Science.gov

Sample records for achieve accurate predictions

  1. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    NASA Astrophysics Data System (ADS)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  2. Predicting College Students' First Year Success: Should Soft Skills Be Taken into Consideration to More Accurately Predict the Academic Achievement of College Freshmen?

    ERIC Educational Resources Information Center

    Powell, Erica Dion

    2013-01-01

    This study presents a survey developed to measure the skills of entering college freshmen in the areas of responsibility, motivation, study habits, literacy, and stress management, and explores the predictive power of this survey as a measure of academic performance during the first semester of college. The survey was completed by 334 incoming…

  3. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  4. Predicting educational achievement from DNA

    PubMed Central

    Selzam, S; Krapohl, E; von Stumm, S; O'Reilly, P F; Rimfeld, K; Kovas, Y; Dale, P S; Lee, J J; Plomin, R

    2017-01-01

    A genome-wide polygenic score (GPS), derived from a 2013 genome-wide association study (N=127,000), explained 2% of the variance in total years of education (EduYears). In a follow-up study (N=329,000), a new EduYears GPS explains up to 4%. Here, we tested the association between this latest EduYears GPS and educational achievement scores at ages 7, 12 and 16 in an independent sample of 5825 UK individuals. We found that EduYears GPS explained greater amounts of variance in educational achievement over time, up to 9% at age 16, accounting for 15% of the heritable variance. This is the strongest GPS prediction to date for quantitative behavioral traits. Individuals in the highest and lowest GPS septiles differed by a whole school grade at age 16. Furthermore, EduYears GPS was associated with general cognitive ability (~3.5%) and family socioeconomic status (~7%). There was no evidence of an interaction between EduYears GPS and family socioeconomic status on educational achievement or on general cognitive ability. These results are a harbinger of future widespread use of GPS to predict genetic risk and resilience in the social and behavioral sciences. PMID:27431296

  5. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  6. You Can Accurately Predict Land Acquisition Costs.

    ERIC Educational Resources Information Center

    Garrigan, Richard

    1967-01-01

    Land acquisition costs were tested for predictability based upon the 1962 assessed valuations of privately held land acquired for campus expansion by the University of Wisconsin from 1963-1965. By correlating the land acquisition costs of 108 properties acquired during the 3 year period with--(1) the assessed value of the land, (2) the assessed…

  7. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  8. Towards more accurate vegetation mortality predictions

    DOE PAGES

    Sevanto, Sanna Annika; Xu, Chonggang

    2016-09-26

    Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.

  9. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  10. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; ...

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  11. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    PubMed Central

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel C.; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-01-01

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification. PMID:23499924

  12. A predictable and accurate technique with elastomeric impression materials.

    PubMed

    Barghi, N; Ontiveros, J C

    1999-08-01

    A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.

  13. Accurate torque-speed performance prediction for brushless dc motors

    NASA Astrophysics Data System (ADS)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  14. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  15. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-07

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  16. On the Accurate Prediction of CME Arrival At the Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Hess, Phillip

    2016-07-01

    We will discuss relevant issues regarding the accurate prediction of CME arrival at the Earth, from both observational and theoretical points of view. In particular, we clarify the importance of separating the study of CME ejecta from the ejecta-driven shock in interplanetary CMEs (ICMEs). For a number of CME-ICME events well observed by SOHO/LASCO, STEREO-A and STEREO-B, we carry out the 3-D measurements by superimposing geometries onto both the ejecta and sheath separately. These measurements are then used to constrain a Drag-Based Model, which is improved through a modification of including height dependence of the drag coefficient into the model. Combining all these factors allows us to create predictions for both fronts at 1 AU and compare with actual in-situ observations. We show an ability to predict the sheath arrival with an average error of under 4 hours, with an RMS error of about 1.5 hours. For the CME ejecta, the error is less than two hours with an RMS error within an hour. Through using the best observations of CMEs, we show the power of our method in accurately predicting CME arrival times. The limitation and implications of our accurate prediction method will be discussed.

  17. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  18. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  19. Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X.

    PubMed

    Faraggi, Eshel; Kloczkowski, Andrzej

    2017-01-01

    Accurate prediction of protein secondary structure and other one-dimensional structure features is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. SPINE-X is a software package to predict secondary structure as well as accessible surface area and dihedral angles ϕ and ψ. For secondary structure SPINE-X achieves an accuracy of between 81 and 84 % depending on the dataset and choice of tests. The Pearson correlation coefficient for accessible surface area prediction is 0.75 and the mean absolute error from the ϕ and ψ dihedral angles are 20(∘) and 33(∘), respectively. The source code and a Linux executables for SPINE-X are available from Research and Information Systems at http://mamiris.com .

  20. Mouse models of human AML accurately predict chemotherapy response

    PubMed Central

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.

    2009-01-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  1. Mouse models of human AML accurately predict chemotherapy response.

    PubMed

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S; Zhao, Zhen; Rappaport, Amy R; Luo, Weijun; McCurrach, Mila E; Yang, Miao-Miao; Dolan, M Eileen; Kogan, Scott C; Downing, James R; Lowe, Scott W

    2009-04-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients.

  2. Learning regulatory programs that accurately predict differential expression with MEDUSA.

    PubMed

    Kundaje, Anshul; Lianoglou, Steve; Li, Xuejing; Quigley, David; Arias, Marta; Wiggins, Chris H; Zhang, Li; Leslie, Christina

    2007-12-01

    Inferring gene regulatory networks from high-throughput genomic data is one of the central problems in computational biology. In this paper, we describe a predictive modeling approach for studying regulatory networks, based on a machine learning algorithm called MEDUSA. MEDUSA integrates promoter sequence, mRNA expression, and transcription factor occupancy data to learn gene regulatory programs that predict the differential expression of target genes. Instead of using clustering or correlation of expression profiles to infer regulatory relationships, MEDUSA determines condition-specific regulators and discovers regulatory motifs that mediate the regulation of target genes. In this way, MEDUSA meaningfully models biological mechanisms of transcriptional regulation. MEDUSA solves the problem of predicting the differential (up/down) expression of target genes by using boosting, a technique from statistical learning, which helps to avoid overfitting as the algorithm searches through the high-dimensional space of potential regulators and sequence motifs. Experimental results demonstrate that MEDUSA achieves high prediction accuracy on held-out experiments (test data), that is, data not seen in training. We also present context-specific analysis of MEDUSA regulatory programs for DNA damage and hypoxia, demonstrating that MEDUSA identifies key regulators and motifs in these processes. A central challenge in the field is the difficulty of validating reverse-engineered networks in the absence of a gold standard. Our approach of learning regulatory programs provides at least a partial solution for the problem: MEDUSA's prediction accuracy on held-out data gives a concrete and statistically sound way to validate how well the algorithm performs. With MEDUSA, statistical validation becomes a prerequisite for hypothesis generation and network building rather than a secondary consideration.

  3. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  4. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  5. Planar Near-Field Phase Retrieval Using GPUs for Accurate THz Far-Field Prediction

    NASA Astrophysics Data System (ADS)

    Junkin, Gary

    2013-04-01

    With a view to using Phase Retrieval to accurately predict Terahertz antenna far-field from near-field intensity measurements, this paper reports on three fundamental advances that achieve very low algorithmic error penalties. The first is a new Gaussian beam analysis that provides accurate initial complex aperture estimates including defocus and astigmatic phase errors, based only on first and second moment calculations. The second is a powerful noise tolerant near-field Phase Retrieval algorithm that combines Anderson's Plane-to-Plane (PTP) with Fienup's Hybrid-Input-Output (HIO) and Successive Over-Relaxation (SOR) to achieve increased accuracy at reduced scan separations. The third advance employs teraflop Graphical Processing Units (GPUs) to achieve practically real time near-field phase retrieval and to obtain the optimum aperture constraint without any a priori information.

  6. Predicting Academic Achievement with Cognitive Ability

    ERIC Educational Resources Information Center

    Rohde, Treena Eileen; Thompson, Lee Anne

    2007-01-01

    The purpose of the present study is to explain variation in academic achievement with general cognitive ability and specific cognitive abilities. Grade point average, Wide Range Achievement Test III scores, and SAT scores represented academic achievement. The specific cognitive abilities of interest were: working memory, processing speed, and…

  7. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    PubMed Central

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-01-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination. PMID:28304378

  8. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    NASA Astrophysics Data System (ADS)

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-03-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination.

  9. School Achievement Strongly Predicts Midlife IQ

    ERIC Educational Resources Information Center

    Spinks, Ruth; Arndt, Stephan; Caspers, Kristin; Yucuis, Rebecca; McKirgan, L. William; Pfalzgraf, Christopher; Waterman, Elijah

    2007-01-01

    The relationship between measures of IQ and standardized school achievement tests is well established at around r~0.5 when the two are measured in close proximity. The current paper examined the stability of this correlation when comparing elementary school achievement (grades 3-8) and midlife IQ. Iowa Adoption Study participants who had…

  10. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  11. Predicting Undergraduate Music Education Majors' Collegiate Achievement

    ERIC Educational Resources Information Center

    Rohwer, Debbie

    2012-01-01

    In order for teachers to guide students in their preparation to be music majors, it would be useful to know those musical components that best predict overall collegiate success. The purpose of this study was to measure the relationship of predictor variables (Lessons, Music History, Music Theory, and Piano) to collegiate grade point average (GPA)…

  12. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    PubMed Central

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229

  13. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    PubMed

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-07-07

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  14. The MIDAS touch for Accurately Predicting the Stress-Strain Behavior of Tantalum

    SciTech Connect

    Jorgensen, S.

    2016-03-02

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  15. What Specific Preschool Math Skills Predict Later Math Achievement?

    ERIC Educational Resources Information Center

    Nguyen, Tutrang; Watts, Tyler W.; Duncan, Greg J.; Clements, Douglas H.; Sarama, Julie; Wolfe, Christopher B.; Spitler, Mary Elaine

    2015-01-01

    The widespread concern about mathematics achievement has drawn extensive research attention to what skills predict later academic achievement. There is clear and consistent evidence that math achievement at school entry is the strongest predictor of later school success and educational attainment. Early childhood math achievement can thus have…

  16. Prediction of Preoperative Anxiety in Children: Who is Most Accurate?

    PubMed Central

    MacLaren, Jill E.; Thompson, Caitlin; Weinberg, Megan; Fortier, Michelle A.; Morrison, Debra E.; Perret, Danielle; Kain, Zeev N.

    2009-01-01

    Background In this investigation, we sought to assess the ability of pediatric attending anesthesiologists, resident anesthesiologists and mothers to predict anxiety during induction of anesthesia in 2 to 16-year-old children (n=125). Methods Anesthesiologists and mothers provided predictions using a visual analog scale and children's anxiety was assessed using a valid behavior observation tool the Modified Yale Preoperative Anxiety Scale (mYPAS). All mothers were present during anesthetic induction and no child received sedative premedication. Correlational analyses were conducted. Results A total of 125 children aged 2 to 16 years, their mothers, and their attending pediatric anesthesiologists and resident anesthesiologists were studied. Correlational analyses revealed significant associations between attending predictions and child anxiety at induction (rs= 0.38, p<0.001). Resident anesthesiologist and mother predictions were not significantly related to children's anxiety during induction (rs = 0.01 and 0.001, respectively). In terms of accuracy of prediction, 47.2% of predictions made by attending anesthesiologists were within one standard deviation of the observed anxiety exhibited by the child, and 70.4% of predictions were within 2 standard deviations. Conclusions We conclude that attending anesthesiologists who practice in pediatric settings are better than mothers in predicting the anxiety of children during induction of anesthesia. While this finding has significant clinical implications, it is unclear if it can be extended to attending anesthesiologists whose practice is not mostly pediatric anesthesia. PMID:19448201

  17. Accurate similarity index based on activity and connectivity of node for link prediction

    NASA Astrophysics Data System (ADS)

    Li, Longjie; Qian, Lvjian; Wang, Xiaoping; Luo, Shishun; Chen, Xiaoyun

    2015-05-01

    Recent years have witnessed the increasing of available network data; however, much of those data is incomplete. Link prediction, which can find the missing links of a network, plays an important role in the research and analysis of complex networks. Based on the assumption that two unconnected nodes which are highly similar are very likely to have an interaction, most of the existing algorithms solve the link prediction problem by computing nodes' similarities. The fundamental requirement of those algorithms is accurate and effective similarity indices. In this paper, we propose a new similarity index, namely similarity based on activity and connectivity (SAC), which performs link prediction more accurately. To compute the similarity between two nodes, this index employs the average activity of these two nodes in their common neighborhood and the connectivities between them and their common neighbors. The higher the average activity is and the stronger the connectivities are, the more similar the two nodes are. The proposed index not only commendably distinguishes the contributions of paths but also incorporates the influence of endpoints. Therefore, it can achieve a better predicting result. To verify the performance of SAC, we conduct experiments on 10 real-world networks. Experimental results demonstrate that SAC outperforms the compared baselines.

  18. Is Three-Dimensional Soft Tissue Prediction by Software Accurate?

    PubMed

    Nam, Ki-Uk; Hong, Jongrak

    2015-11-01

    The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions.

  19. Fast and accurate automatic structure prediction with HHpred.

    PubMed

    Hildebrand, Andrea; Remmert, Michael; Biegert, Andreas; Söding, Johannes

    2009-01-01

    Automated protein structure prediction is becoming a mainstream tool for biological research. This has been fueled by steady improvements of publicly available automated servers over the last decade, in particular their ability to build good homology models for an increasing number of targets by reliably detecting and aligning more and more remotely homologous templates. Here, we describe the three fully automated versions of the HHpred server that participated in the community-wide blind protein structure prediction competition CASP8. What makes HHpred unique is the combination of usability, short response times (typically under 15 min) and a model accuracy that is competitive with those of the best servers in CASP8.

  20. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration.

  1. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  2. Accurate Theoretical Prediction of the Properties of Energetic Materials

    DTIC Science & Technology

    2007-11-02

    calculations (e.g. Cheetah ). 8. Sensitivity. The structure prediction and lattice potential work will serve as a platform to examine impact/shock...nitromethane molecules. (In an extension of the present work, we will freeze the internal coordinates of the molecules and assess the extent to which the

  3. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    PubMed Central

    Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias

    2016-01-01

    Objective: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. Methods: In this cohort study, 4 EEG specialists, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3–5 until 180 days. Results: Eight TTM sites randomized 202 patients. EEGs were recorded in 103 patients at a median 77 hours after cardiac arrest; 37% had a highly malignant EEG and all had a poor outcome (specificity 100%, sensitivity 50%). Any malignant EEG feature had a low specificity to predict poor prognosis (48%) but if 2 malignant EEG features were present specificity increased to 96% (p < 0.001). Specificity and sensitivity were not significantly affected by targeted temperature or sedation. A benign EEG was found in 1% of the patients with a poor outcome. Conclusions: Highly malignant EEG after rewarming reliably predicted poor outcome in half of patients without false predictions. An isolated finding of a single malignant feature did not predict poor outcome whereas a benign EEG was highly predictive of a good outcome. PMID:26865516

  4. How Accurately Can We Predict Eclipses for Algol? (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2016-06-01

    (Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?

  5. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.

    PubMed

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O Anatole; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-06-18

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  6. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  7. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  8. Predictive rendering for accurate material perception: modeling and rendering fabrics

    NASA Astrophysics Data System (ADS)

    Bala, Kavita

    2012-03-01

    In computer graphics, rendering algorithms are used to simulate the appearance of objects and materials in a wide range of applications. Designers and manufacturers rely entirely on these rendered images to previsualize scenes and products before manufacturing them. They need to differentiate between different types of fabrics, paint finishes, plastics, and metals, often with subtle differences, for example, between silk and nylon, formaica and wood. Thus, these applications need predictive algorithms that can produce high-fidelity images that enable such subtle material discrimination.

  9. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  10. Objective criteria accurately predict amputation following lower extremity trauma.

    PubMed

    Johansen, K; Daines, M; Howey, T; Helfet, D; Hansen, S T

    1990-05-01

    MESS (Mangled Extremity Severity Score) is a simple rating scale for lower extremity trauma, based on skeletal/soft-tissue damage, limb ischemia, shock, and age. Retrospective analysis of severe lower extremity injuries in 25 trauma victims demonstrated a significant difference between MESS values for 17 limbs ultimately salvaged (mean, 4.88 +/- 0.27) and nine requiring amputation (mean, 9.11 +/- 0.51) (p less than 0.01). A prospective trial of MESS in lower extremity injuries managed at two trauma centers again demonstrated a significant difference between MESS values of 14 salvaged (mean, 4.00 +/- 0.28) and 12 doomed (mean, 8.83 +/- 0.53) limbs (p less than 0.01). In both the retrospective survey and the prospective trial, a MESS value greater than or equal to 7 predicted amputation with 100% accuracy. MESS may be useful in selecting trauma victims whose irretrievably injured lower extremities warrant primary amputation.

  11. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2011-09-30

    System via Accurate Light Calculations Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425...incorporate extremely fast but accurate light calculations into coupled physical-biological-optical ocean ecosystem models as used for operational three...dimensional ecosystem predictions. Improvements in light calculations lead to improvements in predictions of chlorophyll concentrations and other

  12. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  13. Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.

    2000-01-01

    The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.

  14. Change in BMI Accurately Predicted by Social Exposure to Acquaintances

    PubMed Central

    Oloritun, Rahman O.; Ouarda, Taha B. M. J.; Moturu, Sai; Madan, Anmol; Pentland, Alex (Sandy); Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R2. This study found a model that explains 68% (p<0.0001) of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends. PMID

  15. Predicting Engineering Major Status from Mathematics Achievement and Interest Congruence

    ERIC Educational Resources Information Center

    Leuwerke, Wade C.; Robbins, Steven; Sawyer, Richard; Hovland, Michael

    2004-01-01

    This study proposed that precollege students' standardized mathematics achievement score and the congruence between their occupational interests and engineering tasks would predict their second-year retention in college and the stability of their major. Binary response models were used to predict second-year major status (i.e., continue, transfer…

  16. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  17. Bender-Gestalt developmental scores: predicting reading and mathematics achievement.

    PubMed

    Nielson, S; Sapp, G L

    1991-08-01

    This study examined the relative importance of perceptual-motor processes and intelligence in predicting reading and mathematics achievement of children of low birthweight. Subjects were two groups of 153 children, ages 6 to 12 years, of either low (3 lb. or below, n = 72) or normal birthweight (n = 81) who participated in a comparative study on sequelae of children of low birthweight. To examine the utility of the Bender-Gestalt test in predicting academic achievement, Bender developmental scores, WRAT reading and mathematics scores, and WISC-R Full Scale IQs from both groups were compared and then intercorrelated separately. The mean comparisons indicated that children of low birthweight scored significantly lower on both Bender scores and reading achievement and had lower IQs than those of normal birthweight. Bender scores also appeared to have more utility for predicting reading and mathematics achievement for children of low birthweight than for those of normal birthweight.

  18. Competence with fractions predicts gains in mathematics achievement.

    PubMed

    Bailey, Drew H; Hoard, Mary K; Nugent, Lara; Geary, David C

    2012-11-01

    Competence with fractions predicts later mathematics achievement, but the codevelopmental pattern between fractions knowledge and mathematics achievement is not well understood. We assessed this codevelopment through examination of the cross-lagged relation between a measure of conceptual knowledge of fractions and mathematics achievement in sixth and seventh grades (N=212). The cross-lagged effects indicated that performance on the sixth grade fractions concepts measure predicted 1-year gains in mathematics achievement (ß=.14, p<.01), controlling for the central executive component of working memory and intelligence, but sixth grade mathematics achievement did not predict gains on the fractions concepts measure (ß=.03, p>.50). In a follow-up assessment, we demonstrated that measures of fluency with computational fractions significantly predicted seventh grade mathematics achievement above and beyond the influence of fluency in computational whole number arithmetic, performance on number fluency and number line tasks, central executive span, and intelligence. Results provide empirical support for the hypothesis that competence with fractions underlies, in part, subsequent gains in mathematics achievement.

  19. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  20. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    PubMed Central

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact

  1. Predicting Student Achievement in Ohio: The Role of Expenditure Distribution

    ERIC Educational Resources Information Center

    De Luca, Barbara M.; Hinshaw, Steven A.

    2013-01-01

    The purpose of this research was to investigate the role of school district expenditures in predicting student achievement in Ohio for the school year 2009-2010. Building upon the concept of the "65 percent solution," the research questions that guided this study were: (1) What percentage of Ohio's school district's operating budgets…

  2. Achieving Accurate Ligament Balancing Using Robotic-Assisted Unicompartmental Knee Arthroplasty

    PubMed Central

    Plate, Johannes F.; Mofidi, Ali; Mannava, Sandeep; Smith, Beth P.; Lang, Jason E.; Poehling, Gary G.; Conditt, Michael A.; Jinnah, Riyaz H.

    2013-01-01

    Unicompartmental knee arthroplasty (UKA) allows replacement of a single compartment in patients with limited disease. However, UKA is technically challenging and relies on accurate component positioning and restoration of natural knee kinematics. This study examined the accuracy of dynamic, real-time ligament balancing using a robotic-assisted UKA system. Surgical data obtained from the computer system were prospectively collected from 51 patients (52 knees) undergoing robotic-assisted medial UKA by a single surgeon. Dynamic ligament balancing of the knee was obtained under valgus stress prior to component implantation and then compared to final ligament balance with the components in place. Ligament balancing was accurate up to 0.53 mm compared to the preoperative plan, with 83% of cases within 1 mm at 0°, 30°, 60°, 90°, and 110° of flexion. Ligamentous laxity of 1.31 ± 0.13 mm at 30° of flexion was corrected successfully to 0.78 ± 0.17 mm (P < 0.05). Robotic-assisted UKA allows accurate and precise reproduction of a surgical balance plan using dynamic, real-time soft-tissue balancing to help restore natural knee kinematics, potentially improving implant survival and functional outcomes. PMID:23634304

  3. True grit and genetics: predicting academic achievement from personality

    PubMed Central

    Rimfeld, Kaili; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2015-01-01

    Grit -- perseverance and passion for long-term goals -- has been shown to be a significant predictor of academic success, even after controlling for other personality factors. Here, for the first time, we use a UK-representative sample and a genetically sensitive design to unpack the etiology of grit and its prediction of academic achievement in comparison to well-established personality traits. For 4,642 16-year-olds (2,321 twin pairs), we used the Grit-S scale (Perseverance of Effort and Consistency of Interest), along with the Big-5 personality traits, to predict scores on the General Certificate of Secondary Education (GCSE) exams, which are administered UK-wide at the end of compulsory education. Twin analyses of Grit Perseverance yielded a heritability estimate of 37% (20% for Consistency of Interest) and no evidence for shared environmental influence. Personality, primarily Conscientiousness, predicts about 6% of the variance in GCSE scores, but Grit adds little to this prediction. Moreover, multivariate twin analyses showed that roughly two-thirds of the GCSE prediction is mediated genetically. Grit Perseverance of Effort and Big-5 Conscientiousness are to a large extent the same trait both phenotypically (r=0.53) and genetically (genetic correlation = 0. 86). We conclude that the etiology of Grit is highly similar to other personality traits, not only in showing substantial genetic influence but also in showing no influence of shared environmental factors. Personality significantly predicts academic achievement, but Grit adds little phenotypically or genetically to the prediction of academic achievement beyond traditional personality factors, especially Conscientiousness. PMID:26867111

  4. Accurate rotational constants for linear interstellar carbon chains: achieving experimental accuracy

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Arunan, Elangannan

    2017-01-01

    Linear carbon chain molecular species remain the dominant theme in interstellar chemistry. Their continuous astronomical observation depends on the availability of accurate spectroscopic parameters. Accurate rotational constants are reported for hundreds of molecular species of astrophysical, spectroscopy and chemical interests from the different linear carbon chains; C_{{n}}H, C_{{n}}H-, C_{{n}}N, C_{{n}}N-, C_{{n}}O, C_{{n}}S, HC_{{n}}S, C_{{n}}Si, CH3(CC)_{{n}}H, HC_{{n}}N, DC_{2{n}+1}N, HC_{2{n}}NC, and CH3(C≡C)_{{n}}CN using three to four moments of inertia calculated from the experimental rotational constants coupled with those obtained from the optimized geometries at the Hartree Fock level. The calculated rotational constants are obtained from the corrected moments of inertia at the Hartfree Fock geometries. The calculated rotational constants show accuracy of few kHz below irrespective of the chain length and terminating groups. The obtained accuracy of few kHz places these rotational constants as excellent tools for both astronomical and laboratory detection of these molecular species of astrophysical interest. From the numerous unidentified lines from different astronomical surveys, transitions corresponding to known and new linear carbon chains could be found using these rotational constants. The astrophysical, spectroscopic and chemical implications of these results are discussed.

  5. Methods to achieve accurate projection of regional and global raster databases

    USGS Publications Warehouse

    Usery, E. Lynn; Seong, Jeong Chang; Steinwand, Dan

    2002-01-01

    Modeling regional and global activities of climatic and human-induced change requires accurate geographic data from which we can develop mathematical and statistical tabulations of attributes and properties of the environment. Many of these models depend on data formatted as raster cells or matrices of pixel values. Recently, it has been demonstrated that regional and global raster datasets are subject to significant error from mathematical projection and that these errors are of such magnitude that model results may be jeopardized (Steinwand, et al., 1995; Yang, et al., 1996; Usery and Seong, 2001; Seong and Usery, 2001). There is a need to develop methods of projection that maintain the accuracy of these datasets to support regional and global analyses and modeling

  6. Comparison of the Minnesota Percepto-Diagnostic Test-Revised and Bender-Gestalt in Predicting Achievement.

    ERIC Educational Resources Information Center

    Fuller, Gerald B.; Vance, Booney

    1993-01-01

    Investigated whether Minnesota Percepto-Diagnostic Test-Revised (MPD-R) or Bender-Gestalt Test (BG) would more accurately predict achievement at first-, third-, and fifth-grade levels. Administered both tests to 84 children in counterbalanced order. Results indicated that MPD-R was better predictor of achievement than BG, especially at first- and…

  7. Cluster abundance in chameleon f(R) gravity I: toward an accurate halo mass function prediction

    NASA Astrophysics Data System (ADS)

    Cataneo, Matteo; Rapetti, David; Lombriser, Lucas; Li, Baojiu

    2016-12-01

    We refine the mass and environment dependent spherical collapse model of chameleon f(R) gravity by calibrating a phenomenological correction inspired by the parameterized post-Friedmann framework against high-resolution N-body simulations. We employ our method to predict the corresponding modified halo mass function, and provide fitting formulas to calculate the enhancement of the f(R) halo abundance with respect to that of General Relativity (GR) within a precision of lesssim 5% from the results obtained in the simulations. Similar accuracy can be achieved for the full f(R) mass function on the condition that the modeling of the reference GR abundance of halos is accurate at the percent level. We use our fits to forecast constraints on the additional scalar degree of freedom of the theory, finding that upper bounds competitive with current Solar System tests are within reach of cluster number count analyses from ongoing and upcoming surveys at much larger scales. Importantly, the flexibility of our method allows also for this to be applied to other scalar-tensor theories characterized by a mass and environment dependent spherical collapse.

  8. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  9. Incremental validity of emotional intelligence ability in predicting academic achievement.

    PubMed

    Lanciano, Tiziana; Curci, Antonietta

    2014-01-01

    We tested the incremental validity of an ability measure of emotional intelligence (El) in predicting academic achievement in undergraduate students, controlling for cognitive abilities and personality traits. Academic achievement has been conceptualized in terms of the number of exams, grade point average, and study time taken to prepare for each exam. Additionally, gender differences were taken into account in these relationships. Participants filled in the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), the Raven's Advanced Progressive Matrices, the reduced version of the Eysenck Personality Questionnaire, and academic achievement measures. Results showed that El abilities were positively related to academic achievement indices, such as the number of exams and grade point average; total El ability and the Perceiving branch were negatively associated with the study time spent preparing for exams. Furthermore, El ability adds a percentage of incremental variance with respect to cognitive ability and personality variables in explaining scholastic success. The magnitude of the associations between El abilities and academic achievement measures was generally higher for men than for women. Jointly considered, the present findings support the incremental validity of the MSCEIT and provide positive indications of the importance of El in students' academic development. The helpfulness of El training in the context of academic institutions is discussed.

  10. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  11. Accurately predicting copper interconnect topographies in foundry design for manufacturability flows

    NASA Astrophysics Data System (ADS)

    Lu, Daniel; Fan, Zhong; Tak, Ki Duk; Chang, Li-Fu; Zou, Elain; Jiang, Jenny; Yang, Josh; Zhuang, Linda; Chen, Kuang Han; Hurat, Philippe; Ding, Hua

    2011-04-01

    This paper presents a model-based Chemical Mechanical Polishing (CMP) Design for Manufacturability (DFM) () methodology that includes an accurate prediction of post-CMP copper interconnect topographies at the advanced process technology nodes. Using procedures of extensive model calibration and validation, the CMP process model accurately predicts post-CMP dimensions, such as erosion, dishing, and copper thickness with excellent correlation to silicon measurements. This methodology provides an efficient DFM flow to detect and fix physical manufacturing hotspots related to copper pooling and Depth of Focus (DOF) failures at both block- and full chip level designs. Moreover, the predicted thickness output is used in the CMP-aware RC extraction and Timing analysis flows for better understanding of performance yield and timing impact. In addition, the CMP model can be applied to the verification of model-based dummy fill flows.

  12. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

    PubMed Central

    Singh, Ritambhara; Kuscu, Cem; Quinlan, Aaron; Qi, Yanjun; Adli, Mazhar

    2015-01-01

    The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites. PMID:26032770

  13. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises.

  14. An effective method for accurate prediction of the first hyperpolarizability of alkalides.

    PubMed

    Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min

    2012-01-15

    The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.

  15. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    PubMed

    Li, Yaoran; Geary, David C

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  16. A fast but accurate excitonic simulation of the electronic circular dichroism of nucleic acids: how can it be achieved?

    PubMed

    Loco, Daniele; Jurinovich, Sandro; Di Bari, Lorenzo; Mennucci, Benedetta

    2016-01-14

    We present and discuss a simple and fast computational approach to the calculation of electronic circular dichroism spectra of nucleic acids. It is based on a exciton model in which the couplings are obtained in terms of the full transition-charge distributions, as resulting from TDDFT methods applied on the individual nucleobases. We validated the method on two systems, a DNA G-quadruplex and a RNA β-hairpin whose solution structures have been accurately determined by means of NMR. We have shown that the different characteristics of composition and structure of the two systems can lead to quite important differences in the dependence of the accuracy of the simulation on the excitonic parameters. The accurate reproduction of the CD spectra together with their interpretation in terms of the excitonic composition suggest that this method may lend itself as a general computational tool to both predict the spectra of hypothetic structures and define clear relationships between structural and ECD properties.

  17. Hash: a Program to Accurately Predict Protein Hα Shifts from Neighboring Backbone Shifts3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2012-01-01

    Chemical shifts provide not only peak identities for analyzing NMR data, but also an important source of conformational information for studying protein structures. Current structural studies requiring Hα chemical shifts suffer from the following limitations. (1) For large proteins, the Hα chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of Cα that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict Hα chemical shifts. Predicting accurate Hα chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict Hα chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate Hα chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins. PMID:23242797

  18. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  19. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    NASA Astrophysics Data System (ADS)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2017-04-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  20. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    NASA Astrophysics Data System (ADS)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2016-12-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  1. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  2. Rapid and Highly Accurate Prediction of Poor Loop Diuretic Natriuretic Response in Patients With Heart Failure

    PubMed Central

    Testani, Jeffrey M.; Hanberg, Jennifer S.; Cheng, Susan; Rao, Veena; Onyebeke, Chukwuma; Laur, Olga; Kula, Alexander; Chen, Michael; Wilson, F. Perry; Darlington, Andrew; Bellumkonda, Lavanya; Jacoby, Daniel; Tang, W. H. Wilson; Parikh, Chirag R.

    2015-01-01

    Background Removal of excess sodium and fluid is a primary therapeutic objective in acute decompensated heart failure (ADHF) and commonly monitored with fluid balance and weight loss. However, these parameters are frequently inaccurate or not collected and require a delay of several hours after diuretic administration before they are available. Accessible tools for rapid and accurate prediction of diuretic response are needed. Methods and Results Based on well-established renal physiologic principles an equation was derived to predict net sodium output using a spot urine sample obtained one or two hours following loop diuretic administration. This equation was then prospectively validated in 50 ADHF patients using meticulously obtained timed 6-hour urine collections to quantitate loop diuretic induced cumulative sodium output. Poor natriuretic response was defined as a cumulative sodium output of <50 mmol, a threshold that would result in a positive sodium balance with twice-daily diuretic dosing. Following a median dose of 3 mg (2–4 mg) of intravenous bumetanide, 40% of the population had a poor natriuretic response. The correlation between measured and predicted sodium output was excellent (r=0.91, p<0.0001). Poor natriuretic response could be accurately predicted with the sodium prediction equation (AUC=0.95, 95% CI 0.89–1.0, p<0.0001). Clinically recorded net fluid output had a weaker correlation (r=0.66, p<0.001) and lesser ability to predict poor natriuretic response (AUC=0.76, 95% CI 0.63–0.89, p=0.002). Conclusions In patients being treated for ADHF, poor natriuretic response can be predicted soon after diuretic administration with excellent accuracy using a spot urine sample. PMID:26721915

  3. Bicluster Sampled Coherence Metric (BSCM) provides an accurate environmental context for phenotype predictions

    PubMed Central

    2015-01-01

    Background Biclustering is a popular method for identifying under which experimental conditions biological signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions. Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals should be included in a bicluster. Results Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004). Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct. Conclusions We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered, resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to more accurately detect under which experimental conditions the genes are co-clustered. Features derived from this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/BSCM. BSCM has been incorporated in the official cMonkey release. PMID:25881257

  4. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism.

    PubMed

    Kieslich, Chris A; Tamamis, Phanourios; Guzman, Yannis A; Onel, Melis; Floudas, Christodoulos A

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/.

  5. Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention.

    PubMed

    Resnic, F S; Ohno-Machado, L; Selwyn, A; Simon, D I; Popma, J J

    2001-07-01

    The objectives of this analysis were to develop and validate simplified risk score models for predicting the risk of major in-hospital complications after percutaneous coronary intervention (PCI) in the era of widespread stenting and use of glycoprotein IIb/IIIa antagonists. We then sought to compare the performance of these simplified models with those of full logistic regression and neural network models. From January 1, 1997 to December 31, 1999, data were collected on 4,264 consecutive interventional procedures at a single center. Risk score models were derived from multiple logistic regression models using the first 2,804 cases and then validated on the final 1,460 cases. The area under the receiver operating characteristic (ROC) curve for the risk score model that predicted death was 0.86 compared with 0.85 for the multiple logistic model and 0.83 for the neural network model (validation set). For the combined end points of death, myocardial infarction, or bypass surgery, the corresponding areas under the ROC curves were 0.74, 0.78, and 0.81, respectively. Previously identified risk factors were confirmed in this analysis. The use of stents was associated with a decreased risk of in-hospital complications. Thus, risk score models can accurately predict the risk of major in-hospital complications after PCI. Their discriminatory power is comparable to those of logistic models and neural network models. Accurate bedside risk stratification may be achieved with these simple models.

  6. Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts.

    PubMed

    Stephanou, Pavlos S; Mavrantzas, Vlasis G

    2014-06-07

    We present a hierarchical computational methodology which permits the accurate prediction of the linear viscoelastic properties of entangled polymer melts directly from the chemical structure, chemical composition, and molecular architecture of the constituent chains. The method entails three steps: execution of long molecular dynamics simulations with moderately entangled polymer melts, self-consistent mapping of the accumulated trajectories onto a tube model and parameterization or fine-tuning of the model on the basis of detailed simulation data, and use of the modified tube model to predict the linear viscoelastic properties of significantly higher molecular weight (MW) melts of the same polymer. Predictions are reported for the zero-shear-rate viscosity η0 and the spectra of storage G'(ω) and loss G″(ω) moduli for several mono and bidisperse cis- and trans-1,4 polybutadiene melts as well as for their MW dependence, and are found to be in remarkable agreement with experimentally measured rheological data.

  7. Prediction of Accurate Thermochemistry of Medium and Large Sized Radicals Using Connectivity-Based Hierarchy (CBH).

    PubMed

    Sengupta, Arkajyoti; Raghavachari, Krishnan

    2014-10-14

    Accurate modeling of the chemical reactions in many diverse areas such as combustion, photochemistry, or atmospheric chemistry strongly depends on the availability of thermochemical information of the radicals involved. However, accurate thermochemical investigations of radical systems using state of the art composite methods have mostly been restricted to the study of hydrocarbon radicals of modest size. In an alternative approach, systematic error-canceling thermochemical hierarchy of reaction schemes can be applied to yield accurate results for such systems. In this work, we have extended our connectivity-based hierarchy (CBH) method to the investigation of radical systems. We have calibrated our method using a test set of 30 medium sized radicals to evaluate their heats of formation. The CBH-rad30 test set contains radicals containing diverse functional groups as well as cyclic systems. We demonstrate that the sophisticated error-canceling isoatomic scheme (CBH-2) with modest levels of theory is adequate to provide heats of formation accurate to ∼1.5 kcal/mol. Finally, we predict heats of formation of 19 other large and medium sized radicals for which the accuracy of available heats of formation are less well-known.

  8. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  9. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  10. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    PubMed

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  11. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    SciTech Connect

    Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R

    2014-01-01

    We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.

