Science.gov

Sample records for achieve current densities

  1. Electrodialysis simulation to achieve optimum current density

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.

    1993-01-01

    Electrodialysis is used to remove salts from waste or other water streams, to yield a concentrated brine and a substatially deionized product water. During the electrodialysis process, the boundary layer adjacent to the ion selective membrane can become depleted of ions, resulting in severe pH changes sometimes accompanied by precipitation, and power losses, by a process known as water splitting. In order to optimize the applied electric current density, to achieve maximum deionization without exceeding the limiting current at any point along the path, a simulation program has been created to plot ion concentrations and fluxes, and cell current densities and voltages along the electrodialysis path. A means for tapering the current density along the path is recommended.

  2. Achievement of practical level critical current densities in Ba1−xKxFe2As2/Ag tapes by conventional cold mechanical deformation

    PubMed Central

    Gao, Zhaoshun; Togano, Kazumasa; Matsumoto, Akiyoshi; Kumakura, Hiroaki

    2014-01-01

    The recently discovered iron-based superconductors are potential candidates for high-field magnet applications. However, the critical current densities (Jc) of iron-based superconducting wires remain far below the level needed for practical applications. Here, we show that the transport Jc of Ba1−xKxFe2As2/Ag tapes is significantly enhanced by the combination process of cold flat rolling and uniaxial pressing. At 4.2 K, Jc exceeds the practical level of 105 A/cm2 in magnetic fields up to 6 T. The Jc-H curve shows extremely small magnetic field dependence and maintains a high value of 8.6 × 104 A/cm2 in 10 T. These are the highest values reported so far for iron-based superconducting wires. Hardness measurements and microstructure investigations reveal that the superior Jc in our samples is due to the high core density, more textured grains, and a change in the microcrack structure. These results indicate that iron-based superconductors are very promising for high magnetic field applications. PMID:24513646

  3. Tokamak Equilibria with Reversed Current Density

    NASA Astrophysics Data System (ADS)

    Martynov, A. A.; Medvedev, S. Yu.; Villard, L.

    2003-08-01

    Observations of nearly zero toroidal current in the central region of tokamaks (the “current hole”) raises the question of the existence of toroidal equilibria with very low or reversed current in the core. The solutions of the Grad-Shafranov equilibrium equation with hollow toroidal current density profile including negative current density in the plasma center are investigated. Solutions of the corresponding eigenvalue problem provide simple examples of such equilibrium configurations. More realistic equilibria with toroidal current density reversal are computed using a new equilibrium problem formu­lation and computational algorithm which do not assume nested magnetic surfaces.

  4. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  5. DENSITY CURRENTS IN ACTIVATED SLUDGE SECONDARY CLARIFIERS

    EPA Science Inventory

    Density currents form in activated sludge secondary clarifiers because the mixed liquor has a density greater than the treated wastewater in the clarifier. This causes the mixed liquor to plunge to the bottom of the clarifier establishing relatively high velocity currents within ...

  6. Current density and state density in diluted magnetic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Pérez Merchancano, S. T.; Paredes Gutiérrez, H.; Zuñiga, J. A.

    2016-02-01

    We study in this paper the spin-polarized current density components in diluted magnetic semiconductor tunnelling diodes with different sample geometries. We calculate the resonant JxV and the density of states. The differential conductance curves are analyzed as functions of the applied voltage and the magnetic potential strength induced by the magnetic ions.

  7. The Fluid Mechanics of Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Dufek, Josef

    2016-01-01

    Pyroclastic density currents are generated in explosive volcanic eruptions when gas and particle mixtures remain denser than the surrounding atmosphere. These mobile currents have a diversity of flow regimes, from energetic granular flows to turbulent suspensions. Given their hazardous nature, much of our understanding of the internal dynamics of these currents has been explored through mathematical and computational models. This review discusses the anatomy of these currents and their phenomenology and places these observations in the context of forces driving the currents. All aspects of the current dynamics are influenced by multiphase interactions, and the study of these currents offers insight into a high-energy end-member of multiphase flow. At low concentration, momentum transfer is dominated by particle-gas drag. At higher concentration, particle collisions, friction, and gas pore pressure act to redistribute momentum. This review examines end-member theoretical models for dilute and concentrated flow and then considers insight gained from multiphase simulations of pyroclastic density currents.

  8. Burnout current density of bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  9. Plasma Medicine: Current Achievements and Future Prospects

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir

    2012-10-01

    Research on the biomedical applications of low temperature plasmas started with small scale experiments that were simply aimed at discovering what happens to biological cells when exposed to the chemically rich environment of plasma. These early experiments took place in the mid to late 1990s. As interest in this multidisciplinary field dramatically rose, various engineering and physics groups collaborated with biologists and medical experts to investigate the use of plasma technology as a basis for innovative medical approaches to cure various diseases. However, many questions concerning the fundamental mechanisms involved in cell-plasma interaction remained unanswered. As a result various workshops were organized to gather the diverse research community in the field of plasma medicine in order to have a fruitful exchange of ideas regarding the scientific challenges that needed to be surmounted to advance and expand the field's knowledge base. The present GEC workshop continues this important tradition of scientific cooperation since there is still a significant lack of understanding of many of the biochemical and molecular pathways that come into play when biological cells are exposed to plasmas. In this talk, first background information on the various plasma devices developed in our institute will be presented. This will be followed by a summary of our work on the effects of plasmas on prokaryotic and eukaryotic cells. The talk will be concluded by presenting our vision of the future of the field and an outline of the main challenges that need to be overcome if practical medical applications are to be achieved.

  10. Superconducting toroidal field coil current densities for the TFCX

    SciTech Connect

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.

  11. Current density fluctuations and ambipolarity of transport

    SciTech Connect

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center_dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  12. Current density fluctuations and ambipolarity of transport

    SciTech Connect

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  13. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  14. Steadiness in Dilute Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.

    2015-12-01

    Pyroclastic density currents (PDCs) are often unsteady, as evidenced by direct observations of dilute lobes or jets emerging from the fronts of larger currents and by deposits that indicate transient transport and depositional regimes. We used scaled experiments to investigate unsteadiness in dilute PDCs. The experimental currents were run in an 8.5x6.1x2.6 m tank and comprised heated or ambient temperature 20-μm talc powder turbulently suspended in air. Experiments were scaled such that densimetric and thermal Richardson numbers, Froude number, and particle Stokes and settling numbers were dynamically similar to natural dilute PDCs. Although the experiment Reynolds numbers are substantially lower than those of natural PDCs, the experiments are fully turbulent. Experiments were observed with video and high-speed cameras and high-frequency thermocouples. Currents were generated with total eruption durations of 100 s. Unsteadiness in source conditions was produced by interrupting supply for intervals, t, with durations of 1, 2.5, 5, and 10 s in the experimental runs at 35 and 70 s. When t<2.5 s, the currents are indistinguishable from currents with steady supply. In runs with t=2.5-5 s, the individual pulses comprising each current are readily apparent near the source, but decay with distance downstream until the currents appear as single (e.g. steady) flows. In experiments with t=10 s, the 3 pulses comprising each run never merge and the currents remain unsteady. Comparison with the integral turbulent timescale, τ, and current velocity, U, show that unsteadiness is persistent when t>3<τ but currents are steady when t<τ. In currents with 3τ>t>τ, unsteadiness decays such that at a distance of ~4Ut, the currents are again steady. Applied to natural dilute PDCs, our results suggest that currents and their resulting deposits, will only show evidence of unsteadiness if they are disrupted for many seconds and those breaks may "heal" over distances of 100s of meters.

  15. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  16. Current Density Scaling in Electrochemical Flow Capacitors

    SciTech Connect

    Hoyt, NC; Wainright, JS; Savinell, RF

    2015-02-18

    Electrochemical flow capacitors (EFCs) are a recently developed energy storage technology. One of the principal performance metrics of an EFC is the steady-state electrical current density that it can accept or deliver. Numerical models exist to predict this performance for specific cases, but here we present a study of how the current varies with respect to the applied cell voltage, flow rate, cell dimensions, and slurry properties using scaling laws. The scaling relationships are confirmed by numerical simulations and then subsequently by comparison to results from symmetric cell EFC experiments. This modeling approach permits the delimitation of three distinct operational regimes dependent on the values of two nondimensional combinations of the pertinent variables (specifically, a capacitive Graetz number and a conductivity ratio). Lastly, the models and nondimensional numbers are used to provide design guidance in terms of criteria for proper EFC operation. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

  17. Anode current density distribution in a cusped field thruster

    SciTech Connect

    Wu, Huan Liu, Hui Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  18. Anode current density distribution in a cusped field thruster

    NASA Astrophysics Data System (ADS)

    Wu, Huan; Liu, Hui; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-01

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  19. Particle Image Velocimetry Study of Density Current Fronts

    ERIC Educational Resources Information Center

    Martin, Juan Ezequiel

    2009-01-01

    Gravity currents are flows that occur when a horizontal density difference causes fluid to move under the action of gravity; density currents are a particular case, for which the scalar causing the density difference is conserved. Flows with a strong effect of the horizontal density difference, even if only partially driven by it--such as the…

  20. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  1. Current density partitioning in time-dependent current density functional theory

    SciTech Connect

    Mosquera, Martín A.; Wasserman, Adam; Department of Physics, Purdue University, West Lafayette, Indiana 47907

    2014-05-14

    We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.

  2. Lower hybrid counter current drive for edge current density modification in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.

    1993-07-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g. with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results are presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n{sub e} and T{sub e}, and launched wave spectrum is also shown.

  3. Lower-hybrid counter current drive for edge current density modification in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Nevins, W.M. ); Porkolab, M.; Bonoli, P.T. ); Harvey, R.W. )

    1994-10-15

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, [ital n][sub [ital e

  4. Reduction of current density at disk electrode periphery by shaping current pulse edges.

    PubMed

    Wang, Boshuo; Weiland, James D

    2012-01-01

    Previous studies reveal that the primary distribution of the current density is sharply enhanced at the edge of a disk electrode submerged into a semi-infinite space of conductive solution. The current enhancement will cause the double layer capacitance at the periphery of the electrode to be charged much faster compared to the center, and can also lead to severe corrosion at the edge. While several studies focused on the geometric design of the electrode to reduce this enhancement, we explore the feasibility of achieving similar effect by shaping the edges of the current input. The simulation uses finite element analysis software to solve the system of partial differential equations and results show that the edge enhancement could be greatly reduced without significantly changing the input efficacy of current and/or charge. PMID:23367085

  5. High-current density coils for high-radiation environments

    SciTech Connect

    Harvey, A.

    1981-01-01

    This paper concentrates on the problems of providing normal (that is, nonsuperconducting) magnet coils for present and short-term-future requirements where significant radiation doses are involved. Projects such as 100-mA deuteron accelerators and bundle diverter coils for TOKAMAKS are typical of applications where conventional organic insulation limited to 10/sup 10/ rads makes epoxy-based systems unacceptable. Moreover, even in present-day accelerators, radiation levels can be high enough to give rise to problems with oxidation of copper conductors if water is used in direct contact with the copper. The radiolytic oxygen, being formed in situ, cannot be controlled by external deoxygenators. An acceptable insulation for such environments has been described previously, and is being employed where radiation is expected to be a problem. Being a compacted magnesium oxide powder, the insulation has advantages. Analysis of constraints on maximum current densities achievable in such a coil construction, using computer codes, leads to coil configurations that operate at higher current densities than are usually found in directly cooled coils. An example of the thermal analysis of one coil configuration is given. The problems are addressed here.

  6. Current Density and Plasma Displacement Near Perturbed Rational Surface

    SciTech Connect

    A.H. Boozer and N. Pomphrey

    2010-10-10

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.

  7. Note: A real-time beam current density meter

    SciTech Connect

    Liu Junliang; Yu Deyang; Ruan Fangfang; Xue Yingli; Wang Wei

    2013-03-15

    We have developed a real-time beam current density meter for charged particle beams. It measures the mean current density by collimating a uniform and large diameter primary beam. The suppression of the secondary electrons and the deflection of the beam were simulated, and it was tested with a 105 keV Ar{sup 7+} ion beam.

  8. Individual differences in transcranial electrical stimulation current density

    PubMed Central

    Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F

    2013-01-01

    Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948

  9. Effects of lecture information density on medical student achievement.

    PubMed

    Russell, I J; Hendricson, W D; Herbert, R J

    1984-11-01

    With the virtual explosion of biomedical information, the medical educator regularly faces a quandary regarding how much to include in the medical curriculum. Opinions differ regarding how much of the available information on a particular topic should be presented in a medical school lecture. To understand better the effect of lecture information density on learning by medical students, one of the authors gave a basic clinical lecture only or clinical lectures with varying amounts of semirelated information. Tests which measured only retention of the basic material were given before lecture attendance, immediately after the lecture, and 15 days later. The results indicated that increasing the information density of a lecture reduced retention of the basic information. The memory loss apparently was due to information presented late in the lecture displacing facts learned by the students earlier in the same hour. The data suggest that lectures to medical students are more effective aids to learning when the information density is limited to a few main points that are "essential to know." PMID:6492106

  10. On bottom density currents on the continental shelves

    NASA Technical Reports Server (NTRS)

    Anuchin, V. N.; Gusev, A. M.; Pyrkin, Y. G.; Khapayev, M. M.

    1975-01-01

    The turbulent characteristics of bottom density currents on the continental shelves and their influence on the vertical profiles of current velocities are studied by considering plane parallel flows of a liquid with one density in a motionless liquid and with lighter density along an inclined plane. The motion of the liquid is a result of gravitational force directed along the parallel plane. Vertical distribution of turbulent stress is determined from a known average velocity profile and is used to obtain the vertical profile of the average current velocity.

  11. Switching current density reduction in perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions

    SciTech Connect

    You, Chun-Yeol

    2014-01-28

    We investigate the switching current density reduction of perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions using micromagnetic simulations. We find that the switching current density can be reduced with elongated lateral shapes of the magnetic tunnel junctions, and additional reduction can be achieved by using a noncollinear polarizer layer. The reduction is closely related to the details of spin configurations during switching processes with the additional in-plane anisotropy.

  12. Magnetic Resonance Current Density Imaging of Chemical Processes and Reactions

    NASA Astrophysics Data System (ADS)

    Beravs, Katarina; Demš Ar, Alojz; Demsar, Franci

    1999-03-01

    Electric current density imaging was used to image conductivity changes that occur as a chemical process or reaction progresses. Feasibility was assessed in two models representing the dissolving of an ionic solid and the formation of an insoluble precipitate. In both models, temporal and spatial changes in ionic concentrations were obtained on current density images. As expected, the images showed significant signal enhancement along the ionization/dissociation sites.

  13. High current density pulsed cathode experiments at SLAC

    SciTech Connect

    Koontz, R.; Fant, K.; Vlieks, A.

    1990-06-01

    A 1.9 microperveance beam diode has been constructed to test high current density cathodes for use in klystrons. Several standard and specially coated dispenser cathodes are being tested. Results of tests to date show average cathode current densities in excess of 25 amps/cm, and maximum electric field gradients of more than 450 kV/cm for pulses of the order of 1{mu}sec. 3 refs., 11 figs.

  14. Current density and plasma displacement near perturbed rational surfaces

    SciTech Connect

    Boozer, Allen H.; Pomphrey, Neil

    2010-11-15

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement. A resolution of the paradox of a jump in the displacement is required for interpreting perturbed tokamak equilibria.

  15. Current Issues in Achievement Goal Theory and Research

    ERIC Educational Resources Information Center

    Pintrich, Paul R.; Conley, AnneMarie M.; Kempler, Toni M.

    2003-01-01

    This article focuses on three general areas of research on achievement goal theory, including the definition and role of achievement goals, the role of contextual goals and factors, and the measurement and induction of goals. Issues regarding the definition of achievement goals include the generality of the approach/avoid dimension and the…

  16. A determination of the current density in electron beams

    NASA Technical Reports Server (NTRS)

    Beil, R. J.

    1982-01-01

    Current gathering rotating probe techniques were used to examine the envelope shape and power density profile of electron beams used in electron beam welding devices. The electron power density contours which determine the shape of the weld vapor cavity, penetration, and local heat distribution were considered. A mathematical analysis consistent with a rotating probe technique necessary to determine the current density distribution (assumed symmetrically radial) in a cross-section of the beam is provided. An explanation of the experimental technique for obtaining data, a BASIC language computer program to determine the current density from the data, and a study indicating the level of confidence to be associated with results obtained are also provided. An example of the application of the analysis to some experimental electron beam data is included.

  17. Multiple endocrine neoplasia type 2: achievements and current challenges.

    PubMed

    Machens, Andreas; Dralle, Henning

    2012-01-01

    Incremental advances in medical technology, such as the development of sensitive hormonal assays for routine clinical care, are the drivers of medical progress. This principle is exemplified by the creation of the concept of multiple endocrine neoplasia type 2, encompassing medullary thyroid cancer, pheochromocytoma, and primary hyperparathyroidism, which did not emerge before the early 1960s. This review sets out to highlight key achievements, such as joint biochemical and DNA-based screening of individuals at risk of developing multiple endocrine neoplasia type 2, before casting a spotlight on current challenges which include: (i) ill-defined upper limits of calcitonin assays for infants and young children, rendering it difficult to implement the biochemical part of the integrated DNA-based/biochemical concept; (ii) our increasingly mobile society in which different service providers are caring for one individual at various stages in the disease process. With familial relationships disintegrating as a result of geographic dispersion, information about the history of the origin family may become sketchy or just unavailable. This is when DNA-based gene tests come into play, confirming or excluding an individual's genetic predisposition to multiple endocrine neoplasia type 2 even before there is any biochemical or clinical evidence of the disease. However, the unrivaled molecular genetic progress in multiple endocrine neoplasia type 2 does not come without a price. Screening may uncover unknown gene sequence variants representing either harmless polymorphisms or pathogenic mutations. In this setting, functional characterization of mutant cells in vitro may generate helpful ancillary evidence with regard to the pathogenicity of gene variants in comparison with established mutations. PMID:22584715

  18. Rf Gun with High-Current Density Field Emission Cathode

    SciTech Connect

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  19. Magneto-optical imaging of transport current densities in superconductors

    SciTech Connect

    Crabtree, G.W.; Welp, U.; Gunter, D.O.; Zhong, W.; Balachandran, U.; Haldar, P.; Sokolowski, R.S.; Vlasko-Vlasov, V.K.; Nikitenko, V.I.

    1995-12-31

    Direct imaging of the paths of transport currents in superconductors creates many new possibilities for exploring the basic features of vortex pinning mechanisms and for improving the performance of superconducting materials. A technique for imaging the path and magnitude of the transport current density flowing in superconductors is described. Results are given for a 37-filament BSCCO 2223 powder-in-tube wire, showing a highly inhomogeneous current path within the filaments.

  20. Characteristics of density currents over regular and irregular rough surfaces

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.

    2013-12-01

    Direct numerical simulation is used as a tool to understand the effect of surface roughness on the propagation of density currents. Simulations have been performed for lock-exchange flow with gate separating the dense and the lighter fluid. As the lock is released the dense fluid collapses with the lighter fluid on the top, resulting in formation of horizontally evolving density current. The talk will focus on the fundamental differences between the propagation of the density current over regular and irregular rough surfaces. The flow statistics and the flow structures are discussed. The results have revealed the spacing between the roughness elements is an important factor in classifying the density currents. The empirical relations of the front velocity and location for the dense and sparse roughness have been evaluated in terms of the roughness height, spacing between the elements and the initial amount of lock fluid. DNS results for a dense current flowing over a (a) smooth and (b) rough bottom with egg-carton roughness elements in a regular configuration. In these simulations the lock-exchange box is located in the middle of the channel and has two gates which allow two dense currents to be generated, one moving to the right and one to the left side of the channel. Note how the dense current interface presents smaller structures when over a rough bottom (right).

  1. Dispersal and air entrainment in unconfined dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    2014-09-01

    Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5 × 6 × 2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5-3.5 in heated currents and 1.5-2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ˜0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.

  2. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-01-01

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors. PMID:20975718

  3. Scaling rules for critical current density in anisotropic biaxial superconductors

    NASA Astrophysics Data System (ADS)

    Li, Yingxu; Kang, Guozheng; Gao, Yuanwen

    2016-06-01

    Recent researches highlight the additional anisotropic crystallographic axis within the superconducting plane of high temperature superconductors (HTS), demonstrating the superconducting anisotropy of HTS is better understood in the biaxial frame than the previous uniaxial coordinates within the superconducting layer. To quantitatively evaluate the anisotropy of flux pinning and critical current density in HTS, we extend the scaling rule for single-vortex collective pinning in uniaxial superconductors to account for flux-bundle collective pinning in biaxial superconductors. The scaling results show that in a system of random uncorrected point defects, the field dependence of the critical current density is described by a unified function with the scaled magnetic field of the isotropic superconductor. The obtained angular dependence of the critical current density depicts the main features of experimental observations, considering possible corrections due to the strong-pinning interaction.

  4. Critical current density in railgrun accelerators with composite electrodes

    SciTech Connect

    Stankevich, S.V.; Shvetsov, G.A.

    1995-11-01

    The present paper is intended to study the possibilities of increasing the critical current density in railgun accelerators using composite electrodes of various structure. Before proceeding to the analysis this way, it should be noted that the requirements for materials selected for the rails go beyond the values of the current density. In real practice account should be taken of the technological problems concerned with the production of the electrodes, as well as of those concerned with the railgun performance, including the multishot life.

  5. Noise distribution and denoising of current density images

    PubMed Central

    Beheshti, Mohammadali; Foomany, Farbod H.; Magtibay, Karl; Jaffray, David A.; Krishnan, Sridhar; Nanthakumar, Kumaraswamy; Umapathy, Karthikeyan

    2015-01-01

    Abstract. Current density imaging (CDI) is a magnetic resonance (MR) imaging technique that could be used to study current pathways inside the tissue. The current distribution is measured indirectly as phase changes. The inherent noise in the MR imaging technique degrades the accuracy of phase measurements leading to imprecise current variations. The outcome can be affected significantly, especially at a low signal-to-noise ratio (SNR). We have shown the residual noise distribution of the phase to be Gaussian-like and the noise in CDI images approximated as a Gaussian. This finding matches experimental results. We further investigated this finding by performing comparative analysis with denoising techniques, using two CDI datasets with two different currents (20 and 45 mA). We found that the block-matching and three-dimensional (BM3D) technique outperforms other techniques when applied on current density (J). The minimum gain in noise power by BM3D applied to J compared with the next best technique in the analysis was found to be around 2 dB per pixel. We characterize the noise profile in CDI images and provide insights on the performance of different denoising techniques when applied at two different stages of current density reconstruction. PMID:26158100

  6. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  7. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  8. Role of Resilient Personality on Lower Achieving First Grade Students' Current and Future Achievement

    ERIC Educational Resources Information Center

    Kwok, Oi-man; Hughes, Jan N.; Luo, Wen

    2007-01-01

    This study investigated a measurement model of personality resilience and the contribution of personality resilience to lower achieving first grade students' academic achievement. Participants were 445 ethnically diverse children who at entrance to first grade scored below their school district median on a test of literacy. Participants were…

  9. Role of resilient personality on lower achieving first grade students' current and future achievement

    PubMed Central

    Kwok, Oi-man; Hughes, Jan N.; Luo, Wen

    2007-01-01

    This study investigated a measurement model of personality resilience and the contribution of personality resilience to lower achieving first grade students' academic achievement. Participants were 445 ethnically diverse children who at entrance to first grade scored below their school district median on a test of literacy. Participants were administered an individual achievement test in first grade and 1 year later. Confirmatory factor analysis confirmed a second-order latent construct of resilient personality defined by teacher-rated conscientiousness, agreeableness, and ego-resiliency that was distinct from measures of externalizing behaviors and IQ. Using latent structural equation modeling and controlling for baseline economic adversity, IQ, and externalizing symptoms, resilient personality predicted children's concurrent and future achievement (controlling also for baseline achievement in the prospective analyses). Model fit was invariant across gender. PMID:18084626

  10. Three-dimensional structure of dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.

    2013-12-01

    Unconfined experimental density currents dynamically similar to pyroclastic density currents (PDCs) suggest that cross-stream motions of the currents and air entrainment through currents' lateral margins strongly affects PDC behavior. Experiments are conducted within an air-filled tank 8.5 m long by 6.1 m wide by 2.6 m tall. Currents are generated by feeding heated powders down a chute into the tank at controlled rates to form dilute, particle-laden, turbulent gravity currents that are fed for 30 to 600 seconds. Powders include 5 μm aluminum oxide, 25 μm talc, 27 μm walnut, 76 μm glass beads and mixtures thereof. Experiments are scaled such that Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers, and thermal to kinetic energy densities are all in agreement with dilute PDCs; experiments have lower Reynolds numbers that natural currents, but the experiments are fully turbulent, thus the large scale structures should be similar. The experiments are illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps); this system provides synchronous observation of a vertical streamwise and cross-stream planes, and a horizontal plane. Ambient temperature currents tend to spread out radially from the source and have long run out distances, whereas warmer currents tend to focus along narrow sectors and have shorter run outs. In addition, when warm currents lift off to form buoyant plumes, lateral spreading ceases. The behavior of short duration currents are dominated by the current head; as eruption duration increases, current transport direction tends to oscillate back and forth (this is particularly true for ambient temperature currents). Turbulent structures in the horizontal plane show air entrainment and advection downstream. Eddies illuminated by the vertical cross-stream laser sheet often show vigorous mixing along the current margins

  11. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  12. On the current density reduction ahead of dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lu, Quanming; Liu, Jiang

    2016-05-01

    During their earthward propagation, dipolarization fronts (DFs) interact with the ambient plasma sheet on kinetic scales. The interaction region is important to the front's structure, propagation, and regional closure of the current system. However, the physics in this region, especially of its current system, is poorly understood. We present Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations of the interaction region between DFs and the ambient plasma sheet at x ~ - 12 RE downtail; these observations show that the current density ahead of the DFs is significantly reduced near the neutral plane. We use a two-dimensional particle-in-cell model to simulate the current density reduction ahead of DFs and investigate the physical mechanism that causes it: Ion reflection and acceleration at the front cause positive charge density to build up. The resultant electrostatic field, Ez, is directed away from the neutral plane. The positive cross-tail Ez × Bx drift of electrons (which remain magnetized) does not affect demagnetized ions. This electron-ion decoupling results in a dawnward cross-field current carried by electrons that reduces the cross-tail current ahead of the approaching front.

  13. Magnetically modulated critical current densities of Co/Nb hybrid

    PubMed Central

    Li, Zhigang; Wang, Weike; Zhang, Li; Yang, Zhaorong; Tian, Mingliang; Zhang, Yuheng

    2015-01-01

    By tuning morphology and size of magnetic subsystem, ferromagnet-superconductor (F/S) hybrid system provides an effective way to modulate superconductivity due to the interaction between superconducting and magnetic-order parameters at the mesoscopic length scale. In this work, we report on investigations of critical current density in a large-area Co/Nb hybrid via facile colloidal lithography. Here, Co hexagon shell array as a magnetic template build on Nb film to modulate the critical current density. A novel superconducting transition has been observed in I-V curve with two metastable transition states: double-transition and binary-oscillation-transition states. Importantly, such unusual behavior can be adjusted by temperature, magnetic field and contact area of F/S. Such hybrid film has important implications for understanding the role of magnetic subsystem modulating superconductivity, as well as applied to low-energy electronic devices such as superconducting current fault limiters. PMID:26678595

  14. Magnetically modulated critical current densities of Co/Nb hybrid

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Wang, Weike; Zhang, Li; Yang, Zhaorong; Tian, Mingliang; Zhang, Yuheng

    2015-12-01

    By tuning morphology and size of magnetic subsystem, ferromagnet-superconductor (F/S) hybrid system provides an effective way to modulate superconductivity due to the interaction between superconducting and magnetic-order parameters at the mesoscopic length scale. In this work, we report on investigations of critical current density in a large-area Co/Nb hybrid via facile colloidal lithography. Here, Co hexagon shell array as a magnetic template build on Nb film to modulate the critical current density. A novel superconducting transition has been observed in I-V curve with two metastable transition states: double-transition and binary-oscillation-transition states. Importantly, such unusual behavior can be adjusted by temperature, magnetic field and contact area of F/S. Such hybrid film has important implications for understanding the role of magnetic subsystem modulating superconductivity, as well as applied to low-energy electronic devices such as superconducting current fault limiters.

  15. Transport and sedimentation in unconfined experimental dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Ramirez, G.; Andrews, B. J.; Dennen, R. L.

    2013-12-01

    We present results from experiments conducted in a new facility that permits the study of large, unconfined particle laden density currents that are dynamically similar to natural dilute pyroclastic density currents (PDCs). Experiments were run in a sealed, air-filled tank measuring 8.5 m long by 6.1 m wide by 2.6 m tall. Currents were generated by feeding mixture of heated particles (5 μm aluminum oxide, 25 μm talc, 27 μm walnut shell, 76 μm glass beads) down a chute at controlled rates to produce dilute, turbulent gravity currents. Comparison of experimental currents with natural PDCs shows good agreement between Froude, densimetric and thermal Richardson, and particle Stokes and settling numbers; experimental currents have lower Reynolds numbers than natural PDCs, but are fully turbulent. Currents were illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps). Deposits were mapped using a grid of sedimentation traps. We observe distinct differences between ambient temperature and warm currents: * warm currents have shorter run out distances, narrow map view distributions of currents and deposits, thicken with distance from the source, and lift off to form coignimbrite plumes; * ambient temperature currents typically travel farther, spread out radially, do not thicken greatly with transport distance, and do not form coignimbrite plumes. Long duration currents (600 s compared to 30-100 s) oscillate laterally with time (e.g. transport to the right, then the left, and back); this oscillation happens prior to any interaction with the tank walls. Isopach maps of the deposits show predictable trends in sedimentation versus distance in response to eruption parameters (eruption rate, duration, temperature, and initial current mass), but all sedimentation curves can be fit with 2nd order polynomials (R2>.9). Proximal sedimentation is similar in comparable warm

  16. Large-eddy simulation of density currents on inclined beds

    NASA Astrophysics Data System (ADS)

    Chawdhary, Saurabh; Khosronejad, Ali; Christodoulou, George; Sotiropoulos, Fotis

    2013-11-01

    Density currents are stratified flow in presence of density differential and gravity field. We carry out Large-Eddy Simulation (LES) to simulate the flow of a density current formed over sloped bed due to an incoming jet of heavy density salty water for two different cases of bed slope: (a) 5 degrees and (b) 15 degrees. The Reynolds and Richardson numbers based on inlet height and inlet velocity were (a) 1100 and 0.471, and (b) 2000 and 0.0355, respectively. The Schmidt number is set equal to 620, which corresponds to the value for salt-water. The computed results are compared with laboratory experiments in terms of overall shape of the heavy-density plume and its spreading rate and are shown to be in reasonable agreement. The instantaneous LES flow fields are further analyzed to gain novel insights into the rich dynamics of coherent vortical structures in the flow. The half-width of the plume is plotted as a function of downstream length and found to exhibit three different regions on a log scale, in agreement with previous experimental findings. We acknowledge computational support from the Minnesota Supercomputing Institute.

  17. EUDISED: Achievements, Current Stagnation and the Need to Overcome It.

    ERIC Educational Resources Information Center

    Gretler, Armin

    This paper argues that the European Documentation and Information System for Education (EUDISED) had a highly successful first stage of development, but that it is currently going through a period of stagnation. The system's decentralization, multilingual approach, and coverage of a full range of educational data make it plain that EUDISED is a…

  18. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  19. Local Current Density Calculations for Molecular Films from Ab Initio.

    PubMed

    Walz, Michael; Bagrets, Alexei; Evers, Ferdinand

    2015-11-10

    We present a formalism relying on density functional theory for the calculation of the spatially continuous electron current density j(r) and induced magnetic fields B(r) in molecular films in dc transport. The proposed method treats electron transport in graphene ribbons containing on the of order 10(3) atoms. The employed computational techniques scale efficiently when using several thousand CPUs. An application to transport through hydrogenated graphene will be presented. As we will show, the adatoms have an impact on the transmission function not only because they introduce additional states but also because their presence modifies the geometry of the carbon host lattice (lattice relaxation). PMID:26574313

  20. Engineering mammalian cells in bioprocessing - current achievements and future perspectives.

    PubMed

    Lim, Yiping; Wong, Niki S C; Lee, Yih Yean; Ku, Sebastian C Y; Wong, Danny C F; Yap, Miranda G S

    2010-04-01

    Over the past 20 years, we have seen significant improvements in product titres from 50 mg/l to 5-10 g/l, a more than 100-fold increase. The main methods that have been employed to achieve this increase in product titre have been through the manipulation of culture media and process control strategies, such as the optimization of fed-batch processes. An alternative means to increase productivity has been through the engineering of host cells by altering cellular processes. Recombinant DNA technology has been used to over-express or suppress specific genes to endow particular phenotypes. Cellular processes that have been altered in host cells include metabolism, cell cycle, protein secretion and apoptosis. Cell engineering has also been employed to improve post-translational modifications such as glycosylation. In this article, an overview of the main cell engineering strategies previously employed and the impact of these strategies are presented. Many of these strategies focus on engineering cell lines with more efficient carbon metabolism towards reducing waste metabolites, achieving a biphasic production system by engineering cell cycle control, increasing protein secretion by targeting specific endoplasmic reticulum stress chaperones, delaying cell death by targeting anti-apoptosis genes, and engineering glycosylation by enhancing recombinant protein sialylation and antibody glycosylation. Future perspectives for host cell engineering, and possible areas of research, are also discussed in this review. PMID:20392202

  1. Molecular epidemiology of tuberculosis: achievements and challenges to current knowledge.

    PubMed Central

    Murray, Megan; Nardell, Edward

    2002-01-01

    Over the past 10 years, molecular methods have become available with which to strain-type Mycobacterium tuberculosis. They have allowed researchers to study certain important but previously unresolved issues in the epidemiology of tuberculosis (TB). For example, some unsuspected microepidemics have been revealed and it has been shown that the relative contribution of recently acquired disease to the TB burden in many settings is far greater than had been thought. These findings have led to the strengthening of TB control. Other research has demonstrated the existence and described the frequency of exogenous reinfection in areas of high incidence. Much recent work has focused on the phenotypic variation among strains and has evaluated the relative transmissibility, virulence, and immunogenicity of different lineages of the organism. We summarize the recent achievements in TB epidemiology associated with the introduction of DNA fingerprinting techniques, and consider the implications of this technology for the design and analysis of epidemiological studies. PMID:12132006

  2. Composites for Increased Wear Resistance: Current Achievements and Future Prospects

    NASA Technical Reports Server (NTRS)

    Lancaster, J. K.

    1984-01-01

    The various ways in which reductions in wear and/or friction can be achieved by the use of composite materials are reviewed. Reinforced plastics are emphasized and it is shown that fillers and fibers reduce wear via several mechanisms additional to their role of increasing overall mechanical strength, preferential transfer, counter face abrasion, preferential load support, or third-body formation on either the composite or its counterface. Examples are given from recent work on thin layer composites of the type widely used as dry bearings in aircraft flight control mechanisms. Developments in metal based composites and carbon-carbon composites for high energy brakes are discussed. The aspects which could benefit by increased fundamental understanding identified and the types of composites which appear to have greatest potential for further growth are indicated.

  3. Current-density fluctuations and ambipolarity of transport

    SciTech Connect

    Shen, W.; Dexter, R.N.; Prager, S.C. )

    1992-03-02

    The fluctuation in the plasma current density is measured in the MST reversed-field-pinch experiment. Such fluctuations, ad the measured radial profile of the {ital k} spectrum of magnetic fluctuations, support the view that low-frequency fluctuations ({ital f}{lt}30 kHz) are tearing modes and high-frequency fluctuations (30 kHz{lt}{ital f}{lt}250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., {bold k}{center dot}{bold B}=0). Correlation of current-density and magnetic fluctuations ({l angle}{ital {tilde j}}{sub {parallel}}{ital {tilde B}{ital r}}{r angle}) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  4. Aperture Size Effect on Extracted Negative Ion Current Density

    NASA Astrophysics Data System (ADS)

    de Esch, H. P. L.; Svensson, L.; Riz, D.

    2009-03-01

    This paper discusses experimental results obtained at the 1 MV testbed at CEA Cadarache that appear to show a higher extracted D- current density from small apertures. Plasma grids with different shapes have been installed and tested. All grids had one single aperture. The tests were done in volume operation and in caesium operation. We tested four grids, two with O/14 mm, one with O/11 mm and one with O/8 mm apertures. No aperture size effect was observed in volume operation. In caesiated operation the extracted current density for the O/8 mm aperture appears to be significantly higher (˜50%) than for the O/14 mm aperture. Simulations with a 3D Monte Carlo Trajectory Following Code have shown an aperture size effect of about 20%. Finally, as byproducts of the experiments, data on backstreaming positive ions and the temperature of the plasma grid have been obtained.

  5. Thin-film Josephson junctions with alternating critical current density

    NASA Astrophysics Data System (ADS)

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2009-01-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.

  6. Dynamics of uniform quantum gases, I: Density and current correlations

    NASA Astrophysics Data System (ADS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2010-02-01

    A unified approach valid for any wavenumber q, frequency ω, and temperature T is presented for uniform ideal quantum gases allowing for a comprehensive study of number density and particle-current density response functions. Exact analytical expressions are obtained for spectral functions in terms of polylogarithms. Also, particle-number and particle-current static susceptibilities are presented which, for fugacity less than unity, additionally involve Kummer functions. The q- and T-dependent transverse-current static susceptibility is used to show explicitly that current correlations are of long range in a Bose-condensed uniform ideal gas but for bosons at T>Tc and for Fermi and Boltzmann gases at all temperatures these correlations are of short range. Contact repulsive interactions for systems of neutral quantum particles are considered within the random phase approximation. The expressions for particle-number and transverse-current susceptibilities are utilized to discuss the existence or nonexistence of superfluidity in the systems under consideration.

  7. Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density

    NASA Astrophysics Data System (ADS)

    Yang, Feng

    1995-01-01

    The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different

  8. Achieving Zero Current for Polar Wind Outflow on Open Flux Tubes Subjected to Large Photoelectron Fluxes

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; Khazanov, G.; Horwitz, J. L.

    1997-01-01

    In this study we investigate how the condition of zero current on open flux tubes with polar wind outflow, subjected to large photoelectron fluxes, can be achieved. We employ a steady state collisionless semikinetic model to determine the density profiles of O(+), H(+), thermal electrons and photoelectrons coming from the ionosphere along with H(+), ions and electrons coming from the magnetosphere. The model solution attains a potential distribution which both satisfies the condition of charge neutrality and zero current. For the range of parameters considered in this study we find that a 45-60 volt discontinuous potential drop may develop to reflect most of the photoelectrons back toward the ionosphere. This develops because the downward flux of electrons from the magnetosphere to the ionosphere on typical open flux tubes (e.g. the polar rain) appears to be insufficient to balance the photoelectron flux from the ionosphere.

  9. Morphology and Density Structure of Post-CME Current Sheets

    NASA Technical Reports Server (NTRS)

    Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.

    2009-01-01

    Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.

  10. Achieving incompatible transplantation through desensitization: current perspectives and future directions.

    PubMed

    Jordan, Stanley C; Choi, Jua; Vo, Ashley

    2015-01-01

    The application of life-saving transplantation is severely limited by the shortage of organs, and histoincompatibility. To increase transplant rates in sensitized patients, new protocols for HLA and blood type incompatible (ABOi) desensitization have emerged. These approaches require significant desensitization using intravenous immunoglobulin, rituximab and plasma exchange. In addition, the development of donor-specific antibody responses post transplant is the major cause of allograft failure with return to dialysis. This increases patient morbidity/mortality and cost. Immunotherapeutic agents used for desensitization evolved from drug development in oncology and autoimmune diseases. Currently, there is a renaissance in development of novel drugs likely to improve antibody reduction in transplantation. These include agents that inactivate IgG molecules, anticytokine antibodies, costimulatory molecule blockade, anticomplement agents and therapies aimed at the plasma cell. PMID:25917629

  11. Twin engineering for high critical current densities and twin boundary energy measurement in melt processed YBCO

    NASA Astrophysics Data System (ADS)

    Mei, Linfeng

    It has been proven that twin boundaries in YBa2Cu 3O7-delta (YBCO) are effective flux pinning centers. By increasing the twin density of a YBCO sample, it is possible to achieve a high critical current density (Jc). In this work, twin engineering for high critical current densities and strong flux pinning has been achieved in melt processed YBCO by increasing the annealing temperature up to 680°C. When the isothermal oxygenation temperature increases from 450°C to 680°C, the average twin boundary spacing of the samples decreases significantly, and its critical current density and flux pinning force are greatly increased. The prerequisites for twin boundary engineering for high critical current densities and strong flux pinning are also pointed out. For the first time, temperature dependent twin boundary energies (gammatw's) of melt processed YBCO are measured by the twin spacing method and the twin tip or shape method, and the geometrical factor alpha in the twin spacing method is estimated. As expected, the twin boundary energy of YBCO decreases with increasing temperature. In addition, the correlation between Jc and the concentrations of Y2BaCuO5 (211) and Samarium (Sm) in the melt-textured growth (MTG) YBCO has been studied, as well as the distributions of 211 and Sm in the MTG YBCO pellets. All our results can be applied towards microstructure tailoring for a high Jc and strong flux pinning in YBCO, especially in bulk YBCO samples.

  12. Magnetohydrodynamically stable plasma with supercritical current density at the axis

    SciTech Connect

    Burdakov, A. V.; Postupaev, V. V. Sudnikov, A. V.

    2014-05-15

    In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a) ≈ 4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n = 1, m = 1 mode for both stable and disruptive regimes.

  13. High current density, cryogenically cooled sliding electrical joint development

    SciTech Connect

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an approx. 20 T toroidal field magnet with a flat top conductor current of approx. 300 kA and a sliding electrical joint with a gross current density of approx. 0.6 kA/cm/sup 2/. A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025.

  14. Incorporation Of Air Into The Campanian Ignimbrite Pyroclastic Density Current

    NASA Astrophysics Data System (ADS)

    Ort, M. H.; Giordano, G.; Zanella, E.; Isaia, R.

    2015-12-01

    Knowing the temperature of emplacement of an ignimbrite can tell us how much cooling air it incorporated during eruption and transport. Currents that incorporate cool matter (air, water, cold clasts) cool more than those that do not. Lithic fragments record the maximum temperature they reached, up to their maximum unblocking temperature. Studies of large ignimbrites (e.g. Cerro Galan Ignimbrite) emplaced by dense currents show they do not cool very much, with emplacement temperatures often above 580 oC. Smaller currents, such as those from Vesuvius and Colima, lose significant heat in the eruption column, and then lose some, but less, heat as they travel laterally. The amount of atmosphere incorporated by large dilute currents is not known. The ~40 ka Campanian Ignimbrite (CI) erupted from the Campi Flegrei caldera near Naples, Italy, and extends to ~75 km from the caldera. The CI was emplaced from a density-stratified current with a dilute transport system and a denser depositional system that overtopped 1600-m-high ridges, with the depositional system re-forming on the far side. Modeling of dilute currents shows that they can pass over obstacles ~1.5 times their thickness without losing momentum, which implies the CI current was >1 km thick. Much of that dilute current was gas, but how much was atmospheric? Partial thermal demagnetization of lithic clasts allows the identification of the temperature of emplacement. We sampled lithic fragments from the CI in 13 locations from proximal to distal along several azimuths. The current passed over 30-35 km of sea to get to two sites. Partial thermal demagnetization of 10 specimens from each site show that they were heated and deposited above 580 oC, the unblocking temperature of magnetite, implying the temperature of emplacement was at or above this temperature. The CI is poor in lithic clasts (<1% in most places) and evidence of non-magmatic water in the outflow sheet is absent. We suggest the CI current was a large

  15. Critical current density and flux pinning in an unconventional superconductor

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Kaul, S. N.; Rodríguez Fernández, J.; Fernández Barquín, L.

    2009-12-01

    The functional dependence of the critical current density on magnetic field, J(H), observed at fixed temperatures in the unconventional type-II superconductor, LaAgMn ( c=0.1,0.2,0.3) alloys, but not the relative magnitude of J in different alloy compositions at any given temperature and field, is adequately described by the exponential-decay critical state model. In accordance with the predictions of the Kramer's flux-pinning model, the peak value of the pinning force density FPmax∝( with the exponent 1.7⩽m⩽2.8 and F/FPmax scales with h=H/Hc_2, where Hc_2 is the upper critical field. Irrespective of sample composition and temperature in the superconducting state, the pinning of the flux line lattice (FLL) dominates over the plastic FLL shear.

  16. Advances in time-dependent current-density functional theory

    NASA Astrophysics Data System (ADS)

    Berger, Arjan

    In this work we solve the problem of the gauge dependence of molecular magnetic properties (magnetizabilities, circular dichroism) using time-dependent current-density functional theory [1]. We also present a new functional that accurately describes the optical absorption spectra of insulators, semiconductors and metals [2] N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger Phys. Rev. Lett. 114, 066404 (2015) J.A. Berger, Phys. Rev. Lett. 115, 137402 (2015) This study has been partially supported through the Grant NEXT No. ANR-10-LABX-0037 in the framework of the Programme des Investissements d'Avenir.

  17. Discretizing Transient Current Densities in the Maxwell Equations

    SciTech Connect

    Stowell, M L

    2008-11-25

    We will briefly discuss a technique for applying transient volumetric current sources in full-wave, time-domain electromagnetic simulations which avoids the need for divergence cleaning. The method involves both 'edge-elements' and 'face-elements' in conjunction with a particle-in-cell scheme to track the charge density. Results from a realistic, 6.7 million element, 3D simulation are shown. While the author may have a finite element bias the technique should be applicable to finite difference methods as well.

  18. The current density in quantum electrodynamics in external potentials

    NASA Astrophysics Data System (ADS)

    Schlemmer, Jan; Zahn, Jochen

    2015-08-01

    We review different definitions of the current density for quantized fermions in the presence of an external electromagnetic field. Several deficiencies in the popular prescription due to Schwinger and the mode sum formula for static external potentials are pointed out. We argue that Dirac's method, which is the analog of the Hadamard point-splitting employed in quantum field theory in curved space-times, is conceptually the most satisfactory. As a concrete example, we discuss vacuum polarization and the stress-energy tensor for massless fermions in 1+1 dimension. Also a general formula for the vacuum polarization in static external potentials in 3+1 dimensions is derived.

  19. The current density in quantum electrodynamics in external potentials

    SciTech Connect

    Schlemmer, Jan; Zahn, Jochen

    2015-08-15

    We review different definitions of the current density for quantized fermions in the presence of an external electromagnetic field. Several deficiencies in the popular prescription due to Schwinger and the mode sum formula for static external potentials are pointed out. We argue that Dirac’s method, which is the analog of the Hadamard point-splitting employed in quantum field theory in curved space–times, is conceptually the most satisfactory. As a concrete example, we discuss vacuum polarization and the stress–energy tensor for massless fermions in 1+1 dimension. Also a general formula for the vacuum polarization in static external potentials in 3+1 dimensions is derived.

  20. A measurement of perpendicular current density in an aurora

    NASA Technical Reports Server (NTRS)

    Bering, E. A.; Mozer, F. S.

    1975-01-01

    A Nike Tomahawk sounding rocket was launched into a 400-gamma auroral substorm from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir-probe plasma-velocity detector and a double-probe electric-field detector. Above 140-km altitude, the electric field deduced from the ion-flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral-wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth angle of 276 deg. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward.

  1. Current density fluctuations, nonlinear coupling, and transport in MST

    SciTech Connect

    Prager, S.C.; Almagri, A.F.; Assadi, S.; Cekic, M.; Chapman, B.E.; Crocker, N.; Den Hartog, D.J.; Dexter, R.N.; Fiksel, G.; Fonck, R.J.; Henry, J.S.; Hokin, S.A.; Holly, D.J.; Ji, H.; Rempel, T.D.; Sarff, J.S.; Scime, E.; Shen, W.; Sidikman, K.L.; Sprott, J.C.; Stoneking, M.R.; Watts, C.

