/MPEG-4 part 10 advanced video codec (H.264/AVC) bitstreams. To estimate the PSNR of a compressed picture without the original picture on the decoder side, it is important to model the distribution of transform coefficients obtained from quantized coefficients accurately. Whereas several conventional algorithms use the Laplacian or Cauchy distribution to model the DCT coefficient distribution, the proposed algorithm uses a generalized Gaussian distribution. Pearson's χ2 (chi-square) test was applied to show that the generalized Gaussian distribution is more appropriate than the other models for modeling the transform coefficients. The χ2 test was also used to find optimum parameters for the generalized Gaussian model. It was found that the generalized Gaussian model improves the accuracy of the DCT coefficient distribution, thus reducing the mean squared error between the real and the estimated PSNR.

  5. Symbolic data analysis to defy low signal-to-noise ratio in microarray data for breast cancer prognosis.

    PubMed

    Hedjazi, Lyamine; Le Lann, Marie-Veronique; Kempowsky, Tatiana; Dalenc, Florence; Aguilar-Martin, Joseph; Favre, Gilles

    2013-08-01

    Microarray profiling has recently generated the hope to gain new insights into breast cancer biology and thereby improve the performance of current prognostic tools. However, it also poses several serious challenges to classical data analysis techniques related to the characteristics of resulting data, mainly high dimensionality and low signal-to-noise ratio. Despite the tremendous research work performed to handle the first challenge in the feature selection framework, very little attention has been directed to address the second one. We propose in this article to address both issues simultaneously based on symbolic data analysis capabilities in order to derive more accurate genetic marker-based prognostic models. In particular, interval data representation is employed to model various uncertainties in microarray measurements. A recent feature selection algorithm that handles symbolic interval data is used then to derive a genetic signature. The predictive value of the derived signature is then assessed by following a rigorous experimental setup and compared with existing prognostic approaches in terms of predictive performance and estimated survival probability. It is shown that the derived signature (GenSym) performs significantly better than other prognostic models, including the 70-gene signature, St. Gallen, and National Institutes of Health criteria.

  6. Seamless data-range change using punctured convolutional codes for time-varying signal-to-noise ratios

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Cheung, K.-M.

    1995-01-01

    In a time-varying signal-to-noise ration (SNR) environment, symbol rate is often changed to maximize data return. However, the symbol-rate change has some undesirable effects, such as changing the transmission bandwidth and perhaps causing the receiver symbol loop to lose lock temporarily, thus losing some data. In this article, we are proposing an alternate way of varying the data rate without changing the symbol rate and, therefore, the transmission bandwidth. The data rate change is achieved in a seamless fashion by puncturing the convolutionally encoded symbol stream to adapt to the changing SNR environment. We have also derived an exact expression to enumerate the number of distinct puncturing patterns. To demonstrate this seamless rate change capability, we searched for good puncturing patterns for the Galileo (14,1/4) convolutional code and changed the data rates by using the punctured codes to match the Galileo SNR profile of November 9, 1997. We show that this scheme reduces the symbol-rate changes from nine to two and provides a comparable data return in a day and a higher symbol SNR during most of the day.

  7. Automated measurement of the bit-error rate as a function of signal-to-noise ratio for microwave communications systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Daugherty, Elaine S.; Kramarchuk, Ihor

    1987-01-01

    The performance of microwave systems and components for digital data transmission can be characterized by a plot of the bit-error rate as a function of the signal to noise ratio (or E sub b/E sub o). Methods for the efficient automated measurement of bit-error rates and signal-to-noise ratios, developed at NASA Lewis Research Center, are described. Noise measurement considerations and time requirements for measurement accuracy, as well as computer control and data processing methods, are discussed.

  8. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols

    NASA Astrophysics Data System (ADS)

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials.

  9. Comparison of signal to noise ratios from spatial and frequency domain formulations of nonprewhitening model observers in digital mammography

    SciTech Connect

    Sisini, Francesco; Zanca, Federica; Marshall, Nicholas W.; Taibi, Angelo; Cardarelli, Paolo; Bosmans, Hilde

    2012-09-15

    Purpose: Image quality indices based upon model observers are promising alternatives to laborious human readings of contrast-detail images. This is especially appealing in digital mammography as limiting values for contrast thresholds determine, according to some international protocols, the acceptability of these systems in the radiological practice. The objective of the present study was to compare the signal to noise ratios (SNR) obtained with two nonprewhitening matched filter model observer approaches, one in the spatial domain and the other in the frequency domain, and with both of them worked out for disks as present in the CDMAM phantom. Methods: The analysis was performed using images acquired with the Siemens Novation and Inspiration digital mammography systems. The spatial domain formulation uses a series of high dose CDMAM images as the signal and a routine exposure of two flood images to calculate the covariance matrix. The frequency domain approach uses the mathematical description of a disk and modulation transfer function (MTF) and noise power spectrum (NPS) calculated from images. Results: For both systems most of the SNR values calculated in the frequency domain were in very good agreement with the SNR values calculated in the spatial domain. Both the formulations in the frequency domain and in the spatial domain show a linear relationship between SNR and the diameter of the CDMAM discs. Conclusions: The results suggest that both formulations of the model observer lead to very similar figures of merit. This is a step forward in the adoption of figures of merit based on NPS and MTF for the acceptance testing of mammography systems.

  10. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  11. Design of phase-only, binary phase-only, and complex ternary matched filters with increased signal-to-noise ratios for colored noise

    NASA Technical Reports Server (NTRS)

    Kumar, B. V. K. V.; Juday, Richard D.

    1991-01-01

    An algorithm is provided for treating nonwhite additive noise in determining regions of support for phase-only filters, binary phase-only filters, and complex ternary matched filters. It is analytically shown to be optimal in the signal-to-noise ratio sense. It extends earlier research that assumed white noise.

  12. Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process

    PubMed Central

    Yun, Myeong Gu; Kim, Ye Kyun; Ahn, Cheol Hyoun; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun; Kim, Yong-Hoon

    2016-01-01

    We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density. PMID:27553518

  13. Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process

    NASA Astrophysics Data System (ADS)

    Yun, Myeong Gu; Kim, Ye Kyun; Ahn, Cheol Hyoun; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun; Kim, Yong-Hoon

    2016-08-01

    We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density.

  14. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  15. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050

  16. Making the Most of a Patient’s Laboratory Data: Optimisation of Signal-to-Noise Ratio

    PubMed Central

    2005-01-01

    All results in laboratory medicine are compared to some reference for interpretation. This reference may be a previous result from the same patient, a reference population – either healthy or diseased, or both – or a decision limit recommended by an expert group. The aim for the medical laboratory is to improve the signal-to-noise ratio by increasing the signal or reducing the noise. This presentation deals with the more general tools for reduction of the noise component, and focuses on biological within-subject variation, reference intervals and decision models. Regarding biological within-subject variation, the estimation of reference change value (RCV) as a yardstick for judging measured differences within the patient over time is an important tool. Here, only type 1 errors are usually applied, but type 2 errors should also be taken into consideration. Moreover, variance homogeneity is assumed for the application of RCV, but this assumption is not always fulfilled, and erroneous interpretations may be introduced. A tool for comparison of different and more complicated algorithms applied to serial measurements is computer simulation (e.g. on data from tumour markers). In order to reduce the noise component from reference intervals, partitioning according to relevant subgroups is a tool, and useful criteria for judging whether subgroups should be combined are reported. Geographical and racial differences may cause different reference distributions (e.g. plasma proteins), but it has been possible to establish common reference intervals for 25 common components in Caucasians in the five Nordic countries. Transformation of data and presentation of accumulated ranked values in rankit plots where Gaussian (or log-Gaussian) distributions show up as straight lines is a valuable tool for interpretation of the distributions and comparison of subgroups. In this way it is often possible to isolate a low-risk group which fits a log-Gaussian distribution. In case of

  17. The effect of digitisation on the signal-to-noise ratio of a pulsed radio signal} of a pulsed radio signal

    NASA Astrophysics Data System (ADS)

    Kouwenhoven, M. L. A.; Voûte, J. L. L.

    2001-11-01

    We discuss the effect of digitisation on the signal-to-noise ratio of pulsed radio signals. We describe a general n-bit digitiser and show that a symmetric and equidistant digitiser has two free parameters: the threshold and the output value. We derive the best choice of these values for a 1, 1.5, 2, 4 and 8-bit digitiser and calculate the signal-to-noise ratio after digitisation of an undetected signal and of a detected signal with a Gaussian or a chi 2-distribution. Measurements made using PuMa, the new digital pulsar machine at the Westerbork Synthesis Radio Telescope, are presented and are shown to agree with the theoretical response of the digitiser.

  18. Optimal control of the signal-to-noise ratio per unit time of a spin 1/2 particle: the crusher gradient and the radiation damping cases.

    PubMed

    Lapert, M; Assémat, E; Glaser, S J; Sugny, D

    2015-01-28

    We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimal control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.

  19. Optimal control of the signal-to-noise ratio per unit time of a spin 1/2 particle: The crusher gradient and the radiation damping cases

    SciTech Connect

    Lapert, M.; Glaser, S. J.; Assémat, E.; Sugny, D.

    2015-01-28

    We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimal control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.

  20. High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD

    NASA Astrophysics Data System (ADS)

    Zhu, Zhao-Yi; Li, Da-Yu; Hu, Li-Fa; Mu, Quan-Quan; Yang, Cheng-Liang; Cao, Zhao-Liang; Xuan, Li

    2016-09-01

    High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device (EMCCD) applied in the Shack-Hartmann wavefront sensor (S-H WFS) in adaptive optics (AO). However, when the brightness of the target changes in a large scale, the fixed electron multiplying (EM) gain will not be suited to the sensing limitation. Therefore an auto-gain-control method based on the brightness of light-spots array in S-H WFS is proposed in this paper. The control value is the average of the maximum signals of every light spot in an array, which has been demonstrated to be kept stable even under the influence of some noise and turbulence, and sensitive enough to the change of target brightness. A goal value is needed in the control process and it is predetermined based on the characters of EMCCD. Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust, the sensing SNR reaches the maximum for the corresponding signal level, and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 61205021, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  1. On the Contribution of Curl-Free Current Patterns to the Ultimate Intrinsic Signal-to-Noise Ratio at Ultra-High Field Strength.

    PubMed

    Pfrommer, Andreas; Henning, Anke

    2017-02-10

    The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR.

  2. Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission.

    PubMed

    Lin, Yi-Hung; Lin, Gong-Cheng; Wang, Hai-Lin; Chi, Yu-Chieh; Lin, Gong-Ru

    2010-03-01

    By using a 200GHz AWG channelized ASE source in connection with a saturable semiconductor optical amplifier (SOA) based noise blocker as the injecting source at the remote node in front of the local optical network units (ONUs), we demonstrate the spectrum-sliced ASE transmitter with greatly suppressed intensity noise performance in WDM-PON network. Such channelized SOA filtering technique effectively reduces the relative intensity noise of the ASE source by at least 4.5 dB. The low-noise WRC-FPLD transmitter improves its extinction-ratio (ER) from 8.9 to 9.6 dB and signal-to-noise ratio (SNR) from 5.9 to 6.3 dB. In comparison with broad-band ASE injection-locked WRC-FPLD transmitter at same power, there is an improvement on receiving power penalty (DeltaP(Receiver)) by 2 dB at BER 10(-9) in back-to-back case, and the receiving power of BER 10(-9) can achieve -24 dBm even after 25km fiber transmission. With additional AWG filtering, the intraband crosstalk effect between the upstream transmitted data and the reflected ASE signal is significantly reduced by 6.3dB. The compromised effects of ER and SNR on BER performance are also elucidated via the modified SNR model for the WRC-FPLD under ASE injection induced gain-saturation condition. The DeltaP(Receiver)/DeltaSNR of 8.89 at same ER condition is more pronounced than the DeltaP(Receiver)/DeltaER of 3.17 obtained under same SNR condition, indicating that the SNR plays a more important role than the ER on enhancing the BER performance.

  3. Improved signal to noise ratio and sensitivity of an infrared imaging video bolometer on large helical device by using an infrared periscope

    SciTech Connect

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Mukai, Kiyofumi; Enokuchi, Akito; Takeyama, Norihide

    2014-07-15

    An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolution of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ{sub 0} = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details.

  4. Improving the signal-to-noise ratio of the beat note between a frequency comb and a tunable laser using a dynamically tracking optical filter.

    PubMed

    Bergeron, Hugo; Deschênes, Jean-Daniel; Genest, Jérôme

    2016-09-15

    An acousto-optic filter is locked to a tunable continuous wave (CW) laser so that a frequency comb can be dynamically filtered around the wavelength of the CW source. The signal-to-noise ratio (SNR) of the heterodyne beat note between the comb and the CW laser is improved by a factor of up to 19 dB. Furthermore, a SNR of more than 56 dB in 100 kHz is obtained over an 85 nm wavelength span. This technique could enable wideband, agile, and cycle-slip-free phase tracking of a beat note across a full comb spectrum.

  5. The ultraviolet emission properties of five low-redshift active galactic nuclei at high signal-to-noise ratio and spectral resolution

    NASA Technical Reports Server (NTRS)

    Laor, Ari; Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Green, Richard F.; Hartig, George F.

    1994-01-01

    We analyze the ultraviolet (UV) emission line and continuum properties of five low-redshift active galactic nuclei (four luminous quasars: PKS 0405-123, H1821 + 643, PG 0953 + 414, and 3C 273, and one bright Seyfert 1 galaxy: Mrk 205). The HST spectra have higher signal-to-noise ratios (typically approximately 60 per resolution element) and spectral resolution (R = 1300) than all previously published UV spectra used to study the emission characteristics of active galactic nuclei. We include in the analysis ground-based optical spectra covering H beta and the narrow (O III) lambda lambda 4959, 5007 doublet. New results are obtained and presented.

  6. Evaluation of pixel-wise geometric constraint-based phase-unwrapping method for low signal-to-noise-ratio (SNR) phase

    NASA Astrophysics Data System (ADS)

    An, Yatong; Liu, Ziping; Zhang, Song

    2016-12-01

    This paper evaluates the robustness of our recently proposed geometric constraint-based phase-unwrapping method to unwrap a low-signal-to-noise ratio (SNR) phase. Instead of capturing additional images for absolute phase unwrapping, the new phase-unwrapping algorithm uses geometric constraints of the digital fringe projection (DFP) system to create a virtual reference phase map to unwrap the phase pixel by pixel. Both simulation and experimental results demonstrate that this new phase-unwrapping method can even successfully unwrap low-SNR phase maps that bring difficulties for conventional multi-frequency phase-unwrapping methods.

  7. Influence of coherence length, signal-to-noise ratio, log transform, and low-pass filtering on layer thickness assessment with OCT in the retina

    PubMed Central

    Jansonius, Nomdo M.; Cervantes, Joel; Reddikumar, Maddipatla; Cense, Barry

    2016-01-01

    Optical coherence tomography (OCT) images of the retina are inevitably affected by the finite width of the coherence function and noise. To make low-reflective layers visible, the raw OCT signal is log transformed; to reduce the effect of noise the images can be low-pass filtered. We determined the effects of these operations on layer thickness assessment, as a function of signal-to-noise ratio (SNR), by performing measurements in a phantom eye and modeling. The log transform appeared to be the key factor in a SNR-dependent overestimation of peak widths and a less predictive bias in the widths of low-reflective layers. PMID:27895990

  8. Rician noise removal by non-Local Means filtering for low signal-to-noise ratio MRI: applications to DT-MRI.

    PubMed

    Wiest-Daesslé, Nicolas; Prima, Sylvain; Coupé, Pierrick; Morrissey, Sean Patrick; Barillot, Christian

    2008-01-01

    Diffusion-Weighted MRI (DW-MRI) is subject to random noise yielding measures that are different from their real values, and thus biasing the subsequently estimated tensors. The Non-Local Means (NLMeans) filter has recently been proposed to denoise MRI with high signal-to-noise ratio (SNR). This filter has been shown to allow the best restoration of image intensities for the estimation of diffusion tensors (DT) compared to state-of-the-art methods. However, for DW-MR images with high b-values (and thus low SNR), the noise, which is strictly Rician-distributed, can no longer be approximated as additive white Gaussian, as implicitly assumed in the classical formulation of the NLMeans. High b-values are typically used in high angular resolution diffusion imaging (HARDI) or q-space imaging (QSI), for which an optimal restoration is critical. In this paper, we propose to adapt the NLMeans filter to Rician noise corrupted data. Validation is performed on synthetic data and on real data for both conventional MR images and DT images. Our adaptation outperforms the original NLMeans filter in terms of peak-signal-to-noise ratio (PSNR) for DW-MRI.

  9. Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights.

    PubMed

    Lattanzi, Riccardo; Sodickson, Daniel K

    2012-07-01

    At high and ultra-high magnetic field strengths, understanding interactions between tissues and the electromagnetic fields generated by radiofrequency coils becomes crucial for safe and effective coil design as well as for insight into limits of performance. In this work, we present a rigorous electrodynamic modeling framework, using dyadic Green's functions, to derive the electromagnetic field in homogeneous spherical and cylindrical samples resulting from arbitrary surface currents in the presence or absence of a surrounding radiofrequency shield. We show how to calculate ideal current patterns that result in the highest possible signal-to-noise ratio (ultimate intrinsic signal-to-noise ratio) or the lowest possible radiofrequency power deposition (ultimate intrinsic specific absorption rate) compatible with electrodynamic principles. We identify familiar coil designs within optimal current patterns at low to moderate field strength, thereby establishing and explaining graphically the near-optimality of traditional surface and volume quadrature designs. We also document the emergence of less familiar patterns, e.g., involving substantial electric--as well as magnetic-dipole contributions, at high field strength. Performance comparisons with particular coil array configurations demonstrate that optimal performance may be approached with finite arrays if ideal current patterns are used as a guide for coil design.

  10. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography

    NASA Astrophysics Data System (ADS)

    Thitaikumar, Arun; Krouskop, Thomas A.; Ophir, Jonathan

    2007-01-01

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNRasse) and contrast-to-noise ratio (CNRasse) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNRasse and CNRasse. The results of the study show that the CNRasse (SNRasse) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study (<10), the CNRasse (SNRasse) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNRasse (SNRasse) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNRasse (SNRasse) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNRasse (SNRasse) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNRasse and the resolution with respect to pitch.

  11. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.

    PubMed

    Thitaikumar, Arun; Krouskop, Thomas A; Ophir, Jonathan

    2007-01-07

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNR(asse)) and contrast-to-noise ratio (CNR(asse)) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNR(asse) and CNR(asse). The results of the study show that the CNR(asse) (SNR(asse)) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study (<10), the CNR(asse) (SNR(asse)) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNR(asse) (SNR(asse)) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNR(asse) (SNR(asse)) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNR(asse) (SNR(asse)) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNR(asse) and the resolution with respect to pitch.

  12. Tests of variable-band multilayers designed for investigating optimal signal-to-noise vs artifact signal ratios in Dual-Energy Digital Subtraction Angiography (DDSA) imaging systems

    SciTech Connect

    Boyers, D.; Ho, A.; Li, Q.; Piestrup, M.; Rice, M.; Tatchyn, R.

    1993-08-01

    In recent work, various design techniques were applied to investigate the feasibility of controlling the bandwidth and bandshape profiles of tungsten/boron-carbon (W/B{sub 4}C) and tungsten/silicon (W/Si) multilayers for optimizing their performance in synchrotron radiation based angiographical imaging systems at 33 keV. Varied parameters included alternative spacing geometries, material thickness ratios, and numbers of layer pairs. Planar optics with nominal design reflectivities of 30%--94% and bandwidths ranging from 0.6%--10% were designed at the Stanford Radiation Laboratory, fabricated by the Ovonic Synthetic Materials Company, and characterized on Beam Line 4-3 at the Stanford Synchrotron Radiation Laboratory, in this paper we report selected results of these tests and review the possible use of the multilayers for determining optimal signal to noise vs. artifact signal ratios in practical Dual-Energy Digital Subtraction Angiography systems.

  13. A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Lupton, Robert H.; Gunn, James E.; Szalay, Alexander S.

    1999-09-01

    We describe a modification of the usual definition of astronomical magnitudes, replacing the usual logarithm with an inverse hyperbolic sine function; we call these modified magnitudes ``asinh magnitudes.'' For objects detected at signal-to-noise ratios of greater than about 5, our modified definition is essentially identical to the traditional one; for fainter objects (including those with a formally negative flux), our definition is well behaved, tending to a definite value with finite errors as the flux goes to zero. This new definition is especially useful when considering the colors of faint objects, as the difference of two ``asinh'' magnitudes measures the usual flux ratio for bright objects, while avoiding the problems caused by dividing two very uncertain values for faint objects. The Sloan Digital Sky Survey data products will use this scheme to express all magnitudes in their catalogs.

  14. Comparison of entrance exposure and signal-to-noise ratio between an SBDX prototype and a wide-beam cardiac angiographic system.

    PubMed

    Speidel, Michael A; Wilfley, Brian P; Star-Lack, Josh M; Heanue, Joseph A; Betts, Timothy D; Van Lysel, Michael S

    2006-08-01

    The scanning-beam digital x-ray (SBDX) system uses an inverse geometry, narrow x-ray beam, and a 2-mm thick CdTe detector to improve the dose efficiency of the coronary angiographic procedure. Entrance exposure and large-area iodine signal-to-noise ratio (SNR) were measured with the SBDX prototype and compared to that of a clinical cardiac interventional system with image intensifier (II) and charge coupled device (CCD) camera (Philips H5000, MRC-200 x-ray tube, 72 kWp max). Phantoms were 18.6-35.0 cm acrylic with an iohexol-equivalent disk placed at midthickness (35 mg/cm2 iodine radiographic density). Imaging was performed at 15 frame/s, with the disk at mechanical isocenter and an 11-cm object-plane field width. The II/CCD system was operated in cine mode with automatic exposure control. With the SBDX prototype at maximum x-ray output (120 kVp, 24.3 kWp), the SBDX SNR was 107%-69% of the II/CCD SNR, depending on phantom thickness, and the SBDX entrance exposure rate was 10.7-9.3 R/min (9.4-8.2 cGy/min air kerma). For phantoms where an equal-kVp imaging comparison was possible (> or = 23.3 cm), the SBDX SNR ranged from 47% to 69% of the II/CCD SNR while delivering 6% to 9% of the II/CCD entrance exposure rate. From these measurements it was determined that the relative SBDX entrance exposure at equal SNR would be 31%-16%. Results were consistent with a model for relative entrance exposure at equal SNR, which predicted a 3-7 times reduction in entrance exposure due to SBDX's comparatively low scatter fraction (5.5%-8.1% measured, including off-focus radiation), high detector detective quantum efficiency (66%-73%, measured from 70 to 120 kVp), and large entrance field area (1.7x - 2.3x, for the same object-plane field width). With improvements to the system geometry, detector, and x-ray source, SBDX technology is projected to achieve conventional cine-quality SNR over a full range of patient thicknesses, with 5-10 times lower skin dose.

  15. Comparison of entrance exposure and signal-to-noise ratio between an SBDX prototype and a wide-beam cardiac angiographic system

    SciTech Connect

    Speidel, Michael A.; Wilfley, Brian P.; Star-Lack, Josh M.; Heanue, Joseph A.; Betts, Timothy D.; Van Lysel, Michael S.

    2006-08-15

    The scanning-beam digital x-ray (SBDX) system uses an inverse geometry, narrow x-ray beam, and a 2-mm thick CdTe detector to improve the dose efficiency of the coronary angiographic procedure. Entrance exposure and large-area iodine signal-to-noise ratio (SNR) were measured with the SBDX prototype and compared to that of a clinical cardiac interventional system with image intensifier (II) and charge coupled device (CCD) camera (Philips H5000, MRC-200 x-ray tube, 72 kWp max). Phantoms were 18.6-35.0 cm acrylic with an iohexol-equivalent disk placed at midthickness (35 mg/cm{sup 2} iodine radiographic density). Imaging was performed at 15 frame/s, with the disk at mechanical isocenter and an 11-cm object-plane field width. The II/CCD system was operated in cine mode with automatic exposure control. With the SBDX prototype at maximum x-ray output (120 kVp, 24.3 kWp), the SBDX SNR was 107%-69% of the II/CCD SNR, depending on phantom thickness, and the SBDX entrance exposure rate was 10.7-9.3 R/min (9.4-8.2 cGy/min air kerma). For phantoms where an equal-kVp imaging comparison was possible ({>=}23.3 cm), the SBDX SNR ranged from 47% to 69% of the II/CCD SNR while delivering 6% to 9% of the II/CCD entrance exposure rate. From these measurements it was determined that the relative SBDX entrance exposure at equal SNR would be 31%-16%. Results were consistent with a model for relative entrance exposure at equal SNR, which predicted a 3-7 times reduction in entrance exposure due to SBDX's comparatively low scatter fraction (5.5%-8.1% measured, including off-focus radiation), high detector detective quantum efficiency (66%-73%, measured from 70 to 120 kVp), and large entrance field area (1.7x-2.3x, for the same object-plane field width). With improvements to the system geometry, detector, and x-ray source, SBDX technology is projected to achieve conventional cine-quality SNR over a full range of patient thicknesses, with 5-10 times lower skin dose.

  16. Increasing the signal-to-noise ratio by using vertically stacked phased array coils for low-field magnetic resonance imaging.

    PubMed

    Liang, Dandan; Hui, Hon Tat; Yeo, Tat Soon

    2012-11-01

    A new method is introduced to increase the signal-to-noise ratio (SNR) in low-field magnetic resonance imaging (MRI) systems by using a vertically stacked phased coil array. It is shown theoretically that the SNR is increased with the square root of the number of coils in the array if the array signals are properly combined to remove the mutual coupling effect. Based on this, a number of vertically stacked phased coil arrays have been designed and characterized by a numerical simulation method. The performance of these arrays confirms the significant increase of SNR by increasing the number of coils in the arrays. This provides a simple and efficient method to improve the SNR for low-field MRI systems.

  17. A coherent frequency-domain THz spectrometer with a signal-to-noise ratio of 60 dB at 1 THz

    NASA Astrophysics Data System (ADS)

    Demers, Joseph R.; Logan, Ronald T., Jr.; Bergeron, Normand J.; Brown, Elliot R.

    2008-04-01

    A terahertz frequency domain spectrometer is implemented using two ErAs:GaAs photomixers in a highly compact configuration, utilizing all solid-state components and no moving parts. Digital signal processing electronics provide precise frequency control and yield ~200 MHz accuracy of the THz signal frequency. Continuous frequency sweeping is demonstrated with better than 1 GHz resolution from 200 GHz to 1.85 THz. The coherent detection sensitivity is shown to be in good agreement with previous theoretical predictions and yields a signal-to-noise ratio of 80 dB*Hz at 200 GHz and 60 dB*Hz at 1 THz through a path length in air of one foot.

  18. Optimization of wide-angle seismic signal-to-noise ratios and P-wave transmission in Kenya

    USGS Publications Warehouse

    Jacob, A.W.B.; Vees, R.; Braile, L.W.; Criley, E.

    1994-01-01

    In previous refraction and wide-angle reflection experiments in the Kenya Rift there were problems with poor signal-noise ratios which made good seismic interpretation difficult. Careful planning and preparation for KRISP 90 has substantially overcome these problems and produced excellent seismic sections in a difficult environment. Noise levels were minimized by working, as far as possible, at times of the day when conditions were quiet, while source signals were optimized by using dispersed charges in water where it was available and waterfilled boreholes in most cases where it was not. Seismic coupling at optimum depth in water has been found to be more than 100 times greater than it is in a borehole in dry loosely compacted material. Allowing for the source coupling, a very marked difference has been found between the observation ranges in the rift and those on the flanks, where the observation ranges are greater. These appear to indicate a significant difference in seismic transmission through the two types of crust. ?? 1994.

  19. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.

    PubMed

    Jørgensen, Thomas Martini; Thomadsen, Jakob; Christensen, Ulrik; Soliman, Wael; Sander, Birgit

    2007-01-01

    Optical coherence tomography (OCT) has already proven an important clinical tool for imaging and diagnosing retinal diseases. Concerning the standard commercial ophthalmic OCT systems, speckle noise is a limiting factor with respect to resolving relevant retinal features. We demonstrate successful suppression of speckle noise from mutually aligning a series of in vivo OCT recordings obtained from the same retinal target using the Stratus system from Humphrey-Zeiss. Our registration technique is able to account for the axial movements experienced during recording as well as small transverse movements of the scan line from one scan to the next. The algorithm is based on a regularized shortest path formulation for a directed graph on a map formed by interimage (B-scan) correlations. The resulting image enhancement typically increases the contrast-to-noise ratio (CNR) with a factor of three or more and facilitates segmentation and quantitative characterization of pathologies. The method is currently successfully being applied by medical doctors in a number of specific retinal case studies.

  20. Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Razifar, Pasha; Engler, Henry; Blomquist, Gunnar; Ringheim, Anna; Estrada, Sergio; Långström, Bengt; Bergström, Mats

    2009-06-01

    This study introduces a new approach for the application of principal component analysis (PCA) with pre-normalization on dynamic positron emission tomography (PET) images. These images are generated using the amyloid imaging agent N-methyl [11C]2-(4'-methylaminophenyl)-6-hydroxy-benzothiazole ([11C]PIB) in patients with Alzheimer's disease (AD) and healthy volunteers (HVs). The aim was to introduce a method which, by using the whole dataset and without assuming a specific kinetic model, could generate images with improved signal-to-noise and detect, extract and illustrate changes in kinetic behavior between different regions in the brain. Eight AD patients and eight HVs from a previously published study with [11C]PIB were used. The approach includes enhancement of brain regions where the kinetics of the radiotracer are different from what is seen in the reference region, pre-normalization for differences in noise levels and removal of negative values. This is followed by slice-wise application of PCA (SW-PCA) on the dynamic PET images. Results obtained using the new approach were compared with results obtained using reference Patlak and summed images. The new approach generated images with good quality in which cortical brain regions in AD patients showed high uptake, compared to cerebellum and white matter. Cortical structures in HVs showed low uptake as expected and in good agreement with data generated using kinetic modeling. The introduced approach generated images with enhanced contrast and improved signal-to-noise ratio (SNR) and discrimination power (DP) compared to summed images and parametric images. This method is expected to be an important clinical tool in the diagnosis and differential diagnosis of dementia.

  1. Signal to Noise Ratio in Digital Lock-in Detection for Multiple Intensity-Modulated Signals in CO2 Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    CHEN, S.; Lin, B.; Harrison, F. W.; Nehrir, A. R.; Campbell, J. F.; Refaat, T.; Abedin, N. M.; Obland, M. D.; Ismail, S.; Meadows, B. L.

    2013-12-01

    NASA Langley Research Center is investigating Intensity-Modulated, Continuous-Wave Laser Absorption Spectrometers (LASs) for the measurement of atmospheric carbon dioxide (CO2) column mixing ratio from both air- and space-borne platforms. The LAS system uses high-power fiber lasers/amplifiers in the 1.57-um CO2 absorption band and the 1.26-um O2 absorption band in the transmitters and simultaneous digital lock-in detection for the multiple intensity-modulated signals with different modulation waveforms , such as simple sinusoidal waves at different frequencies, associated with different wavelengths in the receivers. The Signal to Noise Ratio (SNR) of the simultaneous digital lock-in detection in the system is of interest for the system designs and the performance prediction of airborne and space-borne implementations in the future. This paper will discuss the properties of the signals and various noises in the LAS system, especially for the simultaneous digital lock-in detection with a single detector for the multiple intensity-modulated signals at different frequencies. The numerical simulation of the SNR for the simultaneous digital lock-in detection in terms of relative intensity of the multiple modulated signals and the integration time, and an initial experimental verification will be presented.

  2. Improving Signal-to-Noise Ratio in Scanning Transmission Electron Microscopy Energy-Dispersive X-Ray (STEM-EDX) Spectrum Images Using Single-Atomic-Column Cross-Correlation Averaging.

    PubMed

    Jeong, Jong Seok; Mkhoyan, K Andre

    2016-06-01

    Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.

  3. Children’s Recall of Words Spoken in Their First and Second Language: Effects of Signal-to-Noise Ratio and Reverberation Time

    PubMed Central

    Hurtig, Anders; Keus van de Poll, Marijke; Pekkola, Elina P.; Hygge, Staffan; Ljung, Robert; Sörqvist, Patrik

    2016-01-01

    Speech perception runs smoothly and automatically when there is silence in the background, but when the speech signal is degraded by background noise or by reverberation, effortful cognitive processing is needed to compensate for the signal distortion. Previous research has typically investigated the effects of signal-to-noise ratio (SNR) and reverberation time in isolation, whilst few have looked at their interaction. In this study, we probed how reverberation time and SNR influence recall of words presented in participants’ first- (L1) and second-language (L2). A total of 72 children (10 years old) participated in this study. The to-be-recalled wordlists were played back with two different reverberation times (0.3 and 1.2 s) crossed with two different SNRs (+3 dBA and +12 dBA). Children recalled fewer words when the spoken words were presented in L2 in comparison with recall of spoken words presented in L1. Words that were presented with a high SNR (+12 dBA) improved recall compared to a low SNR (+3 dBA). Reverberation time interacted with SNR to the effect that at +12 dB the shorter reverberation time improved recall, but at +3 dB it impaired recall. The effects of the physical sound variables (SNR and reverberation time) did not interact with language. PMID:26834665

  4. Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media.

    PubMed

    Lashkari, Bahman; Mandelis, Andreas

    2011-09-01

    The development of the pulse compression photoacoustic (PA) radar using linear frequency modulation (LFM) demonstrated experimentally that spectral matching of the signal to the ultrasonic transducer bandwidth does not necessarily produce the best PA signal-to-noise ratio, and it was shown that the optical and acoustic properties of the absorber will modify the optimal bandwidth. The effects of these factors are investigated in frequency-domain (FD) PA imaging by employing one-dimensional and axisymmetric models of the PA effect, and a Krimholtz-Leedom-Matthaei model for the employed transducers. LFM chirps with various bandwidths were utilized and transducer sensitivity was measured to ensure the accuracy of the model. The theory was compared with experimental results and it was shown that the PA effect can act as a low-pass filter in the signal generation. Furthermore, with the PA radar, the low-frequency behavior of two-dimensional wave generation can appear as a false peak in the cross correlation signal trace. These effects are important in optimizing controllable features of the FD-PA method to improve image quality.

  5. Evaluation of Free Breathing Versus Breath Hold Diffusion Weighted Imaging in Terms Apparent Diffusion Coefficient (ADC) and Signal-to-Noise Ratio (SNR) Values for Solid Abdominal Organs

    PubMed Central

    Herek, Duygu; Karabulut, Nevzat; Kocyıgıt, Ali; Yagcı, Ahmet Baki

    2016-01-01

    Summary Background Our aim was to compare the apparent diffusion coefficient (ADC) values of normal abdominal parenchymal organs and signal-to-noise ratio (SNR) measurements in the same patients with breath hold (BH) and free breathing (FB) diffusion weighted imaging (DWI). Material/Methods Forty-eight patients underwent both BH and FB DWI. Spherical region of interest (ROI) was placed on the right hepatic lobe, spleen, pancreas, and renal cortices. ADC values were calculated for each organ on each sequence using an automated software. Image noise, defined as the standard deviation (SD) of the signal intensities in the most artifact-free area of the image background was measured by placing the largest possible ROI on either the left or the right side of the body outside the object in the recorded field of view. SNR was calculated using the formula: SNR=signal intensity (SI)(organ)/standard deviation (SD)(noise). Results There were no statistically significant differences in ADC values of the abdominal organs between BH and FB DWI sequences (p>0.05). There were statistically significant differences between SNR values of organs on BH and FB DWIs. SNRs were found to be better on FB DWI than BH DWI (p<0.001). Conclusions Free breathing DWI technique reduces image noise and increases SNR for abdominal examinations. Free breathing technique is therefore preferable to BH DWI in the evaluation of abdominal organs by DWI. PMID:27822326

  6. Effect of Simultaneous Bilingualism on Speech Intelligibility across Different Masker Types, Modalities, and Signal-to-Noise Ratios in School-Age Children

    PubMed Central

    Reetzke, Rachel; Lam, Boji Pak-Wing; Xie, Zilong; Sheng, Li; Chandrasekaran, Bharath

    2016-01-01

    Recognizing speech in adverse listening conditions is a significant cognitive, perceptual, and linguistic challenge, especially for children. Prior studies have yielded mixed results on the impact of bilingualism on speech perception in noise. Methodological variations across studies make it difficult to converge on a conclusion regarding the effect of bilingualism on speech-in-noise performance. Moreover, there is a dearth of speech-in-noise evidence for bilingual children who learn two languages simultaneously. The aim of the present study was to examine the extent to which various adverse listening conditions modulate differences in speech-in-noise performance between monolingual and simultaneous bilingual children. To that end, sentence recognition was assessed in twenty-four school-aged children (12 monolinguals; 12 simultaneous bilinguals, age of English acquisition ≤ 3 yrs.). We implemented a comprehensive speech-in-noise battery to examine recognition of English sentences across different modalities (audio-only, audiovisual), masker types (steady-state pink noise, two-talker babble), and a range of signal-to-noise ratios (SNRs; 0 to -16 dB). Results revealed no difference in performance between monolingual and simultaneous bilingual children across each combination of modality, masker, and SNR. Our findings suggest that when English age of acquisition and socioeconomic status is similar between groups, monolingual and bilingual children exhibit comparable speech-in-noise performance across a range of conditions analogous to everyday listening environments. PMID:27936212

  7. Signal-to-noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo-planar spectroscopic imaging.

    PubMed

    Otazo, Ricardo; Mueller, Bryon; Ugurbil, Kamil; Wald, Lawrence; Posse, Stefan

    2006-12-01

    This study characterizes gains in sensitivity and spectral resolution of proton echo-planar spectroscopic imaging (PEPSI) with increasing magnetic field strength (B(0)). Signal-to-noise ratio (SNR) per unit volume and unit time, and intrinsic linewidth (LW) of N-acetyl-aspartate (NAA), creatine (Cr), and choline (Cho) were measured with PEPSI at 1.5, 3, 4, and 7 Tesla on scanners that shared a similar software and hardware platform, using circularly polarized (CP) and eight-channel phased-array (PA) head coils. Data were corrected for relaxation effects and processed with a time-domain matched filter (MF) adapted to each B(0). The SNR and LW measured with PEPSI were very similar to those measured with conventional point-resolved spectroscopy (PRESS) SI. Measurements with the CP coil demonstrated a nearly linear SNR gain with respect to B(0) in central brain regions. For the PA coil, the SNR-B(0) relationship was less than linear, but there was a substantial SNR increase in comparison to the CP coil. The LW in units of ppm decreased with B(0), resulting in improved spectral resolution. These studies using PEPSI demonstrated linear gains in SNR with respect to B(0), consistent with theoretical expectations, and a decrease in ppm LW with increasing B(0).