  12. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  13. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  14. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    PubMed Central

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-01-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  15. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  16. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGES

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  17. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  18. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  19. Accurate prediction of human drug toxicity: a major challenge in drug development.

    PubMed

    Li, Albert P

    2004-11-01

    Over the past decades, a number of drugs have been withdrawn or have required special labeling due to adverse effects observed post-marketing. Species differences in drug toxicity in preclinical safety tests and the lack of sensitive biomarkers and nonrepresentative patient population in clinical trials are probable reasons for the failures in predicting human drug toxicity. It is proposed that toxicology should evolve from an empirical practice to an investigative discipline. Accurate prediction of human drug toxicity requires resources and time to be spent in clearly defining key toxic pathways and corresponding risk factors, which hopefully, will be compensated by the benefits of a lower percentage of clinical failure due to toxicity and a decreased frequency of market withdrawal due to unacceptable adverse drug effects.

  20. Prediction of Music Achievement in the Elementary School.

    ERIC Educational Resources Information Center

    Hedden, Steven K.

    1982-01-01

    Reports results of a study which examined predictors of music achievement for general music students in the upper elementary grades. Predictors examined were attitude toward music, self-concept in music, music background, academic achievement, and gender. (RM)

  1. Predictive validity of curriculum-based measurement and teacher ratings of academic achievement.

    PubMed

    Kettler, Ryan J; Albers, Craig A

    2013-08-01

    Two alternative universal screening approaches to identify students with early learning difficulties were examined, along with a combination of these approaches. These approaches, consisting of (a) curriculum-based measurement (CBM) and (b) teacher ratings using Performance Screening Guides (PSGs), served as predictors of achievement tests in reading and mathematics. Participants included 413 students in grades 1, 2, and 3 in Tennessee (n=118) and Wisconsin (n=295) who were divided into six subsamples defined by grade and state. Reading and mathematics achievement tests with established psychometric properties were used as criteria within a concurrent and predictive validity framework. Across both achievement areas, CBM probes shared more variance with criterion measures than did teacher ratings, although teacher ratings added incremental validity among most subsamples. PSGs tended to be more accurate for identifying students in need of assistance at a 1-month interval, whereas CBM probes were more accurate at a 6-month interval. Teachers indicated that (a) false negatives are more problematic than are false positives, (b) both screening methods are useful for identifying early learning difficulties, and (c) both screening methods are useful for identifying students in need of interventions. Collectively, these findings suggest that the two types of measures, when used together, yield valuable information about students who need assistance in reading and mathematics.

  2. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF

    PubMed Central

    Koot, Yvonne E. M.; van Hooff, Sander R.; Boomsma, Carolien M.; van Leenen, Dik; Groot Koerkamp, Marian J. A.; Goddijn, Mariëtte; Eijkemans, Marinus J. C.; Fauser, Bart C. J. M.; Holstege, Frank C. P.; Macklon, Nick S.

    2016-01-01

    The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention. PMID:26797113

  3. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals.

    PubMed

    Brian, Jayne V; Harris, Catherine A; Scholze, Martin; Backhaus, Thomas; Booy, Petra; Lamoree, Marja; Pojana, Giulio; Jonkers, Niels; Runnalls, Tamsin; Bonfà, Angela; Marcomini, Antonio; Sumpter, John P

    2005-06-01

    Existing environmental risk assessment procedures are limited in their ability to evaluate the combined effects of chemical mixtures. We investigated the implications of this by analyzing the combined effects of a multicomponent mixture of five estrogenic chemicals using vitellogenin induction in male fathead minnows as an end point. The mixture consisted of estradiol, ethynylestradiol, nonylphenol, octylphenol, and bisphenol A. We determined concentration-response curves for each of the chemicals individually. The chemicals were then combined at equipotent concentrations and the mixture tested using fixed-ratio design. The effects of the mixture were compared with those predicted by the model of concentration addition using biomathematical methods, which revealed that there was no deviation between the observed and predicted effects of the mixture. These findings demonstrate that estrogenic chemicals have the capacity to act together in an additive manner and that their combined effects can be accurately predicted by concentration addition. We also explored the potential for mixture effects at low concentrations by exposing the fish to each chemical at one-fifth of its median effective concentration (EC50). Individually, the chemicals did not induce a significant response, although their combined effects were consistent with the predictions of concentration addition. This demonstrates the potential for estrogenic chemicals to act additively at environmentally relevant concentrations. These findings highlight the potential for existing environmental risk assessment procedures to underestimate the hazard posed by mixtures of chemicals that act via a similar mode of action, thereby leading to erroneous conclusions of absence of risk.

  4. Accurate Prediction of the Response of Freshwater Fish to a Mixture of Estrogenic Chemicals

    PubMed Central

    Brian, Jayne V.; Harris, Catherine A.; Scholze, Martin; Backhaus, Thomas; Booy, Petra; Lamoree, Marja; Pojana, Giulio; Jonkers, Niels; Runnalls, Tamsin; Bonfà, Angela; Marcomini, Antonio; Sumpter, John P.

    2005-01-01

    Existing environmental risk assessment procedures are limited in their ability to evaluate the combined effects of chemical mixtures. We investigated the implications of this by analyzing the combined effects of a multicomponent mixture of five estrogenic chemicals using vitellogenin induction in male fathead minnows as an end point. The mixture consisted of estradiol, ethynylestradiol, nonylphenol, octylphenol, and bisphenol A. We determined concentration–response curves for each of the chemicals individually. The chemicals were then combined at equipotent concentrations and the mixture tested using fixed-ratio design. The effects of the mixture were compared with those predicted by the model of concentration addition using biomathematical methods, which revealed that there was no deviation between the observed and predicted effects of the mixture. These findings demonstrate that estrogenic chemicals have the capacity to act together in an additive manner and that their combined effects can be accurately predicted by concentration addition. We also explored the potential for mixture effects at low concentrations by exposing the fish to each chemical at one-fifth of its median effective concentration (EC50). Individually, the chemicals did not induce a significant response, although their combined effects were consistent with the predictions of concentration addition. This demonstrates the potential for estrogenic chemicals to act additively at environmentally relevant concentrations. These findings highlight the potential for existing environmental risk assessment procedures to underestimate the hazard posed by mixtures of chemicals that act via a similar mode of action, thereby leading to erroneous conclusions of absence of risk. PMID:15929895

  5. IDSite: An accurate approach to predict P450-mediated drug metabolism

    PubMed Central

    Li, Jianing; Schneebeli, Severin T.; Bylund, Joseph; Farid, Ramy; Friesner, Richard A.

    2011-01-01

    Accurate prediction of drug metabolism is crucial for drug design. Since a large majority of drugs metabolism involves P450 enzymes, we herein describe a computational approach, IDSite, to predict P450-mediated drug metabolism. To model induced-fit effects, IDSite samples the conformational space with flexible docking in Glide followed by two refinement stages using the Protein Local Optimization Program (PLOP). Sites of metabolism (SOMs) are predicted according to a physical-based score that evaluates the potential of atoms to react with the catalytic iron center. As a preliminary test, we present in this paper the prediction of hydroxylation and O-dealkylation sites mediated by CYP2D6 using two different models: a physical-based simulation model, and a modification of this model in which a small number of parameters are fit to a training set. Without fitting any parameters to experimental data, the Physical IDSite scoring recovers 83% of the experimental observations for 56 compounds with a very low false positive rate. With only 4 fitted parameters, the Fitted IDSite was trained with the subset of 36 compounds and successfully applied to the other 20 compounds, recovering 94% of the experimental observations with high sensitivity and specificity for both sets. PMID:22247702

  6. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  7. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  8. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  9. A hierarchical approach to accurate predictions of macroscopic thermodynamic behavior from quantum mechanics and molecular simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.

    2005-07-01

    The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density

  10. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    NASA Astrophysics Data System (ADS)

    Shvab, I.; Sadus, Richard J.

    2013-11-01

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm3 for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  11. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water.

    PubMed

    Shvab, I; Sadus, Richard J

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g∕cm(3) for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC∕E and TIP4P∕2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC∕E and TIP4P∕2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  12. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  13. Leveraging MSLQ Data for Predicting Student Achievement Goal Orientations

    ERIC Educational Resources Information Center

    Ali, Liaqat; Hatala, Marek; Winne, Phil; Gaševic, Dragan

    2014-01-01

    This study aims to investigate how the learning strategies and achievement goal orientations of students relate to their academic behaviours and performance in the context of an online learning system. The study also develops and validates a relational model between student learning strategies and achievement goals.

  14. Predicting Mathematics Achievement by Motivation and Self-Efficacy across Gender and Achievement Levels

    ERIC Educational Resources Information Center

    Sartawi, AbdelAziz; Alsawaie, Othman N.; Dodeen, Hamzeh; Tibi, Sana; Alghazo, Iman M.

    2012-01-01

    This study investigated the extent to which self-efficacy and motivation served as a predictor for mathematics achievement of fifth grade students in United Arab Emirates (UAE) across gender and achievement levels. Self-efficacy was measured by two scales, which differed in levels of specificity--Category Specific and Task Specific. Motivation was…

  15. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  16. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  17. Predicting achievement of first semester university science students

    NASA Astrophysics Data System (ADS)

    Gibbs, Al

    1991-12-01

    This paper reports on 11 measures used as predictors of students' achievement in their first semester subjects. The students were enrolled in the same four core subjects of a university general science course. Although a number of statistically significant correlations were found, only one predictor variable, HSC aggregate mark, correlated significantly with each of the achievement variables. One predictor variable entered four of the achievement regression equations, while two variables entered the fifth, accounting for 34 to 54% of the variance. *** DIRECT SUPPORT *** A05A9011 00020

  18. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  19. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.

    PubMed

    Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F

    2011-07-01

    A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.

  20. Point-of-care cardiac troponin test accurately predicts heat stroke severity in rats.

    PubMed

    Audet, Gerald N; Quinn, Carrie M; Leon, Lisa R

    2015-11-15

    Heat stroke (HS) remains a significant public health concern. Despite the substantial threat posed by HS, there is still no field or clinical test of HS severity. We suggested previously that circulating cardiac troponin (cTnI) could serve as a robust biomarker of HS severity after heating. In the present study, we hypothesized that (cTnI) point-of-care test (ctPOC) could be used to predict severity and organ damage at the onset of HS. Conscious male Fischer 344 rats (n = 16) continuously monitored for heart rate (HR), blood pressure (BP), and core temperature (Tc) (radiotelemetry) were heated to maximum Tc (Tc,Max) of 41.9 ± 0.1°C and recovered undisturbed for 24 h at an ambient temperature of 20°C. Blood samples were taken at Tc,Max and 24 h after heat via submandibular bleed and analyzed on ctPOC test. POC cTnI band intensity was ranked using a simple four-point scale via two blinded observers and compared with cTnI levels measured by a clinical blood analyzer. Blood was also analyzed for biomarkers of systemic organ damage. HS severity, as previously defined using HR, BP, and recovery Tc profile during heat exposure, correlated strongly with cTnI (R(2) = 0.69) at Tc,Max. POC cTnI band intensity ranking accurately predicted cTnI levels (R(2) = 0.64) and HS severity (R(2) = 0.83). Five markers of systemic organ damage also correlated with ctPOC score (albumin, alanine aminotransferase, blood urea nitrogen, cholesterol, and total bilirubin; R(2) > 0.4). This suggests that cTnI POC tests can accurately determine HS severity and could serve as simple, portable, cost-effective HS field tests.

  1. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics

    PubMed Central

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  2. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    PubMed

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  3. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    PubMed

    Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish

    2016-04-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy.

  4. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    SciTech Connect

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  5. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina

    PubMed Central

    Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish

    2016-01-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  6. Fast and accurate pressure-drop prediction in straightened atherosclerotic coronary arteries.

    PubMed

    Schrauwen, Jelle T C; Koeze, Dion J; Wentzel, Jolanda J; van de Vosse, Frans N; van der Steen, Anton F W; Gijsen, Frank J H

    2015-01-01

    Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD. As a first step towards exploring the proposed method we investigated ten straightened coronary arteries. First, the flow fields were calculated with CFD and velocity profiles were fitted on the results. Second, the Navier-Stokes equation was simplified and solved with the found velocity profiles to obtain a pressure-drop estimate (Δp (1)). Next, Δp (1) was compared to the pressure-drop from CFD (Δp CFD) as a validation step. Finally, the velocity profiles, and thus the pressure-drop were predicted based on geometry and flow, resulting in Δp geom. We found that Δp (1) adequately estimated Δp CFD with velocity profiles that have one free parameter β. This β was successfully related to geometry and flow, resulting in an excellent agreement between Δp CFD and Δp geom: 3.9 ± 4.9% difference at Re = 150. We showed that this method can quickly and accurately predict pressure-drop on the basis of geometry and flow in straightened coronary arteries that are mildly diseased.

  7. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  8. Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning

    PubMed Central

    Abraham, Gad; Tye-Din, Jason A.; Bhalala, Oneil G.; Kowalczyk, Adam; Zobel, Justin; Inouye, Michael

    2014-01-01

    Practical application of genomic-based risk stratification to clinical diagnosis is appealing yet performance varies widely depending on the disease and genomic risk score (GRS) method. Celiac disease (CD), a common immune-mediated illness, is strongly genetically determined and requires specific HLA haplotypes. HLA testing can exclude diagnosis but has low specificity, providing little information suitable for clinical risk stratification. Using six European cohorts, we provide a proof-of-concept that statistical learning approaches which simultaneously model all SNPs can generate robust and highly accurate predictive models of CD based on genome-wide SNP profiles. The high predictive capacity replicated both in cross-validation within each cohort (AUC of 0.87–0.89) and in independent replication across cohorts (AUC of 0.86–0.9), despite differences in ethnicity. The models explained 30–35% of disease variance and up to ∼43% of heritability. The GRS's utility was assessed in different clinically relevant settings. Comparable to HLA typing, the GRS can be used to identify individuals without CD with ≥99.6% negative predictive value however, unlike HLA typing, fine-scale stratification of individuals into categories of higher-risk for CD can identify those that would benefit from more invasive and costly definitive testing. The GRS is flexible and its performance can be adapted to the clinical situation by adjusting the threshold cut-off. Despite explaining a minority of disease heritability, our findings indicate a genomic risk score provides clinically relevant information to improve upon current diagnostic pathways for CD and support further studies evaluating the clinical utility of this approach in CD and other complex diseases. PMID:24550740

  9. Energy expenditure during level human walking: seeking a simple and accurate predictive solution.

    PubMed

    Ludlow, Lindsay W; Weyand, Peter G

    2016-03-01

    Accurate prediction of the metabolic energy that walking requires can inform numerous health, bodily status, and fitness outcomes. We adopted a two-step approach to identifying a concise, generalized equation for predicting level human walking metabolism. Using literature-aggregated values we compared 1) the predictive accuracy of three literature equations: American College of Sports Medicine (ACSM), Pandolf et al., and Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible from one- vs. two-component descriptions of walking metabolism. Literature metabolic rate values (n = 127; speed range = 0.4 to 1.9 m/s) were aggregated from 25 subject populations (n = 5-42) whose means spanned a 1.8-fold range of heights and a 4.2-fold range of weights. Population-specific resting metabolic rates (V̇o2 rest) were determined using standardized equations. Our first finding was that the ACSM and Pandolf et al. equations underpredicted nearly all 127 literature-aggregated values. Consequently, their standard errors of estimate (SEE) were nearly four times greater than those of the HWS equation (4.51 and 4.39 vs. 1.13 ml O2·kg(-1)·min(-1), respectively). For our second comparison, empirical best-fit relationships for walking metabolism were derived from the data set in one- and two-component forms for three V̇o2-speed model types: linear (∝V(1.0)), exponential (∝V(2.0)), and exponential/height (∝V(2.0)/Ht). We found that the proportion of variance (R(2)) accounted for, when averaged across the three model types, was substantially lower for one- vs. two-component versions (0.63 ± 0.1 vs. 0.90 ± 0.03) and the predictive errors were nearly twice as great (SEE = 2.22 vs. 1.21 ml O2·kg(-1)·min(-1)). Our final analysis identified the following concise, generalized equation for predicting level human walking metabolism: V̇o2 total = V̇o2 rest + 3.85 + 5.97·V(2)/Ht (where V is measured in m/s, Ht in meters, and V̇o2 in ml O2·kg(-1)·min(-1)).

  10. Do Creativity Self-Beliefs Predict Literacy Achievement and Motivation?

    ERIC Educational Resources Information Center

    Putwain, David W.; Kearsley, Rebecca; Symes, Wendy

    2012-01-01

    Previous work has suggested that creativity self-beliefs show only small relations with academic achievement and may only be related to intrinsic, not extrinsic motivation. We set out to re-examine these relationships accounting for the multifaceted and process embedded nature of creativity self-beliefs and the full domain range of extrinsic…

  11. Four Methods of Handling Missing Data in Predicting Educational Achievement.

    ERIC Educational Resources Information Center

    Witta, E. Lea

    Four methods of handling missing data were applied to missing values for variables selected from the National Education Longitudinal Study of 1988. Variables used were those selected by K. Singh and M. Ozturk (1999) for a study concerning high school students' academic achievement and work. Samples selected consisted of 100 cases, 300 cases, and…

  12. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  13. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  14. Age and Achievement: The Age Factor in Predicting Academic Success.

    ERIC Educational Resources Information Center

    Hong, Sung-Mook

    1982-01-01

    In recent years a dramatic increase in enrollments of mature age students has occurred in courses of arts, social sciences, and humanities. The main objective of this study was to examine the predictive value of the age factor in the academic performance of behavioral science students at a regional college of advanced education in Australia. (SSH)

  15. Longitudinal Prediction of School Achievement for Metis and Eskimo Pupils.

    ERIC Educational Resources Information Center

    MacArthur, R.S.

    Research in this effort attempted to review evidence of the construct validity of certain measures of intellectual potential for Canadian native pupils, and to examine the relative predictive validity, over a four-year period, of several measures of general intellectual ability for a sample of Metis pupils at Faust, Alberta, and 2 samples of…

  16. The Effectiveness of Academic Interest Scales in Predicting College Achievement.

    ERIC Educational Resources Information Center

    Johnson, Richard W.

    The predictive validities of various SVIB academic interest scales were assessed with first semester freshman males at the University of Massachusetts. Both the Rust and Ryan and the Campbell and Johansson scales contributed significantly, albeit modestly, to a multiple correlation coefficient consisting of high school rank and scholastic aptitude…

  17. The Prediction of Reading Achievement in Grade One.

    ERIC Educational Resources Information Center

    Morrison, James B., Jr.

    The purpose of this study was to devise a simple instrument that could be helpful in predicting reading success by classroom teachers and school administrators who are not experts in the field of reading. The subjects, 190 randomly selected first graders, were given "Alphabet" and "Numbers" of the Metropolitan Readiness Tests and "Information" and…

  18. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.

    PubMed

    Polzer, S; Gasser, T C; Novak, K; Man, V; Tichy, M; Skacel, P; Bursa, J

    2015-03-01

    Structure-based constitutive models might help in exploring mechanisms by which arterial wall histology is linked to wall mechanics. This study aims to validate a recently proposed structure-based constitutive model. Specifically, the model's ability to predict mechanical biaxial response of porcine aortic tissue with predefined collagen structure was tested. Histological slices from porcine thoracic aorta wall (n=9) were automatically processed to quantify the collagen fiber organization, and mechanical testing identified the non-linear properties of the wall samples (n=18) over a wide range of biaxial stretches. Histological and mechanical experimental data were used to identify the model parameters of a recently proposed multi-scale constitutive description for arterial layers. The model predictive capability was tested with respect to interpolation and extrapolation. Collagen in the media was predominantly aligned in circumferential direction (planar von Mises distribution with concentration parameter bM=1.03 ± 0.23), and its coherence decreased gradually from the luminal to the abluminal tissue layers (inner media, b=1.54 ± 0.40; outer media, b=0.72 ± 0.20). In contrast, the collagen in the adventitia was aligned almost isotropically (bA=0.27 ± 0.11), and no features, such as families of coherent fibers, were identified. The applied constitutive model captured the aorta biaxial properties accurately (coefficient of determination R(2)=0.95 ± 0.03) over the entire range of biaxial deformations and with physically meaningful model parameters. Good predictive properties, well outside the parameter identification space, were observed (R(2)=0.92 ± 0.04). Multi-scale constitutive models equipped with realistic micro-histological data can predict macroscopic non-linear aorta wall properties. Collagen largely defines already low strain properties of media, which explains the origin of wall anisotropy seen at this strain level. The structure and mechanical

  19. Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile.

    PubMed

    Faraggi, Eshel; Kouza, Maksim; Zhou, Yaoqi; Kloczkowski, Andrzej

    2017-01-01

    A fast accessible surface area (ASA) predictor is presented. In this new approach no residue mutation profiles generated by multiple sequence alignments are used as inputs. Instead, we use only single sequence information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for ASAquick are available from Research and Information Systems at http://mamiris.com and from the Battelle Center for Mathematical Medicine at http://mathmed.org .

  20. A trial studying approach to predict college achievement.

    PubMed

    Meijer, Rob R; Niessen, A Susan M

    2015-01-01

    We argue that using trial studying is a reliable and valid way to select students for higher education. This method is based on a work sample approach often used in personnel selection contexts. We discuss that this method has predictive validity for study success, has high acceptance by stakeholders, and measures self-regulation in a high-stakes testing context that cannot be measured through self-report questionnaires. We suggest further research to implement this method to select students.

  1. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory

    NASA Astrophysics Data System (ADS)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.

    2016-10-01

    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  2. New consensus definition for acute kidney injury accurately predicts 30-day mortality in cirrhosis with infection

    PubMed Central

    Wong, Florence; O’Leary, Jacqueline G; Reddy, K Rajender; Patton, Heather; Kamath, Patrick S; Fallon, Michael B; Garcia-Tsao, Guadalupe; Subramanian, Ram M.; Malik, Raza; Maliakkal, Benedict; Thacker, Leroy R; Bajaj, Jasmohan S

    2015-01-01

    Background & Aims A consensus conference proposed that cirrhosis-associated acute kidney injury (AKI) be defined as an increase in serum creatinine by >50% from the stable baseline value in <6 months or by ≥0.3mg/dL in <48 hrs. We prospectively evaluated the ability of these criteria to predict mortality within 30 days among hospitalized patients with cirrhosis and infection. Methods 337 patients with cirrhosis admitted with or developed an infection in hospital (56% men; 56±10 y old; model for end-stage liver disease score, 20±8) were followed. We compared data on 30-day mortality, hospital length-of-stay, and organ failure between patients with and without AKI. Results 166 (49%) developed AKI during hospitalization, based on the consensus criteria. Patients who developed AKI had higher admission Child-Pugh (11.0±2.1 vs 9.6±2.1; P<.0001), and MELD scores (23±8 vs17±7; P<.0001), and lower mean arterial pressure (81±16mmHg vs 85±15mmHg; P<.01) than those who did not. Also higher amongst patients with AKI were mortality in ≤30 days (34% vs 7%), intensive care unit transfer (46% vs 20%), ventilation requirement (27% vs 6%), and shock (31% vs 8%); AKI patients also had longer hospital stays (17.8±19.8 days vs 13.3±31.8 days) (all P<.001). 56% of AKI episodes were transient, 28% persistent, and 16% resulted in dialysis. Mortality was 80% among those without renal recovery, higher compared to partial (40%) or complete recovery (15%), or AKI-free patients (7%; P<.0001). Conclusions 30-day mortality is 10-fold higher among infected hospitalized cirrhotic patients with irreversible AKI than those without AKI. The consensus definition of AKI accurately predicts 30-day mortality, length of hospital stay, and organ failure. PMID:23999172

  3. Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models.

    PubMed

    Krokhotin, Andrey; Dokholyan, Nikolay V

    2015-01-01

    Computational methods can provide significant insights into RNA structure and dynamics, bridging the gap in our understanding of the relationship between structure and biological function. Simulations enrich and enhance our understanding of data derived on the bench, as well as provide feasible alternatives to costly or technically challenging experiments. Coarse-grained computational models of RNA are especially important in this regard, as they allow analysis of events occurring in timescales relevant to RNA biological function, which are inaccessible through experimental methods alone. We have developed a three-bead coarse-grained model of RNA for discrete molecular dynamics simulations. This model is efficient in de novo prediction of short RNA tertiary structure, starting from RNA primary sequences of less than 50 nucleotides. To complement this model, we have incorporated additional base-pairing constraints and have developed a bias potential reliant on data obtained from hydroxyl probing experiments that guide RNA folding to its correct state. By introducing experimentally derived constraints to our computer simulations, we are able to make reliable predictions of RNA tertiary structures up to a few hundred nucleotides. Our refined model exemplifies a valuable benefit achieved through integration of computation and experimental methods.

  4. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods.

  5. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  6. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  7. Accurate prediction of band gaps and optical properties of HfO2

    NASA Astrophysics Data System (ADS)

    Ondračka, Pavel; Holec, David; Nečas, David; Zajíčková, Lenka

    2016-10-01

    We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran-Blaha modified Becke-Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe-Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO2 was obtained only in the latter case.

  8. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  9. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.

    PubMed

    Titze, Ingo; Riede, Tobias; Mau, Ted

    2016-06-01

    Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size), range of fundamental frequency is facilitated by (1) laryngeal muscles that control elongation and by (2) nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid), so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers), increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.

  10. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species

    PubMed Central

    Titze, Ingo; Riede, Tobias; Mau, Ted

    2016-01-01

    Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size), range of fundamental frequency is facilitated by (1) laryngeal muscles that control elongation and by (2) nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid), so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers), increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations. PMID:27309543

  11. Raoult’s law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments

    PubMed Central

    Bowler, Michael G.

    2017-01-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111–114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult’s law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult’s law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult’s law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample. PMID:28381983

  12. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  13. Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes

    PubMed Central

    Zhao, Li; Chen, Yiyun; Bajaj, Amol Onkar; Eblimit, Aiden; Xu, Mingchu; Soens, Zachry T.; Wang, Feng; Ge, Zhongqi; Jung, Sung Yun; He, Feng; Li, Yumei; Wensel, Theodore G.; Qin, Jun; Chen, Rui

    2016-01-01

    Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases. PMID:26912414

  14. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  15. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a

  16. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a

  17. Predicting Performance Achievement and Retention of Fifth-Grade Instrumental Students.

    ERIC Educational Resources Information Center

    Klinedinst, Richard E.

    1991-01-01

    Discusses a study of the ability of 11 variables to predict performance, achievement, teacher evaluation, and retention of fifth grade beginning instrumentalists. Reports that scholastic ability and academic achievement tests were leading predictors of performance achievement. Concludes that socioeconomic status and self-concept played prominent…

  18. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals

    NASA Astrophysics Data System (ADS)

    Lau, K.-C.; Ng, C. Y.

    2006-01-01

    The ionization energies (IEs) for the 2-propyl (2-C3H7), phenyl (C6H5), and benzyl (C6H5CH2) radicals have been calculated by the wave-function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasiperturbative triple excitation [CCSD(T)]. The zero-point vibrational energy correction, the core-valence electronic correction, and the scalar relativistic effect correction have been also made in these calculations. Although a precise IE value for the 2-C3H7 radical has not been directly determined before due to the poor Franck-Condon factor for the photoionization transition at the ionization threshold, the experimental value deduced indirectly using other known energetic data is found to be in good accord with the present CCSD(T)/CBS prediction. The comparison between the predicted value through the focal-point analysis and the highly precise experimental value for the IE(C6H5CH2) determined in the previous pulsed field ionization photoelectron (PFI-PE) study shows that the CCSD(T)/CBS method is capable of providing an accurate IE prediction for C6H5CH2, achieving an error limit of 35 meV. The benchmarking of the CCSD(T)/CBS IE(C6H5CH2) prediction suggests that the CCSD(T)/CBS IE(C6H5) prediction obtained here has a similar accuracy of 35 meV. Taking into account this error limit for the CCSD(T)/CBS prediction and the experimental uncertainty, the CCSD(T)/CBS IE(C6H5) value is also consistent with the IE(C6H5) reported in the previous HeI photoelectron measurement. Furthermore, the present study provides support for the conclusion that the CCSD(T)/CBS approach with high-level energy corrections can be used to provide reliable IE predictions for C3-C7 hydrocarbon radicals with an uncertainty of +/-35 meV. Employing the atomization scheme, we have also computed the 0 K (298 K) heats of formation in kJ/mol at the CCSD(T)/CBS level for 2-C3H7

  19. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  20. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  1. An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes.

    PubMed

    Wang, Jia-Nan; Jin, Jun-Ling; Geng, Yun; Sun, Shi-Ling; Xu, Hong-Liang; Lu, Ying-Hua; Su, Zhong-Min

    2013-03-15

    Recently, the extreme learning machine neural network (ELMNN) as a valid computing method has been proposed to predict the nonlinear optical property successfully (Wang et al., J. Comput. Chem. 2012, 33, 231). In this work, first, we follow this line of work to predict the electronic excitation energies using the ELMNN method. Significantly, the root mean square deviation of the predicted electronic excitation energies of 90 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives between the predicted and experimental values has been reduced to 0.13 eV. Second, four groups of molecule descriptors are considered when building the computing models. The results show that the quantum chemical descriptions have the closest intrinsic relation with the electronic excitation energy values. Finally, a user-friendly web server (EEEBPre: Prediction of electronic excitation energies for BODIPY dyes), which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. We hope that this web server would be helpful to theoretical and experimental chemists in related research.

  2. Sensor data fusion for accurate cloud presence prediction using Dempster-Shafer evidence theory.

    PubMed

    Li, Jiaming; Luo, Suhuai; Jin, Jesse S

    2010-01-01

    Sensor data fusion technology can be used to best extract useful information from multiple sensor observations. It has been widely applied in various applications such as target tracking, surveillance, robot navigation, signal and image processing. This paper introduces a novel data fusion approach in a multiple radiation sensor environment using Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The potential application areas of the algorithm include renewable power for virtual power station where the prediction of cloud presence is the most challenging issue for its photovoltaic output. The algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine occurrence data that were recorded as the benchmark. Our experiments have indicated that comparing to the approaches using individual sensors, the proposed data fusion approach can increase correct rate of cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three percent.

  3. Predicting Student Success on the Third Grade Reading Achievement Assessment in Ohio

    ERIC Educational Resources Information Center

    Cramer, Todd M.

    2010-01-01

    Since the passage of the first Elementary and Secondary Education Act in 1965, increasing reading achievement for all students has been a focus for our nation. Unfortunately, our country still has over 30 million citizens who are illiterate (Mukherjee, 2007). One of the challenges for schools is to accurately identify students in need of early…

  4. Predicting Singapore Students' Achievement Goals in Their English Study: Self-Construal and Classroom Goal Structure

    ERIC Educational Resources Information Center

    Luo, Wenshu; Hogan, David; Paris, Scott G.

    2011-01-01

    This study examined the role of self-construal and classroom goal structure in predicting Singapore secondary students' achievement goals in their English study. Students from 104 classes were administered surveys of achievement goals, classroom goal structure, English self-concept, and self-construal. The results of two-level hierarchical linear…

  5. Predicting the Academic Achievement of Gifted Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Assouline, Susan G.; Foley Nicpon, Megan; Dockery, Lori

    2012-01-01

    We are not well informed regarding the ability-achievement relationship for twice-exceptional individuals (very high cognitive ability and a diagnosed disability, e.g., autism spectrum disorder [ASD]). The research question for this investigation (N = 59) focused on the predictability of achievement among variables related to ability and education…

  6. Incremental Efficiency of WISC-III Factor Scores in Predicting Achievement: What Do They Tell Us?

    ERIC Educational Resources Information Center

    Glutting, Joseph J.; Youngstrom, Eric A.; Ward, Thomas; Ward, Sandra; Hale, Robert L.

    1997-01-01

    The incremental validity of factor scores from the Wechlser Intelligence Scale for Children-III (WISC-III) in predicting scores on the Wechsler Individual Achievement Test (WIAT) was studied in 283 nonreferred children and 636 referred for evaluation. The Full Scale IQ of the WISC-III was the best predictor of WIAT achievement. (SLD)

  7. Predicting Students' Academic Achievement: Contributions of Perceptions of Classroom Assessment Tasks and Motivated Learning Strategies

    ERIC Educational Resources Information Center

    Alkharusi, Hussain

    2016-01-01

    Introduction: Students are daily exposed to a variety of assessment tasks in the classroom. It has long been recognized that students' perceptions of the assessment tasks may influence student academic achievement. The present study aimed at predicting academic achievement in mathematics from perceptions of the assessment tasks after controlling…

  8. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    ERIC Educational Resources Information Center

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  9. Comparison of Self-Beliefs for Predicting Student Motivation and Achievement

    ERIC Educational Resources Information Center

    Bong, Mimi; Cho, Catherine; Ahn, Hyun Seon; Kim, Hye Jin

    2012-01-01

    The authors examined whether self-concept, self-efficacy, and self-esteem show differential predictive utility for academic achievement across age groups and domains. More specifically, the relationships of 3 self-constructs with achievement were examined in mathematics for elementary school students and mathematics and language arts for middle…

  10. Predicting Seventh Grade Students' Engagement in Science by Their Achievement Goals

    ERIC Educational Resources Information Center

    Hidiroglu, Melike; Sungur, Semra

    2015-01-01

    The aim of this study was to examine how well seventh grade students' engagement in science can be predicted by their achievement goals. For the specified purpose, a correlational research design was utilized. Data were obtained from 153 seventh grade students through administration of Achievement Goal Questionnaire and Engagement Questionnaire.…

  11. Incremental Validity of Thinking Styles in Predicting Academic Achievements: An Experimental Study in Hypermedia Learning Environments

    ERIC Educational Resources Information Center

    Fan, Weiqiao; Zhang, Li-Fang; Watkins, David

    2010-01-01

    The study examined the incremental validity of thinking styles in predicting academic achievement after controlling for personality and achievement motivation in the hypermedia-based learning environment. Seventy-two Chinese college students from Shanghai, the People's Republic of China, took part in this instructional experiment. The…

  12. The Explanatory and Predictive Relationship Pattern between University Students' Goal Orientation Behaviours and Their Academic Achievement

    ERIC Educational Resources Information Center

    Akpur, Ugur

    2016-01-01

    The purpose of this study is to determine the explanatory and predictive relationship pattern between university students' goal orientation behaviours and their academic achievement. The study group consisted of 259 university students. A "2x2 Achievement Goal Orientations Scale" was used to determine the students' goal orientation…

  13. Predicting Pre-Service Teachers' Intention of Implementing Peer Assessment for Low-Achieving Students

    ERIC Educational Resources Information Center

    Yim, Su Yon; Cho, Young Hoan

    2016-01-01

    Despite the benefits of peer assessment, many teachers are not willing to implement it, particularly for low-achieving students. This study used the theory of planned behaviour to predict pre-service teachers' intention to use peer assessment for low-achieving students. A total of 229 pre-service teachers in Singapore participated in the survey…

  14. Autonomic Regulation on the Stroop Predicts Reading Achievement in School Age Children

    ERIC Educational Resources Information Center

    Becker, Derek R.; Carrere, Sybil; Siler, Chelsea; Jones, Stephanie; Bowie, Bonnie; Cooke, Cheryl

    2012-01-01

    In this study we examined high frequency heart rate variability (HF-HRV, a parasympathetic index) both at rest and during challenge, to assess if variations in cardiovascular activity measured during a Stroop task could be used to predict reading achievement in typically developing children. Reading achievement was examined using the Peabody…

  15. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy.

  16. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response.

  17. The Role of Teachers' Support in Predicting Students' Motivation and Achievement Outcomes in Physical Education

    ERIC Educational Resources Information Center

    Zhang, Tao; Solmon, Melinda A.; Gu, Xiangli

    2012-01-01

    Examining how teachers' beliefs and behaviors predict students' motivation and achievement outcomes in physical education is an area of increasing research interest. Guided by the expectancy-value model and self-determination theory, the major purpose of this study was to examine the predictive strength of teachers' autonomy, competence, and…

  18. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles.

    PubMed

    Kosugi, Shunichi; Yanagawa, Hiroshi; Terauchi, Ryohei; Tabata, Satoshi

    2014-09-01

    The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific recognition of leucine-rich nuclear export signals (NESs) in the cargo proteins, and modulates nuclear-cytoplasmic protein shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS). Although the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of their specificity. We found that each residue within an NES largely contributes independently and additively to the entire nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.

  19. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

    PubMed Central

    Kim, Minseung; Rai, Navneet; Zorraquino, Violeta; Tagkopoulos, Ilias

    2016-01-01

    A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery. PMID:27713404

  20. Accurate dosimetry with GafChromic EBT film of a 6 MV photon beam in water: What level is achievable?

    SciTech Connect

    Battum, L. J. van; Hoffmans, D.; Piersma, H.; Heukelom, S.

    2008-02-15

    This paper focuses on the accuracy, in absolute dose measurements, with GafChromic EBT film achievable in water for a 6 MV photon beam up to a dose of 2.3 Gy. Motivation is to get an absolute dose detection system to measure up dose distributions in a (water) phantom, to check dose calculations. An Epson 1680 color (red green blue) transmission flatbed scanner has been used as film scanning system, where the response in the red color channel has been extracted and used for the analyses. The influence of the flatbed film scanner on the film based dose detection process was investigated. The scan procedure has been optimized; i.e. for instance a lateral correction curve was derived to correct the scan value, up to 10%, as a function of optical density and lateral position. Sensitometric curves of different film batches were evaluated in portrait and landscape scan mode. Between various batches important variations in sensitometric curve were observed. Energy dependence of the film is negligible, while a slight variation in dose response is observed for very large angles between film surface and incident photon beam. Improved accuracy in absolute dose detection can be obtained by repetition of a film measurement to tackle at least the inherent presence of film inhomogeneous construction. We state that the overall uncertainty is random in absolute EBT film dose detection and of the order of 1.3% (1 SD) under the condition that the film is scanned in a limited centered area on the scanner and at least two films have been applied. At last we advise to check a new film batch on its characteristics compared to available information, before using that batch for absolute dose measurements.