    1992-09-01

    New information on magnetic fluctuations and transport in toroidal devices has been obtained in the MST reversed field pinch through measurement of nonlinear coupling of three waves in k-space, and measurement of current density fluctuations. Measurements of nonlinear coupling of magnetic fluctuations reveals that (1) two poloidal mode number m = 1 modes couple strongly to an m = 2 mode, (2) toroidal mode coupling is broad extending up to n = 20, (3) these features agree with predictions for tearing fluctuations from a nonlinear MHD code, (4) during a sawtooth crash the number of modes involved in nonlinear interactions increases dramatically and the k-spectrum broadens simultaneously. Measurements of current density fluctuations over the outer 20% of the minor radius reveal that (1) low frequency fluctuations are consistent with tearing modes, (2) high frequency fluctuations are localized turbulence which maintains resonance with the equilibrium field as q changes with radius, (3) particle transport from magnetic fluctuations is ambipolar (i.e., <{delta}j{sub {parallel}}B{sub r}> = O).

  2. MHD Modeling of Conductors at Ultra-High Current Density

    SciTech Connect

    ROSENTHAL,STEPHEN E.; DESJARLAIS,MICHAEL P.; SPIELMAN,RICK B.; STYGAR,WILLIAM A.; ASAY,JAMES R.; DOUGLAS,M.R.; HALL,C.A.; FRESE,M.H.; MORSE,R.L.; REISMAN,D.B.

    2000-08-29

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model.

  3. Critical current density and current distribution in field cooled superconducting disks

    NASA Astrophysics Data System (ADS)

    Bernstein, Pierre; Noudem, Jacques; Dupont, Louis

    2016-07-01

    Applications of bulk superconductors concern superconducting motors and generators, the levitation of vehicles, the generation of high magnetic fields with small size cryo-magnets, the shielding of magnetic fields and other applications. For all of them, it is essential to determine the critical current density, and to understand the effect of the shape and size of the bulks on the properties of interest. In this contribution, we show how the combination of levitation force and trapped field measurements allow one to determine the characteristics and the potential performances of superconducting disks using analytical modeling. As examples of applications we detail the effects of the magnetizing field and of the bulk sheet critical current density on the levitation force. An important result of the reported measurements is that in field-cooled samples, the shielding currents possibly do not flow along the whole thickness of the disks.

  4. Online diagnoses of high current-density beams

    SciTech Connect

    Gilpatrick, J.D.

    1994-07-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm{sup 2}. The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques.

  5. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  6. Identifying Distinguishing Characteristics of Secondary Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Isom, S. L.; Brand, B. D.

    2014-12-01

    Pyroclastic density currents (PDCs) are ground-hugging mixtures of volcanic particles and gas that travel down the slopes of erupting volcanoes. The combination of high velocities, high bulk densities (due to particles in the current) and high temperatures make PDCs the most dangerous and deadly hazard associated with explosive volcanism. Secondary explosive phenomenon associated with PDCs, such as inland-directed surges (e.g., Montserrat, 2003) and phreatic explosions (e.g., Mt St Helens 1980) can increase the area affected and duration of the hazard. However, little work has been done on distinguishing the deposits of secondary explosive phenomenon from primary phenomenon. Samples have been acquired from the 1980 Mt St Helens phreatic explosion crater deposits and the 2003 eruptive event at Montserrat where a PDC flowed into the ocean, causing an inland-directed surge (Edmonds and Herd, 2005. Geology 33.4:245-248). The samples will be analyzed via depositional characteristics, granulometry, componentry, microscopic analysis and scanning electron microscope imaging. We hypothesize that thermal cracking or vesicle distortion (e.g., compression or hindered expansion) may occur in hot pyroclasts that enter a body of water, leading to a difference between the ash textures of primary PDCs, phreatic surges and inland-directed surge deposits. Analyzing granulometry and componentry from parent flows and secondary flows may also reveal distinguishing characteristics that will allow us to constrain differences in segregation mechanisms of particles for each phenomenon. Determining distinguishing depositional characteristics of these secondary phenomena is important for assessing their occurrence during past eruptions and identifying conditions conducive to the formation of secondary explosions. This will result in the ability to make more accurate hazard maps for volcanoes prone to explosive activity.

  7. High current density contacts for photoconductive semiconductor switches

    SciTech Connect

    Baca, A.G.; Hjalmarson, H.P.; Loubriel, G.M.; McLaughlin, D.L.; Zutavern, F.J.

    1993-08-01

    The current densities implied by current filaments in GaAs photoconductive semiconductor switches (PCSS) are in excess of 1 MA/cm{sup 2}. As the lateral switches are tested repeatedly, damage accumulates at the contacts until electrical breakdown occurs across the surface of the insulating region. In order to improve the switch lifetime, the incorporation of n- and p-type ohmic contacts in lateral switches as well as surface geometry modifications have been investigated. By using p-type AuBe ohmic contacts at the anode and n-type AuGe ohmic contacts at the cathode, contact lifetime improvements of 5--10x were observed compared to switches with n-type contacts at both anode and cathode. Failure analysis on samples operated for 1--1,000 shots show that extensive damage still exists for at least one contact on all switches observed and that temperatures approaching 500{degrees}C are can be reached. However, the n-type AuGe cathode is often found to have no damage observable by scanning electron microscopy (SEM). The observed patterns of contact degradation indicate directions for future contact improvements in lateral switches.

  8. Impact of biquadratic coupling on critical current density in Co/Cu/Ni-Fe nanopillar

    NASA Astrophysics Data System (ADS)

    Aravinthan, D.; Sabareesan, P.; Daniel, M.

    2016-05-01

    We have studied the effect of biquadratic coupling (BQC) on critical current density in the Co/Cu/Ni-Fe nanopillar by solving the magnetization switching dynamics of the free layer which is governed by Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The LLGS equation is analytically solved for the time independent case and value of the critical current density required to initiate the magnetization switching is calculated. Its value in the absence of BQC is 0.8576×1012 Am-2 and in the presence of BQC its value increases to 1.0914×1012 Am-2. BQC field is acting along the easy axis which opposes the free layer magnetization moving to the out of plane and hence the value of critical current density is high in the presence of BQC. We can reduce the critical current density by reducing the BQC field which can be achieved by making the nanopillar with minimal or no roughness in the pinned and free layer.

  9. Effect of Secondary Annealing Process on Critical Current Density in Highly Textured Bi-2212 Superconducting System

    NASA Astrophysics Data System (ADS)

    Aksan, M. A.; Madre, M. A.; Rasekh, Sh.; Constantinescu, G.; Torres, M. A.; Diez, J. C.; Sotelo, A.; Yakinci, M. E.

    2015-09-01

    Bi-2212 samples prepared by a solid-state reaction technique have been grown from the melt using the laser floating zone method. After annealing the as-grown bars, the samples showed a good grain alignment and a high transport critical current density. Secondary annealing processes were performed on the annealed samples with the aim of producing Bi-2212 phase controlled decomposition. Hence, the Bi-2201 phase and the secondary phases, which act as effective pinning centers, were obtained with the secondary annealing process. After these thermal treatments, the transport critical current densities of samples significantly increased, when compared to the annealed ones. The maximum critical current density was achieved when the samples were subjected to secondary annealing at 680°C for 168 h with an improvement of ~80%, compared to the annealed ones. Moreover, it was found that magnetization of the secondarily annealed samples was also increased. The magnetic critical current densities in these secondary annealed samples were about 3 times higher than the values obtained for the annealed ones. These results clearly indicate that the secondary annealing processes lead to the formation of effective pinning centers in the bulk material.

  10. Radial current density effects on rotating magnetic field current drive in field-reversed configurations

    SciTech Connect

    Clemente, R. A.; Gilli, M.; Farengo, R.

    2008-10-15

    Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.

  11. Morphological features of the copper surface layer under sliding with high density electric current

    SciTech Connect

    Fadin, V. V.; Aleutdinova, M. I.; Rubtsov, V. Ye.; Aleutdinova, V. A.

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  12. Vibration effect on magnetization and critical current density of superconductors

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, Igor A.; Pan, Alexey V.; George, Jonathan; Wells, Frederick S.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2016-07-01

    In this work the effect of vibrations on critical current density (J c ) of superconductors has been studied. The vibrations are shown to affect J c of all types of superconductors during their measurements, employing a vibrating sample magnetometer (VSM). Increasing vibration frequency (f) and/or amplitude (A) leads to progressive reduction of J c as a function of magnetic field (B a ). The effect of vibrations is substantially stronger in thin films. It leads to development of unexpected kinks on {J}c({B}a) curves. Analysis of magnetization loops and relaxation of magnetization in YBCO films revealed that the vibration effect can be treated as the effective reduction of pinning potential. The asymmetry of the vibration effect in ascending and descending B a is observed, indicating differences in free energy of the corresponding vortex structures. Thermal effects induced by vibrations with large f and A are shown to have rather insignificant influence, while the vibrational vortex dynamics exhibit a strong impact. The irreversibility field ({B}{{irr}}) is shown to be instrumentally defined, and its value depends on VSM settings. In addition, the practical importance of {B}{{irr}} for J c modeling is demonstrated.

  13. High-density matter: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2015-05-01

    There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  14. Abrasion in pyroclastic density currents: Insights from tumbling experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Putz, Constanze; Spieler, Oliver; Dingwell, Donald B.

    2012-01-01

    During granular mass movements of any kind, particles may interact with one another. The degree of interaction is a function of several variables including; grain-size distribution, particle concentration, density stratification and degree of fluidisation. The impact of particle interaction is additionally influenced by the relative speed, impact angle and clast temperature. Thus, both source conditions and transport-related processes are expected to influence the flow dynamics of pyroclastic density currents and their subsequent deposition. Here, we use tumbling experiments to shed light on the susceptibility of porous clasts to abrasion. We investigated the abrasion of unaltered volcanic rocks (5.7-80 vol.% porosity) from Unzen (Japan), Bezymianny (Russia) and Santorini (Greece) volcanoes as well as one synthetic analogue material, an insulating material with the trade name Foamglas® (95 vol.% porosity). Each experiment started with angular fragments generated in a jaw crusher from larger clasts. Two experimental series were performed; on samples with narrow and broader grain-size distributions, respectively. The dry samples were subject to rotational movement at constant speed and ambient temperature in a gum rotational tumbler for durations of 15, 30, 45, 60 and 120 min. The amount of volcanic ash (particles <2 mm) generated was evaluated as a function of experimental duration and sample porosity. We term “abrasion” as the ash fraction generated during the experiments. The observed increase of “abrasion” with increasing sample porosity and experimental duration is initially non-linear but becomes linear for experiments of 30 min duration or longer. For any given sample, abrasion appears to be more effective for coarser samples and larger initial mass. The observed range of ash generated in our experiments is between 1 and 35 wt.%. We find that this amount generally increases with increasing initial clast size or increasing breadth of the initial grain

  15. The Critical Current Density in High Critical Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Sengupta, Suvankar

    Critical current density, j_{ rm c}, is an important parameter for determining the usefulness. This work focuses on the understanding of various phenomena related to the j_{ rm c} in type II superconductor. Various methods to enhance j_{rm c} by introducing pinning are also considered. In particular, the effect of secondary phase addition and mechanical treatment on the microstructure and j _{rm c} of various high T _{rm c} superconducting system is investigated. Fine inclusions (<0.1 μm) can be introduced by secondary phase additions. An enhancement in j_{ rm c} is always observed associated with the presence of fine inclusions. These cavities are found to interact strongly with flux lines in a high T _{rm c} superconductor. However, the cavities are found ineffective to pin a large number of flux lines. Dislocations and other structural defects are introduced by consolidating Bi_2Sr _2CaCu_2O _{rm x} by hot isotatically pressing (HIP). Samples HIPed for 15 min. contained a high density of dislocations and showed a substantial higher j_{rm c} than the samples HIPed for 45 min. and 120 min., where most of the dislocations were annihilated during the recovery process. Various methods of determining the irreversibility line are also considered. Using the criterion of a constant j_{rm c}, the irreversibility line obtained from magnetic hysteresis measurements was found to improve with the enhancement of flux pinning and reduction of interlayer spacing. The results can be best explained by the model proposed by Kim et al (1) and Clem (2). Magnetic relaxation of various type II superconductors is also reported. The non-logarithmic of decay of magnetization can be understood by assuming a non-linear U-j relationship. A method to extract U-j relationship from magnetic relaxation experiments is also developed. The effect of flux pinning on the U-j relationship is also investigated. Melt-processed YBa_2Cu _3O_{rm x} samples with strong levitation force are also fabricated

  16. Density effect on critical current density and flux pinning properties of polycrystalline SmFeAsO1 - xFx superconductor

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Sun, Y.; Zhuang, J. C.; Cui, L. J.; Shi, Z. X.; Sumption, M. D.; Majoros, M.; Susner, M. A.; Kovacs, C. J.; Li, G. Z.; Collings, E. W.; Ren, Z. A.

    2011-12-01

    A series of polycrystalline SmFeAs1 - xOx bulks was prepared to systematically investigate the influence of sample density on flux pinning properties. Different sample densities were achieved by controlling the pelletizing pressure. The superconducting volume fraction, the critical current densities Jcm and the flux pinning force densities Fp were estimated from the magnetization measurements. Experimental results show that: (1) the superconducting volume fraction increases with the increasing of sample density; (2) the Jcm values have a similar trend except for the sample with very high density due to different connectivity and pinning mechanisms, moreover, the Jcm(B) curve develops a peak effect at approximately the same field at which the high density sample shows a kink; (3) the Fp(B) curve of the high density sample shows a low-field peak and a high-field peak at several temperatures, which can be explained by improved intergranular current, while only one peak can be observed in Fp(B) of the low density samples. Based on the scaling behaviour of flux pinning force densities, the main intragranular pinning is normal point pinning.

  17. Interpersonal Relationships, Motivation, Engagement, and Achievement: Yields for Theory, Current Issues, and Educational Practice

    ERIC Educational Resources Information Center

    Martin, Andrew J.; Dowson, Martin

    2009-01-01

    In this review, we scope the role of interpersonal relationships in students' academic motivation, engagement, and achievement. We argue that achievement motivation theory, current issues, and educational practice can be conceptualized in relational terms. Influential theorizing, including attribution theory, expectancy-value theory, goal theory,…

  18. Realizing life-scalable experimental pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting

  19. Achievement of high atomic hydrogen densities in cylindrical rf plasmas with magnetic field

    NASA Astrophysics Data System (ADS)

    Fantz, Ursel; Briefi, Stefan

    2014-10-01

    Cylindrical rf plasmas in hydrogen with and without an axial magnetic field of up to 120 G are investigated in the pressure range of 0.3 to 10 Pa. The atomic hydrogen density is determined with optical emission spectroscopy, analyzing the Balmer lines and the molecular radiation (Fulcher band). The results obtained by using different coil geometries (4 to 6 turn windings and Nagoya type antenna) as well as different diameters (10 cm and 25 cm) of a quartz, aluminum oxide or aluminum nitride cylinder are compared. RF powers of up to 600 W at a frequency of 13.56 MHz are available for the 10 cm configuration, whereas up to 70 kW power at 1 MHz are used for the 25 cm cylinder. Density ratios of atoms to molecules of up to 0.3 are achieved in both configurations, whereby the achievement in the high power setup is limited by neutral depletion. The influence of the wall material on the atomic densities, and thus the recombination coefficient, will be pointed out.

  20. High voltage and high current density vertical GaN power diodes

    SciTech Connect

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  1. Increasing Extracted Beam Current Density in Ion Thrusters through Plasma Potential Modification

    NASA Astrophysics Data System (ADS)

    Arthur, Neil; Foster, John

    2015-09-01

    A gridded ion thruster's maximum extractable beam current is determined by the space charge limit. The classical formulation does not take into account finite ion drift into the acceleration gap. It can be shown that extractable beam current can be increased beyond the conventional Child-Langmuir law if the ions enter the gap at a finite drift speed. In this work, ion drift in a 10 cm thruster is varied by adjusting the plasma potential relative to the potential at the extraction plane. Internal plasma potential variations are achieved using a novel approach involving biasing the magnetic cusps. Ion flow variations are assessed using simulated beam extraction in conjunction with a retarding potential analyzer. Ion beam current density changes at a given total beam voltage in full beam extraction tests are characterized as a function of induced ion drift velocity as well.

  2. High voltage and high current density vertical GaN power diodes

    DOE PAGESBeta

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  3. Hazards from pyroclastic density currents at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Behncke, Boris

    2009-03-01

    Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15-16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.

  4. Clast comminution during pyroclastic density current transport: Mt St Helens

    NASA Astrophysics Data System (ADS)

    Dawson, B.; Brand, B. D.; Dufek, J.

    2011-12-01

    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC

  5. Visualization of cardiac dipole using a current density map: detection of cardiac current undetectable by electrocardiography using magnetocardiography.

    PubMed

    Ikefuji, Hiroyuki; Nomura, Masahiro; Nakaya, Yutaka; Mori, Toshifumi; Kondo, Noriyasu; Ieishi, Kiyoshi; Fujimoto, Sayuri; Ito, Susumu

    2007-02-01

    A close relationship exists between electric current and the magnetic field. However, electricity and magnetism have different physical characteristics, and magnetocardiography (MCG) may provide information on cardiac current that is difficult to obtain by electrocardiography (ECG). In the present study, we investigated the issue of whether the current density map method, in which cardiac current is estimated from the magnetic gradient, facilitates the visualization of cardiac current undetectable by ECG. The subjects were 50 healthy adults (N group), 40 patients with left ventricular overloading (LVO group), 15 patients with right ventricular overloading (RVO group), 10 patients with an old inferior myocardial infarction (OMI group), and 30 patients with diabetes mellitus (DM group). MCGs were recorded with a second derivative superconducting quantum interference device (SQUID) gradiometer using liquid helium. Isopotential maps and current density maps from unipolar precordial ECG leads and MCGs, respectively, were prepared, and the cardiac electric current was examined. The current density map at the ventricular depolarization phase showed one peak of current density in the N group. However, in the OMI group, the current density map showed multiple peaks of current density areas. In the RVO group, two peaks of current densities were detected at the right superior region and left thoracic region and these two diploles appeared to be from the right and left ventricular derived cardiac currents, respectively. Moreover, there was a significant correlation between the magnitude of the current density from the right ventricle and the systolic pulmonary arterial pressure. The current density map at the ventricular repolarization phase in the N group showed only a single current source. However, abnormal current sources in the current density maps were frequently detected even in patients showing no abnormalities on isopotential maps in the LVO, DM, and OMI groups. The

  6. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  7. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    PubMed Central

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  8. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

    PubMed

    Brady, Gerald J; Way, Austin J; Safron, Nathaniel S; Evensen, Harold T; Gopalan, Padma; Arnold, Michael S

    2016-09-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  9. Lower hybrid current drive for edge current density modification in DIII-D: Final status report

    SciTech Connect

    Fenstermacher, M.E.; Porkolab, M.

    1993-08-04

    Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients.

  10. CdS-metal contact at higher current densities.

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Boeer, K. W.; Dussel, G. A.

    1973-01-01

    An investigation is conducted concerning the mechanisms by which a steady flow of current proceeds through the contact when an external voltage is applied. The main characteristics of current mechanisms are examined, giving attention to photoemission from the cathode, thermionic emission, minority-carrier extraction, and the tunneling of electrons. A high-field domain analysis is conducted together with experimental studies. Particular attention is given to the range in which tunneling predominates.

  11. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    PubMed

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W A; Bultinck, Patrick

    2016-04-28

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is used that is derived from the current density. It is shown here that there is no simple one-to-one relationship that allows reconstructing current density maps from only NICS-values. NICS values should therefore not be used as aromaticity indices without analysis of the ab initio computed current density map. PMID:26762574

  12. Studies in High Current Density Ion Sources for Heavy Ion FusionApplications

    SciTech Connect

    Chacon-Golcher, E.

    2002-06-01

    This dissertation develops diverse research on small (diameter {approx} few mm), high current density (J {approx} several tens of mA/cm{sup 2}) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K{sup +} and Cs{sup +} contact ionization sources and potassium aluminum silicate sources. Maximum values for a K{sup +} beam of {approx}90 mA/cm{sup 2} were observed in 2.3 {micro}s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times ({approx} 1 {micro}s), high current densities ({approx} 100 mA/cm{sup 2}) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured ({var_epsilon}{sub n} {le} 0.006 {pi} mm {center_dot} mrad) although measured currents differed from the desired ones (I {approx} 5mA) by about a factor of 10.

  13. Critical current density and trapped field in HTS with asymmetric magnetization loops

    NASA Astrophysics Data System (ADS)

    Gokhfeld, D.

    2016-03-01

    Applications of the extended critical state model are considered. The trapped magnetic field, the penetration field and the field dependence of the critical current density are analysed. The critical current density and the trapped field in superconducting grains depend on the grain size. Asymmetry of the hysteresis curves relative to the M = 0 axis is related to the scale of the current circulation.

  14. Achievement of High Density InAs/GaInAsP Quantum Dots on Misoriented InP(001) Substrates Emitting at 1.55 µm

    NASA Astrophysics Data System (ADS)

    Elias, Georges; Létoublon, Antoine; Piron, Rozenn; Alghoraibi, Ibrahim; Nakkar, Abdulhadi; Chevalier, Nicolas; Tavernier, Karine; Le Corre, Alain; Bertru, Nicolas; Loualiche, Slimane

    2009-07-01

    InAs quantum dot (QD) formation on InP(001) has been investigated by gas source molecular beam epitaxy as a function of the substrate misorientation, arsenic pressure and temperature. A large improvement on quantum dot shape and density was obtained thanks to the use of substrates misoriented toward the [110] direction and low arsine flow rate. Round-shaped small QDs (diameter: 26 nm) in high density (9×1010 QDs/cm2) have been achieved using optimized growth conditions. Room temperature laser emission around 1.55 µm from was obtained with a threshold current density of 1 kA/cm2 for 1 mm long cavity.

  15. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  16. Current Densities in speed analyzer with different symmetries

    SciTech Connect

    Valdeblanquez, E.

    2006-12-04

    A comparative analysis of the currents in speed analyzer of speeds is made with different symmetries. Three kinds of symmetries are considered; plane, cylindrical and spherical. The analyzers considered are formed by threes electrodes, the selector grid, the discriminator and the collector. The selector grid has a negative potential and for the coulombian effect the space charge is formed with the ionic thermal bath. Using kinetic theory a strongly non linear differential equation is obtained which is solved by numerical calculation.

  17. Imaging of the relative saturation current density and sheet resistance of laser doped regions via photoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, Xinbo; Macdonald, D.; Fell, A.; Shalav, A.; Xu, Lujia; Walter, D.; Ratcliff, T.; Franklin, E.; Weber, K.; Elliman, R.

    2013-08-01

    We present an approach to characterize the relative saturation current density (Joe) and sheet resistance (RSH) of laser doped regions on silicon wafers based on rapid photoluminescence (PL) imaging. In the absence of surface passivation layers, the RSH of laser doped regions using a wide range of laser parameters is found to be inversely proportional to the PL intensity (IPL). We explain the underlying mechanism for this correlation, which reveals that, in principle, IPL is inversely proportional to Joe at any injection level. The validity of this relationship under a wide range of typical experimental conditions is confirmed by numerical simulations. This method allows the optimal laser parameters for achieving low RSH and Joe to be determined from a simple PL image.

  18. Low-current-density LED-pumped Nd:YAG laser using a solid cylindrical reflector

    NASA Technical Reports Server (NTRS)

    Farmer, G. I.; Kiang, Y. C.

    1974-01-01

    The dynamic behavior of Nd:YAG lasers is theoretically analyzed. In experiments, an array of twenty GaAlAs diodes was used as the pumping light source for a Nd:YAG laser. An index-matching glass half-cylinder was used instead of the conventional hollow metal reflector. The refractive index of the half-cylinder was 1.8, which matched the refractive index of the Nd:YAG rod. A maximum CW output power of 27 mW at a current density of 207 A/sq cm was achieved using this glass half-cylinder, while 6.7 mW were obtained when a hollow metal reflector was used.

  19. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    SciTech Connect

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.; Brewer, W. A.; Miller, Matthew A.; Hall, Andrew M.; Burleyson, Casey D.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer wind (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.

  20. Gain and loss as a function of current density and temperature in interband cascade lasers.

    PubMed

    Merritt, C D; Bewley, W W; Kim, C S; Canedy, C L; Vurgaftman, I; Meyer, J R; Kim, M

    2015-11-01

    We characterize the internal efficiency, internal loss, and optical gain versus current density in 7-stage interband cascade lasers operating at λ=3.1 and 3.45 μm using a cavity-length study of the external differential quantum efficiency (EDQE) and threshold current density at temperatures between 300 and 345 K. We find that the pronounced efficiency droop of the EDQE at high current densities is primarily due to an increase in the internal loss rather than a reduction in the internal efficiency. On the other hand, if the current density J is fixed, the temperature variation of the EDQE at that J is due primarily to a decrease of the internal efficiency. The gain versus current density is fit well by a logarithmic relationship, although the magnitude of the experimental gain is >20% below the theoretical estimate. PMID:26560596

  1. Current densities and closure rates in diodes containing laser-driven, cesium-coated thermionic cathodes

    NASA Astrophysics Data System (ADS)

    Lee, C.; Oettinger, P. E.

    1985-09-01

    Cathodes emitting electron current pulses of 100-1,000 A/sq cm for durations of longer than 1 microsecond, with very low emittance, are desirable for free electron laser and high-power microwave tube applications. Not all of these criteria can be satisfied by either dispenser thermionic cathodes or plasma forming field emitters. However, pulse-laser heated smooth cesiated refractory metal surfaces have the potential to achieve these conditions. In this paper, test results from low-voltage (2-20 kV) diodes containing cesiated tungsten cathodes are discussed. Space-charge-limited current densities of up to 30 A/sq cm were obtained in fields with maximum strengths of 40 kV/cm. Plasma closure rates at these currents were measured to be 0.17-0.4 cm/microsecond. Such slow velocity fronts are postulated to be due to the domination of the plasma by massive cesium ions generated from species desorbed from the cathode, rather than to light hydrogen ions (as in the case of field-emission-type cathodes).

  2. Effect of Circular p- n Junction Curvature on the Diode Current Density

    NASA Astrophysics Data System (ADS)

    Borblik, Vitalii

    2016-08-01

    The influence of the circular geometry of a p- n junction built into a nanowire or a nanorod, on the radial diode current density is investigated. While the current density from the core to the shell proves to be larger than that in a planar diode at the same values of the parameters, the density of the diode current from the shell to the core, on the contrary, proves to be smaller. A dependence of the effect on the core and the shell radii has been demonstrated. The nature of the effect is explained on the basis of radial distributions of the nonequilibrium current carriers.

  3. Control of voltage reversal in serially stacked microbial fuel cells through manipulating current: Significance of critical current density

    NASA Astrophysics Data System (ADS)

    An, Junyeong; Sim, Junyoung; Lee, Hyung-Sool

    2015-06-01

    Voltage reversal is a critical issue for serially stacking microbial fuel cells (MFCs). It occurs when current density in stacked MFCs increases over critical current density (jcritical). In this study, we clearly show that no voltage reversal occurs in stacked MFCs if current density is maintained below jcritical where the anode and the cathode potential in an inferior unit become identical, with an external resistance placed between individual MFCs. We define threshold resistance (Rthreshold) that enables current density below jcritical in stacked MFCs, and demonstrate the validity of Rthreshold theoretically and experimentally. Voltage reversal is controlled in the stacked MFC equipped with Rthreshold by which the current density in the stacked MFC is kept below jcritical. In comparison, a stacked MFC without Rthreshold faces voltage reversal over jcritical. Energy loss in Rthreshold is comparable to energy loss with other voltage control methods, such as passive or active methods. However, the Rthreshold approach is a simple, inexpensive way of controlling voltage reversal, especially for small MFCs (<50 mL).

  4. Relationship of dislocation density of silicon to solar cell current loss at low temperature.

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Baraona, C. R.; Lamneck, J. H., Jr.

    1972-01-01

    Large decreases in short circuit current of silicon solar cells have been reported to occur as temperature is decreased below -60 C. Experimental results are presented which relate high dislocation density of the silicon bulk material of cells to the large current loss effect. These results reveal a direct relationship between low bulk dislocation density and low current loss at low temperature. Oxygen content does not appear to play a significant role in the low temperature-large current loss effect, since some Czochralski cells did not suffer from this effect whereas some float-zone cells did. Other float-zone silicon cells had only medium current losses at low temperature despite their high bulk dislocation density. It appears that use of low-dislocation-density silicon can eliminate the current loss problem in low temperature cell operation.

  5. Theoretical model and experimental investigation of current density boundary condition for welding arc study

    NASA Astrophysics Data System (ADS)

    Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.

    2011-04-01

    This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

  6. Observation of Lower-Hybrid Current Drive at High Densities in the Alcator C Tokamak

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Schuss, J. J.; Lloyd, B.; Takase, Y.; Texter, S.; Bonoli, P.; Fiore, C.; Gandy, R.; Gwinn, D.; Lipschultz, B.; Marmar, E.; Pappas, D.; Parker, R.; Pribyl, P.

    1984-07-01

    A quasi-steady-state lower-hybrid current-drive operation is demonstrated in the Alcator C tokamak at densities up to n―e~=1×1014 cm-3. The current-drive efficiency is measured experimentally over a wide range of densities and magnetic fields. The radial distribution of high-energy x rays indicates that the current-carrying electrons peak near the plasma axis.

  7. Distribution of ion current density on a rotating spherical cap substrate during ion-assisted deposition

    SciTech Connect

    Marushka, Viktor; Zabeida, Oleg Martinu, Ludvik

    2014-11-01

    The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3 A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.

  8. Critical current density of domain wall oscillation due to spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Taniguchi, T.; Imamura, H.

    2011-04-01

    The domain wall oscillation due to spin-transfer torque was studied by numerically solving the Landau-Lifshitz-Gilbert (LLG) equation. For a domain wall whose rotation angle θmax is less than 180°, we found the existence of the critical current density above which the magnetization dynamics are induced. We studied the dependence of the critical current density on the rotation angle θmax and found that the critical current density is proportional to 180° - θmax.

  9. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    SciTech Connect

    Kato, S.; Seya, A.; Asano, A.

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  10. Depairing current density through a low-angle grain boundary in a superconducting film

    NASA Astrophysics Data System (ADS)

    Xue, Feng; Zhang, Zhaoxia; Zeng, Jun; Gou, Xiaofan

    2016-05-01

    In this paper, the effect of a grain boundary (GB) on the depairing current density of a high-temperature superconducting film is investigated. The modified effective free energy is proposed by considering the interaction of the superconducting condensate with the deformation of the superconductor due to the dislocations which constitute a grain boundary. After the elastic strain field of the dislocation is obtained, we analyzed the depress effect of the GB on the depairing current density of a superconducting film. The results are qualitatively agreement with the classic exponential relationship with the misorientation angles of the critical current density of high-temperature superconductors.

  11. Measuring currents in space plasmas with a current density coil ; first results of a rocket experiment in the cusp.

    NASA Astrophysics Data System (ADS)

    Coillot, C.; Elbourki, K.; Bouabdellah, A.; Seran, H.-C.; Rezeau, L.; de Feraudy, H.; Krasnoselsikikhk, V.

    2003-04-01

    The Current Density Coil (CDC) has been designed in the aim at measuring field aligned currents. The principle of the sensor is the following : a magnetic core wound with a high number of turns which induce a voltage proportional to the time derivative of the current density flowing through the core. Space environment constraints and the small amplitude of the currents (μAm-2) require a particular design. A flux feedback guaranties a flat transfer function on several decades. Many tests performed in laboratory and in a vacuum chamber, they have led us to investigate capacitive and magnetic coupling between the sensor and plasma. We will present the main lines of the design and the first results produced by the CDC launched onboard the CUSP Rocket. This flight is the first test of the instrument in real space environment.

  12. Relationship of dislocation density of silicon to solar cell current loss at low temperature

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Baraona, C. R.; Lamneck, J. H., Jr.

    1972-01-01

    Large decreases in short circuit current of silicon solar cells have been reported to occur as temperature is decreased below -60 C. Experimental results are presented which relate high dislocation density of the silicon bulk material of cells to the large current loss effect. Solar cells were made by the same processes from a variety of silicon materials, namely low-dislocation-density, high-dislocation-density float-zone, and Czochralski silicon. All cells were etched in a manner which revealed the dislocation density of the cell bulk silicon. It was found that every cell made from any of the various low-dislocation starting materials obtained from three suppliers still had a low-dislocation bulk after cell processing, and that all such cells belonged to category good. Cells made from float-zone materials showed high dislocation densities in their bulk and either fell into category poor, or had intermediate losses of short-circuit current at low temperature.

  13. Cold smoke: smoke-induced density currents cause unexpected smoke transport near large wildfires

    NASA Astrophysics Data System (ADS)

    Lareau, N. P.; Clements, C. B.

    2015-07-01

    First observations of smoke-induced density currents originating from large wildfires are presented. Using a novel mobile Doppler LiDAR and additional in situ measurements we document a deep (~ 2 km) smoke-filled density current that propagates more than 25 km at speeds up to 4.5 m s-1 near a large forest fire in northern California. Based on these observations we show that the dynamics governing the spread of the smoke layer result from differential solar heating between the smoke-filled and smoke-free portions of the atmospheric boundary layer. A calculation of the theoretical density current speed agrees well with the observed propagation speed. Additional LiDAR and photographic documentation of other smoke-filled density currents demonstrate that these previously unknown phenomena are relatively common near large wildfires and can cause severe and unexpected smoke inundation of populated areas.

  14. Cold Smoke: smoke-induced density currents cause unexpected smoke transport near large wildfires

    NASA Astrophysics Data System (ADS)

    Lareau, N. P.; Clements, C. B.

    2015-10-01

    The first observations of smoke-induced density currents originating from large wildfires are presented. Using a novel mobile Doppler lidar and additional in situ measurements, we document a deep (~ 2 km) smoke-filled density current that propagates more than 25 km at speeds up to 4.5 m s-1 near a large forest fire in northern California. Based on these observations we show that the dynamics governing the spread of the smoke layer result from differential solar heating between the smoke-filled and smoke-free portions of the atmospheric boundary layer. A calculation of the theoretical density current speed agrees well with the observed propagation speed. Additional lidar and photographic documentation of other smoke-filled density currents demonstrate that these previously unknown phenomena are relatively common near large wildfires and can cause severe and unexpected smoke inundation of populated areas.

  15. Influence of electropolishing current densities on sulfur generation at niobium surface

    NASA Astrophysics Data System (ADS)

    Tyagi, P. V.; Nishiwaki, M.; Noguchi, T.; Sawabe, M.; Saeki, T.; Hayano, H.; Kato, S.

    2013-11-01

    We report the effect of different current densities on sulfur generation at Nb surface in the electropolishing (EP) with aged electrolyte. In this regard, we conducted a series of electropolishing (EP) experiments in aged EP electrolyte with high (≈50 mA/cm2) and low (≈30 mA/cm2) current densities on Nb surfaces. The experiments were carried out both for laboratory coupons and a real Nb single cell cavity with six witness samples located at three typical positions (equator, iris and beam pipe). Sample's surfaces were investigated by XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). The surface analysis showed that the EP with a high current density produced a huge amount of sulfate/sulfite particles at Nb surface whereas the EP with a low current density was very helpful to mitigate sulfate/sulfite at Nb surface in both the experiments.

  16. Characterizing a December 2005 density current event in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Garcia, C.M.; Jackson, P.R.; Oberg, K.A.; Johnson, K.K.; Garcia, M.H.

    2007-01-01

    During the winter months, the Chicago River in Chicago, Illinois is subject to bi-directional flows, and density currents are thought to be responsible for these flow variations. This paper presents detailed field measurements using three acoustic Doppler current profiler instruments and simultaneous water-quality measurements made during December 2005. Observations indicate that the formation of density currents within the Chicago River and density differences are mostly due to salinity differences between the North Branch and the main stem of the Chicago River, whereas temperature difference does not appreciably affect the creation of density currents. Sources of higher water temperature, conductivity, and salinity values should be addressed in future studies. ?? 2007 ASCE.

  17. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-09-15

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  18. Finite temperature bosonic charge and current densities in compactified cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Bezerra de Mello, E. R.

    2016-06-01

    In this paper, we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in thermal equilibrium at finite temperature T . These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on the charge and current densities, including some limiting cases, the low- and high-temperature approximations. We show that in all cases, the temperature enhances the induced densities.

  19. Wall current probe: A non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement

    SciTech Connect

    Baude, R.; Gaboriau, F.; Hagelaar, G. J. M.

    2013-08-15

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  20. Influence of current density on microstructure of pulse electrodeposited tin coatings

    SciTech Connect

    Sharma, Ashutosh; Bhattacharya, Sumit; Sen, Ranjan; Reddy, B.S.B.; Fecht, H.-J.; Das, Karabi; Das, Siddhartha

    2012-06-15

    Pulse electrodeposited tin coatings on copper substrate have been synthesized from an aqueous solution containing sodium stannate (Na{sub 2}SnO{sub 3}.3H{sub 2}O) and sodium hydroxide (NaOH). The effect of current density on surface morphology of the deposits has been investigated. As deposited coatings are characterized by X-ray diffraction, scanning electron microscopy, electron backscatter diffraction, and line profile analysis. The X-ray diffraction analysis shows that the deposits consist of tetragonal ({beta}-Sn) structure with microcrystalline grains. The deposits plated at lower current density exhibit (110) texture which decreases with increasing current densities. The effects of current density on Cu-Sn diffusion and whisker growth of the electrodeposited tin coatings are also reported here. - Highlights: Black-Right-Pointing-Pointer Pulse electrodeposition of Sn from aqueous alkaline solution without adding any organic additive. Black-Right-Pointing-Pointer Effect of current density on morphology and whisker growth in tin coatings aged for 1 year. Black-Right-Pointing-Pointer Solution bath is stable and can be operated over a wide range of current density.

  1. Nonlinear dynamics of filamentation instability and current filament merging in a high density current-driven plasma

    NASA Astrophysics Data System (ADS)

    Khorashadizadeh, S. M.; Taghadosi, M. R.; Niknam, A. R.

    2015-12-01

    The magnetic field generation due to the filamentation instability (FI) of a high density current-driven plasma is studied through a new nonlinear diffusion equation. This equation is obtained on the basis of quantum hydrodynamic model and numerically solved by applying the Crank-Nicolson method. The spatiotemporal evolution of the magnetic field and the electron density distribution exhibits the current filament merging as a nonlinear phase of the FI which is responsible for the strong magnetic fields in the current-driven plasmas. It is found that the general behaviour of the FI is the same as that of the classical case but the instability growth rate, its magnitude, and the saturation time are affected by the quantum effects. It is eventually concluded that the quantum effects can play a stabilizing role in such situation.

  2. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a

  3. Spatial variation of charge carrier density in graphene under a large bias current

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Zhang, Haijing; Zheng, Yuan; Zhang, Bing; Zhang, Ting; Sheng, Ping

    2016-03-01

    By carrying out the Hall measurements under a large bias current, we have directly observed the spatial variation of the carrier density in graphene. This carrier density variation is found to depend on the bias direction; hence it cannot be caused by the heating effect, which should be independent of the bias current direction. A simple back-gate tuning model, involving a self-consistent calculation on longitudinal transport coupled with carrier density variation, is shown to explain the experimental results very well. Various implications of this phenomenon, including the shift of charge neutrality point under a large bias, are investigated and discussed.

  4. Alcohol liver disease: A review of current therapeutic approaches to achieve long-term abstinence

    PubMed Central

    García, María Luisa Gutiérrez; Blasco-Algora, Sara; Fernández-Rodríguez, Conrado M

    2015-01-01

    Harmful alcohol drinking may lead to significant damage on any organ or system of the body. Alcoholic liver disease (ALD) is the most prevalent cause of advanced liver disease in Europe. In ALD, only alcohol abstinence was associated with a better long-term survival. Therefore, current effective therapeutic strategy should be oriented towards achieving alcohol abstinence or a significant reduction in alcohol consumption. Screening all primary care patients to detect those cases with alcohol abuse has been proposed as population-wide preventive intervention in primary care. It has been suggested that in patients with mild alcohol use disorder the best approach is brief intervention in the primary care setting with the ultimate goal being abstinence, whereas patients with moderate-to-severe alcohol use disorder must be referred to specialized care where detoxification and medical treatment of alcohol dependence must be undertaken. PMID:26229395

  5. Alcohol liver disease: A review of current therapeutic approaches to achieve long-term abstinence.

    PubMed

    García, María Luisa Gutiérrez; Blasco-Algora, Sara; Fernández-Rodríguez, Conrado M

    2015-07-28

    Harmful alcohol drinking may lead to significant damage on any organ or system of the body. Alcoholic liver disease (ALD) is the most prevalent cause of advanced liver disease in Europe. In ALD, only alcohol abstinence was associated with a better long-term survival. Therefore, current effective therapeutic strategy should be oriented towards achieving alcohol abstinence or a significant reduction in alcohol consumption. Screening all primary care patients to detect those cases with alcohol abuse has been proposed as population-wide preventive intervention in primary care. It has been suggested that in patients with mild alcohol use disorder the best approach is brief intervention in the primary care setting with the ultimate goal being abstinence, whereas patients with moderate-to-severe alcohol use disorder must be referred to specialized care where detoxification and medical treatment of alcohol dependence must be undertaken. PMID:26229395

  6. Current Status and Recent Research Achievements in SiC/SiC Composites

    SciTech Connect

    Katoh, Yutai; Snead, Lance L.; Henager, Charles H.; Nozawa, T.; Hinoki, Tetsuya; Ivekovic, Aljaz; Novak, Sasa; Gonzalez de Vicente, Sehila M.

    2014-12-01

    The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.

  7. Investigations of LHW-plasma coupling and current drive at high density related to H-mode experiments in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, Y. C.; Zhang, L.; Li, M. H.; Wei, W.; Kong, E. H.; Wang, M.; Xu, H. D.; Wang, S. L.; Xu, G. S.; Zhao, L. M.; Hu, H. C.; Jia, H.; Cheng, M.; Yang, Y.; Liu, L.; Zhao, H. L.; Peysson, Y.; Decker, J.; Goniche, M.; Amicucci, L.; Cesario, R.; Tuccillo, A. A.; Baek, S. G.; Parker, R.; Bonoli, P. T.; Paoletti, F.; Yang, C.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Gong, X. Z.; Hu, L. Q.; Gao, X.; Wan, B. N.; Li, J. G.; the EAST Team

    2015-09-01

    Two important issues in achieving lower hybrid current drive (LHCD) high confinement plasma in EAST are to improve lower hybrid wave (LHW)-plasma coupling and to drive the plasma current at a high density. Studies in different configurations with different directions of toroidal magnetic field (Bt) show that the density near the antenna is affected by both the radial electric field induced by plasma without a LHW (Er_plasma) in the scrape off layer (SOL), and the radial electric field induced by LHW power (Er_LH) near the grill. Investigations indicate that Er  ×  Bt in the SOL leads to a different effect of configuration on the LHW-plasma coupling and Er_LH  ×  Bt accounts for the asymmetric density behaviour in the SOL observed in the experiments, where Er is the total radial electric field in the SOL. Modelling of parametric instability (PI), collisional absorption (CA) and scattering from density fluctuations (SDF) in the edge region, performed considering the parameters of high density LHCD experiments in EAST, has shown that these mechanisms could be responsible for the low current drive (CD) efficiency at high density. Radiofrequency probe spectra, useful for documenting PI occurrence, show sidebands whose amplitude in the case of the lithiated vacuum chamber is smaller than in the case of poor lithiation, consistently with growth rates from PI modeling of the respective reference discharges. Since strong lithiation is also expected to diminish the parasitic effect on the LHCD of the remaining possible mechanisms, this appears to be a useful method for improving LHCD efficiency at a high density.

  8. Faraday-Effect Polarimeter-Interferometer System for current density measurement on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Haiqing; Jie, Yinxian; Ding, Weixing; Brower, David Lyn; Zou, Zhiyong; Qian, Jinping; Li, Weiming; Zeng, Long; Zhang, Shoubiao; Hu, Liqun; Wan, Baonian

    2015-11-01

    An eleven-channel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for current density and electron density profile measurements in the EAST tokamak. Both polarimetric and interferometric measurement are obtained in a long pulse (~ 52s) discharge. The electron line-integrated density resolution of POINT is less than 5 × 1016 m-2 (~ 2°), and the Faraday rotation angle rms phase noise is <0.1°. With the high temporal (~ 1 μsec) and phase resolution (<0.1°), density perturbations associated with the sawteeth cycle and tearing mode activities have been observed. It is evident that tearing modes are well correlated to dynamics of equilibrium current profile (or q-profile). Faraday rotation angle shows clear variation with low hybrid current drive while line-integrated density remains little changed, implying the current drive in the core. A Digital Phase Detector with 250 kHz bandwidth provides real-time Faraday rotation angle and density phase shift output, which will be integrated into current profile control system in a long pulse discharge in future. This work is supported by the National Magnetic Confinement Fusion Program of China with contract No. 2012GB101002 and partly supported by the US D.O.E. contract DESC0010469.

  9. Diode laser threshold current density and lasing wavelength as functions of active region thickness

    SciTech Connect

    Streifer, W.; Scifres, D.R.; Burnham, R.D.

    1983-03-01

    Based on a simple model of the band-to-band absorption of a diode laser active region, we formulatean expression for modal gain as a function of pumping current. Using this result yields expressions for threshold current density and lasing photon energy which depend on device parameters including active region thickness, laser length, internal losses, facet reflectivity, etc.

  10. Depairing current density of Nd2-xCexCuO4-δ superconducting films

    NASA Astrophysics Data System (ADS)

    Kunchur, Milind N.; Dean, Charles; Liang, Manlai; Moghaddam, Nahid S.; Guarino, Anita; Nigro, Angela; Grimaldi, Gaia; Leo, Antonio

    2013-12-01

    We report a measurement of the depairing critical current density in the electron-doped Nd2-xCexCuO4-δ cuprate superconductor. Resistance-versus-temperature transition curves measured at high pulsed current densities show the classic proportionality between the transition-temperature shift and the two-thirds power of the applied current. The measurement provides an alternative method for obtaining the penetration depth purely through transport measurements that is not affected by the large paramagnetic background that arises from the Nd3+ ions, which affects inductive investigations of this quantity.

  11. Measurement of local current density of all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Yen; Leu, Chih-Hsing; Wu, Chun-Hsing; Chen, Yong-Song

    2014-12-01

    This article presents a preliminary study of the measurement of local current density in all-vanadium redox flow batteries. Two batteries are designed and manufactured in this study, and the experimental results are compared. In the first cell, the current collector is divided into 25 segments, and the flow field plate is not segmented, whereas in the other cell, the flow field plate is segmented. The effects of the electrolyte flow rate on the battery efficiencies and the local current density variation are investigated. The experimental results show that the current density near the outlet significantly decreases when the discharge capacity approaches zero. In addition, the battery has a larger discharge depth at a higher electrolyte flow rate.

  12. Non-iterative conductivity reconstruction algorithm using projected current density in MREIT

    NASA Astrophysics Data System (ADS)

    Nam, Hyun Soo; Park, Chunjae; In Kwon, Oh

    2008-12-01

    Magnetic resonance electrical impedance tomography (MREIT) is to visualize the current density and the conductivity distribution in an electrical object Ω using the measured magnetic flux data by an MRI scanner. MREIT uses only one component Bz of the magnetic flux density B = (Bx, By, Bz) generated by an injected electrical current into the object. In this paper, we propose a fast and direct non-iterative algorithm to reconstruct the internal conductivity distribution in Ω with the measured Bz data. To develop the algorithm, we investigate the relation between the projected current density JP, a uniquely determined component of J by the map from current J to measured Bz data and the isotropic conductivity. Three-dimensional numerical simulations and phantom experiments are studied to show the feasibility of the proposed method by comparing with those using the conventional iterative harmonic Bz algorithm.