  8. The effect of activity outside the field-of-view on image signal-to-noise ratio for 3D PET with 15O

    NASA Astrophysics Data System (ADS)

    Ibaraki, Masanobu; Sugawara, Shigeki; Nakamura, Kazuhiro; Kinoshita, Fumiko; Kinoshita, Toshibumi

    2011-05-01

    Activity outside the field-of-view (FOV) degrades the count rate performance of 3D PET and consequently reduces signal-to-noise ratios (SNRs) of reconstructed images. The aim of this study was to evaluate a neck-shield installed in a 3D PET scanner for reducing the effect of the outside FOV activity. Specifically, we compared brain PET scans (15O2 and H215O) with and without the use of the neck-shield. Image SNRs were directly estimated by a sinogram bootstrap method. The bootstrap analysis showed that the use of the neck-shield improved the SNR by 8% and 19% for H215O and 15O2, respectively. The SNR improvements were predominantly due to the reduction of the random count rates. Noise equivalent count rate (NECR) analysis provided SNR estimates that were very similar with the bootstrap-based results for H215O, but not for 15O2. This discrepancy may be due to the fundamental difference between the two methods: the bootstrap method directly calculates the local SNR of reconstructed images, whereas the NECR calculation is based on the whole-gantry count rates, indicating a limitation of the conventional NECR-based method as a tool for assessing the image SNR. Although quantitative parameters, e.g. cerebral blood flow, did not differ when examined with and without the neck-shield, the use of the shield for brain 15O study is recommended in terms of the image SNR.

  9. Signal-to-noise ratio enhancement on SEM images using a cubic spline interpolation with Savitzky-Golay filters and weighted least squares error.

    PubMed

    Kiani, M A; Sim, K S; Nia, M E; Tso, C P

    2015-05-01

    A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.

  10. Coherent anti-Stokes Raman scattering microscope with a high-signal-to-noise ratio, high stability, and high-speed imaging for live cell observation

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi; Takimoto, Shinichi; Hashimoto, Takeshi

    2007-02-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy, which can produce images of specific molecules without staining, has attracted the attention of researchers, as it matches the need for molecular imaging and pathway analysis of live cells. In particular, there have been an increasing number of CARS experimental results regarding lipids in live cells, which cannot be fluorescently tagged while keeping the cells alive. One of the important applications of lipid research is for the metabolic syndrome. Since the metabolic syndrome is said to be related to the lipids in lipocytes, blood, arterial vessels, and so on, the CARS technique is expected to find application in this field. However, CARS microscopy requires a pair of picosecond laser pulses, which overlap both temporally and spatially. This makes the optical adjustments of a CARS microscope challenging. The authors developed a CARS unit that includes optics for easy and stable adjustment of the overlap of these laser pulses. Adding the CARS unit to a laser scanning microscope provides CARS images of a high signal-to-noise ratio, with an acquisition rate as high as 2 microseconds per pixel. Thus, images of fast-moving lipid droplets in Hela cells were obtained.

  11. Effects of input frequency content and signal-to-noise ratio on the parametric estimation of surface EMG-torque dynamics.

    PubMed

    Golkar, Mahsa A; Kearney, Robert E

    2016-08-01

    The dynamic relationship between surface EMG (sEMG) and torque can be estimated from data acquired while subjects voluntarily modulate joint torque. We have shown that for such data, the input (EMG) contains a feedback component from the output (torque) and so accurate estimates of the dynamics require the use of closed-loop identification algorithms. Moreover, this approach has several other limitations since the input is controlled indirectly and so the frequency content and signal-to-noise ratio cannot be controlled. This paper investigates how these factors influence the accuracy of estimates. This was studied using experimental sEMG recorded from healthy human subjects for tasks with different modulation rates. Box-Jenkin (BJ) method was used for identification. Results showed that input frequency content had little effect on estimates of gain and natural frequency but had strong effect on damping factor estimates. It was demonstrated that to accurately estimate the damping factor, the command signal switching rate must be less than 2s. It was also shown that random errors increased with noise level but was limited to 10% of the parameters true value for highest noise level tested. To summarize, simulation study of this work showed that voluntary modulation paradigm can accurately identify sEMG-torque dynamics.

  12. An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency.

    PubMed

    Wu, Xiangyu; Li, Ning; Li, Hongde; Tang, Huiru

    2014-04-07

    Plant metabolomic analysis has become an essential part of functional genomics and systems biology and requires effective extraction of both primary and secondary metabolites from plant cells. To establish an optimized extraction method for the NMR-based analysis, we used the seeds of mungbean (Vigna radiata cv. Elü no. 1) as a model and systematically investigated the dependence of the metabolite composition in plant extracts on various extraction parameters including cell-breaking methods, extraction solvents, number of extraction repeats, tissue-to-solvent ratio, and extract-to-buffer ratio (for final NMR analysis). We also compared two NMR approaches for quantitative metabolomic analysis from completely relaxed spectra directly and from partially relaxed spectra calculated with T1. By maximizing the extraction efficiency and signal-to-noise ratio but minimizing inter-sample chemical-shift variations and metabolite degradations, we established a parameter-optimized protocol for NMR-based plant seed metabolomic analysis. We concluded that aqueous methanol was the best extraction solvent with an optimal tissue-to-solvent ratio of about 1 : 10-1 : 15 (mg per μL). The combination of tissuelyser homogenization with ultrasonication was the choice of cell-breaking method with three repeated extractions being necessary. For NMR analysis, the optimal extract-to-solvent was around 5-8 mg mL(-1) and completely relaxed spectra were ideal for intrinsically quantitative metabolomic analysis although partially relaxed spectra were employable for comparative metabolomics. This optimized method will offer ensured data quality for high-throughput and reliable plant metabolomics studies.

  13. Signal-to-Noise Ratios of the ASCENDS CarbonHawk Experiment Simulator (ACES) for Atmospheric CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Chen, S.

    2015-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) system has been developed at NASA Langley Research Center to advance technologies in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission and to demonstrate them initially from a high-altitude airborne platform. With a multiple fiber-amplifier-based Swept-Frequency Intensity-Modulated Continuous-Wave (SF-IM-CW) high-power laser transmitter and a multiple-aperture receiver, the ACES system provides simultaneous measurements of the differential optical depth at the 1571-nm CO2 absorption line and the associated range between the transmitter and target on an airborne platform. The precise measurement of the CO2 differential optical depth and the range, determined by signal amplitudes and phases in the ACES returns, together with the temperature, pressure, and water vapor information at the same location, make it possible to retrieve the column-averaged CO2 dry air mixing ratio (XCO2). The Signal-to-Noise Ratios (SNRs) of both return-signal amplitudes and phases of three simultaneously-received SF-IM-CW signals in the ACES system directly affect the measurement precision of the differential optical depths and the ranges between the ACES system and the Earth's surface or the tops of intermediate cloud layers. In this paper, we present results from numerical simulations and experimental measurements of ACES SNRs based on the laboratory-determined system parameters and flight experiments over ocean and land areas. These results will be used in the design of an IM-CW CO2 Integrated Path Differential Absorption (IPDA) lidar system for ASCENDS mission.

  14. Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors.

    PubMed

    Blaszczyk, Michal; Harmer, Nicholas J; Chirgadze, Dimitri Y; Ascher, David B; Blundell, Tom L

    2015-09-01

    How is information communicated both within and between cells of living systems with high signal to noise? We discuss transmembrane signaling models involving two receptor tyrosine kinases: the fibroblast growth factor receptor (FGFR) and the MET receptor. We suggest that simple dimerization models might occur opportunistically giving rise to noise but cooperative clustering of the receptor tyrosine kinases observed in these systems is likely to be important for signal transduction. We propose that this may be a more general prerequisite for high signal to noise in transmembrane receptor signaling.

  15. Metals in the z ˜ 3 intergalactic medium: results from an ultra-high signal-to-noise ratio UVES quasar spectrum

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; Pomante, E.; Carswell, R. F.; Viel, M.; Barai, P.; Becker, G. D.; Calura, F.; Cupani, G.; Fontanot, F.; Haehnelt, M. G.; Kim, T.-S.; Miralda-Escudé, J.; Rorai, A.; Tescari, E.; Vanzella, E.

    2016-12-01

    In this work, we investigate the abundance and distribution of metals in the intergalactic medium (IGM) at ≃ 2.8 through the analysis of an ultra-high signal-to-noise ratio UVES spectrum of the quasar HE0940-1050. In the C IV forest, our deep spectrum is sensitive at 3σ to lines with column density down to log NCIV ≃ 11.4 and in 60 per cent of the considered redshift range down to ≃11.1. In our sample, all H I lines with log NHI ≥ 14.8 show an associated C IV absorption. In the range 14.0 ≤ log NHI < 14.8, 43 per cent of H I lines has an associated C IV absorption. At log NHI < 14.0, the detection rates drop to <10 per cent, possibly due to our sensitivity limits and not to an actual variation of the gas abundance properties. In the range log NHI ≥ 14, we observe a fraction of H I lines with detected C IV a factor of 2 larger than the fraction of H I lines lying in the circumgalactic medium (CGM) of relatively bright Lyman-break galaxies hosted by dark matter haloes with ˜ 1012 M⊙. The comparison of our results with the output of a grid of photoionization models and of two cosmological simulations implies that the volume filling factor of the IGM gas enriched to a metallicity log Z/Z_{⊙} ≳-3 should be of the order of ˜10-13 per cent. In conclusion, our results favour a scenario in which metals are found also outside the CGM of bright star-forming galaxies, possibly due to pollution by lower mass objects and/or to an early enrichment by the first sources.

  16. Measuring time-domain spectral induced polarization in the on-time: decreasing acquisition time and increasing signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Olsson, Per-Ivar; Dahlin, Torleif; Fiandaca, Gianluca; Auken, Esben

    2015-12-01

    Combined resistivity and time-domain direct current induced polarization (DCIP) measurements are traditionally carried out with a 50% duty cycle current waveform, taking the resistivity measurements during the on-time and the IP measurements during the off-time. One drawback with this method is that only half of the acquisition time is available for resistivity and IP measurements, respectively. In this paper, this limitation is solved by using a current injection with 100% duty cycle and also taking the IP measurements in the on-time. With numerical modelling of current waveforms with 50% and 100% duty cycles we show that the waveforms have comparable sensitivity for the spectral Cole-Cole parameters and that signal level is increased up to a factor of 2 if the 100% duty cycle waveform is used. The inversion of field data acquired with both waveforms confirms the modelling results and shows that it is possible to retrieve similar inversion models with either of the waveforms when inverting for the spectral Cole-Cole parameters with the waveform of the injected current included in the forward computations. Consequently, our results show that on-time measurements of IP can reduce the acquisition time by up to 50% and increase the signal-to-noise ratio by up to 100% almost without information loss. Our findings can contribute and have a large impact for DCIP surveys in general and especially for surveys where time and reliable data quality are important factors. Specifically, the findings are of value for DCIP surveys conducted in urban areas where anthropogenic noise is an issue and the heterogeneous subsurface demands time-consuming 3D acquisitions.

  17. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters.

    PubMed

    Viumdal, Håkon; Mylvaganam, Saba

    2014-03-01

    Buffer rods (BR) as waveguides in ultrasonic time domain reflectometry (TDR) can somewhat extend the range of industrial applications of ultrasonics. Level, temperature and flow measurements involving elevated temperatures, corrosive fluids and generally harsh environments are some of the applications in which conventional ultrasonic transducers cannot be used directly in contact with the media. In such cases, BRs with some design modifications can make ultrasonic TDR measurements possible with limited success. This paper deals with TDR in conjunction with distance measurements in extremely hot fluids, using conventional ultrasonic transducers in combination with BRs. When using BRs in the ultrasonic measurement systems in extreme temperatures, problems associated with size and the material of the buffer, have to be addressed. The resonant frequency of the transducer and the relative size of the transducer with respect to the diameter of BR are also important parameters influencing the signal to noise ratio (SNR) of the signal processing system used in the ultrasonic TDR. This paper gives an overview of design aspects related to the BRs with special emphasis on tapers and cladding used on BRs. As protective cladding, zirconium oxide-yttrium oxide composite was used, with its proven thermal stability in withstanding temperatures in rocket and jet engines up to 1650 °C. In general a BR should guide the signals through to the medium and from and back to the transducer without excessive attenuation and at the same time not exacerbate the noise in the measurement system. The SNR is the decisive performance indicator to consider in the design of BR based ultrasonic TDR, along with appropriate transducer, with suitable size and operating frequency. This work presents and analyses results from extensive experiments related to fine-tuning both geometry of and signals in cladded/uncladded BRs used in high temperature ultrasonic TDR with focus on overall performance based on

  18. Correlation between the signal-to-noise ratio improvement factor (KSNR) and clinical image quality for chest imaging with a computed radiography system.

    PubMed

    Moore, C S; Wood, T J; Saunderson, J R; Beavis, A W

    2015-12-07

    This work assessed the appropriateness of the signal-to-noise ratio improvement factor (KSNR) as a metric for the optimisation of computed radiography (CR) of the chest. The results of a previous study in which four experienced image evaluators graded computer simulated chest images using a visual grading analysis scoring (VGAS) scheme to quantify the benefit of using an anti-scatter grid were used for the clinical image quality measurement (number of simulated patients  =  80). The KSNR was used to calculate the improvement in physical image quality measured in a physical chest phantom. KSNR correlation with VGAS was assessed as a function of chest region (lung, spine and diaphragm/retrodiaphragm), and as a function of x-ray tube voltage in a given chest region. The correlation of the latter was determined by the Pearson correlation coefficient. VGAS and KSNR image quality metrics demonstrated no correlation in the lung region but did show correlation in the spine and diaphragm/retrodiaphragmatic regions. However, there was no correlation as a function of tube voltage in any region; a Pearson correlation coefficient (R) of  -0.93 (p  =  0.015) was found for lung, a coefficient (R) of  -0.95 (p  =  0.46) was found for spine, and a coefficient (R) of  -0.85 (p  =  0.015) was found for diaphragm. All demonstrate strong negative correlations indicating conflicting results, i.e. KSNR increases with tube voltage but VGAS decreases. Medical physicists should use the KSNR metric with caution when assessing any potential improvement in clinical chest image quality when introducing an anti-scatter grid for CR imaging, especially in the lung region. This metric may also be a limited descriptor of clinical chest image quality as a function of tube voltage when a grid is used routinely.

  19. Correlation between the signal-to-noise ratio improvement factor (KSNR) and clinical image quality for chest imaging with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Saunderson, J. R.; Beavis, A. W.

    2015-12-01

    This work assessed the appropriateness of the signal-to-noise ratio improvement factor (KSNR) as a metric for the optimisation of computed radiography (CR) of the chest. The results of a previous study in which four experienced image evaluators graded computer simulated chest images using a visual grading analysis scoring (VGAS) scheme to quantify the benefit of using an anti-scatter grid were used for the clinical image quality measurement (number of simulated patients  =  80). The KSNR was used to calculate the improvement in physical image quality measured in a physical chest phantom. KSNR correlation with VGAS was assessed as a function of chest region (lung, spine and diaphragm/retrodiaphragm), and as a function of x-ray tube voltage in a given chest region. The correlation of the latter was determined by the Pearson correlation coefficient. VGAS and KSNR image quality metrics demonstrated no correlation in the lung region but did show correlation in the spine and diaphragm/retrodiaphragmatic regions. However, there was no correlation as a function of tube voltage in any region; a Pearson correlation coefficient (R) of  -0.93 (p  =  0.015) was found for lung, a coefficient (R) of  -0.95 (p  =  0.46) was found for spine, and a coefficient (R) of  -0.85 (p  =  0.015) was found for diaphragm. All demonstrate strong negative correlations indicating conflicting results, i.e. KSNR increases with tube voltage but VGAS decreases. Medical physicists should use the KSNR metric with caution when assessing any potential improvement in clinical chest image quality when introducing an anti-scatter grid for CR imaging, especially in the lung region. This metric may also be a limited descriptor of clinical chest image quality as a function of tube voltage when a grid is used routinely.

  20. Computation of the ensemble channelized Hotelling observer signal-to-noise ratio for ordered-subset image reconstruction using noisy data

    NASA Astrophysics Data System (ADS)

    Soares, Edward J.; Gifford, Howard C.; Glick, Stephen J.

    2003-05-01

    We investigated the estimation of the ensemble channelized Hotelling observer (CHO) signal-to-noise ratio (SNR) for ordered-subset (OS) image reconstruction using noisy projection data. Previously, we computed the ensemble CHO SNR using a method for approximating the channelized covariance of OS reconstruction, which requires knowledge of the noise-free projection data. Here, we use a "plug-in" approach, in which noisy data is used in place of the noise-free data in the aforementioned channelized covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance calculation. The task was detection of a 10% contrast Gaussian signal within a slice of the MCAT phantom. Simulated projections of the MCAT phantom were scaled and Poisson noise was added to create 100 noisy signal-absent data sets. Simulated projections of the scaled signal were then added to the noisy background projections to create 100 noisy signal-present data set. These noisy data sets were then used to generate 100 estimates of the ensemble CHO SNR for reconstructions at various iterates. For comparison purposes, the same calculation was repeated with the noise-free data. The results, reported as plots of the average CHO SNR generated in this fashion, along with 95% confidence intervals, demonstrate that this approach works very well, and would allow optimization of imaging systems and reconstruction methods using a more accurate object model (i.e., real patient data).

  1. 1H-MRS evaluation of breast lesions by using total choline signal-to-noise ratio as an indicator of malignancy: a meta-analysis.

    PubMed

    Wang, Xin; Wang, Xiang Jiang; Song, Hui Sheng; Chen, Long Hua

    2015-05-01

    The aim of this study was to evaluate the diagnostic performance of the use of total choline signal-to-noise ratio (tCho SNR) criteria in MRS studies for benign/malignant discrimination of focal breast lesions. We conducted (1) a meta-analysis based on 10 studies including 480 malignant breast lesions and 312 benign breast lesions and (2) a subgroup meta-analysis of tCho SNR ≥ 2 as cutoff for malignancy based on 7 studies including 371 malignant breast lesions and 239 benign breast lesions. (1) The pooled sensitivity and specificity of proton MRS with tCho SNR were 0.74 (95 % CI 0.69-0.77) and 0.76 (95 % CI 0.71-0.81), respectively. The PLR and NLR were 3.67 (95 % CI 2.30-5.83) and 0.25 (95 % CI 0.14-0.42), respectively. From the fitted SROC, the AUC and Q* index were 0.89 and 0.82. Publication bias was present (t = 2.46, P = 0.039). (2) Meta-regression analysis suggested that neither threshold effect nor evaluated covariates including strength of field, pulse sequence, TR and TE were sources of heterogeneity (all P value >0.05). (3) Subgroup meta-analysis: The pooled sensitivity and specificity were 0.79 and 0.72, respectively. The PLR and NLR were 3.49 and 0.20, respectively. The AUC and Q* index were 0.92 and 0.85. The use of tCho SNR criteria in MRS studies was helpful for differentiation between malignant and benign breast lesions. However, pooled diagnostic measures might be overestimated due to publication bias. A tCho SNR ≥ 2 as cutoff for malignancy resulted in higher diagnostic accuracy.

  2. Signal-to-noise ratio improvements in laser flow diagnostics using time-resolved image averaging and high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Giassi, Davide; Long, Marshall B.

    2016-08-01

    Two alternative image readout approaches are demonstrated to improve the signal-to-noise ratio (SNR) in temporally resolved laser-based imaging experiments of turbulent phenomena. The first method exploits the temporal decay characteristics of the phosphor screens of image intensifiers when coupled to an interline-transfer CCD camera operated in double-frame mode. Specifically, the light emitted by the phosphor screen, which has a finite decay constant, is equally distributed and recorded over the two sequential frames of the detector so that an averaged image can be reconstructed. The characterization of both detector and image intensifier showed that the technique preserves the correct quantitative information, and its applicability to reactive flows was verified using planar Rayleigh scattering and tested with the acquisition of images of both steady and turbulent partially premixed methane/air flames. The comparison between conventional Rayleigh results and the averaged ones showed that the SNR of the averaged image is higher than the conventional one; with the setup used in this work, the gain in SNR was seen to approach 30 %, for both the steady and turbulent cases. The second technique uses the two-frame readout of an interline-transfer CCD to increase the image SNR based on high dynamic range imaging, and it was tested in an unsteady non-reactive flow of Freon-12 injected in air. The result showed a 15 % increase in the SNR of the low-pixel-count regions of an image, when compared to the pixels of a conventionally averaged one.

  3. Analysis of SATIR test for the qualification of high heat flux components: defect detection and classification by signal-to-noise ratio maximization

    NASA Astrophysics Data System (ADS)

    Cismondi, F.; Xerri, B.; Jauffret, C.; Schlosser, J.; Vignal, N.; Durocher, A.

    2007-03-01

    Plasma facing components (PFC) in Tore Supra and W7X adopt the flat tile concept using carbon fibre composite (CFC) material for the plasma facing material. As the cooling structure is made of a copper alloy material (CuCrZr), the bonding technique between CFC tiles and CuCrZr is critical. Currently, a soft metallic compliant layer is interposed between the two; in such a way the significant thermal expansion mismatch between carbon and copper can be accomodated. The development of a reliable non-destructive inspection technique (NDT) for the bond, to be performed during the manufacturing process, is obviously of great importance. The SATIR (infrared thermography) test bed operating at Commisariat à l'Energie Atomique (CEA) Cadarache performs this function using transient infrared thermography: the thermal excitation is realized in the cooling channel and the presence of a faulty tile is detected in the form of a delayed thermal response. With this technique, the evolution of the surface temperature of an inspected element was compared to that of a defined free-defect element, using the so-called DTref criterion (maximum of the transient temperature difference). The defect detection capability of the SATIR test bed can be improved using signal processing methods. A first treatment based on spatial image autocorrelation allows a better localization of the bond defect. Moreover, the problem of detection and classification of random signals (like the thin defect signature) can be solved maximizing the signal-to-noise ratio (SNR). Two filters maximizing this ratio were optimized: the stochastic matched filter (SMF) aims at defect detection, while the constrained SMF aims at defect classification. These methods assume that the second-order properties of the process at play are known, through covariance matrices. All these methods process the SATIR signal utilizing any free-defect element as reference signal. The tile temperature signal is either processed by itself or

  4. Detection of Multiple Innervation Zones from Multi-Channel Surface EMG Recordings with Low Signal-to-Noise Ratio Using Graph-Cut Segmentation

    PubMed Central

    Farahi, Morteza; Rojas, Monica; Mañanas, Miguel Angel; Farina, Dario

    2016-01-01

    Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed

  5. A novel technique for determination of two dimensional signal-to-noise ratio improvement factor of an antiscatter grid in digital radiography

    NASA Astrophysics Data System (ADS)

    Nøtthellen, Jacob; Konst, Bente; Abildgaard, Andreas

    2014-08-01

    Purpose: to present a new and simplified method for pixel-wise determination of the signal-to-noise ratio improvement factor KSNR of an antiscatter grid, when used with a digital imaging system. The method was based on approximations of published formulas. The simplified estimate of K2SNR may be used as a decision tool for whether or not to use an antiscatter grid. Methods: the primary transmission of the grid Tp was determined with and without a phantom present using a pattern of beam stops. The Bucky factor B was measured with and without a phantom present. Hence K2SNR maps were created based on Tp and B. A formula was developed to calculate K2SNR from the measured Bs without using the measured Tp. The formula was applied on two exposures of anthropomorphic phantoms, adult legs and baby chest, and on two homogeneous poly[methyl methacrylate] (PMMA) phantoms, 5 cm and 10 cm thick. The results from anthropomorphic phantoms were compared to those based on the beam stop method. The results for the PMMA-phantoms were compared to a study that used a contrast-detail phantom. Results: 2D maps of K2SNR over the entire adult legs and baby chest phantoms were created. The maps indicate that it is advantageous to use the antiscatter grid for imaging of the adult legs. For baby chest imaging the antiscatter grid is not recommended if only the lung regions are of interest. The K2SNR maps based on the new method correspond to those from the beam stop method, and the K2SNR from the homogenous phantoms arising from two different approaches also agreed well with each other. Conclusion: a method to measure 2D K2SNR associated with grid use in digital radiography system was developed and validated. The proposed method requires four exposures and use of a simple formula. It is fast and provides adequate estimates for K2SNR.

  6. Magnetic Field Strength Dependence of Transverse Relaxation and Signal-to-Noise Ratio for Hyperpolarized Xenon-129 and Helium-3 Gas Magnetic Resonance Imaging of Lungs

    NASA Astrophysics Data System (ADS)

    Dominguez-Viqueira, William

    Magnetic resonance (MR) imaging with hyperpolarized noble gases (HNG), 3He or 129Xe, has become a promising approach for studying lung anatomy and function. Unlike conventional MR imaging, the magnetization in HNG MR is independent of the magnetic field strength. This means that no improvement in signal-to-noise ratio (SNR) is expected with increasing clinical field strength above ˜0.25T. Furthermore, it has been predicted that the SNR may decline at clinical field strength due to decreases in the apparent transverse relaxation time (T2*), caused by the increased magnetic susceptibility induced field gradients at the air-tissue interface. In this thesis the magnetic field strength dependence of T2* and SNR in HNG MR is investigated experimentally in rodent and human lungs. For rodent imaging, a novel broad-band (0.1-100MHz) variable field strength MR imaging system for rodents was built. This system permitted imaging of 129Xe, 3He and 1H at low magnetic field strengths (3-73.5mT) to experimentally investigate the field dependence of HNG imaging SNR in rodent lungs. In vivo 129Xe and 3He signals were acquired at 73.5mT and T 2* was estimated to be approximately 180+/-8 ms, in good agreement with previously reported values. At 73.5mT, image noise is dominated by losses originated from the radiofrequency (RF) coils. To address this issue, RF coils were built using different types of copper wire and compared in phantoms and in vivo in rat lungs using hyperpolarized 3He and 129Xe gas. An SNR improvement of up to 200% was obtained with Litz wire compared to conventional copper wire. This improvement demonstrated the feasibility of HNG lung imaging in rodents at 73.5mT with SNR comparable to that obtained at clinical field strengths. To verify the SNR field dependence in humans, hyperpolarized 3He lung imaging at two commonly used clinical field strengths (1.5T and 3T) was performed in the same volunteers and compared. No significant differences in SNR were obtained

  7. Multimodal integration of EEG and MEG data: a simulation study with variable signal-to-noise ratio and number of sensors.

    PubMed

    Babiloni, Fabio; Babiloni, Claudio; Carducci, Filippo; Romani, Gian Luca; Rossini, Paolo M; Angelone, Leonardo M; Cincotti, Febo

    2004-05-01

    Previous simulation studies have stressed the importance of the multimodal integration of electroencephalography (EEG) and magnetoencephalography (MEG) data in the estimation of cortical current density. In such studies, no systematic variations of the signal-to-noise ratio (SNR) and of the number of sensors were explicitly taken into account in the estimation process. We investigated effects of variable SNR and number of sensors on the accuracy of current density estimate by using multimodal EEG and MEG data. This was done by using as the dependent variable both the correlation coefficient (CC) and the relative error (RE) between imposed and estimated waveforms at the level of cortical region of interests (ROI). A realistic head and cortical surface model was used. Factors used in the simulations were: (1). the SNR of the simulated scalp data (with seven levels: infinite, 30, 20, 10, 5, 3, 1); (2). the particular inverse operator used to estimate the cortical source activity from the simulated scalp data (INVERSE, with two levels, including minimum norm and weighted minimum norm); and (3). the number of EEG or MEG sensors employed in the analysis (SENSORS, with three levels: 128, 61, 29 for EEG and 153, 61, or 38 in MEG). Analysis of variance demonstrated that all the considered factors significantly affect the CC and the RE indexes. Combined EEG-MEG data produced statistically significant lower RE and higher CC in source current density reconstructions compared to that estimated by the EEG and MEG data considered separately. These observations hold for the range of SNR values presented by the analyzed data. The superiority of current density estimation by multimodal integration of EEG and MEG was not due to differences in number of sensors between unimodal (EEG, MEG) and combined (EEG-MEG) inverse estimates. In fact, the current density estimate relative to the EEG-MEG multimodal integration involved 61 EEG plus 63 MEG sensors, whereas estimations carried out

  8. Signal-to-noise in femtosecond electron diffraction.

    PubMed

    Kealhofer, Catherine; Lahme, Stefan; Urban, Theresa; Baum, Peter

    2015-12-01

    Pump-probe electron diffraction can directly record atomic-scale motion within molecules or materials. However, the available current in femtosecond experiments is limited, making it challenging to reach the sensitivity required for detecting the fastest structural dynamics, which are encoded in time-dependent diffraction intensities. Here we present a unified analysis of signal-to-noise for an ultrafast electron diffraction apparatus. We characterize the noise of realistic ultrafast electron sources and detectors, test the performance on crystalline and polycrystalline samples and discuss practical approaches for improving measurement sensitivity. The analysis is found sufficient to predict the achievable signal-to-noise ratio in pump-probe electron diffraction before actually starting an investigation.

  9. Visual threshold is set by linear and nonlinear mechanisms in the retina that mitigate noise: how neural circuits in the retina improve the signal-to-noise ratio of the single-photon response.

    PubMed

    Pahlberg, Johan; Sampath, Alapakkam P

    2011-06-01

    In sensory biology, a major outstanding question is how sensory receptor cells minimize noise while maximizing signal to set the detection threshold. This optimization could be problematic because the origin of both the signals and the limiting noise in most sensory systems is believed to lie in stimulus transduction. Signal processing in receptor cells can improve the signal-to-noise ratio. However, neural circuits can further optimize the detection threshold by pooling signals from sensory receptor cells and processing them using a combination of linear and nonlinear filtering mechanisms. In the visual system, noise limiting light detection has been assumed to arise from stimulus transduction in rod photoreceptors. In this context, the evolutionary optimization of the signal-to-noise ratio in the retina has proven critical in allowing visual sensitivity to approach the limits set by the quantal nature of light. Here, we discuss how noise in the mammalian retina is mitigated to allow for highly sensitive night vision.

  10. Demonstration of improvement in the signal-to-noise ratio of Thomson scattering signal obtained by using a multi-pass optical cavity on the Tokyo Spherical Tokamak-2

    SciTech Connect

    Togashi, H. Ejiri, A.; Nakamura, K.; Takase, Y.; Yamaguchi, T.; Furui, H.; Imamura, K.; Inada, T.; Nakanishi, A.; Oosako, T.; Shinya, T.; Tsuda, S.; Tsujii, N.; Hiratsuka, J.; Kakuda, H.; Sonehara, M.; Wakatsuki, T.; Hasegawa, M.; Nagashima, Y.; Narihara, K.; and others

    2014-11-15

    The multi-pass Thomson scattering (TS) scheme enables obtaining many photons by accumulating multiple TS signals. The signal-to-noise ratio (SNR) depends on the accumulation number. In this study, we performed multi-pass TS measurements for ohmically heated plasmas, and the relationship between SNR and the accumulation number was investigated. As a result, improvement of SNR in this experiment indicated similar tendency to that calculated for the background noise dominant situation.

  11. The Dependence of Signal-To-Noise Ratio (S/N) Between Star Brightness and Background on the Filter Used in Images Taken by the Vulcan Photometric Planet Search Camera

    NASA Astrophysics Data System (ADS)

    Mena-Werth, Jose

    1998-10-01

    The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.

  12. The Dependence of Signal-To-Noise Ratio (S/N) Between Star Brightness and Background on the Filter Used in Images Taken by the Vulcan Photometric Planet Search Camera

    NASA Technical Reports Server (NTRS)

    Mena-Werth, Jose

    1998-01-01

    The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.

  13. Airborne ultraviolet imaging system for oil slick surveillance: oil-seawater contrast, imaging concept, signal-to-noise ratio, optical design, and optomechanical model.

    PubMed

    Shi, Zhenhua; Yu, Lei; Cao, Diansheng; Wu, Qingwen; Yu, Xiangyang; Lin, Guanyu

    2015-09-01

    The airborne ultraviolet imaging system, which assesses oil slick areas better than visible and infrared optical systems, was designed to monitor and track oil slicks in coastal regions. A model was built to achieve the upwelling radiance distribution of oil-covered sea and clean seawater, based on the radiance transfer software. With this model, the oil-seawater contrast, which affects the detection of oil-covered coastal areas, was obtained. The oil-seawater contrast, fundamental imaging concept, analog calculation of SNR, optical design, and optomechanical configuration of the airborne ultraviolet imaging system are illustrated in this paper. The study of an airborne ultraviolet imaging system with F-number 3.4 and a 40° field of view (FOV) in near ultraviolet channel (0.32-0.38 μm) was illustrated and better imaging quality was achieved. The ground sample distance (GSD) is from 0.35 to 0.7 m with flight height ranges from 0.5 to 1 km. Comparisons of detailed characteristics of the airborne ultraviolet imaging system with the corresponding characteristics of previous ultraviolet systems were tabulated, and these comparisons showed that this system can achieve a wide FOV and a relative high SNR. A virtual mechanical prototype and tolerances analysis are illustrated in this paper to verify the performance of fabrication and assembly of the ultraviolet system.

  14. A signal input coil made of superconducting thin film for improved signal-to-noise ratio in a high-Tc SQUID-based ultra-low field nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Chen, Kuen-Lin; Hsu, Chin-Wei; Ku, Yue-Bai; Chen, Hsin-Hsien; Liao, Shu-Hsien; Wang, Li-Min; Horng, Herng-Er; Yang, Hong-Chang

    2013-11-01

    Resonant coupling schemes are commonly used in SQUID-based ultra-low field (ULF) nuclear magnetic resonance (NMR) systems to couple the spin relaxation signals from samples to the SQUID. Generally, in NMR systems, a resonant coupling scheme is composed of two solenoid coils which are made of enamel insulated wires and a capacitor connected in series. In this work, we tried to replace the metal solenoid input coil with a planar high-Tc superconducting spiral coil to improve the signal-to-noise ratio (SNR) of the ULF NMR signal. A measurement of the free induction decay signal of water protons was performed to demonstrate the improved performance of the system. This improvement is due to the fact that the planar superconducting spiral coil possesses a higher mutual inductance with the SQUID. Therefore, it is a promising way to enhance the SNR of high-Tc SQUID-based ULF NMR/MRI systems.

  15. Demonstration of in-service wavelength division multiplexing optical-signal-to-noise ratio performance monitoring and operating guidelines for coherent data channels with different modulation formats and various baud rates.

    PubMed

    Chitgarha, Mohammad Reza; Khaleghi, Salman; Daab, Wajih; Almaiman, Ahmed; Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Rogawski, Devora; Tur, Moshe; Touch, Joseph D; Vusirikala, Vijay; Zhao, Wendy; Willner, Alan E

    2014-03-15

    We demonstrated a delay-line interferometer (DLI)-based, optical-signal-to-noise ratio (OSNR) monitoring scheme of 100  Gbit/s polarization multiplexed quadrature-phase-shift-keying (PM-QPSK) four-channel WDM at 50-GHz International Telecommunication Union (ITU) grid with <0.5  dB error for signals with up to 26 dB of actual OSNR. We also demonstrated data format transparency and baud rate tunability of the OSNR monitor by measuring the OSNR for a 200  Gbit/s PM-16-QAM (25-Gbaud) signal and a 200  Gbit/s PM-QPSK (50-Gbaud) signal. We also explored and studied different monitor parameters, including the shape of the filter spectrum, the bandwidth of the filter, DLI delay, and DLI phase-detuning to determine the design guidelines for a desired level of accuracy for the OSNR monitor in an optical network.

  16. When is an optimization not an optimization? Evaluation of clinical implications of information content (signal-to-noise ratio) in optimization of cardiac resynchronization therapy, and how to measure and maximize it.

    PubMed

    Pabari, Punam A; Willson, Keith; Stegemann, Berthold; van Geldorp, Irene E; Kyriacou, Andreas; Moraldo, Michela; Mayet, Jamil; Hughes, Alun D; Francis, Darrel P

    2011-05-01

    Impact of variability in the measured parameter is rarely considered in designing clinical protocols for optimization of atrioventricular (AV) or interventricular (VV) delay of cardiac resynchronization therapy (CRT). In this article, we approach this question quantitatively using mathematical simulation in which the true optimum is known and examine practical implications using some real measurements. We calculated the performance of any optimization process that selects the pacing setting which maximizes an underlying signal, such as flow or pressure, in the presence of overlying random variability (noise). If signal and noise are of equal size, for a 5-choice optimization (60, 100, 140, 180, 220 ms), replicate AV delay optima are rarely identical but rather scattered with a standard deviation of 45 ms. This scatter was overwhelmingly determined (ρ = -0.975, P < 0.001) by Information Content, [Formula: see text], an expression of signal-to-noise ratio. Averaging multiple replicates improves information content. In real clinical data, at resting, heart rate information content is often only 0.2-0.3; elevated pacing rates can raise information content above 0.5. Low information content (e.g. <0.5) causes gross overestimation of optimization-induced increment in VTI, high false-positive appearance of change in optimum between visits and very wide confidence intervals of individual patient optimum. AV and VV optimization by selecting the setting showing maximum cardiac function can only be accurate if information content is high. Simple steps to reduce noise such as averaging multiple replicates, or to increase signal such as increasing heart rate, can improve information content, and therefore viability, of any optimization process.