  1. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  2. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  3. Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction

    DTIC Science & Technology

    2014-09-01

    SUBJECT TERMS EOARD, orbital debris , HAMR objects, multi-layered insulation, orbital dynamics, orbit predictions, orbital propagation 16. SECURITY...illustration are orbital debris [Souce: NASA...piece of space junk (a paint fleck) during the STS-7 mission (Photo: NASA Orbital Debris Program Office

  4. Hippocampus neuronal metabolic gene expression outperforms whole tissue data in accurately predicting Alzheimer's disease progression.

    PubMed

    Stempler, Shiri; Waldman, Yedael Y; Wolf, Lior; Ruppin, Eytan

    2012-09-01

    Numerous metabolic alterations are associated with the impairment of brain cells in Alzheimer's disease (AD). Here we use gene expression microarrays of both whole hippocampus tissue and hippocampal neurons of AD patients to investigate the ability of metabolic gene expression to predict AD progression and its cognitive decline. We find that the prediction accuracy of different AD stages is markedly higher when using neuronal expression data (0.9) than when using whole tissue expression (0.76). Furthermore, the metabolic genes' expression is shown to be as effective in predicting AD severity as the entire gene list. Remarkably, a regression model from hippocampal metabolic gene expression leads to a marked correlation of 0.57 with the Mini-Mental State Examination cognitive score. Notably, the expression of top predictive neuronal genes in AD is significantly higher than that of other metabolic genes in the brains of healthy subjects. All together, the analyses point to a subset of metabolic genes that is strongly associated with normal brain functioning and whose disruption plays a major role in AD.

  5. Predicting repeat self-harm in children--how accurate can we expect to be?

    PubMed

    Chitsabesan, Prathiba; Harrington, Richard; Harrington, Valerie; Tomenson, Barbara

    2003-01-01

    The main objective of the study was to find which variables predict repetition of deliberate self-harm in children. The study is based on a group of children who took part in a randomized control trial investigating the effects of a home-based family intervention for children who had deliberately poisoned themselves. These children had a range of baseline and outcome measures collected on two occasions (two and six months follow-up). Outcome data were collected from 149 (92 %) of the initial 162 children over the six months. Twenty-three children made a further deliberate self-harm attempt within the follow-up period. A number of variables at baseline were found to be significantly associated with repeat self-harm. Parental mental health and a history of previous attempts were the strongest predictors. A model of prediction of further deliberate self-harm combining these significant individual variables produced a high positive predictive value (86 %) but had low sensitivity (28 %). Predicting repeat self-harm in children is difficult, even with a comprehensive series of assessments over multiple time points, and we need to adapt services with this in mind. We propose a model of service provision which takes these findings into account.

  6. Which Preschool Mathematics Competencies Are Most Predictive of Fifth Grade Achievement?

    PubMed Central

    Nguyen, Tutrang; Watts, Tyler W.; Duncan, Greg J.; Clements, Douglas H.; Sarama, Julie S.; Wolfe, Christopher; Spitler, Mary Elaine

    2016-01-01

    In an effort to promote best practices regarding mathematics teaching and learning at the preschool level, national advisory panels and organizations have emphasized the importance of children’s emergent counting and related competencies, such as the ability to verbally count, maintain one-to-one correspondence, count with cardinality, subitize, and count forward or backward from a given number. However, little research has investigated whether the kind of mathematical knowledge promoted by the various standards documents actually predict later mathematics achievement. The present study uses longitudinal data from a primarily low-income and minority sample of children to examine the extent to which preschool mathematical competencies, specifically basic and advanced counting, predict fifth grade mathematics achievement. Using regression analyses, we find early numeracy abilities to be the strongest predictors of later mathematics achievement, with advanced counting competencies more predictive than basic counting competencies. Our results highlight the significance of preschool mathematics knowledge for future academic achievement. PMID:27057084

  7. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products.

    PubMed

    Hashmi, Muhammad Ali; Andreassend, Sarah K; Keyzers, Robert A; Lein, Matthias

    2016-09-21

    Despite advances in electronic structure theory the theoretical prediction of spectroscopic properties remains a computational challenge. This is especially true for natural products that exhibit very large conformational freedom and hence need to be sampled over many different accessible conformations. We report a strategy, which is able to predict NMR chemical shifts and more elusive properties like the optical rotation with great precision, through step-wise incremental increases of the conformational degrees of freedom. The application of this method is demonstrated for 3-epi-xestoaminol C, a chiral natural compound with a long, linear alkyl chain of 14 carbon atoms. Experimental NMR and [α]D values are reported to validate the results of the density functional theory calculations.

  8. Predicting Children's Reading and Mathematics Achievement from Early Quantitative Knowledge and Domain-General Cognitive Abilities

    PubMed Central

    Chu, Felicia W.; vanMarle, Kristy; Geary, David C.

    2016-01-01

    One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted

  9. Predicting Children's Reading and Mathematics Achievement from Early Quantitative Knowledge and Domain-General Cognitive Abilities.

    PubMed

    Chu, Felicia W; vanMarle, Kristy; Geary, David C

    2016-01-01

    One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted

  10. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    PubMed

    El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  11. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data.

    PubMed

    Pagán, Josué; De Orbe, M Irene; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L; Mora, J Vivancos; Moya, José M; Ayala, José L

    2015-06-30

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives.

  12. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  13. Fast and accurate numerical method for predicting gas chromatography retention time.

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-08-07

    Predictive modeling for gas chromatography compound retention depends on the retention factor (ki) and on the flow of the mobile phase. Thus, different approaches for determining an analyte ki in column chromatography have been developed. The main one is based on the thermodynamic properties of the component and on the characteristics of the stationary phase. These models can be used to estimate the parameters and to optimize the programming of temperatures, in gas chromatography, for the separation of compounds. Different authors have proposed the use of numerical methods for solving these models, but these methods demand greater computational time. Hence, a new method for solving the predictive modeling of analyte retention time is presented. This algorithm is an alternative to traditional methods because it transforms its attainments into root determination problems within defined intervals. The proposed approach allows for tr calculation, with accuracy determined by the user of the methods, and significant reductions in computational time; it can also be used to evaluate the performance of other prediction methods.

  14. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  15. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    PubMed Central

    Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  16. Accurate prediction of drug-induced liver injury using stem cell-derived populations.

    PubMed

    Szkolnicka, Dagmara; Farnworth, Sarah L; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P; Flint, Oliver; Hay, David C

    2014-02-01

    Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies.

  17. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    NASA Astrophysics Data System (ADS)

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-02-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.

  18. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    SciTech Connect

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-11-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water.

  19. Does preoperative cross-sectional imaging accurately predict main duct involvement in intraductal papillary mucinous neoplasm?

    PubMed

    Barron, M R; Roch, A M; Waters, J A; Parikh, J A; DeWitt, J M; Al-Haddad, M A; Ceppa, E P; House, M G; Zyromski, N J; Nakeeb, A; Pitt, H A; Schmidt, C Max

    2014-03-01

    Main pancreatic duct (MPD) involvement is a well-demonstrated risk factor for malignancy in intraductal papillary mucinous neoplasm (IPMN). Preoperative radiographic determination of IPMN type is heavily relied upon in oncologic risk stratification. We hypothesized that radiographic assessment of MPD involvement in IPMN is an accurate predictor of pathological MPD involvement. Data regarding all patients undergoing resection for IPMN at a single academic institution between 1992 and 2012 were gathered prospectively. Retrospective analysis of imaging and pathologic data was undertaken. Preoperative classification of IPMN type was based on cross-sectional imaging (MRI/magnetic resonance cholangiopancreatography (MRCP) and/or CT). Three hundred sixty-two patients underwent resection for IPMN. Of these, 334 had complete data for analysis. Of 164 suspected branch duct (BD) IPMN, 34 (20.7%) demonstrated MPD involvement on final pathology. Of 170 patients with suspicion of MPD involvement, 50 (29.4%) demonstrated no MPD involvement. Of 34 patients with suspected BD-IPMN who were found to have MPD involvement on pathology, 10 (29.4%) had invasive carcinoma. Alternatively, 2/50 (4%) of the patients with suspected MPD involvement who ultimately had isolated BD-IPMN demonstrated invasive carcinoma. Preoperative radiographic IPMN type did not correlate with final pathology in 25% of the patients. In addition, risk of invasive carcinoma correlates with pathologic presence of MPD involvement.

  20. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

    PubMed Central

    Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng

    2015-01-01

    The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958

  1. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  2. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-01

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  3. Accurate Prediction of the Dynamical Changes within the Second PDZ Domain of PTP1e

    PubMed Central

    Cilia, Elisa; Vuister, Geerten W.; Lenaerts, Tom

    2012-01-01

    Experimental NMR relaxation studies have shown that peptide binding induces dynamical changes at the side-chain level throughout the second PDZ domain of PTP1e, identifying as such the collection of residues involved in long-range communication. Even though different computational approaches have identified subsets of residues that were qualitatively comparable, no quantitative analysis of the accuracy of these predictions was thus far determined. Here, we show that our information theoretical method produces quantitatively better results with respect to the experimental data than some of these earlier methods. Moreover, it provides a global network perspective on the effect experienced by the different residues involved in the process. We also show that these predictions are consistent within both the human and mouse variants of this domain. Together, these results improve the understanding of intra-protein communication and allostery in PDZ domains, underlining at the same time the necessity of producing similar data sets for further validation of thses kinds of methods. PMID:23209399

  4. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  5. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  6. How Accurate Is the Prediction of Maximal Oxygen Uptake with Treadmill Testing?

    PubMed Central

    Wicks, John R.; Oldridge, Neil B.

    2016-01-01

    Background Cardiorespiratory fitness measured by treadmill testing has prognostic significance in determining mortality with cardiovascular and other chronic disease states. The accuracy of a recently developed method for estimating maximal oxygen uptake (VO2peak), the heart rate index (HRI), is dependent only on heart rate (HR) and was tested against oxygen uptake (VO2), either measured or predicted from conventional treadmill parameters (speed, incline, protocol time). Methods The HRI equation, METs = 6 x HRI– 5, where HRI = maximal HR/resting HR, provides a surrogate measure of VO2peak. Forty large scale treadmill studies were identified through a systematic search using MEDLINE, Google Scholar and Web of Science in which VO2peak was either measured (TM-VO2meas; n = 20) or predicted (TM-VO2pred; n = 20) based on treadmill parameters. All studies were required to have reported group mean data of both resting and maximal HRs for determination of HR index-derived oxygen uptake (HRI-VO2). Results The 20 studies with measured VO2 (TM-VO2meas), involved 11,477 participants (median 337) with a total of 105,044 participants (median 3,736) in the 20 studies with predicted VO2 (TM-VO2pred). A difference of only 0.4% was seen between mean (±SD) VO2peak for TM- VO2meas and HRI-VO2 (6.51±2.25 METs and 6.54±2.28, respectively; p = 0.84). In contrast, there was a highly significant 21.1% difference between mean (±SD) TM-VO2pred and HRI-VO2 (8.12±1.85 METs and 6.71±1.92, respectively; p<0.001). Conclusion Although mean TM-VO2meas and HRI-VO2 were almost identical, mean TM-VO2pred was more than 20% greater than mean HRI-VO2. PMID:27875547

  7. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    SciTech Connect

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  8. Sequence features accurately predict genome-wide MeCP2 binding in vivo

    PubMed Central

    Rube, H. Tomas; Lee, Wooje; Hejna, Miroslav; Chen, Huaiyang; Yasui, Dag H.; Hess, John F.; LaSalle, Janine M.; Song, Jun S.; Gong, Qizhi

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA sequence features alone can predict binding with 88% accuracy. Integrating MeCP2 binding and DNA methylation in a probabilistic graphical model, we demonstrate that previously reported genome-wide association with methylation is in part due to MeCP2's affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2 co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates with increased expression in Mecp2-deficient neurons. PMID:27008915

  9. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.

  10. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    NASA Astrophysics Data System (ADS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-02-01

    A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by Dpb. Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the Dpb of base pairs in DNA along C-H and N-H bonds are obtained for the first time. All results show that C7-H of A-T and C8-H of G-C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate Dpb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules.

  11. Fast and accurate prediction for aerodynamic forces and moments acting on satellites flying in Low-Earth Orbit

    NASA Astrophysics Data System (ADS)

    Jin, Xuhon; Huang, Fei; Hu, Pengju; Cheng, Xiaoli

    2016-11-01

    A fundamental prerequisite for satellites operating in a Low Earth Orbit (LEO) is the availability of fast and accurate prediction of non-gravitational aerodynamic forces, which is characterised by the free molecular flow regime. However, conventional computational methods like the analytical integral method and direct simulation Monte Carlo (DSMC) technique are found failing to deal with flow shadowing and multiple reflections or computationally expensive. This work develops a general computer program for the accurate calculation of aerodynamic forces in the free molecular flow regime using the test particle Monte Carlo (TPMC) method, and non-gravitational aerodynamic forces actiong on the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite is calculated for different freestream conditions and gas-surface interaction models by the computer program.

  12. Predictive relations between peer victimization and academic achievement in Chinese children.

    PubMed

    Liu, Junsheng; Bullock, Amanda; Coplan, Robert J

    2014-03-01

    The goal of this study was to explore longitudinal associations between peer victimization and academic achievement in Chinese children. Participants were N = 805 3rd-grade students (486 boys, 319 girls; M(age) = 9.5 years, SD = 3 months) attending primary schools in Shanghai, People's Republic of China. At Time 1 and Time 2 (2 years later), peers nominated classmates who were victims of peer maltreatment using the Chinese version of the Revised Class Play (Chen, Rubin, & Sun, 1992), and teachers rated students' academic achievement. Among the results, peer victimization was negatively related to academic achievement at both time points. Also, peer victimization and academic achievement displayed considerable stability across the 2 years. Results from cross-lagged hierarchical analyses demonstrated that peer victimization at Grade 3 predicted lower academic achievement at Grade 5. However, academic achievement at Grade 3 was not predictive of peer victimization at Grade 5. These results suggest that peer victimization appears to function more as a precursor rather than a consequence of lower academic achievement. Results are discussed in terms of the cross-cultural similarities in the links between peer maltreatment and academic achievement and their educational implications.

  13. Openness to Experience and Intellect Differentially Predict Creative Achievement in the Arts and Sciences.

    PubMed

    Kaufman, Scott Barry; Quilty, Lena C; Grazioplene, Rachael G; Hirsh, Jacob B; Gray, Jeremy R; Peterson, Jordan B; DeYoung, Colin G

    2016-04-01

    The Big Five personality dimension Openness/Intellect is the trait most closely associated with creativity and creative achievement. Little is known, however, regarding the discriminant validity of its two aspects-Openness to Experience (reflecting cognitive engagement with perception, fantasy, aesthetics, and emotions) and Intellect (reflecting cognitive engagement with abstract and semantic information, primarily through reasoning)-in relation to creativity. In four demographically diverse samples totaling 1,035 participants, we investigated the independent predictive validity of Openness and Intellect by assessing the relations among cognitive ability, divergent thinking, personality, and creative achievement across the arts and sciences. We confirmed the hypothesis that whereas Openness predicts creative achievement in the arts, Intellect predicts creative achievement in the sciences. Inclusion of performance measures of general cognitive ability and divergent thinking indicated that the relation of Intellect to scientific creativity may be due at least in part to these abilities. Lastly, we found that Extraversion additionally predicted creative achievement in the arts, independently of Openness. Results are discussed in the context of dual-process theory.

  14. National differences in gender-science stereotypes predict national sex differences in science and math achievement.

    PubMed

    Nosek, Brian A; Smyth, Frederick L; Sriram, N; Lindner, Nicole M; Devos, Thierry; Ayala, Alfonso; Bar-Anan, Yoav; Bergh, Robin; Cai, Huajian; Gonsalkorale, Karen; Kesebir, Selin; Maliszewski, Norbert; Neto, Félix; Olli, Eero; Park, Jaihyun; Schnabel, Konrad; Shiomura, Kimihiro; Tulbure, Bogdan Tudor; Wiers, Reinout W; Somogyi, Mónika; Akrami, Nazar; Ekehammar, Bo; Vianello, Michelangelo; Banaji, Mahzarin R; Greenwald, Anthony G

    2009-06-30

    About 70% of more than half a million Implicit Association Tests completed by citizens of 34 countries revealed expected implicit stereotypes associating science with males more than with females. We discovered that nation-level implicit stereotypes predicted nation-level sex differences in 8th-grade science and mathematics achievement. Self-reported stereotypes did not provide additional predictive validity of the achievement gap. We suggest that implicit stereotypes and sex differences in science participation and performance are mutually reinforcing, contributing to the persistent gender gap in science engagement.

  15. A stationary wavelet entropy-based clustering approach accurately predicts gene expression.

    PubMed

    Nguyen, Nha; Vo, An; Choi, Inchan; Won, Kyoung-Jae

    2015-03-01

    Studying epigenetic landscapes is important to understand the condition for gene regulation. Clustering is a useful approach to study epigenetic landscapes by grouping genes based on their epigenetic conditions. However, classical clustering approaches that often use a representative value of the signals in a fixed-sized window do not fully use the information written in the epigenetic landscapes. Clustering approaches to maximize the information of the epigenetic signals are necessary for better understanding gene regulatory environments. For effective clustering of multidimensional epigenetic signals, we developed a method called Dewer, which uses the entropy of stationary wavelet of epigenetic signals inside enriched regions for gene clustering. Interestingly, the gene expression levels were highly correlated with the entropy levels of epigenetic signals. Dewer separates genes better than a window-based approach in the assessment using gene expression and achieved a correlation coefficient above 0.9 without using any training procedure. Our results show that the changes of the epigenetic signals are useful to study gene regulation.

  16. Why achievement motivation predicts success in business but failure in politics: the importance of personal control.

    PubMed

    Winter, David G

    2010-12-01

    Several decades of research have established that implicit achievement motivation (n Achievement) is associated with success in business, particularly in entrepreneurial or sales roles. However, several political psychology studies have shown that achievement motivation is not associated with success in politics; rather, implicit power motivation often predicts political success. Having versus lacking control may be a key difference between business and politics. Case studies suggest that achievement-motivated U.S. presidents and other world leaders often become frustrated and thereby fail because of lack of control, whereas power-motivated presidents develop ways to work with this inherent feature of politics. A reevaluation of previous research suggests that, in fact, relationships between achievement motivation and business success only occur when control is high. The theme of control is also prominent in the development of achievement motivation. Cross-national data are also consistent with this analysis: In democratic industrialized countries, national levels of achievement motivation are associated with strong executive control. In countries with low opportunity for education (thus fewer opportunities to develop a sense of personal control), achievement motivation is associated with internal violence. Many of these manifestations of frustrated achievement motivation in politics resemble authoritarianism. This conclusion is tested by data from a longitudinal study of 113 male college students, showing that high initial achievement motivation combined with frustrated desires for control is related to increases in authoritarianism (F-scale scores) during the college years. Implications for the psychology of leadership and practical politics are discussed.

  17. Accurate prediction of the refractive index of polymers using first principles and data modeling

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.

  18. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    PubMed

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.

  19. Searching for Computational Strategies to Accurately Predict pKas of Large Phenolic Derivatives.

    PubMed

    Rebollar-Zepeda, Aida Mariana; Campos-Hernández, Tania; Ramírez-Silva, María Teresa; Rojas-Hernández, Alberto; Galano, Annia

    2011-08-09

    Twenty-two reaction schemes have been tested, within the cluster-continuum model including up to seven explicit water molecules. They have been used in conjunction with nine different methods, within the density functional theory and with second-order Møller-Plesset. The quality of the pKa predictions was found to be strongly dependent on the chosen scheme, while only moderately influenced by the method of calculation. We recommend the E1 reaction scheme [HA + OH(-) (3H2O) ↔ A(-) (H2O) + 3H2O], since it yields mean unsigned errors (MUE) lower than 1 unit of pKa for most of the tested functionals. The best pKa values obtained from this reaction scheme are those involving calculations with PBE0 (MUE = 0.77), TPSS (MUE = 0.82), BHandHLYP (MUE = 0.82), and B3LYP (MUE = 0.86) functionals. This scheme has the additional advantage, compared to the proton exchange method, which also gives very small values of MUE, of being experiment independent. It should be kept in mind, however, that these recommendations are valid within the cluster-continuum model, using the polarizable continuum model in conjunction with the united atom Hartree-Fock cavity and the strategy based on thermodynamic cycles. Changes in any of these aspects of the used methodology may lead to different outcomes.

  20. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  1. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  2. Population Synthesis in the Blue. IV. Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.

    2007-07-01

    We present a new set of model predictions for 16 Lick absorption line indices from Hδ through Fe5335 and UBV colors for single stellar populations with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from -1.3 to +0.3, and variable abundance ratios. The models are based on accurate stellar parameters for the Jones library stars and a new set of fitting functions describing the behavior of line indices as a function of effective temperature, surface gravity, and iron abundance. The abundances of several key elements in the library stars have been obtained from the literature in order to characterize the abundance pattern of the stellar library, thus allowing us to produce model predictions for any set of abundance ratios desired. We develop a method to estimate mean ages and abundances of iron, carbon, nitrogen, magnesium, and calcium that explores the sensitivity of the various indices modeled to those parameters. The models are compared to high-S/N data for Galactic clusters spanning the range of ages, metallicities, and abundance patterns of interest. Essentially all line indices are matched when the known cluster parameters are adopted as input. Comparing the models to high-quality data for galaxies in the nearby universe, we reproduce previous results regarding the enhancement of light elements and the spread in the mean luminosity-weighted ages of early-type galaxies. When the results from the analysis of blue and red indices are contrasted, we find good consistency in the [Fe/H] that is inferred from different Fe indices. Applying our method to estimate mean ages and abundances from stacked SDSS spectra of early-type galaxies brighter than L*, we find mean luminosity-weighed ages of the order of ~8 Gyr and iron abundances slightly below solar. Abundance ratios, [X/Fe], tend to be higher than solar and are positively correlated with galaxy luminosity. Of all elements, nitrogen is the more strongly correlated with galaxy luminosity, which seems to indicate

  3. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    SciTech Connect

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-11-15

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  4. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    PubMed Central

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries. PMID:26520735

  5. How Accurate Are the Anthropometry Equations in in Iranian Military Men in Predicting Body Composition?

    PubMed Central

    Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza

    2015-01-01

    Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964

  6. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  7. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  8. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  9. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  10. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?

    PubMed

    Ballester, Pedro J; Schreyer, Adrian; Blundell, Tom L

    2014-03-24

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein-ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein-ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data.

  11. Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction.

    PubMed

    Staranowicz, Aaron N; Ray, Christopher; Mariottini, Gian-Luca

    2015-01-01

    Falls are the most-common causes of unintentional injury and death in older adults. Many clinics, hospitals, and health-care providers are urgently seeking accurate, low-cost, and easy-to-use technology to predict falls before they happen, e.g., by monitoring the human walking pattern (or "gait"). Despite the wide popularity of Microsoft's Kinect and the plethora of solutions for gait monitoring, no strategy has been proposed to date to allow non-expert users to calibrate the cameras, which is essential to accurately fuse the body motion observed by each camera in a single frame of reference. In this paper, we present a novel multi-Kinect calibration algorithm that has advanced features when compared to existing methods: 1) is easy to use, 2) it can be used in any generic Kinect arrangement, and 3) it provides accurate calibration. Extensive real-world experiments have been conducted to validate our algorithm and to compare its performance against other multi-Kinect calibration approaches, especially to show the improved estimate of gait parameters. Finally, a MATLAB Toolbox has been made publicly available for the entire research community.

  12. Predicting Mathematical Achievement and Mathematical Learning Disability with a Simple Screening Tool: The Number Sets Test

    ERIC Educational Resources Information Center

    Geary, David C.; Bailey, Drew H.; Hoard, Mary K.

    2009-01-01

    The Number Sets Test was developed to assess the speed and accuracy with which children can identify and process quantities represented by Arabic numerals and object sets. The utility of this test for predicting mathematics achievement and risk for mathematical learning disability (MLD) was assessed for a sample of 223 children. A signal detection…

  13. Predicting Early School Achievement with the EDI: A Longitudinal Population-Based Study

    ERIC Educational Resources Information Center

    Forget-Dubois, Nadine; Lemelin, Jean-Pascal; Boivin, Michel; Dionne, Ginette; Seguin, Jean R.; Vitaro, Frank; Tremblay, Richard E.

    2007-01-01

    School readiness tests are significant predictors of early school achievement. Measuring school readiness on a large scale would be necessary for the implementation of intervention programs at the community level. However, assessment of school readiness is costly and time consuming. This study assesses the predictive value of a school readiness…

  14. Interpersonal and Achievement Orientations and Specific Stressors Predict Depressive and Aggressive Symptoms

    ERIC Educational Resources Information Center

    Little, Stephanie A.; Garber, Judy

    2004-01-01

    From a prospective study of the development of psychopathology, 129 adolescents were identified who transitioned to a new school in ninth grade. The current study examined the contributions of sex, interpersonal and achievement orientations, peer and academic stressors, and their interactions to the prediction of depressive and aggressive symptoms…

  15. Examining the Predictive Power of Autonomy and Self-Evaluation on High School Students' Language Achievement

    ERIC Educational Resources Information Center

    Yuksel, Ismail; Toker, Yalcin

    2013-01-01

    This study aims to determine language learners' autonomy, self-evaluation levels and to examine the predictive power of these two variables on language achievement. The study was designed as mixed method design and was conducted with 108 high school students. Data were collected through an autonomy scale, a self-evaluation scale, schools record on…

  16. Achievement Motivation Revisited: New Longitudinal Data to Demonstrate Its Predictive Power

    ERIC Educational Resources Information Center

    Hustinx, Paul W. J.; Kuyper, Hans; van der Werf, Margaretha P. C.; Dijkstra, Pieternel

    2009-01-01

    During recent decades, the classical one-dimensional concept of achievement motivation has become less popular among motivation researchers. This study aims to revive the concept by demonstrating its predictive power using longitudinal data from two cohort samples, each with 20,000 Dutch secondary school students. Two measures of achievement…

  17. Predicting College Success: Achievement, Demographic, and Psychosocial Predictors of First-Semester College Grade Point Average

    ERIC Educational Resources Information Center

    Saltonstall, Margot

    2013-01-01

    This study seeks to advance and expand research on college student success. Using multinomial logistic regression analysis, the study investigates the contribution of psychosocial variables above and beyond traditional achievement and demographic measures to predicting first-semester college grade point average (GPA). It also investigates if…

  18. Predicting End-of-Year Achievement Test Performance: A Comparison of Assessment Methods

    ERIC Educational Resources Information Center

    Kettler, Ryan J.; Elliott, Stephen N.; Kurz, Alexander; Zigmond, Naomi; Lemons, Christopher J.; Kloo, Amanda; Shrago, Jacqueline; Beddow, Peter A.; Williams, Leila; Bruen, Charles; Lupp, Lynda; Farmer, Jeanie; Mosiman, Melanie

    2014-01-01

    Motivated by the multiple-measures clause of recent federal policy regarding student eligibility for alternate assessments based on modified academic achievement standards (AA-MASs), this study examined how scores or combinations of scores from a diverse set of assessments predicted students' end-of-year proficiency status on statewide achievement…

  19. Ten Years on: Does Graduate Student Promise Predict Later Scientific Achievement?

    ERIC Educational Resources Information Center

    Haslam, Nick; Laham, Simon M.

    2009-01-01

    We examined publication records of 60 social psychologists to determine whether publication record at the time of the PhD (t0) predicted scientific achievement (publication quantity, quality, and impact) ten years later (t10). Publication quantity and quality each correlated moderately across this time-span. Productivity and impact at t10 were…

  20. Which Variables Associated with Data-Driven Instruction Are Believed to Best Predict Urban Student Achievement?

    ERIC Educational Resources Information Center

    Greer, Wil

    2013-01-01

    This study identified the variables associated with data-driven instruction (DDI) that are perceived to best predict student achievement. Of the DDI variables discussed in the literature, 51 of them had a sufficient enough research base to warrant statistical analysis. Of them, 26 were statistically significant. Multiple regression and an…

  1. Implicit Theories of Intelligence Predict Achievement across an Adolescent Transition: A Longitudinal Study and an Intervention

    ERIC Educational Resources Information Center

    Blackwell, Lisa S.; Trzesniewski, Kali H.; Dweck, Carol Sorich

    2007-01-01

    Two studies explored the role of implicit theories of intelligence in adolescents' mathematics achievement. In Study 1 with 373 7th graders, the belief that intelligence is malleable (incremental theory) predicted an upward trajectory in grades over the two years of junior high school, while a belief that intelligence is fixed (entity theory)…

  2. The Effectiveness of the SSHA in Improving Prediction of Academic Achievement.

    ERIC Educational Resources Information Center

    Wikoff, Richard L.; Kafka, Gene F.

    1981-01-01

    Investigated the effectiveness of the Survey of Study Habits (SSHA) in improving prediction of achievement. The American College Testing Program English and mathematics subtests were good predictors of gradepoint average. The SSHA subtests accounted for an additional 3 percent of the variance. Sex differences were noted. (Author)

  3. Examining the Validity of Behavioral Self-Regulation Tools in Predicting Preschoolers' Academic Achievement

    ERIC Educational Resources Information Center

    Schmitt, Sara A.; Pratt, Megan E.; McClelland, Megan M.

    2014-01-01

    The current study investigated the predictive utility among teacher-rated, observed, and directly assessed behavioral self-regulation skills to academic achievement in preschoolers. Specifically, this study compared how a teacher report, the Child Behavior Rating Scale, an observer report, the Observed Child Engagement Scale, and a direct…

  4. Examining the Validity of Behavioral Self-Regulation Tools in Predicting Preschoolers' Academic Achievement

    ERIC Educational Resources Information Center

    Schmitt, Sara A.; Pratt, Megan E.; McClelland, Megan M.

    2014-01-01

    Research Findings: The current study investigated the predictive utility of teacher-rated, observed, and directly assessed behavioral self-regulation skills to academic achievement in preschoolers. Specifically, this study compared how a teacher report (the Child Behavior Rating Scale), an observer report (the Observed Child Engagement Scale), and…

  5. Factors Predicting Turkish and Korean Students' Science and Mathematics Achievement in TIMSS 2011

    ERIC Educational Resources Information Center

    Topçu, Mustafa Sami; Erbilgin, Evrim; Arikan, Serkan

    2016-01-01

    This study makes an important contribution to an expanding body of international comparative studies by exploring factors predicting differences in science and mathematics achievement by students in Turkey and the Republic of Korea on the 2011 TIMSS assessment. While these countries are similar with regards to population size, cultural beliefs…

  6. A cross-race effect in metamemory: Predictions of face recognition are more accurate for members of our own race

    PubMed Central

    Hourihan, Kathleen L.; Benjamin, Aaron S.; Liu, Xiping

    2012-01-01

    The Cross-Race Effect (CRE) in face recognition is the well-replicated finding that people are better at recognizing faces from their own race, relative to other races. The CRE reveals systematic limitations on eyewitness identification accuracy and suggests that some caution is warranted in evaluating cross-race identification. The CRE is a problem because jurors value eyewitness identification highly in verdict decisions. In the present paper, we explore how accurate people are in predicting their ability to recognize own-race and other-race faces. Caucasian and Asian participants viewed photographs of Caucasian and Asian faces, and made immediate judgments of learning during study. An old/new recognition test replicated the CRE: both groups displayed superior discriminability of own-race faces, relative to other-race faces. Importantly, relative metamnemonic accuracy was also greater for own-race faces, indicating that the accuracy of predictions about face recognition is influenced by race. This result indicates another source of concern when eliciting or evaluating eyewitness identification: people are less accurate in judging whether they will or will not recognize a face when that face is of a different race than they are. This new result suggests that a witness’s claim of being likely to recognize a suspect from a lineup should be interpreted with caution when the suspect is of a different race than the witness. PMID:23162788

  7. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  8. Preschool Interpersonal Relationships Predict Kindergarten Achievement: Mediated by Gains in Emotion Knowledge.

    PubMed

    Torres, Marcela M; Domitrovich, Celene E; Bierman, Karen L

    2015-01-01

    Using longitudinal data, this study tested a model in which preschool interpersonal relationships promoted kindergarten achievement in a pathway mediated by growth in emotion knowledge. The sample included 164 children attending Head Start (14% Hispanic-American, 30% African-American, 56% Caucasian; 56% girls). Preschool interpersonal relationships were indexed by student-teacher relationship closeness and positive peer interactions. Two measures of emotion knowledge (identifying emotions in photographs, recognizing emotions in stories) were assessed at the start and end of the preschool year. Structural equation models revealed that positive interpersonal relationships (with teachers and peers) predicted gains in emotion knowledge (identification, recognition) during the preschool year. Positive interpersonal relationships in preschool also predicted kindergarten achievement (controlling for initial preschool achievement); however, this association was mediated by gains in emotion knowledge during the preschool year. Implications are discussed for school readiness programs serving economically-disadvantaged children.

  9. Shrinking the Psoriasis Assessment Gap: Early Gene-Expression Profiling Accurately Predicts Response to Long-Term Treatment.

    PubMed

    Correa da Rosa, Joel; Kim, Jaehwan; Tian, Suyan; Tomalin, Lewis E; Krueger, James G; Suárez-Fariñas, Mayte

    2017-02-01

    There is an "assessment gap" between the moment a patient's response to treatment is biologically determined and when a response can actually be determined clinically. Patients' biochemical profiles are a major determinant of clinical outcome for a given treatment. It is therefore feasible that molecular-level patient information could be used to decrease the assessment gap. Thanks to clinically accessible biopsy samples, high-quality molecular data for psoriasis patients are widely available. Psoriasis is therefore an excellent disease for testing the prospect of predicting treatment outcome from molecular data. Our study shows that gene-expression profiles of psoriasis skin lesions, taken in the first 4 weeks of treatment, can be used to accurately predict (>80% area under the receiver operating characteristic curve) the clinical endpoint at 12 weeks. This could decrease the psoriasis assessment gap by 2 months. We present two distinct prediction modes: a universal predictor, aimed at forecasting the efficacy of untested drugs, and specific predictors aimed at forecasting clinical response to treatment with four specific drugs: etanercept, ustekinumab, adalimumab, and methotrexate. We also develop two forms of prediction: one from detailed, platform-specific data and one from platform-independent, pathway-based data. We show that key biomarkers are associated with responses to drugs and doses and thus provide insight into the biology of pathogenesis reversion.

  10. Accurate prediction of unsteady and time-averaged pressure loads using a hybrid Reynolds-Averaged/large-eddy simulation technique

    NASA Astrophysics Data System (ADS)

    Bozinoski, Radoslav

    Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions

  11. Children’s visuospatial memory predicts mathematics achievement through early adolescence

    PubMed Central

    Li, Yaoran

    2017-01-01

    A previous study showed that gains in visuospatial memory from first to fifth grade predicted end-of-fifth grade mathematics but not reading achievement, controlling other factors. In this follow up study, these relations were assessed from sixth to ninth grade, inclusive (n = 145). The results showed that growth in visuospatial memory across the elementary school years was related to growth in mathematics achievement after fifth grade, controlling intelligence, the central executive and phonological memory components of working memory, in-class attentive behavior, parental education, and fifth grade mathematics achievement. As found for fifth grade, this relation was not found for reading achievement after fifth grade. In total, the results suggest that visuospatial memory has a unique influence on ease of learning some types of mathematics and that this influence becomes more important across successive grades. PMID:28192484

  12. The Predictive Relationship between Achievement and Participation in Music and Achievement in Core Grade 12 Academic Subjects

    ERIC Educational Resources Information Center

    Gouzouasis, Peter; Guhn, Martin; Kishor, Nand

    2007-01-01

    The relationship between musical training and general intellectual capacity as well as academic achievement has been discussed in numerous contexts. In our study, we examined the relationship between participation and achievement in music and achievement in academic courses, based on data from three consecutive British Columbia student cohorts.…

  13. Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.

    PubMed

    Baldassi, Carlo; Zamparo, Marco; Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea

    2014-01-01

    In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code.

  14. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging

    NASA Astrophysics Data System (ADS)

    Hughes, Timothy J.; Kandathil, Shaun M.; Popelier, Paul L. A.

    2015-02-01

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G**, B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol-1, decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol-1.

  15. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-05

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1).

  16. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    PubMed Central

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  17. Perceived parenting and social support: can they predict academic achievement in Argentinean college students?