  13. The Relationship of Density to School Achievement Within the Context of Neighborhood Type.

    ERIC Educational Resources Information Center

    Meyer, Jeanie Keeny; Levine, Daniel U.

    The relationship between neighborhood characteristics and achievement level was investigated in six metropolitan schools, after accounting for neighborhood type. Neighborhoods were classified into four types: middle socioeconomic status white, low status white, middle status black, and low status black. Additional neighborhood…

  14. Economic costs of achieving current conservation goals in the future as climate changes.

    PubMed

    Shaw, M Rebecca; Klausmeyer, Kirk; Cameron, D Richard; Mackenzie, Jason; Roehrdanz, Patrick

    2012-06-01

    Conservation of biologically diverse regions has thus far been accomplished largely through the establishment and maintenance of protected areas. Climate change is expected to shift climate space of many species outside existing reserve boundaries. We used climate-envelope models to examine shifts in climate space of 11 species that are representative of the Mount Hamilton Project area (MHPA) (California, U.S.A.), which includes areas within Alameda, Santa Clara, San Joaquin, Stanislaus, Merced, and San Benito counties and is in the state's Central Coast ecoregion. We used Marxan site-selection software to determine the minimum area required as climate changes to achieve a baseline conservation goal equal to 80% of existing climate space for all species in the MHPA through 2050 and 2100. Additionally, we assessed the costs associated with use of existing conservation strategies (land acquisition and management actions such as species translocation, monitoring, and captive breeding) necessary to meet current species-conservation goals as climate changes. Meeting conservation goals as climate changes through 2050 required an additional 256,000 ha (332%) of protected area, primarily to the south and west of the MHPA. Through 2050 the total cost of land acquisition and management was estimated at US$1.67-1.79 billion, or 139-149% of the cost of achieving the same conservation goals with no climate change. To maintain 80% of climate space through 2100 required nearly 380,000 additional hectares that would cost $2.46-2.62 billion, or 209-219% of the cost of achieving the same conservation goals with no climate change. Furthermore, maintaining 80% of existing climate space within California for 27% of the focal species was not possible by 2100 because climate space for these species did not exist in the state. The high costs of conserving species as the climate changes-that we found in an assessment of one conservation project-highlights the need for tools that will aid

  15. Estimation of nighttime dip-equatorial E-region current density using measurements and models

    NASA Astrophysics Data System (ADS)

    Pandey, Kuldeep; Sekar, R.; Anandarao, B. G.; Gupta, S. P.; Chakrabarty, D.

    2016-08-01

    The existence of the possible ionospheric current during nighttime over low-equatorial latitudes is one of the unresolved issues in ionospheric physics and geomagnetism. A detailed investigation is carried out to estimate the same over Indian longitudes using in situ measurements from Thumba (8.5 ° N, 76.9 ° E), empirical plasma drift model (Fejer et al., 2008) and equatorial electrojet model developed by Anandarao (1976). This investigation reveals that the nighttime E-region current densities vary from ∼0.3 to ∼0.7 A/km2 during pre-midnight to early morning hours on geomagnetically quiet conditions. The nighttime current densities over the dip equator are estimated using three different methods (discussed in methodology section) and are found to be consistent with one another within the uncertainty limits. Altitude structures in the E-region current densities are also noticed which are shown to be associated with altitudinal structures in the electron densities. The horizontal component of the magnetic field induced by these nighttime ionospheric currents is estimated to vary between ∼2 and ∼6 nT during geomagnetically quiet periods. This investigation confirms the existence of nighttime ionospheric current and opens up a possibility of estimating base line value for geomagnetic field fluctuations as observed by ground-based magnetometer.

  16. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    USGS Publications Warehouse

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  17. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  18. Simultaneous Observations of Electric Fields, Current Density, Plasma Density, and Neutral Winds During Two Sounding Rocket Experiments Launched from Wallops Island into Strong Daytime Dynamo Currents

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F., Jr.; Rowland, D. E.; Klenzing, J.; Freudenreich, H. T.; Martin, S. C.; Abe, T.; Habu, H.; Yamamoto, M. Y.; Watanabe, S.; Yamamoto, M.; Yokoyama, T.; Kakinami, Y.; Yamazaki, Y.; Larsen, M. F.; Hurd, L.; Clemmons, J. H.; Bishop, R. L.; Walterscheid, R. L.; Fish, C. S.; Bullett, T. W.; Mabie, J. J.; Murphy, N.; Angelopoulos, V.; Leinweber, H. K.; Bernal, I.; Chi, P. J.

    2015-12-01

    To investigate the ion-neutral coupling that creates the global electrical daytime "dynamo" currents in the mid-latitude, lower ionosphere, NASA carried out two multiple sounding rocket experiments from Wallops Island, VA on July 10, 2011 (14:00 UT, 10:00 LT) and July 4, 2013 (14:31 UT, 10:31 LT). The rockets were launched in the presence of well-defined, westward Hall currents observed on the ground with ΔH values of ­-25 nT and -30 nT, respectively, as well as a well-defined, daytime ionospheric density observed by the VIPIR ionosonde at Wallops. During the 2011 experiment, a narrow, intense sporadic-E layer was observed near 102 km. Each experiment consisted of a pair of rockets launched 15 sec apart. The first rocket of each pair carried instruments to measure DC electric and magnetic fields, as well as the ambient plasma and neutral gases and attained apogees of 158 km and 135 km in the 2011 and 2013 experiments, respectively. The second rocket of each pair carried canisters which released a lithium vapor trail along the upleg to illuminate neutral winds in the upper atmosphere. This daytime vapor trail technology was developed jointly by researchers at JAXA and Clemson University. In the second experiment, the lithium release was clearly visible in cameras with infrared filters operated by US and Japanese researchers in a NASA airplane at 9.6 km altitude. The observed wind profiles reached speeds of 100 m/s with strong shears with respect to altitude and were consistent with an independent derivation of the wind from the ionization gauge sensor suite on the instrumented rocket. The "vapor trail" rockets, which also included a falling sphere, attained apogees of 150 km and 143 km in the 2011 and 2013 experiments, respectively. By measuring the current density, conductivity, DC electric fields, and neutral winds, we solve the dynamo equation as a function of altitude, revealing the different contributions to the lower E-region currents. We find that the DC

  19. Characterization of thunderstorm induced Maxwell current densities in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Baginski, Michael Edward

    1989-01-01

    Middle atmospheric transient Maxwell current densities generated by lightning induced charge perturbations are investigated via a simulation of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 110 km and radius of 80 km. A composite conductivity profile based on measured data is used when charge perturbations are centered about the vertical axis at altitudes of 6 and 10 km. The simulations indicate that the temporal structure of the Maxwell current density is relatively insensitive to altitude variation within the region considered. It is also shown that the electric field and Maxwell current density are not generally aligned.

  20. Effect of anodization current density on pore geometry in macroporous silicon

    NASA Astrophysics Data System (ADS)

    Peckham, J.; Andrews, G. T.

    2013-10-01

    Macroporous silicon films were fabricated by electrochemical etching of p--type silicon with a resistivity range of 9.0-13.0 Ω cm for 10 min in an electrolyte containing hydrofluoric acid, water, and acetonitrile. Samples were studied using scanning electron microscopy. The onset of macropore formation was observed to occur at a current density of ˜3.6 mA cm-2. At larger current densities, cross-sectional micrographs revealed macropores of approximately columnar shape. Average pore diameter was estimated from plan view micrographs using an image processing algorithm and found to be consistent with a square root dependence on the etching current density in the range investigated.

  1. Effects of discharge current and voltage on the high density of metastable helium atoms

    NASA Astrophysics Data System (ADS)

    Feng, Xian-Ping; Andruczyk, D.; James, B. W.; Takiyama, K.; Namba, S.; Oda, T.

    2003-05-01

    Both hollow-cathode and Penning-type discharges were adopted to excite helium atoms to a metastable state. Experimental data indicate that Penning discharge is more suitable for generating high fractions of metastables in a low-density helium beam for laser-induced fluorescence technique in measuring electric fields at the edge of a plasma. The metastable density increases with increasing helium gas pressure in the range of 1.33×10-2-66.7Pa. The highest metastable density of 3.8×1016m-3 is observed at a static gas pressure of 66.7Pa. An approximately linear relationship between the density of metastable helium atoms and the plasma discharge current is observed. Magnetic field plays a very important role in producing a high density of metastable atoms in Penning discharge.

  2. Analysis of current density and related parameters in spinal cord stimulation.

    PubMed

    Wesselink, W A; Holsheimer, J; Boom, H B

    1998-06-01

    A volume conductor model of the spinal cord and surrounding anatomical structures is used to calculate current (and current density) charge per pulse, and maximum charge density per pulse at the contact surface of the electrode in the dorsal epidural space, in the dorsal columns of the spinal cord and in the dorsal roots. The effects of various contact configurations (mono-, bi-, and tripole), contact area and spacing, pulsewidth and distance between contacts and spinal cord on these electrical parameters were investigated under conditions similar to those in clinical spinal cord stimulation. At the threshold stimulus of a large dorsal column fiber, current density and charge density per pulse at the contact surface were found to be highest (1.9.10(5) microA/cm2 and 39.1 microC/cm2.p, respectively) when the contact surface was only 0.7 mm2. When stimulating with a pulse of 500 microseconds, highest charge per pulse (0.92 microC/p), and the largest charge density per pulse in the dorsal columns (1.59 microC/cm2. p) occurred. It is concluded that of all stimulation parameters that can be selected freely, only pulsewidth affects the charge and charge density per pulse in the nervous tissue, whereas both pulsewidth and contact area strongly affect these parameters in the nonnervous tissue neighboring the electrode contacts. PMID:9631328

  3. Laser wavefront analyzer for imploding plasma density and current profile measurements

    SciTech Connect

    Qi, N.; Prasad, R.R.; Campbell, K.; Coleman, P.; Krishnan, M.; Weber, B.V.; Stephanakis, S.J.; Mosher, D.

    2004-10-01

    The laser wavefront analyzer (LWA) consists of a polarized laser beam pulse that traverses an imploding z-pinch, and a microlens array that focuses the laser beam into a large number (10{sup 4}) of very tiny spots. LWA image analysis determines the refractive bending angles (due to density gradients) and Faraday rotation angles (due to the magnetic field-density integral) throughout the plasma cross section. Electron density and current distributions are derived from LWA data in an imploding gas-puff z-pinch plasma.

  4. Thermodynamic performance analysis of a molten carbonate fuel cell at very high current densities

    NASA Astrophysics Data System (ADS)

    Ramandi, M. Y.; Dincer, I.

    2011-10-01

    This study is basically composed of two sections. In the first section, a CFD analysis is used to provide a better insight to molten carbonate fuel cell operation and performance characteristics at very high current densities. Therefore, a mathematical model is developed by employing mass and momentum conservation, electrochemical reaction mechanisms and electric charges. The model results are then compared with the available data for an MCFC unit, and a good agreement is observed. In addition, the model is applied to predict the unit cell behaviour at various operating pressures, temperatures, and cathode gas stoichiometric ratios. In the second section, a thermodynamic model is utilized to examine energy efficiency, exergy efficiency and entropy generation of the MCFC. At low current densities, no considerable difference in output voltage and power is observed; however, for greater values of current densities, the difference is not negligible. If the molten carbonate fuel cell is to operate at current densities smaller than 2500 A m-2, there is no point to pressurize the system. If the fuel cell operates at pressures greater than atmospheric pressure, the unit cell cost could be minimized. In addition, various partial pressure ratios at the cathode side demonstrated nearly the same effect on the performance of the fuel cell. With a 60 K change in operating temperature, almost 10% improvement in energy and exergy efficiencies is obtained. Both efficiencies initially increase at lower current densities and then reach their maximum values and ultimately decrease with the increase of current density. By elevating the pressure, both energy and exergy efficiencies of the cell enhance. In addition, higher operating pressure and temperature decrease the unit cell entropy generation.

  5. On the Need for Rethinking Current Practice that Highlights Goal Achievement Risk in an Enterprise Context.

    PubMed

    Aven, Eyvind; Aven, Terje

    2015-09-01

    This article addresses the issue of how performance and risk management can complement each other in order to enhance the management of an enterprise. Often, we see that risk management focuses on goal achievements and not the enterprise risk related to its activities in the value chain. The statement "no goal, no risk" is a common misconception. The main aim of the article is to present a normative model for describing the links between performance and risk, and to use this model to give recommendations on how to best structure and plan the management of an enterprise in situations involving risk and uncertainties. The model, which has several novel features, is based on the interaction between different types of risk management (enterprise risk management, task risk management, and personal risk management) and a structure where the enterprise risk management overrules both the task and personal risk management. To illustrate the model we use the metaphor of a ship, where the ship is loaded with cash-generating activities and has a direction over time determined by the overall strategic objectives. Compared to the current enterprise risk management practice, the model and related analysis are founded on a new perspective on risk, highlighting knowledge and uncertainties beyond probabilities. PMID:25930689

  6. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    NASA Astrophysics Data System (ADS)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  7. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Loschialpo, P.; Kapetanakos, C. A.

    1987-12-01

    Large (approx. 5 cm) diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1 to 5 micro electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, has been consistently measured. To obtain this high current density, the LaB6 cathodes have been heated to temperatures between approximately 1600 to 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure .000001 to .00001 Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser type cathodes.

  8. Four-dimensional ultrasound current source density imaging of a dipole field

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.

    2011-09-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.

  9. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices.

    PubMed

    Gandhi, O P; Kang, G

    2001-11-01

    This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used. PMID:11720345

  10. Photospheric Vertical Current Density and Overlying Atmospheric Activity in an Emerging Flux Region

    NASA Astrophysics Data System (ADS)

    Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.; Schmieder, B.

    2002-05-01

    Using high-resolution vector magnetograms obtained by the balloon-borne Flare Genesis Experiment (FGE), we construct maps of the vertical current density in the emerging flux region NOAA 8844. The vertical current density has been decomposed into components that are field-aligned and perpendicular to the magnetic field, thus allowing a straightforward identification of force-free areas, as well as of areas where the force-free approximation breaks down. Small-scale chromospheric activity, such as H α Ellerman bombs and Ultraviolet bright points in 1600 Åshow a remarkable correlation with areas of strong current density. Simultaneous data of overlying coronal loops, observed by TRACE in the Extreme Ultraviolet (171 Åand 195 Å), have been carefully co-aligned with the FGE photospheric maps. We find that the footpoints of the TRACE loops always coincide with strong vertical currents and enhancements of the current helicity density. We also investigate whether the force-free approximation is valid on the photosphere during various evolutionary stages of the active region.

  11. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe.

    PubMed

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A; Vasiliev, Alexander N; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  12. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe

    PubMed Central

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  13. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator

    PubMed Central

    Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Amiri, Pedram Khalili; Katine, Jordan A.; Krivorotov, Ilya N.; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L.; Jiang, Hongwen

    2013-01-01

    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators. PMID:23478390

  14. Thermally activated flux creep and critical current densities in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Teruo

    The effect of flux creep is discussed for projected strongly pinned oxide superconductors. It is determined, that if a superconducting wire with a critical current density higher than 10-billion A/sq m at 77 K and 5 T can be produced, the wire will be able to be applied to equipment at high fields; nonzero critical density will be obtained even at 77 K and high fields. The decay of persistent current is expected to be noticeable even in such strongly pinned superconductors, when those are used at 77 K. Although this will be managed in power equipment by lowering the operating current; variation in the magnetic field due to the variation in the current distribution inside superconducting wires appears to be unavoidable. It is suggested that an effort should be made to reduce the variation by reducing the diameter of the superconducting filaments.

  15. Effects of aldosterone on transient outward K+ current density in rat ventricular myocytes

    PubMed Central

    Bénitah, Jean-Pierre; Perrier, Emeline; Gómez, Ana María; Vassort, Guy

    2001-01-01

    Aldosterone, a major ionic homeostasis regulator, might also regulate cardiac ion currents. Using the whole-cell patch-clamp technique, we investigated whether aldosterone affects the 4-aminopyridine-sensitive transient outward K+ current (Ito1). Exposure to 100 nm aldosterone for 48 h at 37 °C produced a 1.6-fold decrease in the Ito1 density compared to control myocytes incubated without aldosterone. Neither the time- nor voltage-dependent properties of the current were significantly altered after aldosterone treatment. RU28318 (1 μm), a specific mineralocorticoid receptor antagonist, prevented the aldosterone-induced decrease in Ito1 density. When myocytes were incubated for 24 h with aldosterone, concentrations up to 1 μm did not change Ito1 density, whereas L-type Ca2+ current (ICa,L) density increased. After 48 h, aldosterone caused a further increase in ICa,L. The delay in the Ito1 response to aldosterone might indicate that it occurs secondary to an increase in ICa,L. After 24 h of aldosterone pretreatment, further co-incubation for 24 h either with an ICa,L antagonist (100 nm nifedipine) or with a permeant Ca2+ chelator (10 μm BAPTA-AM) prevented a decrease in Ito1 density. After 48 h of aldosterone treatment, we observed a 2.5-fold increase in the occurrence of spontaneous Ca2+ sparks, which was blunted by co-treatment with nifedipine. We conclude that aldosterone decreases Ito1 density. We suggest that this decrease is secondary to the modulation of intracellular Ca2+ signalling, which probably arises from the aldosterone-induced increase in ICa,L. These results provide new insights into how cardiac ionic currents are modulated by hormones. PMID:11711569

  16. Estimation of localized current anomalies in polymer electrolyte fuel cells from magnetic flux density measurements

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki; Koike, Masanori; Ando, Shigeru; Gotoh, Yuji; Izumi, Masaaki

    2016-05-01

    In this paper, we propose novel inversion methods to estimate defects or localized current anomalies in membrane electrode assemblies (MEAs) in polymer electrolyte fuel cells (PEFCs). One method is an imaging approach with L1-norm regularization that is suitable for estimation of focal anomalies compared to Tikhonov regularization. The second is a complex analysis based method in which multiple pointwise current anomalies can be identified directly and algebraically from the measured magnetic flux density.

  17. Small Barriers Trigger Liftoff of Unconfined Dilute Heated Laboratory Density Currents

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2015-12-01

    Dilute pyroclastic density currents (PDCs) are hot, turbulent, particle-laden flows that propagate because they are denser than air. PDCs can traverse tens to hundreds of kilometers and surmount ridges 100s of m tall, yet the effects of complex topography on PDC liftoff and runout distance are uncertain. Here we used scaled laboratory experiments to explore how barriers affect dilute density current dynamics and the occurrence of liftoff. We created dilute density currents by heating and suspending 20 μm diameter talc in air in an 8.5 x 6.1 x 2.6 m tank. We scaled the currents with respect to Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers such that they were dynamically similar to natural PDCs. While currents were fully turbulent, their Reynolds numbers were not as high as those for natural PDCs. We performed the first set of experiments in a laterally unconfined volume, used laser sheets to illuminate the currents, measured bulk sedimentation rates down the current centerlines, and positioned four to twenty-four cm tall ridge-like barriers in the path of the currents. We found that relatively small barriers (~ half the current height) caused PDC liftoff. By comparison, conservation of kinetic and potential energy predicts that incompressible density currents are able to surmount barriers twice their height. Furthermore, we observed increased sedimentation immediately upstream of barriers and conclude that small barriers initiated buoyancy reversal through a combination of increased air entrainment and sedimentation. We conducted a second set of experiments with the same thermal scaling and mass flux rates but where the currents were laterally confined within a 0.6 m wide channel. We found that small barriers also triggered liftoff of confined currents, but that the body of these currents reattached after liftoff. Those results suggest that lateral confinement inhibits buoyancy reversal by limiting the surface area of the current

  18. Experimental study of turbulence, sedimentation, and coignimbrite mass partitioning in dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.; Manga, Michael

    2012-05-01

    Laboratory density currents comprising warm talc powder turbulently suspended in air simulate many aspects of dilute pyroclastic density currents (PDCs) and demonstrate links between bulk current behavior, sedimentation, and turbulent structures. The densimetric and thermal Richardson, Froude, Stokes, and settling numbers match those of natural PDCs as does the ratio of thermal to kinetic energy density. The experimental currents have lower bulk Reynolds numbers than natural PDCs, but the experiments are fully turbulent. Consequently, the experiments are dynamically similar to the dilute portions of some natural currents. In general, currents traverse the floor of the experimental tank, sedimenting particles and turbulently entraining, heating, and thermally expanding air until all particle sediments or the currents become buoyant and lift off to form coignimbrite plumes. When plumes form, currents often undergo local flow reversals. Current runout distance and liftoff position decrease with increasing densimetric Richardson number and thermal energy density. As those parameters increase, total sedimentation decreases such that > 50% of initial current mass commonly fractionates into the plumes, in agreement with some observations of recent volcanic eruptions. Sedimentation profiles are best described by an entraining sedimentation model rather than the exponential fit resulting from non-entraining box models. Time series analysis shows that sedimentation is not a constant rate process in the experiments, but rather occurs as series of sedimentation-erosion couplets that propagate across the tank floor tracking current motion and behavior. During buoyant liftoff, sedimentation beneath the rising plumes often becomes less organized. Auto-correlation analysis of time series of particle concentration is used to characterize the turbulent structures of the currents and indicates that currents quickly partition into a slow-moving upper portion and faster, more

  19. Cobalt Selenide Nanostructures: An Efficient Bifunctional Catalyst with High Current Density at Low Coverage.

    PubMed

    Masud, Jahangir; Swesi, Abdurazag T; Liyanage, Wipula P R; Nath, Manashi

    2016-07-13

    Electrodeposited Co7Se8 nanostructures exhibiting flake-like morphology show bifunctional catalytic activity for oxygen evolution and hydrogen evolution reaction (OER and HER, respectively) in alkaline medium with long-term durability (>12 h) and high Faradaic efficiency (99.62%). In addition to low Tafel slope (32.6 mV per decade), the Co7Se8 OER electrocatalyst also exhibited very low overpotential to achieve 10 mA cm(-2) (0.26 V) which is lower than other transition metal chalcogenide based OER electrocatalysts reported in the literature and significantly lower than the state-of-the-art precious metal oxides. A low Tafel slope (59.1 mV per decade) was also obtained for the HER catalytic activity in alkaline electrolyte. The OER catalytic activity could be further improved by creating arrays of 3-dimensional rod-like and tubular structures of Co7Se8 through confined electrodeposition on lithographically patterned nanoelectrodes. Such arrays of patterned nanostructures produced exceptionally high mass activity and gravimetric current density (∼68 000 A g(-1)) compared to the planar thin films (∼220 A g(-1)). Such high mass activity of the catalysts underlines reduction in usage of the active material without compromising efficiency and their practical applicability. The catalyst layer could be electrodeposited on different substrates, and an effect of the substrate surface on the catalytic activity was also investigated. The Co7Se8 bifunctional catalyst enabled water electrolysis in alkaline solution at a cell voltage of 1.6 V. The electrodeposition works with exceptional reproducibility on any conducting substrate and shows unprecedented catalytic performance especially with the patterned growth of catalyst rods and tubes. PMID:27309595

  20. Current densities and total contact currents during forest clearing tasks under 400 kV power lines.

    PubMed

    Korpinen, Leena; Kuisti, Harri; Elovaara, Jarmo

    2016-09-01

    The aim of the study was to analyze all values of electric currents from measured periods while performing tasks in forest clearing. The objective was also to choose and analyze measurement cases, where current measurements successfully lasted the entire work period (about 30 min). Two forestry workers volunteered to perform four forest clearing tasks under 400 kV power lines. The sampling frequency of the current measurements was 1 sample/s. The maximum values of the current densities were 1.0-1.2 mA/m(2) (calculated internal EFs 5.0-12.0 mV/m), and the average values were 0.2-0.4 mA/m(2) . The highest contact current was 167.4 μA. All measured values during forest clearing tasks were lower than basic restrictions (0.1 V/m and 0.8 V/m) of the International Commission on Non-Ionizing Radiation Protection. Bioelectromagnetics. 37:423-428, 2016. © 2016 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc. PMID:27192179

  1. Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gamba, Humberto R.; Bayford, Richard; Holder, David

    1999-01-01

    Knowledge of the influence of the human skull on the electrical current (d.c.) distribution within the brain tissue could prove useful in measuring impedance changes inside the human head. These changes can be related to physiological functions. The studies presented in this paper examine the current density distribution in a simple phantom consisting of a saline filled tank (to simulate scalp and brain) and a ring made of dental grade plaster of Paris (to simulate the human skull). Images of the distribution of the d.c. density of the phantom with and without the plaster of Paris ring were produced using a magnetic resonance imaging technique. These images indicate that the skull is likely to produce a more uniform d.c. density within the brain.

  2. Low-field critical current density in porous MgB2 powders

    NASA Astrophysics Data System (ADS)

    Agassi, Y. D.

    2013-09-01

    Porous MgB2 powders are comprised of an ensemble of irregularly shaped constituents. In this work we introduce a model for the critical current density in such powders in the presence of a low external field H (H < 4 T) and in the high-porosity limit, where effects of vortex-lattice elasticity can be neglected and vortex pinning takes place within the powder-constituents. The ensuing critical current-density expression is a product of three decoupled factors: The first sets the scale for the critical current-density magnitude, while the second and third factors contain the field and powder-constituent size-parameters dependencies, respectively. The field dependent factor is of the form H-n and 0.5⩽n⩽1.0, where the limiting exponents n = 0.5 and n = 1.0 correspond to vortex configurations within a powder-constituent of a linear array and a two-dimensional lattice, respectively. For the calculations, we assume for the powder constituent shape a cylinder of arbitrary height and radius, where an external field and a single pinned vortex are aligned in parallel to the cylinder’s axis. The exact fields of this configuration are derived. The size-parameters dependence implies enhanced critical current density for a cigar-like shape powder-constituent aligned with the field, and of radius smaller than about three times the penetration depth. These conclusions are consistent with pertaining data.

  3. Role of fluid density in shaping eruption currents driven by frontal particle blow-out

    NASA Astrophysics Data System (ADS)

    Carroll, C. S.; Turnbull, B.; Louge, M. Y.

    2012-06-01

    We study the role of suspension density in eruption currents, a regime of gravity-driven flow that is sustained by massive, localized blow-out of particles acting as a steady source of heavier fluid injected into a uniform flow at high Reynolds number. Inspired by the potential flow solution of Saffman and Yuen ["Finite-amplitude interfacial waves in the presence of a current," J. Fluid Mech. 123, 459-476 (1982), 10.1017/S0022112082003152], we show that the relative density difference between the two fluids swells the size of the current's head without changing its shape, while inducing a velocity jump at the interface. We test this inviscid theory against inviscid and large-eddy-simulations. We also conduct experiments in a water flume, where a line source of fluorescent brines of various densities is injected in a cross-stream and visualized with a narrow sheet of light. Simulations and experiments reveal that, with isotropic velocity distribution on a finite source, eruption currents expand further and develop interface oscillations, but the inviscid theory still captures relative swelling induced by density. We compare predictions to the static pressure data of McElwaine and Turnbull ["Air pressure data from the Vallee de la Sionne avalanches of 2004," J. Geophys. Res. 110, F03010, doi:, 10.1029/2004JF000237 (2005)] in powder snow avalanches.

  4. Accurate Relations Between the Neutron Current Densities and the Neutron Fluxes

    SciTech Connect

    Ronen, Yigal

    2004-02-15

    Accurate relations between neutron current densities and neutron flux are obtained using the integral transport equation. Using these relations and Fick's Law, diffusion constants can be calculated. These diffusion constants are better than those usually used for the cases in which {sigma}{sub a}/{sigma}{sub s} is not small.

  5. Appraisal of current density in Very Low Frequency electromagnetic measurements using preconditioned conjugate gradient approach

    NASA Astrophysics Data System (ADS)

    Singh, A.; Sharma, S. P.

    2015-12-01

    We describe the implementation of a new fast imaging technique to invert very low frequency (VLF) data measured on profiles into corresponding apparent current density systems over the 2D earth. First, a formulation has been derived to compute the vertical component of the magnetic field for a given 2D current density distribution in the Earth's subsurface. Since the vertical component of the magnetic field is proportional to the real anomaly of VLF electromagnetic measurement, the derived formulation has been used for imaging subsurface structures. The 2D inversion code incorporating the preconditioned conjugate gradient approach was developed for imaging of the subsurface conductors using the real VLF anomaly in terms of apparent current density distribution in the subsurface. The preconditioner determined by the distances between the cells and the observation points greatly improved the quality of the very low frequency imaging. Finally, we tested our method using synthetic and real data and all tests returned favorable results. The presented formulation were also compared with other imaging techniques in terms of apparent current density and resistivity distribution using a standard numerical forward modeling and inversion technique. The presented imaging technique shows improvement with respect to the filtering approaches in depicting subsurface conductors. Further, results obtained using the presented approach is closer to the results of rigorous resistivity inversion.

  6. The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Song, Yang; Peng, Jianping; Di, Yuezhong; Wang, Yaowu; Li, Baokuan; Feng, Naixiang

    2016-02-01

    A finite element model was developed to determine the impact of cathode material and shape on current density in an aluminum electrolysis cell. For the cathode material, results show that increased electrical resistivity leads to a higher cathode voltage drop; however, the horizontal current is reduced in the metal. The horizontal current magnitude for six different cathode materials in decreasing order is graphitized, semi-graphitized, full graphitic, 50% anthracite (50% artificial graphite), 70% anthracite (30% artificial graphite), 100% anthracite. The modified cathode shapes with an inclined cathode surface, higher collector bar and cylindrical protrusions are intended to improve horizontal current and flow resistance. Compared to a traditional cathode, modified collector bar sizes of 70 mm × 230 mm and 80 mm × 270 mm can reduce horizontal current density component Jx by 10% and 19%, respectively, due to better conductivity of the steel. The horizontal current in the metal decreases with increase of cathode inclination. The peak value of Jx can be approximately reduced by 20% for a 2° change in inclination. Cylindrical protrusions lead to local horizontal current increase on their tops, but the average current is less affected and the molten metal is effectively slowed down.

  7. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    SciTech Connect

    Liu, H. Q.; Jie, Y. X. Zou, Z. Y.; Li, W. M.; Wang, Z. X.; Qian, J. P.; Yang, Y.; Zeng, L.; Wei, X. C.; Hu, L. Q.; Wan, B. N.; Ding, W. X.; Brower, D. L.; Lan, T.; Li, G. S.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  8. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Bezerra de Mello, E. R.; Bragança, E.; Saharian, A. A.

    2016-06-01

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed.

  9. The secondary electron emission yield of muscovite mica: Charging kinetics and current density effects

    NASA Astrophysics Data System (ADS)

    Blaise, G.; Pesty, F.; Garoche, P.

    2009-02-01

    Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EI<100 eV and EII=4850 eV. At a given energy and under a low current density J ≤100 nA/cm2, the yield varies with the electron fluence from its intrinsic value σ0 up to the value corresponding to the self-regulated regime for which σ =1. This variation is independent of J. The fluence dependence of the yield σ(D ) is due to the internal field produced by the accumulation of charges that blocks the emission when the charging is positive and enhances it when it is negative. At room temperature, the relaxation time of stored charges is estimated to be of the order of 250 s for holes and 150 s for electrons. Three current density effects have been observed when J ≥400 nA/cm2. (i) The variation of σ(D ) with the fluence D depends on J. (ii) Negative charging is obtained at high current density in the energy range (EI, EII) where the material is normally positively charged at low current density. (iii) Electron exoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.

  10. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  11. Modeling Current Density Maps Using Aliev-Panfilov Electrophysiological Heart Model.

    PubMed

    Beheshti, M; Foomany, F H; Magtibay, K; Masse, S; Lai, P; Asta, J; Jaffray, D A; Nanthakumar, K; Krishnan, S; Umapathy, K

    2016-09-01

    Most existing studies of cardiac arrhythmia rely on surface measurements through optical or electrical mapping techniques. Current density imaging (CDI) is a method which enables us to study current pathways inside the tissue. However, this method entails implementation complexities for beating ex vivo hearts. Hence, this work presents an approach to simulate and study the current distributions in different cardiac electrophysiological states. The results are corroborated by experimental data, and they indicate that different states were distinguishable. The CDI simulations can be used for studying cardiac arrhythmias under simulation conditions which are otherwise impossible or difficult to be implemented experimentally. PMID:27357301

  12. C-axis critical current density of second-generation YBCO tapes.

    SciTech Connect

    Jia, Y.; Hua, J.; Crabtree, G. W.; Kwok, W. K.; Welp, U.; Malozemoff, A. P.; Rupich, M.; Fleshler, S.; Materials Science Division; American Superconductor Corp.

    2010-10-01

    We report on measurements of the temperature and field dependence of the c-axis critical current density (J{sub c}{sup c}) obtained on mesa structures that were patterned into the YBCO layer of second-generation HTS tapes. We find the J{sub c}{sup c}-values of {approx}4 kA cm{sup -2} at 77 K and self-field, corresponding to an unexpectedly high anisotropy in the critical current density J{sub c}{sup ab}/J{sub c}{sup c} of 500-600. C-axis current flow is expected to arise in applications such as the helically wound wires in HTS cables. A simple estimate is given of the fraction of tape width for such a c-axis flow; while in our samples this fraction is approximately 5% for a typical geometry, the fraction will grow linearly with increasing current density anisotropy and could affect the current-carrying ability of the tape.

  13. C-Axis critical current density of second-generation YBCO tapes

    SciTech Connect

    Jia, Y.; Hua, J.; Crabtree, G.W.; Kwok, W.K.; Welp, U.; Malozemoff, A.P.; Rupich, M.; Fleshler, S.

    2010-10-21

    We report on measurements of the temperature and field dependence of the c-axis critical current density (Jcc) obtained on mesa structures that were patterned into the YBCO layer of second-generation HTS tapes. We find the Jcc—values of ~ 4 kA cm-2 at 77 K and self-field, corresponding to an unexpectedly high anisotropy in the critical current density Jcab/Jcc of 500–600. C-axis current flow is expected to arise in applications such as the helically wound wires in HTS cables. A simple estimate is given of the fraction of tape width for such a c-axis flow; while in our samples this fraction is approximately 5% for a typical geometry, the fraction will grow linearly with increasing current density anisotropy and could affect the current-carrying ability of the tape.

  14. Transport, deposition, and liftoff in laboratory density currents composed of hot particles in air

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Manga, M.

    2010-12-01

    Understanding the dynamics of transport, deposition, and air entrainment in pyroclastic density currents (PDCs) is required for accurate predictions of future current behaviors and interpretations of ancient deposits, but directly observing the interiors of natural PDCs is effectively impossible. We model PDCs with scaled, hot, particle-laden density currents generated in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. Comparison of relevant scaling between our experiments and natural PDCs indicates that we are accurately capturing much of the dynamics of dilute PDCs: * Reynolds numbers of our experiments are lower than natural currents, 10^3 compared to 10^6, but still fully turbulent; * Densimetric and Thermal Richardson numbers are of O(1) in both natural and modeled currents; * Stokes and settling numbers for particles in the experiments fall within the expected range for natural PDCs. Conditions within the tank are monitored with temperature and humidity probes. Experiments are illuminated with sheet lighting, and recorded with high-definition video cameras. In general, currents have average velocities of 10-20 cm/s, initial thicknesses of 10-20 cm (although thickness greatly increases as currents entrain and expand air), and run out or lift off distances of 3-5 m. Large Kelvin-Helmholtz type eddies usually form along the top of the current immediately behind the head; these vortices are similar in size to the total current thickness. In currents that lift off, the distal current end typically retreats with time. Preliminary results suggest that lift off distance decreases with increasing thermal Richardson number. Analysis of turbulent structures indicates that the current heads are dominated by large coherent structures with length scales, L, comparable to the current thickness. Within 5-10 L of the current fronts, sequences of similar large eddies often occur. At greater distances behind the current fronts, turbulent structures become smaller and less

  15. Lower hybrid current drive at plasma densities required for thermonuclear reactors

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Tuccillo, A. A.; Amicucci, L.

    2011-12-23

    Driving current in high-density plasmas is essential for the progress of thermonuclear fusion energy research based on the tokamak concept. The lower hybrid current drive (LHCD) effect, is potentially the most suitable tool for driving current at large plasma radii, consistent with the needs of ITER steady state scenario. Unfortunately, experiments at reactor grade high plasma densities with kinetic profiles approaching those required for ITER, have shown problems in penetration of the LH power into the core plasma. These plasmas represent a basic reference for designing possible methods useful for assessing the LHCD concept in ITER. On the basis of the phenomenology observed during LHCD experiments carried out in different machines, and model of the spectral broadening effect due to parametric instability, an interpretation and possible solution of the related important problem is presented.

  16. Circulation-based modeling of gravity currents propagating into ambients with arbitrary shear and density stratification

    NASA Astrophysics Data System (ADS)

    Nasr-Azadani, Mohamad; Meiburg, Eckart

    2015-11-01

    We develop a vorticity-based approach for modeling quasisteady gravity currents propagating into arbitrary density and velocity stratification. The model enforces the conservation of mass, horizontal and vertical momentum, and in contrast to previous approaches it does not rely on empirical, energy-based closure assumptions. Instead, the effective energy loss of the flow can be calculated a posteriori. The present model results in the formulation of a second order, nonlinear ODE that can be solved in a straightforward fashion to determine the gravity current velocity, along with the downstream ambient velocity and density profiles. Comparisons between model predictions and DNS simulations show excellent agreement. They furthermore indicate that for high Reynolds numbers the gravity current height adjusts itself so as to maximize the loss of energy.

  17. Threshold current density of electromigration in eutectic SnPb solder

    SciTech Connect

    Yeh, Y.T.; Chou, C.K.; Hsu, Y.C.; Chen Chih; Tu, K.N.

    2005-05-16

    Electromigration has emerged as an important reliability issue in the microelectronics packaging industry since the dimension of solder joints has continued to shrink. In this letter, we report a technique that enables the precise measurement of the important parameters of solder electromigration, such as activation energy, critical length, threshold current density, effective charge numbers, and electromigration rate. Patterned Cu/Ti films in a Si trench were employed for eutectic SnPb solder to be reflowed on, and thus solder Blech specimens were fabricated. Atomic force microscope was used to measure the depletion volume caused by electromigration on the cathode end. The threshold current density is estimated to be 8.5x10{sup 3} A/cm{sup 2} at 100 deg. C, which relates directly to the maximum allowable current that a solder joint can carry without electromigration damage. This technique facilitates the scientifically systematic investigation of electromigration in solders.

  18. High temperature and current density induced degradation of multi-layer graphene

    SciTech Connect

    Wang, Baoming; Haque, M. A.; Mag-isa, Alexander E.; Kim, Jae-Hyun; Lee, Hak-Joo

    2015-10-19

    We present evidence of moderate current density, when accompanied with high temperature, promoting migration of foreign atoms on the surface of multi-layer graphene. Our in situ transmission electron microscope experiments show migration of silicon atoms at temperatures above 800 °C and current density around 4.2 × 10{sup 7} A/cm{sup 2}. Originating from the micro-machined silicon structures that clamp the freestanding specimen, the atoms are observed to react with the carbon atoms in the multi-layer graphene to produce silicon carbide at temperatures of 900–1000 °C. In the absence of electrical current, there is no migration of silicon and only pyrolysis of polymeric residue is observed.

  19. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    PubMed Central

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-01-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874

  20. Can we derive the current density from three point LEO measurements of the magnetic field perturbations?

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.; Potter, M.; Muhleisen, M.; Friel, M. M.; Martin, P.; Le, G.; Stolle, C.; Luhr, H.

    2014-12-01

    In this paper, we perform critical test of the well-known curlometer technique. The curlometer technique allows a derivation of the current density using measurements of the magnetic field at spatially separated points. At LEO altitudes this generally three dimensionally problem is simplified to a two dimensions by the fact that the current is almost solely flowing along the magnetic field lines. Strictly speaking the current density is derived from integration around a closed loop but in the curlometer technique this integration is simplified to a summation over just three points. In this paper we present a critical analysis of when and to what extend this approximation is valid. We show some simple theoretical considerations, results from a series of simulations, and finally apply the knowledge to ESA SWARM measurements.

  1. Regularization methods to assess the eddy current density inside conductive non-ferromagnetic media

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. Lopes; Ramos, H. G.; Pasadas, D.; Rocha, T.

    2014-02-01

    This presentation describes two regularization methods that were applied to preview the current density induced in an aluminum plate. The images that result from the measurement of one magnetic field component by scanning the plate were used to determine the current density. The scanning was performed using a constant field eddy current probe and a rectangular area including the defect was covered. With the constant field probe a sinusoidal excitation was imposed to the plate, being the amplitude and phase invariant under a limited space translation. The obtained data was inverted and two regularization methods were applied, Tikhonov and total variation. The two methods were compared to conclude about their inclusion into nondestructive test and evaluation instrumentation.

  2. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    NASA Astrophysics Data System (ADS)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  3. Comparison between the magnetic and transport critical current densities in high critical current density melt-textured yttrium barium copper-oxide

    NASA Technical Reports Server (NTRS)

    Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.

  4. THEMIS two-point measurements of the cross-tail current density: A thick bifurcated current sheet in the near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Saito, Miho

    2015-08-01

    The basic properties of the near-Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail-like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets.

  5. Assessing Current State Science Teaching and Learning Standards for Ability to Achieve Climate Science Literacy

    NASA Astrophysics Data System (ADS)

    Busch, K. C.

    2012-12-01

    addressed. Least covered were number 6 "Human activities are impacting the climate system" and number 7 "Climate change will have consequences for the Earth system and human lives." Most references, either direct or indirect, occurred in the high school standards for earth science, a class not required for graduation in either state. This research points to the gaps between what the 7 Essential Principles of Climate Literacy defines as essential knowledge and what students may learn in their K-12 science classes. Thus, the formal system does not seem to offer an experience which can potentially develop a more knowledgeable citizenry who will be able to make wise personal and policy decisions about climate change, falling short of the ultimate goal of achieving widespread climate literacy. Especially troubling was the sparse attention to the principles addressing the human connection to the climate - principles number 6 and 7. If climate literate citizens are to make "wise personal and policy decisions" (USGCRP, 2009), these two principles especially are vital. This research, therefore, has been valuable for identifying current shortcomings in state standards.

  6. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  7. A predictor of atheroma progression in patients achieving very low levels of low-density lipoprotein cholesterol

    PubMed Central

    Nozue, Tsuyoshi; Yamamoto, Shingo; Tohyama, Shinichi; Fukui, Kazuki; Umezawa, Shigeo; Onishi, Yuko; Kunishima, Tomoyuki; Hibi, Kiyoshi; Terashima, Mitsuyasu; Michishita, Ichiro

    2013-01-01

    An aggressive reduction in low-density lipoprotein cholesterol (LDL-C) with statins produces regression or stabilization of coronary artery plaques. However, after achieving very low levels of LDL-C, atheroma regression is not observed in all patients. The purpose of the present study was to evaluate the determinants of atheroma progression despite achieving very low levels of LDL-C. The effects of 8-month statin therapy on coronary atherosclerosis were evaluated using virtual histology intravascular ultrasound in the TRUTH study. Of these, 33 patients who achieved an on-treatment LDL-C level of <70 mg/dl were divided into 2 groups according to increase in plaque volume (progressors, n= 16) or decrease in plaque volume (regressors, n= 17) during an 8-month follow-up period. At the 8-month follow-up, serum LDL-C and apolipoprotein B levels were significantly lower in progressors than in regressors; however, significant increases in high-density lipoprotein cholesterol and apolipoprotein AI and decreases in high-sensitivity C-reactive protein and oxidized LDL were observed only in regressors. The changes in the n-3 to n-6 polyunsaturated fatty acid ratios significantly differed between the 2 groups. Multivariate regression analysis showed that a decrease in the eicosapentaenoic acid + docosahexaenoic acid/arachidonic acid ratio was a significant predictor associated with atheroma progression (β= -0.512, p= 0.004). In conclusions, n-3 to n-6 polyunsaturated fatty acid ratios affected coronary artery plaque progression and regression in patients who achieved very low levels of LDL-C during statin therapy. PMID:24224137

  8. A predictor of atheroma progression in patients achieving very low levels of low-density lipoprotein cholesterol.

    PubMed

    Nozue, Tsuyoshi; Yamamoto, Shingo; Tohyama, Shinichi; Fukui, Kazuki; Umezawa, Shigeo; Onishi, Yuko; Kunishima, Tomoyuki; Hibi, Kiyoshi; Terashima, Mitsuyasu; Michishita, Ichiro

    2013-01-01

    An aggressive reduction in low-density lipoprotein cholesterol (LDL-C) with statins produces regression or stabilization of coronary artery plaques. However, after achieving very low levels of LDL-C, atheroma regression is not observed in all patients. The purpose of the present study was to evaluate the determinants of atheroma progression despite achieving very low levels of LDL-C. The effects of 8-month statin therapy on coronary atherosclerosis were evaluated using virtual histology intravascular ultrasound in the TRUTH study. Of these, 33 patients who achieved an on-treatment LDL-C level of <70 mg/dl were divided into 2 groups according to increase in plaque volume (progressors, n= 16) or decrease in plaque volume (regressors, n= 17) during an 8-month follow-up period. At the 8-month follow-up, serum LDL-C and apolipoprotein B levels were significantly lower in progressors than in regressors; however, significant increases in high-density lipoprotein cholesterol and apolipoprotein AI and decreases in high-sensitivity C-reactive protein and oxidized LDL were observed only in regressors. The changes in the n-3 to n-6 polyunsaturated fatty acid ratios significantly differed between the 2 groups. Multivariate regression analysis showed that a decrease in the eicosapentaenoic acid + docosahexaenoic acid/arachidonic acid ratio was a significant predictor associated with atheroma progression (β= -0.512, p= 0.004). In conclusions, n-3 to n-6 polyunsaturated fatty acid ratios affected coronary artery plaque progression and regression in patients who achieved very low levels of LDL-C during statin therapy. PMID:24224137

  9. Thermal history of pyroclastic density currents and pyroclasts at Tungurahua, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.

    2014-12-01

    The associated hazards and opaqueness of pyroclastic density currents (PDCs) make it impossible for in-situ thermal or concentration measurements within the currents that would provide critical information on the dynamics of PDCs. The entrainment of ambient air into these currents significantly impacts their runout distance and thermal history. The most efficient mechanism to cool a PDC is through the entrainment of colder, denser ambient air through Kelvin-Helmholtz and lobe-and-cleft instabilities, which are dependent on density stratification in the current and topographic-current interactions. The combination of high-resolution multiphase numerical models in concert with field measurements of PDC deposits allows us to better understand the evolving concentration gradients, instabilities, entrainment of air, and temperatures of PDCs. We employ a three-dimensional multiphase Eulerian-Eulerian-Lagrangian (EEL) model, high-resolution topography, and field data to understand the PDCs that traveled down the Juive Grande quebrada during the 2006 eruption of Tungurahua volcano. The multiphase model allows us to examine PDC dynamics such as particle concentrations, velocities, thermal heterogeneities, and ambient air entrainment. As the PDC propagates, the entrainment coefficient decreases due to enhanced density stratification. The interaction of the current with rugged topography increases the entrainment coefficient. We also calculate the temperature of deposition and breadcrust bomb rind thickness for individual pyroclasts. The individual pyroclasts are tracked as Lagrangian particles in the multiphase model and we employ the breadcrust bomb model (Benage et al., 2014) to calculate the deposition temperature and the formation of the non-vesicular to low vesicularity rinds. The model results are compared to paleomagnetic data and field measurements of rind thickness, respectively. This allows the deposited pyroclasts to be natural thermometers that help constrain the

  10. Density currents in the Chicago River: characterization, effects on water quality, and potential sources.

    PubMed

    Jackson, P Ryan; García, Carlos M; Oberg, Kevin A; Johnson, Kevin K; García, Marcelo H

    2008-08-15

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common. PMID:18499229

  11. Density currents in the Chicago River: Characterization, effects on water quality, and potential sources

    USGS Publications Warehouse

    Jackson, P.R.; Garcia, C.M.; Oberg, K.A.; Johnson, K.K.; Garcia, M.H.

