Science.gov

Sample records for achieve efficient reduction

  1. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  2. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  3. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  4. Are Reductions in Population Sodium Intake Achievable?

    PubMed Central

    Levings, Jessica L.; Cogswell, Mary E.; Gunn, Janelle Peralez

    2014-01-01

    The vast majority of Americans consume too much sodium, primarily from packaged and restaurant foods. The evidence linking sodium intake with direct health outcomes indicates a positive relationship between higher levels of sodium intake and cardiovascular disease risk, consistent with the relationship between sodium intake and blood pressure. Despite communication and educational efforts focused on lowering sodium intake over the last three decades data suggest average US sodium intake has remained remarkably elevated, leading some to argue that current sodium guidelines are unattainable. The IOM in 2010 recommended gradual reductions in the sodium content of packaged and restaurant foods as a primary strategy to reduce US sodium intake, and research since that time suggests gradual, downward shifts in mean population sodium intake are achievable and can move the population toward current sodium intake guidelines. The current paper reviews recent evidence indicating: (1) significant reductions in mean population sodium intake can be achieved with gradual sodium reduction in the food supply, (2) gradual sodium reduction in certain cases can be achieved without a noticeable change in taste or consumption of specific products, and (3) lowering mean population sodium intake can move us toward meeting the current individual guidelines for sodium intake. PMID:25325254

  5. An Efficient Method for Computing All Reducts

    NASA Astrophysics Data System (ADS)

    Bao, Yongguang; Du, Xiaoyong; Deng, Mingrong; Ishii, Naohiro

    In the process of data mining of decision table using Rough Sets methodology, the main computational effort is associated with the determination of the reducts. Computing all reducts is a combinatorial NP-hard computational problem. Therefore the only way to achieve its faster execution is by providing an algorithm, with a better constant factor, which may solve this problem in reasonable time for real-life data sets. The purpose of this presentation is to propose two new efficient algorithms to compute reducts in information systems. The proposed algorithms are based on the proposition of reduct and the relation between the reduct and discernibility matrix. Experiments have been conducted on some real world domains in execution time. The results show it improves the execution time when compared with the other methods. In real application, we can combine the two proposed algorithms.

  6. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  7. Efficient water reduction with gallium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-07-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.

  8. Achieving energy efficiency during collective communications

    SciTech Connect

    Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao

    2012-09-13

    Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although little attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run

  9. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  10. Achieving Energy Efficiency Through Real-Time Feedback

    SciTech Connect

    Nesse, Ronald J.

    2011-09-01

    Through the careful implementation of simple behavior change measures, opportunities exist to achieve strategic gains, including greater operational efficiencies, energy cost savings, greater tenant health and ensuing productivity and an improved brand value through sustainability messaging and achievement.

  11. Using the network to achieve energy efficiency

    SciTech Connect

    Giglio, M.

    1995-12-01

    Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997. Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.

  12. Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

  13. Vouchers, Class Size Reduction, and Student Achievement: Considering the Evidence.

    ERIC Educational Resources Information Center

    Molnar, Alex

    Proponents of private school vouchers argue that vouchers empower poor families and raise the academic achievement of poor children. They also argue that vouchers may improve achievement by forcing the public schools to compete in an education marketplace in which poor parents hold the power of the purse. Juxtaposed against this issue of vouchers…

  14. Achieving high data reduction with integral cubic B-splines

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.

    1993-01-01

    During geometry processing, tangent directions at the data points are frequently readily available from the computation process that generates the points. It is desirable to utilize this information to improve the accuracy of curve fitting and to improve data reduction. This paper presents a curve fitting method which utilizes both position and tangent direction data. This method produces G(exp 1) non-rational B-spline curves. From the examples, the method demonstrates very good data reduction rates while maintaining high accuracy in both position and tangent direction.

  15. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  16. Efficiency study comparing two helicopter planetary reduction stages

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Handschuh, Robert F.

    1990-01-01

    A study was conducted to compare the efficiency of two helicopter transmission planetary reduction stages. Experimental measurements and analytical predictions were made. The analysis predicted and experiments verified that one planetary stage was a more efficient design due to the type of planet bearing used in the stage. The effects of torque, speed, lubricant type, and lubricant temperature on planetary efficiency are discussed.

  17. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  18. Building aggressively duty-cycled platforms to achieve energy efficiency

    NASA Astrophysics Data System (ADS)

    Agarwal, Yuvraj

    Managing power consumption and improving energy efficiency is a key driver in the design of computing devices today. This is true for both battery-powered mobile devices as well as mains-powered desktop PCs and servers. In case of mobile devices, the focus of optimization is on energy efficiency to maximize battery lifetime. In case of mains-powered devices, we seek to optimize power consumption to reduce energy costs, thermal and environmental concerns. Traditionally, there are two main mechanisms to improve energy efficiency in systems: slowdown techniques that seek to reduce processor speed or radio power against the rate of work done, and shutdown techniques that seek to shut down specific components or subsystems -- such as processor, radio, memory -- to reduce power used by these components when not in use. The adverse effect of using these techniques is either reduced performance (e.g., increase in latency) and/or usability or loss of functionality. The thesis behind this dissertation is that improved energy efficiency can be achieved through system architectures that seek to design and exploit "collaboration" among heterogeneous but functionally similar subsystems. For instance, multiple radio interfaces with different power/performance characteristics can collaborate to provide an energy-efficient wireless communication subsystem. Furthermore, we show that in systems where such heterogeneity is not naturally present, we can introduce heterogeneous components to improve overall energy efficiency. We show that using collaboration, individual subsystems and even entire platforms can be shut down more aggressively to reduce energy consumption, while reducing adverse impacts on performance or usability. We have used collaboration to do energy efficient operation in several contexts. For battery powered mobile devices we show that wireless radios are the dominant power consumers, and then describe several techniques that use various heterogeneous radios present

  19. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets

    SciTech Connect

    Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria; Arango, Santiago; Calvin, Katherine; Kober, Tom; Daenzer, Kathryn; Fisher-Vanden, Karen

    2015-06-03

    In this paper we investigate CO2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.

  20. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets

    DOE PAGESBeta

    Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria; Arango, Santiago; Calvin, Katherine; Kober, Tom; Daenzer, Kathryn; Fisher-Vanden, Karen

    2015-06-03

    In this paper we investigate CO2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase inmore » the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less

  1. Linking quality improvement and energy efficiency/waste reduction

    SciTech Connect

    Lewis, R.E.; Moore, N.L.

    1995-04-01

    For some time industry has recognized the importance of both energy efficiency/waste reduction (ee/wr) and quality/manufacturing improvement. However, industry has not particularly recognized that manufacturing efficiency is, in part, the result of a more efficient use of energy. For that reason, the energy efficiency efforts of most companies have involved admonishing employees to save energy. Few organizations have invested resources in training programs aimed at increasing energy efficiency and reducing waste. This describes a program to demonstrate how existing utility and government training and incentive programs can be leveraged to increase ee/wr and benefit both industry and consumers. Fortunately, there are a variety of training tools and resources that can be applied to educating workers on the benefits of energy efficiency and waste reduction. What is lacking is a method of integrating ee/wr training with other important organizational needs. The key, therefore, is to leverage ee/wr investments with other organizational improvement programs. There are significant strides to be made by training industry to recognize fully the contribution that energy efficiency gains make to the bottom line. The federal government stands in the unique position of being able to leverage the investments already made by states, utilities, and manufacturing associations by coordinating training programs and defining the contribution of energy-efficiency practices. These aims can be accomplished by: developing better measures of energy efficiency and waste reduction; promoting methods of leveraging manufacturing efficiency programs with energy efficiency concepts; helping industry understand how ee/wr investments can increase profits; promoting research on the needs of, and most effective ways to, reach the small and medium-sized businesses that so often lack the time, information, and finances to effectively use the hardware and training technologies available.

  2. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  3. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    NASA Astrophysics Data System (ADS)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at < 200 W/m2 irradiation; 0.99 power factor, 87% efficiency and 0.088 distortion factor for dc supplies; 1 ns synchronization resolution via Ethernet; database accelerators allowing 85% energy savings for servers; adaptive software yielding energy reduction of 73% for e-Commerce applications; processors and corresponding data links with 40% and 70% energy savings, respectively, by adaption of clock frequency and supply voltage in less than 20 ns; clock generator chip with tunable frequency from 83-666 MHz and 0.62-1.6 mW dc power; 90 Gb/s on-chip link over 6 mm and efficiency of 174 fJ/mm; dynamic biasing system doubling efficiency in power amplifiers; 60 GHz BiCMOS frontends with dc power to bandwidth ratio of 0.17 mW/MHz; driver assistance systems reducing energy consumption by 10% in cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  4. Reduction in efficiency of propellers due to slipstream

    NASA Technical Reports Server (NTRS)

    Munk, Max M

    1923-01-01

    In the slipstream behind a propeller there is a considerable amount of kinetic energy which has been imparted to it by the engine without producing any corresponding propeller thrust. The increased absorption of power reduces the propeller efficiency. Attention has been previously directed to this question by Bendemann and Madelung and other writers. Their contribution serves to verify a simple method of calculating the reduction in the propeller efficiency due to the slip stream. That method of calculation is given here. Explanations and examples are given for as single propeller and for two propellers mounted in tandem.

  5. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  6. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  7. Achieving improved cycle efficiency via pressure gain combustors

    SciTech Connect

    Gemmen, R.S.; Janus, M.C.; Richards, G.A.; Norton, T.S.; Rogers, W.A.

    1995-04-01

    As part of the Department of Energy`s Advanced Gas Turbine Systems Program, an investigation is being performed to evaluate ``pressure gain`` combustion systems for gas turbine applications. This paper presents experimental pressure gain and pollutant emission data from such combustion systems. Numerical predictions for certain combustor geometries are also presented. It is reported that for suitable aerovalved pulse combustor geometries studied experimentally, an overall combustor pressure gain of nearly 1 percent can be achieved. It is also shown that for one combustion system operating under typical gas turbine conditions, NO{sub x} and CO emmissions, are about 30 ppmv and 8 ppmv, respectively.

  8. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  9. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  10. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  11. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  12. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  13. 40 CFR Table 2 to Subpart Oooo of... - Required Minimum SO2 Emission Reduction Efficiency (Zc)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) , rounded to one decimal place. R = The sulfur emission reduction efficiency achieved in percent, carried to... sweetening unit, expressed as mole percent H2S (dry basis) rounded to one decimal place. Z = The minimum...) H2S content of acid gas (Y), % Sulfur feed rate (X), LT/D 2.0 ≤ X ≤ 5.0 5.0 300.0 Y ≥ 50 74.0...

  14. Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1998-01-01

    As a guide to attaining this optimal performance for general CFD problems, the table below lists every foreseen kind of computational difficulty for achieving that goal, together with the possible ways for resolving that difficulty, their current state of development, and references. Included in the table are staggered and nonstaggered, conservative and nonconservative discretizations of viscous and inviscid, incompressible and compressible flows at various Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemically reacting flows. The listing of associated computational barriers involves: non-alignment of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points; discretization and relaxation on and near shocks and boundaries; far-field artificial boundary conditions; small-scale singularities (meaning important features, such as the complete airplane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary layer resolution; and grid adaption.

  15. The investigation of the sludge reduction efficiency and mechanisms in oxic-settling-anaerobic (OSA) process.

    PubMed

    Demir, Özlem; Filibeli, Ayşe

    2016-01-01

    This paper aims to provide a full understanding of the sludge reduction mechanisms in the oxic-settling-anaerobic (OSA) process and presents an evaluation of the sludge reduction efficiencies and sludge characteristics in this process compared to the conventional activated sludge process. Fifty-eight percent reduction in observed yield in the OSA process was achieved compared to the control system at the end of the operational period with no deterioration of effluent quality. The settleability of sludge in the OSA process was also found to be better than that of the control system in terms of sludge volume index. In long-term operation, capillary suction time and specific resistance to filtration values confirmed that the OSA process showed good filterability characteristics. The results of batch experiments showed that higher endogenous respiration in the systems might lead to lower sludge production and that energy uncoupling had only a limited impact on sludge reduction. PMID:27191551

  16. Improvement of Photosynthetic Efficiency Through Reduction of Chlorophyll Antenna Size

    SciTech Connect

    Blankinship, S.L.; Greenbaum, E.; Lee, J.W.; Mets, L.

    1999-05-03

    We have previously presented a graphical illustration of a strategy to improve photosynthetic conversion efficiencies by a reduction of the antenna size in photosynthetic reaction centers. During the current reporting period, we have made progress in demonstrating the conceptual correctness of this idea. Light-saturation studies for CO, in air were performed with an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15). The light-saturated rate for CO(2), assimilation in mutant DS521 was about two times higher (187 Mu-mol.h(-1).mg chl(-1)) than that of the wild type, DES15 (95 Mu-mol.h(-1).mg chl(-1). Significantly, a partial linearization of the light-saturation curve was also observed. The light intensities that give half-saturation of the photosynthetic rate were 276 and 152 Mu-E.m(-2).s(-1) in DS521 and DES15, respectively. These results confirmed that DS521 has a smaller chlorophyll antenna size and demonstrated that the reduction of antenna size can indeed improve the overall efficiency of photon utilization. Corresponding experiments were also performed with CO(2), in helium. Under this anaerobic condition, no photoinhibition was observed, even at elevated light intensities. Photoinhibition occurs under aerobic conditions. The antenna-deficient mutant DS521 can also provide significant resistance to photoinhibition, in addition to the improvement in the overall efficiency in CO(2), fixation.

  17. Exploiting stoichiometric redundancies for computational efficiency and network reduction

    PubMed Central

    Ingalls, Brian P.; Bembenek, Eric

    2015-01-01

    Abstract Analysis of metabolic networks typically begins with construction of the stoichiometry matrix, which characterizes the network topology. This matrix provides, via the balance equation, a description of the potential steady-state flow distribution. This paper begins with the observation that the balance equation depends only on the structure of linear redundancies in the network, and so can be stated in a succinct manner, leading to computational efficiencies in steady-state analysis. This alternative description of steady-state behaviour is then used to provide a novel method for network reduction, which complements existing algorithms for describing intracellular networks in terms of input-output macro-reactions (to facilitate bioprocess optimization and control). Finally, it is demonstrated that this novel reduction method can be used to address elementary mode analysis of large networks: the modes supported by a reduced network can capture the input-output modes of a metabolic module with significantly reduced computational effort. PMID:25547516

  18. Exploiting stoichiometric redundancies for computational efficiency and network reduction.

    PubMed

    Ingalls, Brian P; Bembenek, Eric

    2015-01-01

    Analysis of metabolic networks typically begins with construction of the stoichiometry matrix, which characterizes the network topology. This matrix provides, via the balance equation, a description of the potential steady-state flow distribution. This paper begins with the observation that the balance equation depends only on the structure of linear redundancies in the network, and so can be stated in a succinct manner, leading to computational efficiencies in steady-state analysis. This alternative description of steady-state behaviour is then used to provide a novel method for network reduction, which complements existing algorithms for describing intracellular networks in terms of input-output macro-reactions (to facilitate bioprocess optimization and control). Finally, it is demonstrated that this novel reduction method can be used to address elementary mode analysis of large networks: the modes supported by a reduced network can capture the input-output modes of a metabolic module with significantly reduced computational effort. PMID:25547516

  19. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  20. Improving computational efficiency of Monte Carlo simulations with variance reduction

    SciTech Connect

    Turner, A.

    2013-07-01

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)

  1. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  2. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  3. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  4. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  5. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  6. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-11-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis.

  7. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  8. Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes.

    PubMed

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  9. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  10. Friction drag reduction achievable by near-wall turbulence manipulation in spatially developing boundary-layer

    NASA Astrophysics Data System (ADS)

    Bannier, Amaury; Garnier, Eric; Sagaut, Pierre

    2016-03-01

    Various control strategies, such as active feedback control or riblets, end up restraining near-wall turbulence. An analytical study is conducted to estimate the drag-reduction achievable by such control in zero-pressure-gradient turbulent boundary-layers. Based on an idealized control which damps all fluctuations within a near-wall layer, a composite flow profile is established. It leads to explicit models for both the drag-reduction and the boundary-layer development rate. A skin-friction decomposition is applied and gives physical insights on the underlying phenomena. The control is found to alter the spatial development of the boundary-layer, resulting in detrimental impact on the skin-friction. However, the drag-reducing mechanism, attributed to the turbulence weakening, is found predominant and massive drag reductions remain achievable at high Reynolds number, although a minute part of the boundary-layer is manipulated. The model is finally assessed against Large Eddy Simulations of riblet-controlled flow.

  11. Furnace veneering systems of special design help achieve energy reduction goals at Armco

    SciTech Connect

    Caspersen, L.J.

    1982-12-01

    A steel company conserves energy by veneering reheat furnaces with a ceramic fiber modular system. The furnace lining system incorporates several grades of veneering materials (modules, cements, coatings) whose application is matched to the exact conditions in the furnace. Zoned linings utilize a combination of grades of alumina-silica modules to achieve thermally efficient yet durable performance. High temperature cements exhibit good tackiness, easy module penetration and high strength retention after firing. A protective coating is sprayed in a thin layer over the modules and can be easily reapplied at a later date should it be necessary. Benefits include greater thermal control (temperature responsiveness and heating uniformity), less over-firing, less fuel use, and less heat loss. Fuel efficiency is increased by 20 to 50%.

  12. Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes.

    PubMed

    Guo, Zhenguo; Cheng, Siwei; Cometto, Claudio; Anxolabéhère-Mallart, Elodie; Ng, Siu-Mui; Ko, Chi-Chiu; Liu, Guijian; Chen, Lingjing; Robert, Marc; Lau, Tai-Chu

    2016-08-01

    The design of highly efficient and selective photocatalytic systems for CO2 reduction that are based on nonexpensive materials is a great challenge for chemists. The photocatalytic reduction of CO2 by [Co(qpy)(OH2)2](2+) (1) (qpy = 2,2':6',2″:6″,2‴-quaterpyridine) and [Fe(qpy)(OH2)2](2+) (2) have been investigated. With Ru(bpy)3(2+) as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant in CH3CN/triethanolamine solution under visible-light excitation (blue light-emitting diode), a turnover number (TON) for CO as high as 2660 with 98% selectivity can be achieved for the cobalt catalyst. In the case of the iron catalyst, the TON was >3000 with up to 95% selectivity. More significantly, when Ru(bpy)3(2+) was replaced by the organic dye sensitizer purpurin, TONs of 790 and 1365 were achieved in N,N-dimethylformamide for the cobalt and iron catalysts, respectively. PMID:27443679

  13. Carbon reductions and health co-benefits from US residential energy efficiency measures

    NASA Astrophysics Data System (ADS)

    Levy, Jonathan I.; Woo, May K.; Penn, Stefani L.; Omary, Mohammad; Tambouret, Yann; Kim, Chloe S.; Arunachalam, Saravanan

    2016-03-01

    The United States (US) Clean Power Plan established state-specific carbon dioxide (CO2) emissions reduction goals for fossil fuel-fired electricity generating units (EGUs). States may achieve these goals through multiple mechanisms, including measures that can achieve equivalent CO2 reductions such as residential energy efficiency, which will have important co-benefits. Here, we develop state-resolution simulations of the economic, health, and climate benefits of increased residential insulation, considering EGUs and residential combustion. Increasing insulation to International Energy Conservation Code 2012 levels for all single-family homes in the US in 2013 would lead to annual reductions of 80 million tons of CO2 from EGUs, with annual co-benefits including 30 million tons of CO2 from residential combustion and 320 premature deaths associated with criteria pollutant emissions from both EGUs and residential combustion sources. Monetized climate and health co-benefits average 49 per ton of CO2 reduced from EGUs (range across states: 12-390). State-specific co-benefit estimates can inform development of optimal Clean Power Plan implementation strategies.