    PubMed Central

    de la Iglesia, Guadalupe; Freiberg Hoffmann, Agustin; Fernández Liporace, Mercedes

    2014-01-01

    The aim of this study was to test the ability to predict academic achievement through the perception of parenting and social support in a sample of 354 Argentinean college students. Their mean age was 23.50 years (standard deviation =2.62 years) and most of them (83.3%) were females. As a prerequisite for admission to college, students are required to pass a series of mandatory core classes and are expected to complete them in two semesters. Delay in completing the curriculum is considered low academic achievement. Parenting was assessed taking into account the mother and the father and considering two dimensions: responsiveness and demandingness. Perceived social support was analyzed considering four sources: parents, teachers, classmates, and best friend or boyfriend/girlfriend. Path analysis showed that, as hypothesized, responsiveness had a positive indirect effect on the perception of social support and enhanced achievement. Demandingness had a different effect in the case of the mother as compared to the father. In the mother model, demandingness had a positive direct effect on achievement. In the case of the father, however, the effect of demandingness had a negative and indirect impact on the perception of social support. Teachers were the only source of perceived social support that significantly predicted achievement. The pathway that belongs to teachers as a source of support was positive and direct. Implications for possible interventions are discussed. PMID:25258563

  18. Perceived parenting and social support: can they predict academic achievement in Argentinean college students?

    PubMed

    de la Iglesia, Guadalupe; Freiberg Hoffmann, Agustin; Fernández Liporace, Mercedes

    2014-01-01

    The aim of this study was to test the ability to predict academic achievement through the perception of parenting and social support in a sample of 354 Argentinean college students. Their mean age was 23.50 years (standard deviation =2.62 years) and most of them (83.3%) were females. As a prerequisite for admission to college, students are required to pass a series of mandatory core classes and are expected to complete them in two semesters. Delay in completing the curriculum is considered low academic achievement. Parenting was assessed taking into account the mother and the father and considering two dimensions: responsiveness and demandingness. Perceived social support was analyzed considering four sources: parents, teachers, classmates, and best friend or boyfriend/girlfriend. Path analysis showed that, as hypothesized, responsiveness had a positive indirect effect on the perception of social support and enhanced achievement. Demandingness had a different effect in the case of the mother as compared to the father. In the mother model, demandingness had a positive direct effect on achievement. In the case of the father, however, the effect of demandingness had a negative and indirect impact on the perception of social support. Teachers were the only source of perceived social support that significantly predicted achievement. The pathway that belongs to teachers as a source of support was positive and direct. Implications for possible interventions are discussed.

  19. The Role of Self-Regulated Strategies and Goal Orientation in Predicting Achievement of Elementary School Children

    ERIC Educational Resources Information Center

    Kitsantas, Anastasia; Steen, Sam; Huie, Faye

    2009-01-01

    The present study examined the predictiveness of self-regulated learning strategies and goal orientation of elementary students' academic achievement. Eighty one (n = 81) fifth graders were asked to respond to two scales. It was hypothesized that student achievement would be predicted by prior achievement, use of self-regulation strategies, and…

  20. TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients

    PubMed Central

    Gunnerson, Kyle J.; Shaw, Andrew D.; Chawla, Lakhmir S.; Bihorac, Azra; Al-Khafaji, Ali; Kashani, Kianoush; Lissauer, Matthew; Shi, Jing; Walker, Michael G.; Kellum, John A.

    2016-01-01

    BACKGROUND Acute kidney injury (AKI) is an important complication in surgical patients. Existing biomarkers and clinical prediction models underestimate the risk for developing AKI. We recently reported data from two trials of 728 and 408 critically ill adult patients in whom urinary TIMP2•IGFBP7 (NephroCheck, Astute Medical) was used to identify patients at risk of developing AKI. Here we report a preplanned analysis of surgical patients from both trials to assess whether urinary tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor–binding protein 7 (IGFBP7) accurately identify surgical patients at risk of developing AKI. STUDY DESIGN We enrolled adult surgical patients at risk for AKI who were admitted to one of 39 intensive care units across Europe and North America. The primary end point was moderate-severe AKI (equivalent to KDIGO [Kidney Disease Improving Global Outcomes] stages 2–3) within 12 hours of enrollment. Biomarker performance was assessed using the area under the receiver operating characteristic curve, integrated discrimination improvement, and category-free net reclassification improvement. RESULTS A total of 375 patients were included in the final analysis of whom 35 (9%) developed moderate-severe AKI within 12 hours. The area under the receiver operating characteristic curve for [TIMP-2]•[IGFBP7] alone was 0.84 (95% confidence interval, 0.76–0.90; p < 0.0001). Biomarker performance was robust in sensitivity analysis across predefined subgroups (urgency and type of surgery). CONCLUSION For postoperative surgical intensive care unit patients, a single urinary TIMP2•IGFBP7 test accurately identified patients at risk for developing AKI within the ensuing 12 hours and its inclusion in clinical risk prediction models significantly enhances their performance. LEVEL OF EVIDENCE Prognostic study, level I. PMID:26816218

  1. Prediction of intrinsic motivation and sports performance using 2 x 2 achievement goal framework.

    PubMed

    Li, Chiung-Huang; Chi, Likang; Yeh, Suh-Ruu; Guo, Kwei-Bin; Ou, Cheng-Tsung; Kao, Chun-Chieh

    2011-04-01

    The purpose of this study was to examine the influence of 2 x 2 achievement goals on intrinsic motivation and performance in handball. Participants were 164 high school athletes. All completed the 2 x 2 Achievement Goals Questionnaire for Sport and the Intrinsic Motivation subscale of the Sport Motivation Scale; the coach for each team rated his athletes' overall sports performance. Using simultaneous-regression analyses, mastery-approach goals positively predicted both intrinsic motivation and performance in sports, whereas performance-avoidance goals negatively predicted sports performance. These results suggest that athletes who pursue task mastery and improvement of their competence perform well and enjoy their participation. In contrast, those who focus on avoiding normative incompetence perform poorly.

  2. A novel fibrosis index comprising a non-cholesterol sterol accurately predicts HCV-related liver cirrhosis.

    PubMed

    Ydreborg, Magdalena; Lisovskaja, Vera; Lagging, Martin; Brehm Christensen, Peer; Langeland, Nina; Buhl, Mads Rauning; Pedersen, Court; Mørch, Kristine; Wejstål, Rune; Norkrans, Gunnar; Lindh, Magnus; Färkkilä, Martti; Westin, Johan

    2014-01-01

    Diagnosis of liver cirrhosis is essential in the management of chronic hepatitis C virus (HCV) infection. Liver biopsy is invasive and thus entails a risk of complications as well as a potential risk of sampling error. Therefore, non-invasive diagnostic tools are preferential. The aim of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive significance for liver fibrosis in 278 patients originally included in a multicenter phase III treatment trial for chronic HCV infection. A stepwise multivariate logistic model selection was performed with liver cirrhosis, defined as Ishak fibrosis stage 5-6, as the outcome variable. A new index, referred to as Nordic Liver Index (NoLI) in the paper, was based on the model: Log-odds (predicting cirrhosis) = -12.17+ (age × 0.11) + (BMI (kg/m(2)) × 0.23) + (D7-lathosterol (μg/100 mg cholesterol)×(-0.013)) + (Platelet count (x10(9)/L) × (-0.018)) + (Prothrombin-INR × 3.69). The area under the ROC curve (AUROC) for prediction of cirrhosis was 0.91 (95% CI 0.86-0.96). The index was validated in a separate cohort of 83 patients and the AUROC for this cohort was similar (0.90; 95% CI: 0.82-0.98). In conclusion, the new index may complement other methods in diagnosing cirrhosis in patients with chronic HCV infection.

  3. Transforming wealth: using the inverse hyperbolic sine (IHS) and splines to predict youth's math achievement.

    PubMed

    Friedline, Terri; Masa, Rainier D; Chowa, Gina A N

    2015-01-01

    The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement.

  4. Creative motivation: creative achievement predicts cardiac autonomic markers of effort during divergent thinking.

    PubMed

    Silvia, Paul J; Beaty, Roger E; Nusbaum, Emily C; Eddington, Kari M; Kwapil, Thomas R

    2014-10-01

    Executive approaches to creativity emphasize that generating creative ideas can be hard and requires mental effort. Few studies, however, have examined effort-related physiological activity during creativity tasks. Using motivational intensity theory as a framework, we examined predictors of effort-related cardiac activity during a creative challenge. A sample of 111 adults completed a divergent thinking task. Sympathetic (PEP and RZ) and parasympathetic (RSA and RMSSD) outcomes were assessed using impedance cardiography. As predicted, people with high creative achievement (measured with the Creative Achievement Questionnaire) showed significantly greater increases in sympathetic activity from baseline to task, reflecting higher effort. People with more creative achievements generated ideas that were significantly more creative, and creative performance correlated marginally with PEP and RZ. The results support the view that creative thought can be a mental challenge.

  5. Advancing Achievement Goal Theory: Using Goal Structures and Goal Orientations to Predict Students' Motivation, Cognition, and Achievement

    ERIC Educational Resources Information Center

    Wolters, Christopher A.

    2004-01-01

    The objective of this study was to investigate how different components of achievement goal theory were related to each other and to students' motivation, cognitive engagement, and achievement in mathematics. Junior high school students (N=525) completed a self-report survey that assessed their perceived classroom goal structures; personal goal…

  6. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S.; Shirley, Eric L.; Prendergast, David

    2017-03-01

    Constrained-occupancy delta-self-consistent-field (Δ SCF ) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1 s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The Δ SCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle Δ SCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  7. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets.

  8. Prediction of the optimum surface orientation angles to achieve maximum solar radiation using Particle Swarm Optimization in Sabha City Libya

    NASA Astrophysics Data System (ADS)

    Mansour, F. A.; Nizam, M.; Anwar, M.

    2017-02-01

    This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.

  9. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.

    PubMed

    Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A

    2017-03-31

    One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.

  10. Implicit theories of intelligence predict achievement across an adolescent transition: a longitudinal study and an intervention.

    PubMed

    Blackwell, Lisa S; Trzesniewski, Kali H; Dweck, Carol Sorich

    2007-01-01

    Two studies explored the role of implicit theories of intelligence in adolescents' mathematics achievement. In Study 1 with 373 7th graders, the belief that intelligence is malleable (incremental theory) predicted an upward trajectory in grades over the two years of junior high school, while a belief that intelligence is fixed (entity theory) predicted a flat trajectory. A mediational model including learning goals, positive beliefs about effort, and causal attributions and strategies was tested. In Study 2, an intervention teaching an incremental theory to 7th graders (N=48) promoted positive change in classroom motivation, compared with a control group (N=43). Simultaneously, students in the control group displayed a continuing downward trajectory in grades, while this decline was reversed for students in the experimental group.

  11. The Use of Algebra II End-of-Course Scores to Predict Chemistry Course Achievement

    NASA Astrophysics Data System (ADS)

    McDowd, Joshua Roy

    Students endure multiple high-stakes tests throughout their school years. While subject matter among multiple subjects is connected through course standards, the possible connections are explored in End-of-Course exam scores. Historically, evidence has supported the integration of subject matter, specifically mathematics and science. This study examined the relationship between Algebra II End-of-Course exam scores and Chemistry End-of-Course exam scores. The sample of this study consisted of 215 students that had taken Algebra II during the fall of 2014 and Chemistry during the spring of 2015 from three suburban Middle Tennessee high schools. The research questions explored were: (a) What is the relationship between Algebra II End-of-Course exam scores and Chemistry End-of-Course exam scores? (b) Controlling for gender and prior achievement, to what extent can Algebra II End-of-Course exam scores predict Chemistry End-of-Course exam scores? And (c) Controlling for prior achievement, is there a significant difference in chemistry achievement among students who have taken honors or standard Algebra II and honors or standard Chemistry? Prior achievement was based upon Algebra I End-of-Course exam scores. In exploring the questions, it was found that there was a strong, positive relationship between Algebra II End-of-Course exam scores and Chemistry End-of-Course exam scores. Algebra II End-of-Course exam scores did significantly predict Chemistry End-of-Course exams scores; however, gender did not significantly contribute to the difference. Finally, the study concluded students who had taken honors-level courses in both Algebra II and Chemistry performed better than students who had taken standard-level courses in both subjects. The findings of the study are discussed with reference to the use of existing exam results to guide instruction in the classroom.

  12. The honeymoon effect in job performance - Temporal increases in the predictive power of achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Sawin, Linda L.; Carsrud, Alan L.

    1986-01-01

    Correlations between a job performance criterion and personality measures reflecting achievement motivation and an interpersonal orientation were examined at three points in time after completion of job training for a sample of airline reservations agents. Although correlations between the personality predictors and performance were small and nonsignificant for the 3-month period after beginning the job, by the end of six and eight months a number of significant relationships had emerged. Implications for the utility of personality measures in selection and performance prediction are discussed.

  13. Externalizing Problems in Childhood and Adolescence Predict Subsequent Educational Achievement but for Different Genetic and Environmental Reasons

    ERIC Educational Resources Information Center

    Lewis, Gary J.; Asbury, Kathryn; Plomin, Robert

    2017-01-01

    Background: Childhood behavior problems predict subsequent educational achievement; however, little research has examined the etiology of these links using a longitudinal twin design. Moreover, it is unknown whether genetic and environmental innovations provide incremental prediction for educational achievement from childhood to adolescence.…

  14. The utility of kindergarten teacher ratings for predicting low academic achievement in first grade.

    PubMed

    Teisl, J T; Mazzocco, M M; Myers, G F

    2001-01-01

    The purpose of this study was to assess the predictive value of kindergarten teachers' ratings of pupils for later first-grade academic achievement. Kindergarten students were rated by their teachers on a variety of variables, including math and reading performance, teacher concerns, and amount of learning relative to peers. These variables were then analyzed with respect to outcome measures for math and reading ability administered in the first grade. The teachers' ratings of academic performance were significantly correlated with scores on the outcome measures. Analyses were also carried out to determine sensitivity, specificity, and predictive values of the different teacher ratings. The results indicated high overall accuracy, sensitivity, specificity, and negative predictive value for the ratings. Positive predictive value tended to be lower. A recommendation to follow from these results is that teacher ratings of this sort be used to determine which children should receive cognitive screening measures to further enhance identification of children at risk for learning disability. However, this recommendation is limited by the lack of empirically supported screening measures for math disability versus well-supported screening tools for reading disability.

  15. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

    PubMed

    Zhang, Jin-Feng; Chen, Yao; Lin, Guo-Shi; Zhang, Jian-Dong; Tang, Wen-Long; Huang, Jian-Huang; Chen, Jin-Shou; Wang, Xing-Fu; Lin, Zhi-Xiong

    2016-06-01

    Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) plays a key role in growth suppression and apoptosis promotion in cancer cells. Interferon was reported to induce the expression of IFIT1 and inhibit the expression of O-6-methylguanine-DNA methyltransferase (MGMT).This study aimed to investigate the expression of IFIT1, the correlation between IFIT1 and MGMT, and their impact on the clinical outcome in newly diagnosed glioblastoma. The expression of IFIT1 and MGMT and their correlation were investigated in the tumor tissues from 70 patients with newly diagnosed glioblastoma. The effects on progression-free survival and overall survival were evaluated. Of 70 cases, 57 (81.4%) tissue samples showed high expression of IFIT1 by immunostaining. The χ(2) test indicated that the expression of IFIT1 and MGMT was negatively correlated (r = -0.288, P = .016). Univariate and multivariate analyses confirmed high IFIT1 expression as a favorable prognostic indicator for progression-free survival (P = .005 and .017) and overall survival (P = .001 and .001), respectively. Patients with 2 favorable factors (high IFIT1 and low MGMT) had an improved prognosis as compared with others. The results demonstrated significantly increased expression of IFIT1 in newly diagnosed glioblastoma tissue. The negative correlation between IFIT1 and MGMT expression may be triggered by interferon. High IFIT1 can be a predictive biomarker of favorable clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

  16. The 3 x 2 Achievement Goal Model in Predicting Online Student Test Anxiety and Help-Seeking

    ERIC Educational Resources Information Center

    Yang, Yan; Taylor, Jeff; Cao, Li

    2016-01-01

    This study investigates the utility of the new 3 × 2 achievement goal model in predicting online student test anxiety and help-seeking. Achievement goals refer to students' general aims for participating in learning and the standard by which they judge their achievement (Pintrich, 2000). According to Elliot and his colleagues (2011), there are six…

  17. A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion

    NASA Astrophysics Data System (ADS)

    Shavalikul, Akamol

    accurate flow characteristics in the NGV domain and the rotor domain with less computational time and computer memory requirements. In contrast, the time accurate flow simulation can predict all unsteady flow characteristics occurring in the turbine stage, but with high computational resource requirements. (Abstract shortened by UMI.)

  18. Emotions in the classroom: the role of teachers' emotional intelligence ability in predicting students' achievement.

    PubMed

    Curci, Antonietta; Lanciano, Tiziana; Soleti, Emanuela

    2014-01-01

    School days can be a difficult time, especially when students are faced with subjects that require motivational investment along with cognitive effort, such as mathematics and sciences. In the present study, we investigated the effects of teachers' emotional intelligence (El) ability, self-efficacy, and emotional states and students' self-esteem, perceptions of ability, and metacognitive beliefs in predicting school achievement. We hypothesized that the level of teacher EI ability would moderate the impact of students' self-perceptions and beliefs about their achievements in mathematics and sciences. Students from Italian junior high schools (N = 338) and their math teachers (N = 12) were involved in the study, and a multilevel approach was used. Findings showed that teachers' EI has a positive role in promoting students' achievement, by enhancing the effects of students' self-perceptions of ability and self-esteem.These results have implications for the implementation of intervention programs on the emotional, motivational, and metacognitive correlates of studying and learning behavior.

  19. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement

  20. High-dimensional immunomonitoring models of HIV-1–specific CD8 T-cell responses accurately identify subjects achieving spontaneous viral control

    PubMed Central

    Ndhlovu, Zaza M.; Chibnik, Lori B.; Proudfoot, Jacqueline; Vine, Seanna; McMullen, Ashley; Cesa, Kevin; Porichis, Filippos; Jones, R. Brad; Alvino, Donna Marie; Hart, Meghan G.; Stampouloglou, Eleni; Piechocka-Trocha, Alicja; Kadie, Carl; Pereyra, Florencia; Heckerman, David; De Jager, Philip L.; Walker, Bruce D.

    2013-01-01

    The development of immunomonitoring models to determine HIV-1 vaccine efficacy is a major challenge. Studies suggest that HIV-1–specific CD8 T cells play a critical role in subjects achieving spontaneous viral control (HIV-1 controllers) and that they will be important in immune interventions. However, no single CD8 T-cell function is uniquely associated with controller status and the heterogeneity of responses targeting different epitopes further complicates the discovery of determinants of protective immunity. In the present study, we describe immunomonitoring models integrating multiple functions of epitope-specific CD8 T cells that distinguish controllers from subjects with treated or untreated progressive infection. Models integrating higher numbers of variables and trained with the least absolute shrinkage and selection operator (LASSO) variant of logistic regression and 10-fold cross-validation produce “diagnostic tests” that display an excellent capacity to delineate subject categories. The test accuracy reaches 75% area under the receiving operating characteristic curve in cohorts matched for prevalence of protective alleles. Linear mixed-effects model analyses show that the proliferative capacity, cytokine production, and kinetics of cytokine secretion are associated with HIV-1 control. Although proliferative capacity is the strongest single discriminant, integrated modeling of different dimensions of data leverages individual associations. This strategy may have important applications in predictive model development and immune monitoring of HIV-1 vaccine trials. PMID:23233659

  1. Predicting Next Year's Resources--Short-Term Enrollment Forecasting for Accurate Budget Planning. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Salley, Charles D.

    Accurate enrollment forecasts are a prerequisite for reliable budget projections. This is because tuition payments make up a significant portion of a university's revenue, and anticipated revenue is the immediate constraint on current operating expenditures. Accurate forecasts are even more critical to revenue projections when a university's…

  2. Models of social evolution: can we do better to predict 'who helps whom to achieve what'?

    PubMed

    Rodrigues, António M M; Kokko, Hanna

    2016-02-05

    Models of social evolution and the evolution of helping have been classified in numerous ways. Two categorical differences have, however, escaped attention in the field. Models tend not to justify why they use a particular assumption structure about who helps whom: a large number of authors model peer-to-peer cooperation of essentially identical individuals, probably for reasons of mathematical convenience; others are inspired by particular cooperatively breeding species, and tend to assume unidirectional help where subordinates help a dominant breed more efficiently. Choices regarding what the help achieves (i.e. which life-history trait of the helped individual is improved) are similarly made without much comment: fecundity benefits are much more commonly modelled than survival enhancements, despite evidence that these may interact when the helped individual can perform life-history reallocations (load-lightening and related phenomena). We review our current theoretical understanding of effects revealed when explicitly asking 'who helps whom to achieve what', from models of mutual aid in partnerships to the very few models that explicitly contrast the strength of selection to help enhance another individual's fecundity or survival. As a result of idiosyncratic modelling choices in contemporary literature, including the varying degree to which demographic consequences are made explicit, there is surprisingly little agreement on what types of help are predicted to evolve most easily. We outline promising future directions to fill this gap.

  3. The Validity of the Beery Test of Visual-Motor Integration in Predicting Achievement in Kindergarten, First, and Second Grades.

    ERIC Educational Resources Information Center

    Klein, Alice E.

    1978-01-01

    The Beery Developmental Test of Visual Motor Integration consists of 24 geometric forms that are to be copied into a test booklet. This study demonstrated the ability of the test to predict academic achievement in preschool children. (Author/JKS)

  4. Do Skilled Elementary Teachers Hold Scientific Conceptions and Can They Accurately Predict the Type and Source of Students' Preconceptions of Electric Circuits?

    ERIC Educational Resources Information Center

    Lin, Jing-Wen

    2016-01-01

    Holding scientific conceptions and having the ability to accurately predict students' preconceptions are a prerequisite for science teachers to design appropriate constructivist-oriented learning experiences. This study explored the types and sources of students' preconceptions of electric circuits. First, 438 grade 3 (9 years old) students were…

  5. The Achievement Flow Motive as an Element of the Autotelic Personality: Predicting Educational Attainment in Three Cultures

    ERIC Educational Resources Information Center

    Busch, Holger; Hofer, Jan; Chasiotis, Athanasios; Campos, Domingo

    2013-01-01

    Human behavior is directed by an implicit and an explicit motivational system. The intrinsic form of the implicit achievement motive has been demonstrated to predict the experience of flow. Thus, this achievement flow motive can be considered an integral component of the autotelic personality, posited in Flow Theory as dispositional difference in…

  6. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    the way for what ultimately is expected to become an internationally-organized operational global precipitation observing system. Notably, the broad societal applications of GPM are reflected in the United Nation s identification of this mission as a foremost candidate for its Peaceful Uses of Space Program. In this presentation, an overview of the GPM mission design will be presented, followed by an explanation of its scientific agenda as an outgrowth of making improvements in rain retrieval accuracy, microphysics dexterity, sampling frequency, and global coverage. All of these improvements offer new means to observe variability in precipitation and water cycle fluxes and to achieve improved predictability of weather, climate, and hydrometeorology. Specifically, the scientific agenda of GPM has been designed to leverage the measurement improvements to improve prognostic model performance, particularly quantitative precipitation forecasting and its linked phenomena at short, intermediate, and extended time scales. The talk will address how GPM measurements will enable better detection of accelerations and decelerations in regional and global water cycle processes and their relationship to climate variability, better impacts of precipitation data assimilation on numerical weather prediction and global climate reanalysis, and better performance from basin scale hydrometeorological models for short and long term flood-drought forecasting and seasonal fresh water resource assessment. Improved hydrometeorological forecasting will be possible by using continuous global precipitation observations to obtain better closure in water budgets and to generate more realistic forcing of the models themselves to achieve more accurate estimates of interception, infiltration, evaporation/transpiration fluxes, storage, and runoff.

  7. Extreme masking: achieving predictable outcomes in challenging situations with lithium disilicate bonded restorations.

    PubMed

    Hatai, Yugo

    2014-01-01

    In contemporary dentistry, we have a vast range of materials to choose from, and metal free restorations have become the premier materials for achieving the ultimate in both esthetics and durability. Metal-free restorations are utilized with more conservative preparations to preserve the vital natural dentition, and have proven to be superior alternatives to traditional porcelain-fused-to-metal (PFM) restorations in many cases. There are always "pros and cons" when selecting materials, and to make the best choice it is essential for dental professionals to plan precisely and understand their options in any clinical situation. Selecting suitable materials and techniques involves consideration of the following factors: - Esthetic zone. - Required strength based on the patient's occlusion/dental habits. - Preparation reduction. - Position of the margin. - Type of restoration/preparation. - The treating clinician's philosophy. - Stump shade. Final shade. One of the most significant challenges in the metal-free dentistry is the reproduction of natural dentition without the influence of a "negative stump" - a very dark or metal core showing through the final restorations. There are many factors to be considered when working on such a case, and controlling the opacity of the coping and crown is the key to success. This article presents a unique "outside of the box" technique that provides consistent, predictable and durable restorations, which provide the best possible esthetic outcome.

  8. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity-based hierarchy.

    PubMed

    Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-08-14

    In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.

  9. Calibrating the High Density Magnetic Port within Tissue Expanders to Achieve more Accurate Dose Calculations for Postmastectomy Patients with Immediate Breast Reconstruction

    NASA Astrophysics Data System (ADS)

    Jones, Jasmine; Zhang, Rui; Heins, David; Castle, Katherine

    In postmastectomy radiotherapy, an increasing number of patients have tissue expanders inserted subpectorally when receiving immediate breast reconstruction. These tissue expanders are composed of silicone and are inflated with saline through an internal metallic port; this serves the purpose of stretching the muscle and skin tissue over time, in order to house a permanent implant. The issue with administering radiation therapy in the presence of a tissue expander is that the port's magnetic core can potentially perturb the dose delivered to the Planning Target Volume, causing significant artifacts in CT images. Several studies have explored this problem, and suggest that density corrections must be accounted for in treatment planning. However, very few studies accurately calibrated commercial TP systems for the high density material used in the port, and no studies employed fusion imaging to yield a more accurate contour of the port in treatment planning. We compared depth dose values in the water phantom between measurement and TPS calculations, and we were able to overcome some of the inhomogeneities presented by the image artifact by fusing the KVCT and MVCT images of the tissue expander together, resulting in a more precise comparison of dose calculations at discrete locations. We expect this method to be pivotal in the quantification of dose distribution in the PTV. Research funded by the LS-AMP Award.

  10. SiNG-PCRseq: Accurate inter-sequence quantification achieved by spiking-in a neighbor genome for competitive PCR amplicon sequencing.

    PubMed

    Oh, Soo A; Yang, Inchul; Hahn, Yoonsoo; Kang, Yong-Kook; Chung, Sun-Ku; Jeong, Sangkyun

    2015-07-06

    Despite the recent technological advances in DNA quantitation by sequencing, accurate delineation of the quantitative relationship among different DNA sequences is yet to be elaborated due to difficulties in correcting the sequence-specific quantitation biases. We here developed a novel DNA quantitation method via spiking-in a neighbor genome for competitive PCR amplicon sequencing (SiNG-PCRseq). This method utilizes genome-wide chemically equivalent but easily discriminable homologous sequences with a known copy arrangement in the neighbor genome. By comparing the amounts of selected human DNA sequences simultaneously to those of matched sequences in the orangutan genome, we could accurately draw the quantitative relationships for those sequences in the human genome (root-mean-square deviations <0.05). Technical replications of cDNA quantitation performed using different reagents at different time points also resulted in excellent correlations (R(2) > 0.95). The cDNA quantitation using SiNG-PCRseq was highly concordant with the RNA-seq-derived version in inter-sample comparisons (R(2) = 0.88), but relatively discordant in inter-sequence quantitation (R(2) < 0.44), indicating considerable level of sequence-dependent quantitative biases in RNA-seq. Considering the measurement structure explicitly relating the amount of different sequences within a sample, SiNG-PCRseq will facilitate sharing and comparing the quantitation data generated under different spatio-temporal settings.

  11. Can the conventional sextant prostate biopsy accurately predict unilateral prostate cancer in low-risk, localized, prostate cancer?

    PubMed

    Mayes, Janice M; Mouraviev, Vladimir; Sun, Leon; Tsivian, Matvey; Madden, John F; Polascik, Thomas J

    2011-01-01

    We evaluate the reliability of routine sextant prostate biopsy to detect unilateral lesions. A total of 365 men with complete records including all clinical and pathologic variables who underwent a preoperative sextant biopsy and subsequent radical prostatectomy (RP) for clinically localized prostate cancer at our medical center between January 1996 and December 2006 were identified. When the sextant biopsy detects unilateral disease, according to RP results, the NPV is high (91%) with a low false negative rate (9%). However, the sextant biopsy has a PPV of 28% with a high false positive rate (72%). Therefore, a routine sextant prostate biopsy cannot provide reliable, accurate information about the unilaterality of tumor lesion(s).

  12. Is Demography Destiny? Application of Machine Learning Techniques to Accurately Predict Population Health Outcomes from a Minimal Demographic Dataset

    PubMed Central

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease. PMID:25938675

  13. Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset.

    PubMed

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  14. A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults

    ERIC Educational Resources Information Center

    George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2007-01-01

    The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…

  15. Accurate Prediction of Protein Functional Class From Sequence in the Mycobacterium Tuberculosis and Escherichia Coli Genomes Using Data Mining

    PubMed Central

    Karwath, Andreas; Clare, Amanda; Dehaspe, Luc

    2000-01-01

    The analysis of genomics data needs to become as automated as its generation. Here we present a novel data-mining approach to predicting protein functional class from sequence. This method is based on a combination of inductive logic programming clustering and rule learning. We demonstrate the effectiveness of this approach on the M. tuberculosis and E. coli genomes, and identify biologically interpretable rules which predict protein functional class from information only available from the sequence. These rules predict 65% of the ORFs with no assigned function in M. tuberculosis and 24% of those in E. coli, with an estimated accuracy of 60–80% (depending on the level of functional assignment). The rules are founded on a combination of detection of remote homology, convergent evolution and horizontal gene transfer. We identify rules that predict protein functional class even in the absence of detectable sequence or structural homology. These rules give insight into the evolutionary history of M. tuberculosis and E. coli. PMID:11119305

  16. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    PubMed

    Danner, Holger; Desurmont, Gaylord A; Cristescu, Simona M; van Dam, Nicole M

    2017-01-30

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.

  17. Genomic Models of Short-Term Exposure Accurately Predict Long-Term Chemical Carcinogenicity and Identify Putative Mechanisms of Action

    PubMed Central

    Gusenleitner, Daniel; Auerbach, Scott S.; Melia, Tisha; Gómez, Harold F.; Sherr, David H.; Monti, Stefano

    2014-01-01

    Background Despite an overall decrease in incidence of and mortality from cancer, about 40% of Americans will be diagnosed with the disease in their lifetime, and around 20% will die of it. Current approaches to test carcinogenic chemicals adopt the 2-year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of the chemicals on the market have actually been tested. However, evidence accumulated to date suggests that gene expression profiles from model organisms exposed to chemical compounds reflect underlying mechanisms of action, and that these toxicogenomic models could be used in the prediction of chemical carcinogenicity. Results In this study, we used a rat-based microarray dataset from the NTP DrugMatrix Database to test the ability of toxicogenomics to model carcinogenicity. We analyzed 1,221 gene-expression profiles obtained from rats treated with 127 well-characterized compounds, including genotoxic and non-genotoxic carcinogens. We built a classifier that predicts a chemical's carcinogenic potential with an AUC of 0.78, and validated it on an independent dataset from the Japanese Toxicogenomics Project consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially expressed genes associated with chemical carcinogenesis, and developed novel data-driven approaches for the molecular characterization of the response to chemical stressors. Conclusion Here, we validate a toxicogenomic approach to predict carcinogenicity and provide strong evidence that, with a larger set of compounds, we should be able to improve the sensitivity and specificity of the predictions. We found that the prediction of carcinogenicity is tissue-dependent and that the results also confirm and expand upon previous studies implicating DNA damage, the peroxisome proliferator-activated receptor, the aryl hydrocarbon receptor, and regenerative pathology in the response to carcinogen exposure. PMID:25058030

  18. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models

    NASA Astrophysics Data System (ADS)

    Pau, George Shu Heng; Shen, Chaopeng; Riley, William J.; Liu, Yaning

    2016-02-01

    The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities.

  19. Predicting Poor Achievement in Early Grade School Using Kindergarten Scores on Simple Cognitive Tasks

    ERIC Educational Resources Information Center

    Scott, Marcia Strong; Delgado, Christine F.

    2006-01-01

    In this study, kindergarten children's scores on nine cognitive tasks were evaluated as potential predictors of poor achievement in first grade. A set of five tasks successfully identified 83% of children who were poor readers in first grade, while just three tasks identified 72% of children who were poor achievers in math in first grade. There…

  20. Predicting Early Academic Failure in High School from Prior Academic Achievement, Psychosocial Characteristics, and Behavior

    ERIC Educational Resources Information Center

    Casillas, Alex; Robbins, Steve; Allen, Jeff; Kuo, Yi-Lung; Hanson, Mary Ann; Schmeiser, Cynthia

    2012-01-01

    The authors examined the differential effects of prior academic achievement, psychosocial, behavioral, demographic, and school context factors on early high school grade point average (GPA) using a prospective study of 4,660 middle-school students from 24 schools. The findings suggest that (a) prior grades and standardized achievement are the…

  1. The Role of Family Orientation in Predicting Korean Boys' and Girls' Achievement Motivation to Learn Mathematics

    ERIC Educational Resources Information Center

    Kim, Jung-In; Chung, Hyewon

    2012-01-01

    Informed by achievement goal orientation and self-determination theories, we explored the role of cultural/contextual factors on Korean students' achievement motivation. Specifically, we examined the role of the Korean middle school students' family orientation as a mediator between their perceptions of parent goals or motivating styles and their…

  2. The Power of Learning Goal Orientation in Predicting Student Mathematics Achievement

    ERIC Educational Resources Information Center

    Lin, Chuan-Ju; Hung, Pi-Hsia; Lin, Su-Wei; Lin, Bor-Hung; Lin, Fou-Lai

    2009-01-01

    The teaching and learning of mathematics in schools has drawn tremendous attention since the education reform in Taiwan. In addition to assessing cognitive abilities, Taiwan Assessment of Student Achievement in Mathematics (TASA-MAT) collects background information to help depict average student achievement in schools in an educational context.…

  3. Predicting Science Achievement of University Students on the Basis of Selected Entry Characteristics.

    ERIC Educational Resources Information Center

    Helseth, Edwin A.; And Others

    Reported are results of a study that examined the relationships between university students' entry characteristics and achievement in biology. Variables judged most likely to be predictors of achievement were: (1) scholastic aptitude (quantitative and verbal); (2) level of cognitive development; (3) locus of control; (4) grade point average; (5)…

  4. Parental Warmth, Control, and Involvement in Schooling: Predicting Academic Achievement among Korean American Adolescents.

    ERIC Educational Resources Information Center

    Kim, Kyoungho; Rohner, Ronald P.

    2002-01-01

    Explored the relationship between parenting style and academic achievement of Korean American adolescents, investigating the influence of perceived parental warmth and control and improvement in schooling. Survey data indicated that authoritative paternal parenting related to optimal academic achievement. Differences in maternal parenting styles…

  5. SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models

    PubMed Central

    2014-01-01

    Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894

  6. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

    PubMed

    Barone, Veronica; Hod, Oded; Peralta, Juan E; Scuseria, Gustavo E

    2011-04-19

    Over the last several years, low-dimensional graphene derivatives, such as carbon nanotubes and graphene nanoribbons, have played a central role in the pursuit of a plausible carbon-based nanotechnology. Their electronic properties can be either metallic or semiconducting depending purely on morphology, but predicting their electronic behavior has proven challenging. The combination of experimental efforts with modeling of these nanometer-scale structures has been instrumental in gaining insight into their physical and chemical properties and the processes involved at these scales. Particularly, approximations based on density functional theory have emerged as a successful computational tool for predicting the electronic structure of these materials. In this Account, we review our efforts in modeling graphitic nanostructures from first principles with hybrid density functionals, namely the Heyd-Scuseria-Ernzerhof (HSE) screened exchange hybrid and the hybrid meta-generalized functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh). These functionals provide a powerful tool for quantitatively studying structure-property relations and the effects of external perturbations such as chemical substitutions, electric and magnetic fields, and mechanical deformations on the electronic and magnetic properties of these low-dimensional carbon materials. We show how HSE and TPSSh successfully predict the electronic properties of these materials, providing a good description of their band structure and density of states, their work function, and their magnetic ordering in the cases in which magnetism arises. Moreover, these approximations are capable of successfully predicting optical transitions (first and higher order) in both metallic and semiconducting single-walled carbon nanotubes of various chiralities and diameters with impressive accuracy. This versatility includes the correct prediction of the trigonal warping splitting in metallic nanotubes. The results predicted

  7. An Electroacoustic Hearing Protector Simulator That Accurately Predicts Pressure Levels in the Ear Based on Standard Performance Metrics

    DTIC Science & Technology

    2013-08-01

    24 Figure 20. ABQ experiment showing five volunteers located 1.0 m from source in upper-left panel wearing...study (Royster et al.,1996) in which users self-fit hearing protectors (ANSI S12.6- 2008 method B: user fit) with no experimenter instruction gives an...values provided by the experimenters and simulator fits for the intact and modified muffs. Figure 22 (upper panel) shows the simulator prediction

  8. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock

    NASA Astrophysics Data System (ADS)

    Cleves, Ann E.; Jain, Ajay N.