    2008-01-01

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.

  12. Irreversibility line in superconductor as line of constant shielding current density

    SciTech Connect

    Goemoery, F.; Takacs, S.; Holubar, T.

    1997-06-01

    The irreversibility of magnetic properties of superconductors is due to the existence of macroscopic shielding currents persisting for some period of time. The same currents offer nearly lossless electricity transport. Thus, the extent of magnetic irreversibility is directly proportional to the current-carrying capacity of a superconductor. Because the current-carrying capacity is an intrinsic property of the material, various experimental techniques should give the same irreversibility line corresponding to the same macroscopic shielding current density. Following this approach, the authors compared the irreversibility lines obtained from AC susceptibility measurement with those determined from quasistatic magnetization loops recorded with the help of a SQUID susceptometer. An additional parameter which has to be comparable is the electrical field characterizing the rate of change of the magnetic field. Fulfilling these conditions of equivalency, the authors found that it is possible to explain the irreversibility lines obtained by various techniques and at different conditions by the same physical model. They demonstrate that for the data, taken within two orders of magnitude for the current density and more than seven orders of magnitude for the electrical field, a consistent picture expressing all the observed features by the same model can be found. Measurements are presented from YBCO samples.

  13. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  14. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition

    NASA Astrophysics Data System (ADS)

    Gurioli, L.; Zanella, E.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    To assess ways in which the products of explosive eruptions interact with human settlements, we performed volcanological and rock magnetic analyses on the deposits of the A.D. 79 eruption at the Pompeii excavations (Italy). During this eruption the Roman town of Pompeii was covered by 2.5 m of fallout pumice and then partially destroyed by pyroclastic density currents (PDCs). Anisotropy of magnetic susceptibility measurements performed on the fine matrix of the deposits allowed the quantification of the variations in flow direction and emplacement mechanisms of the parental PDCs that entered the town. These results, integrated with volcanological field investigations, revealed that the presence of buildings, still protruding through the fallout deposits, strongly affected the distribution and accumulation of the erupted products. All of the PDCs that entered the town, even the most dilute ones, were density stratified currents in which interaction with the urban fabric occurred in the lower part of the current. The degree of interaction varied mainly as a function of obstacle height and density stratification within the current. For examples, the lower part of the EU4pf current left deposits up to 3 m thick and was able to interact with 2- to 4-m-high obstacles. However, a decrease in thickness and grain size of the deposits across the town indicates that even though the upper portion of the current was able to decouple from the lower portion, enabling it to flow over the town, it was not able to fully restore the sediment supply to the lower portion in order to maintain the deposition observed upon entry into the town.

  15. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  16. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-02-01

    Fronts represent sharp boundaries between water masses, but seasonal and interannual variation in their occurrence and effects on the distributions of pelagic organisms are poorly understood. This study reports results from six years of ocean front observations (2006-2011) along two transect lines across the Southern California Current System (SCCS) using autonomous Spray ocean gliders. During this time, 154 positive near-surface density fronts were identified within 124 completed transects consisting of nearly 23,000 vertical profiles. The incidence of surface density fronts showed distinct seasonality along line 80 off Pt. Conception, with fewer fronts occurring during winter months and more numerous fronts in the nearshore and during spring, summer and fall. On line 90, fronts were the least common nearshore and most frequent in a transitional region offshore. Horizontal density gradients in the surface layer (0-50 m) were significantly correlated with horizontal gradients in surface layer Chlorophyll-a (Chl-a) fluorescence, as well as with mean volume backscatter (MVBS) recorded by a 750 kHz acoustic Doppler profiler. Density fronts were not only zones of rapidly changing phytoplankton and zooplankton biomass concentrations, but also more likely to be zones of enhanced acoustic backscatter and Chl-a fluorescence than regions flanking the fronts. MVBS and Chl-a gradients were significantly correlated with gradients in other hydrographic variables such as temperature, salinity, and spiciness, and weakly with cross-track current velocity, though density gradients remained the single best predictor of strong MVBS and fluorescence gradients. Large mobile predators foraging in the vicinity of such features could locate habitat with higher zooplankton biomass concentrations up to 85% of the time by traveling up local density gradients (i.e., toward rather than away from denser surface waters). We discuss implications of these results in the context of long-term trends

  17. Towards time-dependent current-density-functional theory in the non-linear regime

    SciTech Connect

    Escartín, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  18. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  19. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations. PMID:25725723

  20. High current density and low turn-on field from aligned Cd(OH)2 nanosheets

    NASA Astrophysics Data System (ADS)

    Bagal, Vivekanand S.; Patil, Girish P.; Deore, Amol B.; Baviskar, Prashant K.; Suryawanshi, Sachin R.; More, Mahendra A.; Chavan, Padmakar G.

    2016-04-01

    High current density of 9.8 mA/cm2 was drawn at an applied field of 4.1 V/μm from aligned Cd(OH)2 nanosheets and low turn-on field of 1.4 V/μm was found for the emission current density of 10 μA/cm2. The aligned Cd(OH)2 nanosheets were synthesized by CBD technique on Cadmium foil. To the best of our knowledge this is the first report on the field emission studies of Cd(OH)2 nanosheets. Simple synthesis route coupled with superior field emission properties indicate the possible use of Cd(OH)2 nanosheets for micro/nanoelectronic devices.

  1. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    NASA Astrophysics Data System (ADS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-06-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  2. Electrophoretic deposition of nanobiocomposites for orthopedic applications: influence of current density and coating duration.

    PubMed

    Sharma, Smriti; Soni, Vivek P; Bellare, Jayesh R

    2009-12-01

    Frequently metal implants undergo detachment from the host tissue due to inadequate biocompatibility and poor osteointegration. In view of this, bioactive porous apatite-wollastonite/chitosan nanocomposite coating was prepared using electrophoretic deposition (EPD) technique in the present work. The effect of coating duration and current density on surface characteristics of the nanocomposite coating was assessed using optical microscope and scanning electron microscope. EPD led to the formation of thick and homogeneous coating. Adhesion of the composite coating on titanium substrate was evaluated using tape test and bioactivity of the coatings was studied by immersing in simulated body fluid (SBF). The coating with higher current density and longer coating duration was found to be suitable with improved adhesion and bioactivity for intended metal implants. PMID:18600432

  3. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Loschialpo, P.; Kapetanakos, C. A.

    1988-04-01

    Large diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1-5-microsec electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, approximately 300,000 A/sq cm sq rad has been consistently measured. To obtain this high-current density, the LaB6 cathodes have been heated to temperatures between about 1600 and 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure 10 to the -6th to -10 to the -5th Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser-type cathodes.

  4. Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie

    2016-06-01

    The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.

  5. Self-field effects upon the critical current density of flat superconducting strips

    NASA Astrophysics Data System (ADS)

    Babaei Brojeny, Ali A.; Clem, John R.

    2005-06-01

    We develop a general theory to account self-consistently for self-field effects upon the average transport critical current density Jc of a flat type-II superconducting strip in the mixed state when the bulk pinning is characterized by a field-dependent depinning critical current density Jp(B), where B is the local magnetic flux density. We first consider the possibility of both bulk and edge-pinning contributions but conclude that bulk pinning dominates over geometrical edge-barrier effects in state-of-the-art YBCO films and prototype second-generation coated conductors. We apply our theory using the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba) as a function of a perpendicular applied magnetic induction Ba and show how Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to JpK(Ba) when Ba>=Ba*, where Ba* is the value of Ba that makes the net flux density zero at the strip's edge. However, Jc(Ba) is suppressed relative to JpK(Ba) at low fields when Ba< Ba*, with the largest suppression occurring when Ba*/B0 is of order unity or larger.

  6. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    PubMed

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-01

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations. PMID:26575912

  7. Dependence of SOL Widths on Plasma Current and Density in NSTX H-mode Plasmas

    SciTech Connect

    Ahn, J W; Maingi, Rajesh; Boedo, J.; Soukhanovskii, V. A.

    2009-01-01

    The dependence of various SOL widths on the line-averaged density ((n) over bar (e)) and plasma current (I(p)) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width (lambda(q)), measured by the IR camera, is virtually insensitive to (n) over bar (e) and has a strong negative dependence on I(p). This insensitivity of lambda(q) to (n) over bare is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths (lambda(Te), lambda(jsat), lambda(ne), and lambda(pe), respectively) measured by the probe showed that lambda(Te) and lambda(jsat) have strong negative dependence on I(p), whereas lambda(ne) and lambda(pe) revealed only a little or no dependence. The dependence of lambda(Te) on I(p) is consistent with the scaling law in the literature, while lambda(ne) and lambda(pe) dependence shows a different trend. (C) 2009 Elsevier B.V. All rights reserved.

  8. Dependence of various SOL widths on plasma current and density in NSTX H-mode plasmas

    SciTech Connect

    Ahn, J; Maingi, R; Boedo, J; Soukhanovskii, V A

    2009-02-12

    The dependence of various SOL widths on the line-averaged density ({ovr n}{sub e}) and plasma current (l{sub p}) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ({lambda}{sub q}), measured by the IR camera, is virtually insensitive to {ovr n}{sub e} and has a strong negative dependence on l{sub p}. This insensitivity of {lambda}{sub q} to {ovr n}{sub e} is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ({lambda}{sub Te}, {lambda}{sub jsat}, {lambda}{sub ne}, and {lambda}{sub pe}, respectively) measured by the probe showed that {lambda}{sub Te} and {lambda}{sub jsat} have strong negative dependence on l{sub p}, whereas {lambda}{sub ne} and {lambda}{sub pe} revealed only a little or no dependence. The dependence of {lambda}{sub Te} on l{sub p} is consistent with the scaling law in the literature while {lambda}{sub ne} and {lambda}{sub pe} dependence shows a different trend.

  9. Scanning tunneling microscopy current from localized basis orbital density functional theory

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Paulsson, Magnus

    2016-03-01

    We present a method capable of calculating elastic scanning tunneling microscopy (STM) currents from localized atomic orbital density functional theory (DFT). To overcome the poor accuracy of the localized orbital description of the wave functions far away from the atoms, we propagate the wave functions, using the total DFT potential. From the propagated wave functions, the Bardeen's perturbative approach provides the tunneling current. To illustrate the method we investigate carbon monoxide adsorbed on a Cu(111) surface and recover the depression/protrusion observed experimentally with normal/CO-functionalized STM tips. The theory furthermore allows us to discuss the significance of s - and p -wave tips.

  10. Magnetic structure of nickel nanowires after the high-density current pulse

    NASA Astrophysics Data System (ADS)

    Nurgazizov, N. I.; Bizyaev, D. A.; Bukharaev, A. A.

    2016-05-01

    Changes in the magnetic structure of nickel nanowires formed on a nonconductive surface after the high-density current pulse have been investigated using magnetic force microscopy and voltammetry. Based on the obtained experimental data and results of the computer simulation, it has been concluded that the main reason for the change in the magnetic structure is the heating of the nanowire by a current pulse. It has been shown that, during the subsequent cooling, the newly formed magnetic structure is pinned by surface roughnesses of the relief of the nanowire under investigation.

  11. 4H-SiC junction-barrier Schottky diodes with high forward current densities

    NASA Astrophysics Data System (ADS)

    Tone, Kiyoshi; Zhao, Jian H.; Weiner, Maurice; Pan, Menghan

    2001-07-01

    4H-SiC junction-barrier Schottky (JBS) diodes blocking 1000 V have been fabricated. I-V characteristics have been evaluated at room temperature and 255 °C in comparison with the Schottky barrier (SB) and pin diodes fabricated on the same wafer. While the low reverse leakage confirms the functioning of JBS, the high forward current densities of 630 and 210 A cm-2 at 4.0 V at room temperature and 255 °C, respectively, with only ~20% reduction from those of the SB diodes, clearly demonstrate that the SiC JBS diodes can be fabricated with acceptable sacrifice in the forward current capacities.

  12. Current density and poloidal magnetic field for toroidal elliptic plasmas with triangularity

    SciTech Connect

    Martin, P.; Haines, M.G.; Castro, E.

    2005-08-15

    Changes in the poloidal magnetic field around a tokamak magnetic surface due to different values of triangularity and ellipticity are analyzed in this paper. The treatment here presented allows the determination of the poloidal magnetic field from knowledge of the toroidal current density. Different profiles of these currents are studied. Improvements in the analytic forms of the magnetic surfaces have also been found. The treatment has been performed using a recent published system of coordinates. Suitable analytic equations have been used for the elliptic magnetic surfaces with triangularity and Shafranov shift.

  13. Imaging the local forward current density of solar cells by dynamical precision contact thermography

    SciTech Connect

    Breitenstein, O.; Eberhardt, W.; Iwig, K.

    1994-12-31

    In spite of many techniques of measuring the local lifetime or the local short circuit current, no non-destructive technique has been available for imaging the local forward current density, which determines the open circuit voltage and the fill factor of solar cells. The authors demonstrate the application of a new analyzing technique, enabling non-destructive shunt hunting in forward direction. A periodical forward current is applied to the cell, and only the dynamical temperature response is measured in contact mode with a resolution below 10 {micro}K. Mechanical scanning of the T-sensor position yields a thermogram with a spatial resolution well below 1 mm and a current density resolution well below 1 mA/cm{sup 2}. First results show that both the edges of solar cells and their interior may have sites of a locally increased forward current. Hot spots measured in reverse bias direction only occasionally coincide with these warm spots measured in forward direction.

  14. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    PubMed

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed. PMID:26199833

  15. Microwave field frequency and current density modulated skyrmion-chain in nanotrack

    PubMed Central

    Ma, Fusheng; Ezawa, Motohiko; Zhou, Yan

    2015-01-01

    Magnetic skyrmions are promising candidates as information carriers for the next-generation spintronic devices because of their small size, facile current-driven motion and topological stability. The controllable nucleation and motion of skyrmions in magnetic nanostructures will be essential in future skyrmionic devices. Here, we present the microwave assisted nucleation and motion of skyrmion-chains in magnetic nanotrack by micromagnetic simulation. A skyrmion-chain is a one-dimensional cluster of equally spaced skyrmions. A skyrmion-chain conveys an integer bit n when it consists of n skyrmions. A series of skyrmion-chains with various lengths is generated and moved in the nanotrack driven by spin-polarized current. The period, length and spacing of the skyrmion-chains can be dynamically manipulated by controlling either the frequency of the microwave field or the time dependent spin-polarized current density. A skyrmion-chain behaves as a massless particle, where it stops without delay when the current is stopped. Their velocity is found to be linearly dependent on the current density and insensitive to the frequency and amplitude of the excitation microwave field. Uniform motion of trains of skyrmion-chains in nanotrack offers a promising approach for spintronic multi-bit memories containing series of skyrmion-chains to represent data stream. PMID:26468929

  16. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    NASA Astrophysics Data System (ADS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed.

  17. Microwave field frequency and current density modulated skyrmion-chain in nanotrack.

    PubMed

    Ma, Fusheng; Ezawa, Motohiko; Zhou, Yan

    2015-01-01

    Magnetic skyrmions are promising candidates as information carriers for the next-generation spintronic devices because of their small size, facile current-driven motion and topological stability. The controllable nucleation and motion of skyrmions in magnetic nanostructures will be essential in future skyrmionic devices. Here, we present the microwave assisted nucleation and motion of skyrmion-chains in magnetic nanotrack by micromagnetic simulation. A skyrmion-chain is a one-dimensional cluster of equally spaced skyrmions. A skyrmion-chain conveys an integer bit n when it consists of n skyrmions. A series of skyrmion-chains with various lengths is generated and moved in the nanotrack driven by spin-polarized current. The period, length and spacing of the skyrmion-chains can be dynamically manipulated by controlling either the frequency of the microwave field or the time dependent spin-polarized current density. A skyrmion-chain behaves as a massless particle, where it stops without delay when the current is stopped. Their velocity is found to be linearly dependent on the current density and insensitive to the frequency and amplitude of the excitation microwave field. Uniform motion of trains of skyrmion-chains in nanotrack offers a promising approach for spintronic multi-bit memories containing series of skyrmion-chains to represent data stream. PMID:26468929

  18. Microwave field frequency and current density modulated skyrmion-chain in nanotrack

    NASA Astrophysics Data System (ADS)

    Ma, Fusheng; Ezawa, Motohiko; Zhou, Yan

    2015-10-01

    Magnetic skyrmions are promising candidates as information carriers for the next-generation spintronic devices because of their small size, facile current-driven motion and topological stability. The controllable nucleation and motion of skyrmions in magnetic nanostructures will be essential in future skyrmionic devices. Here, we present the microwave assisted nucleation and motion of skyrmion-chains in magnetic nanotrack by micromagnetic simulation. A skyrmion-chain is a one-dimensional cluster of equally spaced skyrmions. A skyrmion-chain conveys an integer bit n when it consists of n skyrmions. A series of skyrmion-chains with various lengths is generated and moved in the nanotrack driven by spin-polarized current. The period, length and spacing of the skyrmion-chains can be dynamically manipulated by controlling either the frequency of the microwave field or the time dependent spin-polarized current density. A skyrmion-chain behaves as a massless particle, where it stops without delay when the current is stopped. Their velocity is found to be linearly dependent on the current density and insensitive to the frequency and amplitude of the excitation microwave field. Uniform motion of trains of skyrmion-chains in nanotrack offers a promising approach for spintronic multi-bit memories containing series of skyrmion-chains to represent data stream.

  19. Microstructure dependence of the c-axis critical current density in second-generation YBCO tapes.

    SciTech Connect

    Jia, Y.; Welp, U.; Crabtree, G. W.; Kwok, W. K.; Malozemoff, A. P.; Rupich, M. W.; Fleshler, S.; Clem, J. R.

    2011-10-01

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  20. Microstructure dependence of the c-axis critical current density in second generation YBCO tapes

    SciTech Connect

    Jia, Y. Welp, U. Crabtree, G.W.; Kwok, W.K.; Malozemoff, A.P.; Rupich, M.W.; Fleshler, S.; Clem, J.R.

    2011-10-31

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  1. Electrical transport properties and current density - voltage characteristic of PVA-Ag nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Dutta, B.; Sinha, S.; Mukherjee, A.; Basu, S.; Meikap, A. K.

    2016-05-01

    Silver (Ag) nanoparticle and Polyvinyl alcohol (PVA) - Silver (Ag) composite have been prepared and its dielectric constant, ac conductivity, and current density-voltage characteristics have been studied, at and above room temperature. Here correlated barrier hopping found to be the dominant charge transport mechanism with maximum barrier height of 0.11 eV. The sample, under ±5 V applied voltage, show back to back Schottky diode behaviour.

  2. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Densities in the Ring Current

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Guild, T. B.; Lemon, C. L.; Schulz, M.

    2008-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. For example, the feedback of the ring current tends to mitigate the build-up of the asymmetric ring current and associated magnetic depressions during storm main phase. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities and ion densities at geosynchronous altitude to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 12-14 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [ Lemon et al., JGR, 2004]. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM- E. We compare the simulated magnetic intensity at geosynchronous altitude (6.6 RE) with the magnetic intensity measured by magnetometers on the GOES G8, G10, and G11 satellites. The simulated ion densities at different magnetic local times are compared with those from the re-analysis model of LANL/MPA densities of O'Brien and Lemon [Space Weather, 2007]. This is a first step towards a more extensive comparison that will include other datasets, such as ion and magnetic field data from Polar, at locations closer to the Earth than geosynchronous altitude.

  3. Effect of topography on deposition from dilute pyroclastic density currents simulated by Ansys Fluent software

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico Maria; Valentine, Greg A.; Dellino, Pierfrancesco; de Tullio, Marco D.

    2010-05-01

    Pyroclastic density currents are volcanic gas-particle flows that move along volcano flanks and over the neighboring topography. Flow particle concentration can vary between two end members, concentrated and dilute. When a pyroclastic density current interacts with an uneven topography, the flow-field variables (velocity, pressure, particle concentration) are drastically changed at the flow-substrate boundary. These changes may significantly affect the sedimentation rate and the resulting deposits can record such effects in their sedimentological features. Here we show, by means of numerical simulations, how a dilute pyroclastic density current interacts with four different types of topographies, namely: flat, one hill, one valley and two hills. The simulations are carried out by Ansys Fluent commercial software for applications in fluid dynamic engineering. Our numerical scheme treats the very fine particles as being in full thermo-mechanical equilibrium with the volcanic gas (pseudo-fluid phase), and the trajectories of the coarser particles are tracked by means of the pseudo-fluid solution (Lagrangian particles). There is a two-way coupling between the pseudo-fluid phase and Lagrangian particles, which accounts for the reciprocal mechanical effects of the two phases. Numerical results are then used to analyze the local effects of topography on the deposition of the Lagrangian particles, by monitoring with time and space the local changes at the boundary between the dilute pyroclastic density current and substrate. We use the sedimentation rate and grain-size distribution of the Lagrangian particles as proxies of the deposit features, and by these parameters we compare qualitatively the numerical results with the deposits of known eruptions: Mount St. Helens blast, Taupo ignimbrite and Vulcano surge deposits. The results reproduce qualitatively the natural deposits very well, and we conclude that Ansys Fluent software could be used in volcanology with success.

  4. Internally oxidized Nb₃Sn strands with fine grain size and high critical current density.

    PubMed

    Xu, Xingchen; Sumption, Michael D; Peng, Xuan

    2015-02-25

    Nb3Sn strands fabricated using Nb-Zr alloy can be internally oxidized, provided that oxygen is properly supplied via an oxide powder. This allows the formation of fine intragranular and intergranular ZrO2 particles in a Nb3Sn matrix. These particles can refine the grain size by a factor of three and thereby greatly enhance the Nb3Sn critical current density. PMID:25582555

  5. Resistance of 4H-SiC Schottky barriers at high forward-current densities

    SciTech Connect

    Ivanov, P. A. Samsonova, T. P.; Il’inskaya, N. D.; Serebrennikova, O. Yu.; Kon’kov, O. I.; Potapov, A. S.

    2015-07-15

    The resistance of Schottky barriers based on 4H-SiC is experimentally determined at high forward-current densities. The measured resistance is found to be significantly higher than the resistance predicted by classical mechanisms of electron transport in Schottky contacts. An assumption concerning the crucial contribution of the tunnel-transparent intermediate oxide layer between the metal and semiconductor to the barrier resistance is proposed and partially justified.

  6. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m‑2 & 3.09  ±  0.04 W m‑2 and 17.7  ±  0.03 A m‑2 & 7.72  ±  0.09 W m‑2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  7. Current vs Charge Density Contributions to Nonlinear X-ray Spectroscopy.

    PubMed

    Rouxel, Jérémy R; Kowalewski, Markus; Mukamel, Shaul

    2016-08-01

    Stimulated (coherent) and spontaneous (incoherent) nonlinear X-ray signals are expressed using a spatially nonlocal response tensor which directly connects them to the time evolving current j and charge σ densities rather than to electric and magnetic multipoles. The relative contributions of the σA(2) and j · A minimal coupling terms, where A is the vector potential, are demonstrated. The two dominate off-resonant and resonant scattering, respectively, and make comparable contributions at near resonant detunings. PMID:27347786

  8. Occupation probabilities and current densities of bulk and edge states of a Floquet topological insulator

    NASA Astrophysics Data System (ADS)

    Dehghani, Hossein; Mitra, Aditi

    2016-05-01

    Results are presented for the occupation probabilities and current densities of bulk and edge states of half-filled graphene in a cylindrical geometry and irradiated by a circularly polarized laser. It is assumed that the system is closed and that the laser has been switched on as a quench. Laser parameters corresponding to some representative topological phases are studied: one where the Chern number of the Floquet bands equals the number of chiral edge modes, a second where anomalous edge states appear in the Floquet Brillouin zone boundaries, and a third where the Chern number is zero, yet topological edge states appear at the center and boundaries of the Floquet Brillouin zone. Qualitative differences are found for the high-frequency off-resonant and low-frequency on-resonant laser with edge states arising due to resonant processes occupied with a high effective temperature on the one hand, while edge states arising due to off-resonant processes occupied with a low effective temperature on the other. For an ideal half-filled system where only one of the bands in the Floquet Brillouin zone is occupied and the other empty, particle-hole and inversion symmetry of the Floquet Hamiltonian implies zero current density. However the laser switch-on protocol breaks the inversion symmetry, resulting in a net cylindrical sheet of current density at steady state. Due to the underlying chirality of the system, this current density profile is associated with a net charge imbalance between the top and bottom of the cylinders.

  9. What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Marshall, B. J.; Andrews, B. J.; Fauria, K.

    2015-12-01

    A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.

  10. Iontophoretic Permeation of Lisinopril at Different Current Densities and Drug Concentrations

    PubMed Central

    Jain, Ashish; Nayak, Satish; Soni, Vandana

    2012-01-01

    Purpose: The purpose of the present work was to assess iontophoretic permeation of Lisinopril at different current densities and concentrations for development of patient-controlled active transdermal system. Methods: In vitro iontophoretic transdermal delivery of Lisinopril across the pigskin was investigated at three different drug concentrations and three different current densities (0.25- 0.75 mA/cm2) in the donor cell of the diffusion apparatus, using cathodal iontophoresis along with the passive controls. Results: For passive permeation, the steady state flux significantly increased with the increasing of donor drug concentration. At all concentration levels, iontophoresis considerably increased the permeation rate compared to passive controls. Iontophoretic transport of Lisinopril was to be found increase with current densities. Flux enhancement was highest at the lowest drug load and lowest at the highest drug load. Conclusion: The obtained results indicate that permeation rate of Lisinopril across the pigskin can be considerably enhanced, controlled or optimized by the use of Iontophoresis technique. PMID:24312799

  11. Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses

    PubMed Central

    2011-01-01

    We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification. PACS: 81; 81.05.Bx; 81.05.Kf. PMID:21871070

  12. Achievement Goal Theory at the Crossroads: Old Controversies, Current Challenges, and New Directions

    ERIC Educational Resources Information Center

    Senko, Corwin; Hulleman, Chris S.; Harackiewicz, Judith M.

    2011-01-01

    Achievement goal theory has been one of the most prominent theories of motivation in educational research for more than 25 years. It has undergone considerable revision during that span, most notably with the distinction between approach and avoidance goals, debate concerning the critical features of performance goals, and the emergence of a…

  13. Analysis of nanosecond breaking of a high-density current in SOS diodes

    NASA Astrophysics Data System (ADS)

    Grekhov, I. V.; Lyublinskii, A. G.; Smirnova, I. A.

    2015-11-01

    Effect of a sharp (nanosecond) breaking of the reverse current with a density on the order of 103-104 A/cm2 in a silicon diode upon switching from direct to reverse bias voltage (so-called silicon opening switch, or SOS effect) is widely used in nanosecond technologies of gigawatt powers. For detailed analysis of the SOS effect, we constructed a special setup with small stray inductance, which makes it possible to test single SOS diodes with a working area of 1-2 mm2 in a wide range of current densities. Our experiments show, in particular, that the numerical model of the SOS effect developed at the Institute of Electrophysics, Ural Branch, Russian Academy of Sciences successfully described the experimental results. It is also shown that the charge extracted from the diode structure by the reverse current exceeds the charge introduced by a direct current pulse by not more than 10%, indicating a relatively small role of ionization processes. The possibility to carry out experiments on single samples with a small surface area allows us to study the SOS effect and considerably facilitates investigations aimed at the perfection of the design of SOS diodes.

  14. Lab Experiments Probe Interactions Between Dilute Pyroclastic Density Currents and 3D Barriers

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2014-12-01

    We conducted scaled laboratory experiments of unconfined dilute pyroclastic density currents (PDCs) to examine interactions between three - dimensional obstacles and dilute PDCs. While it is known that PDCs can surmount barriers by converting kinetic energy into potential energy, the signature of topography on PDC dynamics is unclear. To examine the interplay between PDCs and topography, we turbulently suspended heated and ambient-temperature 20 μm talc powder in air within an 8.5 x 6.1 x 2.6 m tank. Experimental parameters (Froude number, densimetric and thermal Richardson number, particle Stokes and Settling numbers) were scaled such that the experimental currents were dynamically similar to natural PCS. The Reynolds number, however, is much smaller than in natural currents, but still large enough for the flows to be turbulent. We placed cylindrical and ridge-like objects in the path of the currents, illuminated the currents with orthogonal laser sheets, and recorded each experiment with high definition cameras. We observed currents surmounting ridge-like barriers (barrier height = current height). Slanted ridges redirected the currents upward and parallel to the upstream face of the ridges (~45° from horizontal). Down stream of the slanted ridges, ambient-temperature currents reattached to the floor. By comparison, hot currents reversed buoyancy and lifted off. These observations suggest that obstacles enhance air entrainment, a process key to affecting runout distance and the depletion of fine particles in ignimbrites. Moreover, we observed vortex shedding in the wake of cylinders. Our experiments demonstrate that barriers of various shapes affect PDC dynamics and can shorten PDC runout distances. Understanding the effects of topography on PDCs is required for interpreting many deposits because processes such as vortex shedding and topographically-induced changes in turbulent length scales and entrainment likely leave depositional signatures.

  15. Amplification of current density modulation in a FEL with an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.D.

    2011-03-28

    We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws can be complicated. Furthermore, it is also preferable to have an analytical FEL model with assumptions consistent with the other two sections of a CeC system. Recently, we developed the FEL theory in an infinitely wide electron beam with {kappa}-1 (Lorentzian) energy distribution. Close form solutions have been obtained for the amplified current modulation initiated by an external electric field with various spatial-profiles. In this work, we extend the theory into {kappa}-2 energy distribution and study the evolution of current density induced by an initial density modulation.

  16. Pyroclastic density currents and local topography as seen with the conveyer model

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico M.; Dellino, Pierfrancesco

    2014-05-01

    Pyroclastic density currents (PDCs) are multiphase flows generated during explosive volcanic eruptions, and they move down the volcano, and over the surrounding topography. The flow-topography interaction can play a fundamental role in the sedimentary processes, and in the resulting deposit facies architecture, as well as can play a dramatic role in the flow behavior, and in the associated volcanic hazard. This paper aims at discussing the PDC-topography interaction theme from the viewpoint of both deposits and flow structure, by accounting for appropriate literature, and revising the concepts in light of the theoretical conveyer model of Doronzo and Dellino (2013) on sedimentation and deposition in particulate density currents. First the effects, then the causes of the flow-topography interaction are discussed, in order to follow the historical development of theme concepts. The discussion is relative in terms of inertial and forced currents, which are defined on the basis of a dimensionless quantity (SD) representing the conservation of mass. Momentum equation relating depositional unit thickness, flow shear velocity, and density contrast shows that the flow is the cause of PDC motion, whereas the density contrast sustains the momentum, and the deposits are the process effect. In particular, the flow structure is described into three parts, flow-substrate boundary zone, boundary layer (lower part), and wake region (upper part) of the current. The facies architecture of PDC deposits, and the volcanic hazard depend on fluid dynamic and hydraulic behavior represented, in light of the conveyer model, by the balance of sedimentation and deposition rates through transport and erosion (“sedimentation-deposition” ratio, SD). This balance acts between flow-substrate boundary zone and boundary layer. The paper discussion mainly applies to small-to-intermediate volume eruptions. Field and modeling examples of Vulcano tuff cone and Colli Albani maar (Italy) constrain the

  17. Current initiation in low-density foam z-pinch plasmas

    SciTech Connect

    Derzon, M.; Nash, T.; Allshouse, G.

    1996-07-01

    Low density agar and aerogel foams were tested as z-pinch loads on the SATURN accelerator. In these first experiments, we studied the initial plasma conditions by measuring the visible emission at early times with a framing camera and 1-D imaging. At later time, near the stagnation when the plasma is hotter, x-ray imaging and spectral diagnostics were used to characterize the plasma. Filamentation and arcing at the current contacts was observed. None of the implosions were uniform along the z-axis. The prime causes of these problems are believed to be the electrode contacts and the current return configuration and these are solvable. Periodic phenomena consistent with the formation of instabilities were observed on one shot, not on others, implying that there may be a way of controlling instabilities in the pinch. Many of the issues involving current initiation may be solvable. Solutions are discussed.

  18. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3.

    PubMed

    MacManus-Driscoll, J L; Foltyn, S R; Jia, Q X; Wang, H; Serquis, A; Civale, L; Maiorov, B; Hawley, M E; Maley, M P; Peterson, D E

    2004-07-01

    There are numerous potential applications for superconducting tapes based on YBa(2)Cu(3)O(7-x) (YBCO) films coated onto metallic substrates. A long-established goal of more than 15 years has been to understand the magnetic-flux pinning mechanisms that allow films to maintain high current densities out to high magnetic fields. In fact, films carry one to two orders of magnitude higher current densities than any other form of the material. For this reason, the idea of further improving pinning has received little attention. Now that commercialization of YBCO-tape conductors is much closer, an important goal for both better performance and lower fabrication costs is to achieve enhanced pinning in a practical way. In this work, we demonstrate a simple and industrially scaleable route that yields a 1.5-5-fold improvement in the in-magnetic-field current densities of conductors that are already of high quality. PMID:15170180

  19. Effect of Current Density and Plating Time on Cu Electroplating in TSV and Low Alpha Solder Bumping

    NASA Astrophysics Data System (ADS)

    Jung, Do-Hyun; Sharma, Ashutosh; Kim, Keong-Heum; Choo, Yong-Chul; Jung, Jae-Pil

    2015-03-01

    In this study, copper filling in through-silicon via (TSV) by pulse periodic reverse electroplating and low alpha solder bumping on Cu-filled TSVs was investigated. The via diameter and depth of TSV were 60 and 120 µm, respectively. The experimental results indicated that the thickness of electrodeposited copper layer increased with increasing cathodic current density and plating time. The electroplated Cu in TSV showed a typical bottom-up filling. A defectless, complete, and fast 100% Cu-filled TSV was achieved at cathodic and anodic current densities of -8 and 16 mA/cm2 for a plating time of 4 h, respectively. A sound low alpha solder ball, Sn-1.0 wt.% Ag-0.5 wt.% Cu (SAC 105) with a diameter of 83 µm and height of 66 µm was reflow processed at 245 °C on Cu-filled TSV. The Cu/solder joint interface was subjected to high temperature aging at 85 °C for 150 h, which showed an excellent bonding characteristic with minimum Cu-Sn intermetallic compounds growth.

  20. Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts

    NASA Astrophysics Data System (ADS)

    Roche, Olivier

    2015-05-01

    Deposits of pyroclastic density currents (PDCs) often contain accidental lithic clasts of typical size of 0.1-1 m captured from an underlying substrate by the parent flows at distances up to several tens of kilometers from the eruptive vent. In order to gain insights into the nature of PDCs, this study investigates the conditions required for entrainment of particles from a granular substrate by a gas-particle density current, with special emphasis to ignimbrite-forming currents whose dynamics are controversial. The two types of physics of emplacement of PDCs proposed in literature are considered. The first model deals with a hydraulically rough, dilute turbulent PDC of bulk density of ∼1-10 kg/m3 and considers that entrainment through both traction and saltation is controlled by a Shield criterion at high (>104) particle Reynolds number. The second model considers entrainment by a PDC consisting of a dense basal flow of bulk density of the order of 103 kg /m3 and with high interstitial gas pore pressure. This model involves uplift of substrate particles, caused by an upward pressure gradient at the flow-substrate interface, and then transport and deposition on the aggrading basal deposit of the flow as demonstrated by recent laboratory experiments. Results show that a dilute PDC can entrain blocks of maximum size of ∼10-15 cm (for a block density of 2000-3000 kg/m3) if maximum current velocities up to ∼100 m/s are taken into account. This, in turn, suggests that larger (heavier) blocks found in deposits were captured by PDCs if these had a dense basal flow. The dense flow model predicts that PDCs have the potential to entrain metric blocks, whose maximum size (up to ∼2-5 m) decreases with decreasing atmospheric pressure (i.e. increasing altitude). Application of the model considering published data on the characteristics of accidental blocks in several well-studied ignimbrites indicates that the velocity of the parent dense PDCs was up to ∼25-30 m/s.

  1. Investigation of nonthermal particle effects on ionization dynamics in high current density ion beam transport experiments

    NASA Astrophysics Data System (ADS)

    Chung, H. K.; MacFarlane, J. J.; Wang, P.; Moses, G. A.; Bailey, J. E.; Olson, C. L.; Welch, D. R.

    1997-01-01

    Light ion inertial fusion experiments require the presence of a moderate density background gas in the transport region to provide charge and current neutralization for a high current density ion beam. In this article, we investigate the effects of nonthermal particles such as beam ions or non-Maxwellian electron distributions on the ionization dynamics of the background gas. In particular, we focus on the case of Li beams being transported in an argon gas. Nonthermal particles as well as thermal electrons are included in time-dependent collisional-radiative calculations to determine time-dependent atomic level populations and charge state distributions in a beam-produced plasma. We also briefly discuss the effects of beam ions and energetic electrons on the visible and vacuum ultraviolet (VUV) spectral regions. It is found that the mean charge state of the gas, and hence the electron density, is significantly increased by collisions with energetic particles. This higher ionization significantly impacts the VUV spectral region, where numerous resonance lines occur. On the other hand, the visible spectrum tends to be less affected because the closely spaced excited states are populated by lower energy thermal electrons.

  2. Spatiotemporal patterns of current source density in the prefrontal cortex of a behaving monkey.

    PubMed

    Sakamoto, Kazuhiro; Kawaguchi, Norihiko; Yagi, Kohei; Mushiake, Hajime

    2015-02-01

    One of the fundamental missions of neuroscience is to explore the input and output properties of neuronal networks to reveal their functional significance. However, it is technically difficult to examine synaptic inputs into neuronal circuits in behaving animals. Here, we conducted current source density (CSD) analysis on local field potentials (LFPs) recorded simultaneously using a multi-contact electrode in the prefrontal cortex (PFC) of a behaving monkey. We observed current sink task-dependent spatiotemporal patterns considered to reflect the synaptic input to neurons adjacent to the recording site. Specifically, the inferior convex current sink in the PFC was dominant during the delay period, whereas the current sink was prominent in the principal sulcus during the sample cue and test cue periods. Surprisingly, sulcus current sink patterns were spatially periodic, which corresponds to the columnar structure suggested by previous anatomical studies. The approaches used in the current study will help to elucidate how the PFC network performs executive functions according to its synaptic input. PMID:25027732

  3. Lateral spreading in a steady turbulent density current from an isolated source

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Vivian, Josh

    2014-11-01

    Turbulent buoyancy-driven flows on slopes occur in a range of environmental settings, such as dense ocean overflows, atmospheric katabatic winds, meltwater flows under ice shelves, or discharge of industrial effluents. A convenient modelling approach for dense currents from isolated sources considers a so-called ``streamtube approximation,'' averaging over the cross-section of the current to yield an effectively one-dimensional model for the evolution of flow along a streamline. However, such modelling approaches typically parameterise any changes in current width, rather than directly predicting the dynamics of lateral spreading. To build insight into the relevant dynamics, we consider steady density currents flowing down a planar slope, supplied by a continuous buoyancy flux from an isolated source. A model is developed to describe the downslope evolution of flow averaged over the width and depth of the current, including a new dynamical treatment of lateral spreading. We analyse theoretical and numerical solutions, before comparing to laboratory experiments with a dense saline current flowing down a slope.

  4. Simulation of the behavior of superconducting YBCO lines at high current densities

    NASA Astrophysics Data System (ADS)

    Antognazza, L.; Decroux, M.; Reymond, S.; de Chambrier, E.; Triscone, J.-M.; Paul, W.; Chen, M.; Fischer, Ø.

    2002-08-01

    We report on the behavior of YBCO lines at high current densities. The experiments are performed, with short constant current pulses, on Au/YBCO/CeO 2 structures grown on 2″ sapphire wafers. We found that a quasi spontaneous highly dissipative state (HDS) appears at a critical current J*, which is also temperature dependent. The initial propagation velocity of the HDS can reach values as high as 150 m/s for a current of 3 Jc. We show experimental evidences that this HDS is driven by the current and does not originate from a thermal runaway of the superconducting line. To confirm these results, we have simulated the thermal behavior of the line, using a calculation based on a finite element method, including the dissipation coming from the flux flow. This model reproduces very well the propagation velocity, and its current dependence, observed experimentally if we include the temperature dependence of J*, whereas the calculated velocities in the case of a purely thermal runaway are one order of magnitude lower.

  5. Is the US Plan to Improve Its Current Situation in Science, Mathematics, and Technology Achievable?

    ERIC Educational Resources Information Center

    Hossain, Md. Mokter; Robinson, Michael

    2011-01-01

    Despite being the inventing country of the Internet, the US is not satisfied with its current state in Internet speed and broadband adoption. Although, more students, teachers and researchers in the US use Internet than any other country in the world, it is not satisfactory for the US educators and legislators to maintain US competitiveness in the…

  6. Control of large space structures: Status report on achievements and current problems

    NASA Technical Reports Server (NTRS)

    Lyons, M. G.; Aubrun, J. N.

    1983-01-01

    The objectives, state-of-the-art, and problems of large space structures control are outlined. The general objectives range from basic deployment and maneuvering, where some vibration modes may be suppressed, to disturbance rejection for very high performance imaging applications. The controls selected generally must produce some combination of eigenvalue/eigenvector and loads modification in order to achieve the mission objectives. An experiment illustrating the dynamic control of a suspended circular plate is described. Analysis methods used in system modelling, signal processing, and process control and monitoring are discussed. Sensor and actuator performance are assessed.

  7. High critical current density YBa 2Cu 3O 7- δ films on surface-oxidized metallic substrates

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kaname; Kim, SeokBeom; Yamagiwa, Katsuya; Koike, Yoshihiro; Hirabayashi, Izumi; Watanabe, Tomonori; Uno, Naoki; Ikeda, Masaru

    2000-06-01

    YBa 2Cu 3O 7-δ (YBCO) films with high critical current density ( Jc) were fabricated on nickel tapes buffered with bi-axially textured NiO prepared by surface-oxidation epitaxy (SOE). The effects of oxide cap layers, such as YSZ, CeO 2 and MgO, on the SOE-grown NiO were investigated to improve the superconducting properties of the YBCO films on NiO. By inserting a thin MgO cap layer between NiO layer and YBCO film, a Jc of 3×10 5 A/cm 2 (77 K, 0 T) was achieved. This result indicates the potentiality of the SOE method. In this paper, the application of the NiO/Ni substrate to non-vacuum processings, such as metal-organic deposition (MOD) and liquid phase epitaxy (LPE) will be also introduced.

  8. Structure of Dilute Pyroclastic Density Currents During Transport, Buoyancy Reversal and Liftoff

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.

    2014-12-01

    Scaled laboratory experiments provide insight into structure, entrainment and liftoff in pyroclastic density currents (PDCs). Experiments are conducted in a 8.5×6.1×2.6 m air-filled tank and comprise turbulently suspended mixtures of heated 20-μm talc particles introduced to the tank at steady and sustained rates; the tank is large enough that the currents are effectively unconfined. Experiments are scaled with bulk (densimetric and thermal Richardson numbers, Froude number) and turbulent (Stokes and settling numbers) parameters dynamically similar to natural currents. The Reynolds numbers of experiments are smaller than those of natural PDCs, but analysis of the experiments demonstrates that they are fully turbulent. Red, green, and blue laser sheets illuminate orthogonal planes within the currents for imaging and recording with HD video cameras; those data are reprojected into cross-sectional and map-view planes for analysis of turbulent velocity fields and fluctuations in particle concentration. A green laser sheet can be swept through the tank at 60 Hz and imaged with a high-speed CCD camera at up to 3000 fps; sequences of 60-300 images are used to make 3D volumetric reconstructions of the currents at up to 10 Hz. Currents typically comprise a lower "bypass" region and an upper entraining region that turbulently mixes with the ambient air. The bypass region is generally about half of the total current thickness and moves faster than the overlying, entraining region. The bypass region controls runout distance and steadiness of currents. If turbulent structures in the entraining region penetrate through the bypass region, the trailing portion of the current can stall before resuming forward progress; thus a single, "steady" current can generate multiple currents. When a current lifts off, it focuses along a narrow axis beneath the rising (coignimbrite) plume. At that time, ambient air entrainment occurs primarily through the lateral margins of the narrow

  9. Entrainment dynamics in self-adjusting gravity currents using simultaneous velocity-density measurements

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Sridhar; Zhong, Qiang; Fernando, Harindra

    2015-11-01

    Gravity currents can modify their flow characteristic by entraining and mixing with the ambient fluid. The entrainment in such systems may depend on a variety of intrinsic parameters such as, initial density difference, Δρ , total height of the fluid, H, and slope of the terrain, α. Thus, it is imperative to study the entrainment dynamics of a gravity current in order to have a clear understanding of the mixing transitions that govern the flow physics such as the shear layer thickness, δu, and the mixing layer thickness, δρ. Experiments were conducted in a lock-exchange type facility, where a self-adjusting gravity current is formed, for which the only governing parameter is the Reynolds number, Re = uf/H ν, where uf = 0 . 4√{g' H } is the frontal velocity. Simultaneous PIV-PLIF technique is employed to get the velocity and density statistics. A control volume based flux method is used to calculate the flux entrainment coefficient, Ef, for a Reynolds number range of Re=400-12000 used in our experiments. The results show transition at Re 4x103, where the mixing occurs due to Kelvin-Helmholtz billows that promote small scale local mixing, and cause a spike in the flux entrainment velocity. SB acknowledges funds from University of Notre Dame, IIT Bombay.

  10. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    NASA Astrophysics Data System (ADS)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  11. Simultaneous DC measurements of ion current density and electron temperature using a tunnel probe

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Dejarnac, R.; Stöckel, J.

    2016-03-01

    The tunnel probe is a concave Langmuir probe designed to operate in strongly magnetized plasma. Due to its shape, the tunnel probe is immune to sheath expansion effects and thus provides absolutely calibrated measurements of the parallel ion current density. A two-dimensional, self-consistent kinetic model is employed to model the flow of charges within the cavity of the tunnel probe. The calculation predicts that the distribution of the ion flux onto the inner conductors depends on the electric field inside the tunnel, which in turn depends on the electron temperature. Therefore, if the tunnel is divided into two negatively biased collectors, it is possible to use the simulation results to determine the electron temperature from the measured ion current ratio. This means that a DC-biased tunnel probe can be used to provide fast, simultaneous measurements of the parallel ion current density and the electron temperature without collecting a single electron. Measurements in the CASTOR and Tore Supra tokamaks agree well with the numerical simulations.

  12. The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping

    NASA Astrophysics Data System (ADS)

    Lu, Tianni; Zhang, Cuiping; Guo, Shengwu; Wu, Yifang; Li, Chengshan; Zhou, Lian

    2015-12-01

    Bi2Sr2Ca1-xYbxCu2O8+δ (Bi-2212) single crystals with x = 0.000, 0.005, 0.010 and 0.020 have been prepared by self-flux method. The influences of Yb doping on the formation of the dislocations in the lattice structures, as well as the related current carrying capability are investigated. Due to the SQUID measurement and the Bean model calculation, the maximum critical current density (Jc) is obtained when the Yb doping content is x = 0.010, though the Tc and the carrier concentration are not in the optimal region. Based on the HRTEM analyses of the Ca-O and Cu-O2 layers, the optimal dislocation density in the Cu-O2 layers is deduced according to the number of the dislocations per unit area. Besides, the sizes of the dislocations also prove the effectiveness of Yb substitution on the enhancement of the current carrying capability in Bi-2212 single crystals.

  13. Formation of an ion beam in an elementary cell with inhomogeneous emission current density

    SciTech Connect

    Kotelnikov, I. A.; Davydenko, V. I.; Ivanov, A. A.; Tiunov, M. A.