  14. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    SciTech Connect

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2004-07-31

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  15. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled �Krakow Clean Fossil Fuels and Energy Efficiency Program.� The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI�s cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI�s combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  16. Efficient experimental design for uncertainty reduction in gene regulatory networks

    PubMed Central

    2015-01-01

    Background An accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental design. Under such a strategy, the experiments with high priority are suggested to be conducted first. Results The authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. In this paper, we propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We then estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks. Conclusions Simulation results based on synthetic and real gene regulatory networks show that the proposed approximate method has close performance to that of the optimal method but at lower computational cost. The proposed approximate method also outperforms the random selection policy significantly. A MATLAB software implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/supplementary/roozbeh15a/. PMID:26423515

  17. Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling

    SciTech Connect

    Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

    2012-01-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

  18. Estimates of achievable potential for electricity efficiency improvements in U.S. residences

    SciTech Connect

    Brown, Richard

    1993-05-01

    This paper investigates the potential for public policies to achieve electricity efficiency improvements in US residences. This estimate of achievable potential builds upon a database of energy-efficient technologies developed for a previous study estimating the technical potential for electricity savings. The savings potential and cost for each efficiency measure in the database is modified to reflect the expected results of policies implemented between 1990 and 2010. Factors included in these modifications are: the market penetration of efficiency measures, the costs of administering policies, and adjustments to the technical potential measures to reflect the actual energy savings and cost experienced in the past. When all adjustment factors are considered, this study estimates that policies can achieve approximately 45% of the technical potential savings during the period from 1990 to 2010. Thus, policies can potentially avoid 18% of the annual frozen-efficiency baseline electricity consumption forecast for the year 2010. This study also investigates the uncertainty in best estimate of achievable potential by estimating two alternative scenarios -- a

  19. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  20. Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program

    SciTech Connect

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W.; DeYoung, L.; Hockert, J.

    1995-07-01

    This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

  1. Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors

    PubMed Central

    2012-01-01

    Background Techniques for reconstruction of biological networks which are based on perturbation experiments often predict direct interactions between nodes that do not exist. Transitive reduction removes such relations if they can be explained by an indirect path of influences. The existing algorithms for transitive reduction are sequential and might suffer from too long run times for large networks. They also exhibit the anomaly that some existing direct interactions are also removed. Results We develop efficient scalable parallel algorithms for transitive reduction on general purpose graphics processing units for both standard (unweighted) and weighted graphs. Edge weights are regarded as uncertainties of interactions. A direct interaction is removed only if there exists an indirect interaction path between the same nodes which is strictly more certain than the direct one. This is a refinement of the removal condition for the unweighted graphs and avoids to a great extent the erroneous elimination of direct edges. Conclusions Parallel implementations of these algorithms can achieve speed-ups of two orders of magnitude compared to their sequential counterparts. Our experiments show that: i) taking into account the edge weights improves the reconstruction quality compared to the unweighted case; ii) it is advantageous not to distinguish between positive and negative interactions since this lowers the complexity of the algorithms from NP-complete to polynomial without loss of quality. PMID:23110660

  2. Energy-efficient refrigeration and the reduction of chlorofluorocarbon use

    SciTech Connect

    Turiel, I.; Levine, M.D. )

    1989-01-01

    Two recent actions by the US Congress, passage of the National Appliance Energy Conservation Act (NAECA) and ratification of the Montreal Protocol on Substances that Deplete the Ozone Layer, have affected several large industries in the United States. Under NAECA, manufacturers of residential appliances must meet minimum energy-efficiency standards by specified dates. According to the Montreal Protocol, producers of chlorofluorocarbons (CFCs) must reduce the quantities of CFCs that they manufacture. CFCs have been identified as a cause of ozone depletion in the stratosphere. Since CFCs are used to improve the energy-efficiency of several appliance products, there is a potential conflict between the goals of reducing CFC use and improving energy-efficiency. In this article, the authors discuss the issues of CFC use, ozone depletions, energy-efficiency, and global climate change as they relate to residential refrigerators and freezers.

  3. Efficiency testing of a helicopter transmission planetary reduction stage

    NASA Technical Reports Server (NTRS)

    Handschuh, R. F.; Rohn, D. A.

    1989-01-01

    A parametric study of the efficiency of a 310-kW (420-hp) helicopter transmission planetary test section (four planets) was performed. The purpose was to determine the planetary contribution to the overall transmission power loss. Test parameters varied were oil flow rate, oil inlet temperature, lubricant type, shaft speed, and applied torque. The measured efficiency over all the test variables ranged from 99.44 to 99.75 percent. These experimental results were compared with other experimental and computational results.

  4. Efficiency testing of a helicopter transmission planetary reduction stage

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Rohn, Douglas A.

    1988-01-01

    A parametric study of the efficiency of a 310-kW (420-hp) helicopter transmission planetary test section (four planets) was performed. The purpose was to determine the planetary contribution to the overall transmission power loss. Test parameters varied were oil flow rate, oil inlet temperature, lubricant type, shaft speed, and applied torque. The measured efficiency over all the test variables ranged from 99.44 to 99.75 percent. These experimental results were compared with other experimental and computational results.

  5. Efficient and robust reforming catalyst in severe reaction conditions by nanoprecursor reduction in confined space.

    PubMed

    Dacquin, Jean-Philippe; Sellam, Djamila; Batiot-Dupeyrat, Catherine; Tougerti, Asma; Duprez, Daniel; Royer, Sébastien

    2014-02-01

    The in situ autocombustion synthesis route is shown to be an easy and efficient way to produce nanoscaled nickel oxide containing lanthanum-doped mesoporous silica composite. Through this approach, ~3 nm NiO particles homogeneously dispersed in the pores of silica are obtained, while lanthanum is observed to cover the surface of the silica pore wall. Subsequent reduction of such composite precursors under hydrogen generates Ni(0) nanoparticles of a comparable size. Control over the size and size distribution of metallic nanoparticles clearly improved catalytic activity in the methane dry reforming reaction. In addition, these composite materials exhibit excellent stability under severe reaction conditions. This was achieved through the presence of LaOx species, which reduced active-site carbon poisoning, and the confinement effect of the mesoporous support, which reduced metallic particle sintering. PMID:24323543

  6. Efficient reduction of pathogenic and spoilage microorganisms from apple cider by combining microfiltration with UV treatment.

    PubMed

    Zhao, Dongjun; Barrientos, Jessie Usaga; Wang, Qing; Markland, Sarah M; Churey, John J; Padilla-Zakour, Olga I; Worobo, Randy W; Kniel, Kalmia E; Moraru, Carmen I

    2015-04-01

    Thermal pasteurization can achieve the U. S. Food and Drug Administration-required 5-log reduction of pathogenic Escherichia coli O157:H7 and Cryptosporidium parvum in apple juice and cider, but it can also negatively affect the nutritional and organoleptic properties of the treated products. In addition, thermal pasteurization is only marginally effective against the acidophilic, thermophilic, and spore-forming bacteria Alicyclobacillus spp., which is known to cause off-flavors in juice products. In this study, the efficiency of a combined microfiltration (MF) and UV process as a nonthermal treatment for the reduction of pathogenic and nonpathogenic E. coli, C. parvum, and Alicyclobacillus acidoterrestris from apple cider was investigated. MF was used to physically remove suspended solids and microorganisms from apple cider, thus enhancing the effectiveness of UV and allowing a lower UV dose to be used. MF, with ceramic membranes (pore sizes, 0.8 and 1.4 μm), was performed at a temperature of 10 °C and a transmembrane pressure of 155 kPa. The subsequent UV treatment was conducted using at a low UV dose of 1.75 mJ/cm(2). The combined MF and UV achieved more than a 5-log reduction of E. coli, C. parvum, and A. acidoterrestris. MF with the 0.8-μm pore size performed better than the 1.4-μm pore size on removal of E. coli and A. acidoterrestris. The developed nonthermal hurdle treatment has the potential to significantly reduce pathogens, as well as spores, yeasts, molds, and protozoa in apple cider, and thus help juice processors improve the safety and quality of their products. PMID:25836396

  7. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate

    PubMed Central

    Chan Lee, Su; Some, Surajit; Wook Kim, Sung; Jun Kim, Sun; Seo, Jungmok; Lee, Jooho; Lee, Taeyoon; Ahn, Jong-Hyun; Choi, Heon-Jin; Chan Jun, Seong

    2015-01-01

    Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates. PMID:26194107

  8. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate.

    PubMed

    Lee, Su Chan; Some, Surajit; Kim, Sung Wook; Kim, Sun Jun; Seo, Jungmok; Lee, Jooho; Lee, Taeyoon; Ahn, Jong-Hyun; Choi, Heon-Jin; Jun, Seong Chan

    2015-01-01

    Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates. PMID:26194107

  9. Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction - a phantom study.

    PubMed

    Dodge, Cristina T; Tamm, Eric P; Cody, Dianna D; Liu, Xinming; Jensen, Corey T; Wei, Wei; Kundra, Vikas; Rong, John

    2016-01-01

    The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative recon-struction (ASiR), and model-based iterative reconstruction (MBIR), over a range of typical to low-dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat-equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back-projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low-contrast detectability were evaluated from noise and contrast-to-noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were con-firmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1mGy. MBIR reduced noise levels five-fold and increased CNR by a factor of five compared to FBP below 6mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high-contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR

  10. On the Achievable Efficiency-Fairness Tradeoff in Utility-Optimal MAC Protocols

    NASA Astrophysics Data System (ADS)

    Lee, Jang-Won; Chiang, Mung; Calderbank, A. Robert

    We use the network utility maximization (NUM) framework to create an efficient and fair medium access control (MAC) protocol for wireless networks. By adjusting the parameters in the utility objective functions of NUM problems, we control the tradeoff between efficiency and fairness of radio resource allocation through a rigorous and systematic design. In this paper, we propose a scheduling-based MAC protocol. Since it provides an upper-bound on the achievable performance, it establishes the optimality benchmarks for comparison with other algorithms in related work.

  11. Device engineering of perovskite solar cells to achieve near ideal efficiency

    SciTech Connect

    Agarwal, Sumanshu E-mail: prnair@ee.iitb.ac.in; Nair, Pradeep R. E-mail: prnair@ee.iitb.ac.in

    2015-09-21

    Despite the exciting recent research on perovskite based solar cells, the design space for further optimization and the practical limits of efficiency are not well known in the community. In this letter, we address these aspects through theoretical calculations and detailed numerical simulations. Here, we first provide the detailed balance limit efficiency in the presence of radiative and Auger recombination. Then, using coupled optical and carrier transport simulations, we identify the physical mechanisms that contribute towards bias dependent carrier collection, and hence low fill factors of current perovskite based solar cells. Our detailed simulations indicate that it is indeed possible to achieve efficiencies and fill factors greater than 25% and 85%, respectively, with near ideal super-position characteristics even in the presence of Auger recombination.

  12. Multifunctional Low Pressure Turbine for Core Noise Reduction, Improved Efficiency, and NOx Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Shyam, Vikram; Rigby, David; Acosta, Waldo

    2013-01-01

    Determining the feasibility of the induced synthetic jet is key, and is still TBD. center dot Available LPT vane volume is sufficient for tens of resonators per span-wise hole spacing, so physically feasible. center dot Determination of acoustic attenuation requires accurate model of vane, resonator locations, flow field and incident waves. (TBD) center dot Determination of NOx reduction is also TBD.

  13. ACHIEVEMENTS IN SOURCE REDUCTION AND RECYCLING FOR TEN INDUSTRIES IN THE UNITED STATES

    EPA Science Inventory

    This report produces 20 short write-ups of examples of recent industry initiatives to implement source reduction and recycling. hese examples are taken from 10 different industries. ach write-up contains a description of the company, an overview of the source reduction/recycling ...

  14. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    SciTech Connect

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  15. Radiation Dose Reduction Efficiency of Buildings after the Accident at the Fukushima Daiichi Nuclear Power Station

    PubMed Central

    Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji

    2014-01-01

    Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55±0.04, 0.15±0.02, and 0.19±0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites. PMID:24999992

  16. Achieving palliative care research efficiency through defining and benchmarking performance metrics

    PubMed Central

    Lodato, Jordan E.; Aziz, Noreen; Bennett, Rachael E.; Abernethy, Amy P.; Kutner, Jean S.

    2014-01-01

    Purpose of Review Research efficiency is gaining increasing attention in the research enterprise, including palliative care research. The importance of generating meaningful findings and translating these scientific advances to improved patient care creates urgency in the field to address well-documented system inefficiencies. The Palliative Care Research Cooperative Group (PCRC) provides useful examples for ensuring research efficiency in palliative care. Recent Findings Literature on maximizing research efficiency focuses on the importance of clearly delineated process maps, working instructions, and standard operating procedures (SOPs) in creating synchronicity in expectations across research sites. Examples from the PCRC support these objectives and suggest that early creation and employment of performance metrics aligned with these processes are essential to generate clear expectations and identify benchmarks. These benchmarks are critical in effective monitoring and ultimately the generation of high quality findings that are translatable to clinical populations. Prioritization of measurable goals and tasks to ensure that activities align with programmatic aims is critical. Summary Examples from the PCRC affirm and expand the existing literature on research efficiency, providing a palliative care focus. Operating procedures, performance metrics, prioritization, and monitoring for success should all be informed by and inform the process map to achieve maximum research efficiency. PMID:23080309

  17. Dropout Reduction through Employment Achievement and Motivation (Project DREAM). 1990-91 Final Evaluation Profile. OREA Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.

    An evaluation was done of New York City Public Schools' Dropout Reduction through Employment, Achievement, and Motivation Program (Project DREAM), which served poor Spanish-speaking immigrant high school students. The program operated at South Bronx High School serving 444 mostly immigrant students of limited English proficiency. The program…

  18. High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments.

    PubMed

    García-Solares, Selene Montserrat; Ordaz, Alberto; Monroy-Hermosillo, Oscar; Jan-Roblero, Janet; Guerrero-Barajas, Claudia

    2014-12-01

    Sulfidogenesis in reactors is mostly achieved through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. In this work, an upflow anaerobic sludge blanket (UASB) reactor operated under sulfate-reducing conditions was inoculated with hydrothermal vent sediments to carry out sulfate reduction using volatile fatty acids (VFAs) as substrate and chemical oxygen demand (COD)/SO4 (-2) ratios between 0.49 and 0.64. After a short period of adaptation, a robust non-granular sludge was capable of achieving high sulfate reduction efficiencies while avoiding competence with methanogens and toxicity to the microorganisms due to high sulfide concentration. The highest sulfide concentration (2,552 mg/L) was obtained with acetate/butyrate, and sulfate reduction efficiencies were up to 98 %. A mixture of acetate/butyrate, which produced a higher yielding of HS(-), was preferred over acetate/propionate/butyrate since the consumption of COD was minimized during the process. Sludge was analyzed, and some of the microorganisms identified in the sludge belong to the genera Desulfobacterium, Marinobacter, and Clostridium. The tolerance of the sludge to sulfide may be attributed to the syntrophy among these microorganisms, some of which have been reported to tolerate high concentrations of sulfide. To the best of our knowledge, this is the first report on the analysis of the direct utilization of hydrothermal vent sediments as an alternate source of sludge for sulfate reduction under high sulfide concentrations. PMID:25234397

  19. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction

    NASA Astrophysics Data System (ADS)

    Pei, Dan-Ni; Gong, Li; Zhang, Ai-Yong; Zhang, Xing; Chen, Jie-Jie; Mu, Yang; Yu, Han-Qing

    2015-10-01

    The cathodic material plays an essential role in oxygen reduction reaction for energy conversion and storage systems. Titanium dioxide, as a semiconductor material, is usually not recognized as an efficient oxygen reduction electrocatalyst owning to its low conductivity and poor reactivity. Here we demonstrate that nano-structured titanium dioxide, self-doped by oxygen vacancies and selectively exposed with the high-energy {001} facets, exhibits a surprisingly competitive oxygen reduction activity, excellent durability and superior tolerance to methanol. Combining the electrochemical tests with density-functional calculations, we elucidate the defect-centred oxygen reduction reaction mechanism for the superiority of the reductive {001}-TiO2-x nanocrystals. Our findings may provide an opportunity to develop a simple, efficient, cost-effective and promising catalyst for oxygen reduction reaction in energy conversion and storage technologies.

  20. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction

    PubMed Central

    Pei, Dan-Ni; Gong, Li; Zhang, Ai-Yong; Zhang, Xing; Chen, Jie-Jie; Mu, Yang; Yu, Han-Qing

    2015-01-01

    The cathodic material plays an essential role in oxygen reduction reaction for energy conversion and storage systems. Titanium dioxide, as a semiconductor material, is usually not recognized as an efficient oxygen reduction electrocatalyst owning to its low conductivity and poor reactivity. Here we demonstrate that nano-structured titanium dioxide, self-doped by oxygen vacancies and selectively exposed with the high-energy {001} facets, exhibits a surprisingly competitive oxygen reduction activity, excellent durability and superior tolerance to methanol. Combining the electrochemical tests with density-functional calculations, we elucidate the defect-centred oxygen reduction reaction mechanism for the superiority of the reductive {001}-TiO2−x nanocrystals. Our findings may provide an opportunity to develop a simple, efficient, cost-effective and promising catalyst for oxygen reduction reaction in energy conversion and storage technologies. PMID:26493365

  1. Achievement-Relevant Personality: Relations with the Big Five and Validation of an Efficient Instrument.

    PubMed

    Briley, Daniel A; Domiteaux, Matthew; Tucker-Drob, Elliot M

    2014-05-01

    Many achievement-relevant personality measures (APMs) have been developed, but the interrelations among APMs or associations with the broader personality landscape are not well-known. In Study 1, 214 participants were measured on 36 APMs and a measure of the Big Five. Factor analytic results supported the convergent and discriminant validity of five latent dimensions: performance, mastery, self-doubt, effort, and intellectual investment. Conscientiousness, neuroticism, and openness to experience had the most consistent associations with APMs. We constructed a more efficient scale- the Multidimensional Achievement-Relevant Personality Scale (MAPS). In Study 2, we replicated the factor structure and external correlates of the MAPS in a sample of 359 individuals. Finally, we validated the MAPS with four indicators of academic performance and demonstrated incremental validity. PMID:24839374

  2. Achievement-Relevant Personality: Relations with the Big Five and Validation of an Efficient Instrument

    PubMed Central

    Briley, Daniel A.; Domiteaux, Matthew; Tucker-Drob, Elliot M.

    2014-01-01

    Many achievement-relevant personality measures (APMs) have been developed, but the interrelations among APMs or associations with the broader personality landscape are not well-known. In Study 1, 214 participants were measured on 36 APMs and a measure of the Big Five. Factor analytic results supported the convergent and discriminant validity of five latent dimensions: performance, mastery, self-doubt, effort, and intellectual investment. Conscientiousness, neuroticism, and openness to experience had the most consistent associations with APMs. We constructed a more efficient scale– the Multidimensional Achievement-Relevant Personality Scale (MAPS). In Study 2, we replicated the factor structure and external correlates of the MAPS in a sample of 359 individuals. Finally, we validated the MAPS with four indicators of academic performance and demonstrated incremental validity. PMID:24839374

  3. Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification

    NASA Astrophysics Data System (ADS)

    Li, Ping; Wei, Yi; Zhao, Zengchao; Tan, Xin; Bian, Jiming; Wang, Yuxuan; Lu, Chunxi; Liu, Aimin

    2015-12-01

    Traditional black silicon solar cells show relatively low efficiencies due to the high surface recombination occurring at the front surfaces. In this paper, we present a surface modification process to suppress surface recombination and fabricate highly efficient industrial black silicon solar cells. The Ag-nanoparticle-assisted etching is applied to realize front surface nanostructures on silicon wafers in order to reduce the surface reflectance. Through a further tetramethylammonium hydroxide (TMAH) treatment, the carrier recombination at and near the surface is greatly suppressed, due to a lower surface dopant concentration after the surface modification. This modified surface presents a low reflectivity in a range of 350-1100 nm. Large-area solar cells with an average conversion efficiency of 19.03% are achieved by using the TMAH treatment of 30 s. This efficiency is 0.18% higher than that of standard silicon solar cells with pyramidal surfaces, and also a remarkable improvement compared with black silicon solar cells without TMAH modifications.

  4. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass

    SciTech Connect

    Okada, Takashi Yonezawa, Susumu

    2013-08-15

    Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.

  5. Perceived social loafing and anticipated effort reduction among young football (soccer) players: an achievement goal perspective.