    2015-06-01

    Prediction of the bound configuration of small-molecule ligands that differ substantially from the cognate ligand of a protein co-crystal structure is much more challenging than re-docking the cognate ligand. Success rates for cross-docking in the range of 20-30 % are common. We present an approach that uses structural information known prior to a particular cutoff-date to make predictions on ligands whose bounds structures were determined later. The knowledge-guided docking protocol was tested on a set of ten protein targets using a total of 949 ligands. The benchmark data set, called PINC ("PINC Is Not Cognate"), is publicly available. Protein pocket similarity was used to choose representative structures for ensemble-docking. The docking protocol made use of known ligand poses prior to the cutoff-date, both to help guide the configurational search and to adjust the rank of predicted poses. Overall, the top-scoring pose family was correct over 60 % of the time, with the top-two pose families approaching a 75 % success rate. Correct poses among all those predicted were identified nearly 90 % of the time. The largest improvements came from the use of molecular similarity to improve ligand pose rankings and the strategy for identifying representative protein structures. With the exception of a single outlier target, the knowledge-guided docking protocol produced results matching the quality of cognate-ligand re-docking, but it did so on a very challenging temporally-segregated cross-docking benchmark.

  9. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.

    PubMed

    Cleves, Ann E; Jain, Ajay N

    2015-06-01

    Prediction of the bound configuration of small-molecule ligands that differ substantially from the cognate ligand of a protein co-crystal structure is much more challenging than re-docking the cognate ligand. Success rates for cross-docking in the range of 20-30 % are common. We present an approach that uses structural information known prior to a particular cutoff-date to make predictions on ligands whose bounds structures were determined later. The knowledge-guided docking protocol was tested on a set of ten protein targets using a total of 949 ligands. The benchmark data set, called PINC ("PINC Is Not Cognate"), is publicly available. Protein pocket similarity was used to choose representative structures for ensemble-docking. The docking protocol made use of known ligand poses prior to the cutoff-date, both to help guide the configurational search and to adjust the rank of predicted poses. Overall, the top-scoring pose family was correct over 60 % of the time, with the top-two pose families approaching a 75 % success rate. Correct poses among all those predicted were identified nearly 90 % of the time. The largest improvements came from the use of molecular similarity to improve ligand pose rankings and the strategy for identifying representative protein structures. With the exception of a single outlier target, the knowledge-guided docking protocol produced results matching the quality of cognate-ligand re-docking, but it did so on a very challenging temporally-segregated cross-docking benchmark.

  10. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing

    PubMed Central

    Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  11. How many clinic BP readings are needed to predict cardiovascular events as accurately as ambulatory BP monitoring?

    PubMed

    Eguchi, K; Hoshide, S; Shimada, K; Kario, K

    2014-12-01

    We tested the hypothesis that multiple clinic blood pressure (BP) readings over an extended baseline period would be as predictive as ambulatory BP (ABP) for cardiovascular disease (CVD). Clinic and ABP monitoring were performed in 457 hypertensive patients at baseline. Clinic BP was measured monthly and the means of the first 3, 5 and 10 clinic BP readings were taken as the multiple clinic BP readings. The subjects were followed up, and stroke, HARD CVD, and ALL CVD events were determined as outcomes. In multivariate Cox regression analyses, ambulatory systolic BP (SBP) best predicted three outcomes independently of baseline and multiple clinic SBP readings. The mean of 10 clinic SBP readings predicted stroke (hazards ratio (HR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.04) and ALL CVD (HR=1.41, 95% CI=1.13-1.74, P=0.002) independently of baseline clinic SBP. Clinic SBPs by three and five readings were not associated with any CVD events, except that clinic SBP by three readings was associated with ALL CVD (P=0.015). Besides ABP values, the mean of the first 10 clinic SBP values was a significant predictor of stroke and ALL CVD events. It is important to take more than several clinic BP readings early after the baseline period for the risk stratification of future CVD events.

  12. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.

    PubMed

    Pearce, K L; Ferguson, M; Gardner, G; Smith, N; Greef, J; Pethick, D W

    2009-01-01

    Fifty merino wethers (liveweight range from 44 to 81kg, average of 58.6kg) were lot fed for 42d and scanned through a dual X-ray absorptiometry (DXA) as both a live animal and whole carcass (carcass weight range from 15 to 32kg, average of 22.9kg) producing measures of total tissue, lean, fat and bone content. The carcasses were subsequently boned out into saleable cuts and the weights and yield of boned out muscle, fat and bone recorded. The relationship between chemical lean (protein+water) was highly correlated with DXA carcass lean (r(2)=0.90, RSD=0.674kg) and moderately with DXA live lean (r(2)=0.72, RSD=1.05kg). The relationship between the chemical fat was moderately correlated with DXA carcass fat (r(2)=0.86, RSD=0.42kg) and DXA live fat (r(2)=0.70, RSD=0.71kg). DXA carcass and live animal bone was not well correlated with chemical ash (both r(2)=0.38, RSD=0.3). DXA carcass lean was moderately well predicted from DXA live lean with the inclusion of bodyweight in the regression (r(2)=0.82, RSD=0.87kg). DXA carcass fat was well predicted from DXA live fat (r(2)=0.86, RSD=0.54kg). DXA carcass lean and DXA carcass fat with the inclusion of carcass weight in the regression significantly predicted boned out muscle (r(2)=0.97, RSD=0.32kg) and fat weight, respectively (r(2)=0.92, RSD=0.34kg). The use of DXA live lean and DXA live fat with the inclusion of bodyweight to predict boned out muscle (r(2)=0.83, RSD=0.75kg) and fat (r(2)=0.86, RSD=0.46kg) weight, respectively, was moderate. The use of DXA carcass and live lean and fat to predict boned out muscle and fat yield was not correlated as weight. The future for the DXA will exist in the determination of body composition in live animals and carcasses in research experiments but there is potential for the DXA to be used as an online carcass grading system.

  13. The Validity of the Strong Interest Inventory in Predicting College Major Choice and Academic Achievement

    ERIC Educational Resources Information Center

    Miller, Shawn Michael

    2010-01-01

    The current study examines the Strong Interest Inventory's (SII) ability to measure vocational interests and better understand how it predicts concurrent undergraduate academic majors. Although much literature exists concerning vocational interest measurement, no published study has utilized all scales on the SII to predict concurrent academic…

  14. Multivariate Screening Model for Later Word Reading Achievement: Predictive Utility of Prereading Skills and Cognitive Ability

    ERIC Educational Resources Information Center

    MacDonald, Heidi H.; Sullivan, Amanda L.; Watkins, Marley W.

    2013-01-01

    The present study used multiple regression to determine the predictive value of Kindergarten phonemic awareness, rapid serial naming, letter knowledge, and cognitive ability for predicting first-grade word reading and fluency. Participants were 131 first-grade students from a mid-Atlantic school system. A combination of predictor variables was…

  15. Broad and Narrow Personality Traits Predicting Academic Achievement over Compulsory Schooling: A Cross-Sectional Study in Two Countries

    ERIC Educational Resources Information Center

    Zupancic, Maja; Kavcic, Tina; Slobodskaya, Helena R.; Akhmetova, Olga A.

    2016-01-01

    Incremental predictive value of 5 broad and 13 narrow personality traits for academic achievement over and beyond age, gender, parental education, and country was examined in Russian and Slovene 8- to 15-year-olds. Personality data were collected from mothers (Russia: N = 994, Slovenia: N = 624) and adolescents (Russia: N = 481, Slovenia: N = 310)…

  16. Predicting Long-Term Growth in Students' Mathematics Achievement: The Unique Contributions of Motivation and Cognitive Strategies

    ERIC Educational Resources Information Center

    Murayama, Kou; Pekrun, Reinhard; Lichtenfeld, Stephanie; vom Hofe, Rudolf

    2013-01-01

    This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10;…

  17. What Is the Predict Level of Which Computer Using Skills Measured in PISA for Achievement in Mathematics

    ERIC Educational Resources Information Center

    Ziya, Engin; Dogan, Nuri; Kelecioglu, Hulya

    2010-01-01

    This study aims at determining the extent to which computer using skills specified in Project for International Students Evaluation (PISA) 2006 predict Turkish students' achievement in mathematics. Apart from questions on mathematics, science and reading competencies, a student questionnaire, a school questionnaire and a parent questionnaire were…

  18. How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudinal study.

    PubMed

    Viterbori, Paola; Usai, M Carmen; Traverso, Laura; De Franchis, Valentina

    2015-12-01

    This longitudinal study analyzes whether selected components of executive function (EF) measured during the preschool period predict several indices of math achievement in primary school. Six EF measures were assessed in a sample of 5-year-old children (N = 175). The math achievement of the same children was then tested in Grades 1 and 3 using both a composite math score and three single indices of written calculation, arithmetical facts, and problem solving. Using previous results obtained from the same sample of children, a confirmatory factor analysis examining the latent EF structure in kindergarten indicated that a two-factor model provided the best fit for the data. In this model, inhibition and working memory (WM)-flexibility were separate dimensions. A full structural equation model was then used to test the hypothesis that math achievement (the composite math score and single math scores) in Grades 1 and 3 could be explained by the two EF components comprising the kindergarten model. The results indicate that the WM-flexibility component measured during the preschool period substantially predicts mathematical achievement, especially in Grade 3. The math composite scores were predicted by the WM-flexibility factor at both grade levels. In Grade 3, both problem solving and arithmetical facts were predicted by the WM-flexibility component. The results empirically support interventions that target EF as an important component of early childhood mathematics education.

  19. Predicting First Grade Reading Achievement for Spanish-Speaking Kindergartners: Is Early Literacy Screening in English Valid?

    ERIC Educational Resources Information Center

    Ford, Karen L.; Invernizzi, Marcia A.; Huang, Francis

    2014-01-01

    This study explored the viability of using kindergarten measures of phonological awareness, alphabet knowledge, and orthographic knowledge, administered in English, to predict first grade reading achievement of Spanish-speaking English language learners. The primary research question was: Do kindergarten measures of early literacy skills in…

  20. Middle School Characteristics That Predict Student Achievement, as Measured by the School-Wide California API Score

    ERIC Educational Resources Information Center

    Paredes, Josie Abaroa

    2013-01-01

    The purpose of this study was to investigate, through quantitative research, effective middle school characteristics that predict student achievement, as measured by the school-wide California API score. Characteristics were determined using an instrument developed by the Office of Superintendent of Public Instruction (OSPI), which asked middle…

  1. Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9.

    PubMed

    Sanders, Elizabeth A; Berninger, Virginia W; Abbott, Robert D

    2017-02-01

    Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in Grades 4 through 9 ( N = 103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n = 25), word reading and spelling (dyslexia, n = 60), or oral and written language (oral and written language learning disabilities, n = 18). That is, SLDs are defined on the basis of cascading level of language impairment (subword, word, and syntax/text). A five-block regression model sequentially predicted literacy achievement from cognitive-linguistic translation (Block 1); working memory components for word-form coding (Block 2), phonological and orthographic loops (Block 3), and supervisory focused or switching attention (Block 4); and SLD groups (Block 5). Results showed that cognitive-linguistic translation explained an average of 27% and 15% of the variance in reading and writing achievement, respectively, but working memory components explained an additional 39% and 27% of variance. Orthographic word-form coding uniquely predicted nearly every measure, whereas attention switching uniquely predicted only reading. Finally, differences in reading and writing persisted between dyslexia and dysgraphia, with dysgraphia higher, even after controlling for Block 1 to 4 predictors. Differences in literacy achievement between students with dyslexia and oral and written language learning disabilities were largely explained by the Block 1 predictors. Applications to identifying and teaching students with these SLDs are discussed.

  2. The Career Path of the Assistant Principalship as It Pertains to the Prediction of School Achievement in South Texas

    ERIC Educational Resources Information Center

    Castillo, Criselda I.

    2009-01-01

    The purpose of the study was to collect data to determine if assistant principal experience predicts student achievement as measured by the outcome measures of (1) school overall accountability rating, (2) Texas Assessment of Knowledge and Skills (TAKS) reading/English language arts score, (3) TAKS mathematics score, and (4) campus attendance rate…

  3. Predictive Power of School Based Assessment Scores on Students' Achievement in Junior Secondary Certificate Examination (JSCE) in English and Mathematics

    ERIC Educational Resources Information Center

    Opara, Ijeoma M.; Onyekuru, Bruno U.; Njoku, Joyce U.

    2015-01-01

    The study investigated the predictive power of school based assessment scores on students' achievement in Junior Secondary Certificate Examination (JSCE) in English and Mathematics. Two hypotheses tested at 0.05 level of significance guided the study. The study adopted an ex-post facto research design. A sample of 250 students were randomly drawn…

  4. Network Biomarkers Constructed from Gene Expression and Protein-Protein Interaction Data for Accurate Prediction of Leukemia

    PubMed Central

    Yuan, Xuye; Chen, Jiajia; Lin, Yuxin; Li, Yin; Xu, Lihua; Chen, Luonan; Hua, Haiying; Shen, Bairong

    2017-01-01

    Leukemia is a leading cause of cancer deaths in the developed countries. Great efforts have been undertaken in search of diagnostic biomarkers of leukemia. However, leukemia is highly complex and heterogeneous, involving interaction among multiple molecular components. Individual molecules are not necessarily sensitive diagnostic indicators. Network biomarkers are considered to outperform individual molecules in disease characterization. We applied an integrative approach that identifies active network modules as putative biomarkers for leukemia diagnosis. We first reconstructed the leukemia-specific PPI network using protein-protein interactions from the Protein Interaction Network Analysis (PINA) and protein annotations from GeneGo. The network was further integrated with gene expression profiles to identify active modules with leukemia relevance. Finally, the candidate network-based biomarker was evaluated for the diagnosing performance. A network of 97 genes and 400 interactions was identified for accurate diagnosis of leukemia. Functional enrichment analysis revealed that the network biomarkers were enriched in pathways in cancer. The network biomarkers could discriminate leukemia samples from the normal controls more effectively than the known biomarkers. The network biomarkers provide a useful tool to diagnose leukemia and also aids in further understanding the molecular basis of leukemia. PMID:28243332

  5. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  6. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.

    PubMed

    Walsh, Susan; Liu, Fan; Ballantyne, Kaye N; van Oven, Mannis; Lao, Oscar; Kayser, Manfred

    2011-06-01

    A new era of 'DNA intelligence' is arriving in forensic biology, due to the impending ability to predict externally visible characteristics (EVCs) from biological material such as those found at crime scenes. EVC prediction from forensic samples, or from body parts, is expected to help concentrate police investigations towards finding unknown individuals, at times when conventional DNA profiling fails to provide informative leads. Here we present a robust and sensitive tool, termed IrisPlex, for the accurate prediction of blue and brown eye colour from DNA in future forensic applications. We used the six currently most eye colour-informative single nucleotide polymorphisms (SNPs) that previously revealed prevalence-adjusted prediction accuracies of over 90% for blue and brown eye colour in 6168 Dutch Europeans. The single multiplex assay, based on SNaPshot chemistry and capillary electrophoresis, both widely used in forensic laboratories, displays high levels of genotyping sensitivity with complete profiles generated from as little as 31pg of DNA, approximately six human diploid cell equivalents. We also present a prediction model to correctly classify an individual's eye colour, via probability estimation solely based on DNA data, and illustrate the accuracy of the developed prediction test on 40 individuals from various geographic origins. Moreover, we obtained insights into the worldwide allele distribution of these six SNPs using the HGDP-CEPH samples of 51 populations. Eye colour prediction analyses from HGDP-CEPH samples provide evidence that the test and model presented here perform reliably without prior ancestry information, although future worldwide genotype and phenotype data shall confirm this notion. As our IrisPlex eye colour prediction test is capable of immediate implementation in forensic casework, it represents one of the first steps forward in the creation of a fully individualised EVC prediction system for future use in forensic DNA intelligence.

  7. Genomic inference accurately predicts the timing and severity of a recent bottleneck in a non-model insect population

    PubMed Central

    McCoy, Rajiv C.; Garud, Nandita R.; Kelley, Joanna L.; Boggs, Carol L.; Petrov, Dmitri A.

    2015-01-01

    The analysis of molecular data from natural populations has allowed researchers to answer diverse ecological questions that were previously intractable. In particular, ecologists are often interested in the demographic history of populations, information that is rarely available from historical records. Methods have been developed to infer demographic parameters from genomic data, but it is not well understood how inferred parameters compare to true population history or depend on aspects of experimental design. Here we present and evaluate a method of SNP discovery using RNA-sequencing and demographic inference using the program δaδi, which uses a diffusion approximation to the allele frequency spectrum to fit demographic models. We test these methods in a population of the checkerspot butterfly Euphydryas gillettii. This population was intentionally introduced to Gothic, Colorado in 1977 and has since experienced extreme fluctuations including bottlenecks of fewer than 25 adults, as documented by nearly annual field surveys. Using RNA-sequencing of eight individuals from Colorado and eight individuals from a native population in Wyoming, we generate the first genomic resources for this system. While demographic inference is commonly used to examine ancient demography, our study demonstrates that our inexpensive, all-in-one approach to marker discovery and genotyping provides sufficient data to accurately infer the timing of a recent bottleneck. This demographic scenario is relevant for many species of conservation concern, few of which have sequenced genomes. Our results are remarkably insensitive to sample size or number of genomic markers, which has important implications for applying this method to other non-model systems. PMID:24237665

  8. Prediction and prevention of schizophrenia: what has been achieved and where to go next?

    PubMed Central

    KLOSTERKOTTER, JOACHIM; SCHULTZE-LUTTER, FRAUKE; BECHDOLF, ANDREAS; RUHRMANN, STEPHAN

    2011-01-01

    In modern medicine, vigorous efforts are being made in the prediction and prevention of diseases. Mental disorders are suitable candidates for the application of this program. The currently known neurobiological and psychosocial risk indicators for schizophrenia do not have a predictive power sufficient for selective prevention in asymptomatic patients at risk. However, once predictive basic and later pre-psychotic high risk symptoms of psychosis develop into the five-year initial prodrome, the impending outbreak of the disease can be predicted with high accuracy. Research findings suggest a differential strategy of indicated prevention with cognitive behavioral therapy in early initial prodromal states and low dosage atypical antipsychotics in late initial prodromal states. The most important future tasks are the improvement of the predictive power by risk enrichment and stratification, as well as the confirmation of the existing and the development of new prevention strategies, with a stronger focus on the etiology of the disorder. In addition, the prediction and prevention approach would benefit from the inclusion of risk symptoms in the DSM-5 criteria. PMID:21991266

  9. An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading

    NASA Astrophysics Data System (ADS)

    Russo, A.; Zuccarello, B.

    2007-07-01

    The paper presents a theoretical-numerical hybrid method for determining the stresses distribution in composite laminates containing a circular hole and subjected to uniaxial tensile loading. The method is based upon an appropriate corrective function allowing a simple and rapid evaluation of stress distributions in a generic plate of finite width with a hole based on the theoretical stresses distribution in an infinite plate with the same hole geometry and material. In order to verify the accuracy of the method proposed, various numerical and experimental tests have been performed by considering different laminate lay-ups; in particular, the experimental results have shown that a combined use of the method proposed and the well-know point-stress criterion leads to reliable strength predictions for GFRP or CFRP laminates with a circular hole.

  10. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    SciTech Connect

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  11. A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters.

    PubMed

    Deleebeeck, Nele M E; De Laender, Frederik; Chepurnov, Victor A; Vyverman, Wim; Janssen, Colin R; De Schamphelaere, Karel A C

    2009-04-01

    The major research questions addressed in this study were (i) whether green microalgae living in soft water (operationally defined water hardness<10mg CaCO(3)/L) are intrinsically more sensitive to Ni than green microalgae living in hard water (operationally defined water hardness >25mg CaCO(3)/L), and (ii) whether a single bioavailability model can be used to predict the effect of water hardness on the toxicity of Ni to green microalgae in both soft and hard water. Algal growth inhibition tests were conducted with clones of 10 different species collected in soft and hard water lakes in Sweden. Soft water algae were tested in a 'soft' and a 'moderately hard' test medium (nominal water hardness=6.25 and 16.3mg CaCO(3)/L, respectively), whereas hard water algae were tested in a 'moderately hard' and a 'hard' test medium (nominal water hardness=16.3 and 43.4 mg CaCO(3)/L, respectively). The results from the growth inhibition tests in the 'moderately hard' test medium revealed no significant sensitivity differences between the soft and the hard water algae used in this study. Increasing water hardness significantly reduced Ni toxicity to both soft and hard water algae. Because it has previously been demonstrated that Ca does not significantly protect the unicellular green alga Pseudokirchneriella subcapitata against Ni toxicity, it was assumed that the protective effect of water hardness can be ascribed to Mg alone. The logK(MgBL) (=5.5) was calculated to be identical for the soft and the hard water algae used in this study. A single bioavailability model can therefore be used to predict Ni toxicity to green microalgae in soft and hard surface waters as a function of water hardness.

  12. Understanding motivational structures that differentially predict engagement and achievement in middle school science

    NASA Astrophysics Data System (ADS)

    Lee, Christine S.; Hayes, Kathryn N.; Seitz, Jeffery; DiStefano, Rachelle; O'Connor, Dawn

    2016-01-01

    Middle school has been documented as the period in which a drop in students' science interest and achievement occurs. This trend indicates a lack of motivation for learning science; however, little is known about how different aspects of motivation interact with student engagement and science learning outcomes. This study examines the relationships among motivational factors, engagement, and achievement in middle school science (grades 6-8). Data were obtained from middle school students in the United States (N = 2094). The theoretical relationships among motivational constructs, including self-efficacy, and three types of goal orientations (mastery, performance approach, and performance avoid) were tested. The results showed that motivation is best modeled as distinct intrinsic and extrinsic factors; lending evidence that external, performance based goal orientations factor separately from self-efficacy and an internal, mastery based goal orientation. Second, a model was tested to examine how engagement mediated the relationships between intrinsic and extrinsic motivational factors and science achievement. Engagement mediated the relationship between intrinsic motivation and science achievement, whereas extrinsic motivation had no relationship with engagement and science achievement. Implications for how classroom practice and educational policy emphasize different student motivations, and in turn, can support or hinder students' science learning are discussed.

  13. Predicting long-term growth in students' mathematics achievement: the unique contributions of motivation and cognitive strategies.

    PubMed

    Murayama, Kou; Pekrun, Reinhard; Lichtenfeld, Stephanie; Vom Hofe, Rudolf

    2013-01-01

    This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10; Mage  = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze growth in achievement. Results showed that the initial level of achievement was strongly related to intelligence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no relation with the growth of achievement over years, whereas motivation and learning strategies were predictors of growth. These findings highlight the importance of motivation and learning strategies in facilitating adolescents' development of mathematical competencies.

  14. Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species

    NASA Astrophysics Data System (ADS)

    Tan, Samuel; Barrera Acevedo, Santiago; Izgorodina, Ekaterina I.

    2017-02-01

    The accurate calculation of intermolecular interactions is important to our understanding of properties in large molecular systems. The high computational cost of the current "gold standard" method, coupled cluster with singles and doubles and perturbative triples (CCSD(T), limits its application to small- to medium-sized systems. Second-order Møller-Plesset perturbation (MP2) theory is a cheaper alternative for larger systems, although at the expense of its decreased accuracy, especially when treating van der Waals complexes. In this study, a new modification of the spin-component scaled MP2 method was proposed for a wide range of intermolecular complexes including two well-known datasets, S22 and S66, and a large dataset of ionic liquids consisting of 174 single ion pairs, IL174. It was found that the spin ratio, ɛΔ s=E/INT O SEIN T S S , calculated as the ratio of the opposite-spin component to the same-spin component of the interaction correlation energy fell in the range of 0.1 and 1.6, in contrast to the range of 3-4 usually observed for the ratio of absolute correlation energy, ɛs=E/OSES S , in individual molecules. Scaled coefficients were found to become negative when the spin ratio fell in close proximity to 1.0, and therefore, the studied intermolecular complexes were divided into two groups: (1) complexes with ɛΔ s< 1 and (2) complexes with ɛΔ s≥ 1 . A separate set of coefficients was obtained for both groups. Exclusion of counterpoise correction during scaling was found to produce superior results due to decreased error. Among a series of Dunning's basis sets, cc-pVTZ and cc-pVQZ were found to be the best performing ones, with a mean absolute error of 1.4 kJ mol-1 and maximum errors below 6.2 kJ mol-1. The new modification, spin-ratio scaled second-order Møller-Plesset perturbation, treats both dispersion-driven and hydrogen-bonded complexes equally well, thus validating its robustness with respect to the interaction type ranging from ionic

  15. Predicting maintenance or achievement of healthy weight in children: the impact of changes in physical fitness.

    PubMed

    Hruby, Adela; Chomitz, Virginia R; Arsenault, Lisa N; Must, Aviva; Economos, Christina D; McGowan, Robert J; Sacheck, Jennifer M

    2012-08-01

    Physical fitness is often inversely associated with adiposity in children cross-sectionally, but the effect of becoming fit or maintaining fitness over time on changes in weight status has not been well studied in children. We investigated the impact of changes in fitness over 1-4 years of follow-up on the maintenance or achievement of healthy weight among 2,793 schoolchildren who were first measured as 1st to 7th graders. Students were classified as "fit" or "underfit" according to age- and gender-specific norms in five fitness domains: endurance, agility, flexibility, upper body strength, and abdominal strength. Weight status was dichotomized by BMI percentile: "healthy weight" (<85th percentile) or "overweight/obese" (≥85th percentile). At baseline, of the 38.3% overweight/obese children, 81.9% (N = 875) were underfit. Underfit overweight students were more likely to achieve healthy weight if they achieved fitness (boys: odds ratio (OR) = 2.68, 95% confidence interval (CI) = 1.24-5.77; girls: OR = 4.67, 95%CI = 2.09-10.45). Initially fit overweight children (N = 194) were more likely to achieve healthy weight if they maintained fitness (boys: OR = 11.99, 95%CI = 2.18-65.89; girls: OR = 2.46, 95%CI = 1.04-5.83). Similarly, initially fit healthy-weight children (N = 717) were more likely to maintain healthy weight if they maintained fitness (boys: OR 3.70, 95%CI = 1.40-9.78; girls: OR = 4.14, 95%CI = 1.95-8.78). Overweight schoolchildren who achieve or maintain physical fitness are more likely to achieve healthy weight, and healthy-weight children who maintain fitness are more likely to maintain healthy weight. School-based policies/practices that support physical fitness may contribute to obesity reduction and maintenance of healthy weight among schoolchildren.

  16. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  17. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  18. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages.

    PubMed

    Vlaming, M L H; van Duijn, E; Dillingh, M R; Brands, R; Windhorst, A D; Hendrikse, N H; Bosgra, S; Burggraaf, J; de Koning, M C; Fidder, A; Mocking, J A J; Sandman, H; de Ligt, R A F; Fabriek, B O; Pasman, W J; Seinen, W; Alves, T; Carrondo, M; Peixoto, C; Peeters, P A M; Vaes, W H J

    2015-08-01

    Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 μg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs.

  19. Women's age and embryo developmental speed accurately predict clinical pregnancy after single vitrified-warmed blastocyst transfer.

    PubMed

    Kato, Keiichi; Ueno, Satoshi; Yabuuchi, Akiko; Uchiyama, Kazuo; Okuno, Takashi; Kobayashi, Tamotsu; Segawa, Tomoya; Teramoto, Shokichi

    2014-10-01

    The aim of this study was to establish a simple, objective blastocyst grading system using women's age and embryo developmental speed to predict clinical pregnancy after single vitrified-warmed blastocyst transfer. A 6-year retrospective cohort study was conducted in a private infertility centre. A total of 7341 single vitrified-armed blastocyst transfer cycles were included, divided into those carried out between 2006 and 2011 (6046 cycles) and 2012 (1295 cycles). Clinical pregnancy rate, ongoing pregnancy rate and delivery rates were stratified by women's age (<35, 35-37, 38-39, 40-41, 42-45 years) and time to blastocyst expansion (<120, 120-129, 130-139, 140-149, >149 h) as embryo developmental speed. In all the age groups, clinical pregnancy rate, ongoing pregnancy rate and delivery rates decreased as the embryo developmental speed decreased (P < 0.0001). A simple five-grade score based on women's age and embryo developmental speed was determined by actual clinical pregnancy rates observed in the 2006-2011 cohort. Subsequently, the novel grading score was validated in the 2012 cohort (1295 cycles), finding an excellent association. In conclusion, we established a novel blastocyst grading system using women's age and embryo developmental speed as objective parameters.

  20. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data

    PubMed Central

    Essaghir, Ahmed; Toffalini, Federica; Knoops, Laurent; Kallin, Anders; van Helden, Jacques; Demoulin, Jean-Baptiste

    2010-01-01

    Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining. PMID:20215436

  1. Perceived Academic Control and Academic Emotions Predict Undergraduate University Student Success: Examining Effects on Dropout Intention and Achievement.

    PubMed

    Respondek, Lisa; Seufert, Tina; Stupnisky, Robert; Nett, Ulrike E

    2017-01-01

    The present study addressed concerns over the high risk of university students' academic failure. It examined how perceived academic control and academic emotions predict undergraduate students' academic success, conceptualized as both low dropout intention and high achievement (indicated by GPA). A cross-sectional survey was administered to 883 undergraduate students across all disciplines of a German STEM orientated university. The study additionally compared freshman students (N = 597) vs. second-year students (N = 286). Using structural equation modeling, for the overall sample of undergraduate students we found that perceived academic control positively predicted enjoyment and achievement, as well as negatively predicted boredom and anxiety. The prediction of dropout intention by perceived academic control was fully mediated via anxiety. When taking perceived academic control into account, we found no specific impact of enjoyment or boredom on the intention to dropout and no specific impact of all three academic emotions on achievement. The multi-group analysis showed, however, that perceived academic control, enjoyment, and boredom among second-year students had a direct relationship with dropout intention. A major contribution of the present study was demonstrating the important roles of perceived academic control and anxiety in undergraduate students' academic success. Concerning corresponding institutional support and future research, the results suggested distinguishing incoming from advanced undergraduate students.

  2. Perceived Academic Control and Academic Emotions Predict Undergraduate University Student Success: Examining Effects on Dropout Intention and Achievement

    PubMed Central

    Respondek, Lisa; Seufert, Tina; Stupnisky, Robert; Nett, Ulrike E.

    2017-01-01

    The present study addressed concerns over the high risk of university students' academic failure. It examined how perceived academic control and academic emotions predict undergraduate students' academic success, conceptualized as both low dropout intention and high achievement (indicated by GPA). A cross-sectional survey was administered to 883 undergraduate students across all disciplines of a German STEM orientated university. The study additionally compared freshman students (N = 597) vs. second-year students (N = 286). Using structural equation modeling, for the overall sample of undergraduate students we found that perceived academic control positively predicted enjoyment and achievement, as well as negatively predicted boredom and anxiety. The prediction of dropout intention by perceived academic control was fully mediated via anxiety. When taking perceived academic control into account, we found no specific impact of enjoyment or boredom on the intention to dropout and no specific impact of all three academic emotions on achievement. The multi-group analysis showed, however, that perceived academic control, enjoyment, and boredom among second-year students had a direct relationship with dropout intention. A major contribution of the present study was demonstrating the important roles of perceived academic control and anxiety in undergraduate students' academic success. Concerning corresponding institutional support and future research, the results suggested distinguishing incoming from advanced undergraduate students. PMID:28326043

  3. To What Extent Can the Big Five and Learning Styles Predict Academic Achievement

    ERIC Educational Resources Information Center

    Köseoglu, Yaman

    2016-01-01

    Personality traits and learning styles play defining roles in shaping academic achievement. 202 university students completed the Big Five personality traits questionnaire and the Inventory of Learning Processes Scale and self-reported their grade point averages. Conscientiousness and agreeableness, two of the Big Five personality traits, related…

  4. A Model for Predicting Learning Flow and Achievement in Corporate e-Learning

    ERIC Educational Resources Information Center

    Joo, Young Ju; Lim, Kyu Yon; Kim, Su Mi

    2012-01-01

    The primary objective of this study was to investigate the determinants of learning flow and achievement in corporate online training. Self-efficacy, intrinsic value, and test anxiety were selected as learners' motivational factors, while perceived usefulness and ease of use were also selected as learning environmental factors. Learning flow was…

  5. Social Adjustment and Academic Achievement: A Predictive Model for Students with Diverse Academic and Behavior Competencies

    ERIC Educational Resources Information Center

    Ray, Corey E.; Elliott, Stephen N.

    2006-01-01

    This study examined the hypothesized relationship between social adjustment, as measured by perceived social support, self-concept, and social skills, and performance on academic achievement tests. Participants included 27 teachers and 77 fourth- and eighth-grade students with diverse academic and behavior competencies. Teachers were asked to…

  6. The Bender Visual Motor Gestalt Test: Implications for the Diagnosis and Prediction of Reading Achievement.

    ERIC Educational Resources Information Center

    Lesiak, Judi

    1984-01-01

    Reviews 32 studies about the utility of the Bender Visual-Motor Gestalt Test (BG) as a predictor of reading, its relationship to reading achievement, and ability to differentiate between good and poor readers. Results question the use of the BG (scored using discrete error systems) in a diagnostic reading battery. (BH)

  7. Preschool Teaching Students' Prediction of Decision Making Strategies and Academic Achievement on Learning Motivations

    ERIC Educational Resources Information Center

    Acat, M. Bahaddin; Dereli, Esra

    2012-01-01

    The purpose of this study was to identify problems and motivation sources and strategies of decision-making of the students' attending preschool education teacher department, was to determine the relationship between learning motivation and strategies of decision-making, academic achievement of students, was to determine whether strategies of…

  8. Predicting First-Year Achievement by Pedagogy and Skill Development in the First Weeks at University

    ERIC Educational Resources Information Center

    Torenbeek, M.; Jansen, E. P. W. A.; Hofman, W. H. A.

    2011-01-01

    Central in this study is the relationship between the pedagogical approach and generic skill development in the first 10 weeks at university, students' perception of the fit between secondary and university education and first-year achievement. Information regarding the pedagogical approach and generic skill development was gathered through…

  9. Understanding Student Goal Orientation Tendencies to Predict Student Performance: A 2x2 Achievement Goal Orientation

    ERIC Educational Resources Information Center

    Miller, Mark Alan

    2013-01-01

    The study tested the 2X2 model of the Achievement Goal Orientation (AGO) theory in a military technical training environment while using the Air Force Officers Qualifying Test's academic aptitude score to control for the differences in the students' academic aptitude. The study method was quantitative and the design was correlational.…

  10. Examining Organizational Practices That Predict Persistence among High-Achieving Black Males in High School

    ERIC Educational Resources Information Center

    Anderson, Kenneth Alonzo

    2016-01-01

    Background/Context: This article summarizes an increasing trend of antideficit Black male research in mathematics and highlights opportunities to add to the research. A review of the literature shows that antideficit researchers often examine relationships between individual traits and persistence of high-achieving Black males in mathematics.…

  11. Post-laparoscopy predictive factors of achieving pregnancy in patients treated for infertility

    PubMed Central

    Wdowiak, Edyta; Stec, Magdalena; Bojar, Iwona

    2016-01-01

    Introduction Laparoscopy is a long-established diagnostic and therapeutic method for treating women suffering from infertility. The application of this method of treatment can help achieve pregnancy only if there is correct classification of patients and evaluation of their partner’s reproductive capacity. The main predictors of achieving pregnancy in a couple treated for infertility are the woman’s age, her ovarian reserve, tubal patency, the presence of endometriosis and quality of sperm parameters. Aim To evaluate the effect of endometriosis, ovarian reserve and selected parameters of semen on the effect of achieving pregnancy in patients undergoing laparoscopy. Material and methods The most significant predictor of pregnancy in patients undergoing laparoscopy due to infertility was found to be anti-Mullerian hormone (AMH) level after laparoscopy, and the main parameters of semen partners were density, motility and morphology. The number of achieved pregnancies after the laparoscopic treatment of infertility was lower in patients diagnosed with endometriosis, and depended on the severity of the condition. Results As a result of laparoscopic treatment of endometriosis, we found a decrease in ovarian reserve measured by means of AMH. Conclusions The most important predictors of pregnancy in patients who underwent laparoscopy due to infertility are post-laparoscopy AMH levels and the main parameters of the partner’s semen: density, motility and morphology. The number of pregnancies after laparoscopic treatment is lower in patients diagnosed with endometriosis, and depends on the severity of the conditio. PMID:28194245

  12. Arts Involvement Predicts Academic Achievement Only When the Child Has a Musical Instrument

    ERIC Educational Resources Information Center

    Young, Laura N.; Cordes, Sara; Winner, Ellen

    2014-01-01

    We examined the associations between academic achievement and arts involvement (access to a musical instrument for the child at home, participation in unspecified after-school arts activities) in a sample of 2339 11-12-year-olds surveyed in the USA between 1998 and 2008. We compared the contributions of these variables to other kinds of cognitive…

  13. Predictive Relations between Peer Victimization and Academic Achievement in Chinese Children

    ERIC Educational Resources Information Center

    Liu, Junsheng; Bullock, Amanda; Coplan, Robert J.

    2014-01-01

    The goal of this study was to explore longitudinal associations between peer victimization and academic achievement in Chinese children. Participants were N = 805 3rd-grade students (486 boys, 319 girls; M[subscript age] = 9.5 years, SD = 3 months) attending primary schools in Shanghai, People's Republic of China. At Time 1 and Time 2 (2 years…

  14. Validity Studies Using the Comprehensive Ability Battery (CAB): IV. Predicting Achievement at the University Level.

    ERIC Educational Resources Information Center

    Hakstian, A. Ralph; Woolsey, Lorette K.