  17. Signal to Noise Analysis of iRadar sensors

    SciTech Connect

    Fritzke, A; Top, P

    2009-09-10

    This document follows my process of testing; comparing; and contrasting several iRadars signal to noise ratios for both HH and VV polarization. A brief introduction is given explaining the basics of iRadar technology and what data I was collecting. The process section explains the steps I took to collect my data along with any procedures I followed. The analysis section compares and contrasts five different radars and the two different polarizations. The analysis also details the radars viewing limitations and area. Finally, the report delves into the effects of two radars interfering with each other. A conclusion goes over the success and findings of the project.

  18. Algorithm for astronomical, extended source, signal-to-noise radio calculations

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.

    1984-01-01

    An algorithm was developed to simulate the expected signal-to-noise ratio as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for an extended, uniform astronomical source embedded in a uniform cosmic background. By choosing the appropriate input values, the expected extended source signal-to-noise ratios can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

  19. Signal-to-Noise Enhancement of a Nanospring Redox-Based Sensor by Lock-in Amplification

    PubMed Central

    Bakharev, Pavel V.; McIlroy, David N.

    2015-01-01

    A significant improvement of the response characteristics of a redox chemical gas sensor (chemiresistor) constructed with a single ZnO coated silica nanospring has been achieved with the technique of lock-in signal amplification. The comparison of DC and analog lock-in amplifier (LIA) AC measurements of the electrical sensor response to toluene vapor, at the ppm level, has been conducted. When operated in the DC detection mode, the sensor exhibits a relatively high sensitivity to the analyte vapor, as well as a low detection limit at the 10 ppm level. However, at 10 ppm the signal-to-noise ratio is 5 dB, which is less than desirable. When operated in the analog LIA mode, the signal-to-noise ratio at 10 ppm increases by 30 dB and extends the detection limit to the ppb range. PMID:26053754

  20. DESI systems engineering: throughput and signal-to-noise

    NASA Astrophysics Data System (ADS)

    Besuner, Robert W.; Sholl, Michael J.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is a fiber-fed multi-object spectroscopic instrument under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. Management of light throughput and noise in all elements of the instrument is key to achieving the high-level DESI science requirements over the planned survey area and depth within the planned survey duration. The DESI high-level science requirements flow down to instrument performance requirements on system throughput and operational efficiency. Signal-to-noise requirements directly affect minimum required exposure time per field, which dictates the pace and duration of the entire survey. The need to maximize signal (light throughput) and to minimize noise contributions and time overhead due to reconfigurations between exposures drives the instrument subsystem requirements and technical implementation. Throughput losses, noise contributors, and interexposure reconfiguration time are budgeted, tracked, and managed as DESI Systems Engineering resources. Current best estimates of throughput losses and noise contributions from each individual element of the instrument are tracked together in a master budget to calculate overall margin on completing the survey within the allotted time. That budget is a spreadsheet accessible to the entire DESI project.

  1. A genetically encoded, high-signal-to-noise maltose sensor

    SciTech Connect

    Marvin, Jonathan S.; Schreiter, Eric R.; Echevarría, Ileabett M.; Looger, Loren L.

    2012-10-23

    We describe the generation of a family of high-signal-to-noise single-wavelength genetically encoded indicators for maltose. This was achieved by insertion of circularly permuted fluorescent proteins into a bacterial periplasmic binding protein (PBP), Escherichia coli maltodextrin-binding protein, resulting in a four-color family of maltose indicators. The sensors were iteratively optimized to have sufficient brightness and maltose-dependent fluorescence increases for imaging, under both one- and two-photon illumination. We demonstrate that maltose affinity of the sensors can be tuned in a fashion largely independent of the fluorescent readout mechanism. Using literature mutations, the binding specificity could be altered to moderate sucrose preference, but with a significant loss of affinity. We use the soluble sensors in individual E. coli bacteria to observe rapid maltose transport across the plasma membrane, and membrane fusion versions of the sensors on mammalian cells to visualize the addition of maltose to extracellular media. The PBP superfamily includes scaffolds specific for a number of analytes whose visualization would be critical to the reverse engineering of complex systems such as neural networks, biosynthetic pathways, and signal transduction cascades. We expect the methodology outlined here to be useful in the development of indicators for many such analytes.

  2. Signal-to-noise issues in measuring nitrous oxide fluxes by the eddy covariance method

    NASA Astrophysics Data System (ADS)

    Cowan, Nicholas; Levy, Peter; Langford, Ben; Skiba, Ute

    2016-04-01

    Recently-developed fast-response gas analysers capable of measuring atmospheric N2O with high precision (< 50 ppt) at a rate of 10 Hz are becoming more widely available. These instruments are capable of measuring N2O fluxes using the eddy covariance method, with significantly less effort and uncertainty than previous instruments have allowed. However, there are still many issues to overcome in order to obtain accurate and reliable flux data. The signal-to-noise ratio of N2O measured using these instruments is still two to three orders of magnitude smaller than that of CO2. The low signal-to-noise ratio can lead to systematic uncertainties, in the eddy covariance method, the most significant being in the calculation of the time lag between gas analyser and anemometer by maximisation of covariance (Langford et al., 2015). When signal-to-noise ratio is relatively low, as it is with many N2O measurements, the maximisation of covariance method can systematically overestimate fluxes. However, if constant time lags are assumed, then fluxes will be underestimated. This presents a major issue for N2O eddy covariance measurements. In this presentation we will focus on the signal to noise ratio for an Aerodyne quantum cascade laser (QCL). Eddy covariance flux measurements from multiple agricultural sites across the UK were investigated for potential uncertainties. Our presentation highlights some of these uncertainties when analysing eddy covariance data and offers suggestions as to how these issues may be minimised. Langford, B., Acton, W., Ammann, C., Valach, A. and Nemitz, E.: Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos Meas Tech, 8(10), 4197-4213, doi:10.5194/amt-8-4197-2015, 2015.

  3. Signal-to-Noise Ratio in Physical Education Settings

    ERIC Educational Resources Information Center

    Ryan, Stu; Grube, Dan; Mokgwathi, Martin M.

    2010-01-01

    It is generally known that in educational settings, excessive noise masks what the teacher is saying; thus, and for maximum learning to occur, the teacher's voice must be highly intelligible to all children (Crandell, Smaldino, & Flexer, 1995). The difference between what the teacher is saying (signal) and the classroom noise level is commonly…

  4. Attention enhances stimulus representations in macaque visual cortex without affecting their signal-to-noise level

    PubMed Central

    Daliri, Mohammad Reza; Kozyrev, Vladislav; Treue, Stefan

    2016-01-01

    The magnitude of the attentional modulation of neuronal responses in visual cortex varies with stimulus contrast. Whether the strength of these attentional influences is similarly dependent on other stimulus properties is unknown. Here we report the effect of spatial attention on responses in the medial-temporal area (MT) of macaque visual cortex to moving random dots pattern of various motion coherences, i.e. signal-to-noise ratios. Our data show that allocating spatial attention causes a gain change in MT neurons. The magnitude of this attentional modulation is independent of the attended stimulus’ motion coherence, creating a multiplicative scaling of the neuron’s coherence-response function. This is consistent with the characteristics of gain models of attentional modulation and suggests that attention strengthens the neuronal representation of behaviorally relevant visual stimuli relative to unattended stimuli, but without affecting their signal-to-noise ratios. PMID:27283275

  5. A signal-to-noise standard for pulsed EPR.

    PubMed

    Eaton, Gareth R; Eaton, Sandra S; Quine, Richard W; Mitchell, Deborah; Kathirvelu, Velavan; Weber, Ralph T

    2010-07-01

    A 2 mm diameter by 10mm long cylinder of fused SiO2 (quartz) gamma-irradiated to 1 kGy with 60Co contains about 2x10(16) spins/cm3. It is proposed as a standard for monitoring signal-to-noise (S/N) performance of X-band pulsed EPR spectrometers. This sample yields S/N of about 25 on modern spin echo spectrometers, which permits measurement of both signal and noise under the same conditions with an 8-bit digitizer.

  6. Antifouling Surface Layers for Improved Signal-to-Noise of Particle-Based Immunoassays

    PubMed Central

    Chen, Annie; Kozak, Darby; Battersby, Bronwyn J.; Forrest, Robin M.; Scholler, Nathalie; Urban, Nicole; Trau, Matt

    2010-01-01

    A ten fold improvement in the signal-to-noise (S/N) ratio of an optically encoded silica particle-based immunoassay was achieved through incorporating a protein resistant poly(ethylene glycol) (PEG) surface layer and optimizing antibody immobilization conditions. PEG was activated using 2,2,2-trifluoroethanesulfonyl chloride (tresyl) and required a minimum reaction time of 1.5 hrs. The activated PEG had a reactive half life of approximately 5 hrs when stored in acidified dimethyl sulfoxide (DMSO). By increasing the protein incubation time and concentration, a maximum antibody loading on the particle surface of 1.6×10−2 molecules per nm2 was achieved. The assay S/N ratio was assessed using a multiplexed multicomponent optically encoded species-specific immunoassay. Encoded particles were covalently grafted or nonspecifically coated with either bovine or mouse IgG for the simultaneous detection of complimentary anti-IgG `target' or uncomplimentary anti-IgG `noise'. The versatility and potential as a serum-based assay platform was demonstrated by immobilizing either a polyclonal antibody or an engineered single-chain variable fragment (scFv) capture probe on particles for the detection of the ovarian cancer biomarker, mesothelin (MSLN). The MLSN antigen was spiked into PBS buffer or 50% human serum. Both capture probe orientations and media conditions showed similar low level detection limits of 5 ng/mL; however, a 40% decrease in maximum signal intensity was observed for assays run in 50% serum. PMID:19928944

  7. Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters.

    PubMed

    Perkins, Robert; Gruev, Viktor

    2010-12-06

    An analysis of the temporal noise in the Stokes parameters computed by division of focal plane polarimeters is presented. Theoretical estimations of the Stokes parameter signal-to-noise ratios for CCD polarization imaging sensors with both 4-polarizer and 2-polarizer micropolarization filter arrays are derived. The theoretical derivation is verified with measurements from an integrated polarization imaging sensor composed of a CCD imaging array and aluminum nanowire polarization filters. The measured data obtained from the CCD polarimeters matches the theoretical derivations of the temporal noise model of the Stokes parameters.

  8. Signal to Noise Studies on Thermographic Data with Fabricated Defects for Defense Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Rajic, Nik; Genest, Marc

    2006-01-01

    There is a growing international interest in thermal inspection systems for asset life assessment and management of defense platforms. The efficacy of flash thermography is generally enhanced by applying image processing algorithms to the observations of raw temperature. Improving the defect signal to noise ratio (SNR) is of primary interest to reduce false calls and allow for easier interpretation of a thermal inspection image. Several factors affecting defect SNR were studied such as data compression and reconstruction using principal component analysis and time window processing.

  9. Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment

    NASA Technical Reports Server (NTRS)

    Porter, J. W.; Bowell, J. R.; Price, G. E.

    1981-01-01

    The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated.

  10. Brain-computer interfaces increase whole-brain signal to noise.

    PubMed

    Papageorgiou, T Dorina; Lisinski, Jonathan M; McHenry, Monica A; White, Jason P; LaConte, Stephen M

    2013-08-13

    Brain-computer interfaces (BCIs) can convert mental states into signals to drive real-world devices, but it is not known if a given covert task is the same when performed with and without BCI-based control. Using a BCI likely involves additional cognitive processes, such as multitasking, attention, and conflict monitoring. In addition, it is challenging to measure the quality of covert task performance. We used whole-brain classifier-based real-time functional MRI to address these issues, because the method provides both classifier-based maps to examine the neural requirements of BCI and classification accuracy to quantify the quality of task performance. Subjects performed a covert counting task at fast and slow rates to control a visual interface. Compared with the same task when viewing but not controlling the interface, we observed that being in control of a BCI improved task classification of fast and slow counting states. Additional BCI control increased subjects' whole-brain signal-to-noise ratio compared with the absence of control. The neural pattern for control consisted of a positive network comprised of dorsal parietal and frontal regions and the anterior insula of the right hemisphere as well as an expansive negative network of regions. These findings suggest that real-time functional MRI can serve as a platform for exploring information processing and frontoparietal and insula network-based regulation of whole-brain task signal-to-noise ratio.

  11. Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-To-Noise

    NASA Astrophysics Data System (ADS)

    Keeler, James D.; Pichler, Elgar E.; Ross, John

    1989-03-01

    We study a neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation. For a first-order network, there is a threshold in the noise level (phase transition) above which the network displays only disorganized behavior and critical slowing down near the noise threshold. The network can tolerate more noise if it has higher-order feedback interactions, which also lead to hysteresis and multistability in the network dynamics. The signal-to-noise ratio can be adjusted in a biological neural network by neuromodulators such as norepinephrine. Comparisons are made to experimental results and further investigations are suggested to test the effects of hysteresis and neuromodulation in pattern recognition and learning. We propose that norepinephrine may ``quench'' the neural patterns of activity to enhance the ability to learn details.

  12. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    SciTech Connect

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  13. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; ...

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  14. Advanced study of video signal processing in low signal to noise environments

    NASA Technical Reports Server (NTRS)

    Carden, F.

    1973-01-01

    Conventional analytical techniques used to determine and optimize phase-lock loop (PLL) characteristics are most often based on a model which is valid only if the intermediate frequency (IF) filter bandwidth is large compared to the PLL bandwidth and the phase error is small. An improved model (called the quasi-linear model) is developed which takes into account small IF filter bandwidths and nonlinear effects associated with large phase errors. By comparison of theoretical and experimental results it is demonstrated that the quasi-linear model accurately predicts PLL characteristics. This is true even for small IF filter bandwidths and large phase errors where the conventional model is invalid. The theoretical and experimental results are used to draw conclusions concerning threshold, multiplier output variance, phase error variance, output signal-to-noise ratio, and signal distortion. The relationship between these characteristics and IF filter bandwidth, modulating signal spectrum, and rms deviation is also determined.

  15. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    PubMed Central

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2010-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens. PMID:19654762

  16. Combining absorption and dispersion signals to improve signal-to-noise for rapid-scan EPR imaging.

    PubMed

    Tseitlin, Mark; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2010-04-01

    Direct detection of the rapid-scan EPR signal with quadrature detection and without automatic frequency control provides both the absorption and dispersion components of the signal. The use of a cross-loop resonator results in similar signal-to-noise in the two channels. The dispersion signal can be converted to an equivalent absorption signal by means of Kramers-Kronig relations. The converted signal is added to the directly measured absorption signal. Since the noise in the two channels is not correlated, this procedure increases the signal-to-noise ratio of the resultant absorption signal by up to a factor of square root 2. The utility of this method was demonstrated for 2D spectral-spatial imaging of a phantom containing three tubes of LiPc with different oxygen concentrations and therefore different linewidths.

  17. Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source.

    PubMed

    Chen, Y; Mu, C; Intes, X; Chance, B

    2001-08-13

    Previous studies have suggested that the phased-array detection can achieve high sensitivity in detecting and localizing inhomogeneities embedded in turbid media by illuminating with dual interfering sources. In this paper, we analyze the sensitivity of single-source and dual-interfering-source (phased array) systems with signal-to-noise ratio criteria. Analytical solutions are presented to investigate the sensitivity of detection using different degrees of absorption perturbation by varying the size and contrast of the object under similar configurations for single- and dual-source systems. The results suggest that dual-source configuration can provide higher detection sensitivity. The relation between the amplitude and phase signals for both systems is also analyzed using a vector model. The results can be helpful for optimizing the experimental design by combining the advantages of both single- and dual-source systems in object detection and localization.

  18. Ultrasonic correlator versus signal averager as a signal to noise enhancement instrument

    NASA Technical Reports Server (NTRS)

    Kishoni, Doron; Pietsch, Benjamin E.

    1990-01-01

    Ultrasonic inspection of thick and attenuating materials is hampered by the reduce amplitudes of the propagated waves to a degree that the noise is too high to enable meaningful interpretation of the data. In order to overcome the low signal to noise ratio (S/N), a correlation technique has been developed. In this method, a continuous pseudo-random pattern generated digitally is transmitted and detected by piezoelectric transducers. A correlation is performed in the instrument between the received signal and a variable delayed image of the transmitted one. The result is shown to be proportional to the impulse response of the investigated material, analogous to a signal received from a pulsed system, with an improved S/N ratio. The degree of S/N enhancement depends on the sweep rate. The correlator is described, and it is compared to the method of enhancing S/N ratio by averaging the signals. The similarities and differences between the two are highlighted and the potential advantage of the correlator system is explained.

  19. Ultrasonic correlator versus signal averager as a signal to noise enhancement instrument

    NASA Technical Reports Server (NTRS)

    Kishoni, Doron; Pietsch, Benjamin E.

    1989-01-01

    Ultrasonic inspection of thick and attenuating materials is hampered by the reduced amplitudes of the propagated waves to a degree that the noise is too high to enable meaningful interpretation of the data. In order to overcome the low Signal to Noise (S/N) ratio, a correlation technique has been developed. In this method, a continuous pseudo-random pattern generated digitally is transmitted and detected by piezoelectric transducers. A correlation is performed in the instrument between the received signal and a variable delayed image of the transmitted one. The result is shown to be proportional to the impulse response of the investigated material, analogous to a signal received from a pulsed system, with an improved S/N ratio. The degree of S/N enhancement depends on the sweep rate. This paper describes the correlator, and compares it to the method of enhancing S/N ratio by averaging the signals. The similarities and differences between the two are highlighted and the potential advantage of the correlator system is explained.

  20. Fault Reactivation Analysis Using Microearthquake Clustering Based on Signal-to-Noise Weighted Waveform Similarity

    NASA Astrophysics Data System (ADS)

    Grund, Michael; Groos, Jörn C.; Ritter, Joachim R. R.

    2016-07-01

    The cluster formation of about 2000 induced microearthquakes (mostly M L < 2) is studied using a waveform similarity technique based on cross-correlation and a subsequent equivalence class approach. All events were detected within two separated but neighbouring seismic volumes close to the geothermal powerplants near Landau and Insheim in the Upper Rhine Graben, SW Germany between 2006 and 2013. Besides different sensors, sampling rates and individual data gaps, mainly low signal-to-noise ratios (SNR) of the recordings at most station sites provide a complication for the determination of a precise waveform similarity analysis of the microseismic events in this area. To include a large number of events for such an analysis, a newly developed weighting approach was implemented in the waveform similarity analysis which directly considers the individual SNRs across the whole seismic network. The application to both seismic volumes leads to event clusters with high waveform similarities within short (seconds to hours) and long (months to years) time periods covering two magnitude ranges. The estimated relative hypocenter locations are spatially concentrated for each single cluster and mirror the orientations of mapped faults as well as interpreted rupture planes determined from fault plane solutions. Depending on the waveform cross-correlation coefficient threshold, clusters can be resolved in space to as little as one dominant wavelength. The interpretation of these observations implies recurring fault reactivations by fluid injection with very similar faulting mechanisms during different time periods between 2006 and 2013.

  1. Cosmic Origins Spectrograph: Flat Fields And Signal-to-noise Characteristics

    NASA Astrophysics Data System (ADS)

    Sahnow, David J.; Ake, T.; Burgh, E.; France, K.; Penton, S.; McPhate, J.; Keyes, C.; STScI COS Team; COS IDT Team

    2010-01-01

    The Cosmic Origins Spectrograph (COS) employs different microchannel plate detectors for its two channels: a cross delay line (XDL) for the FUV, and a multi-anode microchannel array (MAMA) for the NUV. These detectors show non-uniformities due to the intrinsic `chicken wire’ and moiré patterns of the microchannel plates, dead spots, hot regions, and for the XDL, shadowing by QE grid wires. Signal-to-noise (S/N) improvements can be achieved by applying a high-quality flat field during data reduction. For the highest S/N, multiple exposures can be taken using the FP-POS technique, where spectra are stepped to different locations on the detector. During the COS Servicing Mission Observatory Verification (SMOV) program, observations of bright astronomical targets and an internal deuterium lamp were made in both channels to investigate methodologies to improve the S/N of on-orbit observations. For the NUV channel, flat field exposures were obtained with the onboard lamp. Comparisons of the data with a flat field constructed from prelaunch data indicate that there have been no changes, so a high S/N flat has been built by combining ground and flight data. Analysis indicates that S/N = 100 per pixel is achievable using flat fielding alone. For the FUV channel, which does not have a ground flat of such high quality, exposures were obtained of white dwarfs at various cross-dispersion locations on the detector. Comparisons of different reduction techniques for this data set will be presented. Until high-quality flat fields are implemented in standard pipeline processing, high S/N spectra are best achieved by the FP-POS technique, which has demonstrated S/N of > 50 per resolution element.

  2. Direct Signal-to-Noise Quality Comparison between an Electronic and Conventional Stethoscope aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Ebert, Doug; Bauer, Pete

    2014-01-01

    Introduction: Evaluation of heart, lung, and bowel sounds is routinely performed with the use of a stethoscope to help detect a broad range of medical conditions. Stethoscope acquired information is even more valuable in a resource limited environments such as the International Space Station (ISS) where additional testing is not available. The high ambient noise level aboard the ISS poses a specific challenge to auscultation by stethoscope. An electronic stethoscope's ambient noise-reduction, greater sound amplification, recording capabilities, and sound visualization software may be an advantage to a conventional stethoscope in this environment. Methods: A single operator rated signal-to-noise quality from a conventional stethoscope (Littman 2218BE) and an electronic stethoscope (Litmann 3200). Borborygmi, pulmonic, and cardiac sound quality was ranked with both stethoscopes. Signal-to-noise rankings were preformed on a 1 to 10 subjective scale with 1 being inaudible, 6 the expected quality in an emergency department, 8 the expected quality in a clinic, and 10 the clearest possible quality. Testing took place in the Japanese Pressurized Module (JPM), Unity (Node 2), Destiny (US Lab), Tranquility (Node 3), and the Cupola of the International Space Station. All examinations were conducted at a single point in time. Results: The electronic stethoscope's performance ranked higher than the conventional stethoscope for each body sound in all modules tested. The electronic stethoscope's sound quality was rated between 7 and 10 in all modules tested. In comparison, the traditional stethoscope's sound quality was rated between 4 and 7. The signal to noise ratio of borborygmi showed the biggest difference between stethoscopes. In the modules tested, the auscultation of borborygmi was rated between 5 and 7 by the conventional stethoscope and consistently 10 by the electronic stethoscope. Discussion: This stethoscope comparison was limited to a single operator. However, we

  3. Regionalization and calibration of seismic discriminants, path effects and signal-to-noise for station ABKT (Alibek, Turkmenistan)

    SciTech Connect

    Rodgers, A.J.; Walter, W.R.

    1997-07-01

    We report measurements and analysis of regional seismic phase amplitude ratios and signal-to-noise for earthquakes observed at the International Monitoring System primary station ABKT (Alibek, Turkmenistan). We measured noise and phase amplitudes of the regional phases Pn, Pg, Sn, and Lg in four frequency bands between 0.75-9.0 Hz. Measurements were made in both the time and frequency domains. The spatial variation of amplitude ratios (e.g., Pn/Lg, Pg/Lg, Pn/Sn, Pg/Sn) and signal-to-noise (phase/noise) reveal significant path effect differences between the Hindu Kush, Kazahk Platform, Iranian Plateau and Caspian Sea. In order to represent this behavior, we have investigated several techniques for characterizing the data. These techniques are: 1) correlation with along-path distance and waveguide properties; 2) sector analysis; and 3) spatial averaging. Along-path waveguide properties, such as mean elevation and rms topographic slope are found to be the strongest factors related to Pg/Lg amplitude ratios at the lowest frequencies (<3.0 Hz). Other path properties such as mean crustal thickness and basement depth are not strongly correlated with Pg/Lg ratios. For sector analysis we divided the data into four (4) azimuthal sectors and characterized the data within each sector by a distance trend. Sectors were chosen based on the behavior of Pn/Lg, Pg/Lg and Pn/Sn amplitude ratios as well as topographic and tectonic character. Results reveal significant reduction (up to a factor of two) in the scatter of the Pn/Lg and Pg/Lg amplitude ratios for the sectorized data compared to the entire data set from all azimuths. Spatial averaging involves smoothing and interpolation for the ratios projected at the event location. Methods such as cap averaging and kriging will be presented at the meeting. 7 refs., 6 figs.

  4. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies.

    PubMed

    Boxerman, J L; Rosen, B R; Weisskoff, R M

    1997-01-01

    The use of cerebral blood volume (CBV) maps generated from dynamic MRI studies tracking the bolus passage of paramagnetic contrast agents strongly depends on the signal-to-noise ratio (SNR) of the maps. The authors present a semianalytic model for the noise in CBV maps and introduce analytic and Monte Carlo techniques for determining the effect of experimental parameters and processing strategies upon CBV-SNR. CBV-SNR increases as more points are used to estimate the baseline signal level. For typical injections, maps made with 10 baseline points have 34% more noise than those made with 50 baseline points. For a given peak percentage signal drop, an optimum TE can be chosen that, in general, is less than the baseline T2. However, because CBV-SNR is relatively insensitive to TE around this optimum value, choosing TE approximately equal to T2 does not sacrifice much SNR for typical doses of contrast agent. The TR that maximizes spin-echo CBV-SNR satisfies TR/T1 approximately equal to 1.26, whereas as short a TR as possible should be used to maximize gradient-echo CBV-SNR. In general, CBV-SNR is maximized for a given dose of contrast agent by selecting as short an input bolus duration as possible. For image SNR exceeding 20-30, the gamma-fitting procedure adds little extra noise compared with simple numeric integration. However, for noisier input images, can be the case for high resolution echo-planar images, the covarying parameters of the gamma-variate fit broaden the distribution of the CBV estimate and thereby decrease CBV-SNR. The authors compared the analytic noise predicted by their model with that of actual patient data and found that the analytic model accounts for roughly 70% of the measured variability of CBV within white matter regions of interest.

  5. Signal to noise considerations for single crystal femtosecond time resolved crystallography of the Photoactive Yellow Protein.

    PubMed

    van Thor, Jasper J; Warren, Mark M; Lincoln, Craig N; Chollet, Matthieu; Lemke, Henrik Till; Fritz, David M; Schmidt, Marius; Tenboer, Jason; Ren, Zhong; Srajer, Vukica; Moffat, Keith; Graber, Tim

    2014-01-01

    Femtosecond time resolved pump-probe protein X-ray crystallography requires highly accurate measurements of the photoinduced structure factor amplitude differences. In the case of femtosecond photolysis of single P63 crystals of the Photoactive Yellow Protein, it is shown that photochemical dynamics place a considerable restraint on the achievable time resolution due to the requirement to stretch and add second order dispersion in order to generate threshold concentration levels in the interaction region. Here, we report on using a 'quasi-cw' approach to use the rotation method with monochromatic radiation and 2 eV bandwidth at 9.465 keV at the Linac Coherent Light Source operated in SASE mode. A source of significant Bragg reflection intensity noise is identified from the combination of mode structure and jitter with very small mosaic spread of the crystals and very low convergence of the XFEL source. The accuracy with which the three dimensional reflection is approximated by the 'quasi-cw' rotation method with the pulsed source is modelled from the experimentally collected X-ray pulse intensities together with the measured rocking curves. This model is extended to predict merging statistics for recently demonstrated self seeded mode generated pulse train with improved stability, in addition to extrapolating to single crystal experiments with increased mosaic spread. The results show that the noise level can be adequately modelled in this manner, indicating that the large intensity fluctuations dominate the merged signal-to-noise (I/σI) value. Furthermore, these results predict that using the self seeded mode together with more mosaic crystals, sufficient accuracy may be obtained in order to resolve typical photoinduced structure factor amplitude differences, as taken from representative synchrotron results.

  6. Technical note: signal-to-noise performance evaluation of a new 12-bit digitizer on time-of-flight mass spectrometer.

    PubMed

    Hondo, Toshinobu; Kawai, Yousuke; Toyoda, Michisato

    2015-01-01

    Rapid acquisition of time-of-flight (TOF) spectra from fewer acquisitions on average was investigated using the newly introduced 12-bit digitizer, Keysight model U5303A. This is expected to achieve a spectrum acquisition 32 times faster than the commonly used 8-bit digitizer for an equal signal-to-noise (S/N) ratio. Averaging fewer pulses improves the detection speed and chromatographic separation performance. However, increasing the analog-to-digital converter bit resolution for a high-frequency signal, such as a TOF spectrum, increases the system noise and requires the timing jitter (aperture error) to be minimized. We studied the relationship between the S/N ratio and the average number of acquisitions using U5303A and compared this with an 8-bit digitizer. The results show that the noise, measured as root-mean-square, decreases linearly to the square root of the average number of acquisitions without background subtraction, which means that almost no systematic noise existed in our signal bandwidth of interest (a few hundreds megahertz). In comparison, 8-bit digitizers that are commonly used in the market require 32 times more pulses with background subtraction.

  7. Inverse Synthetic Aperture LADAR for Geosynchronous Space Objects - Signal-to-Noise Analysis

    DTIC Science & Technology

    2011-09-01

    Inverse synthetic aperture LADAR for geosynchronous space objects – signal-to-noise analysis Casey J. Pellizzari Air Force Research Laboratory...NM 87117 Rao Gudimetla Air Force Research Laboratory (RDSMA) 535 Lipoa Parkway, Ste. 200, Kihei HI 96753 ABSTRACT Inverse synthetic ...return signal detected by a coherent ISAL system. Using tomographic techniques common to synthetic aperture radar (SAR), a model is developed for the

  8. Signal-to-noise ratio of temperature measurement with Cernox sensors at various supply currents

    NASA Astrophysics Data System (ADS)

    Janzen, A.; Burger, B.; Ebersoldt, A.; Heidt, C.; Langhans, O.; Reiner, A.; Grohmann, S.

    2017-02-01

    The Karlsruhe Institute of Technology (KIT) has developed a new thermal method for flow measurement, which is particularly suitable for the application in cryogenic systems. In this method, the stability and the resolution of temperature measurement is important, rather than precision. In other words, constant offsets in temperature measurements can be ignored, and the temperature sensors can be operated at supply currents beyond their nominal design value in order to gain resolution. For this application, the performance of two CernoxTM type CX-1050-SD-HT-1.4L sensors was measured in a temperature range between 300 K and 4 K. The experiments were carried out in the calibration cryostat at the Institute for Technical Physics. Sensors were connected to a Lake Shore Model 121 current source and a Keithley 2701/E digital multimeter for voltage measurements. At constant calibration temperatures, the supply currents were varied such that the resulting voltage drops lay in-between 10 mV and 100 mV. The influence on both the noise and the temperature offset are presented.

  9. Laboratory Study of the Noticeability and Annoyance of Sounds of Low Signal-to-Noise Ratio

    NASA Technical Reports Server (NTRS)

    Sneddon, Matthew; Howe, Richard; Pearsons, Karl; Fidell, Sanford

    1996-01-01

    This report describes a study of the noticeability and annoyance of intruding noises to test participants who were engaged in a distracting foreground task. Ten test participants read material of their own choosing while seated individually in front of a loudspeaker in an anechoic chamber. One of three specially constructed masking noise environments with limited dynamic range was heard at all times. A laboratory computer produced sounds of aircraft and ground vehicles as heard at varying distances at unpredictable intervals and carefully controlled levels. Test participants were instructed to click a computer mouse at any time that a noise distinct from the background noise environment came to their attention, and then to indicate their degree of annoyance with the noise that they had noticed. The results confirmed that both the noticeability of noise intrusions and their annoyance were closely related to their audibility.

  10. Laser ultrasonics - Generation and detection considerations for improved signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Wagner, James W.; Deaton, John B., Jr.; McKie, Andrew D. W.; Spicer, James B.

    It is shown that improvement in the detection sensitivity of laser-ultrasonic systems may be obtained by generating narrowband acoustic signals using both temporal and spatial modulation of the generating laser. A laser-generated acoustic tone burst waveform will have lower peak amplitudes than a single acoustic pulse providing the same system SNR. Consequently, lower power density laser pulses may be used to avoid surface damage.

  11. Laser ultrasonics: generation and detection considerations for improved signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Wagner, James W.; Deaton, John B., Jr.; McKie, Andrew D. W.; Spicer, James B.

    1991-01-01

    It is shown that improvement in the detection sensitivity of laser-ultrasonic systems may be obtained by generating narrowband acoustic signals using both temporal and spatial modulation of the generating laser. A laser-generated acoustic tone burst waveform will have lower peak amplitudes than a single acoustic pulse providing the same system SNR. Consequently, lower power density laser pulses may be used to avoid surface damage.

  12. Signal-to-Noise Ratio Gains and Synchronization Requirements of a Distributed Radar Network

    DTIC Science & Technology

    2006-06-01

    60 15. Halliday , D., Resnick , R., and Walker , J., Fundamentals of Physics, John Wiley and Sons, New York, 1997. 16. Skolnik, M.L., Introduction to...CDR Owens Walker , who helped me to focus my research and writing; and James Calusdian, who helped me put my ideas into Matlab. This work was...Gordon and Breach Science Publishers, Canada, 1993. 14. Walker , T.O., Tummala, M., and Michael, J.B., “Pulse Transmission Scheduling for a Distributed

  13. Visual Motherese? Signal-to-Noise Ratios in Toddler-Directed Television

    ERIC Educational Resources Information Center

    Wass, Sam V.; Smith, Tim J.

    2015-01-01

    Younger brains are noisier information processing systems; this means that information for younger individuals has to allow clearer differentiation between those aspects that are required for the processing task in hand (the "signal") and those that are not (the "noise"). We compared toddler-directed and adult-directed TV…

  14. A method for improving the signal-to-noise ratio in IUE high-dispersion spectra

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1988-01-01

    The flat-fielding technique was used to reduce fixed pattern noise in high dispersion IUE spectra, producing improvements in S/N of typically 40 percent compared with un-flat-fielded summed spectra. Weak spectral features may be more reliably identified. Such improvements are noted for specially obtained multiply-exposed images and for singly-exposed images taken from the IUE archives. However it is unclear if the technique is usable or as effective for all spectra.

  15. Speed of response, pile-up, and signal to noise ratio in liquid ionization calorimeters

    NASA Astrophysics Data System (ADS)

    Colas, J.

    1989-06-01

    Although liquid ionization calorimeters have been mostly used up to now with slow readout, their signals have a fast rise time. However, it is not easy to get this fast component of the pulse out of the calorimeter. For this purpose a new connection scheme of the electrodes, the electrostatic transformer, is presented. This technique reduces the detector capacitance while keeping the number of channels at an acceptable level. Also it allows the use of transmission lines to bring signals from the electrodes to the preamplifiers which could be located in an accessible area. With room temperature liquids the length of these cables can be short, keeping the added noise at a reasonable level. Contributions to the error on the energy measurement from pile up and electronics noise are studied in detail. Even on this issue, room temperature liquids (TMP/TMS) are found to be competitive with cold liquid argon at the expense of a moderately higher gap voltage.

  16. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits.

    PubMed

    Briggs, Farran; Mangun, George R; Usrey, W Martin

    2013-07-25

    Attention is a critical component of perception. However, the mechanisms by which attention modulates neuronal communication to guide behaviour are poorly understood. To elucidate the synaptic mechanisms of attention, we developed a sensitive assay of attentional modulation of neuronal communication. In alert monkeys performing a visual spatial attention task, we probed thalamocortical communication by electrically stimulating neurons in the lateral geniculate nucleus of the thalamus while simultaneously recording shock-evoked responses from monosynaptically connected neurons in primary visual cortex. We found that attention enhances neuronal communication by increasing the efficacy of presynaptic input in driving postsynaptic responses, by increasing synchronous responses among ensembles of postsynaptic neurons receiving independent input, and by decreasing redundant signals between postsynaptic neurons receiving common input. The results demonstrate that attention finely tunes neuronal communication at the synaptic level by selectively altering synaptic weights, enabling enhanced detection of salient events in the noisy sensory environment.

  17. Visual motherese? Signal-to-noise ratios in toddler-directed television.

    PubMed

    Wass, Sam V; Smith, Tim J

    2015-01-01

    Younger brains are noisier information processing systems; this means that information for younger individuals has to allow clearer differentiation between those aspects that are required for the processing task in hand (the 'signal') and those that are not (the 'noise'). We compared toddler-directed and adult-directed TV programmes (TotTV/ATV). We examined how low-level visual features (that previous research has suggested influence gaze allocation) relate to semantic information, namely the location of the character speaking in each frame. We show that this relationship differs between TotTV and ATV. First, we conducted Receiver Operator Characteristics analyses and found that feature congestion predicted speaking character location in TotTV but not ATV. Second, we used multiple analytical strategies to show that luminance differentials (flicker) predict face location more strongly in TotTV than ATV. Our results suggest that TotTV designers have intuited techniques for controlling toddler attention using low-level visual cues. The implications of these findings for structuring childhood learning experiences away from a screen are discussed.