    PubMed

    Høigaard, Rune; Ommundsen, Yngvar

    2007-06-01

    This study investigated the relationship between motivational climates, personal achievement goals, and three different aspects of social loafing in football (soccer). 170 male competitive football players completed questionnaires assessing perceived motivational climate, achievement goal, and measures of perceived social loafing (anticipation of lower effort amongst their teammates and themselves). The results indicated a marginal but significant positive relationship between an ego-oriented achievement goal and perceived social loafing. In addition, a mastery climate was negatively associated with perceived social loafing and anticipation of lower effort of team members, particularly for athletes who also strongly endorsed a task-oriented achievement goal. A performance climate, in contrast, related positively with these two aspects of social loafing. A mastery climate also related negatively to the third aspect of social loafing, i.e., players' readiness to reduce their own effort in response to their perception of social loafing among their teammates. PMID:17688105

  6. Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector.

    PubMed

    Melaina, M; Webster, K

    2011-05-01

    Recent U.S. climate change policy developments include aggressive proposals to reduce greenhouse gas emissions, including cap-and-trade legislation with a goal of an 83% reduction below 2005 levels by 2050. This study examines behavioral and technological changes required to achieve this reduction within the light-duty vehicle (LDV) sector. Under this "fair share" sectoral assumption, aggressive near-term actions are necessary in three areas: vehicle miles traveled (VMT), vehicle fuel economy (FE), and fuel carbon intensity (FCI). Two generic scenarios demonstrate the important role of FCI in meeting the 2050 goal. The first scenario allows deep reductions in FCI to compensate for relatively modest FE improvements and VMT reductions. The second scenario assumes optimistic improvements in FE, relatively large reductions in VMT and less aggressive FCI reductions. Each generic scenario is expanded into three illustrative scenarios to explore the theoretical implications of meeting the 2050 goal by relying exclusively on biofuels and hybrid vehicles, biofuels and plug-in hybrid vehicles, or hydrogen fuel cell electric vehicles. These scenarios inform a discussion of resource limitations, technology development and deployment challenges, and policy goals required to meet the 2050 GHG goal for LDVs. PMID:21456550

  7. Fan noise reduction achieved by removing tip flow irregularities behind the rotor - forward arc test configurations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Mackinnon, M. J.

    1984-01-01

    The noise source caused by the interaction of the rotor tip flow irregularities (vortices and velocity defects) with the downstream stator vanes was studied. Fan flow was removed behind a 0.508 meter (20 in.) diameter model turbofan through an outer wall slot between the rotor and stator. Noise measurements were made with far-field microphones positioned in an arc about the fan inlet and with a pressure transducer in the duct behind the stator. Little tone noise reduction was observed in the forward arc during flow removal; possibly because the rotor-stator interaction noise did not propagate upstream through the rotor. Noise reductions were maded in the duct behind the stator and the largest decrease occurred with the first increment of flow removal. This result indicates that the rotor tip flow irregularity-stator interaction is as important a noise producing mechanism as the normally considered rotor wake-stator interaction.

  8. What happens to the large eddies when net drag reduction is achieved by outer flow manipulators?

    NASA Technical Reports Server (NTRS)

    Falco, R. E.; Rashidnia, N.

    1987-01-01

    The tandem-arranged parallel plate manipulator (TAPPM) presently used to generate a flow with net drag reduction is conditionally sampled and found to exhibit significant changes of the boundary layer's large-scale motions at 20 delta(0), where delta(0) is the boundary layer thickness at the upstream plate of the TAPPM. Flow fields in the 'valleys' are equally affected. Both turbulent and irrotational flows then reestablish themselves by 50 delta(0). Flow visualization indicates that the TAPPM wake is very coherent at 20 delta(0), and has not yet spread into the wall region, while large scale motions and the ambient response flow continue to exhibit dynamic changes. This indicates that the shielding effect of the TAPPM's wake prolongs suppression of large-scale motions, thereby reducing skin friction over a sufficiently long extent of the boundary layer to overcome device drag and yield net drag reductions.

  9. Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Shyam, Vikram; Rigby, David L.

    2013-01-01

    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.

  10. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    NASA Astrophysics Data System (ADS)

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-07-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials.

  11. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    PubMed Central

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-01-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials. PMID:26130371

  12. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction.

    PubMed

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-01-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co(2+) chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials. PMID:26130371

  13. Calibration of STUD+ parameters to achieve optimally efficient broadband adiabatic decoupling in a single transient

    PubMed

    Bendall; Skinner

    1998-10-01

    for a single sech/tanh pulse. Residual splitting of the centerband, normally associated with incomplete or inefficient decoupling, is not seen in sech/tanh decoupling and therefore cannot be used as a measure of adiabatic decoupling efficiency. The calibrated experimental performance levels achieved in this study are within 20% of theoretical performance levels derived previously for ideal sech/tanh decoupling at high power, indicating a small scope for further improvement at practical RF power levels. The optimization procedures employed here will be generally applicable to any good combination of adiabatic inversion pulse and phase cycle. Copyright 1998 Academic Press. PMID:9761708

  14. How to Achieve Transparency in Public-Private Partnerships Engaged in Hunger and Malnutrition Reduction.

    PubMed

    Eggersdorfer, Manfred; Bird, Julia K

    2016-01-01

    Multi-stakeholder partnerships are important facilitators of improving nutrition in developing countries to achieve the United Nations' Sustainable Development Goals. Often, the role of industry is challenged and questions are raised as to the ethics of involving for-profit companies in humanitarian projects. The Second International Conference on Nutrition placed great emphasis on the role of the private sector, including industry, in multi-stakeholder partnerships to reduce hunger and malnutrition. Governments have to establish regulatory frameworks and institutions to guarantee fair competition and invest in infrastructure that makes investments for private companies attractive, eventually leading to economic growth. Civil society organizations can contribute by delivering nutrition interventions and behavioral change-related communication to consumers, providing capacity, and holding governments and private sector organizations accountable. Industry provides technical support, innovation, and access to markets and the supply chain. The greatest progress and impact can be achieved if all stakeholders cooperate in multi-stakeholder partnerships aimed at improving nutrition, thereby strengthening local economies and reducing poverty and inequality. Successful examples of public-private partnerships exist, as well as examples in which these partnerships did not achieve mutually agreed objectives. The key requirements for productive alliances between industry and civil society organizations are the establishment of rules of engagement, transparency and mutual accountability. The Global Social Observatory performed a consultation on conflicts of interest related to the Scaling Up Nutrition movement and provided recommendations to prevent, identify, manage and monitor potential conflicts of interest. Multi-stakeholder partnerships can be successful models in improving nutrition if they meet societal demand with transparent decision-making and execution. Solutions to

  15. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of

  16. Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)

    SciTech Connect

    Sullivan, Greg; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2010-08-04

    This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industry experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.

  17. Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range

    NASA Technical Reports Server (NTRS)

    Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.

  18. High resolution anoscopy may be useful in achieving reductions in anal cancer local disease failure rates.

    PubMed

    Goon, P; Morrison, V; Fearnhead, N; Davies, J; Wilson, C; Jephcott, C; Sterling, J; Crawford, R

    2015-05-01

    Anal cancer is uncommon, with an incidence rate of 0.5-1.0 per 100,000 of the population but incidence rates have been steadily increasing over the last 3 decades. Biological and epidemiological evidence have been mounting and demonstrate that anal cancer has many similarities to cervical cancer, especially in regard to its aetiology. High-resolution anoscopy (HRA) of the anal region – analogous to colposcopy of the cervix, is a technique that is not well-known in the medical and surgical fraternity. Evidence to support the use of HRA for detection and treatment in the surveillance of AIN exists and strongly suggests that it is beneficial, resulting in reduced rates of cancer progression. Pilot data from our study showed a local disease failure rate of 1.73 per 1000 patient-months compared with a published rate of 9.89 per 1000 patient-months. This demonstrates a 5.72-fold reduction in local disease failure rates of patients with T1-T3 tumours; the data therefore suggests that use of HRA for detection and treatment in surveillance of anal cancer patients will help prevent local regional relapse at the anal site. There is an urgent need for a large, randomised controlled clinical trial to definitively test this hypothesis. PMID:24373061

  19. Evaluation of progress in achieving TMDL mandated nitrogen reductions in the Neuse River basin, North Carolina.

    PubMed

    Lebo, Martin E; Paerl, Hans W; Peierls, Benjamin L

    2012-01-01

    Management efforts to control excess algal growth in the Neuse River and Estuary, North Carolina began in the 1980s, with an initial focus on phosphorus (P) input reduction. However, continued water quality problems in the 1990s led to development of a Total Maximum Daily Load (TMDL) for nitrogen (N) in 1999 to improve conditions in N-sensitive estuarine waters. Evaluation of the effectiveness of management actions implemented in the Neuse River basin is a challenging endeavor due to natural variations in N export associated with climate. A simplified approach is presented that allows evaluation of trends in flow-normalized nutrient loading to provide feedback on effectiveness of implemented actions to reduce N loading to estuarine waters. The approach is applied to five watershed locations, including the headwaters of the Neuse Estuary. Decreases in nitrate + nitrite (NO(3)-N) concentrations occurred throughout the basin and were largest just downstream of the Raleigh metropolitan area. Conversely, concentrations of total Kjeldahl N (TKN) increased at many stations, particularly under high flow conditions. This indicates a relative increase in organic N (Org-N) inputs since the mid-1990s. Overall, patterns in different N fractions at watershed stations indicate both partial success in reducing N inputs and ongoing challenges for N loading under high flow conditions. In downstream waters, NO(3)-N concentrations decreased concurrent with TMDL implementation in the upper portion of the estuary but not in the middle and lower reaches. The lack of progress in the middle and lower reaches of the estuary may, at least in part, be affected by remineralization of settled particle-bound N deposited under high river flows. PMID:22037617

  20. [5 years of "concerted action dose reduction in CT" -- what has been achieved and what remains to be done?].

    PubMed

    Nagel, H D; Blobel, J; Brix, G; Ewen, K; Galanski, M; Höfs, P; Loose, R; Prokop, M; Schneider, K; Stamm, G; Stender, H-S; Süss, C; Türkay, S; Vogel, H; Wucherer, M

    2004-11-01

    In May 1998, the German "Concerted Action Dose Reduction in CT" was founded by all parties involved in CT. Its intention was to achieve a significant reduction of the radiation exposure caused by CT, a matter that has increasingly been considered a major challenge since the early nineties. As a result of a number of joint efforts, the essential preconditions have been established by now. The fifth anniversary of the Concerted Action gave rise for both retrospection and outlook on the tasks that have already been accomplished and those that still need to be done. For this purpose, a one-day symposium took place in Berlin on November 4, 2003. The contents of a total of 18 contributions will be outlined here in brief. PMID:15497088

  1. Reduction of ammonia emission by shallow slurry injection: injection efficiency and additional energy demand.

    PubMed

    Hansen, Martin N; Sommer, Sven G; Madsen, Niels P

    2003-01-01

    Ammonia (NH3) emission from livestock production causes undesirable environmental effects and a loss of plant-available nitrogen. Much atmospheric NH3 is lost from livestock manure applied in the field. The NH3 emission may be reduced by slurry injection, but slurry injection in general, and especially on grassland, increases the energy demand and places heavy demands on the slurry injection techniques used. The reduction in NH3 emission, injection efficiency, and energy demand of six different shallow slurry-injection techniques was examined. The NH3 emission from cattle slurry applied to grassland was reduced by all the injectors tested in the study, but there were major differences in the NH3 reduction potential of the different types of injectors. Compared with the trailing hose spreading technique, the NH3 loss was reduced by 75% when cattle slurry was injected using the most efficient slurry injection technique, and by 20% when incorporated by the least efficient injection technique. The reduction in NH3 emission was correlated with injection depth and the volume of the slot created. The additional energy demand for reducing ammonia emissions by slurry injection was approximately 13 000 kJ ha(-1) for a 20% reduction and 34 000 kJ ha(-1) for a 75% reduction. The additional energy demand corresponds to additional emissions of, respectively, 5.6 and 14.5 kg CO2 per ha injected. PMID:12809311

  2. GUIDELINES FOR INDUSTRIAL BOILER PERFORMANCE IMPROVEMENT. (BOILER ADJUSTMENT PROCEDURES TO MINIMIZE AIR POLLUTION AND TO ACHIEVE EFFICIENT USE OF FUEL)

    EPA Science Inventory

    Recommended procedures for improving industrial boiler performance to minimize air pollution and to achieve efficient use of fuel are given. It is intended for use by industrial boiler operators to perform an efficiency and emissions tune-up on boilers firing gas, oil, or coal. P...

  3. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  4. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential.

    PubMed

    Passard, Guillaume; Ullman, Andrew M; Brodsky, Casey N; Nocera, Daniel G

    2016-03-01

    The selective four electron, four proton, electrochemical reduction of O2 to H2O in the presence of a strong acid (TFA) is catalyzed at a dicobalt center. The faradaic efficiency of the oxygen reduction reaction (ORR) is furnished from a systematic electrochemical study by using rotating ring disk electrode (RRDE) methods over a wide potential range. We derive a thermodynamic cycle that gives access to the standard potential of O2 reduction to H2O in organic solvents, taking into account the presence of an exogenous proton donor. The difference in ORR selectivity for H2O vs H2O2 depends on the thermodynamic standard potential as dictated by the pKa of the proton donor. The model is general and rationalizes the faradaic efficiencies reported for many ORR catalytic systems. PMID:26876226

  5. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  6. The efficiency of toxic chromate reduction by a conducting polymer (polypyrrole): Influence of electropolymerization conditions

    SciTech Connect

    Rodriguez, F.J.; Gutierrez, S.; Ibanez, J.G.; Bravo, J.L.; Batina, N.

    2000-05-15

    Studies of pollution due to hexavalent chromium are important because it represents a risk to human health and the environment. Hexavalent chromium is a toxic substance and has been found to be carcinogenic. Fortunately, its reduced form, Cr(III), is much less toxic. This paper discusses the remediation Cr(VI) by its reduction in aqueous media by polypyrrole (PPy)-coated reticulated citreous carbon substrates (RVC). The study is focused on the effect of PPy-film electropolymerization conditions and its efficiency toward the reduction of toxic chromate. The authors have studied parameters such as the influence of the polymerization electrolyte, the scan rate, the potential limits, and the polymerization cycles concerning the reduction capability of the film. Key results obtained in the present study show that in the presence of different anions during formation of the PPy film, the efficiency of chromate reduction depends on the nature of the anion. They found that the films prepared and treated in the presence of Kl performed much better and lasted much longer than those prepared in the presence of KF. Films synthesized at lower scan rates, and higher positive potential limits showed higher chromate reduction efficiencies. Some of their results show reduction of ca. 100% of Cr(VI) from a 10 mg/L solution, even after using the film in 20 contacts with the chromium solution, with films synthesized in KBr and Kl electrolytes, at a scan rate of 20 mV/s, between {minus}0.3 and 0.9 V and 40 polymerization cycles. Their study shows that remediation of Cr(VI) by reduction with PPy-coated substrates could be developed into an effective method toward the solution of this problem.

  7. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  8. A Nearest Neighbor Classifier Employing Critical Boundary Vectors for Efficient On-Chip Template Reduction.

    PubMed

    Xia, Wenjun; Mita, Yoshio; Shibata, Tadashi

    2016-05-01

    Aiming at efficient data condensation and improving accuracy, this paper presents a hardware-friendly template reduction (TR) method for the nearest neighbor (NN) classifiers by introducing the concept of critical boundary vectors. A hardware system is also implemented to demonstrate the feasibility of using an field-programmable gate array (FPGA) to accelerate the proposed method. Initially, k -means centers are used as substitutes for the entire template set. Then, to enhance the classification performance, critical boundary vectors are selected by a novel learning algorithm, which is completed within a single iteration. Moreover, to remove noisy boundary vectors that can mislead the classification in a generalized manner, a global categorization scheme has been explored and applied to the algorithm. The global characterization automatically categorizes each classification problem and rapidly selects the boundary vectors according to the nature of the problem. Finally, only critical boundary vectors and k -means centers are used as the new template set for classification. Experimental results for 24 data sets show that the proposed algorithm can effectively reduce the number of template vectors for classification with a high learning speed. At the same time, it improves the accuracy by an average of 2.17% compared with the traditional NN classifiers and also shows greater accuracy than seven other TR methods. We have shown the feasibility of using a proof-of-concept FPGA system of 256 64-D vectors to accelerate the proposed method on hardware. At a 50-MHz clock frequency, the proposed system achieves a 3.86 times higher learning speed than on a 3.4-GHz PC, while consuming only 1% of the power of that used by the PC. PMID:26080388

  9. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhou, G. Tong; Qian, Hua

    2007-12-01

    Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM) and code-division multiple access (CDMA), have high peak-to-average power ratios (PARs). A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs), but also leads to low transmission power efficiency. Selected mapping (SLM) and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  10. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.

    PubMed

    Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G

    2016-06-01

    Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems. PMID:27257255

  11. Efficient variance reduction methods for Asian option pricing under exponential jump-diffusion models

    NASA Astrophysics Data System (ADS)

    Lai, Yongzeng; Zeng, Yan; Xi, Xiaojing

    2011-11-01

    In this paper, we discuss control variate methods for Asian option pricing under exponential jump diffusion model for the underlying asset prices. Numerical results show that the new control variate XNCV is much more efficient than the classical control variate XCCV when used in pricing Asian options. For example, the variance reduction ratios by XCCV are no more than 120 whereas those by XNCV vary from 15797 to 49171 on average over sample sizes 1024, 2048, 4096, 8192, 16384 and 32768.

  12. DMMFast: a complexity reduction scheme for three-dimensional high-efficiency video coding intraframe depth map coding

    NASA Astrophysics Data System (ADS)

    Sanchez, Gustavo; Saldanha, Mário; Balota, Gabriel; Zatt, Bruno; Porto, Marcelo; Agostini, Luciano

    2015-03-01

    We present a complexity reduction scheme for the depth map intraprediction of three-dimensional high-efficiency video coding (3-D-HEVC). The 3-D-HEVC introduces a new set of specific tools for depth map coding, inserting additional complexity to intraprediction, which results in new challenges in terms of complexity reduction. Therefore, we present the DMMFast (depth modeling modes fast prediction), a scheme composed of two new algorithms: the simplified edge detector (SED) and the gradient-based mode one filter (GMOF). The SED anticipates the blocks that are likely to be better predicted by the traditional intramodes, avoiding the evaluation of DMMs. The GMOF applies a gradient-based filter in the borders of the block and predicts the best positions to evaluate the DMM 1. Software evaluations showed that DMMFast is capable of achieving a time saving of 11.9% on depth map intraprediction, considering the random access mode, without affecting the quality of the synthesized views. Considering the all intraconfigurations, the proposed scheme is capable of achieving, on average, a time saving of 35% considering the whole encoder. Subjective quality assessment was also performed, showing that the proposed technique inserts minimal quality losses in the final encoded video.

  13. Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol.

    PubMed

    Sun, Xiaofu; Zhu, Qinggong; Kang, Xinchen; Liu, Huizhen; Qian, Qingli; Zhang, Zhaofu; Han, Buxing

    2016-06-01

    Methanol is a very useful platform molecule and liquid fuel. Electrocatalytic reduction of CO2 to methanol is a promising route, which currently suffers from low efficiency and poor selectivity. Herein we report the first work to use a Mo-Bi bimetallic chalcogenide (BMC) as an electrocatalyst for CO2 reduction. By using the Mo-Bi BMC on carbon paper as the electrode and 1-butyl-3-methylimidazolium tetrafluoroborate in MeCN as the electrolyte, the Faradaic efficiency of methanol could reach 71.2 % with a current density of 12.1 mA cm(-2) , which is much higher than the best result reported to date. The superior performance of the electrode resulted from the excellent synergistic effect of Mo and Bi for producing methanol. The reaction mechanism was proposed and the reason for the synergistic effect of Mo and Bi was discussed on the basis of some control experiments. This work opens a way to produce methanol efficiently by electrochemical reduction of CO2 . PMID:27098284

  14. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, Larry

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit (PARR) team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  15. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, L.

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  16. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women

    PubMed Central

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0°C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  17. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women.