    2008-02-15

    A well-known Pierce solution that allows focusing a beam of charged particles using properly shaped electrodes outside the beam aperture is generalized to the case of an accelerating system with inhomogeneous emission current density. It is shown that the defocusing effect of the space charge can, in principle, be evenly compensated over the entire cross section of the beam. In contrast to the beam with a uniform emission current density, both the electric potential and the transverse electric field must be controlled along the beam boundary in order to eliminate the angular divergence. However, eliminating the angular spread evenly across the beam constitutes a mathematically ill-posed problem which needs to be solved with the use of one or another method of regularization. An alternative way of diminishing beam emittance is proposed for the beam where the emission current is uniform across the entire aperture except for a narrow beam edge layer and a simple formula for the Pierce electrodes is derived. Numerical simulation has proved the reasonable accuracy of our analytical theory.

  14. Formation of an ion beam in an elementary cell with inhomogeneous emission current density.

    PubMed

    Kotelnikov, I A; Davydenko, V I; Ivanov, A A; Tiunov, M A

    2008-02-01

    A well-known Pierce solution that allows focusing a beam of charged particles using properly shaped electrodes outside the beam aperture is generalized to the case of an accelerating system with inhomogeneous emission current density. It is shown that the defocusing effect of the space charge can, in principle, be evenly compensated over the entire cross section of the beam. In contrast to the beam with a uniform emission current density, both the electric potential and the transverse electric field must be controlled along the beam boundary in order to eliminate the angular divergence. However, eliminating the angular spread evenly across the beam constitutes a mathematically ill-posed problem which needs to be solved with the use of one or another method of regularization. An alternative way of diminishing beam emittance is proposed for the beam where the emission current is uniform across the entire aperture except for a narrow beam edge layer and a simple formula for the Pierce electrodes is derived. Numerical simulation has proved the reasonable accuracy of our analytical theory. PMID:18315193

  15. Analyses of substantially different plasma current densities and safety factors reconstructed from magnetic diagnostics data

    NASA Astrophysics Data System (ADS)

    Zaitsev, F. S.; Kostomarov, D. P.; Suchkov, E. P.; Drozdov, V. V.; Solano, E. R.; Murari, A.; Matejcik, S.; Hawkes, N. C.; Contributors, JET-EFDA

    2011-10-01

    The problem of plasma current density and safety factor reconstruction using magnetic field measurements is considered. In the traditional formulation, the problem is strongly ill-posed. In particular, substantially different current densities and safety factors can be equally well attributed to the same set of measurements, given their experimental errors. In other words, the problem can be strongly unstable with respect to the input data. Different constraints are used in practice to make the problem more stable. This paper presents an accurate mathematical formulation of the inverse problem and its variants. A numerical algorithm is provided, which permits us to study the stability with respect to variations in the input data, to find all substantially different solutions, or to prove their absence, and to determine the confidence intervals of the reconstructions. The proposed method also allows establishing the maximum error for a given diagnostic (additional constraint), below which the diagnostic efficiently extracts one solution among several substantially different ones. Examples of very different current density and safety factor reconstructions for measurements with finite accuracy are presented for the original formulation of the inverse problem. Cases of MAST, JET and ITER-like plasmas are considered. It is shown that including the motional Stark effect (MSE) measurements as a constraint, provided the accuracy of MSE measurements is sufficient, allows identifying one solution among several very different ones, obtained without such a constraint. The maximum MSE diagnostics error for efficient identification of this solution is estimated for JET. The approach of this paper can be used for a wide range of ill-posed problems in physics and can help in selecting additional conditions, which can identify the most likely solution among several.

  16. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice.

    PubMed

    Gatopoulou, A; Papanas, N; Maltezos, E

    2012-09-01

    Gastrointestinal symptoms occur frequently among patients with diabetes mellitus and are associated with considerable morbidity. Diabetic gastrointestinal autonomic neuropathy represents a complex disorder with multifactorial pathogenesis, which is still not well understood. It appears to involve a spectrum of metabolic and cellular changes that affect gastrointestinal motor and sensory control. It may affect any organ in the digestive system. Clinical manifestations are often underestimated, and therefore autonomic neuropathy should be suspected in all diabetic patients with unexplained gastrointestinal symptoms. Advances in technology have now enabled assessment of gastrointestinal motor function. Moreover, novel pharmacological approaches, along with endoscopic and surgical treatment options, contribute to improved outcomes. This review summarises the progress achieved in diabetic gastrointestinal autonomic neuropathy during the last years, focusing on clinical issues of practical importance to the everyday clinician. PMID:22863425

  17. Surface charge density determination of single conical nanopores based on normalized ion current rectification.

    PubMed

    Liu, Juan; Kvetny, Maksim; Feng, Jingyu; Wang, Dengchao; Wu, Baohua; Brown, Warren; Wang, Gangli

    2012-01-17

    Current rectification is well known in ion transport through nanoscale pores and channel devices. The measured current is affected by both the geometry and fixed interfacial charges of the nanodevices. In this article, an interesting trend is observed in steady-state current-potential measurements using single conical nanopores. A threshold low-conductivity state is observed upon the dilution of electrolyte concentration. Correspondingly, the normalized current at positive bias potentials drastically increases and contributes to different degrees of rectification. This novel trend at opposite bias polarities is employed to differentiate the ion flux affected by the fixed charges at the substrate-solution interface (surface effect), with respect to the constant asymmetric geometry (volume effect). The surface charge density (SCD) of individual nanopores, an important physical parameter that is challenging to measure experimentally and is known to vary from one nanopore to another, is directly quantified by solving Poisson and Nernst-Planck equations in the simulation of the experimental results. The flux distribution inside the nanopore and the SCD of individual nanopores are reported. The respective diffusion and migration translocations are found to vary at different positions inside the nanopore. This knowledge is believed to be important for resistive pulse sensing applications because the detection signal is determined by the perturbation of the ion current by the analytes. PMID:22182684

  18. Giant increase in critical current density of KxFe2-ySe₂ single crystals

    DOE PAGESBeta

    Lei, Hechang; Petrovic, C.

    2011-12-28

    The critical current density Jabc of KxFe2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature Tc (“δTc pinning”).

  19. Structural, optical and electrical characterization of nanostructured porous silicon: Effect of current density.

    PubMed

    Kulathuraan, K; Mohanraj, K; Natarajan, B

    2016-01-01

    In this work, an attempt has been made to fabricate porous silicon (PS) from p-type crystalline silicon (c-Si) wafers by using the electrochemical etching process at six different current densities (40, 60, 75, 100, 125 and 150mA/cm(2)) with constant time (30min). The influence of varying current density on morphological, structural, optical and electrical properties of PS samples were analyzed by using SEM, AFM, XRD, FT-IR, PL and electrical (I-V) techniques, respectively. Microstructural images clearly showed that the average pore diameter and thickness increase with increase current densities up to 100mA/cm(2) and decrease for 125mA/cm(2). It could be related to breaking of pore walls and exposing to the next layer of c-Si. Further increase the current density about 150mA/cm(2), the average pore diameter increase as in the case of first layer (40-100mA/cm(2)) of c-Si wafer. The result is reflected in PL emission band (at 708nm) and the intensity of the emission band shifted towards red region. The X-ray diffraction pattern confirm the formation of porous silicon as appeared as a broad peak at 2θ=69.3° belongs to (400) reflection. The FTIR study supports the X-ray diffraction analysis that shows the vibrational bands of S-H2 and Si-O-Si at 2109cm(-1), 915cm(-1) and 615cm(-1) and 1107cm(-1), respectively. The I-V characteristic of PS exhibited rectifying behavior with different values of ideality factor (η) and barrier height (ϕb). It is concluded from the experimental results that the formed pores developed up to 100mA/cm(2) in the top layer of c-Si and the formed pores exposed to the next layer of c-Si when increase the high electrochemical etching process (above 100mA/cm(2)). PMID:26186397

  20. High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors

    SciTech Connect

    Kreiskott, Sascha; Matias, Vladimir; Arendt, Paul N.; Foltyn, Stephen R.; Bronisz, Lawrence E.

    2009-03-31

    A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.

  1. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat; Kim, Choong-Un

    2016-04-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces.

  2. The critical current density in the layered superconductors with ferromagnetic nanorods

    NASA Astrophysics Data System (ADS)

    Kashurnikov, V. A.; Maksimova, A. N.; Rudnev, I. A.; Odintsov, D. S.

    2016-09-01

    In this paper, we have calculated the dependence of critical current density jc on the radius R and concentration of extended ferromagnetic defects in the system simulating a high-temperature superconductor (HTSC) layer. It was shown that at fixed volume concentration of ferromagnetic fraction the jc (R) dependence, as against nonmagnetic defects, has one maximum or two maxima at certain magnetization values of ferromagnetic fraction. We found that these maxima are due to the interplay of two parameters: concentration and effective depth of potential wells of defects.

  3. Heavy ion irradiation of Bi-2223 silver-clad tapes for superconducting current density enhancement

    SciTech Connect

    Malozcnoff, A.P.; Carter, W.L.; Riley, G.N. Jr.; Wheeler, R. IV; Kirk, M.A.; Civale, L.; Marwick, A.D.

    1993-07-01

    Silver-clad composite tapes of Bi(Pb)SrCaCuO-2223 were irradiated with 1 GeV Au{sup 23+} ions perpendicular to the tape plane, creating columnar tracks with 10 nm diameter. Detailed transmission electron microscopy shows continuous columns, but with variations in the track thickness of +/{minus}2 nm. Magnetic hystersis measurements show substantial enhancement of superconducting current density at most temperatures and fields. Granular and nongranular models for the origin of the magnetic signals are discussed. The results indicate the potential for further performance improvement in high temperature superconducting wire technology, as well as limits in the high-field performance at 77 K.

  4. Modern energy density functional and the current status of the equation of state of nuclear matter

    SciTech Connect

    Shlomo, S.

    2012-11-20

    We first describe a method, based on the simulated annealing approach, for determining a modern energy density functional within the Skyrme Hartree-Fock (HF) theory by carrying out a fit to extensive set of experimental data with additional constraints on the Skyrme parameters. Next, we review the HF-based random phase approximation (RPA) approach for calculating properties of giant resonances. We then present results of calculations for the centroid energies of giant resonances within the HF-based RPA and discuss the current status of the equation of state of nuclear matter.

  5. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  6. Concerning factors which determine whether flux-lattice shear or pin breaking limits the critical current density of superconductors

    SciTech Connect

    Welch, D.O.

    1992-10-01

    An elementary model is presented which illustrates the conditions under which flux-lattice shear, rather than pin breaking, limits the critical current density. An expression for the shear strength of the flux-lattice, based on the plasticity of metals and alloys, is used to derive the critical current density, including the effect of thermal activation in the flux creep regime.

  7. Concerning factors which determine whether flux-lattice shear or pin breaking limits the critical current density of superconductors

    SciTech Connect

    Welch, D.O.

    1992-01-01

    An elementary model is presented which illustrates the conditions under which flux-lattice shear, rather than pin breaking, limits the critical current density. An expression for the shear strength of the flux-lattice, based on the plasticity of metals and alloys, is used to derive the critical current density, including the effect of thermal activation in the flux creep regime.

  8. Unified models of E-layer plasma turbulence from density gradients and Hall currents

    NASA Astrophysics Data System (ADS)

    Hassan, Ehab; Litt, Sandeep; Horton, Wendell; Smolyakov, Andrei; Skiff, Fred

    2013-10-01

    The Earth's ionosphere is rich with plasma irregularities of scale-lengths extend from few centimeters to hundreds of kilometers. The combination of small-scale turbulence with large coherent structures is at the forefront of basic plasma turbulence theory. A new unified model for the small-scale plasma turbulence called Type-I and Type-II in the E-region ionosphere is presented. Simulations and a proposed laboratory experiment for these plasma waves in a weakly ionized plasma are reported. The ions [Argon in the lab and NO+ in the ionosphere] are collisional and the electrons ExB drifts produce Hall currents. The dispersion relations are analyzed for both density gradient and electron current driven instabilities. A basic understanding of the turbulence is important for forecasting disruptions in GNSS communication signals from RF signal scattering produced by the E-layer plasma turbulence on the 10cm to 10m scales lengths. NSF:AGS-0964692.

  9. Density-matrix renormalization-group study of current and activity fluctuations near nonequilibrium phase transitions.

    PubMed

    Gorissen, Mieke; Hooyberghs, Jef; Vanderzande, Carlo

    2009-02-01

    Cumulants of a fluctuating current can be obtained from a free-energy-like generating function, which for Markov processes equals the largest eigenvalue of a generalized generator. We determine this eigenvalue with the density-matrix renormalization group for stochastic systems. We calculate the variance of the current in the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our results can be described in the terms of a scaling ansatz that involves the dynamical exponent z . We also calculate the generating function of the dynamical activity (total number of configuration changes) near the absorbing-state transition of the contact process. Its scaling properties can be expressed in terms of known critical exponents. PMID:19391693

  10. Si-InAs heterojunction Esaki tunnel diodes with high current densities

    NASA Astrophysics Data System (ADS)

    Björk, M. T.; Schmid, H.; Bessire, C. D.; Moselund, K. E.; Ghoneim, H.; Karg, S.; Lörtscher, E.; Riel, H.

    2010-10-01

    Si-InAs heterojunction p-n diodes were fabricated by growing InAs nanowires in oxide mask openings on silicon substrates. At substrate doping concentrations of 1×1016 and 1×1019 cm-3, conventional diode characteristics were obtained, from which a valence band offset between Si and InAs of 130 meV was extracted. For a substrate doping of 4×1019 cm-3, heterojunction tunnel diode characteristics were obtained showing current densities in the range of 50 kA/cm2 at 0.5 V reverse bias. In addition, in situ doping of the InAs wires was performed using disilane to further boost the tunnel currents up to 100 kA/cm2 at 0.5 V reverse bias for the highest doping ratios.

  11. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes

    SciTech Connect

    Fujiwara, Y. Nakamiya, A.; Sakakita, H.; Hirano, Y.; Kiyama, S.; Koguchi, H.

    2014-02-15

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10{sup 8} cm{sup −3} at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  12. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  13. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS

    NASA Astrophysics Data System (ADS)

    Faria, Paula; Hallett, Mark; Cavaleiro Miranda, Pedro

    2011-12-01

    We investigated the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in transcranial direct current stimulation (tDCS). For this purpose, we used the finite element method to compute the distribution of the current density in a four-layered spherical head model using various electrode montages, corresponding to a range of electrode sizes and inter-electrode distances. We found that smaller electrodes required slightly less current to achieve a constant value of the current density at a reference point on the brain surface located directly under the electrode center. Under these conditions, smaller electrodes also produced a more focal current density distribution in the brain, i.e. the magnitude of the current density fell more rapidly with distance from the reference point. The combination of two electrodes with different areas produced an asymmetric current distribution that could lead to more effective and localized neural modulation under the smaller electrode than under the larger one. Focality improved rapidly with decreasing electrode size when the larger electrode sizes were considered but the improvement was less marked for the smaller electrode sizes. Also, focality was not affected significantly by inter-electrode distance unless two large electrodes were placed close together. Increasing the inter-electrode distance resulted in decreased shunting of the current through the scalp and the cerebrospinal fluid, and decreasing electrode area resulted in increased current density on the scalp under the edges of the electrode. Our calculations suggest that when working with conventional electrodes (25-35 cm2), one of the electrodes should be placed just 'behind' the target relative to the other electrode, for maximum current density on the target. Also electrodes with areas in the range 3.5-12 cm2 may provide a better compromise between focality and current density in the scalp than the traditional

  14. Sectionalizing interconnected transmission network to improve system performance and achieve fault current reduction

    SciTech Connect

    Ray, B.

    1998-12-31

    An analysis was recently undertaken at Northern States Power Company (NSP) in an attempt to identify the advantages and disadvantages of sectionalizing Twin Cities metropolitan area transmission system. Five specific sectionalization schemes were developed to evaluate the transmission system performance associated with each scenario. These schemes were judged against the following performance characteristics: fault current level, severity of voltage depression during faults, NSP system losses, system through flow and contingency operation. Study results indicated that by careful application of the splitting scheme, sectionalization can provide significant performance improvements and still have economic feasibility. A comparison between sectionalization costs (increased system losses) and its benefits (improved performance) would help determine to what degree sectionalization is economically feasible and make the final decision. Of the five schemes tested, the contour that appeared the best in terms of reliability, performance and economics was chosen for implementation in NSP system during 1997 summer.

  15. Achieving glycemic control in elderly patients with type 2 diabetes: a critical comparison of current options

    PubMed Central

    Du, Ye-Fong; Ou, Horng-Yih; Beverly, Elizabeth A; Chiu, Ching-Ju

    2014-01-01

    The prevalence of type 2 diabetes mellitus (T2DM) is increasing in the elderly. Because of the unique characteristics of elderly people with T2DM, therapeutic strategy and focus should be tailored to suit this population. This article reviews the guidelines and studies related to older people with T2DM worldwide. A few important themes are generalized: 1) the functional and cognitive status is critical for older people with T2DM considering their life expectancy compared to younger counterparts; 2) both severe hypoglycemia and persistent hyperglycemia are deleterious to older adults with T2DM, and both conditions should be avoided when determining therapeutic goals; 3) recently developed guidelines emphasize the avoidance of hypoglycemic episodes in older people, even in the absence of symptoms. In addition, we raise the concern of glycemic variability, and discuss the rationale for the selection of current options in managing this patient population. PMID:25429208

  16. Achieving donor repetition and motivation by block leaders among current blood donors.

    PubMed

    Martín-Santana, Josefa D; Beerli-Palacio, Asunción

    2012-12-01

    This paper presents an explicative model on the recommendation of donating blood made to relatives and friends by current donors. This model establishes satisfaction and intention to return as direct antecedents, and the quality perceived in the donation process and the existence of inhibitors as indirect antecedents. The results show that (1) the perceived quality has a positive influence on satisfaction and intention to return; (2) the intention to donate again depends positively on satisfaction, but negatively on the existence of internal and external inhibitors; and lastly (3) the recommendation to donate depends on donor satisfaction and their intention to return to donate, this being the most influential factor. At the same time, we contrasted how the model does not vary, whether it is a first-time donor or a repeat donor. PMID:22683233

  17. Analog Study of Clastes Transport and Sedimentation in Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    CHOUX, C.; DRUITT, T.

    2001-12-01

    Analog experiments using an aqueous lock-exchange flume were carried out to study the transport and sedimentation processes occurring in pyroclastic density currents (PDC) generating extensive sheet-like ignimbrites. Those experimental flows scaled to turbulent PDCs, focusing on : (i) a very wide range of particle sizes, and (ii) particles of two different densities (the water-immersed densities of which scaled to those of lithics and pumice in gas). A suspension, containing either one or two components of different densities (SiC:2600 kg.m-3 and LB:1440 kg.m-3), with a log-normal particle size distribution, produced flows of various initial concentration (0.6 to 23 vol.%). Hydrodynamic equivalence was respected in the two-component suspension. Development of stratification and particle segregation was followed in the moving flows. Originally in a homogeneous suspension, the dense component in the one- or two-components flow displayed vertically and laterally a normal grading in the flow, latter observed in the deposit. Its mass loading and grain size distribution was insensitive to the initial concentration of the flow. Deposit from a one-component flow provides little information on particle concentration of the parental flow. The transport and sedimentation behaviour of the light component in the two component experiments was extremely concentration sensitive. For dilute currents, dense and light particles settled respecting their hydrodynamic equivalence whereas they segregated efficiently for initial flow concentration higher than a few percent. In the moving flow of high initial concentration, the light component exhibited a reverse grading vertically and laterally. Their resulting deposit showed reverse grading and the site of their maximum accumulation was progressively displaced downstream, due to some increasing buoyancy effects. Segregation between pumice (light component) and lithics (dense component) occur in a PCD, the density of which is lower than

  18. Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.

    NASA Astrophysics Data System (ADS)

    Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset

  19. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    SciTech Connect

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  20. High-field, high-current-density, stable superconducting magnets for fusion machines

    SciTech Connect

    Lue, J.W.; Dresner, L.; Lubell, M.S.

    1989-01-01

    Designs for large fusion machines require high-performance superconducting magnets to reduce cost or increase machine performance. By employing force-flow cooling, cable-in-conduit conductor configuration, and NbTi superconductor, it is now possible to design superconducting magnets that operate a high fields (8-12 T) with high current densities (5-15 kA/cm/sup 2/ over the winding pack) in a stable manner. High current density leads to smaller, lighter, and thus less expensive coils. The force-flow cooling provides confined helium, full conductor insulation, and a rigid winding pack for better load distribution. The cable-in-conduit conductor configuration ensures a high stability margin for the magnet. The NbTi superconductor has reached a good engineering material standard. Its strain-insensitive critical parameters are particularly suitable for complex coil windings of a stellarator machine. The optimization procedure for such a conductor design, developed over the past decade, is summarized here. If desired a magnet built on the principles outlines in this paper can be extended to a field higher than the design value without degrading its stability by simply lowering the operating temperature below 4.2 K. 11 refs., 3 figs.

  1. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    DOE PAGESBeta

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less

  2. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.

    PubMed

    Kamousi, Baharan; Amini, Ali Nasiri; He, Bin

    2007-06-01

    The goal of the present study is to employ the source imaging methods such as cortical current density estimation for the classification of left- and right-hand motor imagery tasks, which may be used for brain-computer interface (BCI) applications. The scalp recorded EEG was first preprocessed by surface Laplacian filtering, time-frequency filtering, noise normalization and independent component analysis. Then the cortical imaging technique was used to solve the EEG inverse problem. Cortical current density distributions of left and right trials were classified from each other by exploiting the concept of Von Neumann entropy. The proposed method was tested on three human subjects (180 trials each) and a maximum accuracy of 91.5% and an average accuracy of 88% were obtained. The present results confirm the hypothesis that source analysis methods may improve accuracy for classification of motor imagery tasks. The present promising results using source analysis for classification of motor imagery enhances our ability of performing source analysis from single trial EEG data recorded on the scalp, and may have applications to improved BCI systems. PMID:17409476

  3. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  4. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Murata, Shigeaki; Imanishi, Masahiro; Hasegawa, Shigeki; Namba, Ryoichi

    2014-05-01

    We successfully developed cathode electrodes for polymer electrolyte membrane fuel cells (PEMFC) that enable operation at high current densities by incorporating vertically aligned carbon nanotubes (CNTs) as the catalyst support; additionally, we prepared 236 cm2 membrane electrodes assemblies (MEAs) for vehicular use. The electrode structure improved the mass transport of reactants, i.e. oxygen, proton, electron and water, in systems performing at a 2.6 A cm-2 current density and 0.6 V with extremely low platinum (Pt) loading at the cathode (0.1 mg cm-2). The improved mass transport caused the 70 mV dec-1 Tafel slope to continue up to 1.0 A cm-2. The mass transport was improved because the pores were continuous, the catalyst support materials did not agglomerate and the catalyst layer made good electrical contact with the microporous layer. Utilizing wavy coil-shaped CNTs was also crucial. These CNTs displayed anti-agglomerative characteristics during the wet manufacturing process and maintained a continuous pore structure framing the layered catalyst structure. Because the CNTs had elastic characteristics, they might fill the space between catalyst and microporous layers to prevent flooding. However, the compressed CNTs in the cells were no longer vertically aligned. Therefore, vertically aligning the nanotubes was important during the MEA manufacturing process but was irrelevant for cell performance.

  5. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters

    PubMed Central

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  6. In Situ Study on Current Density Distribution and Its Effect on Interfacial Reaction in a Soldering Process

    NASA Astrophysics Data System (ADS)

    Qu, Lin; Zhao, Ning; Ma, Haitao; Zhao, Huijing; Huang, Mingliang

    2015-01-01

    The interfacial reaction in Cu/Sn/Cu solder joint during liquid-solid eletromigration (EM) was in situ studied using synchrotron radiation real-time imaging technology. The current density distribution in the solder joint was analyzed with the finite element method (FEM). The relationships among solder shape, current density distribution, Cu dissolution, and the formation and dissolution of interfacial intermetallic compound (IMC) were revealed. The current promoted dissolution of the cathode IMC and growth of the anode IMC and suppressed the dissolution of anode Cu. The change of interfacial IMC had little effect on the current density distribution; however, the dissolution of cathode Cu, which changed the solder shape, had a significant effect on the current density distribution. The dissolution of cathode Cu under forward current and cathode IMC under reverse current and the growth of anode IMC under forward current was faster where the current density was higher. The synchrotron radiation real-time imaging technology can not only in situ observe the change of solder shape, the dissolution and growth behavior of interfacial IMC and the dissolution behavior of substrate in a soldering process but also provide data needed for numerical simulation of current density distribution in a solder joint.

  7. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-05-19

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  8. Modeling of electrochemical machining with the use of a curvilinear electrode and a stepwise dependence of the current efficiency on the current density

    NASA Astrophysics Data System (ADS)

    Kotlyar, L. M.; Minazetdinov, N. M.

    2016-01-01

    An analytical solution of the problem of electrochemical machining of metals by a curvilinear cathode tool with allowance for a discontinuous function that describes the dependence of the current efficiency on the current density is obtained. According to the hydrodynamic interpretation, the original problem reduces to the problem of the theory of ideal fluid flows with a free surface. It is demonstrated that the use of the proposed dependence of the current efficiency on the current density ensures the existence of three domains on an unknown treated surface; these domains have different laws of the distribution of the charge fraction spent on metal dissolution. Results calculated for various particular cases are presented.

  9. Topics in Current Science Research: Closing the Achievement Gap for Under Resourced Students of Color

    NASA Astrophysics Data System (ADS)

    Loya Villalpando, Alvaro; Daal, Miguel; Phipps, Arran; Speller, Danielle; Sadoulet, Bernard; Winheld, Rachel; Cryogenic Dark Matter Search Collaboration

    2015-04-01

    Topics in Current Science Research (TCSR) is a five-week summer course offered at the University of California, Berkeley through a collaboration between the Level Playing Field Institute's Summer Math and Science Honors Academy (SMASH) Program and the Cryogenic Dark Matter Search (CDMS) group at UC Berkeley. SMASH is an academic enrichment program geared towards under-resourced, high school students of color. The goals of the course are to expand the students' conception of STEM, to teach the students that science is a method of inquiry and not just a collection of facts that are taught in school, and to expose the scholars to critical thinking within a scientific setting. The course's curriculum engages the scholars in hands-on scientific research, project proposal writing, and presentation of their scientific work to their peers as well as to a panel of UC Berkeley scientists. In this talk, we describe the course and the impact it has had on previous scholars, we discuss how the course's pedagogy has evolved over the past 10 years to enhance students' perception and understanding of science, and we present previous participants' reflections and feedback about the course and its success in providing high school students a genuine research experience at the university level.

  10. Correlated time derivatives of current, electric field intensity, and magnetic flux density for triggered lightning at 15 m

    NASA Astrophysics Data System (ADS)

    Uman, M. A.; Schoene, J.; Rakov, V. A.; Rambo, K. J.; Schnetzer, G. H.

    2002-07-01

    We present measured current and its time derivative correlated with the corresponding electric field intensity and magnetic flux density and their time derivatives measured at 15 m for two lightning return strokes triggered in 1999 at Camp Blanding, Florida. Lightning was triggered to a vertical 2-m rod mounted at the center of a 70 × 70 m buried metallic grid. The rocket-launching system was located underground at the center of the grid. The experiment was designed to minimize any influence of either the strike object or a finite-conducting Earth (ground surface arcing and propagation effects) on the fields and field derivatives. The measured current derivative waveform and the return stroke portion of the magnetic flux density derivative and electric field intensity derivative waveforms associated with the two strokes are observed to be essentially unipolar pulses that have similar waveshapes for the first 150 ns or so, including the initial rising portion, the peak, and about 50 ns after the peak. The current and magnetic field derivative waveshapes are very similar for their total duration, and both decay to near zero about 200 ns after the peak derivative is reached. The electric field derivative decays more slowly than the current derivative after about 150 ns, taking about 500 ns to decay to near zero. The transmission-line model, the simplest available and most used return stroke model, is employed to calculate the return stroke field derivatives, given the measured current derivative as a model input, for return stroke speeds of 1 × 108 m s-1, 2 × 108 m s-1, and 3 × 108 m s-1 (the speed of light). A reasonable match between calculated and measured field derivative waveshapes is achieved for both strokes for a return stroke speed between 2 × 108 m s-1 and 3 × 108 m s-1. Although the measured field and current derivatives have similar waveshapes for about 150 ns, which might appear to be consistent with the hypothesis that the radiation field component

  11. On the coupled interactions between ring current intensity and high-latitude ionospheric electron density variations

    NASA Astrophysics Data System (ADS)

    Yadav, Sneha; Pallamraju, Duggirala

    2015-04-01

    Investigations on the magnetospheric-ionospheric processes form an important element of research in the understanding of the solar-terrestrial interactions. In this work, we have investigated the linkage between the ring current intensity and the high-latitude ionospheric plasma density variations during different geomagnetic conditions. The Global Positioning System (GPS) derived Vertical Total Electron Content (VTEC) during 2011-2013 over high- and low-latitude stations in both the hemispheres and the symmetric ring current index (SYM-H) have been used in this study. A cross-correlation analysis performed between the variations of these two parameters during a wide range of geomagnetic conditions reveal that there is a seasonal, latitudinal and hemispherical dependence in the interrelationship between SYM-H and VTEC. The best cross-correlation between SYM-H and VTEC over both the hemispheres is obtained during equinoctial months which can be attributed to the semiannual variation of the solar wind-magnetospheric-ionospheric coupling. Summer time VTEC over southern hemisphere exhibits a better correlation with SYM-H index in comparison to that of the northern hemisphere. These results have been explained in the light of relative contributions from seasonal and hemispherical variation that exists in the ionospheric plasma. The results are striking as the correlation is found between the variation in two independent processes occurring at widely separated regions in space, namely, the ring current intensity and the behavior of ionospheric densities at high-latitudes. Season-dependent high- and low-latitude coupling of the ionospheric VTEC is observed during the disturbed geomagnetic conditions.

  12. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e2, and 1/e3 times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  13. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  14. Room-temperature ferromagnetism in Cr-doped Si achieved by controlling atomic structure, Cr concentration, and carrier densities: A first-principles study

    SciTech Connect

    Wei, Xin-Yuan; Yang, Zhong-Qin; Zhu, Yan; Li, Yun

    2015-04-28

    By using first-principles calculations, we investigated how to achieve a strong ferromagnetism in Cr-doped Si by controlling the atomic structure and Cr concentration as well as carrier densities. We found that the configuration in which the Cr atom occupies the tetrahedral interstitial site can exist stably and the Cr atom has a large magnetic moment. Using this doping configuration, room-temperature ferromagnetism can be achieved in both n-type and p-type Si by tuning Cr concentration and carrier densities. The results indicate that the carrier density plays a crucial role in realizing strong ferromagnetism in diluted magnetic semiconductors.

  15. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    NASA Astrophysics Data System (ADS)

    Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.

    2014-05-01

    High resolution direct numerical simulations (DNS) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.

  16. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (<1 m in diameter) that were blown down by dilute PDCs up to 0.7-0.9 km from the vent. Beyond this trees were encapsulated and buried in growth position up to the total runout distance of 1.6-1.8 km. This observation suggests that the dynamic pressure of the current quickly dropped as it travelled away from source. Using the tree diameter and yield strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and <10 kPa beyond 0.9 km, and (b) the total run-out distance must be between 1.6 and 1.8 km. Model results suggest the two main forces controlling the runout distance and Pdyn over the extent of the current are

  17. Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging

    PubMed Central

    Murakami, Shingo; Okada, Yoshio

    2015-01-01

    Although anatomical constraints have been shown to be effective for MEG and EEG inverse solutions, there are still no effective physiological constraints. Strength of the current generator is normally described by the moment of an equivalent current dipole Q. This value is quite variable since it depends on size of active tissue. In contrast, the current dipole moment density q, defined as Q per surface area of active cortex, is independent of size of active tissue. Here we studied whether the value of q has a maximum in physiological conditions across brain structures and species. We determined the value due to the primary neuronal current (qprimary) alone, correcting for distortions due to measurement conditions and secondary current sources at boundaries separating regions of differing electrical conductivity. The values were in the same range for turtle cerebellum (0.56–1.48 nAm/mm2), guinea pig hippocampus (0.30–1.34 nAm/mm2), and swine neocortex (0.18–1.63 nAm/mm2), rat neocortex (~2.2 nAm/mm2), monkey neocortex (~0.40 nAm/mm2) and human neocortex (0.16–0.77 nAm/mm2). Thus, there appears to be a maximum value across the brain structures and species (1–2 nAm/mm2). The empirical values closely matched the theoretical values obtained with our independently validated neural network model (1.6–2.8 nAm/mm2 for initial spike and 0.7–3.1 nAm/mm2 for burst), indicating that the apparent invariance is not coincidental. Our model study shows that a single maximum value may exist across a wide range of brain structures and species, varying in neuron density, due to fundamental electrical properties of neurons. The maximum value of qprimary may serve as an effective physiological constraint for MEG/EEG inverse solutions. PMID:25680520

  18. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    NASA Astrophysics Data System (ADS)

    Walder, J. S.

    2010-12-01

    A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of

  19. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  20. Physical and Mechanical Characterization of Electrodeposited Nickel Nanowires -- Influence of Current Density and External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Samykano, Mahendran

    Magnetic 1-D nanostructures have received great interest due to their various applications including high-density magnetic storage, sensors, drug delivery, and NEMS/MEMS systems. Among different 1-D nanostructures, magnetic nickel (Ni) nanowires with their ferromagnetic properties are of interest in such applications due to their lower cost, and they can be consistently synthesized via electrodeposition. While physical properties are influenced by processing parameters during electrodeposition of Ni nanowires, understanding of their influence on the mechanical properties is still not available. This is primarily due to the following challenges: tediousness involved in experimental techniques for mechanical characterization at nanoscale; sophisticated and careful experimentation required to be performed with advanced microscopy systems (SEM, AFM); robust nanoscale manipulators needed to place a single nanowire within the device; and difficulty in correctly loading and obtaining data for stress-strain within high powered microscopy environments. All of these factors pose significant challenges, limiting the current state of the art in mechanical characterization to its infancy, with wide differences in characterization curves and reported properties in this field. The present research and dissertation focuses on: 1. Experimental synthesis of electrodeposited Ni nanowires at different current densities and external magnetic fields, 2. Physical properties characterization of the synthesized nanowires to understand their morphology, structural and crystallographic properties, 3. Mechanical properties characterization of synthesized Ni nanowires through careful experiments within scanning electron microscope (SEM) based on uni-axial MEMS tensile loading device, 4. Data analysis to understand the process, physical and mechanical property interrelationship and to obtain insights on tensile deformation and failure modes observed in the Ni nanowires studied. Key research

  1. A HIGH CURRENT DENSITY LI+ ALUMINO-SILICATE ION SOURCE FOR TARGET HEATING EXPERIMENTS

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.

    2011-03-23

    The NDCX-II accelerator for target heating experiments has been designed to use a large diameter ({approx_equal} 10.9 cm) Li{sup +} doped alumino-silicate source with a pulse duration of 0.5 {micro}s, and beam current of {approx_equal} 93 mA. Characterization of a prototype lithium alumino-silicate sources is presented. Using 6.35mm diameter prototype emitters (coated on a {approx_equal} 75% porous tungsten substrate), at a temperature of {approx_equal} 1275 C, a space-charge limited Li{sup +} beam current density of {approx_equal} 1 mA/cm{sup 2} was measured. At higher extraction voltage, the source is emission limited at around {approx_equal} 1.5 mA/cm{sup 2}, weakly dependent on the applied voltage. The lifetime of the ion source is {approx_equal} 50 hours while pulsing the extraction voltage at 2 to 3 times per minute. Measurements show that the life time of the ion source does not depend only on beam current extraction, and lithium loss may be dominated by neutral loss or by evaporation. The life time of a source is around {ge} 10 hours in a DC mode extraction, and the extracted charge is {approx_equal} 75% of the available Li in the sample. It is inferred that pulsed heating may increase the life time of a source.

  2. An exponential scaling law for the strain dependence of the Nb3Sn critical current density

    NASA Astrophysics Data System (ADS)

    Bordini, B.; Alknes, P.; Bottura, L.; Rossi, L.; Valentinis, D.

    2013-07-01

    The critical current density of the Nb3Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb3Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature.

  3. Air Entrainment and Thermal Evolution of Pyroclastic Density Currents at Tungurahua, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2015-12-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the thermal profile and evolution of the current. However, the associated hazards and opaqueness of PDCs make it difficult to discern internal dynamics and entrainment through direct observations. In this work, we use a three-dimensional multiphase Eulerian-Eulerian-Lagrangian (EEL) model, deposit descriptions, and pyroclast field data, such as paleomagnetic and rind thickness, to study the entrainment efficiency and thus the thermal history of PDCs down the Juive Grande quebrada during the August 16-17th 2006 eruption of Tungurahua volcano. We conclude that 1) the efficient entrainment of ambient air cools the nose and upper portion of the PDCs by 30-60% of the original temperature, 2) PDCs with an initial temperature of 727 °C are on average more efficient at entraining ambient air than PDCs with an initial temperature of 327 °C, 3) the channelized PDCs develop a particle concentration gradient with a concentrated bed load region and suspended load region that leads to a large vertical temperature gradient, and 4) observations and pyroclast temperatures and textures suggest that the PDCs had temperatures greater than 327 °C in the bed load region while the upper, exterior portion of the currents cooled down to temperatures less than 100 °C. By combining field data and numerical models, the structure and dynamics of a PDC can be deduced for these relatively common small volume PDCs.

  4. Excessive magnetic field flux density distribution from overhead isolated powerline conductors due to neutral line current.

    PubMed

    Netzer, Moshe

    2013-06-01

    Overhead isolated powerline conductors (hereinafter: "OIPLC") are the most compact form for distributing low voltage currents. From the known physics of magnetic field emission from 3-phase power lines, it is expected that excellent symmetry of the 120° shifted phase currents and where compact configuration of the 3-phase+neutral line exist, the phase current vectorial summation of the magnetic field flux density (MFFD) is expected to be extremely low. However, despite this estimation, an unexpectedly very high MFFD was found in at least three towns in Israel. This paper explains the reasons leading to high MFFD emissions from compact OIPLC and the proper technique to fix it. Analysis and measurement results had led to the failure hypothsis of neutral line poor connection design and poor grounding design of the HV-LV utility transformers. The paper elaborates on the low MFFD exposure level setup by the Israeli Environmental Protection Office which adopted a rather conservative precaution principal exposure level (2 mG averaged over 24 h). PMID:23675630

  5. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    NASA Astrophysics Data System (ADS)

    Akune, Tadahiro; Sakamoto, Nobuyoshi

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-Tc superconductor. The critical current densities of the proximity-induced superconducting matrix Jcm can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain Jcm, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of Jcm estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  6. TRACKING IN REAL-TIME THE PROPAGATION OF PYROCLASTIC DENSITY CURRENTS BY INFRASONIC ARRAY

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Marchetti, E.; Delle Donne, D.; Ulivieri, G.

    2009-12-01

    Infrasound is the low-frequency component of sound, ranging from 0.001 to about 20 hertz, below the human threshold of hearing. Many natural phenomena such as earthquakes, avalanches, landslides, tornadoes, and tsunamis are efficient sources of infrasound. Explosive volcanic eruptions typically show a huge column of ash and debris ejected into the stratosphere, which can trigger fast moving avalanches of hot (400°C) gas and rock (pyroclastic flows) that can rush down the volcano’s flanks at speeds approaching 200-300 km/h. On volcanoes characterized by a lava dome growth such as Soufriere Hills volcano (SHV) on Montserrat (WI), infrasound is generated also by these non-explosive sources related to the dome collapses, such as pyroclastic flows, rockfalls, debris flow and lahars which can quickly overwhelm communities living in the shadow of volcanoes. The ability to detect and track the propagation of these large and devastating pyroclastic density currents in a timely fashion is crucial to volcano monitoring operations and can positively affect risk management on many volcanoes. We installed an infrasonic array on Montserrat at about 3000 m from the active dome on SHV. The array has an aperture of 200 m and a “star” geometry of 3 satellite sensors located 100 m from a central station. The array detected and located in real-time the infrasound associated with several pyroclastic flows estimating the speed and the direction of the flow and revealing the presence of several pulses within the same density current. The azimuthal direction of the infrasound changed with time during the flow indicating a mean speed of 160-175 km/h. Infrasound monitoring exhibits a great potential for integration with other geophysical measurements, particularly seismic, and may assist with their interpretation yielding information on the mechanisms and the propagation of pyroclastic flows as well as other density currents (such as avalanches and landslides), which are characterized

  7. Spatiotemporal changes in the pressure-driven current densities on DIII-D due to magnetic islands

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Jayakumar, R. J.; Makowski, M. A.; Holcomb, C. T.; Humphreys, D. A.; La Haye, R. J.; Luce, T. C.; Politzer, P. A.; Prater, R.; Wade, M. R.; Welander, A. S.

    2012-01-01

    Using direct analysis of the motional Stark effect (MSE) signals, an explicit measurement of the 'missing' bootstrap current density around the island location of a neoclassical tearing mode (NTM) is made for the first time. When the NTM is suppressed using co-electron cyclotron current drive, the measured changes in the current profile that restore the bootstrap current are also directly found from the MSE measurements. Additionally, direct analysis of helical perturbations in the MSE signals during slowly rotating 'quasi-stationary' modes shows the first explicit measurement of the deficit in the toroidal current density in the island O-point.

  8. Critical current density measurement of striated multifilament-coated conductors using a scanning Hall probe microscope

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fen; Kochat, Mehdi; Majkic, Goran; Selvamanickam, Venkat

    2016-08-01

    In this paper the authors succeeded in measuring the critical current density ({J}{{c}}) of multifilament-coated conductors (CCs) with thin filaments as low as 0.25 mm using the scanning hall probe microscope (SHPM) technique. A new iterative method of data analysis is developed to make the calculation of {J}{{c}} for thin filaments possible, even without a very small scan distance. The authors also discussed in detail the advantage and limitation of the iterative method using both simulation and experiment results. The results of the new method correspond well with the traditional fast Fourier transform method where this is still applicable. However, the new method is applicable for the filamentized CCs in much wider measurement conditions such as with thin filament and a large scan distance, thus overcoming the barrier for application of the SHPM technique on {J}{{c}} measurement of long filamentized CCs with narrow filaments.

  9. Critical Current Density Performance of Malic Acid Doped Magnesium Diboride Wires at Different Operating Temperatures

    NASA Astrophysics Data System (ADS)

    Xu, X.; Kim, J. H.; Zhang, Y.; Jercinovic, M.; Babic, E.

    We investigated the effects of different operating temperatures on the performance of transport critical current density, Jc, for MgB2 + 10 wt% C4H6O5 MgB2/Fe wires. It was shown that the Jc values of the malic acid doped wires sintered at 900°C reached 104 Acm-2 at 20 K and 5 T. The Jc value extrapolated to 2 T and 20 K exceeds the practical level of 105 Acm-2. According to the Kramer plots, the pinning force, FK = Jc1/2 x B1/4, is expected to be a linear function of magnetic field B. The irreversibility field, Birr, at which extrapolated FK reaches zero, was 1.8 T at 32.8 K, 2.8 T at 30 K, 5.7 T at 25 K, 8.6 T at 20 K, and 12.5 T at 15 K, respectively.

  10. Table 5.1. Exchange current densities and rate constants in aqueous systems

    NASA Astrophysics Data System (ADS)

    Holze, R.

    This document is part of Volume 9 `Electrochemistry', Subvolume A, of Landolt-Börnstein - Group IV `Physical Chemistry'. This document lists the exchange current densities and the electrode reaction rate constants of the following metallic electrodes in aqueous systems for various electrolyte reactions: silver (Ag), aluminium (Al), gold (Au), bismuth (Bi), carbon (C), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), mercury (Hg), indium (In), iridium (Ir), potassium (K), lithium (Li), molybdenum (Mo), natrium (Na), niobium (Nb), nickel (Ni), lead (Pb), palladium (Pd), platinum (Pt), rubidium (Rb), rhodium (Rh), ruthenium (Ru), antimony (Sb), tin (Sn), tantalum (Ta), titanium (Ti), thallium (Tl), vanadium (V), tungsten (W), zinc (Zn). For each electrolyte reaction the electrolyte solution, the educt, product and concentration are specified along with the temperature of determination of the given values.

  11. Soft x-ray camera for internal shape and current density measurements on a noncircular tokamak

    SciTech Connect

    Fonck, R.J.; Jaehnig, K.P.; Powell, E.T.; Reusch, M.; Roney, P.; Simon, M.P.

    1988-05-01

    Soft x-ray measurements of the internal plasma flux surface shaped in principle allow a determination of the plasma current density distribution, and provide a necessary monitor of the degree of internal elongation of tokamak plasmas with a noncircular cross section. A two-dimensional, tangentially viewing, soft x-ray pinhole camera has been fabricated to provide internal shape measurements on the PBX-M tokamak. It consists of a scintillator at the focal plane of a foil-filtered pinhole camera, which is, in turn, fiber optically coupled to an intensified framing video camera (/DELTA/t />=/ 3 msec). Automated data acquisition is performed on a stand-alone image-processing system, and data archiving and retrieval takes place on an optical disk video recorder. The entire diagnostic is controlled via a PDP-11/73 microcomputer. The derivation of the polodial emission distribution from the measured image is done by fitting to model profiles. 10 refs., 4 figs.

  12. Current-induced spin polarization in InGaAs epilayers with varying doping densities

    NASA Astrophysics Data System (ADS)

    Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide; Occena, Jordan; Goldman, Rachel; Sih, Vanessa

    Current-induced spin polarization (CISP) is a phenomena in which an applied electric field produces a bulk spin polarization in the plane of the sample. As this is thought to arise from the spin-orbit coupling, it was originally predicted that the magnitude of CISP should be proportional to the spin-orbit (SO) splitting. However, crystal axis-dependent measurements of the CISP and SO fields showed a negative differential relationship between these two quantities. To develop a phenomenological understanding of the factors affecting the magnitude of CISP, we performed measurements on three In0.025Ga0.975As epilayers, Si-doped at 0.67, 9.6, and 14.1 x 1017 cm-3. We will discuss the effects of the doping density and electron mobility on the magnitudes of the SO fields and CISP.

  13. Stochastic optimal control as non-equilibrium statistical mechanics: calculus of variations over density and current

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.

    2014-01-01

    In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.

  14. Emittance growth from charge density changes in high-current beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.

    1986-01-21

    We use the relation between field energy and rms emittance, together with the property of charge-density homogenization for intense nonuniform beams in linear focusing systems, to derive equations for emittance growth and minimum final emittance. We discuss three problems in which this charge redistribution mechnism is isolated: the 1-D continuous sheet beam, the 2-D continuous round beam, and the 3-D spherical bunch. For each of the three problems, we identify and compare scaling parameters tha determine the emittance growth and minimum final emittance as a function of beam current, emittance, and external focusing strength. Numerical simulations are used to test the equations, to show that the charge redistribution mechanism results in very rapid emittance growth, and to study the detailed time evolution of the beams.

  15. High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2.

    PubMed

    Mleczko, Michal J; Xu, Runjie Lily; Okabe, Kye; Kuo, Hsueh-Hui; Fisher, Ian R; Wong, H-S Philip; Nishi, Yoshio; Pop, Eric

    2016-08-23

    Two-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 μm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick). High-field electrical measurements and electrothermal modeling demonstrate that ultrathin WTe2 can carry remarkably high current density (approaching 50 MA/cm(2), higher than most common interconnect metals) despite a very low thermal conductivity (of the order ∼3 Wm(-1) K(-1)). These results suggest several pathways for air-stable technological viability of this layered semimetal. PMID:27434729

  16. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    PubMed Central

    Subedi, Bishnu H; Joshi, Parag H; Jones, Steven R; Martin, Seth S; Blaha, Michael J; Michos, Erin D

    2014-01-01

    Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD) is low high-density lipoprotein cholesterol (HDL-C). Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. PMID:24748800

  17. Microstructure, critical current density and trapped field experiments in IG-processed Y-123

    NASA Astrophysics Data System (ADS)

    Muralidhar, M.; Ide, N.; Koblischka, M. R.; Diko, P.; Inoue, K.; Murakami, M.