  18. Beam Space Formulation of the Maximum Signal-to-Noise Ratio Array Processor.

    DTIC Science & Technology

    1980-12-01

    To investigate the dependance of the beam space gains on the number of input Sbeams used the crosspower spectral matrix was simulated for a number of...environments; in the first example (figure 9) the noise field exhibited only a weak azimuthal dependance whereas in figure 10 the presence of a strong...interference at 06-1 implied a strong azimuthal dependance of tile noise field. Both result, showed an improvement in the beamspace array gain estimates as the

  19. Signal-to-Noise Ratio Effects on Aperture Synthesis for Digital Holographic Ladar

    DTIC Science & Technology

    2014-08-01

    Noise in Digital Holographic Detection.” AFRL-RD-PS-TP-2009- 1006. (2008). [20] J. W. Goodman . Fourier Optics . 3rd Ed. Roberts & Co., Englewood, CO...FLIR. “SC2500 User Manual.” North Billerica, MA. [30] J. W. Goodman . Speckle Phenomena in Optics . Roberts & Co., Englewood, CO (2007). [31] J. R...unlimited. 1 INTRODUCTION The resolution of an imaging system can be improved by using a smaller wavelength or a larger aperture. Therefore optical

  20. The Effect of Signal-to-Noise Ratio on Visual Acuity Through Night Vision Goggles

    DTIC Science & Technology

    1991-02-01

    subjects in visuLal acuity performance with NVGs, it was concluded that further research should be conducted to examine the correlation between visual...the image intensifier tuho. Tile image intensifier tube is basically a light amplifier that is sensitive over tho spectral region of about 600nm to... excellent means of getting a sensitive measure of visual acuity. 2 Method 2.1 Subje;cts Twelve male volunteers participated in this study. ’he subjects

  1. Improving signal-to-noise in the direct imaging of exoplanets and circumstellar disks with MLOCI

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Cieza, Lucas A.; Mawet, Dimitri; Yang, Bin; Canovas, Hector; de Boer, Jozua; Casassus, Simon; Ménard, François; Schreiber, Matthias R.; Liu, Michael C.; Biller, Beth A.; Nielsen, Eric L.; Hayward, Thomas L.

    2015-09-01

    We present a new algorithm designed to improve the signal-to-noise ratio (S/N) of point and extended source detections around bright stars in direct imaging data.One of our innovations is that we insert simulated point sources into the science images, which we then try to recover with maximum S/N. This improves the S/N of real point sources elsewhere in the field. The algorithm, based on the locally optimized combination of images (LOCI) method, is called Matched LOCI or MLOCI. We show with Gemini Planet Imager (GPI) data on HD 135344 B and Near-Infrared Coronagraphic Imager (NICI) data on several stars that the new algorithm can improve the S/N of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. On the other hand, while non-blind applications may yield linear combinations of science images that seem to increase the S/N of true sources by a factor >2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to redetect point sources found in previous epochs. These findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g., LOCI and principal component analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  2. Bootstrap Signal-to-Noise Confidence Intervals: An Objective Method for Subject Exclusion and Quality Control in ERP Studies

    PubMed Central

    Parks, Nathan A.; Gannon, Matthew A.; Long, Stephanie M.; Young, Madeleine E.

    2016-01-01

    Analysis of event-related potential (ERP) data includes several steps to ensure that ERPs meet an appropriate level of signal quality. One such step, subject exclusion, rejects subject data if ERP waveforms fail to meet an appropriate level of signal quality. Subject exclusion is an important quality control step in the ERP analysis pipeline as it ensures that statistical inference is based only upon those subjects exhibiting clear evoked brain responses. This critical quality control step is most often performed simply through visual inspection of subject-level ERPs by investigators. Such an approach is qualitative, subjective, and susceptible to investigator bias, as there are no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe a standardized and objective method for quantifying waveform quality in individual subjects and establishing criteria for subject exclusion. The approach uses bootstrap resampling of ERP waveforms (from a pool of all available trials) to compute a signal-to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion. SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates the need for subjective evaluation of waveform quality by the investigator. We detail the SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo simulations, and demonstrate its utility in practice when applied to ERP datasets. PMID:26903849

  3. Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model.

    PubMed

    Yang, Hongru; Wu, Lei; Wang, Xiaopeng; Chen, Chao; Yu, Bing; Yang, Bin; Yuan, Liang; Wu, Lipeng; Xue, Zhanli; Li, Gaoping; Wu, Baoning

    2012-12-20

    Streak tube imaging lidar (STIL) is an active imaging system using a pulsed laser transmitter and a streak tube receiver to produce 3D range and intensity imagery. The STIL has recently attracted a great deal of interest and attention due to its advantages of wide azimuth field-of-view, high range and angle resolution, and high frame rate. This work investigates the signal-to-noise performance of STIL systems. A theoretical model for characterizing the signal-to-noise performance of the STIL system with an internal or external intensified streak tube receiver is presented, based on the linear cascaded systems theory of signal and noise propagation. The STIL system is decomposed into a series of cascaded imaging chains whose signal and noise transfer properties are described by the general (or the spatial-frequency dependent) noise factors (NFs). Expressions for the general NFs of the cascaded chains (or the main components) in the STIL system are derived. The work presented here is useful for the design and evaluation of STIL systems.

  4. Analysis of Bidirectional Associative Memory using Self-consistent Signal to Noise Analysis and Statistical Neurodynamics

    NASA Astrophysics Data System (ADS)

    Shouno, Hayaru; Kido, Shoji; Okada, Masato

    2004-09-01

    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.

  5. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths

    NASA Astrophysics Data System (ADS)

    Machielse, Bartholomeus; Balan, Adrian; Niedzwiecki, David; Lin, Jianxun; Ong, Peijie; Engelke, Rebecca; Shepard, Kenneth; Drndic, Marija

    2015-03-01

    DNA sequencing using solid-state nanopores is impeded by the relatively high noise and low bandwidth of the current state-of-the-art translocation measurements. We measure the ion current noise through Si3N4 nanopores at bandwidths up to 1 MHz. At these bandwidths, the input-referred current noise is dominated by the amplifier's voltage noise acting across the total capacitance at the amplifier input. By reducing the nanopore membrane capacitance we are able to transition to a regime in which current noise is dominated by the effects of the capacitance of the amplifier itself. Advances in bandwidth and signal-to-noise ratio necessary for DNA sequencing will require lower capacitance devices as well as new amplifier designs with reduced input capacitance and noise characteristics. This work was supported by NIH Grants R21HG004767 and R01HG006879. We gratefully acknowledge use of the TEM in the NSF-MRSEC electron microscopy facility. We thank Andrew Sharo, Matthew Puster, Dr. Kimberly Venta, and Prof. Jacob Rosenstein.

  6. C IV LINE-WIDTH ANOMALIES: THE PERILS OF LOW SIGNAL-TO-NOISE SPECTRA

    SciTech Connect

    Denney, K. D.; Vestergaard, M.; Pogge, R. W.; Kochanek, C. S.; Peterson, B. M.; Assef, R. J.

    2013-09-20

    Comparison of six high-redshift quasar spectra obtained with the Large Binocular Telescope with previous observations from the Sloan Digital Sky Survey shows that failure to correctly identify absorption and other problems with accurate characterization of the C IV λ1549 emission line profile in low signal-to-noise (S/N) data can severely limit the reliability of single-epoch mass estimates based on the C IV emission line. We combine the analysis of these new high-quality data with a reanalysis of three other samples based on high-S/N spectra of the C IV emission line region. We find that a large scatter between the Hβ- and C IV-based masses remains even for this high-S/N sample when using the FWHM to characterize the broad-line region velocity dispersion and the standard virial assumption to calculate the mass. However, we demonstrate that using high-quality data and the line dispersion to characterize the C IV line width leads to a high level of consistency between C IV- and Hβ-based masses, with <0.3 dex of observed scatter and an estimated ∼0.2 dex intrinsic scatter, in the mass residuals.

  7. A MARKOV CHAIN MONTE CARLO ALGORITHM FOR ANALYSIS OF LOW SIGNAL-TO-NOISE COSMIC MICROWAVE BACKGROUND DATA

    SciTech Connect

    Jewell, J. B.; O'Dwyer, I. J.; Huey, Greg; Gorski, K. M.; Eriksen, H. K.; Wandelt, B. D. E-mail: h.k.k.eriksen@astro.uio.no

    2009-05-20

    We present a new Markov Chain Monte Carlo (MCMC) algorithm for cosmic microwave background (CMB) analysis in the low signal-to-noise regime. This method builds on and complements the previously described CMB Gibbs sampler, and effectively solves the low signal-to-noise inefficiency problem of the direct Gibbs sampler. The new algorithm is a simple Metropolis-Hastings sampler with a general proposal rule for the power spectrum, C {sub l}, followed by a particular deterministic rescaling operation of the sky signal, s. The acceptance probability for this joint move depends on the sky map only through the difference of {chi}{sup 2} between the original and proposed sky sample, which is close to unity in the low signal-to-noise regime. The algorithm is completed by alternating this move with a standard Gibbs move. Together, these two proposals constitute a computationally efficient algorithm for mapping out the full joint CMB posterior, both in the high and low signal-to-noise regimes.

  8. Tailoring graphene to achieve negative Poisson's ratio properties.

    PubMed

    Grima, Joseph N; Winczewski, Szymon; Mizzi, Luke; Grech, Michael C; Cauchi, Reuben; Gatt, Ruben; Attard, Daphne; Wojciechowski, Krzysztof W; Rybicki, Jarosław

    2015-02-25

    Graphene can be made auxetic through the introduction of vacancy defects. This results in the thinnest negative Poisson's ratio material at ambient conditions known so far, an effect achieved via a nanoscale de-wrinkling mechanism that mimics the behavior at the macroscale exhibited by a crumpled sheet of paper when stretched.

  9. Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves

    NASA Astrophysics Data System (ADS)

    Netz, U. J.; Hielscher, A. H.; Scheel, A. K.; Beuthan, J.

    2007-04-01

    Biomedical optical imaging in the near-infrared (NIR) region provides the possibility to detect and determine pathological and functional changes in human tissue without the drawback of ionizing radiation. Of special promise is the application of this technology for the detection of joint diseases, such as rheumatoid arthritis (RA). It has been shown that optical changes in the synovial fluid and the vasculature surrounding the joints can be detected with optical methods. Applying optical tomographic methods one should be able to localize and quantify these changes for detection of the onset of RA. The first studies have been limited to continuous wave imaging. However, it is well known that enhanced resolution and better separation between absorption and scattering properties of tissue can be achieved using intensity modulated light sources. Intensity modulation of laser light in the MHz region leads to propagation of so-called diffuse photon density waves (PDW) through the tissue In this study we report on basic experimental results to determine performance and sensitivity of PDW-transillumination of tissue like phantoms. We used a vector network analyzer to generate and analyze intensity modulation from 100 MHz up to 1 GHz via a diode laser and an avalanche photo diode. Scans were performed across phantoms containing a layer with different absorbing and scattering properties bounded by an edge. The thickness of the phantoms was chosen similar to human fingers to gain information for optimization of tomographic imaging of finger joints. We experimentally determined the signal-to-noise ratio (SNR) of the system and compared the results to theoretical predictions. Noise and SNR of amplitude and phase depend on frequency of modulation. While the amplitude SNR decreases with frequency, phase SNR increases to assume a maximum value. We found that the inserted layer can be better characterized using phase information, which becomes more valuable as the source

  10. Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Hughes, Scott A.

    1998-04-01

    We estimate the expected signal-to-noise ratios (SNRs) from the three phases (inspiral, merger, and ringdown) of coalescing binary black holes (BBHs) for initial and advanced ground-based interferometers (LIGO-VIRGO) and for the space-based interferometer LISA. Ground-based interferometers can do moderate SNR (a few tens), moderate accuracy studies of BBH coalescences in the mass range of a few to about 2000 solar masses; LISA can do high SNR (of order 104), high accuracy studies in the mass range of about 105-108 solar masses. BBHs might well be the first sources detected by LIGO-VIRGO: they are visible to much larger distances-up to 500 Mpc by initial interferometers-than coalescing neutron star binaries (heretofore regarded as the ``bread and butter'' workhorse source for LIGO-VIRGO, visible to about 30 Mpc by initial interferometers). Low-mass BBHs (up to 50Msolar for initial LIGO interferometers, 100Msolar for advanced, 106Msolar for LISA) are best searched for via their well-understood inspiral waves; higher mass BBHs must be searched for via their poorly understood merger waves and/or their well-understood ringdown waves. A matched filtering search for massive BBHs based on ringdown waves should be capable of finding BBHs in the mass range of about 100Msolar-700Msolar out to ~200 Mpc for initial LIGO interferometers, and in the mass range of ~200Msolar to ~3000Msolar out to about z=1 for advanced interferometers. The required number of templates is of the order of 6000 or less. Searches based on merger waves could increase the number of detected massive BBHs by a factor of the order of 10 over those found from inspiral and ringdown waves, without detailed knowledge of the waveform shapes, using a noise monitoring search algorithm which we describe. A full set of merger templates from numerical relativity simulations could further increase the number of detected BBHs by an additional factor of up to ~4.

  11. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.

    PubMed

    Vaughan, Timothy E; Weaver, James C

    2005-05-01

    We describe an approach to aiding the design and interpretation of experiments involving biological effects of weakly interacting electromagnetic fields that range from steady (dc) to microwave frequencies. We propose that if known biophysical mechanisms cannot account for an inferred, underlying molecular change signal-to-noise ratio, (S/N)gen, of a observed result, then there are two interpretation choices: (1) there is an unknown biophysical mechanism with stronger coupling between the field exposure and the ongoing biochemical process, or (2) the experiment is responding to something other than the field exposure. Our approach is based on classical detection theory, the recognition that weakly interacting fields cannot break chemical bonds, and the consequence that such fields can only alter rates of ongoing, metabolically driven biochemical reactions, and transport processes. The approach includes both fundamental chemical noise (molecular shot noise) and other sources of competing chemical change, to be compared quantitatively to the field induced change for the basic case that the field alters a single step in a biochemical network. Consistent with pharmacology and toxicology, we estimate the molecular dose (mass associated with field induced molecular change per mass tissue) resulting from illustrative low frequency field exposures for the biophysical mechanism of voltage gated channels. For perspective, we then consider electric field-mediated delivery of small molecules across human skin and into individual cells. Specifically, we consider the examples of iontophoretic and electroporative delivery of fentanyl through skin and electroporative delivery of bleomycin into individual cells. The total delivered amount corresponds to a molecular change signal and the delivery variability corresponds to generalized chemical noise. Viewed broadly, biological effects due to nonionizing fields may include animal navigation, medical applications, and environmental

  12. Failure to Pop Out: Feature Singletons Do Not Capture Attention Under Low Signal-to-Noise Ratio Conditions.

    PubMed

    Rangelov, Dragan; Müller, Hermann J; Zehetleitner, Michael

    2017-04-03

    Pop-out search implies that the target is always the first item selected, no matter how many distractors are presented. However, increasing evidence indicates that search is not entirely independent of display density even for pop-out targets: search is slower with sparse (few distractors) than with dense displays (many distractors). Despite its significance, the cause of this anomaly remains unclear. We investigated several mechanisms that could slow down search for pop-out targets. Consistent with the assumption that pop-out targets frequently fail to pop out in sparse displays, we observed greater variability of search duration for sparse displays relative to dense. Computational modeling of the response time distributions also supported the view that pop-out targets fail to pop out in sparse displays. Our findings strongly question the classical assumption that early processing of pop-out targets is independent of the distractors. Rather, the density of distractors critically influences whether or not a stimulus pops out. These results call for new, more reliable measures of pop-out search and potentially a reinterpretation of studies that used relatively sparse displays. (PsycINFO Database Record

  13. MagArray Biochips for Protein and DNA Detection with Magnetic Nanotags: Design, Experiment, and Signal-to-Noise Ratio

    NASA Astrophysics Data System (ADS)

    Osterfeld, Sebastian J.; Wang, Shan X.

    MagArray™ chips contain arrays of magnetic sensors, which can be used to detect surface binding reactions of biological molecules that have been labeled with 10 to 100 nm sized magnetic particles. Although MagArray chips are in some ways similar to fluorescence-based DNA array chips, the use of magnetic labeling tags leads to many distinct advantages, such as better background rejection, no label bleaching, inexpensive chip readers, potentially higher sensitivity, ability to measure multiple binding reactions in homogeneous assays simultaneously and in real-time, and seamless integration with magnetic separation techniques. So far, the technology of MagArray chips has been successfully used to perform quantitative analytic bioassays of both protein and nucleic acid targets. The potential of this technology, especially for point-of-care testing (POCT) and portable molecular diagnostics, appears promising, and it is likely that this technology will see significant further performance gains in the near future.

  14. Comparing three-dimensional Bayesian segmentations for images with low signal-to-noise ratio (SNR<1) and strong attenuation

    NASA Astrophysics Data System (ADS)

    Christopher, Lauren A.; Delp, Edward J.

    2014-07-01

    This paper examines three Bayesian statistical segmentation techniques with an innovative attenuation compensation on synthetic data and breast ultrasound medical images. All use expectation maximization for estimating the Gaussian model parameters and segment the data using a three-dimensional (3-D) Markov random field pixel neighborhood. This paper compares three Bayesian segmentation techniques: maximum a posteriori simulated annealing (MAP-SA), MAP iterated conditional modes (MAP-ICM), and maximization of posterior marginals (MPM). We conclude that because of the high speckle noise and adverse attenuation challenges of breast ultrasound, the MPM algorithm has the best performance. This is due to better localized segmentation than the other MAP techniques. We present results first with synthetic images then with breast ultrasound. Our new contributions for a 3-D breast ultrasound produce improved results using a model of the noise, in which the Gaussian mean is proportional to the image attenuation with depth, combined with a new prior probability model.

  15. An algorithm for the estimation of the signal-to-noise ratio in surface myoelectric signals generated during cyclic movements.

    PubMed

    Agostini, Valentina; Knaflitz, Marco

    2012-01-01

    In many applications requiring the study of the surface myoelectric signal (SMES) acquired in dynamic conditions, it is essential to have a quantitative evaluation of the quality of the collected signals. When the activation pattern of a muscle has to be obtained by means of single- or double-threshold statistical detectors, the background noise level e (noise) of the signal is a necessary input parameter. Moreover, the detection strategy of double-threshold detectors may be properly tuned when the SNR and the duty cycle (DC) of the signal are known. The aim of this paper is to present an algorithm for the estimation of e (noise), SNR, and DC of an SMES collected during cyclic movements. The algorithm is validated on synthetic signals with statistical properties similar to those of SMES, as well as on more than 100 real signals.

  16. Real-time in Situ Signal-to-noise Ratio Estimation for the Assessment of Operational Communications Links

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2002-01-01

    The work presented here formulates the rigorous statistical basis for the correct estimation of communication link SNR of a BPSK, QPSK, and for that matter, any M-ary phase-modulated digital signal from what is known about its statistical behavior at the output of the receiver demodulator. Many methods to accomplish this have been proposed and implemented in the past but all of them are based on tacit and unwarranted assumptions and are thus defective. However, the basic idea is well founded, i.e., the signal at the output of a communications demodulator has convolved within it the prevailing SNR characteristic of the link. The acquisition of the SNR characteristic is of the utmost importance to a communications system that must remain reliable in adverse propagation conditions. This work provides a correct and consistent mathematical basis for the proper statistical 'deconvolution' of the output of a demodulator to yield a measure of the SNR. The use of such techniques will alleviate the need and expense for a separate propagation link to assess the propagation conditions prevailing on the communications link. Furthermore, they are applicable for every situation involving the digital transmission of data over planetary and space communications links.

  17. Data reduction, radial velocities and stellar parameters from spectra in the very low signal-to-noise domain

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca

    2013-10-01

    Large astronomical facilities usually provide data reduction pipeline designed to deliver ready-to-use scientific data, and too often as- tronomers are relying on this to avoid the most difficult part of an astronomer job Standard data reduction pipelines however are usu- ally designed and tested to have good performance on data with av- erage Signal to Noise Ratio (SNR) data, and the issues that are related with the reduction of data in the very low SNR domain are not taken int account properly. As a result, informations in data with low SNR are not optimally exploited. During the last decade our group has collected thousands of spec- tra using the GIRAFFE spectrograph at Very Large Telescope (Chile) of the European Southern Observatory (ESO) to determine the ge- ometrical distance and dynamical state of several Galactic Globular Clusters but ultimately the analysis has been hampered by system- atics in data reduction, calibration and radial velocity measurements. Moreover these data has never been exploited to get other informa- tions like temperature and metallicity of stars, because considered too noisy for these kind of analyses. In this thesis we focus our attention on data reduction and analysis of spectra with very low SNR. The dataset we analyze in this thesis comprises 7250 spectra for 2771 stars of the Globular Cluster M 4 (NGC 6121) in the wavelength region 5145-5360Å obtained with GIRAFFE. Stars from the upper Red Giant Branch down to the Main Sequence have been observed in very different conditions, including nights close to full moon, and reaching SNR - 10 for many spectra in the dataset. We will first review the basic steps of data reduction and spec- tral extraction, adapting techniques well tested in other field (like photometry) but still under-developed in spectroscopy. We improve the wavelength dispersion solution and the correction of radial veloc- ity shift between day-time calibrations and science observations by following a completely

  18. Training sensory signal-to-noise resolution in children with ADHD in a global mental health setting

    PubMed Central

    Mishra, J; Sagar, R; Joseph, A A; Gazzaley, A; Merzenich, M M

    2016-01-01

    Children with attention deficit/hyperactivity disorder (ADHD) have impaired focus on goal-relevant signals and fail to suppress goal-irrelevant distractions. To address both these issues, we developed a novel neuroplasticity-based training program that adaptively trains the resolution of challenging sensory signals and the suppression of progressively more challenging distractions. We evaluated this sensory signal-to-noise resolution training in a small sample, global mental health study in Indian children with ADHD. The children trained for 30 h over 6 months in a double-blind, randomized controlled trial. Training completers showed steady and significant improvements in ADHD-associated behaviors from baseline to post training relative to controls, and benefits sustained in a 6-month follow-up. Post-training cognitive assessments showed significant positive results for response inhibition and Stroop interference tests in training completers vs controls, while measures of sustained attention and short-term memory showed nonsignificant improvement trends. Further, training-driven improvements in distractor suppression correlated with the improved ADHD symptoms. This initial study suggests utility of signal-to-noise resolution training for children with ADHD; it emphasizes the need for further research on this intervention and substantially informs the design of a larger trial. PMID:27070409

  19. Quantitative Raman Spectroscopy when the Signal-to-Noise is Below the Limit of Quantitation due to Fluorescence Interference: Advantages of a Moving Window Sequentially Shifted Excitation Approach.

    PubMed

    Marshall, Sarah; Cooper, John B

    2016-09-01

    Raman spectroscopy is a useful analytical tool. However, its application is often limited because shot noise from fluorescence obscures the Raman signal. In such cases, quantitative analysis is not possible when the signal-to-noise ratio (SNR) drops below two. A method is described for performing quantitative Raman spectroscopy that not only removes fluorescence backgrounds, but also results in a significant improvement in the SNR. The Raman data is extracted using a moving window sequentially shifted excitation algorithm. To demonstrate the capabilities of the method, a binary mixture of two analytes at varying concentrations is quantified in the presence of a highly fluorescent dye. Linear calibration plots were constructed and validated for the binary model using individual Raman peaks with SNR ranging from 0.073-12.6; r(2) values are greater than 0.96 in all cases, with all but the weakest peaks yielding values greater than 0.997. The presented method demonstrates a universal and autonomous approach for the quantitative analysis of highly fluorescent samples via Raman spectroscopy. The lower limit on the SNR ratio for quantitative Raman analysis with the described method is 0.1. In order to assess the effectiveness of the presented method, the entire set of experiments was also processed using the more common shifted excitation Raman difference spectroscopy (SERDS) approach. The advantages of the proposed method over SERDS are demonstrated for both the detection limit and the SNR of the processed spectra.

  20. 12 CFR 3.7 - Plan to achieve minimum capital ratios.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Plan to achieve minimum capital ratios. 3.7... RATIOS; ISSUANCE OF DIRECTIVES Minimum Capital Ratios § 3.7 Plan to achieve minimum capital ratios. Effective December 31, 1990, any bank having capital ratios less than the minimums required under § 3.6...

  1. 12 CFR 3.7 - Plan to achieve minimum capital ratios.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Plan to achieve minimum capital ratios. 3.7... RATIOS; ISSUANCE OF DIRECTIVES Minimum Capital Ratios § 3.7 Plan to achieve minimum capital ratios. Effective December 31, 1990, any bank having capital ratios less than the minimums required under § 3.6...

  2. Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Vane, Gregg; Conel, James E.

    1988-01-01

    An assessment of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) performance was made for a flight over Mountain Pass, California, July 30, 1987. The flight data were reduced to reflectance using an empirical algorithm which compensates for solar, atmospheric and instrument factors. AVIRIS data in conjunction with surface and atmospheric measurements acquired concurrently were used to develop an improved spectral calibration. An accurate in-flight radiometric calibration was also performed using the LOWTRAN 7 radiative transfer code together with measured surface reflectance and atmospheric optical depths. A direct comparison with coincident Thematic Mapper imagery of Mountain Pass was used to demonstrate the high spatial resolution and good geometric performance of AVIRIS. The in-flight instrument noise was independently determined with two methods which showed good agreement. A signal-to-noise ratio was calculated using data from a uniform playa. This ratio was scaled to the AVIRIS reference radiance model, which provided a basis for comparison with laboratory and other in-flight signal-to-noise determinations.

  3. 12 CFR 3.7 - Plan to achieve minimum capital ratios.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Plan to achieve minimum capital ratios. 3.7 Section 3.7 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MINIMUM CAPITAL RATIOS; ISSUANCE OF DIRECTIVES Minimum Capital Ratios § 3.7 Plan to achieve minimum capital...

  4. 12 CFR 3.7 - Plan to achieve minimum capital ratios.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Plan to achieve minimum capital ratios. 3.7 Section 3.7 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MINIMUM CAPITAL RATIOS; ISSUANCE OF DIRECTIVES Minimum Capital Ratios § 3.7 Plan to achieve minimum capital...

  5. A High Signal-To-Noise Ultraviolet Spectrum of NGC 7469: New Support for Reprocessing of Continuum Radiation

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Peterson, Bradley M.; Crenshaw, D. Michael; Zheng, Wei

    2000-01-01

    From 1996 June 10 to 1996 July 29, the International AGN Watch monitored the Seyfert 1 galaxy NGC 7469 using the International Ultraviolet Explorer, the Rossi X-Ray Timing Explorer, and a network of ground-based observatories. On 1996 June 18, in the midst of this intensive monitoring period, we obtained a high signal-to-noise snapshot of the UV spectrum from 1150 to 3300 A, using the Faint Object Spectrograph (FOS) on the Hubble Space Telescope. This spectrum allows us to disentangle the UV continuum more accurately from the broad wings of the emission lines, to identify clean continuum windows free of contaminating emission and absorption, and to deblend line complexes such as Ly(alpha) + N V, C IV + He II + O III], Si III] + C III], and Mg II + Fe II. Using the FOS spectrum as a template, we have fitted and extracted line and continuum fluxes from the IUE monitoring data. The cleaner continuum extractions c o n h the discovery of time delays between the different UV continuum bands by Wanders et al. Our new measurements show delays increasing with wavelength for continuum bands centered at 1485, 1740, and 1825 A, relative to 1315 A with delays of 0.09, 0.28, and 0.36 days, respectively. Like many other Seyfert I galaxies, the UV spectrum of NGC 7469 shows intrinsic, blue-shifted absorption in Ly(alpha), N V, and C IV. Soft X-ray absorption is also visible in archival ASCA X-ray spectra. The strength of the UV absorption, however, is not compatible with a single-zone model in which the same material absorbs both the UV and X-ray light. Similar to other Seyfert galaxies, such as NGC 3516, the UV-absorbing gas in NGC 7469 has a lower ionization parameter and column density than the X-ray-absorbing material. While the UV and X-ray absorption does not arise in the same material, the frequent occurrence of both associated UV absorption and X-ray warm absorbers in the same galaxies suggests that the gas supply for each has a common origin.

  6. Achieving nitritation in a continuous moving bed biofilm reactor at different temperatures through ratio control.

    PubMed

    Bian, Wei; Zhang, Shuyan; Zhang, Yanzhuo; Li, Wenjing; Kan, Ruizhe; Wang, Wenxiao; Zheng, Zhaoming; Li, Jun

    2017-02-01

    A ratio control strategy was implemented in a continuous moving bed biofilm reactor (MBBR) to investigate the response to different temperatures. The control strategy was designed to maintain a constant ratio between dissolved oxygen (DO) and total ammonia nitrogen (TAN) concentrations. The results revealed that a stable nitritation in a biofilm reactor could be achieved via ratio control, which compensated the negative influence of low temperatures by stronger oxygen-limiting conditions. Even with a temperature as low as 6°C, stable nitritation could be achieved when the controlling ratio did not exceed 0.17. Oxygen-limiting conditions in the biofilm reactor were determined by the DO/TAN concentrations ratio, instead of the mere DO concentration. This ratio control strategy allowed the achievement of stable nitritation without complete wash-out of NOB from the reactor. Through the ratio control strategy full nitritation of sidestream wastewater was allowed; however, for mainstream wastewater, only partial nitritation was recommended.

  7. STAR Follow-Up Studies, 1996-1997: The Student/Teacher Achievement Ratio (STAR) Project.

    ERIC Educational Resources Information Center

    Pate-Bain, Helen; Boyd-Zaharias, Jayne; Cain, Van A.; Word, Elizabeth; Binkley, M. Edward

    The Student/Teacher Achievement Ratio (STAR) Project first investigated the effect of small class size on student achievement with over 6,000 Tennessee primary students in 1985 through 1989. The study found a consistent and significant benefit of small classes for all students, with the greatest advantages for minority, inner-city students from…

  8. Improving Signal to Noise in Labeled Biological Specimens using Energy-Filtered TEM of sections with a Drift Correction Strategy and a Direct Detection Device

    PubMed Central

    Ramachandra, Ranjan; Bouwer, James C.; Mackey, Mason R.; Bushong, Eric; Peltier, Steven T.; Xuong, Nguyen-Huu; Ellisman, Mark H.

    2014-01-01

    Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, EELS techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of CCD based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD’s) to increase the signal to noise as compared to CCD’s. A 3x improvement in signal is reported with a DDD vs. a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames. PMID:24641915

  9. Kea: A New Tool to Obtain Stellar Parameters from Low to Moderate Signal-to-noise and High-resolution Echelle Spectra

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Cochran, William D.

    2016-09-01

    In this paper, we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal-to-noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance spectra that we have obtained at McDonald Observatory. We use Kea to determine effective temperatures (T eff), metallicity ([Fe/H]), surface gravity (log g), and projected rotational velocity (v{sin}i). Kea compares the observations to a large library of synthetic spectra that covers a wide range of different T eff, [Fe/H], and log g values. We calibrated Kea on observations of well-characterized standard stars (the Kepler field “platinum” sample) that range in T eff from 5000 to 6500 K, in [Fe/H] from -0.5 to +0.4 dex, and in log g from 3.2 to 4.6 dex. We then compared the Kea results from reconnaissance spectra of 45 Kepler objects of interest (KOIs) to stellar parameters derived from higher signal-to-noise spectra obtained with Keck/HIRES. We find typical uncertainties of 100 K in T eff, 0.12 dex in [Fe/H], and 0.18 dex in log g. Named after Nestor notabilis an alpine parrot native to New Zealand.

  10. Gender Differences in Mathematical Achievement Related to the Ratio of Girls to Boys in School Classes

    NASA Astrophysics Data System (ADS)

    Manger, Terje; Gjestad, Rolf

    1997-03-01

    The relationship between mathematical achievement and the ratio of boys to girls in school classes was investigated in a sample of third-grade Norwegian elementary school students (440 girls and 480 boys). Belonging to classes with a numerical majority of boys or girls did not affect the achievement of either of the sexes. The results from the study do not support the single-sexing of mathematics teaching.

  11. Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system.

    PubMed

    Bradu, Adrian; Podoleanu, Adrian Gh

    2011-07-01

    A Fourier domain optical coherence tomography setup is presented built around an optical configuration that exhibits Talbot bands. A low astigmatism spectrometer is used, employing a spherical mirror and a cylindrical lens between a diffraction grating and a linear CCD camera. To produce Talbot bands, the two interferometer beams--object and reference--are laterally shifted in respect to each other in their way toward the diffraction grating. This allows attenuation of mirror terms and optimization of the sensitivity profile. We evaluate the optimization of the sensitivity profile with depth, in respect to its overall strength and its position peak, which can be shifted toward a larger optical path difference in the interferometer. We demonstrate the efficiency of such a configuration at large depths by imaging a thick phantom and human skin in vivo for different values of the lateral distance between the two beams.

  12. Performance of Orthogonal Frequency Division Multiplexing in a High Noise, Low Signal-to-Noise Ratio Environment With Co-Channel Interference

    DTIC Science & Technology

    2005-12-01

    uses only 16.6 MHz of bandwidth. Figure 2 shows the spectrum of five OFDM subchannels . Notice also in Figure 2 that the spectral peak of each... subchannel coincides with a null of the other carriers. Therefore, the difference between the center lobe and the first zero crossing represents the

  13. Impact of Signal-to-Noise Ratio in a Hyperspectral Sensor on the Accuracy of Biophysical Parameter Estimation in Case II Waters

    DTIC Science & Technology

    2012-02-13

    B. Leavitt, T. Barrow, and J. C. Holz , “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive...Barrow, T. R. Fisher, D. Gurlin, and J. Holz , “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote

  14. Spontaneous Emission and Fundamental Limitations on the Signal-to-Noise Ratio in Deep-Subwavelength Plasmonic Waveguide Structures with Gain

    NASA Astrophysics Data System (ADS)

    Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2016-12-01

    Incorporation of gain media in plasmonic nanostructures can give the possibility to compensate for high Ohmic losses in the metal and design truly nanoscale optical components for diverse applications ranging from biosensing to on-chip data communication. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission. This spontaneous emission greatly impacts the performance characteristics of deep-subwavelength active plasmonic devices and casts doubt on their practical use. Here we develop a theoretical framework to evaluate the influence of spontaneous emission, which can be applied to waveguide structures of any shape and level of mode confinement. In contrast to the previously developed theories, we take into account that the spectrum of spontaneous emission can be very broad and nonuniform, which is typical for deep-subwavelength structures, where a high optical gain (approximately 1000 cm-1 ) in the active medium is required to compensate for strong absorption in the metal. We also present a detailed study of the spontaneous emission noise in metal-semiconductor active plasmonic nanowaveguides and demonstrate that by using both optical and electrical filtering techniques, it is possible to decrease the noise to a level sufficient for practical applications at telecom and midinfrared wavelengths.

  15. Salient Feature Selection Using Feed-Forward Neural Networks and Signal-to-Noise Ratios with a Focus Toward Network Threat Detection and Classification

    DTIC Science & Technology

    2014-03-27

    Methodologies Applied to Network Threat Detection Author(s) Year Methodology Outcome Panda and Patra [38] 2007 Naïve Bayes Overall detection rate...Technology in Automation, Control and Intelligent Systems (CYBER), Bangkok, 2012. [38] M. Panda and M. R. Patra, "Network Intrusion Detection

  16. Sensitivity and Signal to Noise Ratio Improvement of a One Micron Ladar System Incorporating a Neodymium Doped Optical Fiber Preamplifier. Laser Radar Testbed

    DTIC Science & Technology

    1994-02-28

    communications since the first demonstration of radio was made by Guglielmo Marconi in 1895, shortly after Heinrich Hertz successfully generated and detected...the electromagnetic waves predicted by James Clerk Maxwell. Hertz and Marconi generated the radio waves by changing the current in a wire over time...causing the wire to emit electromagnetic radiation. The wavelengths Marconi used represent the upper end of the electromagnetic spectrum, which can be

  17. An Iterative Information-Reduced Quadriphase-Shift-Keyed Carrier Synchronization Scheme Using Decision Feedback for Low Signal-to-Noise Ratio Applications

    NASA Technical Reports Server (NTRS)

    Simon, M.; Tkacenko, A.

    2006-01-01

    In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.

  18. Signal-to-noise ratio evaluation with draw tower fibre Bragg gratings (DTGs) for dynamic strain sensing at elevated temperatures and corrosive environment

    NASA Astrophysics Data System (ADS)

    De Pauw, B.; Lamberti, A.; Vanlanduit, S.; Van Tichelen, K.; Geernaert, T.; Berghmans, F.

    2014-05-01

    Measuring strain at the surface of a structure can help to estimate the dynamical properties of the structure under test. Such a structure can be a fuel assembly of a nuclear reactor consisting of fuel pins. In this paper we demonstrate a method to integrate draw tower gratings (DTGs) in a fuel pin and we subject this pin to conditions close to those encountered in a heavy liquid metal (HLM) reactor. More specifically, we report on the performance of DTGs used as a strain sensor when immersed in HLM during thermal cycles (up to 300_C) for up to 700 hours.

  19. Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging.

    PubMed

    Gureyev, Timur E; Nesterets, Yakov I; Stevenson, Andrew W; Miller, Peter R; Pogany, Andrew; Wilkins, Stephen W

    2008-03-03

    Simple analytical expressions are derived for the spatial resolution, contrast and signal-to-noise in X-ray projection images of a generic phase edge. The obtained expressions take into account the maximum phase shift generated by the sample and the sharpness of the edge, as well as such parameters of the imaging set-up as the wavelength spectrum and the size of the incoherent source, the source-to-object and object-to-detector distances and the detector resolution. Different asymptotic behavior of the expressions in the cases of large and small Fresnel numbers is demonstrated. The analytical expressions are compared with the results of numerical simulations using Kirchhoff diffraction theory, as well as with experimental X-ray measurements.