    PubMed

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo; Nose, Hiroshi

    2016-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0 °C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  18. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila

    PubMed Central

    1982-01-01

    In the transient receptor potential (trp) mutant of Drosophila, the receptor potential appears almost normal in response to a flash but quickly decays to baseline during prolonged illumination. Photometric and early receptor potential measurements of the pigment suggest that the pigment is normal and that the decay of the trp response during illumination does not arise from a reduction in the available photopigment molecules. However, there is reduction in pigment concentration with age. Light adaptation cannot account for the decay of the trp response during illumination: in normal Drosophila a dim background light shortens the latency and rise time of the response and also shifts the intensity response function (V-log I curve) to higher levels of light intensity with relatively little reduction in the maximal amplitude (Vmax) of response. In the trp mutant, a dim background light or short, strong adapting light paradoxically lengthens the latency and rise time of the response and substantially reduces Vmax without a pronounced shift of the V-log I curve along the I axis. The effect of adapting light on the latency and V-log I curve seen in trp are associated with a reduction in effective stimulus intensity (reduction in excitation efficiency) rather than with light adaptation. Removing extracellular Ca+2 reduces light adaptation in normal Drosophila, as evidenced by the appearance of "square" responses to strong illumination. In the trp mutant, removing extracellular Ca+2 does not prevent the decay of the response during illumination. PMID:7077289

  19. Historical perspective of barriers to achieving high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1985-01-01

    Early silicon solar cells were made of metallurgical-grade silicon with very low efficiency. The single-crystal silicon introduced in the mid-50's increased the efficiency to the 5% to 10% region. Throughout the 1960s the technology of the 2 x 2 cm or 2 x 4 cm space solar cell with 10% efficiency was established. In the early 1970s work related to the violet cell upset the status quo and space solar cells and cells in general became more efficient. The rest of the decade became characterized by establishing a terrestrial photovoltaic technology to support the development of a new industry. Costs per watt became the dominant consideration and frequently the efficiency was compromised. The introduction of materials and other forms of silicon dropped the efficiency and it is now a state of mine that accomplishing 10% efficiency with some alternative combination is regarded as success. Silicon solar cells are capable of delivering efficiences much greater than 10%.

  20. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Wang, J.; Brune, D. C.; Blankenship, R. E.

    1990-01-01

    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  1. Rapid Automated Treatment Planning Process to Select Breast Cancer Patients for Active Breathing Control to Achieve Cardiac Dose Reduction

    SciTech Connect

    Wang Wei; Purdie, Thomas G.; Rahman, Mohammad; Marshall, Andrea; Liu Feifei; Fyles, Anthony

    2012-01-01

    Purpose: To evaluate a rapid automated treatment planning process for the selection of patients with left-sided breast cancer for a moderate deep inspiration breath-hold (mDIBH) technique using active breathing control (ABC); and to determine the dose reduction to the left anterior descending coronary artery (LAD) and the heart using mDIBH. Method and Materials: Treatment plans were generated using an automated method for patients undergoing left-sided breast radiotherapy (n = 53) with two-field tangential intensity-modulated radiotherapy. All patients with unfavorable cardiac anatomy, defined as having >10 cm{sup 3} of the heart receiving 50% of the prescribed dose (V{sub 50}) on the free-breathing automated treatment plan, underwent repeat scanning on a protocol using a mDIBH technique and ABC. The doses to the LAD and heart were compared between the free-breathing and mDIBH plans. Results: The automated planning process required approximately 9 min to generate a breast intensity-modulated radiotherapy plan. Using the dose-volume criteria, 20 of the 53 patients were selected for ABC. Significant differences were found between the free-breathing and mDIBH plans for the heart V{sub 50} (29.9 vs. 3.7 cm{sup 3}), mean heart dose (317 vs. 132 cGy), mean LAD dose (2,047 vs. 594 cGy), and maximal dose to 0.2 cm{sup 3} of the LAD (4,155 vs. 1,507 cGy, all p <.001). Of the 17 patients who had a breath-hold threshold of {>=}0.8 L, 14 achieved a {>=}90% reduction in the heart V{sub 50} using the mDIBH technique. The 3 patients who had had a breath-hold threshold <0.8 L achieved a lower, but still significant, reduction in the heart V{sub 50}. Conclusions: A rapid automated treatment planning process can be used to select patients who will benefit most from mDIBH. For selected patients with unfavorable cardiac anatomy, the mDIBH technique using ABC can significantly reduce the dose to the LAD and heart, potentially reducing the cardiac risks.

  2. The Effect of Curriculum for Developing Efficient Studying Skills on Academic Achievements and Studying Skills of Learners

    ERIC Educational Resources Information Center

    Demir, Semra; Kilinc, Mehmet; Dogan, Ali

    2012-01-01

    Purpose of this study is to examine the effect of "Development of Efficient Studying Skills Curriculum" on academic achievements and studying skills of 7th grade primary school students. In this study, pre-test post-test from experiment models and semi-experimental model with control group were preferred. The reason for the preference is…

  3. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  4. Lattice theory of reaction efficiency in compartmentalized systems. II. Reduction of dimensionality

    NASA Astrophysics Data System (ADS)

    Lee, Pil H.; Kozak, John J.

    1984-01-01

    The timing and efficiency of a diffusion-controlled kinetic process in a compartmentalized system can be enhanced by reducing the dimensionality of the reaction space of the system. This idea, introduced by Adam and Delbrück and referred to as ``reduction of dimensionality,'' is explored quantitatively in this paper using a lattice theory of reaction efficiency developed in our earlier work. In particular, we study the interplay between system geometry and reaction efficiency using an approach in which group theoretic arguments are used within the framework of the theory of finite Markov processes to determine the average number of steps required for a diffusing coreactant A to undergo an irreversible reaction with a stationary target molecule B. We study in detail three classes of problems in this paper. First, we study as a function of the position of the reaction center how the efficiency of the underlying, irreversible, reaction-diffusion process A+B → C changes with increase in system size for symmetrical geometries. We show how reducing the dimensionality of the flow of the diffusing co-reactant leads to a crossover in reaction efficiency with increase in the size of the system, and document this effect as a function of N (the total number of sites characterizing the reaction space of the system), d (the dimensionality of the system), and ν (the valency or connectivity between adjacent sites in the reaction space). Secondly, we study how the calculated value of , and hence the efficiency of the process, changes when the compartmentalized system is characterized by tubular or platelet geometries, and show how the process of reduction of dimensionality is dependent on the further geometrical characteristics of eccentricity ɛ and the surface-to-volume ratio S/V. Finally, we study the consequences of reduction of dimensionality for (two) consecutive (say, enzymatic) reactions taking place in a compartmentalized system and demonstrate the advantages of

  5. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction.

    PubMed

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-10-21

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag(+)/Pd(2+) is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. PMID:25155648

  6. Bandwidth efficient coding: Theoretical limits and real achievements. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Courturier, Servanne; Levy, Yannick; Mills, Diane G.; Perez, Lance C.; Wang, Fu-Quan

    1993-01-01

    In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results.

  7. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-09-01

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03600j

  8. Comparison of European national legislation efficiency on the reduction of air pollutant emissions.

    PubMed

    Coutinho, Miguel; Rodrigues, Ricardo; Ferreira, Joana; Lopes, Myriam; Borrego, Carlos

    2006-03-01

    Since 1995, the Institute for Environment and Development in Portugal has obtained >300 stack samples from various point sources of Portuguese industries. A coherent database was made with the collected results. The limit values fixed by several European legal documents consulted, Portuguese, Spanish, French, Italian, and Dutch emission legislation, were applied to the Institute for Environment and Development stack sampling inventory (from 1995 to 2000) to evaluate the efficiency of these standards in promoting the control and reduction of atmospheric pollutants emissions, especially regarding nitrogen oxides, sulfur dioxide, and particulate matter. The conclusion was that the original Portuguese legislation was not restrictive enough and not very efficient regarding emissions reduction. In contrast, the Dutch and Italian legislations are quite restrictive but very efficient concerning emission control for the three pollutants analyzed. One of the outcomes of this study was the publication of a new law in Portugal regulating the emissions of atmospheric pollutants. The strategy of this emissions control law follows the conclusions found in this study including the concept of a mass flow threshold and different approaches depending on source dimension. PMID:16573194

  9. Student Achievement and Efficiency in Missouri Schools and the No Child Left Behind Act

    ERIC Educational Resources Information Center

    Primont, Diane F.; Domazlicky, Bruce

    2006-01-01

    The 2001 No Child Left Behind Act requires that schools make ''annual yearly progress'' in raising student achievement, or face possible sanctions. The No Child Left Behind Act places added emphasis on test scores, such as scores from the Missouri Assessment Program (MAP), to evaluate the performance of schools. In this paper, we investigate…

  10. A Thorough and Efficient Education: School Funding, Student Achievement and Productivity

    ERIC Educational Resources Information Center

    Ahlgrim, Richard W.

    2010-01-01

    Many school districts are facing stagnant or reduced funding (input) concurrent with demands for improved student achievement (output). In other words, there is pressure for all schools, even those schools with student populations of low socioeconomic status, to improve academic results (accountability for output) without a directly proportionate…

  11. Work function reduction using 8-hydroxyquinolinolato-lithium for efficient inverted devices

    NASA Astrophysics Data System (ADS)

    Park, Soohyung; Yi, Yeonjin; Cho, Sang Wan; Lee, Hyunbok

    2016-05-01

    The work function reduction of various transparent conducting materials with 8-hydroxyquinolinolato-lithium (Liq) was investigated using in situ ultraviolet photoelectron spectroscopy (UPS) measurements. The work function of single-walled carbon nanotubes (SWCNTs), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and indium tin oxide (ITO), was significantly reduced by 1.00, 1.08 and 0.50 eV by depositing a 3.5 nm-thick Liq layer. This originates from the interface dipole having its negative pole pointed toward each electrode. These work function reductions would enhance electron injection or extraction in inverted organic electronic devices. However, the high electron injection barriers from electrodes to Liq itself were observed (2.43-2.53 eV), and thus an ultrathin Liq layer should be used for efficient electron injection through tunneling mechanism.

  12. Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction

    PubMed Central

    Zhou, Wei; Liang, Fengli; Shao, Zongping; Zhu, Zhonghua

    2012-01-01

    The widespread application of intermediate-temperature solid oxide fuel cells is mainly being hurdled by the cathode's low efficiency on oxygen reduction reaction and poor resistance to carbon dioxide impurity. Here we report the fabrication of a hierarchical shell-covered porous cathode through infiltration followed by microwave plasma treatment. The hierarchical shell consists of a dense thin-film substrate with cones on the top of the substrate, leading to a three-dimensional (3D) heterostructured electrode. The shell allows the cathode working stably in CO2-containing air, and significantly improving the cathode's oxygen reduction reactivity with an area specific resistance of ∼0.13 Ωcm2 at 575°C. The method is also suitable for fabricating functional shell on the irregularly shaped substrate in various applications. PMID:22439104

  13. Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction

    NASA Astrophysics Data System (ADS)

    Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K.

    2016-07-01

    Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp2-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp2 and sp3-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (˜127 GW/cm2) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). The values of two-photon absorption co-efficient (˜0.0022-0.0037 cm/GW for GO, and ˜0.0128-0.0143 cm/GW for RGO) and the saturation intensity (˜57 GW/cm2 for GO, and ˜194 GW/cm2 for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.

  14. A Strategy to Achieve High-Efficiency Organolead Trihalide Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Andalibi, Shabnam; Rostami, Ali; Darvish, Gafar; Moravvej-Farshi, Mohammad Kazem

    2016-07-01

    Recent theoretical and experimental reports have shown that organometal lead halide perovskite solar cells have attracted attention as a low-cost photovoltaic technology offering high power conversion efficiency. However, the photovoltaic efficiency of these materials is still limited by poor chemical and structural stability in the case of methylammonium lead triiodide and by large bandgap in the case of methylammonium lead tribromide or trichloride. To obtain high-performance devices, we have investigated the computationally optimal efficiency for these materials using the detailed-balance method and present optimal intermediate-band perovskite solar cells with high open-circuit voltage. We model different halide perovskites using density function theory calculations and study their bandgap and absorption coefficient. Based on calculation results, surprisingly Hg doping in different halide perovskites introduces a narrow partially filled intermediate band in the forbidden bandgap. We investigate electrical and optical properties of MAPb0.97Hg0.03I3, MAPb0.96Hg0.04Br3, and MAPb0.96Hg0.04Cl3 and calculate the high absorption efficiency of the different perovskite structures to create thin films suitable for photovoltaic devices.

  15. Achieving strategic cost advantages by focusing on back-office efficiency.

    PubMed

    McDowell, Jim

    2010-06-01

    A study of more than 270 hospitals over a four-year period highlighted a number of investments that can reduce hospitals' costs and improve efficiency, including the following: E-procurement systems. Electronic exchange of invoices and payments (and electronic receipt of payments). Human resources IT systems that reduce the need for manual entry of data. Shared services deployment. PMID:20533684

  16. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel.

    PubMed

    Sasan, Koroush; Lin, Qipu; Mao, Chengyu; Feng, Pingyun

    2016-06-01

    Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity. PMID:27186825

  17. Dendritic macromolecules supported Ag nanoparticles as efficient catalyst for the reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre; Sadeghi, Masoud; Enayati-Najafabadi, Azadeh

    2016-12-01

    Polymer supported Ag nanoparticles, generated in situ by silver nitrate (AgNO3) reduction under reaction conditions, catalyzed the hydrogenation of 4-nitrophenol with high efficiency in water at room temperature in the presence of an excess amount of NaBH4. Amphiphilic linear-dendritic copolymers containing a poly(ethylene glycol) (PEG) core and poly(2-ethyl-2-oxazoline)-poly(ε-caprolactone) arms were able to load the Ag nanoparticles. The Ag nanoparticles with a diameter of 8-10 nm were found to show a comparable catalytic activity towards formation of the aromatic amine as single product with short reaction time.

  18. Achieving high performance polymer optoelectronic devices for high efficiency, long lifetime and low fabrication cost

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong

    This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C

  19. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    SciTech Connect

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  20. SIU-based modification in Kelley's measure of skewness to achieve gains in efficiency

    NASA Astrophysics Data System (ADS)

    Habibullah, Saleha Naghmi; Shan-E-Fatima, Syeda

    2015-02-01

    The importance of accurate modeling of life-lengths of components and systems cannot be over-emphasized. Some well-known distributions such as the Birnbaum Saunders distribution extensively used in Reliability Theory are known to fulfill the self-inversion property, the term `Self-Inverse at Unity' (`SIU') implying that, for a random variable X, the distribution of 1/ X is identical to the distribution of X. Very recently, it has been demonstrated the advantage that can be drawn from the SIU property by proposing a modification to the well-known formula of the empirical cumulative distribution function to obtain an estimator of the cumulative distribution function that is more efficient than the empirical cumulative distribution function in situations where the parent population can be assumed to be SIU. Subsequently, a number of papers have appeared proposing SIU-based modifications to the formulae of well-known estimators of central tendency, dispersion and kurtosis that are likely to yield gains in efficiency on account of an approach very similar to the one adopted for the modification of the formula of the empirical cumulative distribution function. In this paper, we propose SIU-based modification to Kelley's Measure of Skewness and, through a simulation study, demonstrate the potential of the proposed formula in improving the efficiency of the estimation process which, obviously, has important implications for accurate modeling of life-data encountered in various branches of engineering.

  1. Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

    NASA Astrophysics Data System (ADS)

    Negri, Federico; Manzoni, Andrea; Amsallem, David

    2015-12-01

    In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

  2. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush; Lin, Qipu; Mao, Chengyu; Feng, Pingyun

    2016-05-01

    Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity.Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity. Electronic supplementary information (ESI) available: The synthetic procedure, facilities information, EDX patterns and UV-Vis data. See DOI: 10.1039/c6nr02525k

  3. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs. PMID:25970133

  4. Short and long term efficiencies of debris risk reduction measures: Application to a European LEO mission

    NASA Astrophysics Data System (ADS)

    Lang, T.; Kervarc, R.; Bertrand, S.; Carle, P.; Donath, T.; Destefanis, R.; Grassi, L.; Tiboldo, F.; Schäfer, F.; Kempf, S.; Gelhaus, J.

    2015-01-01

    Recent numerical studies indicate that the low Earth orbit (LEO) debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris (Liou and Johnson, 2008). Measures to be enforced play thus a major role to preserve an acceptable space mission risk and ensure sustainable space activities. The identification of such measures and the quantification of their efficiency over time for LEO missions is of prime concern in the decision-making process, as it has been investigated for the last few decades by the Inter-Agency Space Debris Coordination Committee (IADC). This paper addresses the final results of a generic methodology and the characteristics of a tool developed to assess the efficiency of the risk reduction measures identified for the Sentinel-1 (S1) mission. This work is performed as part of the 34-month P2-ROTECT project (Prediction, Protection & Reduction of OrbiTal Exposure to Collision Threats), funded by the European Union within the Seventh Framework Programme. Three ways of risk reduction have been investigated, both in short and long-term, namely: better satellite protection, better conjunction prediction, and cleaner environment. According to our assumptions, the S1 mission vulnerability evaluations in the long term (from 2093 to 2100) show that full compliance to the mitigation measures leads to a situation twice safer than that induced by an active debris removal of 5 objects per year in a MASTER2009 Business-As-Usual context. Because these measures have visible risk reduction effects in the long term, complementary measures with short response time are also studied. In the short term (from 2013 to 2020), a better prediction of the conjunctions is more efficient than protecting the satellite S1 itself. By

  5. A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media

    NASA Astrophysics Data System (ADS)

    Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob

    2016-06-01

    In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.

  6. Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: A first principles study

    NASA Astrophysics Data System (ADS)

    Mangold, Claudia; Neogi, Sanghamitra; Donadio, Davide

    2016-08-01

    Silicon nanostructures with reduced dimensionality, such as nanowires, membranes, and thin films, are promising thermoelectric materials, as they exhibit considerably reduced thermal conductivity. Here, we utilize density functional theory and Boltzmann transport equation to compute the electronic properties of ultra-thin crystalline silicon membranes with thickness between 1 and 12 nm. We predict that an optimal thickness of ˜7 nm maximizes the thermoelectric figure of merit of membranes with native oxide surface layers. Further thinning of the membranes, although attainable in experiments, reduces the electrical conductivity and worsens the thermoelectric efficiency.

  7. Tungsten nitride nanocrystals on nitrogen-doped carbon black as efficient electrocatalysts for oxygen reduction reactions.

    PubMed

    Dong, Youzhen; Li, Jinghong

    2015-01-11

    The direct synthesis of tungsten nitride (WN) nanoparticles on nitrogen-doped carbon black (N-carbon black) was achieved through facile nucleation and growth of WN nanoparticles on simultaneously generated N-carbon black under ammonia annealing. As a noble-metal-free catalyst, the WN/N-carbon black hybrid exhibited excellent performance in ORR, coupled with superior methanol tolerance and long-term stability in comparison to commercial Pt/C catalysts, through an efficient four-electron-dominant ORR process. PMID:25413157

  8. Efficient Method of Achieving Agreements between Individuals and Organizations about RFID Privacy

    NASA Astrophysics Data System (ADS)

    Cha, Shi-Cho

    This work presents novel technical and legal approaches that address privacy concerns for personal data in RFID systems. In recent years, to minimize the conflict between convenience and the privacy risk of RFID systems, organizations have been requested to disclose their policies regarding RFID activities, obtain customer consent, and adopt appropriate mechanisms to enforce these policies. However, current research on RFID typically focuses on enforcement mechanisms to protect personal data stored in RFID tags and prevent organizations from tracking user activity through information emitted by specific RFID tags. A missing piece is how organizations can obtain customers' consent efficiently and flexibly. This study recommends that organizations obtain licenses automatically or semi-automatically before collecting personal data via RFID technologies rather than deal with written consents. Such digitalized and standard licenses can be checked automatically to ensure that collection and use of personal data is based on user consent. While individuals can easily control who has licenses and license content, the proposed framework provides an efficient and flexible way to overcome the deficiencies in current privacy protection technologies for RFID systems.

  9. Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts.