    1985-01-01

    The paper presented evidence of the criterion related validity of several Comprehensive Ability Battery (CAB) tests relative to criterion variables representing first year college achievement. Information regarding the criterion related validity of nontraditional tests of the CAB reflecting divergent production hypothesized to be associated with…

  15. The Contributions of Psychological Maturity and Personality in the Prediction of Adolescent Academic Achievement

    ERIC Educational Resources Information Center

    Camps, Elisa; Morales-Vives, Fabia

    2013-01-01

    Numerous studies show that intelligence and impulsiveness are important predictors of academic achievement in adolescence. However, it is not clear what contribution is made by the big five personality traits, because some studies suggest that Conscientiousness, Extraversion and Openness to experience are predictors while others show precisely the…

  16. Regression Analyses of Self-Regulatory Concepts to Predict Community College Math Achievement and Persistence

    ERIC Educational Resources Information Center

    Gramlich, Stephen Peter

    2010-01-01

    Open door admissions at community colleges bring returning adults, first timers, low achievers, disabled persons, and immigrants. Passing and retention rates for remedial and non-developmental math courses can be comparatively inadequate (LAVC, 2005; CCPRDC, 2000; SBCC, 2004; Seybert & Soltz, 1992; Waycaster, 2002). Mathematics achievement…

  17. Implicit Social Cognitions Predict Sex Differences in Math Engagement and Achievement

    ERIC Educational Resources Information Center

    Nosek, Brian A.; Smyth, Frederick L.

    2011-01-01

    Gender stereotypes about math and science do not need to be endorsed, or even available to conscious introspection, to contribute to the sex gap in engagement and achievement in science, technology, engineering, and mathematics (STEM). The authors examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants.…

  18. Understanding Motivational Structures That Differentially Predict Engagement and Achievement in Middle School Science

    ERIC Educational Resources Information Center

    Lee, Christine S.; Hayes, Kathryn N.; Seitz, Jeffery; DiStefano, Rachelle; O'Connor, Dawn

    2016-01-01

    Middle school has been documented as the period in which a drop in students' science interest and achievement occurs. This trend indicates a lack of motivation for learning science; however, little is known about how different aspects of motivation interact with student engagement and science learning outcomes. This study examines the…

  19. Factors Predicting Science Achievement of Immigrant and Non-Immigrant Students: A Multilevel Analysis

    ERIC Educational Resources Information Center

    Areepattamannil, Shaljan; Kaur, Berinderjeet

    2013-01-01

    This study, employing hierarchical linear modeling (HLM), sought to investigate the student-level and school-level factors associated with the science achievement of immigrant and non-immigrant students among a national sample of 22,646 students from 896 schools in Canada. While student background characteristics such as home language, family…

  20. Infectious titres of sheep scrapie and bovine spongiform encephalopathy agents cannot be accurately predicted from quantitative laboratory test results.

    PubMed

    González, Lorenzo; Thorne, Leigh; Jeffrey, Martin; Martin, Stuart; Spiropoulos, John; Beck, Katy E; Lockey, Richard W; Vickery, Christopher M; Holder, Thomas; Terry, Linda

    2012-11-01

    It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (10⁶·⁵ to 10⁶·⁷ LD₅₀ g⁻¹) and five gave 'high titres' (10⁸·¹ to ≥ 10⁸·⁷ LD₅₀ g⁻¹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).

  1. Predictive Validity of the Vane for the Stanford Early School Achievement Test. Report No. l25.

    ERIC Educational Resources Information Center

    Hersh, Leonard R.

    Evidence on the predictive validity of the Vane Kindergarten Test (VKT) as a part of the comprehensive screening and assessment battery administered by the Horseheads Central School District in New York is presented. Variable numbers of students at each of six elementary schools were administered the VKT. At the end of the kindergarten year, all…

  2. Using Hierarchical Linear Modelling to Examine Factors Predicting English Language Students' Reading Achievement

    ERIC Educational Resources Information Center

    Fung, Karen; ElAtia, Samira

    2015-01-01

    Using Hierarchical Linear Modelling (HLM), this study aimed to identify factors such as ESL/ELL/EAL status that would predict students' reading performance in an English language arts exam taken across Canada. Using data from the 2007 administration of the Pan-Canadian Assessment Program (PCAP) along with the accompanying surveys for students and…

  3. Predicting Reading and Arithmetic Achievement by Using Bender Gestalt and Visual Memory Technique.

    ERIC Educational Resources Information Center

    Rust, James O.; And Others

    1982-01-01

    First grade students were administered a screening battery that included the Otis-Lennon Mental Ability Test, the Metropolitan Readiness Test, the Bender Gestalt Test, and the Visual Memory Technique. Stepwise regression equations revealed that the Bender Gestalt Test significantly increased the predictive power of the test battery. (FL)

  4. Approaches to Learning and Age in Predicting College Students' Academic Achievement

    ERIC Educational Resources Information Center

    Cetin, Baris

    2016-01-01

    The aim of this study is to determine whether the approaches to learning and age are significantly correlated to grade point average (GPA) in early childhood education students. In addition, another purpose of this study is to determine whether approaches to learning and age predicted students' GPAs in the Early Childhood Education Department. The…

  5. Most Likely to Achieve: Predicting Early Success of the Practical Nurse Student

    ERIC Educational Resources Information Center

    Cline, April P.

    2013-01-01

    It is important that practical nurse (PN) educators be able to identify which students are likely to be successful in their programs. However, the majority of literature related to predicting success of nursing students has been done on baccalaureate nursing students in the university setting. This study sought to determine whether the same…

  6. End of Course Grades and Standardized Test Scores: Are Grades Predictive of Student Achievement?

    ERIC Educational Resources Information Center

    Ricketts, Christine R.

    2010-01-01

    This study examined the extent to which end-of-course grades are predictive of Virginia Standards of Learning test scores in nine high school content areas. It also analyzed the impact of the variables school cluster attended, gender, ethnicity, disability status, Limited English Proficiency status, and socioeconomic status on the relationship…

  7. Academic Motivation and Self-Regulated Learning in Predicting Academic Achievement in College

    ERIC Educational Resources Information Center

    Çetin, Baris

    2015-01-01

    The purpose of this study was to determine whether academic motivation and academic self-regulated learning predicted students' GPAs in the Early Childhood Education Department. The study participants consisted of 166 early childhood education majors enrolled in the 2014 spring semester at Georgia Southern University, USA. Data were gathered using…

  8. Comparing the Contribution of Teacher versus Tutor Ratings of Inattentive Behavior in Predicting Mathematics Achievement

    ERIC Educational Resources Information Center

    Malone, Amelia S.; Fuchs, Lynn S.

    2014-01-01

    The purpose of this study was to assess the relative contribution of teacher and tutor ratings of inattentive behavior in two different instructional settings in predicting students' performance on fraction concepts and whole-number calculations. Classroom teachers rated each student's attentive behavior in a whole-class setting and tutors rated…

  9. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination.

    PubMed

    Geng, Jiun-Hung; Tu, Hung-Pin; Shih, Paul Ming-Chen; Shen, Jung-Tsung; Jang, Mei-Yu; Wu, Wen-Jen; Li, Ching-Chia; Chou, Yii-Her; Juan, Yung-Shun

    2015-01-01

    Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL) has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT) to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD) were analyzed. In all, 197 (60%) were classified as stone-free and 132 (40%) as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA), abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals): 9.49 (3.72-24.20), 2.25 (1.22-4.14), 2.20 (1.10-4.40), and 2.89 (1.35-6.21) respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these predictors for selecting

  10. Statistical monitoring and dynamic simulation of a wastewater treatment plant: A combined approach to achieve model predictive control.

    PubMed

    Wang, Xiaodong; Ratnaweera, Harsha; Holm, Johan Abdullah; Olsbu, Vibeke

    2017-02-07

    The on-line monitoring of Chemical oxygen demand (COD) and total phosphorus (TP) restrains wastewater treatment plants to achieve better control of aeration and chemical dosing. In this study, we applied principal components analysis (PCA) to find out significant variables for COD and TP prediction. Multiple regression method applied the variables suggested by PCA to predict influent COD and TP. Moreover, a model of full-scale wastewater treatment plant with moving bed bioreactor (MBBR) and ballasted separation process was developed to simulate the performance of wastewater treatment. The predicted COD and TP data by multiple regression served as model input for dynamic simulation. Besides, the wastewater characteristic of the wastewater treatment plant and MBBR model parameters were given for model calibration. As a result, R(2) of predicted COD and TP versus measured data are 81.6% and 77.2%, respectively. The model output in terms of sludge production and effluent COD based on predicted input data fitted measured data well, which provides possibility to enabled model predictive control of aeration and coagulant dosing in practice. This study provide a feasible and economical approach to overcome monitoring and modelling restrictions that limits model predictive control of wastewater treatment plant.

  11. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    PubMed

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  12. Multireference correlation consistent composite approach [MR-ccCA]: toward accurate prediction of the energetics of excited and transition state chemistry.

    PubMed

    Oyedepo, Gbenga A; Wilson, Angela K

    2010-08-26

    The correlation consistent Composite Approach, ccCA [ Deyonker , N. J. ; Cundari , T. R. ; Wilson , A. K. J. Chem. Phys. 2006 , 124 , 114104 ] has been demonstrated to predict accurate thermochemical properties of chemical species that can be described by a single configurational reference state, and at reduced computational cost, as compared with ab initio methods such as CCSD(T) used in combination with large basis sets. We have developed three variants of a multireference equivalent of this successful theoretical model. The method, called the multireference correlation consistent composite approach (MR-ccCA), is designed to predict the thermochemical properties of reactive intermediates, excited state species, and transition states to within chemical accuracy (e.g., 1 kcal/mol for enthalpies of formation) of reliable experimental values. In this study, we have demonstrated the utility of MR-ccCA: (1) in the determination of the adiabatic singlet-triplet energy separations and enthalpies of formation for the ground states for a set of diradicals and unsaturated compounds, and (2) in the prediction of energetic barriers to internal rotation, in ethylene and its heavier congener, disilene. Additionally, we have utilized MR-ccCA to predict the enthalpies of formation of the low-lying excited states of all the species considered. MR-ccCA is shown to give quantitative results without reliance upon empirically derived parameters, making it suitable for application to study novel chemical systems with significant nondynamical correlation effects.

  13. Accurate prediction of death by serial determination of galactose elimination capacity in primary biliary cirrhosis: a comparison with the Mayo model.

    PubMed

    Reichen, J; Widmer, T; Cotting, J

    1991-09-01

    We retrospectively analyzed the predictive accuracy of serial determinations of galactose elimination capacity in 61 patients with primary biliary cirrhosis. Death was predicted from the time that the regression line describing the decline in galactose elimination capacity vs. time intersected a value of 4 mg.min-1.kg-1. Thirty-one patients exhibited decreasing galactose elimination capacity; in 11 patients it remained stable and in 19 patients only one value was available. Among those patients with decreasing galactose elimination capacity, 10 died and three underwent liver transplantation; prediction of death was accurate to 7 +/- 19 mo. This criterion incorrectly predicted death in two patients with portal-vein thrombosis; otherwise, it did better than or as well as the Mayo clinic score. The latter was also tested on our patients and was found to adequately describe risk in yet another independent population of patients with primary biliary cirrhosis. Cox regression analysis selected only bilirubin and galactose elimination capacity, however, as independent predictors of death. We submit that serial determination of galactose elimination capacity in patients with primary biliary cirrhosis may be a useful adjunct to optimize the timing of liver transplantation and to evaluate new pharmacological treatment modalities of this disease.

  14. Recent Achievements of the Collaboratory for the Study of Earthquake Predictability

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Zechar, J. D.; Jordan, T. H.

    2015-12-01

    Maria Liukis, SCEC, USC; Maximilian Werner, University of Bristol; Danijel Schorlemmer, GFZ Potsdam; John Yu, SCEC, USC; Philip Maechling, SCEC, USC; Jeremy Zechar, Swiss Seismological Service, ETH; Thomas H. Jordan, SCEC, USC, and the CSEP Working Group The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 435 models under evaluation. The California testing center, operated by SCEC, has been operational since Sept 1, 2007, and currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. We have reduced testing latency, implemented prototype evaluation of M8 forecasts, and are currently developing formats and procedures to evaluate externally-hosted forecasts and predictions. These efforts are related to CSEP support of the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence has been completed, and the results indicate that some physics-based and hybrid models outperform purely statistical (e.g., ETAS) models. The experiment also demonstrates the power of the CSEP cyberinfrastructure for retrospective testing. Our current development includes evaluation strategies that increase computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model. We describe the open-source CSEP software that is available to researchers as they develop their forecast models (http://northridge.usc.edu/trac/csep/wiki/MiniCSEP). We also discuss applications of CSEP infrastructure to geodetic transient detection and how CSEP procedures are being

  15. The role of childhood neglect and childhood poverty in predicting mental health, academic achievement and crime in adulthood.

    PubMed

    Nikulina, Valentina; Widom, Cathy Spatz; Czaja, Sally

    2011-12-01

    This study examines the roles of childhood neglect and childhood poverty (family and neighborhood) in predicting Posttraumatic Stress Disorder (PTSD), Major Depressive Disorder (MDD), academic achievement, and crime in young adulthood. Using existing data from a prospective cohort design study, 1,005 children with documented histories of neglect (N = 507) and matched controls (N = 497) were interviewed in young adulthood (mean age 29). Official criminal histories were also used to assess outcomes. Data were analyzed using logistic and ordinary least squares regressions and hierarchical linear modeling (HLM) to control for neighborhood clustering. Results from HLM revealed that childhood neglect and childhood family poverty uniquely predicted PTSD and adult arrest, MDD was predicted only by childhood family poverty, and a significant interaction between childhood family poverty and childhood neighborhood poverty predicted academic achievement for the control group only. Childhood neglect, childhood family poverty, and childhood neighborhood poverty each contribute to poor outcomes later in life. While interventions should be developed for neglected children to prevent negative outcomes, the current findings suggest that it is also important to consider the ecological context in which these children are growing up.

  16. Predicting elite Scottish athletes' attitudes towards doping: examining the contribution of achievement goals and motivational climate.

    PubMed

    Allen, Justine; Taylor, John; Dimeo, Paul; Dixon, Sarah; Robinson, Leigh

    2015-01-01

    Understanding athletes' attitudes to doping continues to be of interest for its potential to contribute to an international anti-doping system. However, little is known about the relationship between elite athletes' attitudes to drug use and potential explanatory factors, including achievement goals and the motivational climate. In addition, despite specific World Anti-Doping Agency Code relating to team sport athletes, little is known about whether sport type (team or individual) is a risk or protective factor in relation to doping. Elite athletes from Scotland (N = 177) completed a survey examining attitudes to performance-enhancing drug (PED) use, achievement goal orientations and perceived motivational climate. Athletes were generally against doping for performance enhancement. Hierarchical regression analysis revealed that task and ego goals and mastery motivational climate were predictors of attitudes to PED use (F (4, 171) = 15.81, P < .01). Compared with individual athletes, team athletes were significantly lower in attitude to PED use and ego orientation scores and significantly higher in perceptions of a mastery motivational climate (Wilks' lambda = .76, F = 10.89 (5, 170), P < .01). The study provides insight into how individual and situational factors may act as protective and risk factors in doping in sport.

  17. Prediction of Academic Achievement in an NATA-Approved Graduate Athletic Training Education Program

    PubMed Central

    Keskula, Douglas R.; Sammarone, Paula G.; Perrin, David H.

    1995-01-01

    The Purpose of this investigation was to determine which information used in the applicant selection process would best predict the final grade point average of students in a National Athletic Trainers Association (NATA) graduate athletic training education program. The criterion variable used was the graduate grade-point average (GPAg) calculated at the completion of the program of study. The predictor variables included: 1) Graduate Record Examination-Quantitative (GRE-Q) scores; and 2) Graduate Record Examination-Verbal (GRE-V) scores, 3) preadmission grade point average (GPAp), 4) total athletic training hours (hours), and 5) curriculum or internship undergraduate athletic training education (program). Data from 55 graduate athletic training students during a 5-year period were evaluated. Stepwise multiple regression analysis indicated that GPAp was a significant predictor of GPAg, accounting for 34% of the variance. GRE-Q, GRE-V, hours, and program did not significantly contribute individually or in combination to the prediction of GPAg. The results of this investigation suggest that, of the variables examined, GPAp is the best predictor of academic success in an NATA-approved graduate athletic training education program. PMID:16558312

  18. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed Central

    2016-01-01

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand–target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  19. Identification of fidgety movements and prediction of CP by the use of computer-based video analysis is more accurate when based on two video recordings.

    PubMed

    Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild

    2013-08-01

    This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies.

  20. Quality of Education Predicts Performance on the Wide Range Achievement Test-4th Edition Word Reading Subtest

    PubMed Central

    Sayegh, Philip; Arentoft, Alyssa; Thaler, Nicholas S.; Dean, Andy C.; Thames, April D.

    2014-01-01

    The current study examined whether self-rated education quality predicts Wide Range Achievement Test-4th Edition (WRAT-4) Word Reading subtest and neurocognitive performance, and aimed to establish this subtest's construct validity as an educational quality measure. In a community-based adult sample (N = 106), we tested whether education quality both increased the prediction of Word Reading scores beyond demographic variables and predicted global neurocognitive functioning after adjusting for WRAT-4. As expected, race/ethnicity and education predicted WRAT-4 reading performance. Hierarchical regression revealed that when including education quality, the amount of WRAT-4's explained variance increased significantly, with race/ethnicity and both education quality and years as significant predictors. Finally, WRAT-4 scores, but not education quality, predicted neurocognitive performance. Results support WRAT-4 Word Reading as a valid proxy measure for education quality and a key predictor of neurocognitive performance. Future research should examine these findings in larger, more diverse samples to determine their robust nature. PMID:25404004

  1. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  2. The Role of Self-Efficacy, Task Value, and Achievement Goals in Predicting Learning Strategies, Task Disengagement, Peer Relationship, and Achievement Outcome

    ERIC Educational Resources Information Center

    Liem, Arief Darmanegara; Lau, Shun; Nie, Youyan

    2008-01-01

    Adopting a combination of expectancy-value and achievement goal theories, this study examined the role of self-efficacy, task value, and achievement goals in students' learning strategies, task disengagement, peer relationship, and English achievement outcome. A sample of 1475 Year-9 students participated in the study. A structural equation model…

  3. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats

    PubMed Central

    Howdeshell, Kembra L.; Rider, Cynthia V.; Wilson, Vickie S.; Furr, Johnathan R.; Lambright, Christy R.; Gray, L. Earl

    2015-01-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17–100% of F1 males when fetal T production was reduced by about 25–72%, respectively. PMID:26350170

  4. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients

    PubMed Central

    Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M.

    2016-01-01

    Background: Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Methods: Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. Results: We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. Conclusion: We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more

  5. When performance-approach goals predict academic achievement and when they do not: a social value approach.

    PubMed

    Dompnier, Benoît; Darnon, Céline; Butera, Fabrizio

    2013-09-01

    Research on achievement goal promotion at University has shown that performance-approach goals are perceived as a means to succeed at University (high social utility) but are not appreciated (low social desirability). We argue that such a paradox could explain why research has detected that performance-approach goals consistently predict academic grades. First-year psychology students answered a performance-approach goal scale with standard, social desirability and social utility instructions. Participants' grades were recorded at the end of the semester. Results showed that the relationship between performance-approach goals and grades was inhibited by the increase of these goals' social desirability and facilitated by the increase of their social utility, revealing that the predictive validity of performance-approach goals depends on social value.

  6. The Need for Accurate Risk Prediction Models for Road Mapping, Shared Decision Making and Care Planning for the Elderly with Advanced Chronic Kidney Disease.

    PubMed

    Stryckers, Marijke; Nagler, Evi V; Van Biesen, Wim

    2016-11-01

    As people age, chronic kidney disease becomes more common, but it rarely leads to end-stage kidney disease. When it does, the choice between dialysis and conservative care can be daunting, as much depends on life expectancy and personal expectations of medical care. Shared decision making implies adequately informing patients about their options, and facilitating deliberation of the available information, such that decisions are tailored to the individual's values and preferences. Accurate estimations of one's risk of progression to end-stage kidney disease and death with or without dialysis are essential for shared decision making to be effective. Formal risk prediction models can help, provided they are externally validated, well-calibrated and discriminative; include unambiguous and measureable variables; and come with readily applicable equations or scores. Reliable, externally validated risk prediction models for progression of chronic kidney disease to end-stage kidney disease or mortality in frail elderly with or without chronic kidney disease are scant. Within this paper, we discuss a number of promising models, highlighting both the strengths and limitations physicians should understand for using them judiciously, and emphasize the need for external validation over new development for further advancing the field.

  7. How Accurately Can Extended X-ray Absorption Spectra Be Predicted from First Principles? Implications for Modeling the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Beckwith, Martha A; Ames, William; Vila, Fernando D; Krewald, Vera; Pantazis, Dimitrios A; Mantel, Claire; Pécaut, Jacques; Gennari, Marcello; Duboc, Carole; Collomb, Marie-Noëlle; Yano, Junko; Rehr, John J; Neese, Frank; DeBeer, Serena

    2015-10-14

    First principle calculations of extended X-ray absorption fine structure (EXAFS) data have seen widespread use in bioinorganic chemistry, perhaps most notably for modeling the Mn4Ca site in the oxygen evolving complex (OEC) of photosystem II (PSII). The logic implied by the calculations rests on the assumption that it is possible to a priori predict an accurate EXAFS spectrum provided that the underlying geometric structure is correct. The present study investigates the extent to which this is possible using state of the art EXAFS theory. The FEFF program is used to evaluate the ability of a multiple scattering-based approach to directly calculate the EXAFS spectrum of crystallographically defined model complexes. The results of these parameter free predictions are compared with the more traditional approach of fitting FEFF calculated spectra to experimental data. A series of seven crystallographically characterized Mn monomers and dimers is used as a test set. The largest deviations between the FEFF calculated EXAFS spectra and the experimental EXAFS spectra arise from the amplitudes. The amplitude errors result from a combination of errors in calculated S0(2) and Debye-Waller values as well as uncertainties in background subtraction. Additional errors may be attributed to structural parameters, particularly in cases where reliable high-resolution crystal structures are not available. Based on these investigations, the strengths and weaknesses of using first-principle EXAFS calculations as a predictive tool are discussed. We demonstrate that a range of DFT optimized structures of the OEC may all be considered consistent with experimental EXAFS data and that caution must be exercised when using EXAFS data to obtain topological arrangements of complex clusters.

  8. The VACS Index Accurately Predicts Mortality and Treatment Response among Multi-Drug Resistant HIV Infected Patients Participating in the Options in Management with Antiretrovirals (OPTIMA) Study

    PubMed Central

    Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.

    2014-01-01

    Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813

  9. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-03

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.

  10. Accurate Prediction of Glucuronidation of Structurally Diverse Phenolics by Human UGT1A9 Using Combined Experimental and In Silico Approaches

    PubMed Central

    Wu, Baojian; Wang, Xiaoqiang; Zhang, Shuxing; Hu, Ming

    2012-01-01

    Purpose The catalytic selectivity of human UGT1A9, an important membrane-bound enzyme catalyzing glucuronidation of xenobiotics were determined experimentally using 145 phenolics, and analyzed by 3D-QSAR methods. Methods The catalytic efficiency of UGT1A9 was determined by kinetic profiling. Quantitative structure activity relationships were analyzed using the CoMFA and CoMSIA techniques. Molecular alignment of the substrate structures was made by superimposing the glucuronidation site and its adjacent aromatic ring to achieve maximal steric overlap. For a substrate with multiple active glucuronidation sites, each site was considered as a separate substrate. Results The 3D-QSAR analyses produced statistically reliable models with good predictive power (CoMFA: q2 = 0.548, r2= 0.949, r2pred = 0.775; CoMSIA: q2 = 0.579, r2= 0.876, r2pred = 0.700). The contour coefficient maps were applied to elucidate structural features among substrates that are responsible for the selectivity differences. Furthermore, the contour coefficient maps were overlaid in the catalytic pocket of a homology model of UGT1A9; this enabled us to identify the UGT1A9 catalytic pocket with a high degree of confidence. Conclusion The CoMFA/CoMSIA models can predict the substrate selectivity and in vitro clearance of UGT1A9. Our findings also provide a possible molecular basis for understanding UGT1A9 functions and its substrate selectivity. PMID:22302521

  11. Integrating trans-abdominal ultrasonography with fecal steroid metabolite monitoring to accurately diagnose pregnancy and predict the timing of parturition in the red panda (Ailurus fulgens styani).

    PubMed

    Curry, Erin; Browning, Lissa J; Reinhart, Paul; Roth, Terri L

    2017-02-23

    Red pandas (Ailurus fulgens styani) exhibit a variable gestation length and may experience a pseudopregnancy indistinguishable from true pregnancy; therefore, it is not possible to deduce an individual's true pregnancy status and parturition date based on breeding dates or fecal progesterone excretion patterns alone. The goal of this study was to evaluate the use of transabdominal ultrasonography for pregnancy diagnosis in red pandas. Two to three females were monitored over 4 consecutive years, generating a total of seven profiles (four pregnancies, two pseudopregnancies, and one lost pregnancy). Fecal samples were collected and assayed for progesterone (P4) and estrogen conjugate (EC) to characterize patterns associated with breeding activity and parturition events. Animals were trained for voluntary transabdominal ultrasound and examinations were performed weekly. Breeding behaviors and fecal EC data suggest that the estrus cycle of this species is 11-12 days in length. Fecal steroid metabolite analyses also revealed that neither P4 nor EC concentrations were suitable indicators of pregnancy in this species; however, a secondary increase in P4 occurred 69-71 days prior to parturition in all pregnant females, presumably coinciding with embryo implantation. Using ultrasonography, embryos were detected as early as 62 days post-breeding/50 days pre-partum and serial measurements of uterine lumen diameter were documented throughout four pregnancies. Advances in reproductive diagnostics, such as the implementation of ultrasonography, may facilitate improved husbandry of pregnant females and allow for the accurate prediction of parturition.

  12. Predicting Levels of Reading and Writing Achievement in Typically Developing, English-Speaking 2(nd) and 5(th) Graders.

    PubMed

    Jones, Jasmin Niedo; Abbott, Robert D; Berninger, Virginia W

    2014-05-01

    Human traits tend to fall along normal distributions. The aim of this research was to evaluate an evidence-based conceptual framework for predicting expected individual differences in reading and writing achievement outcomes for typically developing readers and writers in early and middle childhood from Verbal Reasoning with or without Working Memory Components (phonological, orthographic, and morphological word storage and processing units, phonological and orthographic loops, and rapid switching attention for cross-code integration). Verbal Reasoning (reconceptualized as Bidirectional Cognitive-Linguistic Translation) plus the Working Memory Components (reconceptualized as a language learning system) accounted for more variance than Verbal Reasoning alone, except for handwriting for which Working Memory Components alone were better predictors. Which predictors explained unique variance varied within and across reading (oral real word and pseudoword accuracy and rate, reading comprehension) and writing (handwriting, spelling, composing) skills and grade levels (second and fifth) in this longitudinal study. Educational applications are illustrated and theoretical and practical significance discussed.

  13. The CUPIC algorithm: an accurate model for the prediction of sustained viral response under telaprevir or boceprevir triple therapy in cirrhotic patients.

    PubMed

    Boursier, J; Ducancelle, A; Vergniol, J; Veillon, P; Moal, V; Dufour, C; Bronowicki, J-P; Larrey, D; Hézode, C; Zoulim, F; Fontaine, H; Canva, V; Poynard, T; Allam, S; De Lédinghen, V

    2015-12-01

    Triple therapy using boceprevir or telaprevir remains the reference treatment for genotype 1 chronic hepatitis C in countries where new interferon-free regimens have not yet become available. Antiviral treatment is highly required in cirrhotic patients, but they represent a difficult-to-treat population. We aimed to develop a simple algorithm for the prediction of sustained viral response (SVR) in cirrhotic patients treated with triple therapy. A total of 484 cirrhotic patients from the ANRS CO20 CUPIC cohort treated with triple therapy were randomly distributed into derivation and validation sets. A total of 52.1% of patients achieved SVR. In the derivation set, a D0 score for the prediction of SVR before treatment initiation included the following independent predictors collected at day 0: prior treatment response, gamma-GT, platelets, telaprevir treatment, viral load. To refine the prediction at the early phase of the treatment, a W4 score included as additional parameter the viral load collected at week 4. The D0 and W4 scores were combined in the CUPIC algorithm defining three subgroups: 'no treatment initiation or early stop at week 4', 'undetermined' and 'SVR highly probable'. In the validation set, the rates of SVR in these three subgroups were, respectively, 11.1%, 50.0% and 82.2% (P < 0.001). By replacing the variable 'prior treatment response' with 'IL28B genotype', another algorithm was derived for treatment-naïve patients with similar results. The CUPIC algorithm is an easy-to-use tool that helps physicians weigh their decision between immediately treating cirrhotic patients using boceprevir/telaprevir triple therapy or waiting for new drugs to become available in their country.

  14. Models of social evolution: can we do better to predict ‘who helps whom to achieve what’?

    PubMed Central

    Rodrigues, António M. M.; Kokko, Hanna

    2016-01-01

    Models of social evolution and the evolution of helping have been classified in numerous ways. Two categorical differences have, however, escaped attention in the field. Models tend not to justify why they use a particular assumption structure about who helps whom: a large number of authors model peer-to-peer cooperation of essentially identical individuals, probably for reasons of mathematical convenience; others are inspired by particular cooperatively breeding species, and tend to assume unidirectional help where subordinates help a dominant breed more efficiently. Choices regarding what the help achieves (i.e. which life-history trait of the helped individual is improved) are similarly made without much comment: fecundity benefits are much more commonly modelled than survival enhancements, despite evidence that these may interact when the helped individual can perform life-history reallocations (load-lightening and related phenomena). We review our current theoretical understanding of effects revealed when explicitly asking ‘who helps whom to achieve what’, from models of mutual aid in partnerships to the very few models that explicitly contrast the strength of selection to help enhance another individual's fecundity or survival. As a result of idiosyncratic modelling choices in contemporary literature, including the varying degree to which demographic consequences are made explicit, there is surprisingly little agreement on what types of help are predicted to evolve most easily. We outline promising future directions to fill this gap. PMID:26729928

  15. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment.

    PubMed

    Chételat, Gaël; Eustache, Francis; Viader, Fausto; De La Sayette, Vincent; Pélerin, Alice; Mézenge, Florence; Hannequin, Didier; Dupuy, Benoît; Baron, Jean-Claude; Desgranges, Béatrice

    2005-02-01

    The accurate prediction, at a pre-dementia stage of Alzheimer's disease (AD), of the subsequent clinical evolution of patients would be a major breakthrough from both therapeutic and research standpoints. Amnestic mild cognitive impairment (MCI) is presently the most common reference to address the pre-dementia stage of AD. However, previous longitudinal studies on patients with MCI assessing neuropsychological and PET markers of future conversion to AD are sparse and yield discrepant findings, while a comprehensive comparison of the relative accuracy of these two categories of measure is still lacking. In the present study, we assessed the global cognitive decline as measured by the Mattis scale in 18 patients with amnestic MCI over an 18-month follow-up period, studying which subtest of this scale showed significant deterioration over time. Using baseline measurements from neuropsychological evaluation of memory and PET, we then assessed significant markers of global cognitive change, that is, percent annual change in the Mattis scale total score, and searched for the best predictor of this global cognitive decline. Altogether, our results revealed significant decline over the 18-month follow-up period in the total score and the verbal initiation and memory-recall subscores of the Mattis scale. The percent annual change in the total Mattis score significantly correlated with age and baseline performances in delayed episodic memory recall as well as semantic autobiographical and category word fluencies. Regarding functional imaging, significant correlations were also found with baseline PET values in the right temporo-parietal and medial frontal areas. Age and right temporo-parietal PET values were the most significant predictors of subsequent global cognitive decline, and the only ones to survive stepwise regression analyses. Our findings are consistent with previous works showing predominant delayed recall and semantic memory impairment at a pre-dementia stage

  16. More than just IQ: school achievement is predicted by self-perceived abilities--but for genetic rather than environmental reasons.

    PubMed

    Greven, Corina U; Harlaar, Nicole; Kovas, Yulia; Chamorro-Premuzic, Tomas; Plomin, Robert

    2009-06-01

    Evidence suggests that children's self-perceptions of their abilities predict their school achievement even after one accounts for their tested cognitive ability (IQ). However, the roles of nature and nurture in the association between school achievement and self-perceived abilities (SPAs), independent of IQ, is unknown. Here we reveal that there are substantial genetic influences on SPAs and that there is genetic covariance between SPAs and achievement independent of IQ. Although it has been assumed that the origins of SPAs are environmental, this first genetic analysis of SPAs yielded a heritability of 51% in a sample of 3,785 pairs of twins, whereas shared environment accounted for only 2% of the variance in SPAs. Moreover, multivariate genetic analyses indicated that SPAs predict school achievement independently of IQ for genetic rather than environmental reasons. It should therefore be possible to identify "SPA genes" that predict school achievement independently of "IQ genes."

  17. IMPre: An Accurate and Efficient Software for Prediction of T- and B-Cell Receptor Germline Genes and Alleles from Rearranged Repertoire Data

    PubMed Central

    Zhang, Wei; Wang, I-Ming; Wang, Changxi; Lin, Liya; Chai, Xianghua; Wu, Jinghua; Bett, Andrew J.; Dhanasekaran, Govindarajan; Casimiro, Danilo R.; Liu, Xiao

    2016-01-01

    Large-scale study of the properties of T-cell receptor (TCR) and B-cell receptor (BCR) repertoires through next-generation sequencing is providing excellent insights into the understanding of adaptive immune responses. Variable(Diversity)Joining [V(D)J] germline genes and alleles must be characterized in detail to facilitate repertoire analyses. However, most species do not have well-characterized TCR/BCR germline genes because of their high homology. Also, more germline alleles are required for humans and other species, which limits the capacity for studying immune repertoires. Herein, we developed “Immune Germline Prediction” (IMPre), a tool for predicting germline V/J genes and alleles using deep-sequencing data derived from TCR/BCR repertoires. We developed a new algorithm, “Seed_Clust,” for clustering, produced a multiway tree for assembly and optimized the sequence according to the characteristics of rearrangement. We trained IMPre on human samples of T-cell receptor beta (TRB) and immunoglobulin heavy chain and then tested it on additional human samples. Accuracy of 97.7, 100, 92.9, and 100% was obtained for TRBV, TRBJ, IGHV, and IGHJ, respectively. Analyses of subsampling performance for these samples showed IMPre to be robust using different data quantities. Subsequently, IMPre was tested on samples from rhesus monkeys and human long sequences: the highly accurate results demonstrated IMPre to be stable with animal and multiple data types. With rapid accumulation of high-throughput sequence data for TCR and BCR repertoires, IMPre can be applied broadly for obtaining novel genes and a large number of novel alleles. IMPre is available at https://github.com/zhangwei2015/IMPre. PMID:27867380

  18. Cosmological constraints from the CFHTLenS shear measurements using a new, accurate, and flexible way of predicting non-linear mass clustering

    NASA Astrophysics Data System (ADS)

    Angulo, Raul E.; Hilbert, Stefan

    2015-03-01

    We explore the cosmological constraints from cosmic shear using a new way of modelling the non-linear matter correlation functions. The new formalism extends the method of Angulo & White, which manipulates outputs of N-body simulations to represent the 3D non-linear mass distribution in different cosmological scenarios. We show that predictions from our approach for shear two-point correlations at 1-300 arcmin separations are accurate at the ˜10 per cent level, even for extreme changes in cosmology. For moderate changes, with target cosmologies similar to that preferred by analyses of recent Planck data, the accuracy is close to ˜5 per cent. We combine this approach with a Monte Carlo Markov chain sampler to explore constraints on a Λ cold dark matter model from the shear correlation functions measured in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We obtain constraints on the parameter combination σ8(Ωm/0.27)0.6 = 0.801 ± 0.028. Combined with results from cosmic microwave background data, we obtain marginalized constraints on σ8 = 0.81 ± 0.01 and Ωm = 0.29 ± 0.01. These results are statistically compatible with previous analyses, which supports the validity of our approach. We discuss the advantages of our method and the potential it offers, including a path to model in detail (i) the effects of baryons, (ii) high-order shear correlation functions, and (iii) galaxy-galaxy lensing, among others, in future high-precision cosmological analyses.

  19. The Predictive Effects of Motivation toward Learning Science on TIMSS Grade 8 Students' Science Achievement: A Comparative Study between Malaysia and Singapore

    ERIC Educational Resources Information Center

    Lay, Yoon Fah; Chandrasegaran, A. L.

    2016-01-01

    TIMSS routinely presents very powerful evidence showing that students with more positive motivation toward learning science have substantially higher achievement. The results from TIMSS 2011 are consistent with previous assessments. This study explored the predictive effects of motivation toward learning science on science achievement among…

  20. Testing a Multi-Stage Screening System: Predicting Performance on Australia's National Achievement Test Using Teachers' Ratings of Academic and Social Behaviors

    ERIC Educational Resources Information Center

    Kettler, Ryan J.; Elliott, Stephen N.; Davies, Michael; Griffin, Patrick

    2012-01-01

    This study addresses the predictive validity of results from a screening system of academic enablers, with a sample of Australian elementary school students, when the criterion variable is end-of-year achievement. The investigation included (a) comparing the predictive validity of a brief criterion-referenced nomination system with more…

  1. Risk Assessment of Head Start Children with the Brigance K&1 Screen: Differential Performance by Sex, Age, and Predictive Accuracy for Early School Achievement and Special Education Placement.

    ERIC Educational Resources Information Center

    Mantzicopoulos, Panayota

    1999-01-01

    Examined differences in performance as well as reliability and validity indices for 256 Head Start children screened with Brigance K&1 screen. Found high overall test consistency, but considerable variability across subscales. Classification analyses established that the Brigance was not completely accurate in predicting early school…

  2. Variables that predict academic achievement in the Spanish compulsory secondary educational system: a longitudinal, multi-level analysis.