  20. Investigation of a nanofabrication process to achieve high aspect-ratio nanostructures on a quartz substrate.

    PubMed

    Mohamed, K; Alkaisi, M M

    2013-01-11

    This work investigates the development of a nanofabrication process to achieve high aspect-ratio nanostructures on quartz substrates using electron beam lithography (EBL) patterning and fluorinated plasma etching processes. An imaging layer of a poly(methyl methacrylate) bi-layer resist was spun coated on quartz substrate and exposed by an e-beam with the designed patterns of sub-100 nm feature sizes using a Raith-150 EBL patterning tool. Additive pattern transfer was employed by depositing a 40 nm thick Nichrome layer on the resist pattern using a metal evaporator which was later lifted off by soaking in acetone. Nichrome was employed as an etch mask and an Oxford Plasmalab 80Plus reactive ion etcher was used for the etching process. The etching process was carried out in a gas mixture of CHF(3)/Ar with a flow rate ratio of 50/30 sccm, pressure of 20 mTorr, radiofrequency power of 200 W and at room temperature. These etching process parameters were found to achieve a 10 nm min(-1) etch rate and tall vertical side walls profile. An aspect-ratio of 10:1 was achieved on 60 nm feature size structures.

  1. Investigation of a nanofabrication process to achieve high aspect-ratio nanostructures on a quartz substrate

    NASA Astrophysics Data System (ADS)

    Mohamed, K.; Alkaisi, M. M.

    2013-01-01

    This work investigates the development of a nanofabrication process to achieve high aspect-ratio nanostructures on quartz substrates using electron beam lithography (EBL) patterning and fluorinated plasma etching processes. An imaging layer of a poly(methyl methacrylate) bi-layer resist was spun coated on quartz substrate and exposed by an e-beam with the designed patterns of sub-100 nm feature sizes using a Raith-150 EBL patterning tool. Additive pattern transfer was employed by depositing a 40 nm thick Nichrome layer on the resist pattern using a metal evaporator which was later lifted off by soaking in acetone. Nichrome was employed as an etch mask and an Oxford Plasmalab 80Plus reactive ion etcher was used for the etching process. The etching process was carried out in a gas mixture of CHF3/Ar with a flow rate ratio of 50/30 sccm, pressure of 20 mTorr, radiofrequency power of 200 W and at room temperature. These etching process parameters were found to achieve a 10 nm min-1 etch rate and tall vertical side walls profile. An aspect-ratio of 10:1 was achieved on 60 nm feature size structures.

  2. Achieving Exact and Constant Turnaround Ratio in a DDS-Based Coherent Transponder

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.

    2011-01-01

    A report describes a non-standard direct digital synthesizer (DDS) implementation that can be used as part of a coherent transponder so as to allow any rational turnaround ratio to be exactly achieved and maintained while the received frequency varies. (A coherent transponder is a receiver-transmitter in which the transmitted carrier is locked to a pre-determined multiple of the received carrier's frequency and phase. That multiple is called the turnaround ratio.) The report also describes a general model for coherent transponders that are partly digital. A partially digital transponder is one in which analog signal processing is used to convert the signals between high frequencies at which they are radiated and relatively low frequencies at which they are converted to or from digital form, with most of the complex processing performed digitally. There is a variety of possible architectures for such a transponder, and different ones can be selected by choosing different parameter values in the general model. Such a transponder uses a DDS to create a low-frequency quasi-sinusoidal signal that tracks the received carrier s phase, and another DDS to generate an IF or near-baseband version of the transmitted carrier. With conventional DDS implementations, a given turnaround ratio can be achieved only approximately, and the error varies slightly as the received frequency changes. The non-conventional implementation employed here allows any rational turnaround ratio to be exactly maintained.

  3. On signals faint and sparse: The ACICA algorithm for blind de-trending of exoplanetary transits with low signal-to-noise

    SciTech Connect

    Waldmann, I. P.

    2014-01-01

    Independent component analysis (ICA) has recently been shown to be a promising new path in data analysis and de-trending of exoplanetary time series signals. Such approaches do not require or assume any prior or auxiliary knowledge about the data or instrument in order to de-convolve the astrophysical light curve signal from instrument or stellar systematic noise. These methods are often known as 'blind-source separation' (BSS) algorithms. Unfortunately, all BSS methods suffer from an amplitude and sign ambiguity of their de-convolved components, which severely limits these methods in low signal-to-noise (S/N) observations where their scalings cannot be determined otherwise. Here we present a novel approach to calibrate ICA using sparse wavelet calibrators. The Amplitude Calibrated Independent Component Analysis (ACICA) allows for the direct retrieval of the independent components' scalings and the robust de-trending of low S/N data. Such an approach gives us an unique and unprecedented insight in the underlying morphology of a data set, which makes this method a powerful tool for exoplanetary data de-trending and signal diagnostics.

  4. Exploring the thermal state of the low-density intergalactic medium at z = 3 with an ultrahigh signal-to-noise QSO spectrum

    NASA Astrophysics Data System (ADS)

    Rorai, A.; Becker, G. D.; Haehnelt, M. G.; Carswell, R. F.; Bolton, J. S.; Cristiani, S.; D'Odorico, V.; Cupani, G.; Barai, P.; Calura, F.; Kim, T.-S.; Pomante, E.; Tescari, E.; Viel, M.

    2017-04-01

    At low densities, the standard ionization history of the intergalactic medium (IGM) predicts a decreasing temperature of the IGM with decreasing density once hydrogen (and helium) reionization is complete. Heating the high-redshift, low-density IGM above the temperature expected from photoheating is difficult, and previous claims of high/rising temperatures in low-density regions of the Universe based on the probability density function (PDF) of the opacity in Ly α forest data at 2 < z < 4 have been met with considerable scepticism, particularly since they appear to be in tension with other constraints on the temperature-density relation (TDR). We utilize here an ultrahigh signal-to-noise spectrum of the Quasi-stellar object HE0940-1050 and a novel technique to study the low opacity part of the PDF. We show that there is indeed evidence (at 90 per cent confidence level) that a significant volume fraction of the underdense regions at z ∼ 3 has temperatures as high or higher than those at densities comparable to the mean and above. We further demonstrate that this conclusion is nevertheless consistent with measurements of a slope of the TDR in overdense regions that imply a decreasing temperature with decreasing density, as expected if photoheating of ionized hydrogen is the dominant heating process. We briefly discuss implications of our findings for the need to invoke either spatial temperature fluctuations, as expected during helium reionization, or additional processes that heat a significant volume fraction of the low-density IGM.

  5. Spectral identification of minerals using imaging spectrometry data: Evaluating the effects of signal to noise and spectral resolution using the tricorder algorithm

    NASA Technical Reports Server (NTRS)

    Swayze, Gregg A.; Clark, Roger N.

    1995-01-01

    The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines.

  6. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E.; Servillat, Mathieu; Webb, Natalie A. E-mail: rutledge@physics.mcgill.ca

    2013-07-20

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter-present in the core of NSs-is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R{sub NS}, are quasi-constant (within measurement errors, of {approx}10%) for astrophysically relevant masses (M{sub NS}>0.5 M{sub Sun }). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R{sub NS} value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R{sub NS}, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R{sub NS}=9.1{sup +1.3}{sub -1.5} km (90%-confidence). Such a value is consistent with low-R{sub NS} equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  7. Calculation of the number of bits required for the estimation of the bit error ratio

    NASA Astrophysics Data System (ADS)

    Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; André, Paulo S.; Pinto, Armando N.

    2014-08-01

    We present a calculation of the required number of bits to be received in a system of communications in order to achieve a given level of confidence. The calculation assumes a binomial distribution function for the errors. The function is numerically evaluated and the results are compared with the ones obtained from Poissonian and Gaussian approximations. The performance in terms of the signal-to-noise ratio is also studied. We conclude that for higher number of errors in detection the use of approximations allows faster and more efficient calculations, without loss of accuracy.

  8. Student to Teacher Racial/Ethnic Ratios as Contributors to Regional Achievement Gaps, 1999-2008

    ERIC Educational Resources Information Center

    Hays, James M.

    2011-01-01

    With the advent of No Child Left Behind legislation in 2002 and its mandates for annual yearly progress for all students, many districts and schools in Texas have had difficulty elevating African American and Hispanic students' scores. The current study examined these students' achievement on the annual Texas high-stakes measure as a function of a…

  9. Cost/Performance Ratio Achieved by Using a Commodity-Based Cluster

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac

    2001-01-01

    Researchers at the NASA Glenn Research Center acquired a commodity cluster based on Intel Corporation processors to compare its performance with a traditional UNIX cluster in the execution of aeropropulsion applications. Since the cost differential of the clusters was significant, a cost/performance ratio was calculated. After executing a propulsion application on both clusters, the researchers demonstrated a 9.4 cost/performance ratio in favor of the Intel-based cluster. These researchers utilize the Aeroshark cluster as one of the primary testbeds for developing NPSS parallel application codes and system software. The Aero-shark cluster provides 64 Intel Pentium II 400-MHz processors, housed in 32 nodes. Recently, APNASA - a code developed by a Government/industry team for the design and analysis of turbomachinery systems was used for a simulation on Glenn's Aeroshark cluster.

  10. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  11. An Image Processing Technique for Achieving Lossy Compression of Data at Ratios in Excess of 100:1

    DTIC Science & Technology

    1992-11-01

    2,529x1.578 505x315 Room 2,1 10x2,695 422x539 Turbans 2,523xl,617 504x323 Chapter 4 Achieving High Compression Ratios 41 CL Cuj 0. U. 42 Chater 4Achieing...NJ. Nelson, M. (1991). The data compression book, M&T Books, Redwood City , CA. "Software listings," Dr. Dobb’s Journal. (1991). M&T Books, Redwood... City , CA. 48 References Bibliography Barnsley, M. (1992). "Methods and apparatus for image compression by iterated function system," U.S. Patent

  12. Improvement of signal-to-noise ratio of optoacoustic signals from double-walled carbon nanotubes by using an array of dual-wavelength high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; de Varona, Omar E.; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-07-01

    Optoacoustic (OA) imaging is a rising biomedical technique that has attracted much interest over the last 15 years. This technique permits to visualize the internal soft tissues in depth by using short laser pulses, able to generate ultrasonic signals in a large frequency range. It combines the high contrast of optical imaging with the high resolution of ultrasound systems. The OA signals detected from the whole surface of the body serve to reconstruct in detail the image of the internal tissues, where the absorbed optical energy distribution outlines the regions of interest. In fact, the use of contrast agents could improve the detection of growing anomalies in soft tissues, such as carcinomas. This work proposes the use of double-walled carbon nanotubes (DWCNTs) as a potential nontoxic biodegradable contrast agent applicable in OA to reveal the presence of malignant in-depth tissues in near infrared (NIR) wavelength range (0.75-1.4 μm), where the biological tissues are fairly transparent to optical radiation. A dual-wavelength (870 and 905 nm) OA system is presented, based on arrays of high power diode lasers (HPDLs) that generate ultrasound signals from a DWCNT solution embedded within a biological phantom. The OA signals generated by DWCNTs are compared with those obtained using black ink, considered to be a very good absorber at these wavelengths. The experiments prove that DWCNTs are a potential contrast agent for optoacoustic spectroscopy (OAS).

  13. A 8X Oversampling Ratio, 14bit, 5-MSamples/s Cascade 3-1 Sigma-delta Modulator

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Klar, H.; Wennekers, P.

    2005-05-01

    A 14-b, 5-MHz output-rate cascaded 3-1 sigma-delta analog-to-digital converters (ADC) has been developed for broadband communication applications, and a novel 4th-order noise-shaping is obtained by using the proposed architecture. At a low oversampling ratio (OSR) of 8, the ADC achieves 91.5dB signal-to-quantization ratio (SQNR), in contrast to 71.8dB of traditional 2-1-1 cascaded sigma-delta ADC in 2.5-MHz bandwidth and over 80dB signal-to-noise and distortion (SINAD) even under assumptions of awful circuit non-idealities and opamp non-linearity. The proposed architecture can potentially operates at much more high frequencies with scaled IC technology, to expand the analog-to-digital conversion rate for high-resolution applications.

  14. Design options for achieving a rapidly variable heat-to-power ratio in a combined heat and power (CHP) fuel cell system (FCS)

    NASA Astrophysics Data System (ADS)

    Colella, Whitney

    This article calls for a change in paradigm within the fuel cells industry such that it focuses less on solely maximizing a fuel cell's electrical efficiency, and more on a fuel cell system's (FCS) overall combined thermal and electrical efficiency, as defined in relation to the instantaneous demand for heat and electricity. Based on market needs in the power generation sector, it emphasizes the need to develop FCSs such that they can achieve a heat-to-power ratio that can be rapidly varied. This article then delineates engineering methods to achieve a rapidly variable heat-to-power ratio for a combined heat and power (CHP) FCS.

  15. High Resolution Double-Focusing Isotope Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Radke, J.; Deerberg, M.; Hilkert, A.; Schlüter, H.-J.; Schwieters, J.

    2012-04-01

    In recent years isotope ratio mass spectrometry has extended to the capability of quantifying very small isotope signatures related with low abundances and simultaneously detecting molecular masses such as isotopomers and isotopologues containing clumped isotopes. Some of those applications are limited by molecular interferences like different gas molecules with the same nominal mass, e.g. Ar/O2, adducts of the same molecule or of different molecules, and very small isotope abundances. The Thermo Scientific MAT 253 ULTRA is the next generation of high precision gas isotope ratio mass spectrometry, which combines a 10 KV gas ionization source (Thermo Scientific MAT 253) with a double focusing multi-collector mass analyzer (Thermo Scientific Neptune) and reduces those limitations by measuring isotope ratios on a larger dynamic range with high precision. Small ion beam requirements and high sensitivity are achieved by signal-to-noise improvements through enhanced ion beam amplification in faraday cups and ion counters. Interfering backgrounds, e.g. interfering isotopologues or isobaric ions of contaminants, are dramatically decreased by a dynamic range increase combined with high evacuation leading to undisturbed ion transmission through the double-focusing analyser. Furthermore, automated gain calibration for mathematical baseline corrections, switchable detector arrays, ion source control, analyser focusing and full data export is controlled under Isodat data control. New reference/sample strategies are under investigation besides incorporation of the continuous-flow technique and its versatile inlet devices. We are presenting first results and applications of the MAT 253 Ultra.

  16. All-numerical noise filtering of fluorescence signals for achieving ultra-low limit of detection in biomedical applications.

    PubMed

    Dongre, Chaitanya; Pollnau, Markus; Hoekstra, Hugo J W M

    2011-03-21

    We present an all-numerical method for post-processing of the fluorescent signal as obtained from labeled molecules by capillary electrophoresis (CE) in an optofluidic chip, on the basis of data filtering in the Fourier domain. It is shown that the method outperforms the well-known lock-in amplification during experiments in the reduction of noise by a factor of (square root)2. The method is illustrated using experimental data obtained during CE separation of molecules from a commercial DNA ladder with 17 fluorescently labeled molecules having different base-pair sizes. An improvement in signal-to-noise ratio by a factor of ∼10 is achieved, resulting in a record-low limit of detection of 210 fM.

  17. Using an active temporal compensating system to achieve the super-Gaussian pulses in high-power lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yulei; Liu, Rui; Yuan, Hang; Li, Sensen; Liu, Zhaohong; Zhu, Xuehua; He, Weiming; Lv, Zhiwei

    2015-08-01

    In high-power solid-state laser, initiative pulse shaping can help improve the output laser's performance. The evaluation for output laser pulse is also incomplete. In this paper, we propose a method of initiative pulse shaping by using arbitrary waveform generator (AWG), and establish a relatively complete evaluation system for the output pulses shape simultaneously. It achieves the super-Gaussian pulse output with high SNR (signal-to-noise ratio). As a consequence, a square laser pulse with pulse adjustable width ~5ns, rising time 197ps is obtained. The power imbalance of the output square pulse is 3.72%. The similarity between the eight-order super-Gaussian pulse and the one we get from experiment reached 99%.

  18. Investigating the Connection of the Student-to-Administrator Ratio and Administrative Roles in Relation to Student Achievement in Indiana Public High Schools

    ERIC Educational Resources Information Center

    McCaffrey, Craig Andrew

    2014-01-01

    The purpose of this study was to determine if the student-to-administrator ratio in a school was related to student achievement as well as to examine the duties a principal delegated to others to determine if a pattern existed between principals of high and low performing high schools in regard to duties kept versus duties delegated. While the…

  19. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries.

    PubMed

    Tang, Yuxin; Zhang, Yanyan; Deng, Jiyang; Qi, Dianpeng; Leow, Wan Ru; Wei, Jiaqi; Yin, Shengyan; Dong, Zhili; Yazami, Rachid; Chen, Zhong; Chen, Xiaodong

    2014-12-01

    The fundamental understanding of the relationship between the nanostructure of an electrode and its electrochemical performance is crucial for achieving high-performance lithium-ion batteries (LIBs). In this work, the relationship between the nanotubular aspect ratio and electrochemical performance of LIBs is elucidated for the first time. The stirring hydrothermal method was used to control the aspect ratio of viscous titanate nanotubes, which were used to fabricate additive-free TiO2 -based electrode materials. We found that the battery performance at high charging/discharging rates is dramatically boosted when the aspect ratio is increased, due to the optimization of electronic/ionic transport properties within the electrode materials. The proof-of-concept LIBs comprising nanotubes with an aspect ratio of 265 can retain more than 86 % of their initial capacity over 6000 cycles at a high rate of 30 C. Such devices with supercapacitor-like rate performance and battery-like capacity herald a new paradigm for energy storage systems.

  20. Determination of the ortho to para ratio of H2Cl+ and H2O+ from submillimeter observations.

    PubMed

    Gerin, Maryvonne; de Luca, Massimo; Lis, Dariusz C; Kramer, Carsten; Navarro, Santiago; Neufeld, David; Indriolo, Nick; Godard, Benjamin; Le Petit, Franck; Peng, Ruisheng; Phillips, Thomas G; Roueff, Evelyne

    2013-10-03

    The opening of the submillimeter sky with the Herschel Space Observatory has led to the detection of new interstellar molecular ions, H2O(+), H2Cl(+), and HCl(+), which are important intermediates in the synthesis of water vapor and hydrogen chloride. In this paper, we report new observations of H2O(+) and H2Cl(+) performed with both Herschel and ground-based telescopes, to determine the abundances of their ortho and para forms separately and derive the ortho-to-para ratio. At the achieved signal-to-noise ratio, the observations are consistent with an ortho-to-para ratios of 3 for both H2O(+) and H2Cl(+), in all velocity components detected along the lines-of-sight to the massive star-forming regions W31C and W49N. We discuss the mechanisms that contribute to establishing the observed ortho-to-para ratio and point to the need for a better understanding of chemical reactions, which are important for establishing the H2O(+) and H2Cl(+) ortho-to-para ratios.

  1. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  2. Achieving fast timing performance with multiplexed SiPMs.

    PubMed

    Bieniosek, M F; Cates, J W; Levin, C S

    2016-04-07

    Using time of flight (ToF) measurements for positron emission tomography (PET) is an attractive avenue for increasing the signal to noise (SNR) ratio of PET images. However, achieving excellent time resolution required for high SNR gain using silicon photomultipliers (SiPM) requires many resource heavy high bandwidth readout channels. A method of multiplexing many SiPM signals into a single electronic channel would greatly simplify ToF PET systems. However, multiplexing SiPMs degrades time resolution because of added dark counts and signal shaping. In this work the relative contribution of dark counts and signal shaping to timing degradation is simulated and a baseline correction technique to mitigate the effect of multiplexing on the time resolution of analog SiPMs is simulated and experimentally verified. A charge sharing network for multiplexing is proposed and tested. Results show a full width at half maximum (FWHM) coincidence time resolution of [Formula: see text] ps for a single 3 mm  ×  3 mm  ×  20 mm LYSO scintillation crystals coupled to an array of sixteen 3 mm  ×  3 mm SiPMs that are multiplexed to a single timing channel (in addition to 4 position channels). A [Formula: see text] array of 3 mm  ×  3 mm  ×  20 mm LFS crystals showed an average FWHM coincidence time resolution of [Formula: see text] ps using the same timing scheme. All experiments were performed at room temperature with no thermal regulation. These results show that excellent time resolution for ToF can be achieved with a highly multiplexed analog SiPM readout.

  3. Signal-to-noise limitations in white light holography

    NASA Technical Reports Server (NTRS)

    Ribak, Erez; Breckinridge, James B.; Roddier, Claude; Roddier, Francois

    1988-01-01

    A simple derivation is given for the SNR in images reconstructed from incoherent holograms. Dependence is shown to be on the hologram SNR, object complexity, and the number of pixels in the detector. Reconstruction of involved objects becomes possible with high-dynamic-range detectors such as CCDs. White-light holograms have been produced by means of a rotational shear interferometer combined with a chromatic corrector. A digital inverse transform recreated the object.

  4. 1 Tbit/inch2 Recording in Angular-Multiplexing Holographic Memory with Constant Signal-to-Scatter Ratio Schedule

    NASA Astrophysics Data System (ADS)

    Hosaka, Makoto; Ishii, Toshiki; Tanaka, Asato; Koga, Shogo; Hoshizawa, Taku

    2013-09-01

    We developed an iterative method for optimizing the exposure schedule to obtain a constant signal-to-scatter ratio (SSR) to accommodate various recording conditions and achieve high-density recording. 192 binary images were recorded in the same location of a medium in approximately 300×300 µm2 using an experimental system embedded with a blue laser diode with a 405 nm wavelength and an objective lens with a 0.85 numerical aperture. The recording density of this multiplexing corresponds to 1 Tbit/in.2. The recording exposure time was optimized through the iteration of a three-step sequence consisting of total reproduced intensity measurement, target signal calculation, and recording energy density calculation. The SSR of pages recorded with this method was almost constant throughout the entire range of the reference beam angle. The signal-to-noise ratio of the sampled pages was over 2.9 dB, which is higher than the reproducible limit of 1.5 dB in our experimental system.

  5. A Multiple Model SNR/RCS Likelihood Ratio Score for Radar-Based Feature-Aided Tracking

    DTIC Science & Technology

    2005-01-01

    A Multiple Model SNR /RCS Likelihood Ratio Score for Radar-Based Feature-Aided Tracking Benjamin J. Slocumb and Michael E. Klusman, III Numerica...based on statistical models for the signal-to-noise ( SNR ) and radar cross section (RCS) for use in narrowband radar tracking. The formulation requires...features ( SNR and RCS measurements from a narrowband radar) for augmenting the track score used in the data association problem. There are two main

  6. Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems.

    PubMed

    Bolanos-Garcia, Victor M; Wu, Qian; Ochi, Takashi; Chirgadze, Dimitri Y; Sibanda, Bancinyane Lynn; Blundell, Tom L

    2012-06-28

    The regulation of cellular processes in living organisms requires signalling systems that have a high signal-to-noise ratio. This is usually achieved by transient, multi-protein complexes that assemble cooperatively. Even in the crowded environment of the cell, such assemblies are unlikely to form by chance, thereby providing a sensitive regulation of cellular processes. Furthermore, selectivity and sensitivity may be achieved by the requirement for concerted folding and binding of previously unfolded components. We illustrate these features by focusing on two essential signalling pathways of eukaryotic cells: first, the monitoring and repair of DNA damage by non-homologous end joining, and second, the mitotic spindle assembly checkpoint, which detects and corrects defective attachments of chromosomes to the kinetochore. We show that multi-protein assemblies moderate the full range of functional complexity and diversity in the two signalling systems. Deciphering the nature of the interactions is central to understanding the mechanisms that control the flow of information in cell signalling and regulation.

  7. Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds.

    PubMed

    Elouragini, S; Flamant, P H

    1996-03-20

    An iterative method to determine an average backscatter-to-extinction ratio and extinction coefficient simultaneously in cirrus clouds is proposed. The method is based on Klett's inversion, which is constrained by the total optical depth. A signal-to-noise ratio greater than 3 at the cloud top is required for an error in the backscatter-to-extinction ratio lower than 20% to result. The method has been tested with simulated lidar signals. An application to an experimental lidar signal is discussed.

  8. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  9. A declaration of independence for Mg/Si. [Al/Si intensity ratio predictive usefulness for Mg/Si intensity ratio in lunar X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Hubbard, N.; Keith, J. E.

    1978-01-01

    The weak covariation that exists between Al/Si and Mg/Si for large areas of the lunar surface is little, if any, stronger than that forced on a random set of numbers that are subject to closure. The Mg and Al variations implied by the Mg/Si and Al/Si intensity ratio data are qualitatively like those seen in lunar soil sample data. Two petrogenetic provinces are suggested for terra materials; one appears to have 50% higher Mg values than the other. Using the improved data, Mg/Si variations can be studied at a signal-to-noise ratio greater than 5/1.

  10. CALIPSO lidar ratio retrieval over the ocean.

    PubMed

    Josset, Damien; Rogers, Raymond; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali; Zhai, Peng-Wang

    2011-09-12

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type.

  11. CALIPSO Lidar Ratio Retrieval Over the Ocean

    NASA Technical Reports Server (NTRS)

    Josset, Damien B.; Rogers, Raymond R.; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali H.; Zhai, Peng-Wang

    2011-01-01

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type

  12. Traditional protection ratios in FM sound broadcasting - still appropriate for interference management?

    NASA Astrophysics Data System (ADS)

    Philipp, J.

    2011-12-01

    A detailed analysis of the measurement procedures recommended by the International Telecommunication Union (ITU) shows that - with proper definition of audio quality - the FM broadcasting system can provide an audio signal-to-noise ratio of no better than 40 dB, when the interference in the neighboring channels exhausts the limits established by the internationally agreed protection ratios. Thus any attempt to relax the protection, be it motivated by the desire to implement additional FM or new digital services in the FM band, would inevitably degrade reception quality of existing services to levels hardly acceptable by broadcast listeners.

  13. Masking in three pinnipeds: underwater, low-frequency critical ratios.

    PubMed

    Southall, B L; Schusterman, R J; Kastak, D

    2000-09-01

    Behavioral techniques were used to determine underwater masked hearing thresholds for a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Octave-band white noise maskers were centered at five test frequencies ranging from 200 to 2500 Hz; a slightly wider noise band was used for testing at 100 Hz. Critical ratios were calculated at one masking noise level for each test frequency. Above 200 Hz, critical ratios increased with frequency. This pattern is similar to that observed in most animals tested, and indicates that these pinnipeds lack specializations for detecting low-frequency tonal sounds in noise. However, the individual pinnipeds in this study, particularly the northern elephant seal, detected signals at relatively low signal-to-noise ratios. These results provide a means of estimating zones of auditory masking for pinnipeds exposed to anthropogenic noise sources.

  14. DETECTION OF LOW-MASS-RATIO STELLAR BINARY SYSTEMS

    SciTech Connect

    Gullikson, Kevin; Dodson-Robinson, Sarah

    2013-01-01

    O- and B-type stars are often found in binary systems, but the low binary mass-ratio regime is relatively unexplored due to observational difficulties. Binary systems with low mass ratios may have formed through fragmentation of the circumstellar disk rather than molecular cloud core fragmentation. We describe a new technique sensitive to G- and K-type companions to early B stars, a mass ratio of roughly 0.1, using high-resolution, high signal-to-noise spectra. We apply this technique to a sample of archived VLT/CRIRES observations of nearby B stars in the CO bandhead near 2300 nm. While there are no unambiguous binary detections in our sample, we identify HIP 92855 and HIP 26713 as binary candidates warranting follow-up observations. We use our non-detections to determine upper limits to the frequency of FGK stars orbiting early B-type primaries.

  15. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Carli, B.; Barbis, A.

    1989-01-01

    Emission features of HBr isotopes have been identified in high-resolution FIR emission spectra obtained with a balloon-borne Fourier-transform spectrometer in the spring of 1979 at 32 deg N latitude. When six single-scan spectra at a zenith angle of 93.2 deg were averaged, two features of HBr isotopes at 50.054 and 50.069/cm were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 x 10 to the -11th, which is assumed to be constant above 28 km, with an uncertainty of 35 percent. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus HBr could be the major stratospheric bromine species.

  16. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    SciTech Connect

    Park, J.H. ); Carli, B. ); Barbis, A. )

    1989-08-01

    Emission features of HBr isotopes have been identified in high-resolution far-infrared emission spectra obtained with a balloon-born Fourier transform spectrometer in the spring of 1979 at 32{degree}N latitude. When six single-scan spectra at a zenith angle of 93.2{degree} were averaged, two features of HBr isotopes at 50.054 and 50.069 cm{sup {minus}1} were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 {times} 10{sub {minus}11}, which is assumed to be constant above 28 km, with an uncertainty of 35%. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus, HBr could be the major stratospheric bromine species.

  17. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-07-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.

  18. Analytical Calculation of the Lower Bound on Timing Resolution for PET Scintillation Detectors Comprising High-Aspect-Ratio Crystal Elements

    PubMed Central

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-01-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559

  19. Depolarization ratio, SNR estimation, and polarization sensitivity analysis for a commercial Raman depolarization lidar system

    NASA Astrophysics Data System (ADS)

    Avdikos, George; Georgoussis, George

    2016-05-01

    In this paper we focus on the estimation of the Signal-to-Noise (SNR) ratio of a 3-channel commercial (Raymetics) volcanic ash detection system, (LR111-D300), already operating in UK, and also, we perform a basic lidar polarization sensitivity analysis. The results show that SNR values are higher than 10 for ranges up to 13 km for daytime conditions. This is a quite good result compared with other values presented in bibliography and prove that such system is able to detect volcanic ash detection over a range of 20 km. We also assess the lidar polarization sensitivity and then, we estimate the linear depolarization ratio. By careful choice of the optical components (emitting and receiving optics), it has been shown that uncertainties of polarization states at receiver (and thus too depolarization ratio estimation) can be much reduced.

  20. A High Aspect Ratio Microelectrode Array for Mapping Neural Activity in-vitro

    PubMed Central

    Kibler, Andrew B.; Jamieson, Brian G.; Durand, Dominique M.

    2011-01-01

    A novel high-aspect-ratio penetrating microelectrode array was designed and fabricated for the purpose of recording neural activity. The array allows two dimensional recording of 64 sites in vitro with high aspect ratio penetrating electrodes. Traditional surface electrode arrays, although easy to fabricate, do not penetrate to the viable tissue such as central hippocampus slices and thus have a lower signal/noise ratio and lower selectivity than a penetrating array. In the unfolded hippocampus preparation, the CA1–CA3 pyramidal cell layer in the whole unfolded rodent hippocampus preparation is encased by the alveus on one side and the Schaffer tract on the other and requires penetrating electrodes for high signal to noise ratio recording. An array of 64 electrode spikes, each with a target height of 200 μm and diameter of 20μm, was fabricated in silicon on a transparent glass substrate. The impedance of the individual electrodes was measured to be approximately 1.5MΩ± 497kΩ. The signal to noise ratio was measured and found to be 19.4 ± 3 dB compared to 3.9 ± 0.8 dB S/N for signals obtained with voltage sensitive dye RH414. A mouse unfolded hippocampus preparation was bathed in solution containing 50 micro-molar 4-Amino Pyridine and a complex two dimensional wave of activity was recorded using the array. These results indicate that this novel penetrating electrode array is able to obtain data superior to that of voltage sensitive dye techniques for broad field two-dimensional neuronal activity recording. When used with the unfolded hippocampus preparation, the combination forms a uniquely capable tool for imaging hippocampal network activity in the entire hippocampus. PMID:22179041

  1. Separation of sources in radiofrequency measurements of partial discharges using time-power ratio maps.

    PubMed

    Albarracin, R; Robles, G; Martinez-Tarifa, J M; Ardila-Rey, J

    2015-09-01

    Partial discharges measurement is one of the most useful tools for condition monitoring of high-voltage (HV) equipment. These phenomena can be measured on-line in radiofrequency (RF) with sensors such as the Vivaldi antenna, used in this paper, which improves the signal-to-noise ratio by rejecting FM and low-frequency TV bands. Additionally, the power ratios (PR), a signal-processing technique based on the power distribution of the incoming signals in frequency bands, are used to characterize different sources of PD and electromagnetic noise (EMN). The calculation of the time length of the pulses is introduced to separate signals where the PR alone do not give a conclusive solution. Thus, if several EM sources could be previously calibrated, it is possible to detect pulses corresponding to PD activity.

  2. Measurements of the reflectance, contrast ratio, and scattering properties of digital micromirror devices (DMDs)

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Travinsky, Anton; Quijada, Manuel A.; Ninkov, Zoran; Raisanen, Alan D.; Robberto, Massimo; Heap, Sara

    2016-07-01

    Digital micromirror devices (DMDs) are micro-electro- mechanical systems, originally developed to display images in projector systems. A DMD in the focal plane of an imaging system can be used as a reprogrammable slit mask of a multi-object spectrometer (MOS) by tilting some of the mirrors towards the spectrometer and tilting the rest of the mirrors away, thereby rejecting the unwanted light (due to the background and foreground objects). A DMD-based MOS can generate new, arbitrary slit patterns in seconds, which significantly reduces the overhead time during astronomical observations. Critically, DMD-based slit masks are extremely lightweight, compact and mechanically robust, which makes them attractive for use in space-based telescopes. As part of a larger effort to investigate the use of DMDs in space telescopes (sponsored by a NASA Strategic Astrophysics Technologies grant), we characterized the optical performance of Texas Instruments DMDs to determine their suitability for use in multi-object spectrometers. The performance of a DMD-based MOS is significantly affected by its optical throughput (reflectance), contrast ratio (the ability of the DMD to reject unwanted light) and scattering properties (which could lead to crosstalk and reduced signal-to-noise ratio in the spectrometer). We measured and quantified the throughput and contrast ratio of a Texas Instruments DMD in several configurations (which emulate the operation of a typical DMD-based MOS) and investigated the scattering properties of the individual DMD mirrors. In this work we present the results of our analysis, describe the performance of a typical DMD- based MOS and discuss the practical limitations of these instruments (such as maximum density of sources and expected signal-to- noise ratio).

  3. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    NASA Astrophysics Data System (ADS)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.

    2010-12-01

    optimise signal to noise ratios from low ion beam intensities on Faraday cups [2,3]. Data will be presented from the Thermo Scientific NEPTUNE Plus MC-ICP-MS, sampling sub-nanogram quantities of analyte from solution and by laser ablation. Faraday only measurements of sub-microgram analyte quantities will also be presented, using a 1012 Ω amplifier for the minor isotope 234U. These data are compared to a dataset collected by a first generation MC-ICP-MS instrument, reported by Lloyd et al. [1]. [1] N. S. Lloyd, R. R. Parrish, M. S. A. Horstwood & S. R. N. Chenery, Journal of Analytical Atomic Spectrometry 24 (6), 752 (2009). [2] C. Bouman, J.B. Schwieters, M. Deerberg & D. Tuttas, Geochimica et Cosmochimica Acta 73 (13, Supplement 1) (2009). [3] D. Tuttas, J.B. Schwieters, & N.S. Lloyd, Geochimica et Cosmochimica Acta 74 (11, Supplement 1) (2010).

  4. Sub-Audio Magnetics: Miniature Sensor Technology for Simultaneous Magnetic and Electromagnetic Detection of UXO

    DTIC Science & Technology

    2010-07-01

    Millisecond MEC Munitions and Explosives of Concern MPTX Medium-Powered Transmitter developed for UXO detection nT nanotesla pps Pulse per Second Pd...Research and Development Program SHERP Safety, Health and Emergency Response Plan SNR Signal-to-Noise Ratio sps Samples per Second TFEMI Total Field...higher signal-to-noise ratio (SNR) than that demonstrated at the APG1 trial. Associated with this was achievement of an acceptably high Probability of

  5. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  6. Utility of Ion Mobility Mass Spectrometry for Drug-to-Antibody Ratio Measurements in Antibody-Drug Conjugates

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Deyanova, Ekaterina G.; Passmore, David; Rangan, Vangipuram; Deshpande, Shrikant; Tymiak, Adrienne A.; Chen, Guodong

    2015-06-01

    Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. Characterization of ADC's drug-to-antibody ratio (DAR) becomes a key assessment because of its importance in ADC efficacy and safety. DAR characterization by conventional intact protein MS analysis, however, is challenging because of high heterogeneity of ADC samples. The analysis often requires protein deglycosylation, disulfide-bond reduction, or partial fragmentation. In this study, we illustrate the practical utility of ion mobility mass spectrometry (IM-MS) in a routine LC/MS workflow for DAR measurements. This strategy allows analyte "cleanup" in the gas phase, providing significant improvement of signal-to-noise ratios of ADC intact mass spectra for accurate DAR measurements. In addition, protein drift time analysis offers a new dimension in monitoring the changes of DAR in lot-to-lot analysis.

  7. Metallic line profiles of the AOV star Vega

    NASA Technical Reports Server (NTRS)

    Fletcher, J. Murray; Gulliver, Austin F.; Adelman, Saul J.; Crowley, Charles R.

    1990-01-01

    High dispersion ultrahigh signal to noise Reticon spectra of Vega were obtained with the coude spectrograph of the 1.2 m telescope. A mean signal to noise ratio of 2500 over the spectral region lambdas from 3825 to 5435 was achieved. Examination of the line profiles confirmed the presence of two different types of profiles which were previously seen in IIIaJ and lower signal to noise Reticon spectra. The profiles of the strong lines are essentially classical rotational profiles with enhanced wings which are slightly stronger than expected while those of weak lines are clearly flat-bottomed resulting in a trapezoidal appearance. A few possible theoretical explanations are presented.

  8. Advanced study of video signal processing in low signal to noise environments

    NASA Technical Reports Server (NTRS)

    Carden, F.; Henry, R.