    2016-05-01

    In this paper, we adapted the top-seeded infiltration growth ‘IG’ technique and produced several YBa2Cu3O y ‘Y-123’ samples with an addition of Y2BaCuO5 ‘Y-211’ secondary phase particles with varying sizes by the sintering process and the ball milling technique. For the first set of samples, Y-211 disks were sintered at temperatures ranging between 900 °C and 1100 °C and were used for the production of Y-123 material by the IG process. Magnetization measurements showed a sharp superconducting transition with an onset T c at around 92 K, irrespective of the sintering temperature. However, the trapped field and critical current density (J c) values were dependent on the sintering temperature and it was found that the best temperature is around 925 °C. Further, the trapped field distribution measurements at 77 K indicated that all samples are of single grain nature. The highest trapped field was recorded around 0.31 T at 77 K for the Y-123 sample with 20 mm in diameter and 5 mm thickness produced by Y-211 pre-from around 925 °C. On the other hand, a second set of samples Y-211 were controlled by ball milling technique combined with an optimized slow cooling process. As a result, the critical current density (J c) at 77 K and zero field was determined to be 225 kA cm-2. The improved performance of the Y-123 material can be understood in terms of homogeneous distribution of fine secondary phase particles which is demonstrated by AFM micrographs.

  18. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    USGS Publications Warehouse

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  19. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    NASA Astrophysics Data System (ADS)

    Zhang, PengFei; Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian; Qiu, Aici

    2016-03-01

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the "QiangGuang-I" accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (˜4 × 1021/cm3), with an expansion velocity of ˜0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  20. Low-current-density spin-transfer switching in Gd{sub 22}Fe{sub 78}-MgO magnetic tunnel junction

    SciTech Connect

    Kinjo, Hidekazu Machida, Kenji; Aoshima, Ken-ichi; Kato, Daisuke; Kuga, Kiyoshi; Kikuchi, Hiroshi; Shimidzu, Naoki; Matsui, Koichi

    2014-05-28

    Magnetization switching of a relatively thick (9 nm) Gd-Fe free layer was achieved with a low spin injection current density of 1.0 × 10{sup 6} A/cm{sup 2} using MgO based magnetic tunnel junction devices, fabricated for light modulators. At about 560 × 560 nm{sup 2} in size, the devices exhibited a tunneling magnetoresistance ratio of 7%. This low-current switching is mainly attributed to thermally assisted spin-transfer switching in consequence of its thermal magnetic behavior arising from Joule heating.

  1. Emplacement temperatures of boiling-over pyroclastic density currents from Tungurahua and Cotopaxi volcanoes, Ecuador

    NASA Astrophysics Data System (ADS)

    Rader, E. L.; Geist, D.; Geissman, J. W.; Harpp, K. S.; Dufek, J.

    2011-12-01

    Pyroclastic density currents (PDC) can be sourced by collapsing columns, dome collapse, and boiling-over fountains. Although there are innumerable studies of the deposits produced by the first 2 mechanisms, pyroclastic deposits from boiling-over have not been well characterized. We are studying several pyroclastic flow deposits from two boiling over eruptions in Ecuador, Tungurahua, 2006 and Cotopaxi, 1877. These eruptions produced abundant cauliflower-textured, large (up to 1 m in diameter), fragile scoria clasts. Some evidence points to relatively low temperatures during transport. For example, some flows at Cotopaxi are unusually long and sinuous and probably influenced by melt water from the glacier that caps the cone. Additionally, un-charred vegetation and eyewitness reports of un-melted plastic in the path of pyroclastic flows at Tungurahua also support cool emplacement temperatures. On the other hand, some scoria clasts were ductile when deposited as evidenced by draped clasts. We cut 5 to 9 cm transects from rim to core of 36 lithic and juvenile samples, which were then thermally demagnetized and measured. Lithic samples from Tungurahua indicate only one flow was fully remagnetized above ~580°C, while another flow was only partially remagnetized below 210°C. All other lithics from both volcanoes were never heated to above 90°C. Juvenile clasts from Cotopaxi indicate three types of flows: currents that begin hot (above 580°C) but cool quickly (juveniles emplaced hot, but lithics emplaced cold); currents that deposit at ~330°C (two components of magnetization that intersect at 330°C in the juvenile clasts), and cold currents such as lahars. The majority of currents from Tungurahua are of the 2nd type, having emplacement temperatures of ~380°C-280°C, with the deformable juvenile clasts being hotter than the rest of the flow. Despite the intact nature of the fragile bombs, emplacement temperatures indicate that the majority of flow deposits at

  2. Topographic effects on run-out distance and liftoff of pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Gange, W. S.; Andrews, B. J.; Manga, M.

    2010-12-01

    Pyroclastic density currents (PDCs) are fast-moving mixtures of hot gas and rock that present a large hazard in part because of their ability to scale topographic barriers. Understanding how such barriers affect run-out distance and liftoff can help interpret deposits and improve hazard assessment. We performed scaled experiments using 20-micron talc powder in a tank with dimensions: 6 m by 0.6 m by 1.8 m. Using an oven, we heated the powder to temperatures varying from ambient to 46°C and then placed the powder onto a conveyor belt 1.5m above the base of the tank that dropped the powder onto a steep slope at controlled rates. Dilute currents were generated at the base of the slope and travelled across the horizontal tank floor. By varying conveyor speed and the mass of the powder, we produced currents with discharges of 0.25 to 2 g/s, speeds ranging from 7 to 20 cm/s, and thicknesses of 8 to 18 cm, creating a range of contrasts in temperature of 0 to 15°C between the tank and the current. The corresponding densimeric Richardson numbers, thermal Richardson numbers, and Stokes numbers are similar to those in PDCs. Reynolds numbers are much smaller in the lab, but still large enough for the currents to be fully turbulent. We recorded our experiments using 4 HD video cameras and we monitored temperature and humidity profiles within the tank before and after each run. We analyzed flow concentration, run-out distance, liftoff position, and ability to surmount barriers of heights of: 4, 7, 8, 15, and 17.8 cm. For reference we also ran experiments with no barriers. We find that flows lift off or stop advancing sooner as the barrier height increases owing to the entrainment of air as the current passes over the barrier and engulfs particle-free air on the lee side of the barrier. The effects of barriers are most pronounced when barrier height approaches or exceeds flow thickness.

  3. Charge, current and spin densities of a two-electron system in Russell-Saunders spin-orbit coupled eigenstates

    NASA Astrophysics Data System (ADS)

    Ayuel, K.; de Châtel, P. F.; Amani, Salah

    2002-04-01

    Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.

  4. Ultrasound Current Source Density Imaging of the Cardiac Activation Wave Using a Clinical Cardiac Catheter

    PubMed Central

    Qin, Yexian; Li, Qian; Ingram, Pier; Barber, Christy; Liu, Zhonglin

    2015-01-01

    Ultrasound current source density imaging (UCSDI), based on the acoustoelectric (AE) effect, is a noninvasive method for mapping electrical current in 4-D (space + time). This technique potentially overcomes limitations with conventional electrical mapping procedures typically used during treatment of sustained arrhythmias. However, the weak AE signal associated with the electrocardiogram is a major challenge for advancing this technology. In this study, we examined the effects of the electrode configuration and ultrasound frequency on the magnitude of the AE signal and quality of UCSDI using a rabbit Langendorff heart preparation. The AE signal was much stronger at 0.5 MHz (2.99 μV/MPa) than 1.0 MHz (0.42 μV/MPa). Also, a clinical lasso catheter placed on the epicardium exhibited excellent sensitivity without penetrating the tissue. We also present, for the first time, 3-D cardiac activation maps of the live rabbit heart using only one pair of recording electrodes. Activation maps were used to calculate the cardiac conduction velocity for atrial (1.31 m/s) and apical (0.67 m/s) pacing. This study demonstrated that UCSDI is potentially capable of real-time 3-D cardiac activation wave mapping, which would greatly facilitate ablation procedures for treatment of arrhythmias. PMID:25122512

  5. Doubling of the Critical Current Density of 2G-YBCO Coated Conductors through proton irradiation

    NASA Astrophysics Data System (ADS)

    Welp, Ulrich; Jia, Ying; Kwok, Wai-Kwong; Rupich, Marty; Fleshler, Steven; Kayani, Asfghar

    2013-03-01

    We report on magnetization and transport measurements of the critical current density of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons to a fluence of 1.5x1016 p/cm2. We find that at temperatures below 50 K, proton irradiation increases Jc by a factor of 2 in low fields and increases up to 2.5 in fields of 7 T. At 77 K, proton irradiation is less effective in enhancing the critical current. Doubling of Jc in fields of several Tesla and at temperatures below 50 K will be highly beneficial for applications of coated conductors in rotating machinery, generators and magnet coils. - Work supported by the US DoE-BES funded Energy Frontier Research Center (YJ), and by Department of Energy, Office of Science, Office of Basic Energy Sciences (UW, WKK), under Contract No. DE-AC02-06CH11357.

  6. An organic-heterojunction diode current equation including random site trap density

    NASA Astrophysics Data System (ADS)

    Kim, SeongMin; Ha, Jaewook; Kim, Jin-Baek

    2016-08-01

    The current-voltage characteristics of an organic heterojunction (HJ), where random site trap density at the donor-acceptor (D-A) interface is included, is numerically investigated based on the polaron-pair (PP) model (Phys. Rev. B. 82, 155305 (2010)). To derive the analytic equation, the electric field FI at the D-A interface, which is included in the field parameter b, is first approximated to estimate the polaron-pair dissociation rate, k_{ppd}. It is then assumed that the quasi-Fermi level E_{Fp/n} at the donor/acceptor lies in the trap energy level ( E_{trap}) at random sites without a direct dependence on applied bias ( Va), but on a HOMO/LUMO with Va dependence. As a result, the low diode current (DC) at forward bias is attributed to the E_{trap}, which is lower than the LUMO at acceptors, and is higher than the HOMO at donors. This implies that the pattern of DC is at forward biases depending upon the position of E_{trap}.

  7. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis.

    PubMed

    Cheung, Karen C; Renaud, Philippe; Tanila, Heikki; Djupsund, Kaj

    2007-03-15

    This work presents implantable, flexible polymer-based probes with embedded microelectrodes for acute and chronic neural recordings in vivo, as tested on rodents. Acute recordings using this array were done in mice under urethane anesthesia and compared to those made using silicon-based probes manufactured at the Center for Neural Communication Technology, University of Michigan. The two electrode arrays yielded similar results. Recordings with chronically implanted polymer-based electrodes were performed for 60 days post-surgically in awake, behaving rats. The microelectrodes were used to monitor local field potentials and capture laminar differences in function of cortex and hippocampus, and produced response waveforms of undiminished amplitude and signal-to-noise ratios 8 weeks after chronic implantation. The polymer-based electrodes could also be connected to a lesion current to mark specific locations in the tissue. Current source density (CSD) analysis from the recordings depicted a source - sink-composition. Tissue response was assessed 8 weeks after insertion by immunochemical labeling with glial fibrillary acidic protein (GFAP) to identify astrocytes, and histological analysis showed minimal tissue reaction to the implanted structures. PMID:17027251

  8. Numerical calculation and measurement of 60-Hz current densities induced in an upright grounded cylinder.

    PubMed

    Kaune, W T; McCreary, F A

    1985-01-01

    Power-frequency electric fields are strongly perturbed in the vicinity of human beings and experimental animals. As a consequence, the extrapolation of biological data from laboratory animals to human-exposure situations cannot use the unperturbed exposure field strength as a common exposure parameter. Rather, comparisons between species must be based on the actual electric fields at the outer surfaces of and inside the bodies of the subjects. Experimental data have been published on surface and internal fields for a few exposure situations, but it is not feasible to characterize experimentally more than a small fraction of the diverse types of exposures which occur in the laboratory and in the field. A predictive numerical model is needed, one whose predictions have been verified in situations where experimental data are available, and one whose results can be used with confidence in new exposure situations. This paper describes a numerical technique which can be used to develop such a model, and it carries out this development for a test case, that of a homogeneous right-circular cylinder resting upright on-end on a ground plane and exposed to a vertical, uniform, 60-Hz electric field. The accuracy of the model is tested by comparing short-circuit currents and induced current densities predicted by it to measured values: Agreement is good. PMID:3836665

  9. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  10. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    PubMed

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. PMID:25988787

  11. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men

    NASA Astrophysics Data System (ADS)

    Leitgeb, N.; Niedermayr, F.; Neubauer, R.; Loos, G.

    2010-10-01

    There is still an ongoing debate whether or not electronic stun devices (ESDs) induce cardiac fibrillation. To assess the ventricular fibrillation risk of law enforcing electronic control devices, quantitative estimates of cardiac electric current densities induced by delivered electric pulses are essential. Numerical simulations were performed with the finite integration technique and the anatomical model of a standardized European man (NORMAN) segmented into 2 mm voxels and 35 different tissues. The load-dependent delivery of TASER X-26 pulses has been taken into account. Cardiac exposure to electric current densities of vertically and horizontally aligned dart electrodes was quantified and different hit scenarios compared. Since fibrillation thresholds critically depend on exposed volume, the provided quantitative data are essential for risk assessment. The maximum cardiac rms current densities amounted to 7730 A m-2. Such high current densities and exposed cardiac volumes do not exclude ventricular fibrillation.

  12. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density

    NASA Astrophysics Data System (ADS)

    Sharafi, Asma; Meyer, Harry M.; Nanda, Jagjit; Wolfenstine, Jeff; Sakamoto, Jeff

    2016-01-01

    The stability and kinetics of the Li-Li7La3Zr2O12 (LLZO) interface were characterized as a function of temperature and current density. Polycrystalline LLZO was densified using a rapid hot-pressing technique achieving 97 ± 1% relative density, and <10% grain boundary resistance; effectively consisting of an ensemble of single LLZO crystals. It was determined that by heating to 175 °C, the room temperature Li-LLZO interface resistance decreases dramatically from 5822 (as-assembled) to 514 Ω cm2; a > 10-fold decrease. In characterizing the maximum sustainable current density (or critical current density - CCD) of the Li-LLZO interface, several signs of degradation were observed. In DC cycling tests, significant deviation from Ohmic behavior was observed. In post-cycling tests, regions of metallic Li were observed; propagating parallel to the ionic current. For the cells cycled at 30, 70, 100, 130 and 160 °C, the CCD was determined to be 50, 200, 800, 3500, and 20000 μA cm-2, respectively. The relationships and phenomena observed in this work can be used to better understand the Li-LLZO interface stability, enabling the use of batteries employing Li metal anodes.

  13. The critical current density of yttrium barium copper oxide coated conductors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Il

    The critical current density Jc of YBa 2Cu3O7-x (YBCO) coated conductors is determined by the connectivity of the polycrystalline grain network and by vortex pinning. The aim of this work is to explore these two key scientific issues. Current obstruction effects of the grain boundary network were first studied by measuring variable width tracks in variously-textured ex situ coated conductors. We found that the global texture exercises a significant effect on Jc especially in low fields. We then grew low angle [001]-tilt bicrystal YBCO films with controlled doping so as to study the influence that variable size and charge segregants would have on the inter-grain Jc. The beneficial effects of Ca doping was already proven, but here we were able to show that the optimum doping of low angle grain boundaries was obtained with the smaller substitutions of 15% Ca for Y, rather than the 30% previously employed. We then studied Ca-doping in the small rare-earth (RE) ion Yb variant of the RE-123 structure, YbBa2Cu3O7-x, and the influence of substitutions for Y of the large RE ion Nd in YBa2Cu3O7-x. We found that strain- and charge-driven segregation to the grain boundary was consistent with the segregation model of Gurevich. Very interestingly, the 6° Nd-doped YBCO grain boundaries exhibited no degradation of intergrain Jc compared to the intragrain Jc without significant Tc reduction. Then, the vortex pinning was studied by sequential ion milling of YBCO films with various vortex pinning microstructures. YBCO films without strong pins exhibited two-dimensional collective pinning behavior and thermal fluctuation depinning effect, and thus Jc fell off fast with increasing thickness, magnetic field and temperature. In contrast, a YBCO film with dense, insulating, nanoscale pins exhibited strong three-dimensional pinning behavior and a high and uniform Jc through thickness. Analysis of the through-thickness properties of ex situ high Jc coated conductors showed them to be well

  14. High Domain Wall Velocity at Zero Magnetic Field Induced by Low Current Densities in Spin Valve Nanostripes

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Uhlíř, Vojtěch; Vogel, Jan; Rougemaille, Nicolas; Laribi, Sana; Cros, Vincent; Jiménez, Erika; Camarero, Julio; Tieg, Carsten; Bonet, Edgar; Bonfim, Marlio; Mattana, Richard; Deranlot, Cyrile; Petroff, Frédéric; Ulysse, Christian; Faini, Giancarlo; Fert, Albert

    2009-02-01

    Current-induced magnetic domain wall motion at zero magnetic field is observed in the permalloy layer of a spin-valve-based nanostripe using photoemission electron microscopy. The domain wall movement is hampered by pinning sites, but in between them high domain wall velocities (exceeding 150 m/s) are obtained for current densities well below 1012 A/m2, suggesting that these trilayer systems are promising for applications in domain wall devices in case of well controlled pinning positions. Vertical spin currents in these structures provide a potential explanation for the increase in domain wall velocity at low current densities.

  15. Simulation-Based Validation for Four-Dimensional Multi-Channel Ultrasound Current Source Density Imaging

    PubMed Central

    Wang, Zhaohui; Witte, Russell S.

    2015-01-01

    Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and

  16. Simulation-based validation for four- dimensional multi-channel ultrasound current source density imaging.

    PubMed

    Wang, Zhaohui; Witte, Russell S

    2014-03-01

    Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and

  17. A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents

    SciTech Connect

    Shapiro, A. )

    1992-12-01

    Vertically sheared airflow over semi-infinite barriers is investigated with a simple hydrodynamical model. The idealized flow is steady, two-dimensional, neutrally buoyant, and inviscid, bounded on the bottom by a semi-infinite impermeable barrier and on the top by a rigid tropopause lid. With attention further restricted to an exponentially decreasing wind shear, the equations of motion (Euler's equations) reduce, without approximation, to a modified Poisson equation for a pseudo streamfunction and a formula for the Exner function. The free parameters characterizing the model's environment are the tropopause height, the density scale height, the wind speed at ground level, and the wind speed at tropopause level. Additional parameters characterize the barrier geometry. Exact solutions of the equations of motion are obtained for semi-infinite plateau barriers and for a barrier qualitatively resembling the shallow density current associated with some thunderstorm outflows. These solutions are noteworthy in that the reduction of a certain nondimensional shear parameter (through negative values) results in greater vertical parcel displacements over the barrier despite a corresponding reduction in the vertical velocity. This steepening tendency culminates in overturning motions associated with both upstream and down-stream steering levels. In this latter case the low-level inflow impinging on the barrier participates in a mixed jump and overturning updraft reminiscent of updrafts simulated in numerical convective models. Conversely, for large values of the nondimensional shear parameter, parcels undergo small vertical parcel displacements over the barrier despite large vertical velocities. This latter behavior may account for the finding that strong convergence along the leading edge of storm outflows does not always trigger deep convection even in unstable environments.

  18. Kinetic theory of current and density drift instabilities with weak charged-neutral collisions. [in space plasmas

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1984-01-01

    This paper describes the linear kinetic theory of electrostatic instabilities driven by a density gradient drift and a magnetic-field-aligned current in a plasma with weak charged neutral collisions. The configuration is that of a uniform magnetic field B, a weak, uniform density gradient in the x direction and a weak, uniform electric field in the z direction. Collisions are represented by the BGK model. The transition from the (kinetic) universal density drift instability to the (fluidlike) current convective instability is studied in detail, and the short wavelength properties of the latter mode are investigated.

  19. Multipoint measurements of field aligned current density in the auroral zone

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua

    2001-08-01

    In this thesis we discuss the results of the Enstrophy sounding rocket, launched from Poker Flat Research Range on the evening of February 11, 1999. The rocket flew through a very dynamic auroral region with multiple bright arcs and into the polar cap. Four Free Flying Magnetometers employing autonomous, nano-spacecraft technology and designed by JPL were deployed from the main payload during the flight and multipoint magnetic field measurements were made. Magnetic field data reduction was performed on data obtained from the FFMs. The data reduction procedure is very complicated in the sense that it requires transformation from a spinning and precessing coordinate system (measurements are in this system) to a non- spinning, non-processing, Earth-magnetic-field aligned B-L system (z axis is along B-the Earth magnetic field, x is in the B-L plane and pointing away from L-the angular momentum vector, and y axis comprises the right-handed coordinate system) and the extraction of magnetic fluctuation on the order of 10s nanotesla (nT) from a signal on the order of 10 4 nT. Therefore, very accurate fitting of all the involved parameters is a necessity. Details of the data reduction procedure are discussed. Large magnetic field fluctuations were seen by all the FFMs when the rocket was near its apogee (about 1070 km), at the poleward edge of an auroral arc. Field Aligned Current (FAC) density was calculated from the multipoint magnetic field measurements by Taylor series expansion to the first order. Both spatial structures and temporal variations are seen during this event and interpretations of the results are made. The delays in the magnetic fluctuations between the FFMs indicates current sheet structures were moving relative to each other, which is further supported by the fact that the results from a simple model of multiple payloads crossing through several moving current sheets could reproduce most of the delays in magnetic field measurements. But at other times

  20. Evidences on eddy variability and density currents in the deep flow of the Strait of Otranto

    NASA Astrophysics Data System (ADS)

    Kovacevic, Vedrana; Ursella, Laura; Gacic, Miroslav

    2010-05-01

    The Strait of Otranto is 70 km wide channel connecting the Adriatic and the Ionian Seas (Mediterranean) over the 800 m deep sill. On average, a northward/southward inflow/outflow takes place along the eastern/western coast of the channel. In particular, the outflow of the Adriatic Dense Water (AdDW) occurs as a density-driven current in the bottom layer pressed against the western continental margin. In the framework of the Italian national project VECTOR ("VulnErabilità delle Coste e degli ecosistemi marini italiani ai cambiamenti climaTici e loro ruolO nei cicli del caRbonio mediterraneo") the vein of the AdDW was monitored in the period Nov2006-Apr2007. Three moorings (V2, V3 and V4), about 13 km apart, were deployed in the bottom layer along the E-W section at the southernmost and deepest end of the strait. They were equipped with RDI upward-looking ADCPs (Acoustic Doppler Current Profiler), bottom RCM current-meters and SBE-CT (Conductivity and Temperature) instruments. The current-meter at the deepest mooring (V4) mounted also a turbidity sensor. Rotational events at the ten-day time scale are observed in the current records. In particular, two strong events are evident on the 8-11 and on the 20-24 December 2006. Cross-correlation and rotary spectral analysis of current time-series at the outermost and central mooring reveal the concomitant occurrence of the rotation in the opposite sense. These rotational events have been explained in terms of the passage of mesoscale eddies (diameter of few tens of kilometers and velocity propagation of 15 cm/s toward south). The assumption is that the eddy formation mechanism is due to the stretching of the high potential vorticity water column over the Strait sill to the north. The footprint of mesoscale eddies is also clearly evident both in CT and turbidity records. A detailed look into the two December events, when the eddy passage is assumed, shows a number of coincidences: temperature and salinity drop at V3 and V4

  1. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  2. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities.

    PubMed

    Lee, Andrew; Jiang, Qi; Tang, Mingchu; Seeds, Alwyn; Liu, Huiyun

    2012-09-24

    We report the first room-temperature continuous-wave operation of III-V quantum-dot laser diodes monolithically grown on a Si substrate. Long-wavelength InAs/GaAs quantum-dot structures were fabricated on Ge-on-Si substrates. Room-temperature lasing at a wavelength of 1.28 μm has been achieved with threshold current densities of 163 A/cm(2) and 64.3 A/cm(2) under continuous-wave and pulsed conditions for ridge-waveguide lasers with as cleaved facets, respectively. The value of 64.3 A/cm(2) represents the lowest room-temperature threshold current density for any kind of laser on Si to date. PMID:23037366

  3. The roles of CHPD: superior critical current density and n-value obtained in binary in situ MgB2 cables

    NASA Astrophysics Data System (ADS)

    Hossain, M. S. A.; Motaman, A.; Barua, S.; Patel, D.; Mustapic, M.; Kim, J. H.; Maeda, M.; Rindfleisch, M.; Tomsic, M.; Cicek, O.; Melisek, T.; Kopera, L.; Kario, A.; Ringsdorf, B.; Runtsch, B.; Jung, A.; Dou, S. X.; Goldacker, W.; Kovac, P.

    2014-09-01

    A binary magnesium diboride (MgB2) cable has been assembled by braiding six Nb/Monel sheathed monofilament strands around a central copper stabilizer for improving the operational environment. The total critical current (Ic) of the braided cable is obtained by multiplying the Ic of six single wires, without any dissipation. In this work, various mechanical deformations, i.e., swaging, two-axial rolling, groove rolling, and cold high-pressure densification (CHPD) at 1.8 GPa have been applied to the 6-stranded cable to obtain additional densification. The highest critical current density at both 4.2 and 20 K has been achieved in this work through the CHPD treated cable due to higher filament mass density. The present results are promising in view of the cable, particularly in power applications at industrial lengths that pave the way to seeking an optimal protocol to meet a practical functionality.

  4. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.

    1990-01-01

    The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.

  5. Photoelectrolysis of water at high current density - Use of ultraviolet laser excitation

    NASA Technical Reports Server (NTRS)

    Bocarsly, A. B.; Bolts, J. M.; Cummins, P. G.; Wrighton, M. S.

    1977-01-01

    The behavior of TiO2 and SrTiO3 photoanodes in cells for the photoelectrolysis of H2O has been investigated for high-intensity 351-,364-nm excitation from an Ar ion laser. Intensities up to 380 W/sq cm have been used. For TiO2 a small amount of surface decomposition is found after irradiation at high intensity, whereas SrTiO3 undergoes no detectable changes. Current-voltage properties for both electrodes are essentially independent of light intensity up to the level of 380 W/sq cm, and there is little if any change in quantum efficiency for electron flow. Photocurrent densities have been shown to exceed 5 A/sq cm for O2 evolution. Data show that the energy storage rate associated with the SrTiO3 photoelectrolysis can exceed 30 W/sq cm; this represents the highest demonstrated rate of sustained optical-to-chemical energy conversion.

  6. Drift current dominated terahertz radiation from InN at low-density excitation

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Tsai, J. T.; Wang, T. S.; Hwang, J. S.; Chen, M. C.; Chi, G. C.

    2008-12-01

    This letter investigates the polarity of terahertz radiation from indium nitride (InN) excited by femtosecond optical pulses wherein a central wavelength of around 790nm is measured. The InN epilayers are grown by metalorganic chemical vapor deposition on sapphire and silicon substrates. The polarity of the terahertz radiation field from InN is opposite to that from p-InAs whose radiation mechanism is dominated by the photo-Dember effect indicating that the dominant radiation mechanism in InN is the drift current induced by the internal electric field at low-density excitation below 590nJ /cm2. The internal electric field consists of the surface accumulation field and the spontaneous polarization-induced electric field. In addition, since no azimuthal angle dependence of the terahertz radiation is observed, the optical rectification effect is ruled out. By comparing the wave forms of terahertz radiation from the front and the back of the InN sample grown on sapphire in reflection geometry, the N polarity of the InN sample is confirmed.

  7. Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, E.; Mendoza-Borunda, R.

    2014-12-01

    Measurement of the anisotropy of magnetic susceptibility (AMS) of igneous rocks can provide clues concerning their mechanism of formation and in particular are very helpful as flow direction indicators. Unlike other igneous rocks, however, pyroclastic density current deposits (PDCDs) present a challenge in the interpretation of AMS measurements due to the complexity of their mechanism of emplacement. In this paper we review the most common assumptions made in the interpretation of the AMS of PDCD, taking advantage of key lessons obtained from obsidians. Despite the complexities on the mechanism of formation of PDCDs, it is shown that a key element for the fruitful interpretation of AMS is to give proper attention to the various components likely to be involved in controlling their general petrofabric. The anisotropies of ferromagnetic crystals (whether as free phases or embedded within clasts or shards), and those of paramagnetic minerals (mainly ferrosilicates) need to be taken into consideration when interpreting the AMS measurements of PDCDs. Variations of the deposition regime both as a function of position and of time also need to be considered on the interpretations. Nevertheless, if a suitable sampling strategy is adopted, the potential of the AMS method as a petrofabric indicator is maximized.

  8. Antarctic density stratification and the strength of the circumpolar current during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, Jean; Ito, Takamitsu; Michel, Elisabeth

    2016-05-01

    The interaction between ocean circulation and biological processes in the Southern Ocean is thought to be a major control on atmospheric carbon dioxide content over glacial cycles. A better understanding of stratification and circulation in the Southern Ocean during the Last Glacial Maximum (LGM) provides information that will help us to assess these scenarios. First, we evaluate the link between Southern Ocean stratification and circulation states in a suite of climate model simulations. While simulated Antarctic Circumpolar Current (ACC) transport varies widely (80-350 Sverdrup (Sv)), it co-varies with horizontal and vertical stratification and the formation of the southern deep water. We then test the LGM simulations against available data from paleoceanographic proxies, which can be used to assess the density stratification and ACC transport south of Australia. The paleoceanographic data suggest a moderate increase in the Southern Ocean stratification and the ACC strength during the LGM. Even with the relatively large uncertainty in the proxy-based estimates, extreme scenarios exhibited by some climate models with ACC transports of greater than 250 Sv and highly saline Antarctic Bottom Water are highly unlikely.

  9. Improvement of critical current density of bronze processed Nb{sub 3}Sn superconducting wire

    SciTech Connect

    Miyazaki, T.; Fukumoto, Y.; Matsukura, N.

    1997-06-01

    Effects of tantalum addition to niobium filaments and tin contents in bronze matrix on the critical current density (J{sub c}) of Nb{sub 3}Sn superconducting wires manufactured by the bronze process were investigated in order to improve the J{sub c} in the high magnetic fields. In the results using the bronze composition of Cu-13wt.%Sn-0.3wt.%Ti, the J{sub c} shows a peak for 1 wt.% of tantalum content in the niobium filament. On the other hand, J{sub c} of samples with Cu-14wt.%Sn-0.3wt.%Ti is almost 1.7 times higher than that with Cu-13wt.%Sn-0.3wt.%Ti. From these findings, the authors manufactured a multifilamentary prototype (Nb,Ti,Ta){sub 3}Sn conductor made of Nb-1.0wt.%Ta and Cu-14wt.%Sn.0.3wt.%Ti. The non Cu J{sub c} of the conductor was 701 A/mm{sup 2} at 12 T and 51 A/mm{sup 2} at 21 T for the heat treatment temperature of 650{degrees} C.

  10. Evidence of current free double layer in high density helicon discharge

    SciTech Connect

    Ganguli, A.; Sahu, B. B.; Tarey, R. D.

    2013-01-15

    This paper investigates the formation of double layer (DL) in helicon plasmas. In the experiment, argon plasma production is using the excitation of m = -1 helicon mode with magnetic mirror field with high mirror ratio of {approx}1:1.7. We have specifically used the radio frequency compensated Langmuir probe (LP) to measure the relevant plasma parameters simultaneously so as to investigate the details about the plasma production. The DL, which consists of both warm and bulk populations towards higher potential region and only dense bulk plasmas towards the lower potential region downstream the antenna, is present in the transition region. LP measurements also show an abrupt fall of density along with a potential drop of about 20 V and (e {Delta}V{sub p}/k T{sub e}) Almost-Equal-To 12 within a few cm. The potential drop is equal to the difference of the electron temperatures between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike in several prior studies on the DL formation in the region of strong gradients in the magnetic field. The DL is strong, current-free, electric double-layer with estimated thickness of about 10 Debye lengths.

  11. Cortical network dynamics during source memory retrieval: current density imaging with individual MRI.

    PubMed

    Kim, Young Youn; Roh, Ah Young; Namgoong, Yoon; Jo, Hang Joon; Lee, Jong-Min; Kwon, Jun Soo

    2009-01-01

    We investigated the neural correlates of source memory retrieval using low-resolution electromagnetic tomography (LORETA) with 64 channels EEG and individual MRI as a realistic head model. Event-related potentials (ERPs) were recorded while 13 healthy subjects performed the source memory task for the voice of the speaker in spoken words. The source correct condition of old words elicited more positive-going potentials than the correct rejection condition of new words at 400-700 ms post-stimulus and the old/new effects also appeared in the right anterior region between 1,000 and 1,200 ms. We conducted source reconstruction at mean latencies of 311, 604, 793, and 1,100 ms and used statistical parametric mapping for the statistical analysis. The results of source analysis suggest that the activation of the right inferior parietal region may reflect retrieval of source information. The source elicited by the difference ERPs between the source correct and source incorrect conditions exhibited dynamic change of current density activation in the overall cortices with time during source memory retrieval. These results indicate that multiple neural systems may underlie the ability to recollect context. PMID:17979123

  12. High Current Density, Long Life Cathodes for High Power RF Sources

    SciTech Connect

    Ives, Robert Lawrence; Collins, George; Falce, Lou; Schwartzkopf, Steve; Busbaher, Daniel

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  13. Ion beam annealing during high current density implants of phosphorus into silicon

    NASA Astrophysics Data System (ADS)

    Cannavó, S.; La Ferla, A.; Rimini, E.; Ferla, G.; Gandolfi, L.

    1986-06-01

    The damage left by high current density˜10 μA/cm2 implants of 120-keV P+ into 4-in. (500-μm-thick) and 5-in. (600-μm-thick) Si wafers of <100> orientation has been measured by 2.0-MeV He backscattering in combination with the channeling effect technique. The fluences ranged between 1 and 7.5×1015/cm2. The amount of disorder is highest at 1×1015/cm2 and then decreases with fluence. The annealing of the amorphous layer takes place by the movement of two and one amorphous-single crystal interfaces for the 500- and 600-μm-thick wafers, respectively. The experimental data are compared with a beam annealing model based on the temperature-rise profile, the amount of point defects generated by the ion in the collision cascade volume, and the assumption of a regrowth process governed by an activation energy of 0.25 eV.

  14. Damage created by high-current-density implants of phosphorus into <100> and <111> silicon wafers

    NASA Astrophysics Data System (ADS)

    Servidori, M.; Cannavó, S.; Ferla, G.; La Ferla, A.; Rimini, E.

    1987-11-01

    The damage left by high-current-density, ˜9 μA/cm2, implants of 120 keV phosphorus into <100> and <111> silicon oriented substrates was investigated as a function of the fluence in the range 4×1015 1.5×1016/cm2. The samples were analyzed by 2 MeV He+ channeling and transmission electron microscopy. Initially a buried amorphous layer forms at low fluences until the wafer temperature saturates at ˜450 °C at a fluence of ˜4.5×1015/cm2. As the fluence is further increased ion-assisted regrowth of this initial buried amorphous layer takes place and is 2 to 2.5 times faster (with respect to ion fluence) for <100> substrates than for <111> substrates. At higher fluences, most of the residual damage is located at a depth equal to the sum of the projected range and of the straggling. In the regrown layers twins are found in both orientations, and in some cases a hexagonal silicon phase is present at high fluences. The results are compared with the ion assisted regrowth of amorphous layers at well defined temperatures in the 250° 400 °C range.

  15. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Senatore, Carmine; Barth, Christian; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer another. In the present work we have examined the critical surface for the current density, J c(T, B, θ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd (Japan), SuNAM Co. Ltd (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic fields of up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0°, 45° and 90°, in order to probe the angular anisotropy of J c. In spite of the large variability of the CCs’ performance, we show here that field and temperature dependences of J c at a given angle can be reproduced over wide ranges using a scaling relation based only on three parameters. Furthermore, we present and validate a new approach combining magnetic and transport measurements for the determination of the scaling parameters with minimal experimental effort.

  16. Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.

    2015-12-01

    Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.

  17. Rounding of Clasts by Abrasion and Comminution in Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Patel, A.; Manga, M.; Dufek, J.

    2009-12-01

    Abrasion and comminution of pumice clasts during the propagation of pyroclastic density currents has long been recognized as a potential source for the enhanced production of volcanic ash. The amount of ash produced in-situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. Such ash production should be reflected in the roundness of clasts. We performed experimental measurements to determine the relationship between particle roundness (measured in two-dimensions by how close each particle’s area to perimeter squared ratio is to a circle’s) and mass loss caused by particle-particle interactions. We use airfall pumice from Medicine Lake, and clasts from flow deposits at Taupo and Mount St Helens. We find that average sample roundness reaches a maximum value once particles lose between 10 and 70% of their mass. The most texturally homogeneous clasts (Taupo) become the most round. We compared our experimental measurements with the roundness of clasts in the May 18, 1980 pyroclastic flow units at Mount St Helens, deposited 4.5-8 km from the vent. The roundness measurements of these clasts are close to the experimentally determined maximum values, suggesting that a significant amount of ash may have been produced in-situ within the flow. Numerical multiphase flow simulations for conditions similar to this eruption (Dufek and Manga, JGR 2008) are consistent with this conclusion.

  18. Inferring the Magnetic Structure of a Sunspot from Decomposition of Photospheric Vertical Current Density into Twist and Shear Components

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, P.

    2015-12-01

    The electric current density, derived from the curl of the vector magnetic field, can be decomposed into the so-called twist and shear components. We examined this decomposition for 2 highly flare productive active regions undergoing magnetic flux emergence, viz. AR 10930 observed by SOT aboard Hinode and AR 11158 observed by HMI aboard SDO. We found the following common evolutionary behaviour in both the cases: 1. The percentage of variation of the spatially averaged value of the ratio of the shear current density to the twist current density is much smaller than the percentage of variation of the twist current throughout the evolution. 2. The average ratio was negative in sign, viz. the shear current density was opposite in sign to the twist current density in most of the pixels. 3. The magnitude of the average ratio increased with increase of pixel size. The above 3 results were examined for two extreme kinds of magnetic structure: a) a monolithic continuous didtribution of magnetic flux and b) an intermittent cluster of magnetic fibrils separated by field free regions. We arrive at the conclusion that the above mentioned observations tend to favor the monolithic model of sunspot magnetic field over the fibril model, although a fibril structure at deeper layers cannot be ruled out. Observations of vector magnetic fields of sunspots using the infrared FeI line around 1560 nm could perhaps resolve this issue.

  19. Influences of current density on tribological characteristics of ceramic coatings on ZK60 Mg alloy by plasma electrolytic oxidation.

    PubMed

    Wu, Xiaohong; Su, Peibo; Jiang, Zhaohua; Meng, Song

    2010-03-01

    Current density is a key factor of plasma electrolytic oxidation process. Its influences on structure, mechanical, and tribological characteristics of ceramic coatings on ZK60 Mg alloy by pulsed bipolar microplasma oxidation in Na(3)PO(4) solution were studied in this paper. Thickness, structure, composition, mechanical property, and tribological characteristics of the coatings were studied by eddy current coating thickness gauge, scanning electron microscope (SEM), X-ray diffraction (XRD), nanoindentation measurements, and ball-on-disk friction testing. The results show that all the coatings prepared under different current densities are composed of MgO phase. The amount of MgO phase, thickness and friction coefficient of the coatings increased with the increasing current density. Among three ceramic coatings produced under three current densities, the coating produced under the current density of 7 A/dm(2) got the highest nanohardness and lowest wear rate with the value of 1.7 GPa and 1.27 x 10(-5) mm(3)/Nm. PMID:20356285

  20. Effect of discharge current and deposition temperature on roughness and density of NbC films fabricated by ion beam sputtering technique

    SciTech Connect

    Dhawan, Rajnish Rai, Sanjay Lodha, G. S.

    2014-04-24

    NbC films were prepared using Ion beam sputtering system at various discharges current from 0.4 amps to 1.2 amps at room temperature. Effect of temperature on NbC films were also studied by depositing NbC films at various temperatures from room temperature to 200,300,400 and 600°C. X-ray reflectivity (XRR) study shows that surface roughness of the film decreases with decrease in discharge current. The optimum lowest roughness 3.2Å having density 92% of bulk was achieved at discharge current 0.6 amps at 3.0 cm{sup 3}/min Ar gas flow. X-ray study also shows that film roughness decreases with increase in temperature of the film and after a certain temperature it increases with increase in temperature. The lowest surface roughness 2.1Å was achieved at 300°C with density 83% of bulk NbC at constant discharge current 0.6 amps.

  1. The antidune question for bedforms in deposits of dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Amin Douillet, Guilhem; Kueppers, Ulrich; Dingwell, Donald B.

    2014-05-01

    Dilute pyroclastic density currents (PDCs) are mixture of volcanic particles and gas that can be produced during explosive volcanic eruptions. Like turbidites, they travel on the ground driven by their higher density compared to the ambient fluid, which is due to the load of suspended particles. Dilute PDCs have a low enough particle concentration so that their deposit can contain cross stratification, but high enough so that they do not lift off as ash clouds. Since the 1970's most dune bedform cross stratifications found within dilute PDC deposits have been interpreted as antidunes, mainly due to the fact that they can exhibit more aggradation on the stoss than on the lee side. However, several studies have challenged this interpretation in the last few years (stepwise aggradation, differential draping, flow reversal, near-bed load blocking). In order to decipher which are the valuable arguments to confirm or infirm the antidune interpretation, we document deposits from different eruptions: Tungurahua (Ecuador), Laacher See (Germany), Purrumbete (Australia), Ubehebe (USA), Stromboli (Italy), Yasur (Vanuatu). We consider fluid dynamics arguments on the formation of gravity waves within the shallow water approximation and for internal gravity waves within a stratified medium. Indeed, antidunes are by definition sedimentary prints of stationary gravity waves. We also consider the possibility of cyclic steps as a parental phenomenon for the formation of dilute PDC bedforms. Finally, results of wind tunnel experiments for boundary layer conditions give another independent set of data to interpret cross stratifications within dilute PDC deposits. Whereas we cannot rule out an interpretation as antidunes for some bedforms (lensoidal stoss-depositional structures, low aspect ratio bedforms in train), others can clearly be disregarded based on geometrical considerations. Overall, the interpretation as antidune cannot be simply based on stoss-deposition, and needs to take

  2. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    He, Shenglai; Russakoff, Arthur; Li, Yonghui; Varga, Kálmán

    2016-07-01

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductance observed in recent experiments.

  3. Surface determination of the air-earth electrical current density using co-located sensors of different geometry

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Harrison, R. G.

    2006-06-01

    A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9h was 1.76±0.002pAm-2.

  4. Laboratory Study Of Magnetic Reconnection With A Density Asymmetry Across The Current Sheet

    SciTech Connect

    Yoo, Joseph; Yamada, Massaaki; Ji, Hantao; Meyers,, Clayton E.; Jara-Almonte,; Chen, Li-Jen

    2014-04-18

    The effects of an upstream density asymmetry on magnetic reconnection are studied systematically in a laboratory plasma. Despite a significant upstream density asymmetry of up to 10, the reconnecting magnetic field pro file is not signifi cantly changed. On the other hand, the out-of-plane magnetic field profile is considerably modified; it is almost bipolar in structure with the density asymmetry, as compared to the quadrupolar structure in the symmetric configuration. The in-plane ion flow pattern and the electrostatic potential pro file are also affected by the density asymmetry. Strong bulk electron heating is observed near the low-density-side separatrix together with electromagnetic fluctuations in the lower hybrid frequency range. The dependence of the ion outflow and reconnection electric field on the density asymmetry is measured and compared with theoretical expectations.

  5. Reduced Na⁺ current density underlies impaired propagation in the diabetic rabbit ventricle.

    PubMed

    Stables, Catherine L; Musa, Hassan; Mitra, Aditi; Bhushal, Sandesh; Deo, Makarand; Guerrero-Serna, Guadalupe; Mironov, Sergey; Zarzoso, Manuel; Vikstrom, Karen L; Cawthorn, William; Pandit, Sandeep V

    2014-04-01

    Diabetes is associated with an increased risk of sudden cardiac death, but the underlying mechanisms remain unclear. Our goal was to investigate changes occurring in the action potential duration (APD) and conduction velocity (CV) in the diabetic rabbit ventricle, and delineate the principal ionic determinants. A rabbit model of alloxan-induced diabetes was utilized. Optical imaging was used to record electrical activity in isolated Langendorff-perfused hearts in normo-, hypo- and hyper-kalemia ([K(+)]o=4, 2, 12 mM respectively). Patch clamp experiments were conducted to record Na(+) current (I(Na)) in isolated ventricular myocytes. The mRNA/protein expression levels for Nav1.5 (the α-subunit of I(Na)) and connexin-43 (Cx43), as well as fibrosis levels were examined. Computer simulations were performed to interpret experimental data. We found that the APD was not different, but the CV was significantly reduced in diabetic hearts in normo-, hypo-, and, hyper-kalemic conditions (13%, 17% and 33% reduction in diabetic vs. control, respectively). The cell capacitance (Cm) was increased (by ~14%), and the density of INa was reduced by ~32% in diabetic compared to control hearts, but the other biophysical properties of I(Na) were unaltered. The mRNA/protein expression levels for Cx43 were unaltered. For Nav1.5, the mRNA expression was not changed, and though the protein level tended to be less in diabetic hearts, this reduction was not statistically significant. Staining showed no difference in fibrosis levels between the control and diabetic ventricles. Computer simulations showed that the reduced magnitude of I(Na) was a key determinant of impaired propagation in the diabetic ventricle, which may have important implications for arrhythmogenesis. PMID:24412579

  6. Effect of composition on critical current density of Bi2212/Ag round wires

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Ha, D. W.; Oh, S. S.; Sohn, H. S.

    2009-06-01

    We have fabricated Bi2212/Ag round wires using three kinds of precursor to study the effect of a narrow variation of composition. Slightly different compositions - Bi 2.17Sr 1.94Ca 0.89Cu 2.0O x(N13), Bi 2.15Sr 1.94Ca 0.89Cu 2.0O x(N14), and Bi 2.17Sr 1.98Ca 0.89Cu 2.0O x(N15) - were used and Sr/Ca ratio of them were 2.18, 2.18, and 2.22, respectively. The Ag ratios of the wires were 2.7-2.8 and average filament diameter was 19-21 μm. DTA analysis of the wire showed the peritectic temperature of three wires was very similar value of the range of 880-881 °C. The best engineering critical current density ( Je) of three wires at 4.2 K and 0 T was 414-448 A/mm 2 at the maximum process temperature range of 884-892 °C. The n-value of N14 showed 13.6, whereas other two wires showed lower n-value, estimating the existence of micro-cracks. Although Bi2212/Ag round wires fabricated by three kinds of composition showed similar Je value, n-value was quite different. It is likely that the fabrication process such as the drawing as well as the composition of precursor will affect on Je of Bi2212/Ag round wire.

  7. Three-dimensional turbulent bottom density currents from a high-order nonhydrostatic spectral element model.

    SciTech Connect

    Ozgokmen, T.; Fischer, P.; Duan, J.; Iliescu, T.; Mathematics and Computer Science; Univ. of Miami; IIT; Virginia Polytechnic Inst. and State Univ.