    PubMed

    Zhang, Yun; Jiang, Wen-Jie; Zhang, Xing; Guo, Lin; Hu, Jin-Song; Wei, Zidong; Wan, Li-Jun

    2014-07-21

    The importance of the oxygen reduction reaction (ORR) in fuel cells and high energy density metal-air batteries has attracted intense research interests in looking for low-cost ORR catalysts as substitutes for expensive and scarce Pt-based catalysts. N-doped graphene and carbon nanotubes prepared in a low-cost and scalable way have demonstrated their potential although the performance still needs to be improved. In view of the requirements for a high-performance ORR electrocatalyst, this work focused on developing the nanocomposites of N-doped reduced graphene oxide (N-rGO) and N-doped carbon nanotubes (N-CNT) as low-cost efficient ORR catalysts by integrating the advantages of abundant highly-active sites from N-rGO and a three-dimensional conductive network for efficient mass and electron transport from N-CNT. By optimizing the preparation method and dedicatedly tuning the composition, the much enhanced ORR activity and superior durability and tolerance to methanol were achieved for the self-assembled N-doped composite (N-rGO-CNT) at a mass ratio of 1 : 5 rGO/CNT. Further improvement of the ORR electrocatalytic activity of the composite was also demonstrated by introducing iron into the composite. PMID:24722811

  10. Achieving Internet-based efficiencies in a rural IDS: a case study.

    PubMed

    Bacus, R; Zunke, R

    2001-09-01

    After suffering payment cuts resulting from the Balanced Budget Act of 1997, Colorado-Fayette Medical Center (CFMC), a not-for-profit, rural integrated delivery system in Texas, wanted to reduce costs by gaining systemwide Internet access for its internal information system at a reasonable price. An application service provider affiliated with the Texas Hospital Association, helped CFMC achieve its goals for the project by performing a needs assessment, installing a wide-area network (WAN) with Internet access, and training staff. The new WAN enabled CFMC to improve its Web presence, allow radiologic image viewing at all sites, negotiate more favorable prices from vendors, implement electronic communication for staff members, and take advantage of on-line education opportunities. CFMC has found that the monthly fee paid to THN is offset by savings on long-distance calls, Internet service provider fees, and marketing and advertising costs. PMID:11552587

  11. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    SciTech Connect

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray; Sandusky, William F.; Koehler, Theresa M.; Boyd, Brian K.

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energy Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.

  12. Carbon mass balance and microbial ecology in a laboratory scale reactor achieving simultaneous sludge reduction and nutrient removal.

    PubMed

    Huang, Pei; Li, Liang; Kotay, Shireen Meher; Goel, Ramesh

    2014-04-15

    Solids reduction in activated sludge processes (ASP) at source using process manipulation has been researched widely over the last two-decades. However, the absence of nutrient removal component, lack of understanding on the organic carbon, and limited information on key microbial community in solids minimizing ASP preclude the widespread acceptance of sludge minimizing processes. In this manuscript, we report simultaneous solids reduction through anaerobiosis along with nitrogen and phosphorus removals. The manuscript also reports carbon mass balance using stable isotope of carbon, microbial ecology of nitrifiers and polyphosphate accumulating organisms (PAOs). Two laboratory scale reactors were operated in anaerobic-aerobic-anoxic (A(2)O) mode. One reactor was run in the standard mode (hereafter called the control-SBR) simulating conventional A(2)O type of activated sludge process and the second reactor was run in the sludge minimizing mode (called the modified-SBR). Unlike other research efforts where the sludge minimizing reactor was maintained at nearly infinite solids retention time (SRT). To sustain the efficient nutrient removal, the modified-SBR in this research was operated at a very small solids yield rather than at infinite SRT. Both reactors showed consistent NH3-N, phosphorus and COD removals over a period of 263 days. Both reactors also showed active denitrification during the anoxic phase even if there was no organic carbon source available during this phase, suggesting the presence of denitrifying PAOs (DNPAOs). The observed solids yield in the modified-SBR was 60% less than the observed solids yield in the control-SBR. Specific oxygen uptake rate (SOUR) for the modified-SBR was almost 44% more than the control-SBR under identical feeding conditions, but was nearly the same for both reactors under fasting conditions. The modified-SBR showed greater diversity of ammonia oxidizing bacteria and PAOs compared to the control-SBR. The diversity of PAOs

  13. Progress toward achieving high power and high efficiency semipolar LEDs and their characterization

    NASA Astrophysics Data System (ADS)

    Zhong, Hong

    Performance of current commercially available wurtzite nitride based light-emitting diodes (LEDs), grown along the polar (0001) c-plane orientation, is limited by the presence of polarization-related electric fields inside multi-quantum wells (MQWs). The discontinuities in both spontaneous and piezoelectric polarization at the heterointerfaces result in internal electric fields in the quantum wells. These electric fields cause carrier separation [quantum confined Stark effect (QCSE)] and reduce the radiative recombination rate within the quantum wells. One approach to reduce and possibly eliminate the polarization-related effects is to grow III-nitride devices on crystal planes that are inclined with respect to the c-axis, i.e., on semipolar planes. In this dissertation, metalorganic chemical vapor deposition (MOCVD) has been employed for the homoepitaxial growth of GaN based LEDs on semipolar orientations. As a consequence of growing on high-quality bulk GaN substrates, the LEDs have significantly reduced threading dislocation and stacking fault densities, resulting in remarkable improvements in EQE and output power. High efficiency semipolar (1011) violet-blue and blue LEDs have been demonstrated without any intentional effort to enhance the light extraction from those devices. Optimizations of epitaxial structures have led to increased output power and external quantum efficiency. A silicone encapsulated single quantum well blue LED with peak wavelength of 444 nm with output power of 24.3 mW, external quantum efficiency of 43% and luminous efficacy of 75 lm/W (with phosphorescent coating) at 20 mA has been demonstrated. Polarization fields in strained (1011) and (112¯2) InGaN quantum wells have been experimentally determined through bias-dependent optical studies. Our results show that the polarization field flips its direction in semipolar InGaN quantum wells with large inclination angles (i.e. around 60°). This suggests that there exists a polarization

  14. Evaluation of pollutants removal efficiency to achieve successful urban river restoration.

    PubMed

    Cha, Sung Min; Ham, Young Sik; Ki, Seo Jin; Lee, Seung Won; Cho, Kyung Hwa; Park, Yongeun; Kim, Joon Ha

    2009-01-01

    Greater efforts to provide alternative scenarios are key to successful urban stream restoration planning. In this study, we discuss two different aspects of water quality management schemes, biodegradation and human health, which are incorporated in the restoration project of original, pristine condition of urban stream at the Gwangju (GJ) Stream, Korea. For this study, monthly monitoring of biochemical oxygen demand (BOD(5)) and fecal indicator bacteria (FIB) data were obtained from 2003 to 2008 and for 2008, respectively, and these were evaluated to explore pollutant magnitude and variation with respect to space and time window. Ideal scenarios to reduce target pollutants were determined based on their seasonal characteristics and correlations between the concentrations at a water intake and discharge point, where we suggested an increase of environmental flow and wetland as pollutants reduction drawing for BOD(5) and FIB, respectively. The scenarios were separately examined by the Qual2E model and hypothetically (but planned) constructed wetland, respectively. The results revealed that while controlling of the water quality at the intake point guaranteed the lower pollution level of BOD(5) in the GJ Stream, a wetland constructed at the discharge point may be a promising strategy to mitigate mass loads of FIB. Overall, this study suggests that a combination of the two can be plausible scenarios not only to support sustainable urban water resources management, but to enhance a quality of urban stream restoration assignment. PMID:19494448

  15. Acid and reduction stimulated logic "and"-type combinational release mode achieved in DOX-loaded superparamagnetic nanogel.

    PubMed

    Song, Meifang; Xue, Yanan; Chen, Lidi; Xia, Xiaoyang; Zhou, Yang; Liu, Lei; Yu, Bo; Long, Sihui; Huang, Shiwen; Yu, Faquan

    2016-08-01

    A superparamagnetic nanogel featured with a logic "and"-type pH/reduction combinational stimulated release mode was fabricated as a drug delivery system by virtue of parallel crosslinking. The disulfide bond and electrostatic interaction between thiolated alginate (SA-SH) and thiolated/aminated iron oxide nanoparticles (SH-MION-NH2) were employed to achieve the mechanism. The obtained DOX-loaded magnetic nanogel is 122.7±20.3nm in size with superparamagnetism. The combinational conditions of pH5.0/10mM glutathione (GSH) stimulated a significantly high accumulative release. However, either pH7.4/10mM (GSH) or pH5.0 alone induced much low release. This verified the typical logic "and"-type combinationally stimulated release mode. In vitro cytotoxicity tests clearly illustrated the effective selectivity of killing the human cervical cancer cells (HeLa) with IC50 of 1.01μg/mL and the human hepatoma cells (HepG2) with IC50 of 1.57μg/mL but significantly low cytotoxicity to the cercopithecus aethiops kidney cells (Vero). CLSM presented the internationalization of the nanogel into cytoplasm and nuclei with time. In vivo investigation revealed that the selective intratumoral accumulation and antitumor efficacy were considerably advantageous over free DOX whereas low systemic toxicity exhibited up-regulated security as compared to free DOX. Overall, the DOX-loaded magnetic nanogel with enhanced antitumor efficacy and down-regulated adverse effect was a promising nanoplatform for the clinical chemotherapy of malignancy. PMID:27157762

  16. Achieving 100% Efficient Postcolumn Hydride Generation for As Speciation Analysis by Atomic Fluorescence Spectrometry.

    PubMed

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2016-04-01

    An experimental setup consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAs(III), iAs(V)), monomethylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V)) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L(-1); the optimal concentration of NaBH4 was 2.5% (m/v), and the volume of the reaction coil was 8.9 mL. To prevent excessive signal noise due to fluctuations of hydride supply to an atomizer, a new design of a gas-liquid separator was implemented. The optimized experimental setup was subsequently interfaced to HPLC and employed for speciation analysis of arsenic. Two chromatography columns were tested: (i) ion-pair chromatography and (ii) ion exchange chromatography. The latter offered much better results for human urine samples without a need for sample dilution. Due to the equal hydride generation efficiency (and thus the sensitivities) of all As species, a single species standardization by DMAs(V) standard was feasible. The limits of detection for iAs(III), iAs(V), MAs(V), and DMAs(V) were 40, 97, 57, and 55 pg mL(-1), respectively. Accuracy of the method was tested by the analysis of the standard reference material (human urine NIST 2669), and the method was also verified by the comparative analyses of human urine samples collected from five individuals with an independent reference method. PMID:26938848

  17. Efficient Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture.

    PubMed

    Zhu, Qinggong; Ma, Jun; Kang, Xinchen; Sun, Xiaofu; Liu, Huizhen; Hu, Jiayin; Liu, Zhimin; Han, Buxing

    2016-07-25

    Highly efficient electrochemical reduction of CO2 into value-added chemicals using cheap and easily prepared electrodes is environmentally and economically compelling. The first work on the electrocatalytic reduction of CO2 in ternary electrolytes containing ionic liquid, organic solvent, and H2 O is described. Addition of a small amount of H2 O to an ionic liquid/acetonitrile electrolyte mixture significantly enhanced the efficiency of the electrochemical reduction of CO2 into formic acid (HCOOH) on a Pb or Sn electrode, and the efficiency was extremely high using an ionic liquid/acetonitrile/H2 O ternary mixture. The partial current density for HCOOH reached 37.6 mA cm(-2) at a Faradaic efficiency of 91.6 %, which is much higher than all values reported to date for this reaction, including those using homogeneous and noble metal electrocatalysts. The reasons for such high efficiency were investigated using controlled experiments. PMID:27311592

  18. The Cardiovascular Intervention Improvement Telemedicine Study (CITIES): Rationale for a Tailored Behavioral and Educational Pharmacist-Administered Intervention for Achieving Cardiovascular Disease Risk Reduction

    PubMed Central

    Zullig, Leah L.; Melnyk, S. Dee; Stechuchak, Karen M.; McCant, Felicia; Danus, Susanne; Oddone, Eugene; Bastian, Lori; Olsen, Maren; Edelman, David; Rakley, Susan; Morey, Miriam

    2014-01-01

    Abstract Background: Hypertension, hyperlipidemia, and diabetes are significant, but often preventable, contributors to cardiovascular disease (CVD) risk. Medication and behavioral nonadherence are significant barriers to successful hypertension, hyperlidemia, and diabetes management. Our objective was to describe the theoretical framework underlying a tailored behavioral and educational pharmacist-administered intervention for achieving CVD risk reduction. Materials and Methods: Adults with poorly controlled hypertension and/or hyperlipidemia were enrolled from three outpatient primary care clinics associated with the Durham Veterans Affairs Medical Center (Durham, NC). Participants were randomly assigned to receive a pharmacist-administered, tailored, 1-year telephone-based intervention or usual care. The goal of the study was to reduce the risk for CVD through a theory-driven intervention to increase medication adherence and improve health behaviors. Results: Enrollment began in November 2011 and is ongoing. The target sample size is 500 patients. Conclusions: The Cardiovascular Intervention Improvement Telemedicine Study (CITIES) intervention has been designed with a strong theoretical underpinning. The theoretical foundation and intervention are designed to encourage patients with multiple comorbidities and poorly controlled CVD risk factors to engage in home-based monitoring and tailored telephone-based interventions. Evidence suggests that clinical pharmacist-administered telephone-based interventions may be efficiently integrated into primary care for patients with poorly controlled CVD risk factors. PMID:24303930

  19. Potential of combining iterative reconstruction with noise efficient detector design: aggressive dose reduction in head CT

    PubMed Central

    Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A

    2015-01-01

    Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204

  20. A time-efficient reduction of fat mass in 4 days with exercise and caloric restriction.

    PubMed

    Calbet, J A L; Ponce-González, J G; Pérez-Suárez, I; de la Calle Herrero, J; Holmberg, H-C

    2015-04-01

    To determine whether a fast reduction in fat mass can be achieved in 4 days by combining caloric restriction (CR: 3.2 kcal/kg body weight per day) with exercise (8-h walking + 45-min arm cranking per day) to induce an energy deficit of ∼5000 kcal/day, 15 overweight men underwent five experimental phases: pretest, exercise + CR for 4 days (WCR), control diet + reduced exercise for 3 days (DIET), and follow-up 4 weeks (POST1) and 1 year later (POST2). During WCR, the diet consisted solely of whey protein (n = 8) or sucrose (n = 7) (0.8 g/kg body weight per day). After WCR, DIET, POST1, and POST2, fat mass was reduced by a mean of 2.1, 2.8, 3.8, and 1.9 kg (P < 0.05), with two thirds of this loss from the trunk; and lean mass by 2.8, 1.0, 0.5, and 0.4 kg, respectively. After WCR, serum glucose, insulin, homeostatic model assessment, total and low-density lipoprotein cholesterol and triglycerides were reduced, and free fatty acid and cortisol increased. Serum leptin was reduced by 64%, 50%, and 33% following WCR, DIET, and POST1, respectively (P < 0.05). The effects were similar in both groups. In conclusion, a clinically relevant reduction in fat mass can be achieved in overweight men in just 4 days by combining prolonged exercise with CR. PMID:24602091

  1. The use of ECDIS equipment to achieve an optimum value for energy efficiency operation index

    NASA Astrophysics Data System (ADS)

    Acomi, N.; Acomi, O. C.; Stanca, C.

    2015-11-01

    To reduce air pollution produced by ships, the International Maritime Organization has developed a set of technical, operational and management measures. The subject of our research addresses the operational measures for minimizing CO2 air emissions and the way how the emission value could be influenced by external factors regardless of ship-owners’ will. This study aims to analyse the air emissions for a loaded voyage leg performed by an oil tanker. The formula that allows us to calculate the predicted Energy Efficiency Operational Index involves the estimation of distance and fuel consumption, while the quantity of cargo is known. The electronic chart display and information system, ECDIS Simulation Software, will be used for adjusting the passage plan in real time, given the predicted severe environmental conditions. The distance will be determined using ECDIS, while the prediction of the fuel consumption will consider the sea trial and the vessel experience records. That way it will be possible to compare the estimated EEOI value in the case of great circle navigation in adverse weather condition with the estimated EEOI value for weather navigation.

  2. No catalyst addition and highly efficient dissociation of H2O for the reduction of CO2 to formic acid with Mn.

    PubMed

    Lyu, Lingyun; Zeng, Xu; Yun, Jun; Wei, Feng; Jin, Fangming

    2014-05-20

    The "greenhouse effect" caused by the increasing atmospheric CO2 level is becoming extremely serious, and thus, the reduction of CO2 emissions has become an extensive, urgent, and long-term task. The dissociation of water for CO2 reduction with solar energy is regarded as one of the most promising methods for the sustainable development of the environment and energy. However, a high solar-to-fuel efficiency keeps a great challenge. In this work, the first observation of a highly effective, highly selective, and robust system of dissociating water for the reduction of carbon dioxide (CO2) into formic acid with metallic manganese (Mn) is reported. A considerably high formic acid yield of more than 75% on a carbon basis from NaHCO3 was achieved with 98% selectivity in the presence of simple commercially available Mn powder without the addition of any catalyst, and the proposed process is exothermic. Thus, this study may provide a promising method for the highly efficient dissociation of water for CO2 reduction by combining solar-driven thermochemistry with the reduction of MnO into Mn. PMID:24787746

  3. Energy-Efficient Data Reduction Techniques for Wireless Seizure Detection Systems

    PubMed Central

    Chiang, Joyce; Ward, Rabab K.

    2014-01-01

    The emergence of wireless sensor networks (WSNs) has motivated a paradigm shift in patient monitoring and disease control. Epilepsy management is one of the areas that could especially benefit from the use of WSN. By using miniaturized wireless electroencephalogram (EEG) sensors, it is possible to perform ambulatory EEG recording and real-time seizure detection outside clinical settings. One major consideration in using such a wireless EEG-based system is the stringent battery energy constraint at the sensor side. Different solutions to reduce the power consumption at this side are therefore highly desired. The conventional approach incurs a high power consumption, as it transmits the entire EEG signals wirelessly to an external data server (where seizure detection is carried out). This paper examines the use of data reduction techniques for reducing the amount of data that has to be transmitted and, thereby, reducing the required power consumption at the sensor side. Two data reduction approaches are examined: compressive sensing-based EEG compression and low-complexity feature extraction. Their performance is evaluated in terms of seizure detection effectiveness and power consumption. Experimental results show that by performing low-complexity feature extraction at the sensor side and transmitting only the features that are pertinent to seizure detection to the server, a considerable overall saving in power is achieved. The battery life of the system is increased by 14 times, while the same seizure detection rate as the conventional approach (95%) is maintained. PMID:24469356

  4. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers

    PubMed Central

    Buyel, Johannes F.; Gruchow, Hannah M.; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m−2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre–coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m−2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins. PMID:26734037

  5. Size-reduction techniques for the determination of efficient aeroservoelastic models

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1992-01-01

    Size-reduction techniques for determining efficient time-domain state-space aeroservoelastic models are presented. Various rational function approximation methods of the unsteady aerodynamic force coefficients are brought to a common motion, emphasizing their differences. Among these, the classic Roger's method is the easier to apply but its resulting number of aerodynamic states is typically equal to or larger than the number of structural states. On the other hand, the minimum-state (MS) method, which typically reduces the number of aerodynamic states by 70 percent or more, requires the solution of an iterative nonlinear least-square solution. The MS computational efforts are reduced significantly when three approximation constraints are applied.

  6. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGESBeta

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; Zhou, Wu; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Peng, Zhiwei; Lou, Jun; Vajtai, Robert; et al

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  7. Nanosheets Co3O4 Interleaved with Graphene for Highly Efficient Oxygen Reduction.

    PubMed

    Odedairo, Taiwo; Yan, Xuecheng; Ma, Jun; Jiao, Yalong; Yao, Xiangdong; Du, Aijun; Zhu, Zhonghua

    2015-09-30

    Efficient yet inexpensive electrocatalysts for oxygen reduction reaction (ORR) are an essential component of renewable energy devices, such as fuel cells and metal-air batteries. We herein interleaved novel Co3O4 nanosheets with graphene to develop a first ever sheet-on-sheet heterostructured electrocatalyst for ORR, whose electrocatalytic activity outperformed the state-of-the-art commercial Pt/C with exceptional durability in alkaline solution. The composite demonstrates the highest activity of all the nonprecious metal electrocatalysts, such as those derived from Co3O4 nanoparticle/nitrogen-doped graphene hybrids and carbon nanotube/nanoparticle composites. Density functional theory (DFT) calculations indicated that the outstanding performance originated from the significant charge transfer from graphene to Co3O4 nanosheets promoting the electron transport through the whole structure. Theoretical calculations revealed that the enhanced stability can be ascribed to the strong interaction generated between both types of sheets. PMID:26345714

  8. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    SciTech Connect

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; Zhou, Wu; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Peng, Zhiwei; Lou, Jun; Vajtai, Robert; Yakobson, Boris I.; Tour, James M.; Ajayan, Pulickel M.