    PubMed

    Martín, Elena; Martínez-Arias, Rosario; Marchesi, Alvaro; Pérez, Eva M

    2008-11-01

    This article presents a study whose objective was to identify certain personal and institutional variables that are associated with academic achievement among Spanish, secondary school students, and to analyze their influence on the progress of those students over the course of that stage of their education. In order to do this, a longitudinal, multi-level study was conducted in which a total of 965 students and 27 different schools were evaluated in Language, Math and Social Science at three different times (beginning, middle and end of the period). The results show progress in all the schools and in all areas. As for the personal, student variables, the longitudinal, HLM analyses confirmed the importance of sex and sociocultural background and, distinguishing it from other studies, also the predictive capacity of meta-cognitive abilities and learning strategies on success in school. On the institutional level, the school climate and teachers' expectations of their students were the most relevant of the variables studied. The size of the school, the percentage of students who repeat grades, and the leadership of the administration also explained a portion of the variance in some areas.

  3. Full-Dimensional Potential Energy and Dipole Moment Surfaces of GeH4 Molecule and Accurate First-Principle Rotationally Resolved Intensity Predictions in the Infrared.

    PubMed

    Nikitin, A V; Rey, M; Rodina, A; Krishna, B M; Tyuterev, Vl G

    2016-11-17

    Nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) of the germane molecule are constructed using extended ab initio CCSD(T) calculations at 19 882 points. PES analytical representation is determined as an expansion in nonlinear symmetry adapted products of orthogonal and internal coordinates involving 340 parameters up to eighth order. Minor empirical refinement of the equilibrium geometry and of four quadratic parameters of the PES computed at the CCSD(T)/aug-cc-pVQZ-DK level of the theory yielded the accuracy below 1 cm(-1) for all experimentally known vibrational band centers of five stable isotopologues of (70)GeH4, (72)GeH4, (73)GeH4, (74)GeH4, and (76)GeH4 up to 8300 cm(-1). The optimized equilibrium bond re = 1.517 594 Å is very close to best ab initio values. Rotational energies up to J = 15 are calculated using potential expansion in normal coordinate tensors with maximum errors of 0.004 and 0.0006 cm(-1) for (74)GeH4 and (76)GeH4. The DMS analytical representation is determined through an expansion in symmetry-adapted products of internal nonlinear coordinates involving 967 parameters up to the sixth order. Vibration-rotation line intensities of five stable germane isotopologues were calculated from purely ab initio DMS using nuclear motion variational calculations with a full account of the tetrahedral symmetry of the molecules. For the first time a good overall agreement of main absorption features with experimental rotationally resolved Pacific Northwest National Laboratory spectra was achieved in the entire range of 700-5300 cm(-1). It was found that very accurate description of state-dependent isotopic shifts is mandatory to correctly describe complex patterns of observed spectra at natural isotopic abundance resulting from the superposition of five stable isotopologues. The data obtained in this work will be made available through the TheoReTS information system.

  4. Predicting Literacy Achievement in Young English Language Learners: A Question of Language Proficiency or of Learning Difficulty?

    ERIC Educational Resources Information Center

    Rosenman, Sara; Madelaine, Alison

    2012-01-01

    In this article empirical research regarding the best predictors of literacy achievement for English language learning students (ELLs) in English-only classrooms is reviewed. These students comprise an ever-increasing population in these settings, but there is considerable confusion in differentiating between ELLs who are low-achievement readers…

  5. The Predictive Relation of a High School Mathematic GPA to High-Stakes Assessment Achievement Scores in Mathematics

    ERIC Educational Resources Information Center

    West, Suzanne M.

    2013-01-01

    Course grades, which often include non-achievement factors such as effort and behavior and are subject to individual teacher grading philosophies, suffer from issues of unreliability. Yet, course grades continue to be utilized as a primary tool for reporting academic achievement to students and parents and are used by most colleges and…

  6. The Stability of Pretest Statistics Generated from College Samples as a Measure for Predicting Final Form Statistics for Achievement Tests.

    ERIC Educational Resources Information Center

    Ervin, Nancy S.

    How accurately deltas (statistics measuring the difficulty of items) established by pre-test populations reflect deltas obtained from final form populations, and the consequent utility of pre-test deltas for constructing final (operational test) forms to meet developed statistical specifications were studied. Data were examined from five subject…

  7. Can Curriculum-Embedded Measures Predict the Later Reading Achievement of Kindergarteners at Risk of Reading Disability?

    ERIC Educational Resources Information Center

    Oslund, Eric L.; Simmons, Deborah C.; Hagan-Burke, Shanna; Kwok, Oi-Man; Simmons, Leslie E.; Taylor, Aaron B.; Coyne, Michael D.

    2015-01-01

    This study examined the changing role and longitudinal predictive validity of curriculum-embedded progress-monitoring measures (CEMs ) for kindergarten students receiving Tier 2 intervention and identified as at risk of developing reading difficulties. Multiple measures were examined to determine whether they could predict comprehensive latent…

  8. Developing models to predict 8th grade students' achievement levels on timss science based on opportunity-to-learn variables

    NASA Astrophysics Data System (ADS)

    Whitford, Melinda M.

    Science educational reforms have placed major emphasis on improving science classroom instruction and it is therefore vital to study opportunity-to-learn (OTL) variables related to student science learning experiences and teacher teaching practices. This study will identify relationships between OTL and student science achievement and will identify OTL predictors of students' attainment at various distinct achievement levels (low/intermediate/high/advanced). Specifically, the study (a) address limitations of previous studies by examining a large number of independent and control variables that may impact students' science achievement and (b) it will test hypotheses of structural relations to how the identified predictors and mediating factors impact on student achievement levels. The study will follow a multi-stage and integrated bottom-up and top-down approach to identify predictors of students' achievement levels on standardized tests using TIMSS 2011 dataset. Data mining or pattern recognition, a bottom-up approach will identify the most prevalent association patterns between different student achievement levels and variables related to student science learning experiences, teacher teaching practices and home and school environments. The second stage is a top-down approach, testing structural equation models of relations between the significant predictors and students' achievement levels according.

  9. District Support Systems for the Alignment of Curriculum, Instruction, and Assessment: Can We Predict Student Achievement in Reading and Writing for School Turnaround?

    ERIC Educational Resources Information Center

    Abbott, Laura Lynn Tanner

    2014-01-01

    The purpose of this quantitative non-experimental predictive study was to determine if CIA alignment factors and related district support systems are associated with student achievement to enable the turnaround of schools in crisis. This study aimed to utilize the District Snapshot Tool to determine if the district systems that support CIA…

  10. Predicting Student Achievement with the Education Production-Function and Per-Pupil Expenditure: Synthesizing Regression Models from 1968-1994

    ERIC Educational Resources Information Center

    Pigott, Therese D.; Williams, Ryan T.; Polanin, Joshua R.; Wu-Bohanon, Meng-Jia

    2012-01-01

    The purpose of this research to investigate the heterogeneity of per-pupil expenditure (PPE) slope estimates in predicting student achievement. The research question guiding this project is: how does the measured relationship between per-pupil expenditure vary across studies that use different models? In concert with SREE's 2012 conference mission…

  11. Assessing the Incremental Value of KABC-II Luria Model Scores in Predicting Achievement: What Do They Tell Us beyond the MPI?

    ERIC Educational Resources Information Center

    McGill, Ryan J.; Spurgin, Angelia R.

    2016-01-01

    The current study examined the incremental validity of the Luria interpretive scheme for the Kaufman Assessment Battery for Children-Second Edition (KABC-II) for predicting scores on the Kaufman Test of Educational Achievement-Second Edition (KTEA-II). All participants were children and adolescents (N = 2,025) drawn from the nationally…

  12. Life Satisfaction among Highly Achieving Students in Hong Kong: Do Gratitude and the "Good-Enough Mindset" Add to the Contribution of Perfectionism in Prediction?

    ERIC Educational Resources Information Center

    Chan, David W.

    2012-01-01

    This study investigated whether gratitude and the "good-enough mindset" added to the contribution of perfectionism in predicting life satisfaction in 245 Chinese highly achieving students in Hong Kong. Participants completed self-report questionnaires that included scales on life satisfaction, positive and negative perfectionism…

  13. Interspecies scaling of urinary excretory amounts of nine drugs belonging to different therapeutic areas with diverse chemical structures - accurate prediction of the human urinary excretory amounts.

    PubMed

    Bhamidipati, Ravi Kanth; Mullangi, Ramesh; Srinivas, Nuggehally R

    2017-02-01

    1. The human urinary excretory amounts of total drug (parent + metabolites) were predicted for nine drugs with diverse chemical structures using simple allometry. The drugs used for scaling were cephapirin, olanzapine, labetolol, carisbamate, voriconazole, tofacitinib, nevirapine, ropinirole, and cyclindole. 2. The traditional allometric scaling was attempted using Y = aW(b) relationship. The corresponding predicted urinary amounts were converted into % recovery by using appropriate human dose. Appropriate statistical tests comprising of fold-difference (predicted/observed values) and error calculations (MAE and RMSE) were performed. 3. The interspecies scaling of all nine drugs tested showed excellent correlation (r > 0.9672). The predictions for eight out of nine drugs (exception was cephaphirin) were contained within 0.80-1.25 fold-differences. The MAE and RMSE were within ± 18% and 14.64%, respectively. 4. The present work supported the potential application of prospective allometry scaling to predict the urinary excretory amounts of the total drug and gauge any issues for the renal handling of the total drug.

  14. Achievement goals and autonomy: how person--context interactions predict effective functioning and well-being during a career transition.

    PubMed

    Heidemeier, Heike; Wiese, Bettina S

    2014-01-01

    This study examined how achievement goals interact with autonomy to explain mastery of a challenging career transition. In a sample of women who were returning from maternity leave, we examined how autonomy interacted with achievement goals to explain two types of outcomes: effective functioning (i.e., self-rated work adjustment, coworker-rated work adjustment, and coworker-rated learning competence) and well-being at work (i.e., positive affect and life satisfaction). In a longitudinal design (249 employees), we found that achievement goals and autonomy had direct effects on successful return to work. Moreover, maladaptive motivational states hindered the effective use of workplace resources: Autonomy moderated the consequences associated with performance-prove and -avoidance goals. Among those who adopted performance-prove goals, autonomy improved work adjustment and learning. However, women who adopted performance-avoidance goals experienced a trade-off between effective functioning and well-being, when equipped with high autonomy.

  15. Concordance between actual and pharmacogenetic predicted desvenlafaxine dose needed to achieve remission in major depressive disorder: a 10-week open-label study

    PubMed Central

    Müller, Daniel J.; Ng, Chee H.; Byron, Keith; Berk, Michael; Singh, Ajeet B.

    2017-01-01

    Background Pharmacogenetic-based dosing support tools have been developed to personalize antidepressant-prescribing practice. However, the clinical validity of these tools has not been adequately tested, particularly for specific antidepressants. Objective To examine the concordance between the actual dose and a polygene pharmacogenetic predicted dose of desvenlafaxine needed to achieve symptom remission. Materials and methods A 10-week, open-label, prospective trial of desvenlafaxine among Caucasian adults with major depressive disorder (n=119) was conducted. Dose was clinically adjusted and at the completion of the trial, the clinical dose needed to achieve remission was compared with the predicted dose needed to achieve remission. Results Among remitters (n=95), there was a strong concordance (Kendall’s τ-b=0.84, P=0.0001; Cohen’s κ=0.82, P=0.0001) between the actual and the predicted dose need to achieve symptom remission, showing high sensitivity (≥85%), specificity (≥86%), and accuracy (≥89%) of the tool. Conclusion Findings provide initial evidence for the clinical validity of a polygene pharmacogenetic-based tool for desvenlafaxine dosing. PMID:27779571

  16. Homework Works If Homework Quality Is High: Using Multilevel Modeling to Predict the Development of Achievement in Mathematics

    ERIC Educational Resources Information Center

    Dettmers, Swantje; Trautwein, Ulrich; Ludtke, Oliver; Kunter, Mareike; Baumert, Jurgen

    2010-01-01

    The present study examined the associations of 2 indicators of homework quality (homework selection and homework challenge) with homework motivation, homework behavior, and mathematics achievement. Multilevel modeling was used to analyze longitudinal data from a representative national sample of 3,483 students in Grades 9 and 10; homework effects…

  17. Predicting Achievement: Confidence vs Self-Efficacy, Anxiety, and Self-Concept in Confucian and European Countries

    ERIC Educational Resources Information Center

    Morony, Suzanne; Kleitman, Sabina; Lee, Yim Ping; Stankov, Lazar

    2013-01-01

    This study investigates the structure and cross-cultural (in)variance of mathematical self-beliefs in relation to mathematics achievement in two world regions: Confucian Asia (Singapore, South Korea, Hong Kong and Taiwan) and Europe (Denmark, The Netherlands, Finland, Serbia and Latvia). This is done both pan-culturally and at a multigroup-level,…

  18. Predicting the Academic Achievement of Deaf and Hard-of-Hearing Students from Individual, Household, Communication, and Educational Factors

    ERIC Educational Resources Information Center

    Marschark, Marc; Shaver, Debra M.; Nagle, Katherine M.; Newman, Lynn A.

    2015-01-01

    Research suggests that the academic achievement of deaf and hard-of-hearing (DHH) students is the result of a complex interplay of many factors. These factors include characteristics of the students (e.g., hearing thresholds, language fluencies, mode of communication, and communication functioning), characteristics of their family environments…

  19. Do L1 Reading Achievement and L1 Print Exposure Contribute to the Prediction of L2 Proficiency?

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    The study examined whether individual differences in high school first language (L1) reading achievement and print exposure would account for unique variance in second language (L2) written (word decoding, spelling, writing, reading comprehension) and oral (listening/speaking) proficiency after adjusting for the effects of early L1 literacy and…

  20. Do Socio-Motivational Relationships Predict Achievement Motivation in Adolescents with High and Low School Self-Concepts?

    ERIC Educational Resources Information Center

    Bakadorova, Olga; Raufelder, Diana

    2016-01-01

    Considering the essential role that socio-motivational relationships at school play with respect to achievement motivation, this study examined the differences between students with a low school self-concept and students with a high school self-concept in a large sample of 7th and 8th grade students (N= 1088; M[subscript Age]= 13.7) in secondary…

  1. Predicting Performance on State Achievement Tests Using Curriculum-Based Measurement in Reading: A Multilevel Meta-Analysis

    ERIC Educational Resources Information Center

    Yeo, Seungsoo

    2010-01-01

    The purpose of this synthesis was to examine the relationship between Curriculum-Based Measurement (CBM) and statewide achievement tests in reading. A multilevel meta-analysis was used to calculate the correlation coefficient of the population for 27 studies that met the inclusion criteria. Results showed an overall large correlation coefficient…

  2. Investigating Predictive Role of 2x2 Achievement Goal Orientations on Learning Strategies with Structural Equation Modeling

    ERIC Educational Resources Information Center

    Soltaninejad, Mehraneh

    2015-01-01

    The purpose of this study is to examine the relationships between achievement goal orientations and Learning Strategies. The sample of study consists of 350 public high school students (135 males and 215 females, mean age: 17 ± 0.65) from two high schools in Kerman province of Iran selected by random multistage cluster sampling method. In this…

  3. Mothers' Expressive Style and Emotional Responses to Children's Behavior Predict Children's Prosocial and Achievement-Related Self-Ratings

    ERIC Educational Resources Information Center

    Dunsmore, Julie C.; Bradburn, Isabel S.; Costanzo, Philip R.; Fredrickson, Barbara L.

    2009-01-01

    In this study we investigated whether mothers' typical expressive style and specific emotional responses to children's behaviors are linked to children's prosocial and competence self-ratings. Eight- to 12-year-old children and their mothers rated how mothers had felt when children behaved prosocially and antisocially, achieved and failed to…

  4. Predicting Early Adolescents' Academic Achievement, Social Competence, and Physical Health from Parenting, Ego Resilience, and Engagement Coping

    ERIC Educational Resources Information Center

    Swanson, Jodi; Valiente, Carlos; Lemery-Chalfant, Kathryn; O'Brien, T. Caitlin

    2011-01-01

    This study examined ego resilience and engagement coping as mediators of the relationships between supportive and controlling parenting practices and early adolescents' academic achievement, social competence, and physical health. Participants were 240 predominantly Mexican American early adolescents, their parents, and their teachers. There were…

  5. Using Correlational and Prediction Data to Enhance Student Achievement in K-12 Schools: A Practical Application for School Counselors

    ERIC Educational Resources Information Center

    Ware, William B.; Galassi, John P.

    2006-01-01

    Correlational data and regression analysis provide the school counselor with a method to describe growth in achievement test scores from elementary to high school. Using Microsoft Excel, this article shows the reader in a step-by-step manner how to describe this growth pattern and how to evaluate interventions that attempt to enhance achievement…

  6. Predicting High School Graduation for Latino Males Using Expectancy Value Theory of Motivation and Tenth Grade Reading Achievement Scores

    ERIC Educational Resources Information Center

    Knape, Erin Oakley

    2010-01-01

    National education data indicate that young men of color and students living in poverty are not experiencing the same academic success as their female, White, or higher socioeconomic status peers, as evidenced by low reading achievement levels and high dropout rates. Of particular concern is the underachievement of Latino males, who currently have…

  7. Personal Best (PB) and "Classic" Achievement Goals in the Chinese Context: Their Role in Predicting Academic Motivation, Engagement and Buoyancy

    ERIC Educational Resources Information Center

    Yu, Kai; Martin, Andrew J.

    2014-01-01

    Prior research has shown personal best (PB) goals to be significantly related to students' motivation, engagement and achievement. However, research thus far has investigated PB goals only among Western samples and it is unclear to what extent PB goals hold academic merit in the Asian context. It is also unclear whether PB goals explain variance…

  8. Unfair, Unsafe, and Unwelcome: Do High School Students' Perceptions of Unfairness, Hostility, and Victimization in School Predict Engagement and Achievement?

    ERIC Educational Resources Information Center

    Ripski, Michael B.; Gregory, Anne

    2009-01-01

    Using a national data set, Education Longitudinal Study of 2002 (ELS:2002), we examined three dimensions of 10th-grade school climate--unfairness, hostility, and victimization--as predictors of teacher-perceived student engagement and achievement in reading and mathematics in the same year. The dimensions of school climate that predicted…

  9. Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree-Fock energies, and small subsets of the database.

    PubMed

    Malshe, M; Pukrittayakamee, A; Raff, L M; Hagan, M; Bukkapatnam, S; Komanduri, R

    2009-09-28

    A novel method is presented that significantly reduces the computational bottleneck of executing high-level, electronic structure calculations of the energies and their gradients for a large database that adequately samples the configuration space of importance for systems containing more than four atoms that are undergoing multiple, simultaneous reactions in several energetically open channels. The basis of the method is the high-degree of correlation that generally exists between the Hartree-Fock (HF) and higher-level electronic structure energies. It is shown that if the input vector to a neural network (NN) includes both the configuration coordinates and the HF energies of a small subset of the database, MP4(SDQ) energies with the same basis set can be predicted for the entire database using only the HF and MP4(SDQ) energies for the small subset and the HF energies for the remainder of the database. The predictive error is shown to be less than or equal to the NN fitting error if a NN is fitted to the entire database of higher-level electronic structure energies. The general method is applied to the computation of MP4(SDQ) energies of 68,308 configurations that comprise the database for the simultaneous, unimolecular decomposition of vinyl bromide into six different reaction channels. The predictive accuracy of the method is investigated by employing successively smaller subsets of the database to train the NN to predict the MP4(SDQ) energies of the remaining configurations of the database. The results indicate that for this system, the subset can be as small as 8% of the total number of configurations in the database without loss of accuracy beyond that expected if a NN is employed to fit the higher-level energies for the entire database. The utilization of this procedure is shown to save about 78% of the total computational time required for the execution of the MP4(SDQ) calculations. The sampling error involved with selection of the subset is shown to be

  10. Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree-Fock energies, and small subsets of the database

    NASA Astrophysics Data System (ADS)

    Malshe, M.; Pukrittayakamee, A.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2009-09-01

    A novel method is presented that significantly reduces the computational bottleneck of executing high-level, electronic structure calculations of the energies and their gradients for a large database that adequately samples the configuration space of importance for systems containing more than four atoms that are undergoing multiple, simultaneous reactions in several energetically open channels. The basis of the method is the high-degree of correlation that generally exists between the Hartree-Fock (HF) and higher-level electronic structure energies. It is shown that if the input vector to a neural network (NN) includes both the configuration coordinates and the HF energies of a small subset of the database, MP4(SDQ) energies with the same basis set can be predicted for the entire database using only the HF and MP4(SDQ) energies for the small subset and the HF energies for the remainder of the database. The predictive error is shown to be less than or equal to the NN fitting error if a NN is fitted to the entire database of higher-level electronic structure energies. The general method is applied to the computation of MP4(SDQ) energies of 68 308 configurations that comprise the database for the simultaneous, unimolecular decomposition of vinyl bromide into six different reaction channels. The predictive accuracy of the method is investigated by employing successively smaller subsets of the database to train the NN to predict the MP4(SDQ) energies of the remaining configurations of the database. The results indicate that for this system, the subset can be as small as 8% of the total number of configurations in the database without loss of accuracy beyond that expected if a NN is employed to fit the higher-level energies for the entire database. The utilization of this procedure is shown to save about 78% of the total computational time required for the execution of the MP4(SDQ) calculations. The sampling error involved with selection of the subset is shown to be

  11. Predictive models of lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions.

    PubMed

    Dunthorn, Jason; Dyer, Robert M; Neerchal, Nagaraj K; McHenry, Jonathan S; Rajkondawar, Parimal G; Steingraber, Gary; Tasch, Uri

    2015-11-01

    Lameness remains a significant cause of production losses, a growing welfare concern and may be a greater economic burden than clinical mastitis . A growing need for accurate, continuous automated detection systems continues because US prevalence of lameness is 12.5% while individual herds may experience prevalence's of 27.8-50.8%. To that end the first force-plate system restricted to the vertical dimension identified lame cows with 85% specificity and 52% sensitivity. These results lead to the hypothesis that addition of transverse and longitudinal dimensions could improve sensitivity of lameness detection. To address the hypothesis we upgraded the original force plate system to measure ground reaction forces (GRFs) across three directions. GRFs and locomotion scores were generated from randomly selected cows and logistic regression was used to develop a model that characterised relationships of locomotion scores to the GRFs. This preliminary study showed 76 variables across 3 dimensions produced a model with greater than 90% sensitivity, specificity, and area under the receiver operating curve (AUC). The result was a marked improvement on the 52% sensitivity, and 85% specificity previously observed with the 1 dimensional model or the 45% sensitivities reported with visual observations. Validation of model accuracy continues with the goal to finalise accurate automated methods of lameness detection.

  12. Closed-loop spontaneous baroreflex transfer function is inappropriate for system identification of neural arc but partly accurate for peripheral arc: predictability analysis.

    PubMed

    Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2011-04-01

    Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore

  13. Peer Assessments of Normative and Individual Teacher-Student Support Predict Social Acceptance and Engagement among Low-Achieving Children

    ERIC Educational Resources Information Center

    Hughes, Jan N.; Zhang, Duan; Hill, Crystal R.

    2006-01-01

    This study used hierarchical linear modeling to predict first grade students' peer acceptance, classroom engagement, and sense of school belonging from measures of normative classroom teacher-student support and individual teacher-student support. Participants were 509 (54.4% male) ethnically diverse, first grade children attending one of three…

  14. A Standardized Neurological Examination: Its Validity in Predicting School Achievement in Head Start and Other Populations. Final Report.

    ERIC Educational Resources Information Center

    Ozer, Mark N.; Deem, Michael A.

    A neurological examination has been developed to discover children with physiologically based learning problems who do not manifest asymmetrical functioning. This study attempts to determine the validity of this examination by its accuracy in predicting the performance of children in a summer Head Start program. Validity was determined by…

  15. The Role of Cattell-Horn-Carroll (CHC) Cognitive Abilities in Predicting Writing Achievement during the School-Age Years

    ERIC Educational Resources Information Center

    Cormier, Damien C.; Bulut, Okan; McGrew, Kevin S.; Frison, Jessica

    2016-01-01

    Writing is a complex academic task--it involves numerous mental processes. Given the necessity for developing writing skills from elementary to secondary school, this study aimed to investigate the role of broad cognitive abilities derived from the Cattell-Horn-Carroll (CHC) theory of intelligence in predicting skills associated with writing…

  16. Academic Motivation and Approaches to Learning in Predicting College Students' Academic Achievement: Findings from Turkish and US Samples

    ERIC Educational Resources Information Center

    Çetin, Baris

    2015-01-01

    The aim of this study is to determine if approaches to learning and academic motivation together predict grade point averages (GPAs) of students who study at Primary School Education and Preschool Education in Turkey and of students who study at Early Childhood Education in the US. The first group of participants included 166 third- and…

  17. Some Important Factors Predicting Mathematics Achievement Gain (1977-1978), Grades One-Six. Evaluation System Mini-Report Five.

    ERIC Educational Resources Information Center

    District of Columbia Public Schools, Washington, DC. Dept. of Research and Evaluation.

    This is one of a series of brief and non-technical mini-reports of the Evaluation System of the District of Columbia Public Schools. This report deals with the prediction of gain in Prescriptive Mathematics Test (PMT) scores. Twenty-two variables were involved in the analyses reported in the mini-report. The data were analyzed for all grade…

  18. Predictive, Construct, and Convergent Validity of General and Domain-Specific Measures of Hope for College Student Academic Achievement

    ERIC Educational Resources Information Center

    Robinson, Cecil; Rose, Sage

    2010-01-01

    One leading version of hope theory posits hope to be a general disposition for goal-directed agency and pathways thinking. Domain-specific hope theory suggests that hope operates within context and measures of hope should reflect that context. This study examined three measures of hope to test the predictive, construct, and convergent validity…

  19. Use of dose-dependent absorption into target tissues to more accurately predict cancer risk at low oral doses of hexavalent chromium.

    PubMed

    Haney, J

    2015-02-01

    The mouse dose at the lowest water concentration used in the National Toxicology Program hexavalent chromium (CrVI) drinking water study (NTP, 2008) is about 74,500 times higher than the approximate human dose corresponding to the 35-city geometric mean reported in EWG (2010) and over 1000 times higher than that based on the highest reported tap water concentration. With experimental and environmental doses differing greatly, it is a regulatory challenge to extrapolate high-dose results to environmental doses orders of magnitude lower in a meaningful and toxicologically predictive manner. This seems particularly true for the low-dose extrapolation of results for oral CrVI-induced carcinogenesis since dose-dependent differences in the dose fraction absorbed by mouse target tissues are apparent (Kirman et al., 2012). These data can be used for a straightforward adjustment of the USEPA (2010) draft oral slope factor (SFo) to be more predictive of risk at environmentally-relevant doses. More specifically, the evaluation of observed and modeled differences in the fraction of dose absorbed by target tissues at the point-of-departure for the draft SFo calculation versus lower doses suggests that the draft SFo be divided by a dose-specific adjustment factor of at least an order of magnitude to be less over-predictive of risk at more environmentally-relevant doses.

  20. Normal Tissue Complication Probability Estimation by the Lyman-Kutcher-Burman Method Does Not Accurately Predict Spinal Cord Tolerance to Stereotactic Radiosurgery

    SciTech Connect

    Daly, Megan E.; Luxton, Gary; Choi, Clara Y.H.; Gibbs, Iris C.; Chang, Steven D.; Adler, John R.; Soltys, Scott G.

    2012-04-01

    Purpose: To determine whether normal tissue complication probability (NTCP) analyses of the human spinal cord by use of the Lyman-Kutcher-Burman (LKB) model, supplemented by linear-quadratic modeling to account for the effect of fractionation, predict the risk of myelopathy from stereotactic radiosurgery (SRS). Methods and Materials: From November 2001 to July 2008, 24 spinal hemangioblastomas in 17 patients were treated with SRS. Of the tumors, 17 received 1 fraction with a median dose of 20 Gy (range, 18-30 Gy) and 7 received 20 to 25 Gy in 2 or 3 sessions, with cord maximum doses of 22.7 Gy (range, 17.8-30.9 Gy) and 22.0 Gy (range, 20.2-26.6 Gy), respectively. By use of conventional values for {alpha}/{beta}, volume parameter n, 50% complication probability dose TD{sub 50}, and inverse slope parameter m, a computationally simplified implementation of the LKB model was used to calculate the biologically equivalent uniform dose and NTCP for each treatment. Exploratory calculations were performed with alternate values of {alpha}/{beta} and n. Results: In this study 1 case (4%) of myelopathy occurred. The LKB model using radiobiological parameters from Emami and the logistic model with parameters from Schultheiss overestimated complication rates, predicting 13 complications (54%) and 18 complications (75%), respectively. An increase in the volume parameter (n), to assume greater parallel organization, improved the predictive value of the models. Maximum-likelihood LKB fitting of {alpha}/{beta} and n yielded better predictions (0.7 complications), with n = 0.023 and {alpha}/{beta} = 17.8 Gy. Conclusions: The spinal cord tolerance to the dosimetry of SRS is higher than predicted by the LKB model using any set of accepted parameters. Only a high {alpha}/{beta} value in the LKB model and only a large volume effect in the logistic model with Schultheiss data could explain the low number of complications observed. This finding emphasizes that radiobiological models

  1. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.

    PubMed

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F; Shpall, Elizabeth J; Barrett, A John; Rezvani, Katayoun

    2014-05-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival.

  2. Predicting the Academic Achievement of Deaf and Hard-of-Hearing Students From Individual, Household, Communication, and Educational Factors.

    PubMed

    Marschark, Marc; Shaver, Debra M; Nagle, Katherine M; Newman, Lynn A

    2015-04-01

    Research suggests that the academic achievement of deaf and hard-of-hearing (DHH) students is the result of a complex interplay of many factors. These factors include characteristics of the students (e.g., hearing thresholds, language fluencies, mode of communication, and communication functioning), characteristics of their family environments (e.g., parent education level, socioeconomic status), and experiences inside and outside school (e.g., school placement, having been retained at grade level). This paper examines the relative importance of such characteristics to U.S. DHH secondary students' academic achievement as indicated by the Woodcock-Johnson III subtests in passage comprehension, mathematics calculation, science, and social studies. Data were obtained for approximately 500 DHH secondary students who had attended regular secondary schools or state-sponsored special schools designed for DHH students. Across all subject areas, having attended regular secondary schools and having better spoken language were associated with higher test scores. Significant negative predictors of achievement varied by type of subtest but included having an additional diagnosis of a learning disability, having a mild hearing loss, and being African American or Hispanic. The findings have important implications for policy and practice in educating DHH students as well for interpreting previous research.

  3. Predicting the Academic Achievement of Deaf and Hard-of-Hearing Students From Individual, Household, Communication, and Educational Factors

    PubMed Central

    Marschark, Marc; Shaver, Debra M.; Nagle, Katherine M.; Newman, Lynn A.

    2015-01-01

    Research suggests that the academic achievement of deaf and hard-of-hearing (DHH) students is the result of a complex interplay of many factors. These factors include characteristics of the students (e.g., hearing thresholds, language fluencies, mode of communication, and communication functioning), characteristics of their family environments (e.g., parent education level, socioeconomic status), and experiences inside and outside school (e.g., school placement, having been retained at grade level). This paper examines the relative importance of such characteristics to U.S. DHH secondary students’ academic achievement as indicated by the Woodcock-Johnson III subtests in passage comprehension, mathematics calculation, science, and social studies. Data were obtained for approximately 500 DHH secondary students who had attended regular secondary schools or state-sponsored special schools designed for DHH students. Across all subject areas, having attended regular secondary schools and having better spoken language were associated with higher test scores. Significant negative predictors of achievement varied by type of subtest but included having an additional diagnosis of a learning disability, having a mild hearing loss, and being African American or Hispanic. The findings have important implications for policy and practice in educating DHH students as well for interpreting previous research. PMID:26549890

  4. Lost in translation: preclinical studies on 3,4-methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans

    PubMed Central

    Green, AR; King, MV; Shortall, SE; Fone, KCF

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) induces both acute adverse effects and long-term neurotoxic loss of brain 5-HT neurones in laboratory animals. However, when choosing doses, most preclinical studies have paid little attention to the pharmacokinetics of the drug in humans or animals. The recreational use of MDMA and current clinical investigations of the drug for therapeutic purposes demand better translational pharmacology to allow accurate risk assessment of its ability to induce adverse events. Recent pharmacokinetic studies on MDMA in animals and humans are reviewed and indicate that the risks following MDMA ingestion should be re-evaluated. Acute behavioural and body temperature changes result from rapid MDMA-induced monoamine release, whereas long-term neurotoxicity is primarily caused by metabolites of the drug. Therefore acute physiological changes in humans are fairly accurately mimicked in animals by appropriate dosing, although allometric dosing calculations have little value. Long-term changes require MDMA to be metabolized in a similar manner in experimental animals and humans. However, the rate of metabolism of MDMA and its major metabolites is slower in humans than rats or monkeys, potentially allowing endogenous neuroprotective mechanisms to function in a species specific manner. Furthermore acute hyperthermia in humans probably limits the chance of recreational users ingesting sufficient MDMA to produce neurotoxicity, unlike in the rat. MDMA also inhibits the major enzyme responsible for its metabolism in humans thereby also assisting in preventing neurotoxicity. These observations question whether MDMA alone produces long-term 5-HT neurotoxicity in human brain, although when taken in combination with other recreational drugs it may induce neurotoxicity. LINKED ARTICLES This article is commented on by Parrott, pp. 1518–1520 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01941.x and to view the the

  5. Race-specific genetic risk score is more accurate than nonrace-specific genetic risk score for predicting prostate cancer and high-grade diseases.

    PubMed

    Na, Rong; Ye, Dingwei; Qi, Jun; Liu, Fang; Lin, Xiaoling; Helfand, Brian T; Brendler, Charles B; Conran, Carly; Gong, Jian; Wu, Yishuo; Gao, Xu; Chen, Yaqing; Zheng, S Lilly; Mo, Zengnan; Ding, Qiang; Sun, Yinghao; Xu, Jianfeng

    2016-01-01

    Genetic risk score (GRS) based on disease risk-associated single nucleotide polymorphisms (SNPs) is an informative tool that can be used to provide inherited information for specific diseases in addition to family history. However, it is still unknown whether only SNPs that are implicated in a specific racial group should be used when calculating GRSs. The objective of this study is to compare the performance of race-specific GRS and nonrace-specific GRS for predicting prostate cancer (PCa) among 1338 patients underwent prostate biopsy in Shanghai, China. A race-specific GRS was calculated with seven PCa risk-associated SNPs implicated in East Asians (GRS7), and a nonrace-specific GRS was calculated based on 76 PCa risk-associated SNPs implicated in at least one racial group (GRS76). The means of GRS7 and GRS76 were 1.19 and 1.85, respectively, in the study population. Higher GRS7 and GRS76 were independent predictors for PCa and high-grade PCa in univariate and multivariate analyses. GRS7 had a better area under the receiver-operating curve (AUC) than GRS76 for discriminating PCa (0.602 vs 0.573) and high-grade PCa (0.603 vs 0.575) but did not reach statistical significance. GRS7 had a better (up to 13% at different cutoffs) positive predictive value (PPV) than GRS76. In conclusion, a race-specific GRS is more robust and has a better performance when predicting PCa in East Asian men than a GRS calculated using SNPs that are not shown to be associated with East Asians.

  6. Achieving Superior Tropical Cyclone Intensity Forecasts by Improving the Assimilation of High-Resolution Satellite Data into Mesoscale Prediction Models

    DTIC Science & Technology

    2013-09-30

    intensity analyses/predictions is being assessed. The main science focus is on investigating and understanding how the assimilation of the satellite...the impact of the enhanced AMV observations at high model resolution (i.e. ɜkm spacing). It involves sampling an ensemble of bogus vortices from...specifically for implementation as a hybrid data assimilation system using the Weather Research and Forecast (WRF) model. Among many other advantages

  7. Achieving Superior Tropical Cyclone Intensity Forecasts by Improving the Assimilation of High-Resolution Satellite Data into Mesoscale Prediction Models

    DTIC Science & Technology

    2012-09-01

    change are often lacking in skill due in part to the paucity of conventional observations over the oceans that are assimilated into the operational...information for better predicting such parameters as TC steering flow fields. However, in regard to TC intensity change , it is clear that a dedicated...on the scales of processes pertinent to TC analysis and intensity change . Our study attempts to focus on and evaluate the impact of integrated, full

  8. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    PubMed Central

    Willow, Soohaeng Yoo; Salim, Michael A.; Kim, Kwang S.; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. PMID:26400690

  9. Accurate prediction of diradical chemistry from a single-reference density-matrix method: Model application to the bicyclobutane to gauche-1,3-butadiene isomerization

    SciTech Connect

    Bertels, Luke W.; Mazziotti, David A.

    2014-07-28

    Multireference correlation in diradical molecules can be captured by a single-reference 2-electron reduced-density-matrix (2-RDM) calculation with only single and double excitations in the 2-RDM parametrization. The 2-RDM parametrization is determined by N-representability conditions that are non-perturbative in their treatment of the electron correlation. Conventional single-reference wave function methods cannot describe the entanglement within diradical molecules without employing triple- and potentially even higher-order excitations of the mean-field determinant. In the isomerization of bicyclobutane to gauche-1,3-butadiene the parametric 2-RDM (p2-RDM) method predicts that the diradical disrotatory transition state is 58.9 kcal/mol above bicyclobutane. This barrier is in agreement with previous multireference calculations as well as recent Monte Carlo and higher-order coupled cluster calculations. The p2-RDM method predicts the Nth natural-orbital occupation number of the transition state to be 0.635, revealing its diradical character. The optimized geometry from the p2-RDM method differs in important details from the complete-active-space self-consistent-field geometry used in many previous studies including the Monte Carlo calculation.