    2004-09-01

    Overflows are bottom gravity currents that supply dense water masses generated in high-latitude and marginal seas into the general circulation. Oceanic observations have revealed that mixing of overflows with ambient water masses takes place over small spatial and time scales. Studies with ocean general circulation models indicate that the strength of the thermohaline circulation is strongly sensitive to representation of overflows in these models. In light of these results, overflow-induced mixing emerges as one of the prominent oceanic processes. In this study, as a continuation of an effort to develop appropriate process models for overflows, nonhydrostatic 3D simulations of bottom gravity are carried out that would complement analysis of dedicated observations and large-scale ocean modeling. A parallel high-order spectral-element Navier-Stokes solver is used as the basis of the simulations. Numerical experiments are conducted in an idealized setting focusing on the startup phase of a dense water mass released at the top of a sloping wedge. Results from 3D experiments are compared with results from 2D experiments and laboratory experiments, based on propagation speed of the density front, growth rate of the characteristic head at the leading edge, turbulent overturning length scales, and entrainment parameters. Results from 3D experiments are found to be in general agreement with those from laboratory tank experiments. In 2D simulations, the propagation speed is approximately 20% slower than that of the 3D experiments and the head growth rate is 3 times as large, Thorpe scales are 1.3-1.5 times as large, and the entrainment parameter is up to 2 times as large as those in the 3D experiments. The differences between 2D and 3D simulations are entirely due to internal factors associated with the truncation of the Navier-Stokes equations for 2D approximation.

  8. Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis.

    PubMed

    Fulham, W Ross; Michie, Patricia T; Ward, Philip B; Rasser, Paul E; Todd, Juanita; Johnston, Patrick J; Thompson, Paul M; Schall, Ulrich

    2014-01-01

    Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or

  9. Early effect of NEURAPAS® balance on current source density (CSD) of human EEG

    PubMed Central

    2011-01-01

    Psychiatric patients often suffer from stress, anxiety and depression. Various plant extracts are known to fight stress (valerian), anxiety (passion flower) or depression (St. John's wort). NEURAPAS® balance is a mixture of these three extracts and has been designed to cover this complex of psychiatric conditions. The study was initiated to quantitatively assess the effect of this combination on brain electric activity. Method Quantitative electroencephalogram (EEG) current source density (CSD) recording from 16 healthy male and female human volunteers (average age 49 years) was used in a randomized, placebo-controlled cross over study. Recordings were performed 0. 5, 1. 5, 3 and 4 hours after administration of the preparations under the conditions of 6 min eyes open and 5 min d2 concentration test, mathematical calculation test and memory test, respectively. All variables (electric power within 6 frequency ranges at 17 electrode positions) were fed into a linear discriminant analysis (eyes open condition). In the presence of mental load these variables were used to construct brain maps of frequency changes. Results Under the condition of mental load, centro-parietal spectral power remained statistically significantly lower within alpha1, alpha2 and beta1 frequencies in the presence of verum in comparison to placebo. Discriminant analysis revealed a difference to placebo 3 and 4 hours after intake of 6 tablets of NEURAPAS® balance. Data location within the polydimensional space was projected into the area of the effects of sedative and anti-depressive reference drugs tested earlier under identical conditions. Results appeared closer to the effects of fluoxetine than to St. John's wort. Conclusions Analysis of the neurophysiological changes following the intake of NEURAPAS® balance revealed a similarity of frequency changes to those of calming and anti-depressive drugs on the EEG without impairment of cognition. Trial registration ClinicalTrials.gov: NCT01047605

  10. Clinical implications of quantitative electroencephalography and current source density in patients with Alzheimer's disease.

    PubMed

    Kim, Ji-Sun; Lee, Seung-Hwan; Park, Gewnhi; Kim, Sangrae; Bae, Sung-Man; Kim, Do-Won; Im, Chang-Hwan

    2012-10-01

    This study examined whether quantitative electroencephalography (qEEG) and current source density (CSD) can be used to evaluate symptom severity in Alzheimer's disease (AD) patients. Thirty AD patients (13 mild and 17 moderate severity) and 30 normal control (NC) subjects were recruited. The Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet and the Global Deterioration Scale were measured. qEEG and CSD data were analyzed in five frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-25 Hz), and gamma (30-50 Hz). Compared with the NC subjects, the moderate AD patients had significantly increased theta and decreased beta power. Compared with the mild AD patients, the moderate AD patients had significantly decreased beta power. In the AD patients, the theta power was significantly correlated with a poor performance for global cognition; however, beta power was positively correlated with a good performance for global cognition, attention, memory, visuospatial function, and executive function. The CSD of the theta band in the superior temporal gyrus, transverse temporal gyrus, insula, postcentral gyrus, cuneus, and lingual gyrus was significantly different between NC subjects and moderate AD patients and between mild and moderate AD patients. The theta CSD of these regions was significantly correlated with a poor performance for global cognition, memory, visuospatial function, execution, and language. The results suggest that qEEG and the CSD of the theta and beta bands are useful biological markers in AD patients. PMID:22736322

  11. Geomagnetic paleointensity in historical pyroclastic density currents: Testing the effects of emplacement temperature and postemplacement alteration

    NASA Astrophysics Data System (ADS)

    Bowles, Julie A.; Gee, Jeffrey S.; Jackson, Mike J.; Avery, Margaret S.

    2015-10-01

    Thellier-type paleointensity experiments were conducted on welded ash matrix or pumice from the 1912 Novarupta (NV) and 1980 Mt. St. Helens (MSH) pyroclastic density currents (PDCs) with the intention of evaluating their suitability for geomagnetic paleointensity studies. PDCs are common worldwide, but can have complicated thermal and alteration histories. We attempt to address the role that emplacement temperature and postemplacement hydrothermal alteration may play in nonideal paleointensity behavior of PDCs. Results demonstrate two types of nonideal behavior: unstable remanence in multidomain (MD) titanomagnetite, and nonideal behavior linked to fumarolic and vapor phase alteration. Emplacement temperature indirectly influences MSH results by controlling the fraction of homogenous MD versus oxyexsolved pseudo-single domain titanomagnetite. NV samples are more directly influenced by vapor phase alteration. The majority of NV samples show distinct two-slope behavior in the natural remanent magnetization—partial thermal remanent magnetization plots. We interpret this to arise from a (thermo)chemical remanent magnetization associated with vapor phase alteration, and samples with high water content (>0.75% loss on ignition) generate paleointensities that deviate most strongly from the true value. We find that PDCs can be productively used for paleointensity, but that—as with all paleointensity studies—care should be taken in identifying potential postemplacement alteration below the Curie temperature, and that large, welded flows may be more alteration-prone. One advantage in using PDCs is that they typically have greater areal (spatial) exposure than a basalt flow, allowing for more extensive sampling and better assessment of errors and uncertainty.

  12. Volcán de Colima dome collapse of July, 2015 and associated pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Reyes-Dávila, Gabriel A.; Arámbula-Mendoza, Raúl; Espinasa-Pereña, Ramón; Pankhurst, Matthew J.; Navarro-Ochoa, Carlos; Savov, Ivan; Vargas-Bracamontes, Dulce M.; Cortés-Cortés, Abel; Gutiérrez-Martínez, Carlos; Valdés-González, Carlos; Domínguez-Reyes, Tonatiuh; González-Amezcua, Miguel; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Carlos Ariel; Cárdenas-González, Lucio; Castañeda-Bastida, Elizabeth; Vázquez Espinoza de los Monteros, Diana M.; Nieto-Torres, Amiel; Campion, Robin; Courtois, Loic; Lee, Peter D.

    2016-06-01

    During July 10th-11th 2015, Volcán de Colima, Mexico, underwent its most intense eruptive phase since its Subplinian-Plinian 1913 AD eruption. Production of scoria coincident with elevated fumarolic activity and SO2 flux indicate a significant switch of upper-conduit dynamics compared with the preceding decades of dome building and vulcanian explosions. A marked increase in rockfall events and degassing activity was observed on the 8th and 9th of July. On the 10th at 20:16 h (Local time = UTM - 6 h) a partial collapse of the dome generated a series of pyroclastic density currents (PDCs) that lasted 52 min and reached 9.1 km to the south of the volcano. The PDCs were mostly channelized by the Montegrande and San Antonio ravines, and produced a deposit with an estimated volume of 2.4 × 106 m3. Nearly 16 h after the first collapse, a second and larger collapse occurred which lasted 1 h 47 min. This second collapse produced a series of PDCs along the same ravines, reaching a distance of 10.3 km. The total volume calculated for the PDCs of the second event is 8.0 × 106 m3. Including associated ashfall deposits, the two episodes produced a total of 14.2 × 106 m3 of fragmentary material. The collapses formed an amphitheater-shaped crater open towards the south. We propose that the dome collapse was triggered by arrival of gas-rich magma to the upper conduit, which then boiled-over and sustained the PDCs. A juvenile scoria sample selected from the second partial dome collapse contains hornblende, yet at an order of magnitude less abundant (0.2%) than that of 1913, and exhibits reaction rims, whereas the 1913 hornblende is unreacted. At present there is no compelling petrologic evidence for imminent end-cycle activity observed at Volcán de Colima.

  13. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  14. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  15. Spatial and Statistical Evolution of Electrical Current Density in Active Region 12158 Producing an X-class Flare

    NASA Astrophysics Data System (ADS)

    Kang, Jihye; Magara, Tetsuya; Inoue, Satoshi; Kubo, Yuki; Nishizuka, Naoto

    2016-05-01

    The formation of a current sheet in the solar corona where an intense electric current flows is one of the important processes leading to the onset of a solar flare. In this work, we investigate the temporal development of the distribution of electric current density derived from a time series of nonlinear force-free (NLFF) fields in active region 12158 (AR12158) which produces an X-class flare on 2014 September 10. A preflare NLFF field, where an intense electric current flows, reproduces an observed inverse-S shaped sigmoidal structure. The statistical distribution of electric current density has a double power-law profile during the evolution of AR12158. We discuss several key parameters of the double power-law profile and the time variations in them, which might be used as a quantitative indicator of flare onset.

  16. New insights into aromatic pathways of carbachlorins and carbaporphyrins based on calculations of magnetically induced current densities.

    PubMed

    Benkyi, Isaac; Fliegl, Heike; Valiev, Rashid R; Sundholm, Dage

    2016-04-28

    Magnetically induced current densities have been calculated and analyzed for a number of synthesized carbachlorins and carbaporphyrins using density functional theory and the gauge including magnetically induced current (GIMIC) method. Aromatic properties have been determined by using accurate numerical integration of the current flow yielding reliable current strengths and pathways that are related to the degree of aromaticity and the aromatic character of the studied molecules. All investigated compounds are found to be aromatic. However, the obtained aromatic pathways differ from those previously deduced from spectroscopic data and magnetic shielding calculations. For all studied compounds, the ring current divides into an outer and an inner branch at each pyrrolic subring, showing that all π-electrons of the pyrrolic rings take part in the delocalization pathway. The calculations do not support the common notion that the main share of the current takes the inner route at the pyrrolic rings without an inner hydrogen and follows an 18π aromatic pathway. The aromatic pathways of the investigated carbaporphyrins and carbachlorins are very similar, since the current strength via the Cβ[double bond, length as m-dash]Cβ' bond of the cyclopentadienyl ring of the carbaporphyrins is almost as weak as the current density passing the corresponding saturated Cβ-Cβ' bond of the carbachlorins. PMID:26974190

  17. Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings.

    PubMed

    Sundholm, Dage; Berger, Raphael J F; Fliegl, Heike

    2016-06-21

    Magnetically induced current susceptibilities and current pathways have been calculated for molecules consisting of two pentalene groups annelated with a benzene (1) or naphthalene (2) moiety. Current strength susceptibilities have been obtained by numerically integrating separately the diatropic and paratropic contributions to the current flow passing planes through chosen bonds of the molecules. The current density calculations provide novel and unambiguous current pathways for the unusual molecules with annelated aromatic and antiaromatic hydrocarbon moieties. The calculations show that the benzene and naphthalene moieties annelated with two pentalene units as in molecules 1 and 2, respectively, are unexpectedly antiaromatic sustaining only a local paratropic ring current around the ring, whereas a weak diatropic current flows around the C-H moiety of the benzene ring. For 1 and 2, the individual five-membered rings of the pentalenes are antiaromatic and a slightly weaker semilocal paratropic current flows around the two pentalene rings. Molecules 1 and 2 do not sustain any net global ring current. The naphthalene moiety of the molecule consisting of a naphthalene annelated with two pentalene units (3) does not sustain any strong ring current that is typical for naphthalene. Instead, half of the diatropic current passing the naphthalene moiety forms a zig-zag pattern along the C-C bonds of the naphthalene moiety that are not shared with the pentalene moieties and one third of the current continues around the whole molecule partially cancelling the very strong paratropic semilocal ring current of the pentalenes. For molecule 3, the pentalene moieties and the individual five-membered rings of the pentalenes are more antiaromatic than for 1 and 2. The calculated current patterns elucidate why the compounds with formally [4n + 2] π-electrons have unusual aromatic properties violating the Hückel π-electron count rule. The current density calculations also provide

  18. On the toroidal current density flowing across a poloidal-magnetic-field null in an axisymmetric plasma

    SciTech Connect

    Rodrigues, Paulo; Bizarro, Joao P. S.

    2013-04-15

    The axisymmetry condition and two of Maxwell's equations are used to show that, in general, there are no nested magnetic surfaces around a poloidal-magnetic-field null for a sufficiently small value of the toroidal current density flowing there. Hence, the toroidal current density at the axis of a magnetic configuration with extreme shear reversal cannot continuously approach zero unless nested surfaces are first broken or particular values are assigned to boundary conditions and other plasma parameters. The threshold of the toroidal current-density at which the topology changes is shown to be set by such parameters, and some examples of the predicted topology transition are presented using analytical solutions of the Grad-Shafranov equation.

  19. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    NASA Astrophysics Data System (ADS)

    Pervikov, A. V.

    2016-06-01

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 107 A/cm2 results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  20. Predictors of Plaque Progression in Hypertensive Angina Patients with Achieved Low-Density Lipoprotein Cholesterol Less Than 70 mg/dL after Rosuvastatin Treatment

    PubMed Central

    Hong, Young Joon; Kim, Min Chul; Kim, Woo Jin; Kim, Hyun Kuk; Park, Keun Ho; Sim, Doo Sun; Kim, Ju Han; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun

    2015-01-01

    We evaluated the impact of achieved low-density lipoprotein cholesterol (LDL-C) concentrations <70 mg/dL on plaque progression in statin-treated hypertensive angina patients by use of virtual histology-intravascular ultrasound (VH-IVUS). The effects of 10 mg of rosuvastatin on plaque progression were evaluated in 78 patients who achieved LDL-C <70 mg/dL with statin treatment. The patients were divided into plaque progressors (n=30) and plaque regressors (n=40) on the basis of the baseline minimum lumen area (MLA) site at the 9-month follow-up. The prevalence of chronic kidney disease (CKD) [creatinine clearance (CrCl) <60 mL/min)] and current smoking was higher in progressors than in regressors (90.0% vs. 31.3%, p<0.001, and 40.0% vs. 12.5%, p=0.005, respectively). Baseline CrCl was significantly lower and baseline apolipoprotein (apo) B/A1 was significantly higher in progressors than in regressors (21±13 mL/min vs. 70±20 mL/min, p<0.001, and 0.77±0.23 vs. 0.65±0.16, p=0.011, respectively). Absolute and relative fibrotic areas at the MLA site increased in progressors; by contrast, these areas decreased in regressors from baseline to follow-up. CKD [odds ratio (OR): 2.13, 95% confidence interval (CI): 1.77-2.53, p=0.013], smoking (OR: 1.76, 95% CI: 1.23-2.22, p=0.038), and apoB/A1 (OR: 1.25, 95% CI: 1.12-1.40, p=0.023), but not any VH-IVUS parameters, were independent predictors of plaque progression at follow-up. In conclusion, clinical factors including CKD, smoking, and apoB/A1 rather than plaque components detected by VH-IVUS are associated with plaque progression in hypertensive angina patients who achieve very low LDL-C after statin treatment. PMID:26730363

  1. Measurements of corrosion at defects in painted zinc and zinc alloy coated steels using current density mapping

    SciTech Connect

    Isaacs, H.S.; Aldykiewicz, A.J. Jr.; Thierry, D.; Simpson, T.C.

    1996-03-01

    Current density mapping was used to locate and monitor the early stages of corrosion at defects on painted surfaces in solution. Principles of the technique and methods of analysis were reviewed, and the effects of different scribing techniques were investigated. Results for painted zinc and aluminum-zinc alloy coated steel surfaces showed corrosion occurred initially at localized sites on the exposed zinc in both dilute chloride and sulfate solutions and when zinc was galvanically coupled to or isolated from steel. Current density mapping was shown to locate corrosion-susceptible defects on painted roll-formed materials that were not readily discernible optically.

  2. Surface layer structure of AISI 1020 steel at different stages of dry sliding under electric current of high density

    NASA Astrophysics Data System (ADS)

    Aleutdinov, K. A.; Rubtsov, V. Ye; Fadin, V. V.; Aleutdinova, M. I.

    2016-02-01

    Wear intensity of the sliding electric contact steel 1020/steel 1045 depending on sliding time is presented at the contact current density higher than 100 A/cm2 without lubricant. It is shown that wear intensity of 1020 steel decreases at increasing of sliding time. Wear intensity is stabilized after some sliding time. This time (burn-in time) decreases at reduction of current density. Structural changes are realized in surface layer. Signs of liquid phase are observed on sliding surface. This liquid isn't a result of melting. It is established using Auger spectrometry that the contact layer contains up to 50 at.% of oxygen.

  3. Theory of electron current filamentation instability and ion density filamentation in the early development of a DPF discharge

    SciTech Connect

    Guillory, J.; Rose, D. V.; Lerner, E. J.

    2009-01-21

    Two-dimensional simulations of the initial stages of plasma formation in a dense plasma focus show the formation, in a few tens of nanoseconds, of a dense layer of plasma (n{sub e}{approx}10{sup 18} cm{sup -3},T{sub e}{approx}3 eV) in a thin layer surrounding the insulator-covered central anode of the focus device, and carrying axially-directed current at rather high current density.Earlier work on the filamentation of dense cathode plasma in high-power diodes seems to indicate that the anode plasma current layer in a dense plasma focus (DPF) device could be subject to the same instability, creating a growth of axially-directed filaments in the current density. The growth rate for resistive-thermal-driven filamentation, e.g. at 30 torr and {approx}3 eV electron temperature, exceeds the that due to non-thermal current (JxB) driving, and is determined by electron dynamics, so its evolution is quicker than the response-time of the ions.Nonetheless, with such a growing current-density perturbation as a seed and its increasing rippling of the azimuthal magnetic field as a driver, the ions will eventually take part in the azimuthal bunching, forming filaments in the ion density as well. The resistive-thermal-driven filamentation fields thus serve to 'hurry-up' the development of ion density filamentation, as shown approximately in the work presented here. This theory predicts, for light ions, a relatively early ({<=}250 ns) development of visible filaments along the anode, perhaps even before the main rundown phase of the focus plasma motion, and these filaments may persist during the 'liftoff' phase of the current layer to form the rundown phase of the plasma front. This work is supported by Larwenceville Plasma Physics.

  4. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-11-14

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  5. Formation of Mosaic Silicon Oxide Structure during Metal-Assisted Electrochemical Etching of Silicon at High Current Density

    NASA Astrophysics Data System (ADS)

    Cao, Dao Tran; Anh, Cao Tuan; Ngan, Luong Truc Quynh

    2016-05-01

    We have used constant-current, metal-assisted electrochemical etching of silicon in HF/H2O2/ethanol electrolyte to fabricate porous silicon. We found that, at large enough current density, the sponge-like porous silicon structure is replaced by a mosaic structure, which includes islands of various shapes emerging between trenches that have been etched downward. Energy-dispersive x-ray analysis showed that the surface of the mosaic pieces was covered with silicon oxide, while little silicon oxide developed on the surface of trenches. We suggest that the appearance of the mosaic structure can be explained by the increase in the oxidation rate of silicon when the anodic current density increases, combined with no change in the dissolution rate of silicon oxide into the solution. Consequently, above a certain value of anodic current density, there is sufficient residual silicon oxide on the etched surface to create a continuous thin film. However, if the silicon oxide layer is too thick (e.g., due to too high anodic current density or too long etching time), it will become cracked (formation of mosaic pieces), likely due to differences in thermal expansion coefficient between the amorphous silicon oxide layer and crystalline silicon substrate. The oxide is cracked at locations with many defects, and the cracks reveal the silicon substrate. Therefore, at the locations where cracks occur, etching will go sideways and downward, creating trenches.

  6. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    NASA Astrophysics Data System (ADS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-11-01

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  7. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    PubMed

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current. PMID:18595805

  8. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, Donald A.; Yeager, E.

    1992-01-01

    The objective was to identify promising electrocatalyst/support systems for oxygen cathodes capable of operating at ultrahigh current densities in alkaline fuel cells. Such cells will require operation at relatively high temperatures and O2 pressures. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, lithiated NiO and La-Ni perovskites. Several of these materials were prepared using techniques that had not been previously used to prepare them. Particularly interesting was the use of the alkaline solution technique to prepare Pt-doped and Pb-Ru pyrochlores in high area form. Also interesting was the use of the fusion (melt) method for preparing the Pb-Ru pyrochlore. Several of the materials were also deposited with platinum. Well-crystallized Pb2Ru2O(7-y) was used to fabricate very high performance O2 cathodes with good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approx. 140 C in concentrated KOH. For some of the samples, fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. Pyrochlores that were not well-crystallized were found to be unstable in alkaline solution. Very good O2 reduction performance and stability were observed with Pb2RuO(7-y) in a carbon-based gas-fed electrode with an anion-conducting membrane placed on the electrolyte side of the electrode. The performance came within a factor of about two of that observed without carbon. High area platinum and gold supported on several conductive metal oxide supports were examined. Only small improvements in O2 reduction performance at room temperature were observed for Pb2Ru2O(7-y) as a support because of the high intrinsic activity of the pyrochlore. In contrast, a large improvement was observed for Li-doped NiO as a support for Pt. Very poor performance was observed for Au deposited on Li-NiO at approx. 150 C

  9. The Merapi 2010 eruption: An interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics

    NASA Astrophysics Data System (ADS)

    Jenkins, S.; Komorowski, J.-C.; Baxter, P. J.; Spence, R.; Picquout, A.; Lavigne, F.; Surono

    2013-07-01

    The large explosive eruption of Merapi volcano, Indonesia, in 2010 presented a key, and rare, opportunity to study the impacts of a major explosive eruption in a densely populated area. Pyroclastic density currents (PDCs) produced throughout the 2010 eruption were unusually destructive, causing near complete devastation across a 22 km2 swath of the densely populated southern flanks and casualties to the end of their runout at 15.5 km from the volcano. The majority (> 120) of the more than 200 fatalities occurred more than 12 km from the volcano, where many people were caught in PDCs as they were evacuating. The 2010 eruption (VEI 4) exhibited a range of PDC behaviour in a complex multi-stage event that marked a change in eruption behaviour at Merapi, being the first eruption of this magnitude and style since 1872. This shift in style may mark a change in regime, and so understanding the potential impact of such large explosive eruptions is essential for future risk-assessment at Merapi. We describe a new impact assessment methodology that allowed us to collect important empirical geological, damage and casualty information and reconstruct impact dynamics associated with the PDCs. In contrast to previous PDC impact studies, we combined remote, field, laboratory and GIS assessments and were able to enter the affected areas safely and before their disturbance by rains or human activity. By integrating the results of our geological, damage and medical studies, we could reconstruct the spatial and temporal dynamics of the PDCs and their main hazard characteristics. Our interdisciplinary methods and preliminary findings are discussed here. In the areas damaged by PDCs, we used empirical damage data and calculations of material and structural resistance to lateral force to estimate approximate dynamic pressures. Dynamic pressures associated with the 5 November paroxysm exceeded 15 kPa more than 6 km from source and rapidly attenuated over a distance of less than 1 km at

  10. Critical current density behaviors across a grain boundary inclined to current with different angles in YBa2Cu3O7‑δ bicrystal junctions

    NASA Astrophysics Data System (ADS)

    Tao, Hua; Wei-Wei, Xu; Zheng-Ming, Ji; Da-Yuan, Guo; Qing-Yun, Wang; Xiang-Rong, Ma; Rui-Yu, Liang

    2016-06-01

    The critical current density behaviors across a bicrystal grain boundary (GB) inclined to the current direction with different angles in YBa2Cu3O7‑δ bicrystal junctions in magnetic fields are investigated. There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field: (i) the GB plane area determines the current carrying cross section; (ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force. Furthermore, the vortex motion in a bicrystal GB is studied by investigating transverse (Hall) and longitudinal current–voltage characteristics (I–V xx and I–V xy ). It is found that the I–V xx curve diverges from linearity at a high driving current, while the I–V xy curve keeps nearly linear, which indicates the vortices inside the GB break out of the GB by Lorentz force. Project supported by the National Natural Science Foundation of China (Grant Nos. 61501222, 61371036, and 61571219) and the School Scientific Research Fund of Nanjing Institute of Technology, China (Grant Nos. YKJ201418).

  11. Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature.

    PubMed

    Hambali, Nur Ashikyn; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Hashim, Abdul Manaf

    2014-01-01

    The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm(2) and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm(2) exhibited the highest density of 1.45 × 10(9) cm(-2). X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, I UV/I VIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm(2) showed high I UV/I VIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source. PMID:25411567

  12. Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature

    PubMed Central

    2014-01-01

    The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm2 and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm2 exhibited the highest density of 1.45 × 109 cm-2. X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, IUV/IVIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm2 showed high IUV/IVIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source. PMID:25411567

  13. Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter

    NASA Astrophysics Data System (ADS)

    Li, Qian

    Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 +/- 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 +/- 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation

  14. Finite difference calculations of current densities in a homogeneous model of a man exposed to extremely low frequency electric fields.

    PubMed

    Dimbylow, P J

    1987-01-01

    This paper presents three-dimensional finite difference calculations of induced current densities in a grounded, homogeneous, realistically human-shaped phantom. Comparison is made with published experimental values of current density at 60 Hz, measured in conducting saline manikins with their arms down by the side. The congruence between calculation and experiment gives confidence in the applicability of the numerical method and phantom shape to other configurations. The effect of raising both arms above the head is to reduce the current densities in the head and neck by approximately 50% and to increase those from the thorax downwards by 20-30%. A sensitivity analysis was performed on the shape and dimensions of the phantom, from a 45-kg, 1.5-m-tall person to a 140-kg, 1.9-m-tall person. When the phantom is grounded through both feet the current densities range from 50 to 90 microAm-2 in the head (all values for a 60-Hz, 1-kVm-1, vertical applied field), 70 to 140 microAm-2 in the thorax, 150 to 440 microAm-2 at the crotch, and 500 to 2,230 microAm-2 in the ankle. When grounded through only one foot the current densities at the crotch range from 400 to 1,000 microAm-2 and from 1,000 to 4,400 microAm-2 in the ankle of the grounded leg. Scale transformations of the short-circuit current with phantom height, weight, and surface area are confirmed. PMID:3122768

  15. Theoretical design of gradient coils with minimum power dissipation: accounting for the discretization of current density into coil windings.

    PubMed

    While, Peter T; Korvink, Jan G; Shah, N Jon; Poole, Michael S

    2013-10-01

    Gradient coil windings are typically constructed from either variable width copper tracks or fixed width wires. Excessive power dissipation within these windings during gradient coil operation limits the maximum drive current or duty cycle of the coil. It is common to design gradient coils in terms of a continuous minimum power current density and to perform a discretization to obtain the locations of the coil tracks or wires. However, the existence of finite gaps between these conductors and a maximum conductor width leads to an underestimation of coil resistance when calculated using the continuous current density. Put equivalently, the actual current density within the tracks or wires is higher than that used in the optimization and this departure results in suboptimal coil designs. In this work, a mapping to an effective current density is proposed to account for these effects and provide the correct contribution to the power dissipation. This enables the design of gradient coils that are genuinely optimal in terms of power minimization, post-discretization. The method was applied to the theoretical design of a variety of small x- and z-gradient coils for use in small animal imaging and coils for human head imaging. Computer-driven comparisons were made between coils designed with and without the current density mapping, in terms of simulated power dissipation. For coils to be built using variable width tracks, the method provides slight reductions in power dissipation in most cases and substantial gains only in cases where the minimum separation between track centre-lines is less than twice the gap size. However, for coils to be built using fixed width wires, very considerable reductions in dissipated power are consistently attainable (up to 60%) when compared to standard approaches of coil optimization. PMID:23994605

  16. Evaluation of critical current density and residual resistance ratio limits in powder in tube Nb3Sn conductors

    NASA Astrophysics Data System (ADS)

    Segal, Christopher; Tarantini, Chiara; Hawn Sung, Zu; Lee, Peter J.; Sailer, Bernd; Thoener, Manfred; Schlenga, Klaus; Ballarino, Amalia; Bottura, Luca; Bordini, Bernardo; Scheuerlein, Christian; Larbalestier, David C.

    2016-08-01

    High critical current density (J c) Nb3Sn A15 multifilamentary wires require a large volume fraction of small grain (SG), superconducting A15 phase, as well as Cu stabilizer with high Residual Resistance Ratio (RRR) to provide electromagnetic stabilization and protection. In powder-in-tube (PIT) wires the unreacted Nb7.5 wt%Ta outer layer of the tubular filaments acts as a diffusion barrier and protects the interfilamentary Cu stabilizer from Sn contamination. A high RRR requirement generally imposes a restricted A15 reaction heat treatment to prevent localized full reaction of the filament that could allow Sn to reach the Cu. In this study we investigate recent high quality PIT wires that achieve a J c (12 T, 4.2 K) up to ∼2500 A mm‑2 and find that the minimum diffusion barrier thickness decreases as the filament aspect ratio increases from ∼1 in the inner rings of filaments to 1.3 in the outer filament rings. We found that just 2–3 diffusion barrier breaches can degrade RRR from 300 to 150 or less. Using progressive etching of the Cu we also found that the RRR degradation is localized near the external filaments where deformation is highest. Consequently minimizing filament distortion during strand fabrication is important for reducing RRR degradation. The additional challenge of developing the highest possible J c must be addressed by forming the maximum fraction of high J c SG A15 and minimizing low J c large-grain (LG) A15 morphologies. In one wire we found that 15% of the filaments had a significantly enhanced SG/LG A15 ratio and no residual A15 in the core, a feature that opens a path to substantial J c improvement.

  17. Achieving cholesterol targets by individualizing starting doses of statin according to baseline low-density lipoprotein cholesterol and coronary artery disease risk category: The CANadians Achieve Cholesterol Targets Fast with Atorvastatin Stratified Titration (CanACTFAST) study

    PubMed Central

    Ur, Ehud; Langer, Anatoly; Rabkin, Simon W; Calciu, Cristina-Dana; Leiter, Lawrence A

    2010-01-01

    BACKGROUND: Despite an increasing body of evidence on the benefit of lowering elevated levels of low-density lipoprotein cholesterol (LDL-C), there is still considerable concern that patients are not achieving target LDL-C levels. OBJECTIVE: The CANadians Achieve Cholesterol Targets Fast with Atorvastatin Stratified Titration (CanACTFAST) trial tested whether an algorithm-based statin dosing approach would enable patients to achieve LDL-C and total cholesterol/high-density lipoprotein cholesterol (TC/HDL-C) ratio targets quickly. METHODS: Subjects requiring statin therapy, but with an LDL-C level of 5.7 mmol/L or lower, and triglycerides of 6.8 mmol/L or lower at screening participated in the 12-week study, which had two open-label, six-week phases: a treatment period during which patients received 10 mg, 20 mg, 40 mg or 80 mg of atorvastatin based on an algorithm incorporating baseline LDL-C value and cardiovascular risk; and patients who achieved both LDL-C and TC/HDL-C ratio targets at six weeks continued on the same atorvastatin dose. Patients who did not achieve both targets received dose uptitration using a single-step titration regimen. The primary efficacy outcome was the proportion of patients achieving target LDL-C levels after 12 weeks. RESULTS: Of 2016 subjects screened at 88 Canadian sites, 1258 were assigned to a study drug (1101 were statin-free and 157 were statin-treated at baseline). The proportion of subjects who achieved LDL-C targets after 12 weeks of treatment was 86% (95% CI 84% to 88%) for statin-free patients and 54% (95% CI 46% to 61%) for statin-treated patients. Overall, 1003 subjects (80%; 95% CI 78% to 82%) achieved both lipid targets. CONCLUSIONS: Algorithm-based statin dosing enables patients to achieve LDL-C and TC/HDL-C ratio targets quickly, with either no titration or a single titration. PMID:20151053

  18. Extracted ion current density in close-coupling multi-antenna type radio frequency driven ion source: CC-MATIS

    SciTech Connect

    Oka, Y. E-mail: oka@LHD.nifs.ac.jp; Shoji, T.

    2014-02-15

    Positive ions are extracted by using a small extractor from the Close-Coupling Multi-Antenna Type radio frequency driven Ion Source. Two types of RF antenna are used. The maximum extracted ion current density reaches 0.106 A/cm{sup 2}. The RF net power efficiency of the extracted ion current density under standard condition is 11.6 mA/cm{sup 2}/kW. The efficiency corresponds to the level of previous beam experiments on elementary designs of multi-antenna sources, and also to the efficiency level of a plasma driven by a filament in the same chamber. The multi-antenna type RF plasma source is promising for all metal high density ion sources in a large volume chamber.

  19. Optimal control of the electronic current density: Application to one- and two-dimensional one-electron systems

    SciTech Connect

    Kammerlander, David; Marques, Miguel A. L.; Castro, Alberto

    2011-04-15

    Quantum optimal control theory is a powerful tool for engineering quantum systems subject to external fields such as the ones created by intense lasers. The formulation relies on a suitable definition for a target functional, that translates the intended physical objective to a mathematical form. We propose the use of target functionals defined in terms of the one-particle density and its current. A strong motivation for this is the possibility of using time-dependent density-functional theory for the description of the system dynamics. We exemplify this idea by defining an objective functional that on one hand attempts a large overlap with a target density and on the other hand minimizes the current. The latter requirement leads to optimized states with increased stability, which we prove with a few examples of one- and two-dimensional one-electron systems.

  20. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    PubMed

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior. PMID:25280850

  1. Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells

    EPA Science Inventory

    High current density of 10.0-14.6 A/m2 and COD removal up to 96% were obtained in a microbial electrochemical cell (MEC) fed with digestate at hydraulic retention time (HRT) of 4d and 8d. Volatile fatty acids became undetectable in MEC effluent (HRT 8d), except for trivial acetat...

  2. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  3. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz. PMID:18232363

  4. Role of excited states for the material gain and threshold current density in quantum wire intersubband laser structures

    NASA Astrophysics Data System (ADS)

    Herrle, Thomas; Haneder, Stephan; Wegscheider, Werner

    2006-05-01

    We calculated the material gain and the threshold current density for quantum wire intersubband laser structures. In quantum cascade laser devices with active regions of lower dimensionality a reduction of the nonradiative losses and consequently an increase in the material gain and a reduction of the threshold current density is predicted. In our calculations of the material gain and the threshold current density for a realistic quantum wire intersubband laser structure fabricated by the cleaved edge overgrowth (CEO) technique, however, it turns out that excited states formed in those structures even reduce the material gain compared to conventional quantum well cascade lasers. The threshold current density also turns out to be increased due to the reduced material gain on the one hand and due to a small optical confinement factor in such structures on the other hand. The main consequence for the design of such quantum wire laser structures is to avoid the formation of excited states to be able to benefit from the reduction of the dimensionality of the electron system in terms of reduced nonradiative losses.

  5. Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt

    NASA Astrophysics Data System (ADS)

    Jiang, Fan

    2016-02-01

    Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.

  6. Current progress in high cell density yeast bioprocesses for bioethanol production.

    PubMed

    Westman, Johan O; Franzén, Carl Johan

    2015-08-01

    High capital costs and low reaction rates are major challenges for establishment of fermentation-based production systems in the bioeconomy. Using high cell density cultures is an efficient way to increase the volumetric productivity of fermentation processes, thereby enabling faster and more robust processes and use of smaller reactors. In this review, we summarize recent progress in the application of high cell density yeast bioprocesses for first and second generation bioethanol production. High biomass concentrations obtained by retention of yeast cells in the reactor enables easier cell reuse, simplified product recovery and higher dilution rates in continuous processes. High local cell density cultures, in the form of encapsulated or strongly flocculating yeast, furthermore obtain increased tolerance to convertible fermentation inhibitors and utilize glucose and other sugars simultaneously, thereby overcoming two additional hurdles for second generation bioethanol production. These effects are caused by local concentration gradients due to diffusion limitations and conversion of inhibitors and sugars by the cells, which lead to low local concentrations of inhibitors and glucose. Quorum sensing may also contribute to the increased stress tolerance. Recent developments indicate that high cell density methodology, with emphasis on high local cell density, offers significant advantages for sustainable second generation bioethanol production. PMID:26211654

  7. Review of the critical current densities and magnetic irreversibilities in high T_c superconductors

    NASA Astrophysics Data System (ADS)

    Senoussi, S.

    1992-07-01

    This review article is concerned with critical current density (J) and magnetic irreversibilities in high-T_c superconductors (HTSC). The apparent J derived from different experimental techniques (transport, hysteresis cycle, ac-susceptibility) are compared. The influence of time (relaxation effects) as well as the macroscopic size of the sample on the criteria defining J are discussed. The dependences of the critical current on grain boundaries (“weaks-links”), texturing and other physical and chemical defects are examined in detail. The role of self fields is clarified. The critical current is strongly influenced by the anisotropy of the layered structure practically whatever the experimental conditions. Intrinsic pinning is lowered by defects. Demagnetizing effects and surface pinnings are reviewed. The usual critical state and flux creep models are recalled emphasizing the physical aspects most specific to HTSC. A theoretical model which takes into account the equilibrium magnetization and sample granularity is developed. It reproduces most of the characteristic features of both the hysteresis cycle and ac-susceptibility. A number of new formulae are introduced. They generalize the Bean model and show how to correct for the dimensions of the grains (granular materials), the macroscopic radius of the sample, anisotropy and demagnetization effects in certain situations. Several limits beyond which the usual critical state breaks down are discussed: (1) the quasi elastic limit where the variable field is too weak to depin the vortices, (2) H≈ H_C1 so that the interaction between vortex lines is exponentially weak and (3) T and H close to the “irreversibility line” where the influence of viscous forces are strong. (4) Hgg H_C1 so that J is governed by collective pinning. Ce papier de revue est consacré aux courant critiques (J) et aux irréversibilités magnétiques dans les nouveaux matériaux supraconducteurs (HTSC). Nous y comparons les densités des

  8. Temperature dependence of the critical current density in proton irradiated YBCO films by magneto-optical analysis

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Botta, D.; Cherubini, R.; Chiodoni, A.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Minetti, B.; Mezzetti, E.

    2004-07-01

    In this paper we present a magneto-optical analysis of local current densities in YBCO films, before and after 3.5 MeV proton irradiation. The main issue consists into measuring and interpreting the temperature dependence of the critical current density (Jc) in samples with different, increasing defect density. Proton irradiation adds more point defects into the as-grown films. The new defect density as well as the related strain-induced modifications of the order parameter are pushed in our experiment up to temperature-modulated damage thresholds. First of all model-independent Jc data were analysed in the framework of different pinning models, all of them based on mechanisms related to the temperature induced change of the effective pinning centre distribution as well as to the shape of single pinning wells. It turns out that in such a framework the fit parameters are, generally speaking, not suitable to interpret the changes of the pinning landscape across the whole investigated temperature range. Then a model based on a vortex distribution across the whole sample, resulting in a current density that mirrors the current through a defect-modulated average short Josephson junction (JJ) row, is successfully tried. The Jc dependence in the whole temperature range and for all the considered defect densities is accounted for by means of a coherent set of fit parameters. It turns out that the chief quantity that allows applying the JJ formalism to a vortex distribution across the defected matrix is a suitably defined temperature-dependent magnetic thickness of the junctions, which substitutes the usual magnetic penetration in JJs.

  9. 3D model of small-scale density cavities in the auroral magnetosphere with field-aligned current

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Misonova, V. G.; Savina, O. N.

    2016-09-01

    We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.

  10. The use of segmented cathodes to determine the spoke current density distribution in high power impulse magnetron sputtering plasmas

    SciTech Connect

    Poolcharuansin, Phitsanu; Estrin, Francis Lockwood; Bradley, James W.

    2015-04-28

    The localized target current density associated with quasi-periodic ionization zones (spokes) has been measured in a high power impulse magnetron sputtering (HiPIMS) discharge using an array of azimuthally separated and electrical isolated probes incorporated into a circular aluminum target. For a particular range of operating conditions (pulse energies up to 2.2 J and argon pressures from 0.2 to 1.9 Pa), strong oscillations in the probe current density are seen with amplitudes up to 52% above a base value. These perturbations, identified as spokes, travel around the discharge above the target in the E×B direction. Using phase information from the angularly separated probes, the spoke drift speeds, angular frequencies, and mode number have been determined. Generally, at low HiPIMS pulse energies E{sub p} < 0.8 J, spokes appear to be chaotic in nature (with random arrival times), however as E{sub p} increases, coherent spokes are observed with velocities between 6.5 and 10 km s{sup −1} and mode numbers m = 3 or above. At E{sub p} > 1.8 J, the plasma becomes spoke-free. The boundaries between chaotic, coherent, and no-spoke regions are weakly dependent on pressure. During each HiPIMS pulse, the spoke velocities increase by about 50%. Such an observation is explained by considering spoke velocities to be determined by the critical ionization velocity, which changes as the plasma composition changes during the pulse. From the shape of individual current density oscillations, it appears that the leading edge of the spoke is associated with a slow increase in local current density to the target and the rear with a more rapid decrease. The measurements show that the discharge current density associated with individual spokes is broadly spread over a wide region of the target.

  11. Microstructural and crystallographic imperfections of MgB{sub 2} superconducting wire and their correlation with the critical current density

    SciTech Connect

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-15

    A comprehensive study of the effects of structural imperfections in MgB{sub 2} superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB{sub 2} material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB{sub 2}, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB{sub 2}, however, even at low sintering temperature, and thus block current transport paths.

  12. Immersed boundary Eulerian-Lagrangian 3D simulation of pyroclastic density currents: numerical scheme and experimental validation

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico Maria; de Tullio, Marco; Pascazio, Giuseppe; Dellino, Pierfrancesco

    2010-05-01

    Pyroclastic density currents are ground hugging, hot, gas-particle flows representing the most hazardous events of explosive volcanism. Their impact on structures is a function of dynamic pressure, which expresses the lateral load that such currents exert over buildings. In this paper we show how analog experiments can be matched with numerical simulations for capturing the essential physics of the multiphase flow. We used an immersed boundary scheme for the mesh generation, which helped in reconstructing the steep velocity and particle concentration gradients near the ground surface. Results show that the calculated values of dynamic pressure agree reasonably with the experimental measurements. These outcomes encourage future application of our method for the assessment of the impact of pyroclastic density currents at the natural scale.

  13. An experimental investigation of the dynamics of submarine leveed channel initiation as sediment-laden density currents experience sudden unconfinement

    SciTech Connect

    Rowland, Joel C; Hilley, George E; Fildani, Andrea

    2009-01-01

    Leveed submarine channels play a critical role in the transfer of sediment from the upper continental slopes to interslope basins and ultimately deepwater settings. Despite a reasonable understanding of how these channels grow once established, how such channels initiate on previously unchannelized portions of the seafloor remains poorly understood. We conducted a series of experiments that elucidate the influence of excess density relative to flow velocity on the dynamics of, and depositional morphologies arising from, density currents undergoing sudden unconfinement across a sloped bed. Experimental currents transported only suspended sediment across a non-erodible substrate. Under flow conditions ranging from supercritical to subcritical (bulk Richardson numbers of 0.02 to 1.2) our experiments failed to produce deposits resembling or exhibiting the potential to evolve into self-formed leveed channels. In the absence of excess density, a submerged sediment-laden flow produced sharp crested lateral deposits bounding the margins of the flow for approximately a distance of two outlet widths down basin. These lateral deposits terminated in a centerline deposit that greatly exceeded marginal deposits in thickness. As excess density increased relative to the outlet velocity, the rate of lateral spreading of the flow increased relative to the downstream propagation of the density current, transitioning from a narrow flow aligned with the channel outlet to a broad radially expanding flow. Coincident with these changes in flow dynamics, the bounding lateral deposits extended for shorter distances, had lower, more poorly defined crests that were increasingly wider in separation than the initial outlet, and progressively became more oblong rather than linear. Based on our results, we conclude that leveed channels cannot initiate from sediment-laden density currents under strictly depositional conditions. Partial confinement of these currents appears to be necessary to

  14. Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum

    ERIC Educational Resources Information Center

    Velasco, S.; White, J. A.; Roman, F. L.

    2010-01-01

    The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…

  15. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  16. Spin transfer torques in MnSi at ultralow current densities.

    PubMed

    Jonietz, F; Mühlbauer, S; Pfleiderer, C; Neubauer, A; Münzer, W; Bauer, A; Adams, T; Georgii, R; Böni, P; Duine, R A; Everschor, K; Garst, M; Rosch, A

    2010-12-17

    Spin manipulation using electric currents is one of the most promising directions in the field of spintronics. We used neutron scattering to observe the influence of an electric current on the magnetic structure in a bulk material. In the skyrmion lattice of manganese silicon, where the spins form a lattice of magnetic vortices similar to the vortex lattice in type II superconductors, we observe the rotation of the diffraction pattern in response to currents that are over five orders of magnitude smaller than those typically applied in experimental studies on current-driven magnetization dynamics in nanostructures. We attribute our observations to an extremely efficient coupling of inhomogeneous spin currents to topologically stable knots in spin structures. PMID:21164010

  17. Density banding in corals: barcodes of past and current climate change

    NASA Astrophysics Data System (ADS)

    Brachert, T. C.; Reuter, M.; Krüger, S.; Böcker, A.; Lohmann, H.; Mertz-Kraus, R.; Fassoulas, C.

    2013-12-01

    The predicted sea surface temperature (SST) rise over the next decades is likely hazardous to coral health because precipitation of the calcareous skeleton depends primarily on SST. Temperature modulates vertical growth and density of the skeleton with seasonal SST changes resulting in an alternation of high-density and low-density bands (HDB and LDB). Notably, growth rates and the timing of the HDBs and LDBs relative to the seasons differ on a global scale within geographic regions. In this contribution, we use combined information of skeletal density and seasonally resolved oxygen isotope SST estimates from massive Porites from a Late Miocene (9 Ma) reef in the eastern Mediterranean Sea (Crete, Greece) to understand reef vulnerability over short and geological periods of time. Three types of HDB-SST relationships have been found: (1) coincidence of HDB with summer, (2) winter or (3) autumn and spring. The latter doubles HDBs in a year and implies maximum calcification is coupled to the taxon-specific optimum SST during the transitional seasons and reduced at its respective critical winter and summer SSTs. Modeling with a nonlinear temperature-calcification relationship reproduces the climate barcode of density bands. The model should be relevant for other poikilothermic carbonate producers in reefs and platforms and has implications for judging geographic distributions and causes of extinctions of corals, benthic carbonate communities and entire carbonate systems. With regard to the causes underlying expansion and demise of carbonate platforms and reefs in geological history, we expect the model predictions to help for a deeper understanding of biotic responses during hyperthermals or coolings and possibly also for identifying regions in the modern ocean where corals are endangered or taking advantage of global warming.

  18. Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.

  19. Enhancement in field emission current density of Ni nanoparticles embedded in thin silica matrix by swift heavy ion irradiation

    SciTech Connect

    Sarker, Debalaya; Patra, Rajkumar; Srivastava, P.; Ghosh, S.; Kumar, H.; Kabiraj, D.; Avasthi, D. K.; Vayalil, Sarathlal K.; Roth, S. V.