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energy barriers of the rate-determining steps of the ORR reaction.

  9. Efficient and Anonymous Two-Factor User Authentication in Wireless Sensor Networks: Achieving User Anonymity with Lightweight Sensor Computation

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359

  10. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359

  11. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  12. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  13. An electrodeposited redox polymer-laccase composite film for highly efficient four-electron oxygen reduction

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Deng, Huimin; Teo, Alan Kay Liang; Gao, Zhiqiang

    2013-03-01

    In this report, it is shown that novel thin films of Os(dcbpy)2 (dcbpy = 4,4‧-dicarboxylic acid-2,2‧-bipyridine)-based redox polymer-laccase composite can be electrodeposited onto carbon electrodes under mild conditions. In a nutshell, the exchange of the inner-sphere Cl- of the Os(dcbpy)2Cl+/2+ complex tethered to partially quaternized poly (4-vinylpyridine) (PVP) by a pyridine ligand of a second PVP chain leads to cross-linking and deposition of the redox polymer. Laccase, which has coordinatively linkable functions of amines and histidines, is readily incorporated in the electrodeposited redox polymer. Because the reaction centers of the co-deposited laccase are electrically connected to the electrode through the deposited redox polymer, the electrodeposited film can catalyze the electroreduction of O2 at 0.58 V (vs. Ag/AgCl) - the least reducing potential for highly efficient four-electron reduction of O2 in pH 5.5 0.10 M phosphate buffer solution. Furthermore, the electroreduction of O2 is found to be O2 transport-limited when the reduction potential is poised at ≥120 mV more reducing than that of the reversible O2/H2O couple. This composite film could be an excellent candidate for uses as cathode in enzymatic biofuel cells.

  14. Teacher Layoffs, Teacher Quality and Student Achievement: The Implementation and Consequences of a Discretionary Reduction-in-Force Policy

    ERIC Educational Resources Information Center

    Kraft, Matthew A.

    2013-01-01

    Research has shown that "last hired, first fired" policies maximize the number of teachers subject to reductions in force by eliminating those teachers that are lowest on the pay scale first. Until now, advocates of effectiveness-based reduction-in-force (RIF) policies could only point to simulated policy exercises as evidence of the…

  15. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    SciTech Connect

    Michael Killian

    2009-09-30

    The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have

  16. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis.

    PubMed

    Gan, Lizhen; Ye, Lingting; Tao, Shanwen; Xie, Kui

    2016-01-28

    Ionic conduction in perovskite oxide is commonly tailored by element doping in lattices to create charge carriers, while few studies have been focused on ionic conduction enhancement through tailoring microstructures. In this work, remarkable enhancement of ionic conduction in titanate has been achieved via in situ growing active nickel nanoparticles on an oxide surface by controlling the oxide material nonstoichiometry. The combined use of XRD, SEM, XPS and EDS indicates that the exsolution/dissolution of the nickel nanoparticles is completely reversible in redox cycles. With the synergetic effect of enhanced ionic conduction of titanate and the presence of catalytic active Ni nanocatalysts, significant improvement of electrocatalytic performances of the titanate cathode is demonstrated. A current density of 0.3 A cm(-2) with a Faradic efficiency of 90% has been achieved for direct carbon dioxide electrolysis in a 2 mm-thick YSZ-supported solid oxide electrolyzer with the modified titanate cathode at 2 V and 1073 K. PMID:26743799

  17. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.

    2013-01-01

    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  18. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.

    PubMed

    Wu, Li-Zhu; Chen, Bin; Li, Zhi-Jun; Tung, Chen-Ho

    2014-07-15

    Conspectus One of the best solutions for meeting future energy demands is the conversion of water into hydrogen fuel using solar energy. The splitting of water into molecular hydrogen (H2) and oxygen (O2) using light involves two half-reactions: the oxidation of water to O2 and the reduction of protons to H2. To take advantage of the full range of the solar spectrum, researchers have extensively investigated artificial photosynthesis systems consisting of two photosensitizers and two catalysts with a Z-configuration: one photosensitizer-catalyst pair for H2 evolution and the other for O2 evolution. This type of complete artificial photosynthesis system is difficult to build and optimize; therefore, researchers typically study the reductive half-reaction and the oxidative half-reaction separately. To study the two half-reactions, researchers use a sacrificial electron donor to provide electrons for the reductive half-reaction, and a sacrificial electron acceptor to capture electrons for the oxidative half-reaction. After optimization, they can eliminate the added donors and acceptors as the two half reactions are coupled to a complete photocatalytic water spitting system. Most photocatalytic systems for the H2 evolution half-reaction consist of a photosensitizer, a catalyst, and a sacrificial electron donor. To promote photoinduced electron transfer and photocatalytic H2 production, these three components should be assembled together in a controlled manner. Researchers have struggled to design a photocatalytic system for H2 evolution that uses earth-abundant materials and is both efficient and durable. This Account reviews advances our laboratory has made in the development of new systems for photocatalytic H evolution that uses earth-abundant materials and is both efficient and durable. We used organometallic complexes and quantum-confined semiconductor nanocrystals (QDs) as photosensitizers, and [FeFe]-H2ase mimics and inorganic transition metal salts as catalysts

  19. An algorithm for efficient metal artifact reductions in permanent seed implants

    SciTech Connect

    Xu Chen; Verhaegen, Frank; Laurendeau, Denis; Enger, Shirin A.; Beaulieu, Luc

    2011-01-15

    Purpose: In permanent seed implants, 60 to more than 100 small metal capsules are inserted in the prostate, creating artifacts in x-ray computed tomography (CT) imaging. The goal of this work is to develop an automatic method for metal artifact reduction (MAR) from small objects such as brachytherapy seeds for clinical applications. Methods: The approach for MAR is based on the interpolation of missing projections by directly using raw helical CT data (sinogram). First, an initial image is reconstructed from the raw CT data. Then, the metal objects segmented from the reconstructed image are reprojected back into the sinogram space to produce a metal-only sinogram. The Steger method is used to determine precisely the position and edges of the seed traces in the raw CT data. By combining the use of Steger detection and reprojections, the missing projections are detected and replaced by interpolation of non-missing neighboring projections. Results: In both phantom experiments and patient studies, the missing projections have been detected successfully and the artifacts caused by metallic objects have been substantially reduced. The performance of the algorithm has been quantified by comparing the uniformity between the uncorrected and the corrected phantom images. The results of the artifact reduction algorithm are indistinguishable from the true background value. Conclusions: An efficient algorithm for MAR in seed brachytherapy was developed. The test results obtained using raw helical CT data for both phantom and clinical cases have demonstrated that the proposed MAR method is capable of accurately detecting and correcting artifacts caused by a large number of very small metal objects (seeds) in sinogram space. This should enable a more accurate use of advanced brachytherapy dose calculations, such as Monte Carlo simulations.

  20. Hybrid Nanomaterials Based on Graphene and Gold Nanoclusters for Efficient Electrocatalytic Reduction of Oxygen.

    PubMed

    Wang, Changhong; Li, Na; Wang, Qiannan; Tang, Zhenghua

    2016-12-01

    Nanocomposites based on gold nanoclusters (AuNCs) with polyvinyl pyrrolidone as ligand and reduced graphene oxide (RGO) have been prepared and employed as efficient electrocatalysts for oxygen reduction reaction (ORR). AuNCs were synthesized through a wet chemical approach and then loaded onto the RGO. The as-prepared hybrid materials were pyrolyzed to remove the organic ligands. The composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) as well as other techniques. Electrochemical tests demonstrated that the hybrid materials exhibited effective ORR activity in alkaline media. Among a series of samples tested, the pyrolyzed sample with 50 % AuNCs mass loading exhibited the best activity, superior than AuNCs alone, RGO alone, and the others, in terms of onset potential and kinetic current density as well as durability. The method here may provide a generic approach to prepare supported noble metal nanoclusters with excellent reactivity and robust stability for ORR. PMID:27431494

  1. Hybrid Nanomaterials Based on Graphene and Gold Nanoclusters for Efficient Electrocatalytic Reduction of Oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Changhong; Li, Na; Wang, Qiannan; Tang, Zhenghua

    2016-07-01

    Nanocomposites based on gold nanoclusters (AuNCs) with polyvinyl pyrrolidone as ligand and reduced graphene oxide (RGO) have been prepared and employed as efficient electrocatalysts for oxygen reduction reaction (ORR). AuNCs were synthesized through a wet chemical approach and then loaded onto the RGO. The as-prepared hybrid materials were pyrolyzed to remove the organic ligands. The composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) as well as other techniques. Electrochemical tests demonstrated that the hybrid materials exhibited effective ORR activity in alkaline media. Among a series of samples tested, the pyrolyzed sample with 50 % AuNCs mass loading exhibited the best activity, superior than AuNCs alone, RGO alone, and the others, in terms of onset potential and kinetic current density as well as durability. The method here may provide a generic approach to prepare supported noble metal nanoclusters with excellent reactivity and robust stability for ORR.

  2. Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT

    PubMed Central

    Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert

    2013-01-01

    Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296

  3. Co-N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid.

    PubMed

    Fu, Xiaogang; Choi, Ja-Yeon; Zamani, Pouyan; Jiang, Gaopeng; Hoque, Md Ariful; Hassan, Fathy Mohamed; Chen, Zhongwei

    2016-03-01

    Nitrogen-functionalized graphene materials have been demonstrated as promising electrocatalyst for the oxygen reduction reaction (ORR), owning to their respectable activity and excellent stability in alkaline electrolyte. However, they exhibit unacceptable catalytic activity in acid medium. Here, a hierarchically porous Co-N functionalized graphene aerogel is prepared as an efficient catalyst for the ORR in acid electrolyte. In the preparation process, polyaniline (PANI) is introduced as a pore-forming agent to aid in the self-assembly of graphene species into a porous aerogel networks, and a nitrogen precursor to induce in situ nitrogen doping. Therefore, a Co-N decorated graphene aerogel framework with a large surface area (485 m(2) g(-1)) and an abundance of meso/macropores is effectively formed after heat treatment. Such highly desired structures can not only expose sufficient active sites for the ORR but also guarantee the fast mass transfer in the catalytic process, which provides significant catalytic activity with positive onset and half wave potentials, low hydrogen peroxide yield, high resistance to methanol crossover, and remarkable stability that is comparable to commercial Pt/C in acid medium. PMID:26937737

  4. Investigating Organic Field Effect Transistors with Reduced Graphene Oxide Electrodes of Different Reduction Efficiency

    NASA Astrophysics Data System (ADS)

    Kang, Narae; Khondaker, Saiful I.

    2014-03-01

    Organic field-effect transistors (OFETs) have received much attention owing to their flexibility, transparency, and low-cost of fabrication. One of the major limiting factors in fabricating high-performance OFET is the large injection barrier at metal electrodes/organic semiconductor interface, which results in low charge injection from metal electrodes to organic semiconductor. Graphene has been suggested as an alternative electrode material due to its high work function, extraordinary electronic properties and strong π- π interaction with organic molecule; all of which can reduce the injection barrier at the electrode/organic interface. In particular, due to its solubility, large scale production, and its chemical functionality, reduced graphene oxide (RGO) has been introduced as a promising electrode for OFETs. Its tunability of electrical and optical properties can make RGO a highly desired electrode material because the work function match is essential for better charge injection at electrode/organic interface. In this talk, we will discuss the fabrication of OFETs with RGO of different reduction efficiency as an electrode material. We will also present the electrical transport properties fabricated devices.

  5. Analyzing the possibility of achieving more efficient cooling of water in the evaporative cooling towers of the Armenian NPP

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.

    2015-10-01

    The specific features of the service cooling water system used at the Armenian NPP and modifications made in the arrangement for supplying water to the water coolers in order to achieve more efficient cooling are presented. The mathematical model applied in carrying out the analyses is described, the use of which makes it possible to investigate the operation of parallel-connected cooling towers having different hydraulic and thermal loads. When the third standby cooling tower is put into operation (with the same flow rate of water supplied to the water coolers), the cooled water temperature is decreased by around 2-3°C in the range of atmospheric air temperatures 0-35°C. However, the introduced water distribution arrangement with a decreased spraying density has limitation on its use at negative outdoor air temperatures due to the hazard intense freezing of the fill in the cooling tower peripheral zone. The availability of standby cooling towers in the shutdown Armenian NPP power unit along with the planned full replacement of the cooling tower process equipment create good possibilities for achieving a deeper water cooling extent and better efficiency of the NPP. The present work was carried out with the aim of achieving maximally efficient use of existing possibilities and for elaborating the optimal cooling tower modernization version. Individual specific heat-andmass transfer processes in the chimney-type evaporative cooling towers are analyzed. An improved arrangement for distributing cooled water over the cooling tower spraying area (during its operation with a decreased flow rate) is proposed with the aim of cooling water to a deeper extent and preserving the possibility of using the cooling towers in winter. The main idea behind improving the existing arrangement is to exclude certain zones of the cooling tower featuring inefficient cooling from operation. The effectiveness of introducing the proposed design is proven by calculations (taking as an

  6. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  7. Efficient photocatalytic reduction of aqueous Cr(VI) over flower-like SnIn4S8 microspheres under visible light illumination.

    PubMed

    Wang, Lin; Li, Xinyong; Teng, Wei; Zhao, Qidong; Shi, Yong; Yue, Renliang; Chen, Yunfa

    2013-01-15

    Photocatalytic reduction of aqueous Cr(VI) was successfully achieved on nanostructured SnIn(4)S(8). The SnIn(4)S(8) particles with flower-like nanostructure were synthesized via a facile solvothermal method. UV-vis diffuse reflectance spectra (DRS) indicated that the SnIn(4)S(8) particles had strong absorption in visible region and the band gap was estimated to be from 2.27 to 2.35 eV. The photocatalytic reduction of aqueous Cr(VI) by flower-like SnIn(4)S(8) was evaluated under visible light (λ>400 nm) irradiation. The polyvinyl pyrrolidone (PVP) assisted SnIn(4)S(8) sample exhibits excellent removal efficiency of Cr(VI) (~97%) and good photocatalytic stability. The predominant photocatalytic activity is due to its large surface area, strong absorption in visible-light region and excellent charge separation characteristics. PMID:23177248

  8. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission

    PubMed Central

    Chauvin, Alain; Moreau, Emmanuelle; Bonnet, Sarah; Plantard, Olivier; Malandrin, Laurence

    2009-01-01

    Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated. PMID:19379662

  9. Co3 O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2.

    PubMed

    Gao, Chao; Meng, Qiangqiang; Zhao, Kun; Yin, Huajie; Wang, Dawei; Guo, Jun; Zhao, Shenlong; Chang, Lin; He, Meng; Li, Qunxiang; Zhao, Huijun; Huang, Xingjiu; Gao, Yan; Tang, Zhiyong

    2016-08-01

    A heterogeneous catalyst made of well-defined Co3 O4 hexagonal platelets with varied exposed facets is coupled with [Ru(bpy)3 ]Cl2 photosensitizers to effectively and efficiently reduce CO2 under visible-light irradiation. Systematic investigation based on both experiment and theory discloses that the exposed {112} facets are crucial for activating CO2 molecules, giving rise to significant enhancement of photocatalytic CO2 reduction efficiency. PMID:27171564

  10. Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods.

    PubMed

    Gómez, M; Murcia, M D; Dams, R; Christofi, N; Gómez, E; Gómez, J L

    2012-01-01

    Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal. PMID:22720434

  11. Dose reduction of up to 89% while maintaining image quality in cardiovascular CT achieved with prospective ECG gating

    NASA Astrophysics Data System (ADS)

    Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis

    2007-03-01

    We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.

  12. Biocatalytic reduction of racemic 2-arenoxycycloalkanones by yeasts P. glucozyma and C. glabrata: one way of achieving chiral 2-arenoxycycloalcohols.

    PubMed

    Andreu, Cecilia; Peña, Miguel; Del Olmo, Marcel Lí

    2016-06-01

    Chiral β-aryloxy alcohols are interesting building blocks that form part of drugs like β adrenergic antagonists. Acquiring cyclic rigid analogs to obtain more selective drugs is interesting. Thus, we used whole cells of yeast strains Pichia glucozyma and Candida glabrata to catalyze the reduction of several 2-arenoxycycloalkanones to produce chiral 2-arenoxycycloalcohols with good/excellent enantioselectivity. In both cases, the alcohol configuration that resulted from the carbonyl group reduction was S. Yeast P. glucozyma allowed the conversion of both enantiomers of the starting material to produce 2-arenoxycycloalcohols with configuration (1S, 2R) and (1S, 2S). The reaction with C. glabrata nearly always allowed the kinetic resolution of the starting ketone, recovering 2-arenoxycycloalkanone with configuration S and (1S, 2R)-2-arenoxycycloalcohol.All the four possible stereoisomers of 2-phenoxycyclohexanol and the two enantiomers of 2-phenoxycyclohexanone were obtained by combining the biocatalyzed reaction with the oxidation/reduction of the chiral compounds with standard reagents. This is a simple approach for the synthesis of the rigid chiral moiety 2-arenoxycycloalcohols contained in putative β-blockers 2-arenoxycycloalkanepropanolamines. PMID:26754816

  13. Justice policy reform for high-risk juveniles: using science to achieve large-scale crime reduction.

    PubMed

    Skeem, Jennifer L; Scott, Elizabeth; Mulvey, Edward P

    2014-01-01

    After a distinctly punitive era, a period of remarkable reform in juvenile crime regulation has begun. Practical urgency has fueled interest in both crime reduction and research on the prediction and malleability of criminal behavior. In this rapidly changing context, high-risk juveniles--the small proportion of the population where crime becomes concentrated--present a conundrum. Research indicates that these are precisely the individuals to treat intensively to maximize crime reduction, but there are both real and imagined barriers to doing so. Mitigation principles (during early adolescence, ages 10-13) and institutional placement or criminal court processing (during mid-late adolescence, ages 14-18) can prevent these juveniles from receiving interventions that would best protect public safety. In this review, we synthesize relevant research to help resolve this challenge in a manner that is consistent with the law's core principles. In our view, early adolescence offers unique opportunities for risk reduction that could (with modifications) be realized in the juvenile justice system in cooperation with other social institutions. PMID:24437434

  14. Reduction of Long-Term Bedrock Incision Efficiency by Short-Term Alluvial Cover Intermittency

    NASA Astrophysics Data System (ADS)

    Lague, D.

    2009-12-01

    Rapid mountain river incision through bedrock is an inherently stochastic process resulting from the long-term summation of flow and sediment discharge events at very variable rates and frequency. While the actual incision processes remains difficult to apprehend in situ and are the subject of ongoing research, there is no ambiguity on the inhibiting effect of a thick alluvial cover (several meters) on bed incision. This alluvial cover thickness strongly fluctuates as a function of stochastic supply of sediment by hillslopes, modulated by sediment transport and storage in the drainage network. Here, I study how this short-term stochasticity propagates into the long-term reduction of bedrock incision efficiency (the cover effect) at geological timescales, and how the upscaled cover model compare to existing empirical models. I introduce a new numerical model (SSTRIM, Stochastic Sediment Transport and River Incision Model) that resolves sediment transport and bedrock incision at daily timescales over a channel reach consisting of several trapezoidal cross-sections linked together. The model is run for thousands of years until a steady-state geometry is reached under the prevailing uplift, sediment supply and water discharge rates. The model incorporates (i) a stochastic sediment supply mimicking the pdf of sediment volume supplied by landsliding, (ii) a transport threshold and daily stochastic variations in water discharge, (iii) a freely evolving channel width and slope; (iv) an explicit treatment of alluvial thickness variations and corresponding bed incision reduction. Bed and bank incision are calculated as a function of bed and bank shear stress. Model results predict the existence of 2 cover dynamics regime: one in which the bed is almost permanently partially covered by sediment, and on in which intermittency dominates. In this later case, the cover effect operates over long-term by modulating the proportion of time where the channel is fully or not covered

  15. Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam.