    1972-01-01

    A nonlinear analysis of a multifilter phase-lockloop (MPLL) by using the method of harmonic balance is presented. The particular MPLL considered has a low-pass filter and a band-pass filter in parallel. An analytic expression for the relationship between the input signal phase deviation and the phase error is determined for sinusoidal FM in the absence of noise. The expression is used to determine bounds on the proper operating region for the MPLL and to investigate the jump phenomenon previously observed. From these results the proper modulation index, modulating frequency, etc. used for the design of a MPLL are determined. Data for the loop unlock boundary obtained from the theoretical expression are compared to data obtained from analog computer simulations of the MPLL.

  9. Advanced study of video signal processing in low signal to noise environments

    NASA Technical Reports Server (NTRS)

    Carden, F.; Gilbert, A.

    1972-01-01

    The frame to frame correlation properties of the video process are utilized to reduce the mean squared error of the demodulated video where zero mean noise is a factor. An interpolative estimator is used for continuous estimation with the output process delayed in time by one frame. Theoretical development shows that for the model herein developed reduction of the mean squared error by 1.0 to 4.0 db possible for parameter ranges of interest. Interpolative estimation using inter-frame correlation properties of a video process is then applied to the Apollo 17 parameters to yield a model for application on that mission.

  10. FIP, FIT or MAD? Analysis of High Signal-to-Noise ASCA Spectra of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2002-01-01

    ASCA (Advanced Satellite for Cosmology and Astrophysics) and EUVE (Extreme Ultraviolet Explorer) spectra of active late-type stars imply that Fe and other medium-Z elements may be 2-10 times less abundant in the coronae of these stars than in their photo-spheres (the MAD effect). These deficiencies may be related to the solar FIP (First Ionization Potential) effect, in which Fe and other low First Ionization Potential elements appear enriched in the solar corona over their photospheric values. The FIP effect is time variable. As part of this proposal, the K0-2 III star, 29 Draconis, was observed in X rays with the ASCA spacecraft in order to measure the coronal abundances of this star at three different stellar longitudes over its 31-day rotation cycle. The goal of the observations was to learn whether coronal abundances, and hence coronal magnetic structure, vary across the surface of 29 Draconis in phase with the motion of dark star-spots across its disk. A second task included in this project was a systematic reanalysis of 18-20 deep exposures of active coronal stars, which were extracted from the ASCA public archives. New thermal models were computed for each spectrum in order to derive coronal metal abundances for each star. The goal of this survey was to search for possible trends in coronal abundance with various stellar parameters such as rotation, chromospheric activity levels at ultraviolet and optical wavelengths, or evolutionary stage.

  11. Resolution and signal-to-noise measurement of U.S. Army night-vision goggles

    NASA Astrophysics Data System (ADS)

    Rivamonte, Lorenzo A.

    1990-10-01

    The ability to quantitatively characterize the performance of night vision goggles (NVG) is being investigated because the present method of resolution evaluation relies on an imprecise, subjective pass/fail judgement by a trained observer viewing a test pattern. Variation in an observer's training, experience, psychological state, decision bias and visual acuity strongly affect his or her decision when required to decide if a marginal pair of goggles passes or fails. The controversy concerning the increase in commercial and military helicopter accidents involving NVG indicates a need to determine if 1) the use of defective or marginal NVG is a contributing factor to the increase in accidents or 2) the apparent correlation between NVG and accidents is simply due to the increased use of NVG in an expanded and inherently more dangerous flight envelope. The U.S. Army TMDE Support Group (USATSG) has developed instrumentation to augment the AN/3895 TS test set that presents high and low light level resolution targets to AN/PVS-5, AN/AVS-6 and AN/PVS-7 NVG. The NVG Resolution Augmentation to the AN/3895 TS presented here can also quantitatively measure image quality of other image producing systems which are normally viewed, adjusted or inspected by a human observer. The NVG Resolution Augmentation features a custom electronic circuit which provides a user-friendly interface between a commercially available CCD camera, monitor and oscilloscope. USATSG's Army Primary Standards Laboratory at the Redstone Arsenal is presently studying the possibility of a new measurement service by investigating various CCD camera/lens combinations in order to characterize a machine vision standard observer. A characterized image analysis system would enable absolute as well as relative measurements of image quality.

  12. Signal-to-Noise Behavior for Matches to Gradient Direction Models of Corners in Images

    SciTech Connect

    Paglieroni, D W; Manay, S

    2007-02-09

    Gradient direction models for corners of prescribed acuteness, leg length, and leg thickness are constructed by generating fields of unit vectors emanating from leg pixels that point normal to the edges. A novel FFT-based algorithm that quickly matches models of corners at all possible positions and orientations in the image to fields of gradient directions for image pixels is described. The signal strength of a corner is discussed in terms of the number of pixels along the edges of a corner in an image, while noise is characterized by the coherence of gradient directions along those edges. The detection-false alarm rate behavior of our corner detector is evaluated empirically by manually constructing maps of corner locations in typical overhead images, and then generating different ROC curves for matches to models of corners with different leg lengths and thicknesses. We then demonstrate how corners found with our detector can be used to quickly and automatically find families of polygons of arbitrary position, size and orientation in overhead images.

  13. High Aspect Ratio Wrinkles

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Crosby, Alfred

    2015-03-01

    Buckling-induced surface undulations are widely found in living creatures, for instance, gut villi and the surface of flower petal cells. These undulations provide unique functionalities with their extremely high aspect ratios. For the synthetic systems, sinusoidal wrinkles that are induced by buckling a thin film attached on a soft substrate have been proposed to many applications. However, the impact of the synthetic wrinkles have been restricted by limited aspect ratios, ranging from 0 to 0.35. Within this range, wrinkle aspect ratio is known to increase with increasing compressive strain until a critical strain is reached, at which point wrinkles transition to localizations, such as folds or period doublings. Inspired by the living creatures, we propose that wrinkles can be stabilized in high aspect ratio by manipulating the strain energy in the substrate. We experimentally demonstrate this idea by forming a secondary crosslinking network in the wrinkled surface and successfully achieve aspect ratio as large as 0.8. This work not only provides insights for the mechanism of high aspect ratio structures seen in living creatures, but also demonstrates significant promise for future wrinkle-based applications.

  14. Possible Derivations of Ortho- and Para-H2 Ratios in the Atmospheres of the Giant Planets Using the 2 μ m Spectral Structures of (H2)2

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Joon; Lee, Yong-Sik

    2001-11-01

    We have presented an ab \\ initio model of the 2 μ m spectral features of (H2)2 based on the far-infrared models of McKellar & Schaefer (1991). We have shown that the intensity variations of the 2 μ m (H2)2 features depend on the ortho/para ratios of H2. We have discussed the applicability of the variations to the atmospheres of the giant planets for the derivations of the ortho/para ratios. The signal to noise ratios of currently available spectra of the giant planets are not sufficient enough to derive accurate ortho/para ratios of these planets. Observations with longer exposure times and larger telescope apertures are required to obtain better spectra for the derivations of the ortho/para ratios of H2 in the atmospheres of the giant planets.

  15. Study of Site Response in the Seattle and Tacoma Basins, Washington, Using Spectral Ratio Methods

    NASA Astrophysics Data System (ADS)

    Keshvardoost, R.; Wolf, L. W.

    2014-12-01

    Sedimentary basins are known to have a pronounced influence on earthquake-generated ground motions, affecting both predominant frequencies and wave amplification. These site characteristics are important elements in estimating ground shaking and seismic hazard. In this study, we use three-component broadband and strong motion seismic data from three recent earthquakes to determine site response characteristics in the Seattle and Tacoma basins, Washington. Resonant frequencies and relative amplification of ground motions were determined using Fourier spectral ratios of velocity and acceleration records from the 2012 Mw 6.1 Vancouver Island earthquake, the 2012 Mw 7.8 Queen Charlotte Island earthquake, and the 2014 Mw 6.6 Vancouver Island earthquake. Recordings from sites within and adjacent to the Seattle and Tacoma basins were selected for the study based on their signal to noise ratios. Both the Standard Spectral Ratio (SSR) and the Horizontal-to-Vertical Spectral Ratio (HVSR) methods were used in the analysis, and results from each were compared to examine their agreement and their relation to local geology. Although 57% of the sites (27 out of 48) exhibited consistent results between the two methods, other sites varied considerably. In addition, we use data from the Seattle Liquefaction Array (SLA) to evaluate the site response at 4 different depths. Results indicate that resonant frequencies remain the same at different depths but amplification decreases significantly over the top 50 m.

  16. Peak-to-average power ratio mitigation and adaptive bit assignment in single-carrier frequency division multiplexing access via hierarchical modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Wang, Yongjun

    2014-11-01

    A hierarchical modulation with multilevels is proposed for an optical single-carrier frequency division multiplexing access (SC-FDMA) system. It can mitigate the nonlinearity by reducing the peak-to-average power ratio (PAPR) of the SC-FDM signal. According to different optical signal-to-noise ratio requirements, the adaptive bit allocation can be implemented on different levels during hierarchical modulation. In the experiment, the PAPR of the hierarchical-modulated SC-FDM signal outperforms the conventional SC-FDM signal by 0.7 dB. Signals with 4- and 6-bit hierarchical modulation are successfully demodulated by the optical network unit with power penalties less than 0.2 and 0.45 dB, respectively.

  17. EMPIRICAL DETERMINATION OF EINSTEIN A-COEFFICIENT RATIOS OF BRIGHT [Fe II] LINES

    SciTech Connect

    Giannini, T.; Antoniucci, S.; Nisini, B.; Lorenzetti, D.; Alcalá, J. M.; Bacciotti, F.; Podio, L.; Bonito, R.; Stelzer, B.

    2015-01-01

    The Einstein spontaneous rates (A-coefficients) of Fe{sup +} lines have been computed by several authors with results that differ from each other by up to 40%. Consequently, models for line emissivities suffer from uncertainties that in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines that would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-Very Large Telescope X-shooter instrument between 3000 Å and 24700 Å, we obtained a spectrum of the bright Herbig-Haro object HH 1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratios ≥100. Among these latter lines, we selected those emitted by the same level, whose dereddened intensity ratios are direct functions of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH 1 through intensity ratios of atomic species, H I  recombination lines and H{sub 2} ro-vibrational transitions. We provide seven reliable A-coefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (λ12570/λ16440 and λ13209/λ16440) are in better agreement with the predictions by the Quinet et al. relativistic Hartree-Fock model. However, none of the theoretical models predict A-coefficient ratios in agreement with all of our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.

  18. Effective-one-body model for black-hole binaries with generic mass ratios and spins

    NASA Astrophysics Data System (ADS)

    Taracchini, Andrea; Buonanno, Alessandra; Pan, Yi; Hinderer, Tanja; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Mroué, Abdul H.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilágyi, Béla; Taylor, Nicholas W.; Zenginoglu, Anil

    2014-03-01

    Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal. For such systems, we extend the effective-one-body inspiral-merger-ringdown waveforms to generic mass ratios and spins calibrating them to 38 numerical-relativity nonprecessing waveforms produced by the SXS Collaboration. The numerical-relativity simulations span mass ratios from 1 to 8, spin magnitudes up to 98% of extremality, and last for 40 to 60 gravitational-wave cycles. When the total mass of the binary is between 20 and 200M⊙, the effective-one-body nonprecessing (dominant mode) waveforms have overlap above 99% (using the advanced-LIGO design noise spectral density) with all of the 38 nonprecessing numerical waveforms, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling. We also show that—without further calibration— the precessing effective-one-body (dominant mode) waveforms have overlap above 97% with two very long, strongly precessing numerical-relativity waveforms, when maximizing only on the initial phase and time.

  19. Required signal-to-interference ratios for shortwave broadcasting

    NASA Astrophysics Data System (ADS)

    Lane, George

    1997-09-01

    The required signal-to-Interference (RSI) ratio for a specified grade of HF radio service is the hourly median wanted signal power at the input of the receiver needed relative to the sum of the hourly median unwanted signal power and the hourly median radio noise power in the RF bandwidth of the receiver, adjusted so that the hourly median ratio will not fall below the RSI ratio more than a certain percentage of the time due to minute-to-minute fading within the hour. Shortwave listeners are well aware of the deleterious effects of cochannel and adjacent channel interference. This type of interference is especially prevalent in the overcrowded international broadcast bands where it is manifested by cross talk and a beat note produced in the receiver by the carrier of the unwanted signal. Yet little agreement exists as to the magnitude of the amplitude-modulated, double sideband (AM-DSB) interfering signal that can be tolerated by the listener. Numerous protection ratios have been proposed in the literature, as well as by elements of the International Telecommunication Union. These values tend to range from 17 dB [International Frequency Registration Board, 1989] to as high as 50 dB for "good commercial quality," offset in carrier frequency of 500 Hz and 10 dB short-term fade protection [CCIR, 1970]. In this paper, several significant experiments are reviewed for the purpose of normalizing their findings to a common set of parameters. The parameters relate to articulation scoring, type of noise (if used), fading of wanted and unwanted signals, type of interference, listener skill, bandwidth of the receiver, carrier frequency offset, etc. From this compilation of normalized data, RSI values are recommended as they relate to the desired broadcast quality and the signal-to-noise ratio of the wanted signal. The RSI ratios are compatible for use in HF sky wave prediction programs that contain appropriate RF noise and interference combining subroutines. The recommended

  20. Auditory masking in three pinnipeds: Aerial critical ratios and direct critical bandwidth measurements

    NASA Astrophysics Data System (ADS)

    Southall, Brandon L.; Schusterman, Ronald J.; Kastak, David

    2003-09-01

    This study expands the limited understanding of pinniped aerial auditory masking and includes measurements at some of the relatively low frequencies predominant in many pinniped vocalizations. Behavioral techniques were used to obtain aerial critical ratios (CRs) within a hemianechoic chamber for a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Simultaneous, octave-band noise maskers centered at seven test frequencies (0.2-8.0 kHz) were used to determine aerial CRs. Narrower and variable bandwidth masking noise was also used in order to obtain direct critical bandwidths (CBWs). The aerial CRs are very similar in magnitude and in frequency-specific differences (increasing gradually with test frequency) to underwater CRs for these subjects, demonstrating that pinniped cochlear processes are similar both in air and water. While, like most mammals, these pinniped subjects apparently lack specialization for enhanced detection of specific frequencies over masking noise, they consistently detect signals across a wide range of frequencies at relatively low signal-to-noise ratios. Direct CBWs are 3.2 to 14.2 times wider than estimated based on aerial CRs. The combined masking data are significant in terms of assessing aerial anthropogenic noise impacts, effective aerial communicative ranges, and amphibious aspects of pinniped cochlear mechanics.

  1. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy.

    PubMed

    Hazrati, Oldooz; Sadjadi, Seyed Omid; Loizou, Philipos C; Hansen, John H L

    2013-11-01

    Cochlear implant (CI) recipients' ability to identify words is reduced in noisy or reverberant environments. The speech identification task for CI users becomes even more challenging in conditions where both reverberation and noise co-exist as they mask the spectro-temporal cues of speech in a rather complementary fashion. Ideal channel selection (ICS) was found to result in significantly more intelligible speech when applied to the noisy, reverberant, as well as noisy reverberant speech. In this study, a blind single-channel ratio masking strategy is presented to simultaneously suppress the negative effects of reverberation and noise on speech identification performance for CI users. In this strategy, noise power spectrum is estimated from the non-speech segments of the utterance while reverberation spectral variance is computed as a delayed and scaled version of the reverberant speech spectrum. Based on the estimated noise and reverberation power spectra, a weight between 0 and 1 is assigned to each time-frequency unit to form the final mask. Listening experiments conducted with CI users in two reverberant conditions (T60 = 0.6 and 0.8 s) at a signal-to-noise ratio of 15 dB indicate substantial improvements in speech intelligibility in both reverberant-alone and noisy reverberant conditions considered.

  2. The interstellar (C-12)N/(C-13)N ratio toward Zeta Persei

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary E.; Wright, Edward L.; Hawkins, Isabel

    1991-01-01

    High-resolution, high signal-to-noise observations of interstellar CN toward Zeta Per are performed to determine the C-12/C-13 isotope ratio in this line of sight. Observations of (C-12)N/(C-13)N in several diffuse clouds are performed to assess whether CN suffers from isotope-selective effects. Values are obtained which are higher than the value toward Zeta Oph determined by Crane and Hegyi (1988) and lower than the results toward the more reddened stars HD 21483 obtained by Meyer et al. (1989) and Palazzi et al. (1990). Theory and observations indicate the existence of a spatial C-12/C-13 gradient which decreases toward the Galactic center at an approximate rate of 12 percent/kpc at the distance of the solar radius. It is argued that since a gradient of this character cannot explain the CN results, isotope-selective effects provide a more likely explanation for the large range in (C-12)N/(C-13)N ratios.

  3. Improving space object detection using a Fourier likelihood ratio detection algorithm

    NASA Astrophysics Data System (ADS)

    Becker, David J.; Cain, Stephen C.

    2016-09-01

    In this paper a new detection algorithm is proposed and developed for detecting space objects from images obtained using a ground-based telescope with the goal to improve space situational awareness. Most current space object detection algorithms rely on developing a likelihood ratio test (LRT) for the observed data based on a binary hypothesis test. These algorithms are based on the assumption that the observed data is Gaussian or Poisson distributed under both the hypothesis that a low signal-to-noise ratio (SNR) space object is present in the data and the hypothesis that an object is absent from the data. The LRT algorithm in this paper was developed based on the assumption that the distribution of the Fourier transform of the observed data will be different when a low SNR object is present in the data compared to when the data only contains background noise and known space objects. When an object is present the probability distribution of the real component of the Fourier transform of the intensity was found to follow a Gaussian distribution with a mean significantly different than in the data that doesn't contain an object even at low SNR levels. As the separation of these two probability distribution functions increases, it becomes more likely that an object can be detected. In this paper, simulated data are used to demonstrate the effectiveness and to highlight the benefits gained from this algorithm.

  4. Expected gain in the pyramid wavefront sensor with limited Strehl ratio

    NASA Astrophysics Data System (ADS)

    Viotto, V.; Ragazzoni, R.; Bergomi, M.; Magrin, D.; Farinato, J.

    2016-09-01

    Context. One of the main properties of the pyramid wavefront sensor is that, once the loop is closed, and as the reference star image shrinks on the pyramid pin, the wavefront estimation signal-to-noise ratio can considerably improve. This has been shown to translate into a gain in limiting magnitude when compared with the Shack-Hartmann wavefront sensor, in which the sampling on the wavefront is performed before the light is split into four quadrants, which does not allow the quality of the focused spot to increase. Since this property is strictly related to the size of the re-imaged spot on the pyramid pin, the better the wavefront correction, the higher the gain. Aims: The goal of this paper is to extend the descriptive and analytical computation of this gain that was given in a previous paper, to partial wavefront correction conditions, which are representative for most of the wide field correction adaptive optics systems. Methods: After focusing on the low Strehl ratio regime, we analyze the minimum spatial sampling required for the wavefront sensor correction to still experience a considerable gain in sensitivity between the pyramid and the Shack-Hartmann wavefront sensors. Results: We find that the gain can be described as a function of the sampling in terms of the Fried parameter.

  5. SPICE evaluation of the S/N ratio for Si microstrip detectors

    SciTech Connect

    Candelori, A.; Paccagnella, A.; Nardi, F.; Bacchetta, N.; Bisello, D.

    1999-10-01

    SPICE simulations of ac-coupled single-sided Si microstrip detectors connected to the PreShape 32 read-out chip have been performed in order to determine the geometrical characteristics (i.e., the strip pitch p and width w) which maximize the signal-to-noise ratio. All of the resistive and capacitive elements of the detector have been determined as a function of the w/p ratio by considering experimental and simulated data available in literature. The SPICE model the authors propose in this work takes into account all the main noise sources in the detector and read-out electronics. The minimum ionizing particle current signal shape has been introduced in the simulations. Two read-out configurations (every strip or every second strip) have been investigated for 6.4- and 12.8-cm-long detectors. The equivalent noise charge as determined by the simulations has been compared with analytical calculations, in order to determine the limits and the corrections to a simplified analytical noise model. Finally, general guidelines for the detector design have been proposed, based on the simulation results.

  6. 12 CFR 615.5330 - Minimum surplus ratios.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Minimum surplus ratios. 615.5330 Section 615... surplus ratios. (a) Total surplus. (1) Each institution shall achieve and at all times maintain a ratio of... institution shall achieve and at all times maintain a ratio of core surplus to the risk-adjusted asset base...

  7. 12 CFR 615.5330 - Minimum surplus ratios.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Minimum surplus ratios. 615.5330 Section 615... surplus ratios. (a) Total surplus. (1) Each institution shall achieve and at all times maintain a ratio of... institution shall achieve and at all times maintain a ratio of core surplus to the risk-adjusted asset base...

  8. 12 CFR 615.5330 - Minimum surplus ratios.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Minimum surplus ratios. 615.5330 Section 615... surplus ratios. (a) Total surplus. (1) Each institution shall achieve and at all times maintain a ratio of... institution shall achieve and at all times maintain a ratio of core surplus to the risk-adjusted asset base...

  9. 12 CFR 615.5330 - Minimum surplus ratios.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Minimum surplus ratios. 615.5330 Section 615... surplus ratios. (a) Total surplus. (1) Each institution shall achieve and at all times maintain a ratio of... institution shall achieve and at all times maintain a ratio of core surplus to the risk-adjusted asset base...

  10. 12 CFR 615.5330 - Minimum surplus ratios.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Minimum surplus ratios. 615.5330 Section 615... surplus ratios. (a) Total surplus. (1) Each institution shall achieve and at all times maintain a ratio of... institution shall achieve and at all times maintain a ratio of core surplus to the risk-adjusted asset base...

  11. Precision spectral peak frequency measurement using a window leakage ratio function

    NASA Astrophysics Data System (ADS)

    Swanson, David C.

    2015-03-01

    For power spectra of signals consisting of stationary sinusoids mixed with random noise, the frequency and amplitude of a spectral peak can be estimated with greater accuracy than the nearest frequency bin of the Fourier transform by exploiting the spectral leakage characteristics for the particular data window used. Techniques such as linear interpolation or an amplitude weighted average have inadequate precision due to the nonlinear leakage into adjacent bins and the dependence on data window type. This paper offers a new general algorithm presented using the Fourier coefficients ck of the input data window to produce a function which is the ratio of the side-bin amplitudes of the window in the frequency domain. The ratio function allows one to use the amplitudes of the adjacent bins of a spectral peak to precisely estimate the peak frequency and amplitude when the frequency does not lie exactly on a frequency bin (in between the discrete bins of a Fourier transform). Examples are provided for a number of popular data windows. The ratio function can be most easily implemented using a simplified log-ratio function for the window side bin magnitudes. A statistical analysis provides a useful frequency estimation error estimate given the signal-to-noise ratio of the spectral peak based on an approximation of the ratio of non-zero mean Gaussian variables. The benefits of this technique are not just improved estimation accuracy for amplitude and frequency, but also allow large spectral data files to be accurately reduced in size for remote monitoring of vibration spectra. An example is given of a methodology for reduction of spectral data file size without the loss of important signals for analysis where the file size is reduced by 88% with only a few percent error, which is mostly confined to the background noise in the reconstructed spectrum.

  12. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  13. Combining double difference and amplitude ratio approaches for Q estimates at the NW Bohemia earthquake swarm region

    NASA Astrophysics Data System (ADS)

    Kriegerowski, Marius; Cesca, Simone; Krüger, Frank; Dahm, Torsten; Horálek, Josef

    2016-04-01

    Aside from the propagation velocity of seismic waves, their attenuation can provide a direct measure of rock properties in the sampled subspace. We present a new attenuation tomography approach exploiting relative amplitude spectral ratios of earthquake pairs. We focus our investigation on North West Bohemia - a region characterized by intense earthquake swarm activity in a confined source region. The inter-event distances are small compared to the epicentral distances to the receivers meeting a fundamental requirement of the method. Due to the similar event locations also the ray paths are very similar. Consequently, the relative spectral ratio is affected mostly by rock properties along the path of the vector distance and thus representative of the focal region. In order to exclude effects of the seismic source spectra, only the high frequency content beyond the corner frequency is taken into consideration. This requires high quality as well as high sampling records. Future improvements in that respect can be expected from the ICDP proposal "Eger rift", which includes plans to install borehole monitoring in the investigated region. 1D and 3D synthetic tests show the feasibility of the presented method. Furthermore, we demonstrate influences of perturbations in source locations and travel time estimates on the determination of Q. Errors in Q scale linearly with errors in the differential travel times. These sources of errors can be attributed to the complex velocity structure of the investigated region. A critical aspect is the signal-to-noise ratio, which imposes a strong limitation and emphasizes the demand for high quality recordings. Hence, the presented method is expected to benefit from bore hole installations. Since we focus our analysis on the NW Bohemia case study example, a synthetic earthquake catalog incorporating source characteristics deduced from preceding moment tensor inversions coupled with a realistic velocity model provides us with a realistic

  14. Estimates of Signal-to-Microstructural-Noise Ratios in Ultrasonic Inspections of Metals

    SciTech Connect

    Margetan, F. J.; Roberts, R.; Thompson, R. B.

    2006-03-06

    Ultrasonic defect detection in jet-engine alloys is often a hunt for a flaw response in the presence of microstructural noise. Signal-to-noise ratios (S/N) are often used to quantify the extent to which the response from a defect or reference reflector stands out above the competing noise. In many cases of practical interest the microstructural scattering is 'weak' in the sense that single-scattering events dominate and multiple scattering may be ignored. In such cases, independent-scatterer noise models apply and can be used to develop simple, approximate formulas for S/N. For pulse-echo (P/E) inspections, the formulas relate S/N to the response-weighted volume of the incident sonic pulse, and these formulas have proven useful in designing P/E inspections of jet-engine forgings. After briefly reviewing the P/E case, we introduce generalized versions of the formulas which apply to ultrasonic pitch-catch inspections. The use of the new formulas to assess inspections is then discussed, including a treatment of phased-array inspections using so-called dynamic depth focusing.

  15. Estimates of Signal-to-Microstructural-Noise Ratios in Ultrasonic Inspections of Metals

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Roberts, R.; Thompson, R. B.

    2006-03-01

    Ultrasonic defect detection in jet-engine alloys is often a hunt for a flaw response in the presence of microstructural noise. Signal-to-noise ratios (S/N) are often used to quantify the extent to which the response from a defect or reference reflector stands out above the competing noise. In many cases of practical interest the microstructural scattering is "weak" in the sense that single-scattering events dominate and multiple scattering may be ignored. In such cases, independent-scatterer noise models apply and can be used to develop simple, approximate formulas for S/N. For pulse-echo (P/E) inspections, the formulas relate S/N to the response-weighted volume of the incident sonic pulse, and these formulas have proven useful in designing P/E inspections of jet-engine forgings. After briefly reviewing the P/E case, we introduce generalized versions of the formulas which apply to ultrasonic pitch-catch inspections. The use of the new formulas to assess inspections is then discussed, including a treatment of phased-array inspections using so-called dynamic depth focusing.

  16. Avoidance of speckle noise in laser vibrometry by the use of kurtosis ratio: Application to mechanical fault diagnostics

    NASA Astrophysics Data System (ADS)

    Vass, J.; Šmíd, R.; Randall, R. B.; Sovka, P.; Cristalli, C.; Torcianti, B.

    2008-04-01

    This paper presents a statistical technique to enhance vibration signals measured by laser Doppler vibrometry (LDV). The method has been optimised for LDV signals measured on bearings of universal electric motors and applied to quality control of washing machines. Inherent problems of LDV are addressed, particularly the speckle noise occurring when rough surfaces are measured. The presence of speckle noise is detected using a new scalar indicator kurtosis ratio (KR), specifically designed to quantify the amount of random impulses generated by this noise. The KR is a ratio of the standard kurtosis and a robust estimate of kurtosis, thus indicating the outliers in the data. Since it is inefficient to reject the signals affected by the speckle noise, an algorithm for selecting an undistorted portion of a signal is proposed. The algorithm operates in the time domain and is thus fast and simple. The algorithm includes band-pass filtering and segmentation of the signal, as well as thresholding of the KR computed for each filtered signal segment. Algorithm parameters are discussed in detail and instructions for optimisation are provided. Experimental results demonstrate that speckle noise is effectively avoided in severely distorted signals, thus improving the signal-to-noise ratio (SNR) significantly. Typical faults are finally detected using squared envelope analysis. It is also shown that the KR of the band-pass filtered signal is related to the spectral kurtosis (SK).

  17. Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy.

    PubMed

    Jeong, Bongwon; Pettit, Chris; Dharmasena, Sajith; Keum, Hohyun; Lee, Joohyung; Kim, Jungkyu; Kim, Seok; McFarland, D Michael; Bergman, Lawrence A; Vakakis, Alexander F; Cho, Hanna

    2016-03-29

    During dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip-sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio. Here, we introduce a new design concept for multi-harmonic AFM, exploiting intentional nonlinear internal resonance for the enhancement of higher harmonics. The nonlinear internal resonance, triggered by the non-smooth tip-sample dynamic interactions, results in nonlinear energy transfers from the directly excited fundamental bending mode to the higher-frequency mode and, hence, enhancement of the higher harmonic of the measured response. It is verified through detailed theoretical and experimental study that this AFM design can robustly incorporate the required internal resonance and enable high-frequency AFM measurements. Measurements on an inhomogeneous polymer specimen demonstrate the efficacy of the proposed design, namely that the higher harmonic of the measured response is capable of enhanced simultaneous topography imaging and compositional mapping, exhibiting less crosstalk with an abrupt height change.

  18. Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays.

    PubMed

    Intaniwet, Akarin; Mills, Christopher A; Sellin, Paul J; Shkunov, Maxim; Keddie, Joseph L

    2010-06-01

    Existing inorganic materials for radiation sensors suffer from several drawbacks, including their inability to cover large curved areas, lack of tissue-equivalence, toxicity, and mechanical inflexibility. As an alternative to inorganics, poly(triarylamine) (PTAA) diodes have been evaluated for their suitability for detecting radiation via the direct creation of X-ray induced photocurrents. A single layer of PTAA is deposited on indium tin oxide (ITO) substrates, with top electrodes selected from Al, Au, Ni, and Pd. The choice of metal electrode has a pronounced effect on the performance of the device; there is a direct correlation between the diode rectification factor and the metal-PTAA barrier height. A diode with an Al contact shows the highest quality of rectifying junction, and it produces a high X-ray photocurrent (several nA) that is stable during continuous exposure to 50 kV Mo Kalpha X-radiation over long time scales, combined with a high signal-to-noise ratio with fast response times of less than 0.25 s. Diodes with a low band gap, 'Ohmic' contact, such as ITO/PTAA/Au, show a slow transient response. This result can be explained by the build-up of space charge at the metal-PTAA interface, caused by a high level of charge injection due to X-ray-induced carriers. These data provide new insights into the optimum selection of metals for Schottky contacts on organic materials, with wider applications in light sensors and photovoltaic devices.

  19. Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jeong, Bongwon; Pettit, Chris; Dharmasena, Sajith; Keum, Hohyun; Lee, Joohyung; Kim, Jungkyu; Kim, Seok; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.; Cho, Hanna

    2016-03-01

    During dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip-sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio. Here, we introduce a new design concept for multi-harmonic AFM, exploiting intentional nonlinear internal resonance for the enhancement of higher harmonics. The nonlinear internal resonance, triggered by the non-smooth tip-sample dynamic interactions, results in nonlinear energy transfers from the directly excited fundamental bending mode to the higher-frequency mode and, hence, enhancement of the higher harmonic of the measured response. It is verified through detailed theoretical and experimental study that this AFM design can robustly incorporate the required internal resonance and enable high-frequency AFM measurements. Measurements on an inhomogeneous polymer specimen demonstrate the efficacy of the proposed design, namely that the higher harmonic of the measured response is capable of enhanced simultaneous topography imaging and compositional mapping, exhibiting less crosstalk with an abrupt height change.

  20. Fluorescent microthermal imaging-theory and methodology for achieving high thermal resolution images

    SciTech Connect

    Barton, D.L.; Tangyunyong, P.

    1995-09-01

    The fluorescent microthermal imaging technique (FMI) involves coating a sample surface with an inorganic-based thin film that, upon exposure to UV light, emits temperature-dependent fluorescence. FMI offers the ability to create thermal maps of integrated circuits with a thermal resolution theoretically limited to 1 m{degrees}C and a spatial resolution which is diffraction-limited to 0.3 {mu}m. Even though the fluorescent microthermal imaging (FMI) technique has been around for more than a decade, many factors that can significantly affect the thermal image quality have not been systematically studied and characterized. After a brief review of FMI theory, we will present our recent results demonstrating for the first time three important factors that have a dramatic impact on the thermal quality and sensitivity of FMI. First, the limitations imparted by photon shot noise and improvement in the signal-to-noise ratio realized through signal averaging will be discussed. Second, ultraviolet bleaching, an unavoidable problem with FMI as it currently is performed, will be characterized to identify ways to minimize its effect. Finally, the impact of film dilution on thermal sensitivity will be discussed.

  1. Variable mixture ratio performance through nitrogen augmentation

    NASA Technical Reports Server (NTRS)

    Beichel, R.; Obrien, C. J.; Bair, E. K.

    1988-01-01

    High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.

  2. Laser radar studies: A study of the feasibility of remote measurement of atmospheric density and turbidity by means of rotational Raman scattering of laser light

    NASA Technical Reports Server (NTRS)

    Reiss, N.; Schotland, R. M.

    1973-01-01

    A remote sensing technique is described which utilizes elastic scattering and rotational Raman scattering of laser light in the atmosphere to obtain soundings of turbidity, transmissivity and density. A scheme is devised whereby, through selective weighting of the rotational Raman lines, the effect of atmospheric temperature structure may be eliminated. The close spectral proximity of the elastic and Raman-scattered signals, combined with the fact that the Raman scattering is quite weak, produces special requirements for the spectroscopic and light-gathering components of a rotational Raman laser radar system. These requirements are investigated. A computation of typical signal-to-noise ratios is made. It is shown that daytime signal-to-noise ratios greater than 10 db are to be expected for observation heights of 5 km and below. For nighttime work, 10 db signal-to-noise ratios are achievable to altitudes as high as 15 km.

  3. The Golden Ratio

    ERIC Educational Resources Information Center

    Hyde, Hartley

    2004-01-01

    The Golden Ratio is sometimes called the "Golden Section" or the "Divine Proportion", in which three points: A, B, and C, divide a line in this proportion if AC/AB = AB/BC. "Donald in Mathmagicland" includes a section about the Golden Ratio and the ratios within a five-pointed star or pentagram. This article presents two computing exercises that…

  4. Leader as achiever.

    PubMed

    Dienemann, Jacqueline

    2002-01-01

    This article examines one outcome of leadership: productive achievement. Without achievement one is judged to not truly be a leader. Thus, the ideal leader must be a visionary, a critical thinker, an expert, a communicator, a mentor, and an achiever of organizational goals. This article explores the organizational context that supports achievement, measures of quality nursing care, fiscal accountability, leadership development, rewards and punishments, and the educational content and teaching strategies to prepare graduates to be achievers.

  5. Measurements methodology for evaluation of Digital TV operation in VHF high-band

    NASA Astrophysics Data System (ADS)

    Pudwell Chaves de Almeida, M.; Vladimir Gonzalez Castellanos, P.; Alfredo Cal Braz, J.; Pereira David, R.; Saboia Lima de Souza, R.; Pereira da Soledade, A.; Rodrigues Nascimento Junior, J.; Ferreira Lima, F.

    2016-07-01

    This paper describes the experimental setup of field measurements carried out for evaluating the operation of the ISDB-TB (Integrated Services Digital Broadcasting, Terrestrial, Brazilian version) standard digital TV in the VHF-highband. Measurements were performed in urban and suburban areas in a medium-sized Brazilian city. Besides the direct measurements of received power and environmental noise, a measurement procedure involving the injection of Gaussian additive noise was employed to achieve the signal to noise ratio threshold at each measurement site. The analysis includes results of static reception measurements for evaluating the received field strength and the signal to noise ratio thresholds for correct signal decoding.

  6. Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire.

    PubMed

    Adams, Rhys; Spasojevic, Mina; Chagnon, Mathieu; Malekiha, Mahdi; Li, Jia; Plant, David V; Chen, Lawrence R

    2014-02-24

    We demonstrate error-free wavelength conversion of 28 GBaud 16-QAM single polarization (112 Gb/s) signals based on four-wave mixing in a dispersion engineered silicon nanowire (SNW). Wavelength conversion covering the entire C-band is achieved using a single pump. We characterize the performance of the wavelength converter subsystem through the electrical signal to noise ratio penalty as well as the bit error rate of the converted signal as a function of input signal power. Moreover, we evaluate the degradation of the optical signal to noise ratio due to wavelength conversion in the SNW.

  7. Digital holographic microscope with low-frequency attenuation filter for position measurement of a nanoparticle.

    PubMed

    Pham, Quang Duc; Kusumi, Yuichi; Hasegawa, Satoshi; Hayasaki, Yoshio

    2012-10-01

    We propose a new method for three-dimensional (3D) position measurement of nanoparticles using an in-line digital holographic microscope. The method improves the signal-to-noise ratio of the amplitude of the interference fringes to achieve higher accuracy in the position measurement by increasing weak scattered light from a nanoparticle relative to the reference light by using a low spatial frequency attenuation filter. We demonstrated the improvements of signal-to-noise ratio of the optical system and contrast of the interference fringes, allowing the 3D positions of nanoparticles to be determined more precisely.