    2014-05-07

    The field emission (FE) properties of nickel nanoparticles embedded in thin silica matrix irradiated with 100 MeV Au{sup +7} ions at various fluences are studied here. A large increase in FE current density is observed in the irradiated films as compared to their as deposited counterpart. The dependence of FE properties on irradiation fluence is correlated with surface roughness, density of states of valence band and size distribution of nanoparticles as examined with atomic force microscope, X-ray photoelectron spectroscopy, and grazing incidence small angle x-ray scattering. A current density as high as 0.48 mA/cm{sup 2} at an applied field 15 V/μm has been found for the first time for planar field emitters in the film irradiated with fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. This significant enhancement in the current density is attributed to an optimized size distribution along with highest surface roughness of the same. This new member of field emission family meets most of the requirements of cold cathodes for vacuum micro/nanoelectronic devices.

  20. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Du, Yuchen; Ye, Peide D.

    2016-05-01

    Herein, we report on achieving ultra-high electron density (exceeding 1014 cm-2) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al2O3 to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 105 at room temperature. An ultra-high electron density exceeding 1014 cm-2 accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reduction of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.

  1. Current density and ohmic resistance distribution in the land-channel direction of a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Shrivastava, Udit N.; Tajiri, Kazuya; Chase, Michael

    2015-12-01

    A highly instrumented segmented cell is designed to measure current density and ohmic resistance distribution in the land-channel direction of a proton exchange membrane fuel cell at resolution of 350 μm. A customized catalyst coated membrane with an active area of 9 mm2 is prepared, and a printed-circuit board technique is introduced to ease fabrication of segmented anode and to adapt design to any flow arrangement. Design of segmented cell is validated by electrochemical pumping of hydrogen from anode to cathode. Current density and ohmic resistance distribution are measured in two wet conditions (at 40 °C and 60 °C) and a dry condition at 60 °C. In all cases a strong correlation between current generation and ohmic resistance distribution is observed. Outcomes from these experiments revealed that the water distribution has a strong effect on the local current generation and ohmic resistance. In wet condition ohmic resistance is uniform but current generation found to be non-uniform because of the non-uniform liquid water distribution. In dry condition, on the other hand, non-uniform water generation resulted in both uneven current generation and ohmic resistance.

  2. Study of the origin and structure of a nocturnal atmospheric density current from observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Ander Arrillaga, Jon; Yagüe, Carlos; Román-Cascón, Carlos; Sastre, Mariano

    2016-04-01

    Density currents are flows generated when a dense fluid passes through a less dense surrounding, under the influence of gravity. They usually appear as a consequence of sea-breeze circulations, thunderstorm outflows or katabatic flows. Density currents acquire a particular relevance during nocturnal stable situations, as their onset causes a significant turbulence increase (both from buoyancy and shear) and they occasionally produce turbulence intermittency through the formation of gravity waves. In this work, the arrival of a density current on 23 September 2015 is analysed in the CIBA site (Spain), which is located in the Spanish Northern Plateau, approximately 200 km away from the sea and 100 km away from the closest mountain ranges. Previous studies at this location associated similar nocturnal events with daytime sea breeze in the eastern Cantabrian coast [1]. Micrometeorological measurements from sonic anemometers and different sensors at multiple levels up to 100 m agl provide a solid database. In this specific case, the outbreak of the density current occurs 2 hours after sunset, causing an abrupt increase of the wind speed and a significant weakening of the surface-based thermal inversion. Besides, turbulent parameters and fluxes such as the friction velocity, the sensible heat flux and the Turbulent Kinetic Energy (TKE) are sharply altered with its arrival. The latter, indeed, increases by two orders of magnitude and the Multi Resolution Flux Decomposition (MRFD) of this and other turbulent variables gives the approximate size of the contributing eddies. Furthermore, simulations with the WRF model, which is tested for different Planetary Boundary Layer (PBL) schemes and the topo_wind option for complex topography [2], give meaningful information about the vertical structure and origin of this density current. [1] Udina, M., Soler, M.R., Viana, S. & Yagüe, C. (2013). Model simulation of gravity waves triggered by a density current. Q J R Meteorol Soc, 139

  3. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    SciTech Connect

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael; Kiggans Jr, James O

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into a bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.

  4. Energy loss to conductors operated at lineal current densities ≤10MA/cm: Semianalytic model, magnetohydrodynamic simulations, and experiment

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Rosenthal, S. E.; Ives, H. C.; Wagoner, T. C.; Allshouse, G. O.; Androlewicz, K. E.; Donovan, G. L.; Fehl, D. L.; Frese, M. H.; Gilliland, T. L.; Johnson, M. F.; Mills, J. A.; Reisman, D. B.; Reynolds, P. G.; Speas, C. S.; Spielman, R. B.; Struve, K. W.; Toor, A.; Waisman, E. M.

    2008-12-01

    We have developed a semianalytic expression for the total energy loss to a vacuum transmission-line electrode operated at high lineal current densities. (We define the lineal current density jℓ≡B/μ0 to be the current per unit electrode width, where B is the magnetic field at the electrode surface and μ0 is the permeability of free space.) The expression accounts for energy loss due to Ohmic heating, magnetic diffusion, j×B work, and the increase in the transmission line’s vacuum inductance due to motion of the vacuum-electrode boundary. The sum of these four terms constitutes the Poynting fluence at the original location of the boundary. The expression assumes that (i) the current distribution in the electrode can be approximated as one-dimensional and planar; (ii) the current I(t)=0 for t<0, and I(t)∝t for t≥0; (iii) jℓ≤10MA/cm; and (iv) the current-pulse width is between 50 and 300 ns. Under these conditions we find that, to first order, the total energy lost per unit electrode-surface area is given by Wt(t)=αtβBγ(t)+ζtκBλ(t), where B(t) is the nominal magnetic field at the surface. The quantities α, β, γ, ζ, κ, and λ are material constants that are determined by normalizing the expression for Wt(t) to the results of 1D magnetohydrodynamic MACH2 simulations. For stainless-steel electrodes operated at current densities between 0.5 and 10MA/cm, we find that α=3.36×105, β=1/2, γ=2, ζ=4.47×104, κ=5/4, and λ=4 (in SI units). An effective time-dependent resistance, appropriate for circuit simulations of pulsed-power accelerators, is derived from Wt(t). Resistance-model predictions are compared to energy-loss measurements made with stainless-steel electrodes operated at peak lineal current densities as high as 12MA/cm (and peak currents as high as 23 MA). The predictions are consistent with the measurements, to within experimental uncertainties. We also find that a previously used electrode-energy-loss model overpredicts the

  5. Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime

    DOEpatents

    Chen, Zhizhang; Rohatgi, Ajeet

    1995-01-01

    A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S (<2 cm/s), and high effective carrier lifetime T.sub.eff (>5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.

  6. Interacting effects of age, density, and weather on survival and current reproduction for a large mammal

    PubMed Central

    Richard, Emmanuelle; Simpson, Steven E; Medill, Sarah A; McLoughlin, Philip D

    2014-01-01

    Individual-based study of natural populations allows for accurate and precise estimation of fitness components and the extent to which they might vary with ecological conditions. By tracking the fates of all 701 horses known to have lived on Sable Island, Canada, from 2009 to 2013 (where there is no predation, human interference, or interspecific competition for food), we present a detailed analysis of structured population dynamics with focus on interacting effects of intraspecific competition and weather on reproduction and survival. Annual survival of adult females (0.866 ± 0.107 [ ± SE]) was lower than that of 3-year-olds (0.955 ± 0.051), although annual fecundity (producing a foal in a year that was observed during our census) was higher in adults (0.616 ± 0.023) compared to 3-year-olds (0.402 ± 0.054). Milder winters and lower densities during gestation increased fecundity. Density negatively impacted survival for all age and sex categories; however, highest adult female survival was observed during high-density years coupled with a harsh winter, the result expected if pregnancy loss during winter or loss of foals in spring improved survival. Three-year-old females, which reproduced at lower rates, experienced higher survival than adults. Our results contrast with a previous study of feral horses that suggested recently feral ungulates might be artificially selected to reproduce even when costs to survival are high. In part, this may be because of the comparably long history of feralization (250 years; at least 25 generations) for Sable Island horses. PMID:25614799

  7. Low turn-on field and high field emission current density from Ag/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Girish P.; Deore, Amol B.; Bagal, Vivekanand S.; Late, Dattatray J.; More, Mahendra A.; Chavan, Padmakar G.

    2016-07-01

    High current density of 1.24 mA/cm2 was drawn at an applied field of 4.4 V/μm from Ag/TiO2 nanocomposite. Also the turn-on field has been reduced from 3.9 V/μm to 2.7 V/μm for the emission current density of 10 μA/cm2. Ag/TiO2 nanocomposite was synthesized by using UV-switchable reducing agent. TiO2 nanotube wall was decorated by Ag nanoparticles with average diameter of 17 nm. To the best of our knowledge this is the first report on the field emission studies of Ag/TiO2 nanocomposite. Simple synthesis route coupled with superior field emission properties indicate the possible use of Ag/TiO2 nanocomposite for micro/nanoelectronic devices.

  8. Effect of current density and bath composition on crystalline structure and magnetic properties of electrodeposited FeCoW alloy

    NASA Astrophysics Data System (ADS)

    Ghaferi, Z.; Sharafi, S.; Bahrololoom, M. E.

    2015-11-01

    In this research, FeCoW alloy coatings were prepared by galvanostatic method. The influence of current density and bath composition on microstructure and magnetic properties of electrodeposited FeCoW alloys were also studied. All coatings showed (2 2 0) preferred orientation with a two phase structure at higher current densities. Grain size of the coatings deposited from 0.01 and 0.03 M tungsten content electrolytes was in the range of 29-126 and 10-42 nm, respectively. Microhardness of the coatings deposited from the former electrolyte changed by chemical composition of the alloys, while this parameter changed by grain-size reduction for the coatings deposited from the latter one. The coercivity was controlled by grain-size reduction and surface morphology. It could be stated that the high-tungsten content electrolyte produced coatings with superior magnetic behaviour and microhardness compared with the electrolyte with low -tungsten content.

  9. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas

    2016-03-01

    Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.

  10. A new latch-free LIGBT on SOI with very high current density and low drive voltage

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Vestling, L.; Eklund, K.-H.

    2016-01-01

    A new latch-free LIGBT on SOI is presented. The new device combines advantages from both LDMOS as well as LIGBT technologies; high breakdown voltage, high drive current density, low control voltages, at the same time eliminating latch-up problems. The new LIGBT has the unique property of independent scaling of the input control device, i.e. LDMOS, and the output part of the device, i.e. the p-n-p part. This allows for additional freedom in designing and optimizing the device properties. Breakdown voltage of over 200 V, on-state current density over 3 A/mm, specific on-resistance below 190 mΩ mm2, and latch-free operation is demonstrated.

  11. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    SciTech Connect

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  12. Comparison of SAR and induced current densities in adults and children exposed to electromagnetic fields from electronic article surveillance devices

    NASA Astrophysics Data System (ADS)

    Martínez-Búrdalo, M.; Sanchis, A.; Martín, A.; Villar, R.

    2010-02-01

    Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.

  13. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water.

    PubMed

    Guzmán-Duque, Fernando L; Palma-Goyes, Ricardo E; González, Ignacio; Peñuela, Gustavo; Torres-Palma, Ricardo A

    2014-08-15

    Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If icurrent density (i(lim)), CV is mainly degraded by OH radicals, whereas if i>i(lim), generated oxidants play a major role in the CV elimination. When IrO2 was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na2SO4 on IrO2 seems to occur via IrO3; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na2SO4 electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO2. Thus, the IrO2/Cl(-) and BDD/SO4(2-) systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO4(2-) and IrO2/Cl(-) systems is favored at low and high current densities, respectively. PMID:24981674

  14. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    PubMed

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-01

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. PMID:25899940

  15. Effects of grain size and grain boundary on critical current density of high T(sub c) superconducting oxides

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    By means of adding impurity elements in high T sub c oxides, the effects were studied of grain size and grain boundary on the critical current density of the following systems: YBa2Cu3O(7-y) and Bi-Pr-Sr-Ca-Cu-O. In order to only change the microstructure instead of the superconductivity of the grains in the samples, the impurity elements were added into the systems in terms of the methods like this: (1) substituting Y with the lanthanide except Pr, Ce, and Tb in YBa2Cu3O(7-y) system to finning down grains in the samples, therefore, the effect can be investigated of the grain size on the critical current density of 1:2:3 compounds; (2) mixing the high T sub c oxides with the metal elements, such as Ag, according to the composition of (high T sub c oxide)1-xAgx to metallize the grain boundaries in the samples, studying the effect of the electric conductivity of the grain boundaries on the critical current density; (3) adding SiO2, PbO2, and SnO2 into the high T sub c oxide to form impurity phases in the grain boundaries, trying to find out the effects of the impurity phases or metalloid grain boundaries on the critical current density of the high T sub c superconductors. The experimental results indicate that in the case of of the presence of the metalloid grain boundaries finning down grains fails to enhance the j sub c, but restrains it strongly, the granular high T sub c superconductors with the small size grains coupled weakly is always the low j sub c system.

  16. Low field critical current density of titanium sheathed magnesium diboride wires

    NASA Astrophysics Data System (ADS)

    Rostila, L.; Grasso, G.; Demenčík, E.; Tumino, A.; Brisigotti, S.; Kováč, P.

    2010-06-01

    Magnesium diboride (MgB2) is replacing some of the conventional superconductors due to its low cost and availability in kilometer lengths. MgB2 has also been considered for AC applications. In order to model the AC losses and the critical currents of the applications, intrinsic Jc(B)-dependence is an important factor also at low fields. In this work Jc(B)-dependence of an MgB2 sample is extracted from the standard in field voltage-current measurements. The proposed method is applied to a non magnetic titanium sheathed sample at 16 and 20 K and a simple formula for Jc(B) aligns with the measurements. In the fitting process, the critical current distribution inside the wire is numerically simulated in order to take the self field of the sample into account. Moreover, the same formula aligns with measurements of a different sample. These critical current measurements, performed at 4.2 K, were based on magnetization. In the self field computations, the superconducting cross section must be determined accurately. Therefore, we tailored an image processing tool for MgB2 wires to obtain the geometry from a photograph.

  17. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    NASA Astrophysics Data System (ADS)

    Hirano, Y.; Kiyama, S.; Fujiwara, Y.; Koguchi, H.; Sakakita, H.

    2015-11-01

    A high current density (≈3 mA/cm2) hydrogen ion beam source operating in an extremely low-energy region (Eib ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when Eib is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  18. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge. PMID:26628125

  19. The effect of ion current density amplification in a diode with passive anode in magnetic self-isolation mode

    SciTech Connect

    Pushkarev, Alexander I.; Isakova, Yulia I.; Vakhrushev, Dmitry V.

    2010-12-15

    The results of a study on gigawatt power pulsed ion beam parameters are presented here. The pulsed ion beam is formed by a diode with an explosive-emission potential electrode, in magnetic self-isolation mode [A. I. Pushkarev, J. I. Isakova, M. S. Saltimakov et al., Phys. Plasmas 17, 013104 (2010)]. The ion current density is 20-40 A/cm{sup 2}, the energy of the ions is 200-250 keV, and the beam composition is of protons and carbon ions. Experiments have been performed on the TEMP-4M accelerator, set in double-pulse formation mode. To measure the beam parameters, we used a time-of-flight diagnosis. It is shown that the carbon ion current density, formed in a planar diode with graphite potential electrode, is five to seven times higher than the values calculated from the Child-Langmuir ratio. A model of ion current density amplification in a diode with magnetic self-isolation is proposed. The motion of electrons in the anode-cathode gap is simulated using the program CST PARTICLE STUDIO.

  20. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    SciTech Connect

    Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  1. Dust mobilization due to density currents in the Atlas region: Observations from the Saharan Mineral Dust Experiment 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Knippertz, P.; Deutscher, C.; Kandler, K.; Müller, T.; Schulz, O.; Schütz, L.

    2007-11-01

    Evaporation of precipitation is a ubiquitous feature of dry and hot desert environments. The resulting cooling often generates density currents with strong turbulent winds along their leading edges, which can mobilize large amounts of dust. Mountains support this process by triggering convection, by downslope acceleration of the cool air, and by fostering the accumulation of fine-grained sediments along their foothills through the action of water. For the Sahara, the world's largest dust source, this mechanism has been little studied because of the lack of sufficiently high resolution observational data. The present study demonstrates the frequent occurrence of density currents along the Sahara side of the Atlas Mountain chain in southern Morocco using the unique data set collected during the Saharan Mineral Dust Experiment (SAMUM) field campaign in May/June 2006. The density currents are related to convection over the mountains in the afternoon hours and have lifetimes on the order of 10 h. The passage of the sharp leading edge that sometimes reaches several hundred kilometers in length is usually associated with a marked increase in dew point and wind speed, a change in wind direction, and a decrease in temperature and visibility due to suspended dust. It is conceivable that this mechanism is relevant for other mountainous regions in northern Africa during the warm season. This would imply that simulations of the dust cycle with numerical models need a reliable representation of moist convective processes in order to generate realistic dust emissions from the Sahara.

  2. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids.

    PubMed

    Deng, Jian-Hua; Cheng, Lin; Wang, Fan-Jie; Li, Guo-Zheng; Li, De-Jun; Cheng, Guo-An

    2014-12-10

    Achieving high current and longtime stable field emission from large area (larger than 1 mm(2)), densely arrayed emitters is of great importance in applications for vacuum electron sources. We report here the preparation of graphene nanosheet-carbon nanotube (GNS-CNT) hybrids by following a process of iron ion prebombardment on Si wafers, catalyst-free growth of GNSs on CNTs, and high-temperature annealing. Structural observations indicate that the iron ion prebombardment influences the growth of CNTs quite limitedly, and the self-assembled GNSs sparsely distributed on the tips of CNTs with their sharp edges unfolded outside. The field emission study indicates that the maximum emission current density (Jmax) is gradually promoted after these treatments, and the composition with GNSs is helpful for decreasing the operation fields of CNTs. An optimal Jmax up to 85.10 mA/cm(2) is achieved from a 4.65 mm(2) GNS-CNT sample, far larger than 7.41 mA/cm(2) for the as-grown CNTs. This great increase of Jmax is ascribed to the reinforced adhesion of GNS-CNT hybrids to substrates. We propose a rough calculation and find that this adhesion is promoted by 7.37 times after the three-step processing. We consider that both the ion prebombardment produced rough surface and the wrapping of CNT foot by catalyst residuals during thermal processing are responsible for this enhanced adhesion. Furthermore, the three-step prepared GNS-CNT hybrids present excellent field emission stability at high emission current densities (larger than 20 mA/cm(2)) after being perfectly aged. PMID:25335851

  3. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  4. Giant enhancement in critical current density, up to a hundredfold, in superconducting NaFe0.97Co0.03 As single crystals under hydrostatic pressure.

    PubMed

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S R; Wang, A F; Dou, Shixue; Chen, X H

    2015-01-01

    Tremendous efforts towards improvement in the critical current density "Jc" of iron based superconductors (FeSCs), especially at relatively low temperatures and magnetic fields, have been made so far through different methods, resulting in real progress. Jc at high temperatures in high fields still needs to be further improved, however, in order to meet the requirements of practical applications. Here, we demonstrate a simple approach to achieve this. Hydrostatic pressure can significantly enhance Jc in NaFe0.97Co0.03As single crystals by at least tenfold at low field and more than a hundredfold at high fields. Significant enhancement in the in-field performance of NaFe0.97Co0.03As single crystal in terms of pinning force density (Fp) is found at high pressures. At high fields, the Fp is over 20 and 80 times higher than under ambient pressure at12 K and 14 K, respectively, at P = 1 GPa. We believe that the Co-doped NaFeAs compounds are very exciting and deserve to be more intensively investigated. Finally, it is worthwhile to say that by using hydrostatic pressure, we can achieve more milestones in terms of high Jc values in tapes, wires or films of other Fe-based superconductors. PMID:26030085

  5. Giant enhancement in critical current density, up to a hundredfold, in superconducting NaFe0.97Co0.03 As single crystals under hydrostatic pressure

    PubMed Central

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S. R.; Wang, A. F.; Dou, Shixue; Chen, X. H.

    2015-01-01

    Tremendous efforts towards improvement in the critical current density “Jc” of iron based superconductors (FeSCs), especially at relatively low temperatures and magnetic fields, have been made so far through different methods, resulting in real progress. Jc at high temperatures in high fields still needs to be further improved, however, in order to meet the requirements of practical applications. Here, we demonstrate a simple approach to achieve this. Hydrostatic pressure can significantly enhance Jc in NaFe0.97Co0.03As single crystals by at least tenfold at low field and more than a hundredfold at high fields. Significant enhancement in the in-field performance of NaFe0.97Co0.03As single crystal in terms of pinning force density (Fp) is found at high pressures. At high fields, the Fp is over 20 and 80 times higher than under ambient pressure at12 K and 14 K, respectively, at P = 1 GPa. We believe that the Co-doped NaFeAs compounds are very exciting and deserve to be more intensively investigated. Finally, it is worthwhile to say that by using hydrostatic pressure, we can achieve more milestones in terms of high Jc values in tapes, wires or films of other Fe-based superconductors. PMID:26030085

  6. Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation

    SciTech Connect

    Jia, Y.; LeRoux, M.; Miller, D. J.; Wen, J. G.; Kwok, W. K.; Welp, U.; Rupich, M. W.; Li, X.; Sathyamurthy, S.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.; Ayala-Valenzuela, O.; Civale, L.

    2013-09-16

    The in-field critical current of commercial YBa{sub 2}Cu{sub 3}O{sub 7} coated conductors can be substantially enhanced by post-fabrication irradiation with 4 MeV protons. Irradiation to a fluence of 8 × 10{sup 16} p/cm{sup 2} induces a near doubling of the critical current in fields of 6 T || c at a temperature of 27 K, a field and temperature range of interest for applications, such as rotating machinery. A mixed pinning landscape of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our data indicate that there is significant head-room for further enhancements.

  7. Magnetic Field, Density Current, and Lorentz Force Full Vector Maps of the NOAA 10808 Double Sunspot: Evidence of Strong Horizontal Current Flows in the Penumbra

    NASA Astrophysics Data System (ADS)

    Bommier, V.; Landi Degl'Innocenti, E.; Schmieder, B.; Gelly, B.

    2011-04-01

    The context is that of the so-called “fundamental ambiguity” (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the “simulated annealing” algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).

  8. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B.

    2013-11-01

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size

  9. Microstructure refinement and enhanced critical current density in binary doped SmFeAsO superconductor

    SciTech Connect

    Anooja, J. B.; Aswathy, P. M.; Varghese, Neson; Syamaprasad, U.; Aloysius, R. P.

    2014-04-24

    The iron-pnictide Sm{sub 1−x}Ca{sub x}FeAsO{sub 1−2x}F{sub 2x} superconductor was prepared and the combined effect of electron and hole doping was studied in detail. It is observed that the binary doping using CaF{sub 2} improves the microstructure tremendously with a preferred orientation of the (00l) planes. Moreover, a maximum T{sub C} of 53.8 K and a transport J{sub C} of 880 A/cm{sup 2} (12 K), which is double to that of the F-doped sample, are achieved. The dopant CaF{sub 2} seems to be a potential candidate for solving the grain-connectivity concerns in iron-pnictides paving the way towards conductor development.

  10. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    SciTech Connect

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang; Moon, Jun-Hyeon; Chung, Chin-Wook; Kim, Yunjung; Cho, Guangsup

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. From the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.

  11. Ultra-thin YBa2Cu3O7‑x films with high critical current density

    NASA Astrophysics Data System (ADS)

    Lyatti, M.; Savenko, A.; Poppe, U.

    2016-06-01

    Despite impressive progress in the development of superconducting nanowire single-photon detectors (SNSPD), the main obstacle for the widespread use of such detectors is the low operating temperature required for low-temperature superconductors. The very attractive idea of increasing the operating temperature using high-temperature superconductors for SNSPD fabrication is problematic due to the insufficient quality of ultra-thin films from high-temperature superconductors, which is one of the key requirements for the single-photon detection by superconducting nanowires. In this work, we demonstrate the possibility of fabricating ultra-thin YBa2Cu3O7‑x films on SrTiO3 substrates with a surface flatness of ±1 unit cell and a high critical current density up to 14 MA cm‑2 at T = 78 K. The critical current density of ultra-thin films had very low value in the first three unit cell layers adjacent to the substrate and reached nearly the bulk value at the fifth layer. 97% of the superconducting current is carried by only two upper layers of a 5-unit-cell thick YBa2Cu3O7‑x film. Due to such superconducting current distribution over the film thickness and good surface flatness 5-unit-cell thick YBa2Cu3O7‑x films could be promising for the fabrication of single-photon detectors.

  12. Current status and future directions in lipid management: emphasizing low-density lipoproteins, high-density lipoproteins, and triglycerides as targets for therapy

    PubMed Central

    Lin, Yun; Mousa, Shaymaa S; Elshourbagy, Nabil; Mousa, Shaker A

    2010-01-01

    Current lipid management guidelines are focused on decreasing low-density lipoprotein (LDL-C) levels as the primary target for reducing coronary heart disease (CHD) risk. Yet, many recent studies suggest that low levels of high-density lipoprotein (HDL-C) are a major independent risk factor for cardiovascular diseases. According to several clinical trials, a 1% increase in HDL-C is associated with a 0.7%–3% decrease in CHD events. The direct link between high levels of triglycerides (TG) and CHD, on the other hand, is less well defined. A large reduction in TG is needed to show a difference in CHD events, especially in men. Evidence for a shift in lipid management toward targeting both LDL-C and HDL-C as primary targets for therapy is presented. Currently, the 3-hydroxy-3-methylgutaryl coenzyme A reductase inhibitors (HMG-CoA reductase inhibitors) have proven to significantly decrease LDL-C levels, reduce CHD morbidity/mortality and improve overall survival. However, improvement of survival with statins may be due to other pleiotropic effects beyond LDL-C lowering. Fibric acid derivatives and niacin are primarily used to increase HDL-C levels, although with side effects. Future therapies targeting HDL-C may have profound results on reducing CHD morbidity and mortality. This article highlights existing and future targets in lipid management and is based on available clinical data. There is an urgent need for new treatments using a combination of drugs targeting both LDL-C and HDL-C. Such treatments are expected to have a superior outcome for dyslipidemia therapy, along with TG management. PMID:20234782

  13. Combining hydraulic and granular flow extremes for density currents by depth averaging two phase flow equations.

    NASA Astrophysics Data System (ADS)

    Cordoba, G. A.; Sheridan, M.; Pitman, B.

    2009-05-01

    Ground-hugging particle-laden flows constitute some of the most dangerous natural phenomena on Earth. Such currents, in the form of snow avalanches, pyroclastic flows, debris flows, lahars, and landslides, are among the most destructive processes in nature. Humans tend to settle in areas near rich soils, volcanoes, or watercourses, all of which could be strongly affected by these dangerous flows. In order to improve risk preparedness and site management in the affected zones, an appropriate knowledge of these natural hazardous phenomena is required. Their evolution in time, flow dynamics and run out distance are key aspects that help in the planning for hazardous events, development of hazardous regions and design of management policy to prepare in advance of potential natural disasters. This paper describes a depth-averaged model for two phase flows that is currently in develop at the University at Buffalo. It is presently implemented within the TITAN2D framework to improve the version that currently simulates dry geophysical mass flows over natural-scale terrains. The initial TITAN2D code was developed to simulate granular flow. But because the introduction of an interstitial fluid strongly modifies the dynamics of the flow, a new, more general, two-phase model was developed to account for a broad range in volume fraction of solids. The proposed mathematical model depth-integrates the Navier-Stokes equations for each phase, solid and fluid. The solid phase is modeled assuming a Coulomb constitutive behavior (at the theoretical limit of pure solids), whereas the fluid phase conforms to a typical hydraulic approach (at the limit of pure fluid). The linkage for compositions between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating particle volumetric fractions as dilute as 0.001 and as concentrated as 0.55.

  14. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  15. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  16. Prospects for Edge Current Density Determination Using Li beam on DIII-D

    SciTech Connect

    D.M. Thomas; A.S. Bozek; T.N. Carlstrom; D.K. Finkenthal; R. Jayakumar; M.A. Makowski; D.G. Nilson; T.H. Osborne; B.W. Rice; R.T. Snider

    2000-08-01

    The specific size and structure of the edge current profile has important effects on the MHD stability and ultimate performance of many advanced tokamak (AT) operating modes. This is true for both bootstrap and externally driven currents that may be used to tailor the edge shear. Absent a direct local measurement of j(r), the best alternative is a determination of the poloidal field. Measurements of the precision (0.1-0.01{sup o} in magnetic pitch angle and 1-10 ms) necessary to address issues of stability and control and provide constraints for EFIT are difficult to do in the region of interest ({rho} = 0.9-1.1). Using Zeeman polarization spectroscopy of the 2S-2P lithium resonance line emission from the DIII-D LIBEAM, measurements of the various field components may be made to the necessary precision in exactly the region of interest to these studies. Because of the negligible Stark mixing of the relevant atomic levels, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to Motional Stark Effect (MSE) measurements of B. Key issues for utilizing this technique include good beam quality, an optimum viewing geometry, and a suitable optical pre-filter to isolate the polarized emission line. A prospective diagnostic system for the DIII-D AT program will be described.

  17. Comparison of Reverse Leakage Current Density in Bilayer and Bulk Heterojunction Organic Photodetectors

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Dodabalapur, Ananth

    2015-03-01

    Soft materials such as organic semiconducting polymers and small molecules will allow the development of next generation photodetectors. Their ease of manufacturing and ability to be placed on flexible substrates allow new innovations such flexible camera elements. While organic photodetectors are structurally similar to their solar cell counterparts, their operation under reverse bias is an important difference which leads to differences in optimization. Reverse leakage current within photodetectors are a key metric in their performance. Minimizing these leakage currents is an important research goal for the advancement of organic photodetectors. We have examined a variety of photodetector structures and material systems to study this topic. We will compare two different active layer structures, bilayer and heterojunctions, and their respective optimizations. We have examined how the HOMO-LUMO level alignments in our device structure will impact device performance. We have also examined different material systems such as ZnO/CuPc, ZnO/P3HT, and P3HT/PCBM. Using all of this data, we will present a broad picture on how to improve organic photodetector performance. We acknowledge support from the NASCENT NSF ERC.

  18. Overlay of neuromagnetic current-density images and morphological MR images

    NASA Astrophysics Data System (ADS)

    Fuchs, Manfred; Wischmann, Hans-Aloys; Doessel, Olaf

    1992-09-01

    Neuromagnetic imaging is a relatively new diagnostic tool for examination of electric activities in the nervous system. It is based on the noninvasive detection of extremely weak magnetic fields around the human body with superconducting quantum interference device (SQUID) detectors. `Equivalent current dipoles' and linear estimation reconstructions of current distributions both with spherical volume conductor models are used to localize the neural activity. For practical use in medical diagnosis a combination of the abstract neuromagnetic images with magnetic resonance (MR)- or computer tomography (CT)-images is required in order to match the functional activity with anatomy and morphology. The neuromagnetic images can be overlayed onto three-dimensional morphological images with spatially arbitrarily selectable slices. The matching of both imaging modalities is discussed. Based on the detection of auditory evoked magnetic fields, neuromagnetic images are reconstructed with linear estimation theory algorithms. The MR images are used as a-priori information of the volume conductor geometry and they allow an attachment of functional and morphological properties.

  19. InAs-based interband-cascade-lasers emitting around 7 μm with threshold current densities below 1 kA/cm{sup 2} at room temperature

    SciTech Connect

    Dallner, Matthias; Hau, Florian; Kamp, Martin; Höfling, Sven

    2015-01-26

    Interband cascade lasers (ICLs) grown on InAs substrates with threshold current densities below 1 kA/cm{sup 2} are presented. Two cascade designs with different lengths of the electron injector were investigated. Using a cascade design with 3 InAs quantum wells (QWs) in the electron injector, a device incorporating 22 stages in the active region exhibited a threshold current density of 940 A/cm{sup 2} at a record wavelength of 7 μm for ICLs operating in pulsed mode at room temperature. By investigating the influence of the number of stages on the device performance for a cascade design with 2 QWs in the electron injector, a further reduction of the threshold current density to 800 A/cm{sup 2} was achieved for a 30 stage device.

  20. Spin projection and spin current density within relativistic electronic-transport calculations

    SciTech Connect

    Lowitzer, S.; Koedderitzsch, D.; Ebert, H.

    2010-10-01

    A spin projection scheme is presented which allows the decomposition of the electric conductivity into two different spin channels within fully relativistic ab initio transport calculations that account for the impact of spin-orbit coupling. This is demonstrated by calculations of the spin-resolved conductivity of Fe{sub 1-x}Cr{sub x} and Co{sub 1-x}Pt{sub x} disordered alloys on the basis of the corresponding Kubo-Greenwood equation implemented using the Korringa-Kohn-Rostoker coherent-potential approximation band-structure method. In addition, results for the residual resistivity of diluted Ni-based alloys are presented that are compared to theoretical and experimental ones that rely on Mott's two-current model for spin-polarized systems. The application of the scheme to deal with the spin-orbit induced spin-Hall effect is discussed in addition.

  1. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  2. Steep Electron Density Gradients in the Midlatitude Nighttime Ionosphere: Current Understanding and Future Directions

    NASA Astrophysics Data System (ADS)

    Makela, J. J.; Kelley, M. C.; Mathews, J. D.; Kintner, P. M.; Aponte, N.; Ledvina, B. M.; Nicolls, M. J.; Seker, I.

    2004-12-01

    The midlatitude nighttime ionosphere is generally considered to be a fairly quiet system. Indeed, when compared to the highly active low- and high-latitudes, this seems to be a valid description. However, observations in the 1990s, notably those conducted as part of the multi-instrument Combined Ionospheric Campaigns (CICs) carried out periodically from 1997 to 1999, have shown that disturbances can indeed occur in this region. For example, a relatively common feature seen in allsky images taken at 630.0 nm are bands of depleted intensity aligned from the northwest to southeast that propagate to the southwest (in the northern hemisphere). The general characteristics of these bands are now fairly well documented, as is the basic understanding of their underlying physics. The effects of these medium-scale traveling ionospheric disturbances, or electrobouyancy waves, is to produce gradients in the electron density and F-layer height. During quiet magnetic periods, these gradients are fairly small, of the order of a few TEC units. However, these structures seem to be amplified by high geomagnetic activity at which times the gradients can be of the order of 10 to 20 TEC units over distances as small as several 10s of kilometers. Although much was learned about these structures during the CICs of the late 1990s, there are still several unexplained features that warrant further investigation, notably their genesis region, Kp dependence, and effects (if any) on trans-ionospheric radio signals. We suggest the need for a new set of campaigns in the Caribbean to address these questions, modeled on the CICs but extending their spatial coverage and including additional instrumentation not available during the initial campaigns. It is only through such a comprehensive, multi-technique investigation that we will make further headway on understanding these phenomena.

  3. T Lymphocyte Density and Distribution in Human Colorectal Mucosa, and Inefficiency of Current Cell Isolation Protocols

    PubMed Central

    Preza, Gloria Cuevas; Yang, Otto O.; Elliott, Julie; Anton, Peter A.; Ochoa, Maria T.

    2015-01-01

    Mucosal tissues are critical immune effector sites containing complex populations of leukocytes in a tissue microenvironment that remains incompletely understood. We identify and quantify in human distal colorectal tissue absolute mucosal CD3+ lymphocytes, including CD4+ and CD8+ subsets, by direct visualization using immunohistochemistry (IHC), immunofluorescence (IF), and an automated counting protocol (r2=0.90). Sigmoid and rectal mucosal tissues are both densely packed with T lymphocytes in the mucosal compartment. Both compartments had similar densities of CD3+ T lymphocytes with 37,400 ± 2,801 cells/mm3 and 33,700 ± 4,324 cell/mm3, respectively. Sigmoid mucosa contained 57% CD3+CD4+ and 40% CD3+CD8+ T lymphocytes which calculates to 21,300 ± 1,476/mm3 and 15,000 ± 275/mm3 T lymphocytes, respectively. Rectal mucosa had 57% CD3+CD4+ and 42% CD3+CD8+ or 21,577 ± 332, and 17,090 ± 1,206 cells/mm3, respectively. By comparison, sigmoid mucosal biopsies subjected to conventional collagenase digestion, mononuclear cell (MMC) isolation and staining for flow cytometry yielded 4,549 ± 381/mm3 and 2,708 ± 245/mm3 CD4+ and CD8+ T lymphocytes. These data suggest only ~20.7% recovery compared to IHC results for these markers. Further studies will determine if this reflects a selective bias in only CD3+, CD4+ and CD8+ T cells or can be generalized to all flow-analyzed cells from mucosal tissues for phenotyping and functional testing. PMID:25856343

  4. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A summary of the proceedings in which the most important findings stemming from the Global Weather Experiment (GWE) are highlighted, additional key results and recommendations are comered, and the presentations and discussion are summarized. Detailed achievements, unresolved problems, and recommendations are included.

  5. Generation of multiple toroidal dust vortices by a non-monotonic density gradient in a direct current glow discharge plasma

    SciTech Connect

    Kaur, Manjit Bose, Sayak; Chattopadhyay, P. K.; Sharma, D.; Ghosh, J.; Saxena, Y. C.; Thomas, Edward

    2015-09-15

    Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of the dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.

  6. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities

    NASA Astrophysics Data System (ADS)

    Lu, Xunyu; Zhao, Chuan

    2015-03-01

    Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm-2) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel-iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm-2 at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis.

  7. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities.

    PubMed

    Lu, Xunyu; Zhao, Chuan

    2015-01-01

    Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm(-2)) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel-iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm(-2) at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis. PMID:25776015

  8. Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity.

    PubMed

    Bora, Debajeet K; Braun, Artur; Erni, Rolf; Müller, Ulrich; Döbeli, Max; Constable, Edwin C

    2013-08-14

    Control of the water splitting reaction in the context of natural photosynthesis is considered as a Holy Grail of chemistry, particularly with respect to artificial photosynthesis for a sustainable energy economy. The underlying objective is to build a solar fuel generator which is economically viable and environmentally benign. Hydrogen generation by solar water splitting in photoelectrochemical cells (PEC) is currently experiencing a renaissance, and the search for high performance but low-cost photoelectrode materials is an on-going quest. We present here a photoanode heterostructure of hematite and NiO/α-Ni(OH)2, which is very efficient. We prepared the heterostructure by a "two reactor" hydrothermal modification of a pristine hematite film. The system shows promising current density of 16 mA cm(-2), several times higher than that of the pristine hematite film. In addition, the system shows charge storing capacity once exposed to AM 1.5 simulated sunlight, along with electrochromic behaviour. Interestingly, the water splitting proceeds as a dark reaction after several hours of light exposure. The abrupt increase in current density originates from the oxidized Ni(OH)2 layer which is absent in the case of pn-junction-like devices made by mere deposition of NiO on hematite by thermal annealing. Hematite alone shows no such behaviour. This kind of new PEC electrode offers a low-cost and simple way for the dual purpose applications of water splitting and charge storage. PMID:23788236

  9. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    PubMed

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties. PMID:21828430

  10. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications; Final report

    SciTech Connect

    Wilbur, P.J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred {mu}A/cm{sup 2} on a target 50 cm downstream of the ion source have been demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  11. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities

    PubMed Central

    Lu, Xunyu; Zhao, Chuan

    2015-01-01

    Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm−2) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel–iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm−2 at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis. PMID:25776015

  12. Ion beam annealing during high current density implants of phosphorus into silicon

    SciTech Connect

    Cannavo, S.; La Ferla, A.; Rimini, E.; Ferla, G.; Gandolfi, L.

    1986-06-15

    The damage left by high current densityapprox.10 ..mu..A/cm/sup 2/ implants of 120-keV P/sup +/ into 4-in. (500-..mu..m-thick) and 5-in. (600-..mu..m-thick) Si wafers of <100> orientation has been measured by 2.0-MeV He backscattering in combination with the channeling effect technique. The fluences ranged between 1 and 7.5 x 10/sup 15//cm/sup 2/. The amount of disorder is highest at 1 x 10/sup 15//cm/sup 2/ and then decreases with fluence. The annealing of the amorphous layer takes place by the movement of two and one amorphous--single crystal interfaces for the 500- and 600-..mu..m-thick wafers, respectively. The experimental data are compared with a beam annealing model based on the temperature-rise profile, the amount of point defects generated by the ion in the collision cascade volume, and the assumption of a regrowth process governed by an activation energy of 0.25 eV.

  13. Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities.

    PubMed

    Pikaar, Ilje; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg; Rabaey, Korneel

    2011-03-01

    Hydrogen sulfide generation is the key cause of sewer pipe corrosion, one of the major issues in water infrastructure. Current abatement strategies typically involve addition of various types of chemicals to the wastewater, which incurs large operational costs. The transport, storage and application of these chemicals also constitute occupational and safety hazards. In this study, we investigated high rate electrochemical oxidation of sulfide at Ir/Ta mixed metal oxide (MMO) coated titanium electrodes as a means to remove sulfide from wastewater. Both synthetic and real wastewaters were used in the experiments. Electrochemical sulfide oxidation by means of indirect oxidation with in-situ produced oxygen appeared to be the main reaction mechanism at Ir/Ta MMO coated titanium electrodes. The maximum obtained sulfide removal rate was 11.8 ± 1.7 g S m(-2) projected anode surface h(-1) using domestic wastewater at sulfide concentrations of ≥ 30 mg L(-1) or higher. The final products of the oxidation were sulfate, thiosulfate and elemental sulfur. Chloride and acetate concentrations did not entail differences in sulfide removal, nor were the latter two components affected by the electrochemical oxidation. Hence, the use of electrodes to generate oxygen in sewer systems may constitute a promising method for reagent-free removal of sulfide from wastewater. PMID:21300393

  14. Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence.

    PubMed

    Zerbini, Cristiano A F; McClung, Michael R

    2013-08-01

    Human bones are in a continuous process of remodeling that ensures renovation and maintenance of the skeletal mass. Bone remodeling has two phases that are normally coupled and balanced: bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts. An increase in bone resorption over bone formation results in a progressive loss of bone mass and impairment of bone microarchitecture leading to osteoporosis and its associated fractures. Recent advances in the understanding of the molecular and cellular mechanisms involved in the remodeling process have allowed the development of new targets for osteoporosis treatment. Cathepsin K, a cysteine protease, is found in osteoclasts along the bone resorption surfaces and very efficiently degrades type I collagen, the major component of the organic bone matrix. Inhibition of cathepsin K reduces bone resorption but does not impair bone formation particularly at cortical sites. Odanacatib, a potent and highly selective cathepsin K inhibitor, showed prevention of bone loss without reduction of bone formation in preclinical and clinical trials (phase I and II). Odanacatib is currently in a phase III fracture outcome international trial for the treatment of postmenopausal osteoporosis. PMID:23904864

  15. Suppression of external quantum efficiency roll-off of nanopatterned organic-light emitting diodes at high current densities

    SciTech Connect

    Kuwae, Hiroyuki; Kasahara, Takashi; Nitta, Atsushi; Yoshida, Kou; Inoue, Munetomo; Matsushima, Toshinori; Adachi, Chihaya; Shoji, Shuichi; Mizuno, Jun

    2015-10-21

    We developed organic light-emitting diodes (OLEDs) with nanopatterned current flow regions using electron-beam lithography with the aim of suppressing singlet–polaron annihilation (SPA). Nanopatterns composed of lines and circles were used in the current flow regions of nano-line and nano-dot OLEDs, respectively. Excitons partially escape from the current flow regions where SPA takes place. As such, current densities where external quantum efficiencies were half of their initial values (J{sub 0}) increased as line width and circle diameter were decreased to close to the exciton diffusion length. Circles were more efficient at enhancing exciton escape and increasing J{sub 0} than lines. The J{sub 0} increase in the nano-dot OLEDs containing nanopatterned circles with a diameter of 50 nm was approximately 41-fold that of a conventional OLED with a current flow region of 4 mm{sup 2}. The dependence of J{sub 0} on the size and shape of the nanopatterns was well explained by an SPA model that considered exciton diffusion. Nanopatterning of OLEDs is a feasible method of obtaining large J{sub 0}.

  16. Suppression of external quantum efficiency roll-off of nanopatterned organic-light emitting diodes at high current densities

    NASA Astrophysics Data System (ADS)

    Kuwae, Hiroyuki; Nitta, Atsushi; Yoshida, Kou; Kasahara, Takashi; Matsushima, Toshinori; Inoue, Munetomo; Shoji, Shuichi; Mizuno, Jun; Adachi, Chihaya

    2015-10-01

    We developed organic light-emitting diodes (OLEDs) with nanopatterned current flow regions using electron-beam lithography with the aim of suppressing singlet-polaron annihilation (SPA). Nanopatterns composed of lines and circles were used in the current flow regions of nano-line and nano-dot OLEDs, respectively. Excitons partially escape from the current flow regions where SPA takes place. As such, current densities where external quantum efficiencies were half of their initial values (J0) increased as line width and circle diameter were decreased to close to the exciton diffusion length. Circles were more efficient at enhancing exciton escape and increasing J0 than lines. The J0 increase in the nano-dot OLEDs containing nanopatterned circles with a diameter of 50 nm was approximately 41-fold that of a conventional OLED with a current flow region of 4 mm2. The dependence of J0 on the size and shape of the nanopatterns was well explained by an SPA model that considered exciton diffusion. Nanopatterning of OLEDs is a feasible method of obtaining large J0.

  17. Critical current density and mechanism of vortex pinning in KxFe2-ySe₂ doped with S

    DOE PAGESBeta

    Lei, Hechang; Petrovic, C.

    2011-08-15

    We report the critical current density Jc in KxFe2-ySe2-zSz crystals. The Jc can be enhanced significantly with optimal S doping (z=0.99). For K0.70(7)Fe1.55(7)Se1.01(2)S0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.

  18. Measurement of ion current density at ground level in the vicinity of high voltage DC transmission lines

    NASA Astrophysics Data System (ADS)

    McKnight, R. H.; Kotter, F. R.; Misakian, M.

    1981-12-01

    Sensors for measuring vertical current density at ground level near high voltage dc (HVDC) transmission lines are subject to error when the sensor is not in the ground plane. The magnitude of this error, for guarded and unguarded sensors, was investigated using both dc electric fields with space charge and ac electric fields in a parallel plate facility. For conditions like those expected under HVDC transmission lines, the results obtained using ac and dc methods agreed to within experimental uncertainty. The measured errors are as large as 25 percent for guarded sensors and significantly larger for unguarded sensors. Graphs of data for various sensor elevations and guarding are presented.

  19. Study on a high current density redox flow battery with tin(Ⅱ)/tin as negative couple

    NASA Astrophysics Data System (ADS)

    Chen, Fuyu; Sun, Qing; Gao, Wei; Liu, Jianguo; Yan, Chuanwei; Liu, Qingyu

    2015-04-01

    The cyclic voltammetry characteristics of Sn2+/Sn couple in the H2SO4 medium on a graphite felt electrode is evaluated. The charge-discharge performance of Sn-V battery with VO2+/VO2+ couple as positive part and Sn2+/Sn couple as negative part is investigated through a small laboratory cell. The result shows that though the deposition/dissolution of Sn is not a normal reversible process, Sn deposits can almost dissolve completely during the charge-discharge tests. It is remarkable that the battery could work normally at a current density of 180 mA cm-2 with an average voltage efficiency of 72%.

  20. Fermion condensate and vacuum current density induced by homogeneous and inhomogeneous magnetic fields in (2+1) dimensions

    SciTech Connect

    Raya, Alfredo; Reyes, Edward

    2010-07-01

    We calculate the condensate and the vacuum current density induced by external static magnetic fields in (2+1) dimensions. At the perturbative level, we consider an exponentially decaying magnetic field along one Cartesian coordinate. Nonperturbatively, we obtain the fermion propagator in the presence of a uniform magnetic field by solving the Schwinger-Dyson equation in the rainbow-ladder approximation. In the large flux limit, we observe that both these quantities, either perturbative (inhomogeneous) and nonperturbative (homogeneous), are proportional to the external field, in agreement with early expectations.