    PubMed

    Wu, Jingjie; Liu, Mingjie; Sharma, Pranav P; Yadav, Ram Manohar; Ma, Lulu; Yang, Yingchao; Zou, Xiaolong; Zhou, Xiao-Dong; Vajtai, Robert; Yakobson, Boris I; Lou, Jun; Ajayan, Pulickel M

    2016-01-13

    The practical recycling of carbon dioxide (CO2) by the electrochemical reduction route requires an active, stable, and affordable catalyst system. Although noble metals such as gold and silver have been demonstrated to reduce CO2 into carbon monoxide (CO) efficiently, they suffer from poor durability and scarcity. Here we report three-dimensional (3D) graphene foam incorporated with nitrogen defects as a metal-free catalyst for CO2 reduction. The nitrogen-doped 3D graphene foam requires negligible onset overpotential (-0.19 V) for CO formation, and it exhibits superior activity over Au and Ag, achieving similar maximum Faradaic efficiency for CO production (∼85%) at a lower overpotential (-0.47 V) and better stability for at least 5 h. The dependence of catalytic activity on N-defect structures is unraveled by systematic experimental investigations. Indeed, the density functional theory calculations confirm pyridinic N as the most active site for CO2 reduction, consistent with experimental results. PMID:26651056

  16. Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research

    PubMed Central

    Janousova, Eva; Montana, Giovanni; Kasparek, Tomas; Schwarz, Daniel

    2016-01-01

    We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies. PMID:27610072

  17. Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research.

    PubMed

    Janousova, Eva; Montana, Giovanni; Kasparek, Tomas; Schwarz, Daniel

    2016-01-01

    We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies. PMID:27610072

  18. Achieving high power efficiency and low roll-off OLEDs based on energy transfer from thermally activated delayed excitons to fluorescent dopants.

    PubMed

    Wang, Shipan; Zhang, Yuewei; Chen, Weiping; Wei, Jinbei; Liu, Yu; Wang, Yue

    2015-08-01

    Achieving high power efficiencies at high-brightness levels is still an important issue for organic light-emitting diodes (OLEDs) based on the thermally activated delayed fluorescence (TADF) mechanism. Herein, enhanced electroluminescence efficiencies were achieved in fluorescent OLEDs using a TADF molecule, (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN), as a host and quinacridone derivatives (QA) as fluorescent dopants. PMID:26120606

  19. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Jiang, Guodong; Wei, Meng; Yuan, Songdong; Chang, Qing

    2016-01-01

    4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO2 nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO2 to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Tisbnd F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO2 nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO2, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO2 P25.

  20. Copper-Based Photosensitisers in Water Reduction: A More Efficient In Situ Formed System and Improved Mechanistic Understanding.

    PubMed

    Lennox, Alastair J J; Fischer, Steffen; Jurrat, Mark; Luo, Shu-Ping; Rockstroh, Nils; Junge, Henrik; Ludwig, Ralf; Beller, Matthias

    2016-01-22

    The reduction of water has been achieved through a non-noble-metal-based homogeneous catalyst system that is formed in situ. Optimisation of the ligand quantities increased catalyst turnover numbers compared to preformed complexes. Mechanistic studies confirm a heteroleptic Cu complex as the active photosensitiser (PS) and an in situ formed Fe-phosphido dimer complex as the water reduction catalyst. The in situ method has been used to screen a range of ligands for the active PS, which has led to the identification a number of structural features important to longevity and performance. PMID:26691442

  1. Hands-On, Demonstration, and Videotape Laboratories for Non-Science Majors in a Food Science Course: Achievement, Attitude, and Efficiency

    ERIC Educational Resources Information Center

    Johnson, H. L.; Trout, B. L.; Brekke, C. J.; Luedecke, L. O.

    2004-01-01

    Student achievement, attitude, and instructional efficiency were determined for hands-on and for live and videotape demonstration laboratories for nonscience majors. Each of 3 laboratory sections experienced 3 different teaching methods for one 4-wk unit. No significant difference in achievement was found among the laboratory methods. An attitude…

  2. [ADVANCE-ON Trial; How to Achieve Maximum Reduction of Mortality in Patients With Type 2 Diabetes].

    PubMed

    Kanorskiĭ, S G

    2015-01-01

    Of 10,261 patients with type 2 diabetes who survived to the end of a randomized ADVANCE trial 83% were included in the ADVANCE-ON project for observation for 6 years. The difference in the level of blood pressure which had been achieved during 4.5 years of within trial treatment with fixed perindopril/indapamide combination quickly vanished but significant decrease of total and cardiovascular mortality in the group of patients treated with this combination for 4.5 years was sustained during 6 years of post-trial follow-up. The results can be related to gradually weakening protective effect of perindopril/indapamide combination on cardiovascular system, and are indicative of the expedience of long-term use of this antihypertensive therapy for maximal lowering of mortality of patients with diabetes. PMID:26164995

  3. Reduction of exposure to acrylamide: achievements, potential of optimization, and problems encountered from the perspectives of a Swiss enforcement laboratory.

    PubMed

    Grob, Koni

    2005-01-01

    The most important initiatives taken in Switzerland to reduce exposure of consumers to acrylamide are the separate sale of potatoes low in reducing sugars for roasting and frying, the optimization of the raw material and preparation of french fries, and campaigns to implement suitable preparation methods in the gastronomy and homes. Industry works on improving a range of other products. Although these measures can reduce high exposures by some 80%, they have little effect on the background exposure resulting from coffee, bread, and numerous other products for which no substantial improvement is in sight. At this stage, improvements should be achieved by supporting voluntary activity rather than legal limits. Committed and consistent risk communication is key, and the support of improvements presupposes innovative approaches. PMID:15759749

  4. Achieving Peak Flow and Sediment Loading Reductions through Increased Water Storage in the Le Sueur Watershed, Minnesota: A Modeling Approach

    NASA Astrophysics Data System (ADS)

    Mitchell, N. A.; Gran, K. B.; Cho, S. J.; Dalzell, B. J.; Kumarasamy, K.

    2015-12-01

    A combination of factors including climate change, land clearing, and artificial drainage have increased many agricultural regions' stream flows and rates at which channel banks and bluffs are eroded. Increasing erosion rates within the Minnesota River Basin have contributed to higher sediment-loading rates, excess turbidity levels, and increases in sedimentation rates in Lake Pepin further downstream. Water storage sites (e.g., wetlands) have been discussed as a means to address these issues. This study uses the Soil and Water Assessment Tool (SWAT) to assess a range of water retention site (WRS) implementation scenarios in the Le Sueur watershed in south-central Minnesota, a subwatershed of the Minnesota River Basin. Sediment loading from bluffs was assessed through an empirical relationship developed from gauging data. Sites were delineated as topographic depressions with specific land uses, minimum areas (3000 m2), and high compound topographic index values. Contributing areas for the WRS were manually measured and used with different site characteristics to create 210 initial WRS scenarios. A generalized relationship between WRS area and contributing area was identified from measurements, and this relationship was used with different site characteristics (e.g., depth, hydraulic conductivity (K), and placement) to create 225 generalized WRS scenarios. Reductions in peak flow volumes and sediment-loading rates are generally maximized by placing site with high K values in the upper half of the watershed. High K values allow sites to lose more water through seepage, emptying their storages between precipitation events and preventing frequent overflowing. Reductions in peak flow volumes and sediment-loading rates also level off at high WRS extents due to the decreasing frequencies of high-magnitude events. The generalized WRS scenarios were also used to create a simplified empirical model capable of generating peak flows and sediment-loading rates from near

  5. Modelling pathogen log10 reduction values achieved by activated sludge treatment using naïve and semi naïve Bayes network models.

    PubMed

    Carvajal, Guido; Roser, David J; Sisson, Scott A; Keegan, Alexandra; Khan, Stuart J

    2015-11-15

    Risk management for wastewater treatment and reuse have led to growing interest in understanding and optimising pathogen reduction during biological treatment processes. However, modelling pathogen reduction is often limited by poor characterization of the relationships between variables and incomplete knowledge of removal mechanisms. The aim of this paper was to assess the applicability of Bayesian belief network models to represent associations between pathogen reduction, and operating conditions and monitoring parameters and predict AS performance. Naïve Bayes and semi-naïve Bayes networks were constructed from an activated sludge dataset including operating and monitoring parameters, and removal efficiencies for two pathogens (native Giardia lamblia and seeded Cryptosporidium parvum) and five native microbial indicators (F-RNA bacteriophage, Clostridium perfringens, Escherichia coli, coliforms and enterococci). First we defined the Bayesian network structures for the two pathogen log10 reduction values (LRVs) class nodes discretized into two states (< and ≥ 1 LRV) using two different learning algorithms. Eight metrics, such as Prediction Accuracy (PA) and Area Under the receiver operating Curve (AUC), provided a comparison of model prediction performance, certainty and goodness of fit. This comparison was used to select the optimum models. The optimum Tree Augmented naïve models predicted removal efficiency with high AUC when all system parameters were used simultaneously (AUCs for C. parvum and G. lamblia LRVs of 0.95 and 0.87 respectively). However, metrics for individual system parameters showed only the C. parvum model was reliable. By contrast individual parameters for G. lamblia LRV prediction typically obtained low AUC scores (AUC < 0.81). Useful predictors for C. parvum LRV included solids retention time, turbidity and total coliform LRV. The methodology developed appears applicable for predicting pathogen removal efficiency in water treatment

  6. Efficient Consistency Achievement of Federated Identity and Access Management Based on a Novel Self-Adaptable Approach

    NASA Astrophysics Data System (ADS)

    Cha, Shi-Cho; Chang, Hsiang-Meng

    Federated identity and access management (FIAM) systems enable a user to access services provided by various organizations seamlessly. In FIAM systems, service providers normally stipulate that their users show assertions issued by allied parties to use their services as well as determine user privileges based on attributes in the assertions. However, the integrity of the attributes is important under certain circumstances. In such a circumstance, all released assertions should reflect modifications made to user attributes. Despite the ability to adopt conventional certification revocation technologies, including CRL or OCSP, to revoke an assertion and request the corresponding user to obtain a new assertion, re-issuing an entirely new assertion if only one attribute, such as user location or other environmental information, is changed would be inefficient. Therefore, this work presents a self-adaptive framework to achieve consistency in federated identity and access management systems (SAFIAM). In SAFIAM, an identity provider (IdP), which authenticates users and provides user attributes, should monitor access probabilities according to user attributes. The IdP can then adopt the most efficient means of ensuring data integrity of attributes based on related access probabilities. While Internet-based services emerge daily that have various access probabilities with respect to their user attributes, the proposed self-adaptive framework significantly contributes to efforts to streamline the use of FIAM systems.

  7. Evaluation of sludge reduction and phosphorus recovery efficiencies in a new advanced wastewater treatment system using denitrifying polyphosphate accumulating organisms.

    PubMed

    Suzuki, Y; Kondo, T; Nakagawa, K; Tsuneda, S; Hirata, A; Shimizu, Y; Inamori, Y

    2006-01-01

    A new biological nutrient removal process, anaerobic-oxic-anoxic (A/O/A) system using denitrifying polyphosphate-accumulating organisms (DNPAOs), was proposed. To attain excess sludge reduction and phosphorus recovery, the A/O/A system equipped with ozonation tank and phosphorus adsorption column was operated for 92 days, and water quality of the effluent, sludge reduction efficiency, and phosphorus recovery efficiency were evaluated. As a result, TOC, T-N and T-P removal efficiency were 85%, 70% and 85%, respectively, throughout the operating period. These slightly lower removal efficiencies than conventional anaerobic-anoxic-oxic (A/A/O) processes were due to the unexpected microbial population in this system where DNPAOs were not the dominant group but normal polyphosphate-accumulating organisms (PAOs) that could not utilize nitrate and nitrite as electron acceptor became dominant. However, it was successfully demonstrated that 34-127% of sludge reduction and around 80% of phosphorus recovery were attained. In conclusion, the A/O/A system equipped with ozonation and phosphorus adsorption systems is useful as a new advanced wastewater treatment plant (WWTP) to resolve the problems of increasing excess sludge and depleted phosphorus. PMID:16749446

  8. Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device.

    PubMed

    Huang, Jau-Jiun; Leung, Man-Kit; Chiu, Tien-Lung; Chuang, Ya-Ting; Chou, Pi-Tai; Hung, Yu-Hsiang

    2014-10-17

    The development of benzimidazole substituted biphenyls as electron-transporting hosts for bis[2-(4,6-difluorophenyl)pyridinato-C(2),N](picolinato)iridium(III) is reported. Under the optimized conditions, the organic light-emitting diode (OLED) achieves the maximum current efficiency of 57.2 cd/A, power efficiency of 50.4 lm/W, and external quantum efficiency 25.7%. PMID:25296531

  9. Efficiency of some soil bacteria for chemical oxygen demand reduction of synthetic chlorsulfuron solutions under agiated culture conditions.

    PubMed

    Erguven, G O; Yildirim, N

    2016-01-01

    This study searches the efficiency of certain soil bacteria on chemical oxygen demand (COD) reduction of synthetic chlorsulfuron solutions under agitated culture conditions. It also aims to determine the turbidity of liquid culture medium with chlorsulfuron during bacterial incubation for 120 hours. As a result the highest and lowest COD removal efficiency of bacteria was determined for Bacillus simplex as 94% and for Micrococcus luteus as 70%, respectively at the end of the 96th hour. It was found that COD removal efficiency showed certain differences depend on the bacterial species. It was also observed that B. simplex had the highest COD removal efficiency and it was a suitable bacterium species for bioremediation of a chlorsulfuron contaminated soils. PMID:27262810

  10. Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning.

    PubMed

    Rouet-Leduc, Bertrand; Barros, Kipton; Lookman, Turab; Humphreys, Colin J

    2016-01-01

    A fundamental challenge in the design of LEDs is to maximise electro-luminescence efficiency at high current densities. We simulate GaN-based LED structures that delay the onset of efficiency droop by spreading carrier concentrations evenly across the active region. Statistical analysis and machine learning effectively guide the selection of the next LED structure to be examined based upon its expected efficiency as well as model uncertainty. This active learning strategy rapidly constructs a model that predicts Poisson-Schrödinger simulations of devices, and that simultaneously produces structures with higher simulated efficiencies. PMID:27113018

  11. Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Barros, Kipton; Lookman, Turab; Humphreys, Colin J.

    2016-04-01

    A fundamental challenge in the design of LEDs is to maximise electro-luminescence efficiency at high current densities. We simulate GaN-based LED structures that delay the onset of efficiency droop by spreading carrier concentrations evenly across the active region. Statistical analysis and machine learning effectively guide the selection of the next LED structure to be examined based upon its expected efficiency as well as model uncertainty. This active learning strategy rapidly constructs a model that predicts Poisson-Schrödinger simulations of devices, and that simultaneously produces structures with higher simulated efficiencies.

  12. Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning

    PubMed Central

    Rouet-Leduc, Bertrand; Barros, Kipton; Lookman, Turab; Humphreys, Colin J.

    2016-01-01

    A fundamental challenge in the design of LEDs is to maximise electro-luminescence efficiency at high current densities. We simulate GaN-based LED structures that delay the onset of efficiency droop by spreading carrier concentrations evenly across the active region. Statistical analysis and machine learning effectively guide the selection of the next LED structure to be examined based upon its expected efficiency as well as model uncertainty. This active learning strategy rapidly constructs a model that predicts Poisson-Schrödinger simulations of devices, and that simultaneously produces structures with higher simulated efficiencies. PMID:27113018

  13. Facile Synthesis of Porous Dendritic Bimetallic Platinum-Nickel Nanocrystals as Efficient Catalysts for the Oxygen Reduction Reaction.

    PubMed

    Eid, Kamel; Wang, Hongjing; Malgras, Victor; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Wang, Liang

    2016-05-01

    Certain bimetallic nanocrystals (NCs) possess promising catalytic properties for electrochemical energy conversion. Herein, we report a facile method for the one-step synthesis of porous dendritic PtNi NCs in aqueous solution at room temperature that contrasts with the traditional multistep thermal decomposition approach. The dendritic PtNi NCs assembled by interconnected arms are efficient catalysts for the oxygen reduction reaction. This direct and efficient method is favorable for the up-scaled synthesis of active catalysts used in electrochemical applications. PMID:26879517

  14. Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction.

    PubMed

    Xi, Yue-Ting; Wei, Ping-Jie; Wang, Ru-Chun; Liu, Jin-Gang

    2015-05-01

    Inspired by the multicopper active site of laccase, which efficiently catalyzes the oxygen reduction reaction (ORR), herein we report a novel bio-inspired ORR catalyst composed of a multinuclear copper complex that was immobilized on the surface of reduced graphene oxide (rGO) via the covalently grafted triazole-dipyridine (TADPy) dinucleating ligand. This rGO-TADPyCu catalyst exhibited high ORR activity and superior long-term stability compared to Pt/C in alkaline media. PMID:25825826

  15. Diplogelasinospora grovesii IMI 171018 immobilized in polyurethane foam. An efficient biocatalyst for stereoselective reduction of ketones.

    PubMed

    Quezada, M A; Carballeira, J D; Sinisterra, J V

    2012-05-01

    Diplogelasinospora grovesii has been reported as a very active biocatalyst in the reduction of ketones. Along the text, the properties of this filamentous fungus as an immobilized catalyst are described. For this purpose, several immobilization supports as agar and polyurethane foam were tested. Experimental assays were also performed to test different co-substrates for the regeneration of the required enzyme cofactor. The fungus immobilized in polyurethane foam lead to the most stable and active catalyst. This derivative, using i-PrOH as co-substrate, could be reused at least 18 times without appreciable activity loss (>90% activity remains). Kinetic runs experiments shown that the reduction of cyclohexanone, selected as model substrate, followed a pseudo-first kinetic order and that the rate controlling step was the mass transfer through the cell wall. The deactivation kinetic constants were also determined. The reduction of different chiral ketones showed that the ketone reductase activity followed the Prelog's rule. PMID:22424921

  16. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.

    PubMed

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Klímová, Kateřina; Macková, Anna; Pumera, Martin

    2014-07-22

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in the fields of energy generation and sensing. Metal-doped graphenes, where metal serves as the catalytic center and graphene as the high area conductor, have been used as electrocatalysts for such applications. In this paper, we investigated the use of uranium-graphene and thorium-graphene hybrids prepared by a simple and scalable method. The hybrids were synthesized by the thermal exfoliation of either uranium- or thorium-doped graphene oxide in various atmospheres. The synthesized graphene hybrids were characterized by high-resolution XPS, SEM, SEM-EDS, combustible elemental analysis, and Raman spectroscopy. The influence of dopant and exfoliation atmosphere on electrocatalytic activity was determined by electrochemical measurements. Both hybrids exhibited excellent electrocatalytic properties toward oxygen and hydrogen peroxide reduction, suggesting that actinide-based graphene hybrids have enormous potential for use in energy conversion and sensing devices. PMID:24979344

  17. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  18. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Wanner, Christoph; Zink, Sonja; Eggenberger, Urs; Mäder, Urs

    2012-04-01

    In Thun, Switzerland, a permeable reactive barrier (PRB) for Cr(VI) reduction by gray cast iron was installed in May 2008. The PRB is composed of a double array of vertical piles containing iron shavings and gravel. The aquifer in Thun is almost saturated with dissolved oxygen and the groundwater flow velocities are ca. 10-15 m/day. Two years after PRB installation Cr(VI) concentrations still permanently exceed the Swiss threshold value for contaminated sites downstream of the barrier at selected localities. Groundwater δ53/52CrSRM979 measurements were used to track Cr(VI) reduction induced by the PRB. δ53/52CrSRM979 values of two samples downstream of the PRB showed a clear fractionation towards more positive values compared to four samples from the hotspot, which is clear evidence of Cr(VI) reduction induced by the PRB. Another downstream sample did not show a shift to more positive δ53/52CrSRM979 values. Because this latter location correlates with the highest downstream Cr(VI) concentration it is proposed that a part of the Cr(VI) plume is bypassing the barrier. Using a Rayleigh fractionation model a minimum present-day overall Cr(VI) reduction efficiency of ca. 15% was estimated. A series of 2D model simulations, including the fractionation of Cr isotopes, confirm that only a PRB bypass of parts of the Cr(VI) plume can lead to the observed values. Additionally, the simulations revealed that the proposed bypass occurs due to an insufficient permeability of the individual PRB piles. It is concluded that with this type of PRB a complete and long-lasting Cr(VI) reduction is extremely difficult to achieve for Cr(VI) contaminations located in nearly oxygen and calcium carbonate saturated aquifer in a regime of high groundwater velocities. Additional remediation action would limit the environmental impact and allow to reach target concentrations.