  8. Effect of Antenna Impedance Mismatch on the Signal-to-Noise Ration of a Radio Receiving System.

    DTIC Science & Technology

    1985-07-01

    Chapter 24, pp. 8-11. 4. H. A. Haus et al "IRE Standards on Methods of Measuring Noise in Linear Two-Ports, 1959, Proceedings of the Institute of Radio...Engineers (IRE), Vol. 48, pp. 61-68, January, 1960. 5. H. A. Haus, et al, "Representation of Noise in Linear Two-Ports," Proc. of the IRE, Vol. 48, pp...et al, "IRE Standards on Methods of Measuring Noise in Linear Two-Ports, 1959, Proc. of the IEEE, Vol. 48, pp. 61-68, January 1960. 5. H. A. Haus, et

  9. Ultrafast active cavitation imaging with enhanced cavitation to tissue ratio based on wavelet transform and pulse inversion.

    PubMed

    Liu, Runna; Hu, Hong; Xu, Shanshan; Huo, Rui; Wang, Supin; Wan, Mingxi

    2015-06-01

    The quality of ultrafast active cavitation imaging (UACI) using plane wave transmission is hindered by low transmission pressure, which is necessary to prevent bubble destruction. In this study, a UACI method that combined wavelet transform with pulse inversion (PI) was proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The main challenge in using wavelet transform is the selection of the optimum mother wavelet. A mother wavelet named "cavitation bubble wavelet" and constructed according to Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model was expected to obtain a high correlation between the bubbles and beamformed echoes. The method was validated by in vitro experiments. Results showed that the image quality was associated with the initial radius of bubble and the scale. The signal-to-noise ratio (SNR) of the best optimum cavitation bubble wavelet transform (CBWT) mode image was improved by 3.2 dB compared with that of the B-mode image in free-field experiments. The cavitation-to-tissue ratio of the best optimum PI-based CBWT mode image was improved by 2.3 dB compared with that of the PI-based B-mode image in tissue experiments. Furthermore, the SNR versus initial radius curve had the potential to estimate the size distribution of cavitation bubbles.

  10. Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings

    NASA Astrophysics Data System (ADS)

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Xu, Xiaoqiang

    2016-10-01

    De-noising and enhancement of the weak fault signature from the noisy signal are crucial for fault diagnosis, as features are often very weak and masked by the background noise. Deconvolution methods have a significant advantage in counteracting the influence of the transmission path and enhancing the fault impulses. However, the performance of traditional deconvolution methods is greatly affected by some limitations, which restrict the application range. Therefore, this paper proposes a new deconvolution method, named sparse maximum harmonics-noise-ratio deconvolution (SMHD), that employs a novel index, the harmonics-to-noise ratio (HNR), to be the objective function for iteratively choosing the optimum filter coefficients to maximize HNR. SMHD is designed to enhance latent periodic impulse faults from heavy noise signals by calculating the HNR to estimate the period. A sparse factor is utilized to further suppress the noise and improve the signal-to-noise ratio of the filtered signal in every iteration step. In addition, the updating process of the sparse threshold value and the period guarantees the robustness of SMHD. On this basis, the new method not only overcomes the limitations associated with traditional deconvolution methods, minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD), but visual inspection is also better, even if the fault period is not provided in advance. Moreover, the efficiency of the proposed method is verified by simulations and bearing data from different test rigs. The results show that the proposed method is effective in the detection of various bearing faults compared with the original MED and MCKD.

  11. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy

    PubMed Central

    Zhang, Xi; Zhang, Mingshu; Li, Dong; He, Wenting; Peng, Jianxin; Betzig, Eric; Xu, Pingyong

    2016-01-01

    Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent “on” to “off” state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm2) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view. PMID:27562163

  12. Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH

    PubMed Central

    1987-01-01

    Fluorescence ratio imaging microscopy (Tanasugarn, L., P. McNeil, G. Reynolds, and D. L. Taylor, 1984, J. Cell Biol., 98:717-724) has been used to measure the spatial variations in cytoplasmic pH of individual quiescent and nonquiescent Swiss 3T3 cells. Fundamental issues of ratio imaging that permit precise and accurate temporal and spatial measurements have been addressed including: excitation light levels, lamp operation, intracellular probe concentrations, methods of threshold selection, photobleaching, and spatial signal-to-noise ratio measurements. Subcellular measurements can be measured accurately (less than 3% coefficient of variation) in an area of 3.65 microns 2 with the present imaging system. Quiescent Swiss 3T3 cells have a measured cytoplasmic pH of 7.09 (0.01 SEM), whereas nonquiescent cells have a pH of 7.35 (0.01 SEM) in the presence of bicarbonate buffer. A unimodal distribution of mean cytoplasmic pH in both quiescent and nonquiescent cells was identified from populations of cells measured on a cell by cell basis. Therefore, unlike earlier studies based on cell population averages, it can be stated that cells in each population exhibit a narrow range of cytoplasmic pH. However, the mean cytoplasmic pH can change based on the physiological state of the cells. In addition, there appears to be little, if any, spatial variation in cytoplasmic pH in either quiescent or nonquiescent Swiss 3T3 cells. The pH within the nucleus was always the same as the surrounding cytoplasm. These values will serve as a reference point for investigating the role of temporal and spatial variations in cytoplasmic pH in a variety of cellular processes including growth control and cell movement. PMID:3558476

  13. Comparing Science Achievement Constructs: Targeted and Achieved

    ERIC Educational Resources Information Center

    Ferrara, Steve; Duncan, Teresa

    2011-01-01

    This article illustrates how test specifications based solely on academic content standards, without attention to other cognitive skills and item response demands, can fall short of their targeted constructs. First, the authors inductively describe the science achievement construct represented by a statewide sixth-grade science proficiency test.…

  14. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various…

  15. 12 CFR 615.5335 - Bank net collateral ratio.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Bank net collateral ratio. 615.5335 Section 615... collateral ratio. (a) Each bank shall achieve and at all times maintain a net collateral ratio of at least 103 percent. (b) At a minimum, a bank shall compute its net collateral ratio as of the end of...

  16. 12 CFR 615.5335 - Bank net collateral ratio.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Bank net collateral ratio. 615.5335 Section 615... collateral ratio. (a) Each bank shall achieve and at all times maintain a net collateral ratio of at least 103 percent. (b) At a minimum, a bank shall compute its net collateral ratio as of the end of...

  17. 12 CFR 615.5335 - Bank net collateral ratio.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Bank net collateral ratio. 615.5335 Section 615... collateral ratio. (a) Each bank shall achieve and at all times maintain a net collateral ratio of at least 103 percent. (b) At a minimum, a bank shall compute its net collateral ratio as of the end of...

  18. 12 CFR 615.5335 - Bank net collateral ratio.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Bank net collateral ratio. 615.5335 Section 615... collateral ratio. (a) Each bank shall achieve and at all times maintain a net collateral ratio of at least 103 percent. (b) At a minimum, a bank shall compute its net collateral ratio as of the end of...

  19. 12 CFR 615.5335 - Bank net collateral ratio.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Bank net collateral ratio. 615.5335 Section 615... collateral ratio. (a) Each bank shall achieve and at all times maintain a net collateral ratio of at least 103 percent. (b) At a minimum, a bank shall compute its net collateral ratio as of the end of...

  20. Offer/Acceptance Ratio.

    ERIC Educational Resources Information Center

    Collins, Mimi

    1997-01-01

    Explores how human resource professionals, with above average offer/acceptance ratios, streamline their recruitment efforts. Profiles company strategies with internships, internal promotion, cooperative education programs, and how to get candidates to accept offers. Also discusses how to use the offer/acceptance ratio as a measure of program…

  1. Advanced Imaging for Space Science

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Future NASA interferometric missions will realize high-resolution with less mass and volume compared to filled-apertures thus saving in cost over comparable filled-aperture systems. However, interferometeric aperture systems give reduced sensitivity requiring longer integration times to achieve a desired signal-to-noise ratio but is likely the only cost effective path forward for high-resolution space imaging.

  2. An Examination of Speech Recognition in a Modulated Background and of Forward Masking in Younger and Older Listeners

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Bacon, Sid P.; Williams, Erica J.

    2007-01-01

    Purpose: To compare speech intelligibility in the presence of a 10-Hz square-wave noise masker in younger and older listeners and to relate performance to recovery from forward masking. Method: The signal-to-noise ratio required to achieve 50% sentence identification in the presence of a 10-Hz square-wave noise masker was obtained for each of the…

  3. The stability and calibration of water vapor isotope ratio measurements during long-term deployments

    NASA Astrophysics Data System (ADS)

    Bailey, A.; Noone, D.; Berkelhammer, M.; Steen-Larsen, H. C.; Sato, P.

    2015-10-01

    With the recent advent of commercial laser absorption spectrometers, field studies measuring stable isotope ratios of hydrogen and oxygen in water vapor have proliferated. These pioneering analyses have provided invaluable feedback about best strategies for optimizing instrumental accuracy, yet questions still remain about instrument performance and calibration approaches for multi-year field deployments. With clear scientific potential for using these instruments to carry out monitoring of the hydrological cycle, this study examines the long-term stability of the isotopic biases associated with three cavity-enhanced laser absorption spectrometers - calibrated with different systems and approaches - at two remote field sites: Mauna Loa Observatory, Hawaii, USA, and Greenland Environmental Observatory, Summit, Greenland. The analysis pays particular attention to the stability of measurement dependencies on water vapor concentration and also evaluates whether these so-called concentration dependences are sensitive to statistical curve-fitting choices or measurement hysteresis. The results suggest evidence of monthly-to-seasonal concentration-dependence variability - which likely stems from low signal-to-noise at the humidity-range extremes - but no long-term directional drift. At Mauna Loa, where the isotopic analyzer is calibrated by injection of liquid water standards into a vaporizer, the largest source of inaccuracy in characterizing the concentration dependence stems from an insufficient density of calibration points at low water vapor volume mixing ratios. In comparison, at Summit, the largest source of inaccuracy is measurement hysteresis associated with interactions between the reference vapor, generated by a custom dew point generator, and the sample tubing. Nevertheless, prediction errors associated with correcting the concentration dependence are small compared to total measurement uncertainty. At both sites, changes in measurement repeatability that are

  4. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    NASA Astrophysics Data System (ADS)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  5. 'No delays achiever'.

    PubMed

    2007-05-01

    The latest version of the NHS Institute for Innovation and Improvement's 'no delays achiever', a web based tool created to help NHS organisations achieve the 18-week target for GP referrals to first treatment, is available at www.nodelaysachiever.nhs.uk.

  6. Vicarious Achievement Orientation.

    ERIC Educational Resources Information Center

    Leavitt, Harold J.; And Others

    This study tests hypotheses about achievement orientation, particularly vicarious achievement. Undergraduate students (N=437) completed multiple-choice questionnaires, indicating likely responses of one person to the success of another. The sex of succeeder and observer, closeness of relationship, and setting (medical school or graduate school of…

  7. Heritability of Creative Achievement

    ERIC Educational Resources Information Center

    Piffer, Davide; Hur, Yoon-Mi

    2014-01-01

    Although creative achievement is a subject of much attention to lay people, the origin of individual differences in creative accomplishments remain poorly understood. This study examined genetic and environmental influences on creative achievement in an adult sample of 338 twins (mean age = 26.3 years; SD = 6.6 years). Twins completed the Creative…

  8. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  9. Achievement-Based Resourcing.

    ERIC Educational Resources Information Center

    Fletcher, Mike; And Others

    1992-01-01

    This collection of seven articles examines achievement-based resourcing (ABR), the concept that the funding of educational institutions should be linked to their success in promoting student achievement, with a focus on the application of ABR to postsecondary education in the United Kingdom. The articles include: (1) "Introduction" (Mick…

  10. States Address Achievement Gaps.

    ERIC Educational Resources Information Center

    Christie, Kathy

    2002-01-01

    Summarizes 2 state initiatives to address the achievement gap: North Carolina's report by the Advisory Commission on Raising Achievement and Closing Gaps, containing an 11-point strategy, and Kentucky's legislation putting in place 10 specific processes. The North Carolina report is available at www.dpi.state.nc.us.closingthegap; Kentucky's…

  11. First Look at the Upper Tropospheric Ozone Mixing Ratio from OMI Estimated using the Cloud Slicing Technique

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Ziemke, Jerry; Chandra, Sushil; Joiner, Joanna; Vassilkov, Alexandra; Taylor, Steven; Yang, Kai; Ahn, Chang-Woo

    2004-01-01

    The Cloud Slicing technique has emerged as a powerful tool for the study of ozone in the upper troposphere. In this technique one looks at the variation with cloud height of the above-cloud column ozone derived from the backscattered ultraviolet instruments, such as TOMS, to determine the ozone mixing ratio. For this technique to work properly one needs an instrument with relatively good horizontal resolution with very good signal to noise in measuring above-cloud column ozone. In addition, one needs the (radiatively) effective cloud pressure rather than the cloud-top pressure, for the ultraviolet photons received by a satellite instrument are scattered from inside the cloud rather than from the top. For this study we use data from the OMI sensor, which was recently launched on the EOS Aura satellite. OMI is a W-Visible backscattering instrument with a nadir pixel size of 13 x 24 km. The effective cloud pressure is derived from a new algorithm based on Rotational Raman Scattering and O2-O2, absorption in the 340-400 nm band of OMI.

  12. First constraint on cosmological variation of the proton-to-electron mass ratio from two independent telescopes.

    PubMed

    van Weerdenburg, F; Murphy, M T; Malec, A L; Kaper, L; Ubachs, W

    2011-05-06

    A high signal-to-noise spectrum covering the largest number of hydrogen lines (90 H(2) lines and 6 HD lines) in a high-redshift object was analyzed from an observation along the sight line to the bright quasar source J2123-005 with the Ultraviolet and Visual Echelle Spectrograph on the European Southern Observatory Very Large Telescope (Paranal, Chile). This delivers a constraint on a possible variation of the proton-to-electron mass ratio of Δμ/μ=(8.5 ± 3.6(stat) ± 2.2(syst))×10(-6) at redshift z(abs) = 2.059, which agrees well with a recently published result on the same system observed at the Keck telescope yielding Δμ/μ=(5.6 ± 5.5(stat) ± 2.9(syst))×10(-6). Both analyses used the same robust absorption line fitting procedures with detailed consideration of systematic errors.

  13. Evaluation of scatter mitigation strategies for x-ray cone-beam CT: impact of scatter subtraction and anti-scatter grids on contrast-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Lazos, Dimitrios; Lasio, Giovanni; Evans, Joshua; Williamson, Jeffrey F.

    2007-03-01

    The large contribution of scatter to cone-beam computed tomography (CBCT) x-ray projections significantly degrades image quality, both through streaking and cupping artifacts and by loss of low contrast boundary detectability. The goal of this investigation is to compare the efficacy of three widely used scatter mitigation methods: subtractive scatter correction (SSC); anti-scatter grids (ASG); and beam modulating with bowtie filters; for improving signal-to-noise ratio (SNR), contrast, contrast-to-noise ratio (CNR) and cupping artifacts. A simple analytic model was developed to predict scatter-to-primary ratio (SPR) and CNR as a function of cylindrical phantom thickness. In addition, CBCT x-ray projections of a CatPhan QA phantom were measured, using a Varian CBCT imaging system, and computed, using an inhouse Monte Carlo photon-transport code to more realistically evaluate the impact of scatter mitigation techniques. Images formed with uncorrected sinograms acquired without ASGs and bow-tie filter show pronounced cupping artifacts and loss of contrast. Subtraction of measured scatter profiles restores image uniformity and CT number accuracy, but does not improve CNR, since the improvement in contrast almost exactly offset by the increase in relative x-ray noise. ASGs were found to modestly improve CNR (up to 20%, depending ASG primary transmission and selectivity) only in body scans, while they can reduce CNR for head phantoms where SPR is low.

  14. Achievability for telerobotic systems

    NASA Astrophysics Data System (ADS)

    Kress, Reid L.; Draper, John V.; Hamel, William R.

    2001-02-01

    Methods are needed to improve the capabilities of autonomous robots to perform tasks that are difficult for contemporary robots, and to identify those tasks that robots cannot perform. Additionally, in the realm of remote handling, methods are needed to assess which tasks and/or subtasks are candidates for automation. We are developing a new approach to understanding the capability of autonomous robotic systems. This approach uses formalized methods for determining the achievability of tasks for robots, that is, the likelihood that an autonomous robot or telerobot can successfully complete a particular task. Any autonomous system may be represented in achievability space by the volume describing that system's capabilities within the 3-axis space delineated by perception, cognition, and action. This volume may be thought of as a probability density with achievability decreasing as the distance from the centroid of the volume increases. Similarly, any task may be represented within achievability space. However, as tasks have more finite requirements for perception, cognition, and action, each may be represented as a point (or, more accurately, as a small sphere) within achievability space. Analysis of achievability can serve to identify, a priori, the survivability of robotic systems and the likelihood of mission success; it can be used to plan a mission or portions of a mission; it can be used to modify a mission plan to accommodate unpredicted occurrences; it can also serve to identify needs for modifications to robotic systems or tasks to improve achievability. .

  15. Ratio imaging instrumentation.

    PubMed

    Dunn, Kenneth; Maxfield, Frederick R

    2003-01-01

    Using ratio imaging to obtain quantitative information from microscope images is a powerful tool that has been used successfully in numerous studies. Although ratio imaging reduces the effects of many parameters that can interfere with accurate measurements, it is not a panacea. In designing a ratio imaging experiment, all of the potential problems discussed in this chapter must be considered. Undoubtedly, other problems that were not discussed can also interfere with accurate and meaningful measurements. Many of the problems discussed here were observed in the authors' laboratories. In our experience there are no standard routines or methods that can foresee every problem before it has been encountered. Good experimental design can minimize problems, but the investigator must continue to be alert. Progress in instrumentation continues to overcome some of the difficulties encountered in ratio imaging. CCD cameras with 12- to 14-bit pixel depth are being used more frequently, and several confocal microscope manufacturers are now also using 12-bit digitization. The dramatic increase in the use of confocal microscopes over the past decade is now causing microscope manufacturers to more critically evaluate the effect of axial chromatic aberration in objectives, and recent designs to minimize this problem are being implemented. Other developments such as the use of AOTFs to attenuate laser lines extend the applicability of ratio imaging. Ratio imaging is clearly applicable to a wide range of cell biological problems beyond its widespread use for measuring ion concentrations. Imaginative but careful use of this technique should continue to provide novel insights into the properties of cells.

  16. Imaging the crustal structure of the valley of Mexico and higher mode identification using H/V spectral ratio

    NASA Astrophysics Data System (ADS)

    Rivet, D.; Campillo, M.; Sanchez-Sesma, F.; Singh, S. K.

    2012-04-01

    We reconstruct Rayleigh and Love waves from cross-correlations of ambient seismic noise recorded at 19 broad-band stations of the MesoAmerica Seismic Experiment (MASE) and Valley of Mexico Experiment (VMEX). The cross-correlations are computed over 2 years of noise records for the 8 MASE stations and over 1 year for the 11 VMEX stations. We use surface waves with sufficient signal-to-noise ratio to measure group velocity dispersion curves at period of 0.5 to 3 seconds. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocity higher than expected for the fundamental mode. This observation suggests the importance of higher modes as the main vectors of energy in such complex structures. To perform a reliable inversion of the velocity structure beneath the valley, an identification of these dominants modes is required. To identify the modes of surface waves we use the spectral ratio of the horizontal components over the vertical component (H/V) measured on seismic coda. We compare the observed values with the theoretical H/V for the velocity model deduced from surface wave dispersion when assuming a particular mode. H/V ratio in the coda is computed under the hypothesis of equipartition of a diffuse field in a layered medium following Margerin et al. [2009] and Sánchez-Sesma et al. [2011]. We processed several events to ensure that the observed H/V is stable. The comparison of the modelled dispersion and H/V ratio allows for mode identification, and consequently to recover the velocity model of the structure. We conclude on the predominance of higher modes in our observations. The excitation of higher modes is key element of explanation for the long duration and amplification of the seismic signals observed in the Valley of Mexico.

  17. Precise Observations of the 12C/13C Ratios of HC3N in the Low-mass Star-forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2016-12-01

    Using the Green Bank 100 m telescope and the Nobeyama 45 m telescope, we have observed the rotational emission lines of the three 13C isotopic species of HC3N in the 3 and 7 mm bands toward the low-mass star-forming region L1527 in order to explore their anomalous 12C/13C ratios. The column densities of the 13C isotopic species are derived from the intensities of the J = 5-4 lines observed at high signal-to-noise ratios. The abundance ratios are determined to be 1.00:1.01 ± 0.02:1.35 ± 0.03:86.4 ± 1.6 for [H13CCCN]:[HC13CCN]:[HCC13CN]:[HCCCN], where the errors represent one standard deviation. The ratios are very similar to those reported for the starless cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP). These ratios cannot be explained by thermal equilibrium, but likely reflect the production pathways of this molecule. We have shown the equality of the abundances of H13CCCN and HC13CCN at a high-confidence level, which supports the production pathways of HC3N via C2H2 and {{{C}}}2{{{{H}}}2}+. The average 12C/13C ratio for HC3N is 77 ± 4, which may be only slightly higher than the elemental 12C/13C ratio. Dilution of the 13C isotope in HC3N is not as significant as that in CCH or c-C3H2. We have also simultaneously observed the DCCCN and HCCC15N lines and derived the isotope ratios [DCCCN]/[HCCCN] = 0.0370 ± 0.0007 and [HCCCN]/[HCCC15N] = 338 ± 12.

  18. Culture and Achievement Motivation

    ERIC Educational Resources Information Center

    Maehr, Martin L.

    1974-01-01

    A framework is suggested for the cross-cultural study of motivation that stresses the importance of contextual conditions in eliciting achievement motivation and emphasizes cultural relativity in the definition of the concept. (EH)

  19. Achieving Salary Equity

    ERIC Educational Resources Information Center

    Nevill, Dorothy D.

    1975-01-01

    Three techniques are outlined for use by higher education institutions to achieve salary equity: salary prediction (using various statistical procedures), counterparting (comparing salaries of persons of similar rank), and grievance procedures. (JT)

  20. Digit ratio in birds.

    PubMed

    Lombardo, Michael P; Thorpe, Patrick A; Brown, Barbara M; Sian, Katie

    2008-12-01

    The Homeobox (Hox) genes direct the development of tetrapod digits. The expression of Hox genes may be influenced by endogenous sex steroids during development. Manning (Digit ratio. New Brunswick, NJ: Rutgers University Press, 2002) predicted that the ratio between the lengths of digits 2 (2D) and 4 (4D) should be sexually dimorphic because prenatal exposure to estrogens and androgens positively influence the lengths of 2D and 4D, respectively. We measured digits and other morphological traits of birds from three orders (Passeriformes, house sparrow, Passer domesticus; tree swallow, Tachycineta bicolor; Pscittaciformes, budgerigar, Melopsittacus undulates; Galliformes, chicken, Gallus domesticus) to test this prediction. None were sexually dimorphic for 2D:4D and there were no associations between 2D:4D and other sexually dimorphic traits. When we pooled data from all four species after we averaged right and left side digits from each individual and z-transformed the resulting digit ratios, we found that males had significantly larger 2D:4D than did females. Tetrapods appear to be sexually dimorphic for 2D:4D with 2D:4D larger in males as in some birds and reptiles and 2D:4D smaller in males as in some mammals. The differences between the reptile and mammal lineages in the directionality of 2D:4D may be related to the differences between them in chromosomal sex determination. We suggest that (a) natural selection for a perching foot in the first birds may have overridden the effects of hormones on the development of digit ratio in this group of vertebrates and (b) caution be used in making inferences about prenatal exposure to hormones and digit ratio in birds.

  1. The stability and calibration of water vapor isotope ratio measurements during long-term deployments

    NASA Astrophysics Data System (ADS)

    Bailey, A.; Noone, D.; Berkelhammer, M.; Steen-Larsen, H. C.; Sato, P.

    2015-05-01

    With the recent advent of commercial laser absorption spectrometers, field studies measuring stable isotope ratios of hydrogen and oxygen in water vapor have proliferated. These pioneering analyses have provided invaluable feedback about best strategies for optimizing instrumental accuracy, yet questions still remain about instrument performance and calibration approaches for multi-year field deployments. With clear scientific potential for using these instruments to carry out long-term monitoring of the hydrological cycle, this study examines the long-term stability of the isotopic biases associated with three cavity-enhanced laser absorption spectrometers - calibrated with different systems and approaches - at two remote field sites: Mauna Loa Observatory, Hawaii, USA, and Greenland Environmental Observatory, Summit, Greenland. The analysis pays particular attention to the stability of measurement dependencies on water vapor concentration and also evaluates whether these so-called concentration-dependences are sensitive to statistical curve-fitting choices or measurement hysteresis. The results suggest evidence of monthly-to-seasonal concentration-dependence variability - which likely stems from low signal-to-noise at the humidity-range extremes - but no long-term directional drift. At Mauna Loa, where the isotopic analyzer is calibrated by injection of liquid water standards into a vaporizer, the largest source of inaccuracy in characterizing the concentration-dependence stems from an insufficient density of calibration points at low humidity. In comparison, at Greenland, the largest source of inaccuracy is measurement hysteresis associated with interactions between the reference vapor, generated by a custom dew point generator (DPG), and the sample tubing. Nevertheless, prediction errors associated with correcting the concentration-dependence are small compared to total measurement uncertainty. At both sites, a dominant source of uncertainty is instrumental

  2. Low porosity metallic periodic structures with negative Poisson's ratio.

    PubMed

    Taylor, Michael; Francesconi, Luca; Gerendás, Miklós; Shanian, Ali; Carson, Carl; Bertoldi, Katia

    2014-04-16

    Auxetic behavior in low porosity metallic structures is demonstrated via a simple system of orthogonal elliptical voids. In this minimal 2D system, the Poisson's ratio can be effectively controlled by changing the aspect ratio of the voids. In this way, large negative values of Poisson's ratio can be achieved, indicating an effective strategy for designing auxetic structures with desired porosity.

  3. Multi-ratio transmission

    SciTech Connect

    Polak, J.C.

    1987-07-14

    A preselected multi-ratio power transmission is described comprising: input means for transmitting drive forces; output means; first, second and third friction clutch means each selectively engageable with the input means for accepting drive forces. First input gear means drivingly connects with the first friction clutch means; second input gear means drivingly connects with the second friction clutch means; third input gear means drivingly connects with the third clutch means; first output gear means drivingly connects with the first input gear means; second output gear means drivingly connects with the first and second input gear means; third output means drivingly connects between the third input gear means and the output means; and one double-acting synchronizer clutch for selectively engaging the first output gear means with the output means and alternately the second output gear means with the output means. The first friction clutch means and the one double-acting synchronizer clutch cooperates during engagement to establish two forward drive ratios between the input and output means. The second friction clutch means and the one double-acting synchronizer clutch cooperates during engagement to establish two other forward drive ratios between the input and output means. The third friction clutch means is engageable to provide another forward drive ratio between the input means and the output means; and the one double-acting synchronizer clutch is relieved of transmitting drive forces during the engagement of the third friction clutch means and being manipulable for alternate connection with either the first output gear or the second output gear while the third friction clutch means is engaged.

  4. Accuracy and uncertainty of asymmetric magnetization transfer ratio quantification for amide proton transfer (APT) imaging at 3T: a Monte Carlo study.

    PubMed

    Yuan, Jing; Zhang, Qinwei; Wang, Yi-Xiang; Wei, Juan; Zhou, Jinyuan

    2013-01-01

    Amide proton transfer (APT) imaging offers a novel and powerful MRI contrast mechanism for quantitative molecular imaging based on the principle of chemical exchange saturation transfer (CEST). Asymmetric magnetization transfer ratio (MTR(asym)) quantification is crucial for Z-spectrum analysis of APT imaging, but is still challenging, particularly at clinical field strength. This paper studies the accuracy and uncertainty in the quantification of MTR(asym) for APT imaging at 3T, by using high-order polynomial fitting of Z-spectrum through Monte Carlo simulation. Results show that polynomial fitting is a biased estimator that consistently underestimates MTR(asym). For a fixed polynomial order, the accuracy of MTR(asym) is almost constant with regard to signal-to-noise ratio (SNR) while the uncertainty decreases exponentially with SNR. The higher order polynomial fitting increases both the accuracy and the uncertainty of MTR(asym). For different APT signal intensity levels, the relative accuracy and the absolute uncertainty keep constant for a fixed polynomial order. These results indicate the limitations and pitfalls of polynomial fitting for MTR(asym) quantification so better quantification technique for MTR(asym) estimation is warranted.

  5. Effect of the sp(2)/sp(3) Ratio in a Hybrid Nanocarbon Thin Film Electrode for Anodic Stripping Voltammetry Fabricated by Unbalanced Magnetron Sputtering Equipment.

    PubMed

    Yanagisawa, Hiroyuki; Kurita, Ryoji; Kamata, Tomoyuki; Yoshioka, Kyoko; Kato, Dai; Iwasawa, Ayumi; Nakazato, Tetsuya; Torimura, Masaki; Niwa, Osamu

    2015-01-01

    The effect of the sp(2)/sp(3) ratio in an unbalanced magnetron sputtered nanocarbon film electrode was studied for determining Cd(2+) and Pb(2+) by anodic stripping voltammetry (ASV). The signal-to-noise ratio in the ASV measurement improved as the sp(3) concentration in the carbon film increased because the noise current decreased with the increasing sp(3) concentration. The detection limits with a carbon film containing 50% sp(3) were 0.25 and 1.0 μg L(-1) for Cd(2+) and Pb(2+) with high repeatability (Cd: 4.6% and Pb: 6.4%, n = 3). For a real sample measurement, a pretreatment system combining a photooxidation reactor and a cation exchange column was used to eliminate the interference from EDTA and Cu(2+), which forms a stable complex or alloy with Cd(2+) and Pb(2+). More than 99% of the interference was eliminated, and accurate signal currents for Cd(2+) and Pb(2+) were successfully obtained with the pretreatment system.

  6. Constraint on a Cosmological Variation in the Proton-to-electron Mass Ratio from Electronic CO Absorption

    NASA Astrophysics Data System (ADS)

    Daprà, M.; Niu, M. L.; Salumbides, E. J.; Murphy, M. T.; Ubachs, W.

    2016-08-01

    Carbon monoxide (CO) absorption in the sub-damped Lyα absorber at redshift {z}{abs}≃ 2.69 toward the background quasar SDSS J123714.60+064759.5 (J1237+0647) was investigated for the first time in order to search for a possible variation of the proton-to-electron mass ratio, μ, over a cosmological timescale. The observations were performed with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph with a signal-to-noise ratio of 40 per 2.5 km s-1 per pixel at ˜5000 Å. Thirteen CO vibrational bands in this absorber are detected: the {{{A}}}1{{\\Pi }} - {{{X}}}1{{{Σ }}}+ (ν \\prime , 0) for ν \\prime =0{--}8, {{{B}}}1{{{Σ }}}+ - {{{X}}}1{{{Σ }}}+ (0, 0), {{{C}}}1{{{Σ }}}+ - {{{X}}}1{{{Σ }}}+ (0, 0), and {{{E}}}1{{\\Pi }} - {{{X}}}1{{{Σ }}}+ (0, 0) singlet-singlet bands and the {d}3{{Δ }} - {{{X}}}1{{{Σ }}}+ (5, 0) singlet-triplet band. An updated database including the most precise molecular inputs needed for a μ-variation analysis is presented for rotational levels J = 0-5, consisting of transition wavelengths, oscillator strengths, natural lifetime damping parameters, and sensitivity coefficients to a variation of the proton-to-electron mass ratio. A comprehensive fitting method was used to fit all the CO bands at once and an independent constraint of {{Δ }}μ /μ =(0.7+/- {1.6}{stat}+/- {0.5}{syst})× {10}-5 was derived from CO only. A combined analysis using both molecular hydrogen and CO in the same J1237+0647 absorber returned a final constraint on the relative variation of {{Δ }}μ /μ =(-5.6+/- {5.6}{stat}+/- {3.1}{syst})× {10}-6, which is consistent with no variation over a look-back time of ˜11.4 Gyr.

  7. Spin-flip resolution achieved with a one-proton self-excited oscillator

    NASA Astrophysics Data System (ADS)

    Guise, Nicholas Damien Sun-Wo

    In a Penning trap with an extremely large magnetic gradient, the axial frequency of a one-proton self-excited oscillator is resolved at the level of the shift from a proton spin flip. This sensitivity opens a possible path towards detection of single-proton spin flips, novel measurements of the proton and antiproton g-factors, and a stringent test of CPT invariance by comparing proton and antiproton magnetic moments at precision likely to be a million times higher than achieved to date. The central challenge of extending similar electron magnetic moment measurements to one proton is overcoming the substantially larger mass and weaker magnetic moment, which conspire to greatly reduce the frequency shift that signals a spin flip. Within a magnetic bottle gradient 50 times larger than used in the recent electron g-factor measurements, the proton spin-flip shift is still only 60 mHz out of a 553 kHz axial frequency. In such a large gradient, standard application of sideband cooling to reduce the magnetron radius changes the axial frequency by an amount greater than this spin-flip shift on average. Proton axial frequency resolution at the 60 mHz level is enabled by feedback techniques realized previously only with one electron. Self-excitation produces a narrow feature with large signal-to-noise, ideal for rapid frequency measurements at high precision. Unwanted effects of the strong magnetic gradient are minimized by axial and radial cooling. Feedback cooling is used to reduce the proton axial motion below the temperature of a damping resistor. Axial-magnetron sideband cooling of the undamped radial motion is then demonstrated to reach a 14 mK theoretical limit.

  8. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  9. Iowa Women of Achievement.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This issue of the Goldfinch highlights some of Iowa's 20th century women of achievement. These women have devoted their lives to working for human rights, education, equality, and individual rights. They come from the worlds of politics, art, music, education, sports, business, entertainment, and social work. They represent Native Americans,…

  10. Schools Achieving Gender Equity.

    ERIC Educational Resources Information Center

    Revis, Emma

    This guide is designed to assist teachers presenting the Schools Achieving Gender Equity (SAGE) curriculum for vocational education students, which was developed to align gender equity concepts with the Kentucky Education Reform Act (KERA). Included in the guide are lesson plans for classes on the following topics: legal issues of gender equity,…

  11. Achieving Peace through Education.

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    While it is generally agreed that peace is desirable, there are barriers to achieving a peaceful world. These barriers are classified into three major areas: (1) an erroneous view of human nature; (2) injustice; and (3) fear of world unity. In a discussion of these barriers, it is noted that although the consciousness and conscience of the world…

  12. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.

  13. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  14. Appraising Reading Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    To determine quality sequence in pupil progress, evaluation approaches need to be used which guide the teacher to assist learners to attain optimally. Teachers must use a variety of procedures to appraise student achievement in reading, because no one approach is adequate. Appraisal approaches might include: (1) observation and subsequent…

  15. Cognitive Processes and Achievement.

    ERIC Educational Resources Information Center

    Hunt, Dennis; Randhawa, Bikkar S.

    For a group of 165 fourth- and fifth-grade students, four achievement test scores were correlated with success on nine tests designed to measure three cognitive functions: sustained attention, successive processing, and simultaneous processing. This experiment was designed in accordance with Luria's model of the three functional units of the…

  16. Graders' Mathematics Achievement

    ERIC Educational Resources Information Center

    Bond, John B.; Ellis, Arthur K.

    2013-01-01

    The purpose of this experimental study was to investigate the effects of metacognitive reflective assessment instruction on student achievement in mathematics. The study compared the performance of 141 students who practiced reflective assessment strategies with students who did not. A posttest-only control group design was employed, and results…

  17. Achieving All Our Ambitions

    ERIC Educational Resources Information Center

    Hartley, Tricia

    2009-01-01

    National learning and skills policy aims both to build economic prosperity and to achieve social justice. Participation in higher education (HE) has the potential to contribute substantially to both aims. That is why the Campaign for Learning has supported the ambition to increase the proportion of the working-age population with a Level 4…

  18. Improving Educational Achievement.

    ERIC Educational Resources Information Center

    New York University Education Quarterly, 1979

    1979-01-01

    This is a slightly abridged version of the report of the National Academy of Education panel, convened at the request of HEW Secretary Joseph Califano and Assistant Secretary for Education Mary F. Berry, to study recent declines in student achievement and methods of educational improvement. (SJL)

  19. The Achievement Club

    ERIC Educational Resources Information Center

    Rogers, Ibram

    2009-01-01

    When Gabrielle Carpenter became a guidance counselor in Northern Virginia nine years ago, she focused on the academic achievement gap and furiously tried to close it. At first, she was compelled by tremendous professional interest. However, after seeing her son lose his zeal for school, Carpenter joined forces with other parents to form an…

  20. Achievement in Problem Solving

    ERIC Educational Resources Information Center

    Friebele, David

    2010-01-01

    This Action Research Project is meant to investigate the effects of incorporating research-based instructional strategies into instruction and their subsequent effect on student achievement in the area of problem-solving. The two specific strategies utilized are the integration of manipulatives and increased social interaction on a regular basis.…

  1. Essays on Educational Achievement

    ERIC Educational Resources Information Center

    Ampaabeng, Samuel Kofi

    2013-01-01

    This dissertation examines the determinants of student outcomes--achievement, attainment, occupational choices and earnings--in three different contexts. The first two chapters focus on Ghana while the final chapter focuses on the US state of Massachusetts. In the first chapter, I exploit the incidence of famine and malnutrition that resulted to…

  2. Advancing Student Achievement

    ERIC Educational Resources Information Center

    Walberg, Herbert J.