  10. What No Child Left Behind Leaves Behind: The Roles of IQ and Self-Control in Predicting Standardized Achievement Test Scores and Report Card Grades.

    PubMed

    Duckworth, Angela L; Quinn, Patrick D; Tsukayama, Eli

    2012-05-01

    The increasing prominence of standardized testing to assess student learning motivated the current investigation. We propose that standardized achievement test scores assess competencies determined more by intelligence than by self-control, whereas report card grades assess competencies determined more by self-control than by intelligence. In particular, we suggest that intelligence helps students learn and solve problems independent of formal instruction, whereas self-control helps students study, complete homework, and behave positively in the classroom. Two longitudinal, prospective studies of middle school students support predictions from this model. In both samples, IQ predicted changes in standardized achievement test scores over time better than did self-control, whereas self-control predicted changes in report card grades over time better than did IQ. As expected, the effect of self-control on changes in report card grades was mediated in Study 2 by teacher ratings of homework completion and classroom conduct. In a third study, ratings of middle school teachers about the content and purpose of standardized achievement tests and report card grades were consistent with the proposed model. Implications for pedagogy and public policy are discussed.

  11. What No Child Left Behind Leaves Behind: The Roles of IQ and Self-Control in Predicting Standardized Achievement Test Scores and Report Card Grades

    PubMed Central

    Duckworth, Angela L.; Quinn, Patrick D.; Tsukayama, Eli

    2013-01-01

    The increasing prominence of standardized testing to assess student learning motivated the current investigation. We propose that standardized achievement test scores assess competencies determined more by intelligence than by self-control, whereas report card grades assess competencies determined more by self-control than by intelligence. In particular, we suggest that intelligence helps students learn and solve problems independent of formal instruction, whereas self-control helps students study, complete homework, and behave positively in the classroom. Two longitudinal, prospective studies of middle school students support predictions from this model. In both samples, IQ predicted changes in standardized achievement test scores over time better than did self-control, whereas self-control predicted changes in report card grades over time better than did IQ. As expected, the effect of self-control on changes in report card grades was mediated in Study 2 by teacher ratings of homework completion and classroom conduct. In a third study, ratings of middle school teachers about the content and purpose of standardized achievement tests and report card grades were consistent with the proposed model. Implications for pedagogy and public policy are discussed. PMID:24072936

  12. Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence.

    PubMed

    Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain

    2014-01-01

    Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.

  13. Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence

    PubMed Central

    Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain

    2014-01-01

    Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms. PMID:24772098

  14. Do attitudes toward societal structure predict beliefs about free will and achievement? Evidence from the Indian caste system.

    PubMed

    Srinivasan, Mahesh; Dunham, Yarrow; Hicks, Catherine M; Barner, David

    2016-01-01

    Intuitive theories about the malleability of intellectual ability affect our motivation and achievement in life. But how are such theories shaped by the culture in which an individual is raised? We addressed this question by exploring how Indian children's and adults' attitudes toward the Hindu caste system--and its deterministic worldview--are related to differences in their intuitive theories. Strikingly, we found that, beginning at least in middle school and continuing into adulthood, individuals who placed more importance on caste were more likely to adopt deterministic intuitive theories. We also found a developmental change in the scope of this relationship, such that in children, caste attitudes were linked only to abstract beliefs about personal freedom, but that by adulthood, caste attitudes were also linked to beliefs about the potential achievement of members of different castes, personal intellectual ability, and personality attributes. These results are the first to directly relate the societal structure in which a person is raised to the specific intuitive theories they adopt.

  15. Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

    PubMed Central

    Badran, Yasser Ali; Abdelaziz, Alsayed Saad; Shehab, Mohamed Ahmed; Mohamed, Hazem Abdelsabour Dief; Emara, Absel-Aziz Ali; Elnabtity, Ali Mohamed Ali; Ghanem, Maged Mohammed; ELHelaly, Hesham Abdel Azim

    2016-01-01

    Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies. PMID:27141192

  16. SNP development from RNA-seq data in a nonmodel fish: how many individuals are needed for accurate allele frequency prediction?

    PubMed

    Schunter, C; Garza, J C; Macpherson, E; Pascual, M

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are rapidly becoming the marker of choice in population genetics due to a variety of advantages relative to other markers, including higher genomic density, data quality, reproducibility and genotyping efficiency, as well as ease of portability between laboratories. Advances in sequencing technology and methodologies to reduce genomic representation have made the isolation of SNPs feasible for nonmodel organisms. RNA-seq is one such technique for the discovery of SNPs and development of markers for large-scale genotyping. Here, we report the development of 192 validated SNP markers for parentage analysis in Tripterygion delaisi (the black-faced blenny), a small rocky-shore fish from the Mediterranean Sea. RNA-seq data for 15 individual samples were used for SNP discovery by applying a series of selection criteria. Genotypes were then collected from 1599 individuals from the same population with the resulting loci. Differences in heterozygosity and allele frequencies were found between the two data sets. Heterozygosity was lower, on average, in the population sample, and the mean difference between the frequencies of particular alleles in the two data sets was 0.135 ± 0.100. We used bootstrap resampling of the sequence data to predict appropriate sample sizes for SNP discovery. As cDNA library production is time-consuming and expensive, we suggest that using seven individuals for RNA sequencing reduces the probability of discarding highly informative SNP loci, due to lack of observed polymorphism, whereas use of more than 12 samples does not considerably improve prediction of true allele frequencies.

  17. TU-EF-204-01: Accurate Prediction of CT Tube Current Modulation: Estimating Tube Current Modulation Schemes for Voxelized Patient Models Used in Monte Carlo Simulations

    SciTech Connect

    McMillan, K; Bostani, M; McNitt-Gray, M; McCollough, C

    2015-06-15

    Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate the complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not

  18. Accurate prediction of hard-sphere virial coefficients B6 to B12 from a compressibility-based equation of state

    NASA Astrophysics Data System (ADS)

    Hansen-Goos, Hendrik

    2016-04-01

    We derive an analytical equation of state for the hard-sphere fluid that is within 0.01% of computer simulations for the whole range of the stable fluid phase. In contrast, the commonly used Carnahan-Starling equation of state deviates by up to 0.3% from simulations. The derivation uses the functional form of the isothermal compressibility from the Percus-Yevick closure of the Ornstein-Zernike relation as a starting point. Two additional degrees of freedom are introduced, which are constrained by requiring the equation of state to (i) recover the exact fourth virial coefficient B4 and (ii) involve only integer coefficients on the level of the ideal gas, while providing best possible agreement with the numerical result for B5. Virial coefficients B6 to B10 obtained from the equation of state are within 0.5% of numerical computations, and coefficients B11 and B12 are within the error of numerical results. We conjecture that even higher virial coefficients are reliably predicted.

  19. A machine-learning approach reveals that alignment properties alone can accurately predict inference of lateral gene transfer from discordant phylogenies.

    PubMed

    Roettger, Mayo; Martin, William; Dagan, Tal

    2009-09-01

    Among the methods currently used in phylogenomic practice to detect the presence of lateral gene transfer (LGT), one of the most frequently employed is the comparison of gene tree topologies for different genes. In cases where the phylogenies for different genes are incompatible, or discordant, for well-supported branches there are three simple interpretations for the result: 1) gene duplications (paralogy) followed by many independent gene losses have occurred, 2) LGT has occurred, or 3) the phylogeny is well supported but for reasons unknown is nonetheless incorrect. Here, we focus on the third possibility by examining the properties of 22,437 published multiple sequence alignments, the Bayesian maximum likelihood trees for which either do or do not suggest the occurrence of LGT by the criterion of discordant branches. The alignments that produce discordant phylogenies differ significantly in several salient alignment properties from those that do not. Using a support vector machine, we were able to predict the inference of discordant tree topologies with up to 80% accuracy from alignment properties alone.

  20. Accurate prediction of hard-sphere virial coefficients B6 to B12 from a compressibility-based equation of state.

    PubMed

    Hansen-Goos, Hendrik

    2016-04-28

    We derive an analytical equation of state for the hard-sphere fluid that is within 0.01% of computer simulations for the whole range of the stable fluid phase. In contrast, the commonly used Carnahan-Starling equation of state deviates by up to 0.3% from simulations. The derivation uses the functional form of the isothermal compressibility from the Percus-Yevick closure of the Ornstein-Zernike relation as a starting point. Two additional degrees of freedom are introduced, which are constrained by requiring the equation of state to (i) recover the exact fourth virial coefficient B4 and (ii) involve only integer coefficients on the level of the ideal gas, while providing best possible agreement with the numerical result for B5. Virial coefficients B6 to B10 obtained from the equation of state are within 0.5% of numerical computations, and coefficients B11 and B12 are within the error of numerical results. We conjecture that even higher virial coefficients are reliably predicted.

  1. Accurate predictions of spectroscopic and molecular properties of 27 Λ-S and 73 Ω states of AsS radical.

    PubMed

    Shi, Deheng; Song, Ziyue; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2016-01-15

    The PECs are calculated for the 27 Λ-S states and their corresponding 73 Ω states of AsS radical. Of these Λ-S states, only the 2(2)Δ and 5(4)Π states are replulsive. The 1(2)Σ(+), 2(2)Σ(+), 4(2)Π, 3(4)Δ, 3(4)Σ(+), and 4(4)Π states possess double wells. The 3(2)Σ(+) state possesses three wells. The A(2)Π, 3(2)Π, 1(2)Φ, 2(4)Π, 3(4)Π, 2(4)Δ, 3(4)Δ, 1(6)Σ(+), and 1(6)Π states are inverted with the SO coupling effect included. The 1(4)Σ(+), 2(4)Σ(+), 2(4)Σ(-), 2(4)Δ, 1(4)Φ, 1(6)Σ(+), and 1(6)Π states, the second wells of 1(2)Σ(+), 3(4)Σ(+), 4(2)Π, 4(4)Π, and 3(4)Δ states, and the third well of 3(2)Σ(+) state are very weakly-bound states. The PECs are extrapolated to the CBS limit. The effect of SO coupling on the PECs is discussed. The spectroscopic parameters are evaluated, and compared with available measurements and other theoretical ones. The vibrational properties of several weakly-bound states are determined. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  2. Accurate predictions of spectroscopic and molecular properties of 27 Λ-S and 73 Ω states of AsS radical

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Song, Ziyue; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2016-01-01

    The PECs are calculated for the 27 Λ-S states and their corresponding 73 Ω states of AsS radical. Of these Λ-S states, only the 22Δ and 54Π states are replulsive. The 12Σ+, 22Σ+, 42Π, 34Δ, 34Σ+, and 44Π states possess double wells. The 32Σ+ state possesses three wells. The A2Π, 32Π, 12Φ, 24Π, 34Π, 24Δ, 34Δ, 16Σ+, and 16Π states are inverted with the SO coupling effect included. The 14Σ+, 24Σ+, 24Σ-, 24Δ, 14Φ, 16Σ+, and 16Π states, the second wells of 12Σ+, 34Σ+, 42Π, 44Π, and 34Δ states, and the third well of 32Σ+ state are very weakly-bound states. The PECs are extrapolated to the CBS limit. The effect of SO coupling on the PECs is discussed. The spectroscopic parameters are evaluated, and compared with available measurements and other theoretical ones. The vibrational properties of several weakly-bound states are determined. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  3. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A

    2017-02-14

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of (16)O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm(-1) is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  4. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands

    NASA Astrophysics Data System (ADS)

    Tyuterev, Vladimir G.; Kochanov, Roman V.; Tashkun, Sergey A.

    2017-02-01

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to Δ V = 6. A particular challenge was a correct description of the B-type bands (even Δ V3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μ m range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm-1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  5. The M. D. Anderson Symptom Inventory-Head and Neck Module, a Patient-Reported Outcome Instrument, Accurately Predicts the Severity of Radiation-Induced Mucositis

    SciTech Connect

    Rosenthal, David I. Mendoza, Tito R.; Chambers, Mark; Burkett, V. Shannon; Garden, Adam S.; Hessell, Amy C.; Lewin, Jan S.; Ang, K. Kian; Kies, Merrill S.

    2008-12-01

    Purpose: To compare the M. D. Anderson Symptom Inventory-Head and Neck (MDASI-HN) module, a symptom burden instrument, with the Functional Assessment of Cancer Therapy-Head and Neck (FACT-HN) module, a quality-of-life instrument, for the assessment of mucositis in patients with head-and-neck cancer treated with radiotherapy and to identify the most distressing symptoms from the patient's perspective. Methods and Materials: Consecutive patients with head-and-neck cancer (n = 134) completed the MDASI-HN and FACT-HN before radiotherapy (time 1) and after 6 weeks of radiotherapy or chemoradiotherapy (time 2). The mean global and subscale scores for each instrument were compared with the objective mucositis scores determined from the National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0. Results: The global and subscale scores for each instrument showed highly significant changes from time 1 to time 2 and a significant correlation with the objective mucositis scores at time 2. Only the MDASI scores, however, were significant predictors of objective Common Terminology Criteria for Adverse Events mucositis scores on multivariate regression analysis (standardized regression coefficient, 0.355 for the global score and 0.310 for the head-and-neck cancer-specific score). Most of the moderate and severe symptoms associated with mucositis as identified on the MDASI-HN are not present on the FACT-HN. Conclusion: Both the MDASI-HN and FACT-HN modules can predict the mucositis scores. However, the MDASI-HN, a symptom burden instrument, was more closely associated with the severity of radiation-induced mucositis than the FACT-HN on multivariate regression analysis. This greater association was most likely related to the inclusion of a greater number of face-valid mucositis-related items in the MDASI-HN compared with the FACT-HN.

  6. Prognosis of locally advanced rectal cancer can be predicted more accurately using pre- and post-chemoradiotherapy neutrophil-lymphocyte ratios in patients who received preoperative chemoradiotherapy

    PubMed Central

    Sung, SooYoon; Park, Eun Young; Kay, Chul Seung

    2017-01-01

    Purpose The neutrophil-lymphocyte ratio (NLR) has been suggested as an inflammation-related factor, but also as an indicator of systemic anti-tumor immunity. We aimed to evaluate the prognostic value of the NLR and to propose a proper cut-off value in patients with locally advanced rectal cancer who received preoperative chemoradiation (CRT) followed by curative total mesorectal excision (TME). Methods A total of 110 rectal cancer patients with clinical T3-4 or node-positive disease were retrospectively analyzed. The NLR value before preoperative CRT (pre-CRT NLR) and the NLR value between preoperative CRT and surgery (post-CRT NLR) were obtained. Using a maximally selected log-rank test, cut-off values were determined as 1.75 for the pre-CRT NLR and 5.14 for the post-CRT NLR. Results Patients were grouped as follows: group A, pre-CRT NLR ≤ 1.75 and post-CRT NLR ≤ 5.14 (n = 29); group B, pre-CRT NLR > 1.75 and post-CRT NLR ≤ 5.14, or pre-CRT NLR ≤ 1.75 and post-CRT NLR > 5.14 (n = 61); group C, pre-CRT NLR > 1.75 and post-CRT NLR > 5.14 (n = 20). The median follow-up time was 31.1 months. The 3-year disease-free survival (DFS) and overall survival (OS) rates showed significant differences between the NLR groups (3-year DFS rate: 92.7% vs. 73.0% vs. 47.3%, for group A, B, and C, respectively, p = 0.018; 3-year OS rate: 96.0% vs. 85.5% vs. 59.8%, p = 0.034). Multivariate analysis revealed that the NLR was an independent prognostic factor for DFS (p = 0.028). Conclusion Both the pre-CRT NLR and the post-CRT NLR have a predictive value for the prognosis of patients with locally advanced rectal cancer treated with preoperative CRT followed by curative TME and adjuvant chemotherapy. A persistently elevated post-CRT NLR may be an indicator of an increased risk of distant metastasis. PMID:28291841

  7. Implementing the Effects of Changing Landscape by the Recent Bark Beetle Infestation on Snow Accumulation and Ablation to More Accurately Predict Stream Flow in the Upper Little Laramie River, Wyoming watershed.

    NASA Astrophysics Data System (ADS)

    Heward, J.; Ohara, N.

    2014-12-01

    In many alpine regions, especially in the western United States, the snow pack is the cause of the peak discharge and most of the annual flow. A distributed snow melt model with a point-scale snow melt theory is used to estimate the timing and intensity of both snow accumulation and ablation. The type and distribution of vegetation across a watershed influences timing and intensity of snow melt processes. Efforts are being made to understand how a changing landscape will ultimately affect stream flow in a mountainous environment. This study includes an analysis of the effects of the recent bark beetle infestation, using leaf area index (LAI) data acquired from MODIS data sets. These changes were incorporated into the snow model to more accurately predict snow melt timing and intensity. It was observed through the primary model implementation that snowmelt was intensified by the LAI reduction. The radiation change and turbulent flux effects were separately quantified by the vegetation parameterization in the snow model. This distributed snow model will be used to more accurately predict stream flow in the Upper Little Laramie River, Wyoming watershed.

  8. Once we know all the radiobiology we need to know, how can we use it to predict space radiation risks and achieve fame and fortune?

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.

    2001-01-01

    It has been over 40 years since occupational radiation exposures to NASA's astronauts began and more than 300 individuals have been exposed to low and intermediate doses of trapped protons and galactic cosmic rays (GCR). The International Space Station (ISS) will add substantially to this number and significantly increase average lifetime doses. We review these exposures in this report. After many years of investigation, the method used to assess risk have not changed significantly. However, molecular biology and genetics have made enormous progress in establishing the mechanisms of cancer formation, damage to the central nervous system, and individual variation in sensitivity to radiation. We discuss critical questions and possible new approaches to the prediction of risk from space radiation exposures. Experimental models can lead to testable theories that along with extensive biophysical and informatics approaches, will lead to fame and fortune by allowing for accurate projections of astronaut risks and for the development of biological countermeasures.

  9. Self-concept and self-efficacy: a test of the internal/external frame of reference model and predictions of subsequent motivation and achievement.

    PubMed

    Skaalvik, Einar M; Skaalvik, Sidsel

    2004-12-01

    We examined how final grades in mathematics and verbal arts in the first year of high school (Grade 11) were predicted in a Norwegian population by sex, previous grades in middle school (Grade 10), self-concept, self-efficacy at a domain-specific level, and intrinsic motivation. Direct and indirect relations were examined by means of a series of regression analyses. Participants were 483 students from six Norwegian high schools. End of term grades in high school correlated positively with grades in middle school in both mathematics (r = .62) and verbal arts (r = .55). The relation between grades at the two points of time was to a large extent mediated through mathematics, verbal self-concept, and self-efficacy. Intrinsic motivation also correlated positively with subsequent achievement (r = .63 and .42 in mathematics and verbal arts, respectively). However, intrinsic motivation had little predictive value for subsequent grades over and above the prediction made by self-concept and self-efficacy. Thus, self-concept and self-efficacy were the strongest predictors of subsequent grades. Predictions from the Internal/External frame of reference model were supported for self-concept but not for domain-specific self-efficacy.

  10. Prediction of the curing time to achieve maturity of the nano-cement based concrete using the Weibull distribution model: A complementary data set.

    PubMed

    Jo, Byung Wan; Chakraborty, Sumit; Kim, Heon

    2015-09-01

    This data article provides a comparison data for nano-cement based concrete (NCC) and ordinary Portland cement based concrete (OPCC). Concrete samples (OPCC) were fabricated using ten different mix design and their characterization data is provided here. Optimization of curing time using the Weibull distribution model was done by analyzing the rate of change of compressive strength of the OPCC. Initially, the compressive strength of the OPCC samples was measured after completion of four desired curing times. Thereafter, the required curing time to achieve a particular rate of change of the compressive strength has been predicted utilizing the equation derived from the variation of the rate of change of compressive strength with the curing time, prior to the optimization of the curing time (at the 99.99% confidence level) using the Weibull distribution model. This data article complements the research article entitled "Prediction of the curing time to achieve maturity of the nano-cement based concrete using the Weibull distribution model" [1].

  11. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  12. Accurate sperm morphology assessment predicts sperm function.

    PubMed

    Abu Hassan Abu, D; Franken, D R; Hoffman, B; Henkel, R

    2012-05-01

    Sperm morphology has been associated with in vitro as well as in vivo fertilisation. The study aimed to evaluate the possible relation between the percentage of spermatozoa with normal morphology and the following sperm functional assays: (i) zona-induced acrosome reaction (ZIAR); (ii) DNA integrity; (iii) chromatin condensation; (iv) sperm apoptosis; and (v) fertilisation rates. Regression analysis was employed to calculate the association between morphology and different functional tests. Normal sperm morphology correlated significantly with the percentages of live acrosome-reacted spermatozoa in the ZIAR (r = 0.518; P < 0.0001; n = 92), DNA integrity (r = -0.515; P = 0.0018; n = 34), CMA(3) -positive spermatozoa (r = -0.745; P < 0.0001; n = 92), sperm apoptosis (r = -0.395; P = 0.0206; n = 34) and necrosis (r = -0.545; P = 0.0009; n = 34). Negative correlations existed between for the acrosome reaction, and DNA integrity, while negative associations were recorded with the percentages of CMA(3) -positive spermatozoa, apoptotic and necrotic spermatozoa. Sperm morphology is related to sperm dysfunction such as poor chromatin condensation, acrosome reaction and DNA integrity. Negative and significant correlations existed between normal sperm morphology and chromatin condensation, the percentage of spermatozoa with abnormal DNA and spermatozoa with apoptotic activity. The authors do not regard sperm morphology as the only test for the diagnosis of male fertility, but sperm morphology can serve as a valuable indicator of underlying dysfunction.

  13. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation

    NASA Astrophysics Data System (ADS)

    Arockia Bazil Raj, A.; Padmavathi, S.

    2016-07-01

    Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.

  14. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum.

    PubMed

    Fontaine, Johannes; Schirmer, Barbara; Hörr, Jutta

    2002-07-03

    Further NIRS calibrations were developed for the accurate and fast prediction of the total contents of methionine, cystine, lysine, threonine, tryptophan, and other essential amino acids, protein, and moisture in the most important cereals and brans or middlings for animal feed production. More than 1100 samples of global origin collected over five years were analyzed for amino acids following the Official Methods of the United States and European Union. Detailed data and graphics are given to characterize the obtained calibration equations. NIRS was validated with 98 independent samples for wheat and 78 samples for corn and compared to amino acid predictions using linear crude protein regression equations. With a few exceptions, validation showed that 70-98% of the amino acid variance in the samples could be explained using NIRS. Especially for lysine and methionine, the most limiting amino acids for farm animals, NIRS can predict contents in cereals much better than crude protein regressions. Through low cost and high speed of analysis NIRS enables the amino acid analysis of many samples in order to improve the accuracy of feed formulation and obtain better quality and lower production costs.

  15. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  16. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  17. A Survey Study of Significent Achievements Accomplished By Snon-mainstreamt Seismologists In ¸ Earthquake Monitoring and Prediction Science In China Since 1970

    NASA Astrophysics Data System (ADS)

    Chen, I. W.

    Since 1990, the author, a British U Chinese consultant, has studied and followed the significant achievements accomplished by Snon-mainstreamT seismologists in & cedil;earthquake prediction in China since 1970. The scientific systems used include: (1) Astronomy-seismology: The relativity between special positions of certain planets (especially the moon and another planet) relative to the seismic active areas on the earth and the occurrence time of major damaging earthquakes in these areas on the earth, the relativity between the dates of magnetic storms on the earth caused by so- lar flare on the sun and the occurrence dates of major damaging earthquakes on the earth, as well as certain cycle relativity between the occurrence dates of major his- torical earthquakes occurring in relative areas on the earth. (2) Precursor analysis: With own-developed sensors and instruments, different to conventional seismologi- cal instruments, numerous precursors, abnormality signs, and earthquake imminent signals were recorded. In most cases, these precursors can not be detected by conven- tional seismological sensors/instruments. Through exploratory practice and theoreti- cal studies, various relativity between different characteristics of the precursors, and the occurrence time, epicenter location and magnitude of the developing earthquake were identified and can be calculated. Through approaches quite different to conven- tional methods, successful predictions of quite a large number of earthquakes have been achieved, including earthquakes that occurred in mainland China, Taiwan and Japan. (3) Earthquake imminent affirmative confirmation: With a special instrument, the background of imminent state of earthquakes can be identified, and a universal earthquake imminent signal is further identified. It can be used to confirm if an earlier predicted earthquake is entering its imminent state, if it will definitely occur, or if an earlier prediction can be released. (4) 5km, 7km and

  18. Individualizing amikacin regimens: accurate method to achieve therapeutic concentrations.

    PubMed

    Zaske, D E; Cipolle, R J; Rotschafer, J C; Kohls, P R; Strate, R G

    1991-11-01

    Amikacin's pharmacokinetics and dosage requirements were studied in 98 patients receiving treatment for gram-negative infections. A wide interpatient variation in the kinetic parameters of the drug occurred in all patients and in patients who had normal serum creatinine levels or normal creatinine clearance. The half-life ranged from 0.7 to 14.4 h in 74 patients who had normal serum creatinine levels and from 0.7 to 7.2 h in 37 patients who had normal creatinine clearance. The necessary daily dose to obtain therapeutic serum concentrations ranged from 1.25 to 57 mg/kg in patients with normal serum creatinine levels and from 10 to 57 mg/kg in patients with normal creatinine clearance. In four patients (4%), a significant change in baseline serum creatinine level (greater than 0.5 mg/dl) occurred during or after treatment, which may have been amikacin-associated toxicity. Overt ototoxicity occurred in one patient. The method of individualizing dosage regimens provided a clinically useful means of rapidly attaining therapeutic peak and trough serum concentrations.

  19. Achieving Salary Equity

    ERIC Educational Resources Information Center

    Nevill, Dorothy D.

    1975-01-01

    Three techniques are outlined for use by higher education institutions to achieve salary equity: salary prediction (using various statistical procedures), counterparting (comparing salaries of persons of similar rank), and grievance procedures. (JT)

  20. Critical Combinations of Radiation Dose and Volume Predict Intelligence Quotient and Academic Achievement Scores After Craniospinal Irradiation in Children With Medulloblastoma

    SciTech Connect

    Merchant, Thomas E.; Schreiber, Jane E.; Wu, Shengjie; Lukose, Renin; Xiong, Xiaoping; Gajjar, Amar

    2014-11-01

    Purpose: To prospectively follow children treated with craniospinal irradiation to determine critical combinations of radiation dose and volume that would predict for cognitive effects. Methods and Materials: Between 1996 and 2003, 58 patients (median age 8.14 years, range 3.99-20.11 years) with medulloblastoma received risk-adapted craniospinal irradiation followed by dose-intense chemotherapy and were followed longitudinally with multiple cognitive evaluations (through 5 years after treatment) that included intelligence quotient (estimated intelligence quotient, full-scale, verbal, and performance) and academic achievement (math, reading, spelling) tests. Craniospinal irradiation consisted of 23.4 Gy for average-risk patients (nonmetastatic) and 36-39.6 Gy for high-risk patients (metastatic or residual disease >1.5 cm{sup 2}). The primary site was treated using conformal or intensity modulated radiation therapy using a 2-cm clinical target volume margin. The effect of clinical variables and radiation dose to different brain volumes were modeled to estimate cognitive scores after treatment. Results: A decline with time for all test scores was observed for the entire cohort. Sex, race, and cerebrospinal fluid shunt status had a significant impact on baseline scores. Age and mean radiation dose to specific brain volumes, including the temporal lobes and hippocampi, had a significant impact on longitudinal scores. Dichotomized dose distributions at 25 Gy, 35 Gy, 45 Gy, and 55 Gy were modeled to show the impact of the high-dose volume on longitudinal test scores. The 50% risk of a below-normal cognitive test score was calculated according to mean dose and dose intervals between 25 Gy and 55 Gy at 10-Gy increments according to brain volume and age. Conclusions: The ability to predict cognitive outcomes in children with medulloblastoma using dose-effects models for different brain subvolumes will improve treatment planning, guide intervention, and help

  1. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  2. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  3. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  4. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  5. Parent Involvement as Parental Monitoring of Student Motivation and Parent Expectations Predicting Later Achievement among African American and European American Middle School Age Students.

    ERIC Educational Resources Information Center

    Seyfried, Sherri F.; Ick-Joong Chung

    2002-01-01

    A study examined the effects of parent involvement and expectations on academic achievement among 567 Black and White middle school students in 18 Seattle (Washington) schools. Parent and teacher surveys indicated that parental involvement was the highest contributor to academic achievement among White students, whereas earlier educational…

  6. An Examination of the Predictive Validity of the Keymath Diagnostic Arithmetic Test and the Wide Range Achievement Test in Exceptional Children

    ERIC Educational Resources Information Center

    Kratochwill, Thomas R.; Demuth, Dennis M.

    1976-01-01

    Title I elementary school children (N=37) were administered the Arithmetic subtest of the Wide Range Achievement Test and the Key Math Diagnostic Arithmetic Test. One year later, the Metropolitan Achievement Test was administered. Correlations between the three measures are presented and discussed. (Author)

  7. Predicting Second Grade Achievement Scores with the Slosson Intelligence Test, Peabody Picture Vocabulary Test, Goodenough-Harris Drawing Test, Developmental Test of Visual Motor and the Metropolitan Readiness Test.

    ERIC Educational Resources Information Center

    Flynn, Timothy M.

    The predictive validity of the Slosson Intelligence Test, Peabody Picture Vocabulary Test, Goodenough-Harris Drawing Test, Developmental Test of Visual Motor Integration, and the Metropolitan Readiness Test was evaluated for use with kindergarten children. The criterion measure was the California Achievement Tests administered when the children…

  8. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  9. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  10. What "No Child Left Behind" Leaves behind: The Roles of IQ and Self-Control in Predicting Standardized Achievement Test Scores and Report Card Grades

    ERIC Educational Resources Information Center

    Duckworth, Angela L.; Quinn, Patrick D.; Tsukayama, Eli

    2012-01-01

    The increasing prominence of standardized testing to assess student learning motivated the current investigation. We propose that standardized achievement test scores assess competencies determined more by intelligence than by self-control, whereas report card grades assess competencies determined more by self-control than by intelligence. In…

  11. Humor and College Adjustment: The Predictive Nature of Humor, Academic Achievement, Authoritative Parenting Styles on the Initial Adjustment of Male and Female First-Year College Students

    ERIC Educational Resources Information Center

    Hickman, Gregory P.; Andrews, David W.

    2003-01-01

    A self-report questionnaire on academic achievement, birth order, and family structure; the Student Adaptation to College Questionnaire; the Parental Authority Questionnaire; and the Coping Humor Scale were administered to 257 first-year college students. Researchers examined the relationships among (a) authoritative parenting style, (b) family…

  12. The Predictive Nature of Humor, Authoritative Parenting Style, and Academic Achievement on Indices of Initial Adjustment and Commitment to College among College Freshmen

    ERIC Educational Resources Information Center

    Hickman, Gregory P.; Crossland, Garnet L.

    2004-01-01

    Through the administration of self-report surveys, this study examined the relationships among a) parenting styles, b) family structure, c) academic achievement, d) birth order, e) gender, and f) humor on the initial personal-emotional, social, academic, and commitment to college adjustment among 257 first-quarter college freshmen. Multiple…

  13. The Extended Theory of Planned Behaviour and College Grades: The Role of Cognition and Past Behaviour in the Prediction of Students' Academic Intentions and Achievements

    ERIC Educational Resources Information Center

    Kovac, Velibor Bobo; Cameron, David Lansing; Høigaard, Rune

    2016-01-01

    Understanding the underlying processes influencing college students' academic achievement represents an important goal of educational research. The aim of the present study was to examine the utility of the extended Theory of Planned Behaviour (TPB) and the relative influence of cognitive processes and measures of past behaviour in the prediction…

  14. Post Mathematical Attitudes Among Prospective Elementary Teachers as Predicted by General Mathematics Skills, Modern Mathematics Skills, Modern Mathematics Achievement, and Prior Mathematical Attitudes.

    ERIC Educational Resources Information Center

    Wilson, John Martin, Jr.

    The purpose of this study was to investigate the interrelationship of general mathematics skills, modern mathematics skills, modern mathematics achievement, prior mathematical attitudes, and postmathematical attitudes of prospective elementary teachers. A sample of 206 students was drawn from 286 students enrolled in a modern mathematics course.…

  15. Achievability for telerobotic systems

    NASA Astrophysics Data System (ADS)

    Kress, Reid L.; Draper, John V.; Hamel, William R.

    2001-02-01

    Methods are needed to improve the capabilities of autonomous robots to perform tasks that are difficult for contemporary robots, and to identify those tasks that robots cannot perform. Additionally, in the realm of remote handling, methods are needed to assess which tasks and/or subtasks are candidates for automation. We are developing a new approach to understanding the capability of autonomous robotic systems. This approach uses formalized methods for determining the achievability of tasks for robots, that is, the likelihood that an autonomous robot or telerobot can successfully complete a particular task. Any autonomous system may be represented in achievability space by the volume describing that system's capabilities within the 3-axis space delineated by perception, cognition, and action. This volume may be thought of as a probability density with achievability decreasing as the distance from the centroid of the volume increases. Similarly, any task may be represented within achievability space. However, as tasks have more finite requirements for perception, cognition, and action, each may be represented as a point (or, more accurately, as a small sphere) within achievability space. Analysis of achievability can serve to identify, a priori, the survivability of robotic systems and the likelihood of mission success; it can be used to plan a mission or portions of a mission; it can be used to modify a mission plan to accommodate unpredicted occurrences; it can also serve to identify needs for modifications to robotic systems or tasks to improve achievability. .

  16. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  17. BPROMPT: A consensus server for membrane protein prediction.

    PubMed

    Taylor, Paul D; Attwood, Teresa K; Flower, Darren R

    2003-07-01

    Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.

  18. EuLoc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou's PseAAC

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Hao; Wu, Li-Ching; Lee, Tzong-Yi; Chen, Shu-Pin; Huang, Hsien-Da; Horng, Jorng-Tzong

    2013-01-01

    The function of a protein is generally related to its subcellular localization. Therefore, knowing its subcellular localization is helpful in understanding its potential functions and roles in biological processes. This work develops a hybrid method for computationally predicting the subcellular localization of eukaryotic protein. The method is called EuLoc and incorporates the Hidden Markov Model (HMM) method, homology search approach and the support vector machines (SVM) method by fusing several new features into Chou's pseudo-amino acid composition. The proposed SVM module overcomes the shortcoming of the homology search approach in predicting the subcellular localization of a protein which only finds low-homologous or non-homologous sequences in a protein subcellular localization annotated database. The proposed HMM modules overcome the shortcoming of SVM in predicting subcellular localizations using few data on protein sequences. Several features of a protein sequence are considered, including the sequence-based features, the biological features derived from PROSITE, NLSdb and Pfam, the post-transcriptional modification features and others. The overall accuracy and location accuracy of EuLoc are 90.5 and 91.2 %, respectively, revealing a better predictive performance than obtained elsewhere. Although the amounts of data of the various subcellular location groups in benchmark dataset differ markedly, the accuracies of 12 subcellular localizations of EuLoc range from 82.5 to 100 %, indicating that this tool is much more balanced than other tools. EuLoc offers a high, balanced predictive power for each subcellular localization. EuLoc is now available on the web at http://euloc.mbc.nctu.edu.tw/.

  19. EuLoc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou's PseAAC.

    PubMed

    Chang, Tzu-Hao; Wu, Li-Ching; Lee, Tzong-Yi; Chen, Shu-Pin; Huang, Hsien-Da; Horng, Jorng-Tzong

    2013-01-01

    The function of a protein is generally related to its subcellular localization. Therefore, knowing its subcellular localization is helpful in understanding its potential functions and roles in biological processes. This work develops a hybrid method for computationally predicting the subcellular localization of eukaryotic protein. The method is called EuLoc and incorporates the Hidden Markov Model (HMM) method, homology search approach and the support vector machines (SVM) method by fusing several new features into Chou's pseudo-amino acid composition. The proposed SVM module overcomes the shortcoming of the homology search approach in predicting the subcellular localization of a protein which only finds low-homologous or non-homologous sequences in a protein subcellular localization annotated database. The proposed HMM modules overcome the shortcoming of SVM in predicting subcellular localizations using few data on protein sequences. Several features of a protein sequence are considered, including the sequence-based features, the biological features derived from PROSITE, NLSdb and Pfam, the post-transcriptional modification features and others. The overall accuracy and location accuracy of EuLoc are 90.5 and 91.2 %, respectively, revealing a better predictive performance than obtained elsewhere. Although the amounts of data of the various subcellular location groups in benchmark dataset differ markedly, the accuracies of 12 subcellular localizations of EuLoc range from 82.5 to 100 %, indicating that this tool is much more balanced than other tools. EuLoc offers a high, balanced predictive power for each subcellular localization. EuLoc is now available on the web at http://euloc.mbc.nctu.edu.tw/.

  20. A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies

    PubMed Central

    2014-01-01

    We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is relatively accurate at predicting the electrostatic component of the HFE without correction but requires a modification of the nonpolar contribution that originates in the formation of the cavity created by the solute in water. We use a free energy functional with the Ng scaling of the direct correlation function [Ng, K. C. J. Chem. Phys.1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for applications in drug design. PMID:24634616