    2010-01-01

    For the last half century, higher spending and many modern reforms have failed to raise the achievement of students in the United States to the levels of other economically advanced countries. A possible explanation, says Herbert Walberg, is that much current education theory is ill informed about scientific psychology, often drawing on fads and…

  3. NCLB: Achievement Robin Hood?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2008-01-01

    In his "Wall Street Journal" op-ed on the 25th of anniversary of "A Nation At Risk", former assistant secretary of education Chester E. Finn Jr. applauded the report for turning U.S. education away from equality and toward achievement. It was not surprising, then, that in mid-2008, Finn arranged a conference to examine the…

  4. Different methods to alter surface morphology of high aspect ratio structures

    PubMed Central

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-01-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (Platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode’s coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the Silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as Laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio Silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  5. Different methods to alter surface morphology of high aspect ratio structures

    NASA Astrophysics Data System (ADS)

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  6. Different methods to alter surface morphology of high aspect ratio structures.

    PubMed

    Leber, M; Shandhi, M M H; Hogan, A; Solzbacher, F; Bhandari, R; Negi, S

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (Platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the Silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as Laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio Silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  7. Faculty achievement tracking tool.

    PubMed

    Pettus, Sarah; Reifschneider, Ellen; Burruss, Nancy

    2009-03-01

    Faculty development and scholarship is an expectation of nurse educators. Accrediting institutions, such as the Commission on Collegiate Nursing Education, the National League for Nursing Accrediting Commission, and the Higher Learning Commission, all have criteria regarding faculty achievement. A faculty achievement tracking tool (FATT) was developed to facilitate documentation of accreditation criteria attainment. Based on criteria from accrediting organizations, the roles that are addressed include scholarship, service, and practice. Definitions and benchmarks for the faculty as an aggregate are included. Undergoing reviews from different accrediting organizations, the FATT has been used once for accreditation of the undergraduate program and once for accreditation of the graduate program. The FATT is easy to use and has become an excellent adjunct for the preparation for accreditation reports. In addition, the FATT may be used for yearly evaluations, advancement, and merit.

  8. Project ACHIEVE final report

    SciTech Connect

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  9. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  10. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  11. Pre-emphasis determination for an S-band constant bandwidth FM/FM station

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Salter, W. E.

    1972-01-01

    Pre-emphasis schedules are given for 11 constant-bandwidth FM subcarriers modulating an S band transmitter at three receiver signal to noise ratios (i.e., 9, 15, and 25 dB). The criterion for establishing these pre-emphasis curves is the achievement, at various receiver intermediate frequency signal to noise ratios, of equal receiver output signal to noise ratios for all channels. It is realized that these curves may not be the optimum pre-emphasis curves based on overall efficiency or maximum utilization of the allotted spectrum, but they are near-optimum for data with channels which require equal output signal to noise ratios, such as spectral densities. The empirically derived results are compared with a simplified, analytically derived schedule and the primary differences are explained. The S band pre-emphasis schedule differs from the lower frequency VHF case. Since most proportional bandwidth and constant bandwidth systems use ground based recorders and some use flight recorders (as the Saturn systems did on VHF proportional bandwidth telemetry), the effects of these recorders are discussed and a modified pre-emphasis schedule is presented showing the results of this study phase.

  12. Analysis of optimum diameter of orbit of transmission line source in positron emission tomograph

    SciTech Connect

    Yamamoto, S.; Amano, M.; Hirose, Y.; Muira, S.; Kanno, I.

    1989-02-01

    Accurate attenuation correction is one of the most important factors to achieve quantitative measurements in positron emission tomography (PET). A transmission scan is most commonly used technique for the attenuation correction in PET. A difficulty in transmission scan is relatively long period to obtain a data with good signal-to-noise ratio. Insufficient signal-to-noise ratio of the transmission data limits that of emission data. Several approaches were reported to improve the transmission data. Those were (1) optimizing of detector threshold, (2) processing delayed coincidence sinogram before subtraction, filtering of transmission sinogram before performing attenuation correction, and (3) rejection of random and scatter coincidence by using rotating line source and information of its position. In some of these methods, additional calculation time or processing hardware is needed. The authors have estimated a relationship between ring diameter of a transmission line source and signal to noise ratio of the transmission dat. This paper aimes to analyze optimum diameter of the orbit of transmission line source in concerning to signal to noise ratio in transmission data.

  13. AlGaN/GaN metal-insulator-semiconductor high-electron mobility transistors with high on/off current ratio of over 5 × 1010 achieved by ozone pretreatment and using ozone oxidant for Al2O3 gate insulator

    NASA Astrophysics Data System (ADS)

    Tokuda, Hirokuni; Asubar, Joel T.; Kuzuhara, Masaaki

    2016-12-01

    This letter describes DC characteristics of AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with Al2O3 deposited by atomic layer deposition (ALD) as gate dielectric. Comparison was made for the samples deposited using ozone (O3) or water as oxidant. The effect of pretreatment, where O3 was solely supplied prior to depositing Al2O3, was also investigated. The MIS-HEMT with O3 pretreatment and Al2O3 gate dielectric deposited using O3 as the oxidant exhibited the most desirable characteristics with an excellent high on/off current ratio of 7.1 × 1010, and a low sub-threshold swing (SS) of 73 mV/dec.

  14. High-Ratio Gear Train

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.

    1982-01-01

    Proposed arrangement of two connected planetary differentials results in gear ratio many times that obtainable in conventional series gear assembly of comparable size. Ratios of several thousand would present no special problems. Selection of many different ratios is available with substantially similar gear diameters. Very high gear ratios would be obtained from small mechanism.

  15. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  16. Nucleosynthesis in AGB stars traced by oxygen isotopic ratios I. Determining the stellar initial mass by means of the 17O/1

    NASA Astrophysics Data System (ADS)

    de, Nutte; Decin, L.; Olofsson, H.; Lombaert, R.; de Koter, A.; Karakas, A.; Milam, S.; Ramstedt, S.; Stancliffe, R. J.; Homan, W.; van de Sande, M.

    The data presented in this study were obtained with three different telescopes. The Institut de Radio Astronomie Millimetrique (IRAM) 30m telescope at Pico Veleta, Spain (Program ID 042-12, 164-12) using the EMIR heterodyne receiver in dual band observation mode in the E0(90GHz)/E2(230GHz) configuration; the Atacama Pathfinder EXperiment(APEX) 12m telescope on the Chajnantor Plateau, Chile (Program ID 090.D-0290, 091.D-0813, 094.D-0851A), in the SHeFI 230GHz band, and the Caltech Submillimeter Observatory (CSO) at Mauna Kea, Hawaii, using the 230GHz receiver. The sources were observed using position switching or wobbler switching mode to attain flat baselines. The pointing of the telescope was checked repeatedly throughout the observations using strong CO and continuum sources. The reduction and analysis of all data were performed using the GILDAS CLASS software package. After removing faulty scans and spikes, a firstorder polynomial baseline was subtracted from each scan. The individual baseline-subtracted scans obtained for a given source were then averaged using an inverse quadratic system temperature weighting. Finally the data were rebinned to obtain a suitable signal-to-noise ratio (S/N), generally S/N=3-5 for a velocity resolution of 2km/s (the typical linewidth being around 20-40km/s). (2 data files).

  17. Thin solar concentrator with high concentration ratio

    NASA Astrophysics Data System (ADS)

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2013-09-01

    Solar concentrators are often used in conjunction with III-V multi-junction solar cells for cost reduction and efficiency improvement purposes. High flux concentration ratio, high optical efficiency and high manufacture tolerance are the key features required for a successful solar concentrator design. This paper describes a novel solar concentrator that combines the concepts, and thus the advantages, of both the refractive type ad reflective type. The proposed concentrator design adopts the Etendue-cascading concept that allows the light beams from all the concentric annular entrance pupils to be collected and transferred to the solar cell with minimal loss. This concept enables the system to perform near its Etendue-Limit and have a high concentration ratio simultaneously. Thereby reducing the costs of solar cells and therefor achieves a better the per watts cost. The concentrator demonstrated has a thing aspect ratio of 0.19 with a zero back focal distance. The numerical aperture at the solar cell immersed inside the dielectric concentrator is as high as 1.33 achieving a unprecedented high optical concentration ratio design.

  18. Achievement Goals and Achievement Emotions: A Meta-Analysis

    ERIC Educational Resources Information Center

    Huang, Chiungjung

    2011-01-01

    This meta-analysis synthesized 93 independent samples (N = 30,003) in 77 studies that reported in 78 articles examining correlations between achievement goals and achievement emotions. Achievement goals were meaningfully associated with different achievement emotions. The correlations of mastery and mastery approach goals with positive achievement…

  19. GPR UXO Classification Results for the Blossom Point Site: Demo #2

    DTIC Science & Technology

    2005-08-01

    71 6.1 SIMULATED SIGNAL TO NOISE RATIO ( SNR ) STUDY 71 6.2 MEASURED SIGNAL TO NOISE RATIO... SNR ) 80 6.3 SIMULATED SIGNAL TO CLUTTER (SCR) STUDY 83 ii 6.4 MEASURED SIGNAL TO CLUTTER RATIO (SCR) 88...previous approach to that obtained from the new. The noise level is expressed as SNR , i.e. signal to noise ratio, usually measured in dB. More precise

  20. Ratio estimation in SIMS analysis

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.; Huss, G. R.; Nagashima, K.

    2011-09-01

    The determination of an isotope ratio by secondary ion mass spectrometry (SIMS) traditionally involves averaging a number of ratios collected over the course of a measurement. We show that this method leads to an additive positive bias in the expectation value of the estimated ratio that is approximately equal to the true ratio divided by the counts of the denominator isotope of an individual ratio. This bias does not decrease as the number of ratios used in the average increases. By summing all counts in the numerator isotope, then dividing by the sum of counts in the denominator isotope, the estimated ratio is less biased: the bias is approximately equal to the ratio divided by the summed counts of the denominator isotope over the entire measurement. We propose a third ratio estimator (Beale's estimator) that can be used when the bias from the summed counts is unacceptably large for the hypothesis being tested. We derive expressions for the variance of these ratio estimators as well as the conditions under which they are normally distributed. Finally, we investigate a SIMS dataset showing the effects of ratio bias, and discuss proper ratio estimation for SIMS analysis.

  1. Lifting Minority Achievement: Complex Answers. The Achievement Gap.

    ERIC Educational Resources Information Center

    Viadero, Debra; Johnston, Robert C.

    2000-01-01

    This fourth in a four-part series on why academic achievement gaps exist describes the Minority Achievement Committee scholars program at Shaker Heights High School in Cleveland, Ohio, a powerful antidote to the achievement gap between minority and white and Asian American students. It explains the need to break down stereotypes about academic…

  2. Achievement Motivation of Women: Effects of Achievement and Affiliation Arousal.

    ERIC Educational Resources Information Center

    Gama, Elizabeth Maria Pinheiro

    1985-01-01

    Assigned 139 Brazilian women to neutral, affiliation arousal, and achievement arousal conditions based on their levels of achievement (Ach) and affiliative (Aff) needs. Results of story analyses revealed that achievement arousal increased scores of high Ach subjects and that high Aff subjects obtained higher scores than low Aff subjects. (BL)

  3. Attitude Towards Physics and Additional Mathematics Achievement Towards Physics Achievement

    ERIC Educational Resources Information Center

    Veloo, Arsaythamby; Nor, Rahimah; Khalid, Rozalina

    2015-01-01

    The purpose of this research is to identify the difference in students' attitude towards Physics and Additional Mathematics achievement based on gender and relationship between attitudinal variables towards Physics and Additional Mathematics achievement with achievement in Physics. This research focused on six variables, which is attitude towards…

  4. The Impact of Reading Achievement on Overall Academic Achievement

    ERIC Educational Resources Information Center

    Churchwell, Dawn Earheart

    2009-01-01

    This study examined the relationship between reading achievement and achievement in other subject areas. The purpose of this study was to determine if there was a correlation between reading scores as measured by the Standardized Test for the Assessment of Reading (STAR) and academic achievement in language arts, math, science, and social studies…

  5. Lidar ratio and depolarization ratio for cirrus clouds.

    PubMed

    Chen, Wei-Nai; Chiang, Chih-Wei; Nee, Jan-Bai

    2002-10-20

    We report on studies of the lidar and the depolarization ratios for cirrus clouds. The optical depth and effective lidar ratio are derived from the transmission of clouds, which is determined by comparing the backscattering signals at the cloud base and cloud top. The lidar signals were fitted to a background atmospheric density profile outside the cloud region to warrant the linear response of the return signals with the scattering media. An average lidar ratio, 29 +/- 12 sr, has been found for all clouds measured in 1999 and 2000. The height and temperature dependences ofthe lidar ratio, the optical depth, and the depolarization ratio were investigated and compared with results of LITE and PROBE. Cirrus clouds detected near the tropopause are usually optically thin and mostly subvisual. Clouds with the largest optical depths were found near 12 km with a temperature of approximately -55 degrees C. The multiple-scattering effect is considered for clouds with high optical depths, and this effect lowers the lidar ratios compared with a single-scattering condition. Lidar ratios are in the 20-40 range for clouds at heights of 12.5-15 km and are smaller than approximately 30 in height above 15 km. Clouds are usually optically thin for temperatures below approximately -65 degrees C, and in this region the optical depth tends to decrease with height. The depolarization ratio is found to increase with a height at 11-15 km and smaller than 0.3 above 16 km. The variation in the depolarization ratio with the lidar ratio was also reported. The lidar and depolarization ratios were discussed in terms of the types of hexagonal ice crystals.

  6. Design, fabrication and testing of a CFA for use in the solar power satellite

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1978-01-01

    A crossed field amplifier was designed to meet the performance objectives of high signal to noise ratio, an efficiency of 85%, a CW microwave power output of 5-8 kW, and a frequency of 2450 MHz. The signal to noise ratio achieved was better than 69 db/MHz in a 2000 MHz band centered on the carrier. High circuit efficiency of 97% and a sharp knee on voltage current characteristic were achieved. The basic problem of maintaining good transfer of heat to the external radiator while providing for adequate connections to input and output was solved. Maximum efficiency achieved was 70.5% and gain and power level were below objectives. An investigation of causes of reduced performance indicated the poor field pattern in the cathode anode interaction area of the tube was a major cause.

  7. The Use of Capacity Ratios in Introductory Pharmacy Practice Experiences

    PubMed Central

    Haswell, Jamie L.; Byrd, Debbie C.; Foster, Stephan

    2012-01-01

    Objective. To describe the use of capacity ratios following the assignment of introductory pharmacy practice experiences (IPPEs) to a rising third-year pharmacy (P3) class. Methods. Practice experience availability for IPPEs was collected by means of preceptor response to requests. Following assignment of IPPEs to the rising P3 class, capacity ratios from the IPPEs available across the entire state and within each of 4 geographic zones were calculated. Capacity ratios for both community pharmacy and institutional pharmacy also were calculated. Results. The capacity ratio for IPPEs across the entire state was 2.11, which documents solvency. When the capacity ratios were calculated individually for community pharmacy and institutional pharmacy, solvency was also achieved. Likewise, IPPE capacity ratios were solvent in all 4 geographic zones. Conclusions. Capacity ratios are helpful in evaluating IPPE availability as they can be used to determine practice experience need in either type of practice experience or geographic zone. PMID:23193336

  8. Achievements in Stratospheric Ozone Protection

    EPA Pesticide Factsheets

    This report describes achievements in protecting the ozone layer, the benefits of these achievements, and strategies involved (e.g., using alternatives to ozone-depleting substances, phasing out harmful substances, and creating partnerships).

  9. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy.

    PubMed

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; Sam Ma, Zhanshan

    2016-12-23

    There are three sex ratio strategies (SRS) in nature-male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton's local mate competition (LMC) and Clark's local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC &LRC) in the field of SRS research.

  10. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy

    PubMed Central

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; (Sam) Ma, Zhanshan

    2016-01-01

    There are three sex ratio strategies (SRS) in nature—male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton’s local mate competition (LMC) and Clark’s local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC & LRC) in the field of SRS research. PMID:28009000

  11. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy

    NASA Astrophysics Data System (ADS)

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; (Sam) Ma, Zhanshan

    2016-12-01

    There are three sex ratio strategies (SRS) in nature—male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton’s local mate competition (LMC) and Clark’s local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC & LRC) in the field of SRS research.

  12. Software For Computing Image Ratios

    NASA Technical Reports Server (NTRS)

    Yates, Gigi L.

    1993-01-01

    RATIO_TOOL is interactive computer program for viewing and analyzing large sets of multispectral image data created by imaging spectrometer. Uses ratios between intensities in different spectral bands in order to spot significant areas of interest within multispectral image. Each image band viewed iteratively, or selected image band of set of data requested and displayed. When image ratios computed, result displayed as grayscale image. Written in C Language.

  13. Prevalence odds ratio versus prevalence ratio: choice comes with consequences.

    PubMed

    Tamhane, Ashutosh R; Westfall, Andrew O; Burkholder, Greer A; Cutter, Gary R

    2016-12-30

    Odds ratio, risk ratio, and prevalence ratio are some of the measures of association which are often reported in research studies quantifying the relationship between an independent variable and the outcome of interest. There has been much debate on the issue of which measure is appropriate to report depending on the study design. However, the literature on selecting a particular category of the outcome to be modeled and/or change in reference group for categorical independent variables and the effect on statistical significance, although known, is scantly discussed nor published with examples. In this article, we provide an example of a cross-sectional study wherein prevalence ratio was chosen over (Prevalence) odds ratio and demonstrate the analytic implications of the choice of category to be modeled and choice of reference level for independent variables. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Air/fuel ratio controller

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1980-12-23

    An internal combustion engine has a fuel injection pump and an air/fuel ratio controller. The controller has a lever that is connected to the pump lever. An aneroid moves the controller lever as a function of changes in intake manifold vacuum to maintain a constant air/fuel ratio to the mixture charge. A fuel enrichment linkage is provided that modifies the movement of the fuel flow control lever by the aneroid in response to changes in manifold gas temperature levels and exhaust gas recirculation to maintain the constant air/fuel ratio. A manual override is provided to obtain a richer air/fuel ratio for maximum acceleration.

  15. Design of an ultrasmall aspect ratio concentrator

    NASA Astrophysics Data System (ADS)

    Cheng, Ying; Fang, Fengzhou; Zhang, Xiaodong

    2014-11-01

    The concentrated photovoltaic (CPV) can be employed to improve the efficiency of solar cells and reduce the system cost of power generation, which is the primary part of the CPV system. Based on the demands for the concentrators to have an ultrathin and ultralight design, a design of ultrasmall aspect ratio concentrators is proposed. The concentrator is formed by a lens array and a freeform reflector to precisely control the light. The solar cell is placed at the side of the concentrator, which greatly reduces the overall thickness of the concentrator. The design can reduce the aspect ratio of concentrator by a considerable amount. The freeform reflector can shape the light beam and achieve a uniform distribution of light energy.

  16. Method for nanomachining high aspect ratio structures

    DOEpatents

    Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.

    2004-11-09

    A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.

  17. Compression ratio effect on methane HCCI combustion

    SciTech Connect

    Aceves, S. M.; Pitz, W.; Smith, J. R.; Westbrook, C.

    1998-09-29

    We have used the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to simulate HCCI (homogeneous charge compression ignition) combustion of methane-air mixtures. HCT is applied to explore the ignition timing, bum duration, NOx production, gross indicated efficiency and gross IMEP of a supercharged engine (3 atm. Intake pressure) with 14:1, 16:l and 18:1 compression ratios at 1200 rpm. HCT has been modified to incorporate the effect of heat transfer and to calculate the temperature that results from mixing the recycled exhaust with the fresh mixture. This study uses a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by adjusting the intake equivalence ratio and the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both thermal energy and combustion product species. Adjustment of equivalence ratio and RGT is accomplished by varying the timing of the exhaust valve closure in either 2-stroke or 4-stroke engines. Inlet manifold temperature is held constant at 300 K. Results show that, for each compression ratio, there is a range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NOx levels below 100 ppm. HCT results are also compared with a set of recent experimental data for natural gas.

  18. Students’ Achievement Goals, Learning-Related Emotions and Academic Achievement

    PubMed Central

    Lüftenegger, Marko; Klug, Julia; Harrer, Katharina; Langer, Marie; Spiel, Christiane; Schober, Barbara

    2016-01-01

    In the present research, the recently proposed 3 × 2 model of achievement goals is tested and associations with achievement emotions and their joint influence on academic achievement are investigated. The study was conducted with 388 students using the 3 × 2 Achievement Goal Questionnaire including the six proposed goal constructs (task-approach, task-avoidance, self-approach, self-avoidance, other-approach, other-avoidance) and the enjoyment and boredom scales from the Achievement Emotion Questionnaire. Exam grades were used as an indicator of academic achievement. Findings from CFAs provided strong support for the proposed structure of the 3 × 2 achievement goal model. Self-based goals, other-based goals and task-approach goals predicted enjoyment. Task-approach goals negatively predicted boredom. Task-approach and other-approach predicted achievement. The indirect effects of achievement goals through emotion variables on achievement were assessed using bias-corrected bootstrapping. No mediation effects were found. Implications for educational practice are discussed. PMID:27199836

  19. Comparison of 1.5 and 3.0 T for Contrast-Enhanced Pulmonary Magnetic Resonance Angiography

    PubMed Central

    Londy, Frank Joseph; Lowe, Suzan; Stein, Paul D.; Weg, John G.; Eisner, Robert L.; Leeper, Kenneth V.; Woodard, Pamela K.; Sostman, H. Dirk; Jablonski, Kathleen A.; Fowler, Sarah E.; Hales, Charles A.; Hull, Russell D.; Gottschalk, Alexander; Naidich, David P.; Chenevert, Thomas L.

    2013-01-01

    Objective In a recent multi-center trial of gadolinium contrast-enhanced magnetic resonance angiography (Gd-MRA) for diagnosis of acute pulmonary embolism (PE), two centers utilized a common MRI platform though at different field strengths (1.5T and 3T) and realized a signal-to-noise gain with the 3T platform. This retrospective analysis investigates this gain in signal-to-noise of pulmonary vascular targets. Methods Thirty consecutive pulmonary MRA examinations acquired on a 1.5T system at one institution were compared to 30 consecutive pulmonary MRA examinations acquired on a 3T system at a different institution. Both systems were from the same MRI manufacturer and both used the same Gd-MRA pulse sequence, although there were some protocol adjustments made due to field strength differences. Region-of-interests were manually defined on the main pulmonary artery, 4 pulmonary veins, thoracic aorta, and background lung for objective measurement of signal-to-noise, contrast-to-noise, and bolus timing bias between centers. Results The 3T pulmonary MRA protocol achieved higher spatial resolution yet maintained significantly higher signal-to-noise ratio (≥ 13%, p = 0.03) in the main pulmonary vessels relative to 1.5T. There was no evidence of operator bias in bolus timing or patient hemodynamic differences between groups. Conclusion Relative to 1.5T, higher spatial resolution Gd-MRA can be achieved at 3T with a sustained or greater signal-to-noise ratio of enhanced vasculature. PMID:21993980

  20. MOTION PICTURE AND TELEVISION ENGINEERING. VOLUME 13, NUMBER 12, 1969 (SELECTED ARTICLES),

    DTIC Science & Technology

    PHOTOGRAPHIC RECORDING SYSTEMS, PHOTOELECTRIC MATERIALS), (*VIDICONS, FOCUSING), (*TELEVISION CAMERAS, SCANNING), (*TELEVISION EQUIPMENT, SIGNAL-TO-NOISE RATIO), OPTICAL IMAGES, DEFORMATION, SEMICONDUCTING FILMS , USSR

  1. The Mechanics of Human Achievement.

    PubMed

    Duckworth, Angela L; Eichstaedt, Johannes C; Ungar, Lyle H

    2015-07-01

    Countless studies have addressed why some individuals achieve more than others. Nevertheless, the psychology of achievement lacks a unifying conceptual framework for synthesizing these empirical insights. We propose organizing achievement-related traits by two possible mechanisms of action: Traits that determine the rate at which an individual learns a skill are talent variables and can be distinguished conceptually from traits that determine the effort an individual puts forth. This approach takes inspiration from Newtonian mechanics: achievement is akin to distance traveled, effort to time, skill to speed, and talent to acceleration. A novel prediction from this model is that individual differences in effort (but not talent) influence achievement (but not skill) more substantially over longer (rather than shorter) time intervals. Conceptualizing skill as the multiplicative product of talent and effort, and achievement as the multiplicative product of skill and effort, advances similar, but less formal, propositions by several important earlier thinkers.

  2. The Mechanics of Human Achievement

    PubMed Central

    Duckworth, Angela L.; Eichstaedt, Johannes C.; Ungar, Lyle H.

    2015-01-01

    Countless studies have addressed why some individuals achieve more than others. Nevertheless, the psychology of achievement lacks a unifying conceptual framework for synthesizing these empirical insights. We propose organizing achievement-related traits by two possible mechanisms of action: Traits that determine the rate at which an individual learns a skill are talent variables and can be distinguished conceptually from traits that determine the effort an individual puts forth. This approach takes inspiration from Newtonian mechanics: achievement is akin to distance traveled, effort to time, skill to speed, and talent to acceleration. A novel prediction from this model is that individual differences in effort (but not talent) influence achievement (but not skill) more substantially over longer (rather than shorter) time intervals. Conceptualizing skill as the multiplicative product of talent and effort, and achievement as the multiplicative product of skill and effort, advances similar, but less formal, propositions by several important earlier thinkers. PMID:26236393

  3. Breastfeeding and educational achievement at age 5.

    PubMed

    Heikkilä, Katriina; Kelly, Yvonne; Renfrew, Mary J; Sacker, Amanda; Quigley, Maria A

    2014-01-01

    Our aim was to investigate whether the duration of breastfeeding, at all or exclusively, is associated with educational achievement at age 5. We used data from a prospective, population-based UK cohort study, the Millennium Cohort Study (MCS). 5489 children from White ethnic background born at term in 2000-2001, attending school in England in 2006, were included in our analyses. Educational achievement was measured using the Foundation Stage Profile (FSP), a statutory assessment undertaken by teachers at the end of the child's first school year. Breastfeeding duration was ascertained from interviews with the mother when the child was 9 months old. We used modified Poisson's regression to model the association of breastfeeding duration with having reached a good level of achievement overall (≥78 overall points and ≥6 in 'personal, social and emotional development' and 'communication, language and literacy' points) and in specific areas (≥6 points) of development. Children who had been breastfed for up to 2 months were more likely to have reached a good level of overall achievement [adjusted rate ratio (RR): 1.09, 95% confidence interval (CI): 1.01, 1.19] than never breastfed children. This association was more marked in children breastfed for 2-4 months (adjusted RR: 1.17, 95% CI: 1.07, 1.29) and in those breastfed for longer than 4 months (adjusted RR: 1.16, 95% CI: 1.07, 1.26). The associations of exclusive breastfeeding with the educational achievement were similar. Our findings suggest that longer duration of breastfeeding, at all or exclusively, is associated with better educational achievement at age 5.

  4. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, John F.

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  5. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  6. FORMATION CONDITIONS OF ICY MATERIALS IN COMET C/2004 Q2 (MACHHOLZ). I. MIXING RATIOS OF ORGANIC VOLATILES

    SciTech Connect

    Kobayashi, Hitomi; Kawakita, Hideyo

    2009-09-20

    We observed comet C/2004 Q2 (Machholz) with the Keck II telescope in late 2005 January and we obtained the spectra of C/2004 Q2 including many emission lines of volatile species such as H{sub 2}O, HCN, C{sub 2}H{sub 2}, NH{sub 3}, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and H{sub 2}CO with high-signal-to-noise ratios. Based on our observations, we determined the mixing ratios of the molecules relative to H{sub 2}O in C/2004 Q2. Since C/2004 Q2 is one of Oort Cloud comets, it is interesting to compare our results with other Oort Cloud comets. The mixing ratios of C{sub 2}H{sub 2}/H{sub 2}O and C{sub 2}H{sub 6}/H{sub 2}O in C/2004 Q2 are lower than typical Oort Cloud comets. Especially, C{sub 2}H{sub 2}/H{sub 2}O ratio in C/2004 Q2 is as lower as Jupiter Family comets. However, mixing ratios of other molecules in C/2004 Q2 are similar to typical Oort Cloud comets. C/2004 Q2 might be the intermediate type between Oort Cloud and Jupiter Family comets. To investigate the formation conditions of such intermediate type comet, we focused on the (C{sub 2}H{sub 2}+C{sub 2}H{sub 6})/H{sub 2}O ratios and C{sub 2}H{sub 6}/(C{sub 2}H{sub 6}+C{sub 2}H{sub 2}) ratios in comets from the viewpoint of conversion from C{sub 2}H{sub 2} to C{sub 2}H{sub 6} in the precometary ices. We found that (C{sub 2}H{sub 2}+C{sub 2}H{sub 6})/H{sub 2}O ratio in C/2004 Q2 is lower than the ratio in typical Oort Cloud comets while C{sub 2}H{sub 6}/(C{sub 2}H{sub 6}+C{sub 2}H{sub 2}) ratio in C/2004 Q2 is consistent with the ratio of the typical Oort Cloud comets and Jupiter family comets. If we assume that the cometary volatiles such as H{sub 2}O, CH{sub 4}, and C{sub 2}H{sub 2} formed similar environment, the C{sub 2}H{sub 6}/(C{sub 2}H{sub 6}+C{sub 2}H{sub 2}) ratio might not be sensitive in the temperature range where hydrogen-addition reactions occurred and cometesimals formed ({approx}30 K). We employed the dynamical-evolutional model and the chemical-evolutional model to determine the

  7. Pressure Ratio to Thermal Environments

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro; Wang, Winston

    2012-01-01

    A pressure ratio to thermal environments (PRatTlE.pl) program is a Perl language code that estimates heating at requested body point locations by scaling the heating at a reference location times a pressure ratio factor. The pressure ratio factor is the ratio of the local pressure at the reference point and the requested point from CFD (computational fluid dynamics) solutions. This innovation provides pressure ratio-based thermal environments in an automated and traceable method. Previously, the pressure ratio methodology was implemented via a Microsoft Excel spreadsheet and macro scripts. PRatTlE is able to calculate heating environments for 150 body points in less than two minutes. PRatTlE is coded in Perl programming language, is command-line-driven, and has been successfully executed on both the HP and Linux platforms. It supports multiple concurrent runs. PRatTlE contains error trapping and input file format verification, which allows clear visibility into the input data structure and intermediate calculations.

  8. Continually variable transmission having fixed ratio and variable ratio mechanisms

    SciTech Connect

    Moan, R.D

    1989-06-06

    This patent describes a transmission for producing a stepless, continually variable range of ratios of the speed of its output to its input comprising: a fluid coupling having an impeller adapted for connection to a power source and a turbine hydrodynamically connected to the impeller; as planetary gearset having a ring gear, a sun gear, a first set of planet pinions meshing with the sun gear, a second set of planet pinions meshing with the first set of pinions and with the ring gear, and a pinion carrier on which the first and second sets of pinions are rotatably supported; first drive means drivable connecting the turbine and the sun gear for producing a variable speed ratio therebetween having a range between an underdrive ratio and an overdrive ratio; second drive means drivably connecting the impeller and the ring gear for producing a fixed speed ratio therebetween; a first clutch means for drivably connecting and disconnecting the ring gear and the second drive means; and a second clutch means for drivably connecting and disconnecting the first drive means and the pinion carrier.

  9. EDUCATIONAL ACHIEVEMENT AND THE NAVAJO.

    ERIC Educational Resources Information Center

    HAAS, JOHN; MELVILLE, ROBERT

    A STUDY WAS DEVISED TO APPRAISE THE ACADEMIC ACHIEVEMENT OF NAVAJO STUDENTS LIVING IN DORMITORIES AWAY FROM THE INDIAN RESERVATION. THE FOLLOWING SEVEN FACTORS WERE CHOSEN TO BE INVESTIGATED AS BEING DIRECTLY RELATED TO ACHIEVEMENT--(1) INTELLIGENCE, (2) READING ABILITY, (3) ANXIETY, (4) SELF-CONCEPT, (5) MOTIVATION, (6) VERBAL DEVELOPMENT, (7)…

  10. Sociocultural Origins of Achievement Motivation

    ERIC Educational Resources Information Center

    Maehr, Martin L.

    1977-01-01

    Presents a theoretical review of work on sociocultural influences on achievement, focusing on a critical evaluation of the work of David McClellan. Offers an alternative conception of achievement motivation which stresses the role of contextual and situational factors in addition to personality factors. Available from: Transaction Periodicals…

  11. Raising Boys' Achievement in Schools.

    ERIC Educational Resources Information Center

    Bleach, Kevan, Ed.

    This book offers insights into the range of strategies and good practice being used to raise the achievement of boys. Case studies by school-based practitioners suggest ideas and measures to address the issue of achievement by boys. The contributions are: (1) "Why the Likely Lads Lag Behind" (Kevan Bleach); (2) "Helping Boys Do…

  12. Teaching the Low Level Achiever.

    ERIC Educational Resources Information Center

    Salomone, Ronald E., Ed.

    1986-01-01

    Intended for teachers of the English language arts, the articles in this issue offer suggestions and techniques for teaching the low level achiever. Titles and authors of the articles are as follows: (1) "A Point to Ponder" (Rachel Martin); (2) "Tracking: A Self-Fulfilling Prophecy of Failure for the Low Level Achiever" (James Christopher Davis);…

  13. Early Intervention and Student Achievement

    ERIC Educational Resources Information Center

    Hormes, Mridula T.

    2009-01-01

    The United States Department of Education has been rigorous in holding all states accountable with regard to student achievement. The No Child Left Behind Act of 2001 clearly laid out federal mandates for all schools to follow. K-12 leaders of public schools are very aware of the fact that results in terms of student achievement need to improve…

  14. Parental Involvement and Academic Achievement

    ERIC Educational Resources Information Center

    Goodwin, Sarah Christine

    2015-01-01

    This research study examined the correlation between student achievement and parent's perceptions of their involvement in their child's schooling. Parent participants completed the Parent Involvement Project Parent Questionnaire. Results slightly indicated parents of students with higher level of achievement perceived less demand or invitations…

  15. Asperger Syndrome and Academic Achievement.

    ERIC Educational Resources Information Center

    Griswold, Deborah E.; Barnhill, Gena P.; Myles, Brenda Smith; Hagiwara, Taku; Simpson, Richard L.

    2002-01-01

    A study focused on identifying the academic characteristics of 21 children and youth who have Asperger syndrome. Students had an extraordinary range of academic achievement scores, extending from significantly above average to far below grade level. Lowest achievement scores were shown for numerical operations, listening comprehension, and written…

  16. Perils of Standardized Achievement Testing

    ERIC Educational Resources Information Center

    Haladyna, Thomas M.

    2006-01-01

    This article argues that the validity of standardized achievement test-score interpretation and use is problematic; consequently, confidence and trust in such test scores may often be unwarranted. The problem is particularly severe in high-stakes situations. This essay provides a context for understanding standardized achievement testing, then…

  17. Stress Correlates and Academic Achievement.

    ERIC Educational Resources Information Center

    Bentley, Donna Anderson; And Others

    An ongoing concern for educators is the identification of factors that contribute to or are associated with academic achievement; one such group of variables that has received little attention are those involving stress. The relationship between perceived sources of stress and academic achievement was examined to determine if reactions to stress…

  18. School Size and Student Achievement

    ERIC Educational Resources Information Center

    Riggen, Vicki

    2013-01-01

    This study examined whether a relationship between high school size and student achievement exists in Illinois public high schools in reading and math, as measured by the Prairie State Achievement Exam (PSAE), which is administered to all Illinois 11th-grade students. This study also examined whether the factors of socioeconomic status, English…

  19. Rapid parameter optimization of low signal-to-noise samples in NMR spectroscopy using rapid CPMG pulsing during acquisition: application to recycle delays.

    PubMed

    Farooq, Hashim; Courtier-Murias, Denis; Soong, Ronald; Masoom, Hussain; Maas, Werner; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry; Simpson, Myrna J; Simpson, André J

    2013-03-01

    A method is presented that combines Carr-Purcell-Meiboom-Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T(1) determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low-power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional (13)C IR experiment is compared with the selective (13)C IR-RCPMG sequence and yields the same T(1) values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross-polarization/mixing times and pulse lengths.

  20. Signal-to-noise assessment for diffusion tensor imaging with single data set and validation using a difference image method with data from a multicenter study

    SciTech Connect

    Wang, Zhiyue J.; Chia, Jonathan M.; Ahmed, Shaheen; Rollins, Nancy K.

    2014-09-15

    Purpose: To describe a quantitative method for determination of SNR that extracts the local noise level using a single diffusion data set. Methods: Brain data sets came from a multicenter study (eight sites; three MR vendors). Data acquisition protocol required b = 0, 700 s/mm{sup 2}, fov = 256 × 256 mm{sup 2}, acquisition matrix size 128 × 128, reconstruction matrix size 256 × 256; 30 gradient encoding directions and voxel size 2 × 2 × 2 mm{sup 3}. Regions-of-interest (ROI) were placed manually on the b = 0 image volume on transverse slices, and signal was recorded as the mean value of the ROI. The noise level from the ROI was evaluated using Fourier Transform based Butterworth high-pass filtering. Patients were divided into two groups, one for filter parameter optimization (N = 17) and one for validation (N = 10). Six white matter areas (the genu and splenium of corpus callosum, right and left centrum semiovale, right and left anterior corona radiata) were analyzed. The Bland–Altman method was used to compare the resulting SNR with that from the difference image method. The filter parameters were optimized for each brain area, and a set of “global” parameters was also obtained, which represent an average of all regions. Results: The Bland–Altman analysis on the validation group using “global” filter parameters revealed that the 95% limits of agreement of percent bias between the SNR obtained with the new and the reference methods were −15.5% (median of the lower limit, range [−24.1%, −8.9%]) and 14.5% (median of the higher limits, range [12.7%, 18.0%]) for the 6 brain areas. Conclusions: An FT-based high-pass filtering method can be used for local area SNR assessment using only one DTI data set. This method could be used to evaluate SNR for patient studies in a multicenter setting.