  19. A Fast and Key-Efficient Reduction of Chosen-Ciphertext to Known-Plaintext Security

    NASA Astrophysics Data System (ADS)

    Maurer, Ueli; Sjödin, Johan

    Motivated by the quest for reducing assumptions in security proofs in cryptography, this paper is concerned with designing efficient symmetric encryption and authentication schemes based on any weak pseudorandom function (PRF) which can be much more efficiently implemented than PRFs. Damgård and Nielsen (CRYPTO '02) have shown how to construct an efficient symmetric encryption scheme based on any weak PRF that is provably secure against chosen-plaintext attacks. The main ingredient is a range-extension construction for weak PRFs. By using well-known techniques, they also showed how their scheme can be made secure against the stronger chosen-ciphertext attacks.

  20. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2013-08-01

    Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900-1000 °C using a lab-scale reactor with varying concentrations of Na(2)CO(3) at different melting temperatures and melting times. The optimum Na(2)CO(3) dosage and melting temperature for efficient lead recovery was 0.5 g per 1g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1M HCl, and the lead recovery improved to 98%. PMID:23711698

  1. Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Wang, Lixia; Zhao, Fei; Hu, Chuangang; Zhao, Yang; Zhang, Zhipan; Chen, Shilu; Shi, Gaoquan; Qu, Liangti

    2015-02-01

    Atomically thick two-dimensional materials have been increasingly attracting research interest not only due to their promising applications in a range of functional devices but also to their theoretical value to unraveling the catalytic electron transfer process within a simplified scenario. In this work, the monoatomic-thick dot-sized graphitic carbon nitride (g-C3N4) has been synthesized and intimately contacted to the basal plane of the graphene sheet to form the monolayer g-C3N4 dots@graphene (MTCG). The electrocatalytic activity of the MTCG in the oxygen reduction reaction is found to rival that of the commercial Pt/C catalyst in terms of the catalytic current density and half-wave potential. The density functional theory calculations confirm the catalytic improvement of the MTCG originates from a higher efficiency for the reduction of OOH- than that of the g-C3N4 alone; therefore, the current work is expected to provide new insights in developing next-generation, highly efficient catalysts for the oxygen reduction reaction.Atomically thick two-dimensional materials have been increasingly attracting research interest not only due to their promising applications in a range of functional devices but also to their theoretical value to unraveling the catalytic electron transfer process within a simplified scenario. In this work, the monoatomic-thick dot-sized graphitic carbon nitride (g-C3N4) has been synthesized and intimately contacted to the basal plane of the graphene sheet to form the monolayer g-C3N4 dots@graphene (MTCG). The electrocatalytic activity of the MTCG in the oxygen reduction reaction is found to rival that of the commercial Pt/C catalyst in terms of the catalytic current density and half-wave potential. The density functional theory calculations confirm the catalytic improvement of the MTCG originates from a higher efficiency for the reduction of OOH- than that of the g-C3N4 alone; therefore, the current work is expected to provide new insights

  2. Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction.

    PubMed

    Wu, Longfei; Feng, Hongbin; Liu, Mengjia; Zhang, Kaixiang; Li, Jinghong

    2013-11-21

    A facile and straightforward approach is developed for the construction of graphene-based hollow spheres. An electron rich sodium-ammonia solution is used to effectively restore the π-conjugation of graphene. The hollow spheres exhibit excellent electrocatalytic activity towards oxygen reduction without catalyst deactivation. PMID:24089043

  3. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction.

    PubMed

    McSkimming, Alex; Colbran, Stephen B

    2013-06-21

    In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid. PMID:23507957

  4. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  5. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    SciTech Connect

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  6. The Enhancement of spin Hall torque efficiency and Reduction of Gilbert damping in spin Hall metal/normal metal/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.

  7. Improvement of light extraction efficiency and reduction of driving voltage in organic light emitting diodes using a plasmonic crystal

    SciTech Connect

    Okamoto, Takayuki; Shinotsuka, Kei

    2014-03-03

    Two-dimensional periodic corrugation was introduced into the surface of metallic cathodes of organic light-emitting diodes (OLEDs) to extract surface plasmon energy, which is trapped in that surface, as free-space photons. The dependence of the improvement factor of the emission efficiency on the modulation depth of the corrugation was systematically investigated. The corrugation was fabricated by using a colloidal lithography technique, which can be easily applied to a wide area. The obtained maximum improvement factor in current efficiency was 1.67 for an OLED with a 40 nm modulation depth, whereas the improvement in power efficiency was 2.35 for an OLED with a 60 nm modulation depth. We attributed the former improvement factor purely to optical effects and the latter to both optical and electrical effects, namely, a reduction of the electrical resistance of the organic layers due to the introduced corrugation.

  8. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    PubMed Central

    2012-01-01

    Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of

  9. Automated boiler combustion controls for emission reduction and efficiency improvement. Quarterly report, August 15--November 15, 1995

    SciTech Connect

    1995-12-31

    Control Techtronics International (CTI) is conducting a project to reduce air emissions and increase efficiency in coal fired boilers in Krakow, Poland and to create a commercial venture in Poland which can act as a leader for efficient combustion in boilers throughout the region. To achieve the technical goals of the project, CTI will use a three part program as follows: analyze the fuel specifications of a given plant and recommend modifications as necessary; apply automatic combustion controls systems to the boilers; and train plant operators in proper plant operation as well as proper use of control systems. To achieve the commercial goals, CTI will form a commercial venture in Poland to market and service the CTI program after successful demonstration.

  10. Novel nanowire-structured polypyrrole-cobalt composite as efficient catalyst for oxygen reduction reaction.

    PubMed

    Yuan, Xianxia; Li, Lin; Ma, Zhong; Yu, Xuebin; Wen, Xiufang; Ma, Zi-Feng; Zhang, Lei; Wilkinson, David P; Zhang, Jiujun

    2016-01-01

    A novel nanowire-structured polypyrrole-cobalt composite, PPy-CTAB-Co, is successfully synthesized with a surfactant of cetyltrimethylammounium bromide (CTAB). As an electro-catalyst towards oxygen reduction reaction (ORR) in alkaline media, this PPy-CTAB-Co demonstrates a superior ORR performance when compared to that of granular PPy-Co catalyst and also a much better durability than the commercial 20 wt% Pt/C catalyst. Physiochemical characterization indicates that the enhanced ORR performance of the nanowire PPy-CTAB-Co can be attributed to the high quantity of Co-pyridinic-N groups as ORR active sites and its large specific surface area which allows to expose more active sites for facilitating oxygen reduction reaction. It is expected this PPy-CTAB-Co would be a good candidate for alkaline fuel cell cathode catalyst. PMID:26860889

  11. Facile Fabrication of N-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Liao, Yongliang; Gao, Yuan; Zhu, Shenmin; Zheng, Junsheng; Chen, Zhixin; Yin, Chao; Lou, Xianghong; Zhang, Di

    2015-09-01

    A facile bottom-up method is reported here for the fabrication of N-doped graphene for oxygen reduction. It consists of a two-step calcination strategy and uses α-hydroxy acids (AHAs) as carbon source and melamine as nitrogen source. Three different AHAs, malic acid, tartaric acid, and citric acid, were chosen as the carbon sources. The prepared N-doped graphenes have a typical thin layered structure with a large specific surface area. It was found that the N content in the obtained N-doped graphenes varies from 4.12 to 8.11 at. % depending on the AHAs used. All of the samples showed high performance in oxygen reduction reaction (ORR). The N-doped graphene prepared from citric acid demonstrated the highest electrocatalytic activity, which is comparable to the commercial Pt/C and exhibited good durability, attributing to the high pyridinic N content in the composite. PMID:26291928

  12. Novel nanowire-structured polypyrrole-cobalt composite as efficient catalyst for oxygen reduction reaction

    PubMed Central

    Yuan, Xianxia; Li, Lin; Ma, Zhong; Yu, Xuebin; Wen, Xiufang; Ma, Zi-Feng; Zhang, Lei; Wilkinson, David P.; Zhang, Jiujun

    2016-01-01

    A novel nanowire-structured polypyrrole-cobalt composite, PPy-CTAB-Co, is successfully synthesized with a surfactant of cetyltrimethylammounium bromide (CTAB). As an electro-catalyst towards oxygen reduction reaction (ORR) in alkaline media, this PPy-CTAB-Co demonstrates a superior ORR performance when compared to that of granular PPy-Co catalyst and also a much better durability than the commercial 20 wt% Pt/C catalyst. Physiochemical characterization indicates that the enhanced ORR performance of the nanowire PPy-CTAB-Co can be attributed to the high quantity of Co-pyridinic-N groups as ORR active sites and its large specific surface area which allows to expose more active sites for facilitating oxygen reduction reaction. It is expected this PPy-CTAB-Co would be a good candidate for alkaline fuel cell cathode catalyst. PMID:26860889

  13. Novel nanowire-structured polypyrrole-cobalt composite as efficient catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Xianxia; Li, Lin; Ma, Zhong; Yu, Xuebin; Wen, Xiufang; Ma, Zi-Feng; Zhang, Lei; Wilkinson, David P.; Zhang, Jiujun

    2016-02-01

    A novel nanowire-structured polypyrrole-cobalt composite, PPy-CTAB-Co, is successfully synthesized with a surfactant of cetyltrimethylammounium bromide (CTAB). As an electro-catalyst towards oxygen reduction reaction (ORR) in alkaline media, this PPy-CTAB-Co demonstrates a superior ORR performance when compared to that of granular PPy-Co catalyst and also a much better durability than the commercial 20 wt% Pt/C catalyst. Physiochemical characterization indicates that the enhanced ORR performance of the nanowire PPy-CTAB-Co can be attributed to the high quantity of Co-pyridinic-N groups as ORR active sites and its large specific surface area which allows to expose more active sites for facilitating oxygen reduction reaction. It is expected this PPy-CTAB-Co would be a good candidate for alkaline fuel cell cathode catalyst.

  14. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    SciTech Connect

    Wang, Qi; Ma, Dongge Ding, Junqiao; Wang, Lixiang; Leo, Karl; Qiao, Qiquan; Jia, Huiping; Gnade, Bruce E.

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye → green dye → red host → red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1 ± 0.8% and power efficiency of 37.5 ± 1.4 lm/W but shows no color shift over a wide range of voltages.

  15. Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO2-x Single Crystals.

    PubMed

    Liu, Chang; Zhang, Ai-Yong; Pei, Dan-Ni; Yu, Han-Qing

    2016-05-17

    TiO2 is a typical semiconductor and has been extensively used as an effective photocatalyst for environmental pollution control. But it could not be used as an electrochemical reductive catalyst because of its low electric conductivity and electrocatalytic activity. In this work, however, we demonstrate that TiO2 can act as an excellent cathodic electrocatalyst when its crystal shape, exposed facet and oxygen-stoichiometry are finely tailored by the local geometric and electronic structures. The defect-engineered TiO2-x single crystals dominantly exposed by high-energy {001} facets exhibits a high cathodic activity and great stability for electrochemical reduction of nitrobenzene, a typical refractory pollutant with high toxicity in environment. The single crystalline structure, the high-energy {001} facet and the defective oxygen vacancy of the defect-engineered TiO2-x single crystals are found to be mainly responsible for their cathodic superiority. With the findings in this work, a more practical non-Pd cathodic electrocatalyst could be prepared and applied for electrocatalytic reduction of refractory pollutants in water and wastewater, and extend the promising applications of TiO2 in the fields of environmental science. PMID:27128346

  16. Technological steps reduction in the fabrication of high efficiency GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Gavand, M.; Mayet, L.; Montegu, B.; Laugier, A.

    A simplified method to make high-efficiency GaAs solar cells by isothermal liquid-phase epitaxy has been investigated. A graded GaAlAs window layer was grown by isothermal contact between a Be-doped GaAlAs melt and a n-type GaAs substrate. With the aim of further reducing the fabrication cost, attempts were made to grow the junction and the window on the as-cut side of the wafers; with small modifications in the cleaning process, efficiencies up to 20 percent were obtained. The following substrates were considered: polycrystalline, chemically/mechanically polished monocrystalline, and buffer layer. The best efficiency of 22.7 percent (under 24 suns AM1.5, 25 deg C) was obtained when buffer-layer substrates were used.

  17. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. Waiting and Weighting: Information Sampling Is a Balance between Efficiency and Error-Reduction

    ERIC Educational Resources Information Center

    Meier, Kimberly M.; Blair, Mark R.

    2013-01-01

    The current study investigates the relative extent to which information utility and planning efficiency guide information-sampling strategies in a classification task. Prior research has pointed to the importance of probability gain, the degree to which sampling a feature reduces the chance of error, in contexts where participants are restricted…

  20. Octahedral Ni-nanocluster (Ni85) for Efficient and Selective Reduction of Nitric Oxide (NO) to Nitrogen (N2).

    PubMed

    Mahata, Arup; Rawat, Kuber Singh; Choudhuri, Indrani; Pathak, Biswarup

    2016-01-01

    Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3. PMID:27157072

  1. Octahedral Ni-nanocluster (Ni85) for Efficient and Selective Reduction of Nitric Oxide (NO) to Nitrogen (N2)

    PubMed Central

    Mahata, Arup; Rawat, Kuber Singh; Choudhuri, Indrani; Pathak, Biswarup

    2016-01-01

    Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3. PMID:27157072

  2. Octahedral Ni-nanocluster (Ni85) for Efficient and Selective Reduction of Nitric Oxide (NO) to Nitrogen (N2)

    NASA Astrophysics Data System (ADS)

    Mahata, Arup; Rawat, Kuber Singh; Choudhuri, Indrani; Pathak, Biswarup

    2016-05-01

    Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3.

  3. Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc

    NASA Astrophysics Data System (ADS)

    Jin, Fangming; Zeng, Xu; Liu, Jianke; Jin, Yujia; Wang, Lunying; Zhong, Heng; Yao, Guodong; Huo, Zhibao

    2014-03-01

    Artificial photosynthesis, specifically H2O dissociation for CO2 reduction with solar energy, is regarded as one of the most promising methods for sustainable energy and utilisation of environmental resources. However, a highly efficient conversion still remains extremely challenging. The hydrogenation of CO2 is regarded as the most commercially feasible method, but this method requires either exotic catalysts or high-purity hydrogen and hydrogen storage, which are regarded as an energy-intensive process. Here we report a highly efficient method of H2O dissociation for reducing CO2 into chemicals with Zn powder that produces formic acid with a high yield of approximately 80%, and this reaction is revealed for the first time as an autocatalytic process in which an active intermediate, ZnH- complex, serves as the active hydrogen. The proposed process can assist in developing a new concept for improving artificial photosynthetic efficiency by coupling geochemistry, specifically the metal-based reduction of H2O and CO2, with solar-driven thermochemistry for reducing metal oxide into metal.

  4. Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc

    PubMed Central

    Jin, Fangming; Zeng, Xu; Liu, Jianke; Jin, Yujia; Wang, Lunying; Zhong, Heng; Yao, Guodong; Huo, Zhibao

    2014-01-01

    Artificial photosynthesis, specifically H2O dissociation for CO2 reduction with solar energy, is regarded as one of the most promising methods for sustainable energy and utilisation of environmental resources. However, a highly efficient conversion still remains extremely challenging. The hydrogenation of CO2 is regarded as the most commercially feasible method, but this method requires either exotic catalysts or high-purity hydrogen and hydrogen storage, which are regarded as an energy-intensive process. Here we report a highly efficient method of H2O dissociation for reducing CO2 into chemicals with Zn powder that produces formic acid with a high yield of approximately 80%, and this reaction is revealed for the first time as an autocatalytic process in which an active intermediate, ZnH− complex, serves as the active hydrogen. The proposed process can assist in developing a new concept for improving artificial photosynthetic efficiency by coupling geochemistry, specifically the metal-based reduction of H2O and CO2, with solar-driven thermochemistry for reducing metal oxide into metal. PMID:24675820

  5. Reduction of solar cell efficiency by bulk defects across the back-surface-field junction

    NASA Technical Reports Server (NTRS)

    Sah, C. T.; Yamakawa, K. A.; Lutwack, R.

    1982-01-01

    The degradation of solar cell performance due to bulk defects distributed across the back-surface field junction is analyzed in terms of a three-region developed-perimeter model. Families of curves are computed and their physical significance is discussed in detail with reference to three parameters used to characterize the defects: defect area, defect density, and defect surface recombination velocity. A reduction in the open-circuit voltage due to the presence of a defect is expressed as a function of the defect area, density, cell thickness, and defect surface recombination velocity. Numerical examples are presented to illustrate the importance of the particular defect parameters.

  6. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  7. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    NASA Astrophysics Data System (ADS)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  8. Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile.

    PubMed

    Yu, Lei; Zhang, Qi; Li, Shu-Shuang; Huang, Jun; Liu, Yong-Mei; He, He-Yong; Cao, Yong

    2015-09-21

    Developing new efficient catalytic systems to convert abundant and renewable feedstocks into valuable products in a compact, flexible, and target-specific manner is of high importance in modern synthetic chemistry. Here, we describe a versatile set of mild catalytic conditions utilizing a single gold-based solid catalyst that enables the direct and additive-free preparation of four distinct and important amine derivatives (amines, formamides, benzimidazoles, and dimethlyated amines) from readily available formic acid (FA) and nitro starting materials with high level of chemoselectivity. By controlling the stoichiometry of the employed FA, which has attracted considerable interest in the area of sustainable chemistry because of its potential as an entirely renewable hydrogen carrier and as a versatile C1 source, a facile atom- and step-efficient transformation of nitro compounds can be realized in a modular fashion. PMID:26224033

  9. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects

    DOE PAGESBeta

    Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; Zhang, Pengfei; Lutterman, Daniel A.; Rosenthal, Joel; Overbury, Steven H.; Dai, Sheng; Zhu, Huiyuan

    2016-08-08

    Here we report an efficient electrochemical conversion of CO2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi3+ species) formed during the synthesis and purification process hinders the CO2 reduction, leading to a 20% drop in Faradaic efficiency for CO evolution (FECO). Bimore » particle size showed a significant effect on FECO when the surface of Bi was air-oxidized, but this effect of size on FECO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO2 to CO (96.1% FECO), and a mass activity for CO evolution (MACO) of 15.6 mA mg–1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO2 conversion on metal NPs and paves the way for understanding the CO2 electrochemical reduction mechanism in nonaqueous media.« less

  10. Infrared reduction, an efficient method to control the non-linear optical property of graphene oxide in femtosecond regime

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.

    2016-04-01

    Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.

  11. An examination of factors contributing to a reduction in subgroup differences on a constructed-response paper-and-pencil test of scholastic achievement.

    PubMed

    Edwards, Bryan D; Arthur, Winfred

    2007-05-01

    The authors investigated subgroup differences on a multiple-choice and constructed-response test of scholastic achievement in a sample of 197 African American and 258 White test takers. Although both groups had lower mean scores on the constructed-response test, the results showed a 39% reduction in subgroup differences compared with the multiple-choice test. The results demonstrate that the lower subgroup differences were explained by more favorable test perceptions for African Americans on the constructed-response test. In addition, the two test formats displayed comparable levels of criterion-related validity. The results suggest that the constructed-response test format may be a viable alternative to the traditional multiple-choice test format in efforts to simultaneously use valid predictors of performance and minimize subgroup differences in high-stakes testing. PMID:17484558

  12. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.

    PubMed

    Song, Jinliang; Zhou, Baowen; Zhou, Huacong; Wu, Lingqiao; Meng, Qinglei; Liu, Zhimin; Han, Buxing

    2015-08-01

    The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5 nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA. PMID:26177726

  13. Understanding Iron-based catalysts with efficient Oxygen reduction activity from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Hafiz, Hasnain; Barbiellini, B.; Jia, Q.; Tylus, U.; Strickland, K.; Bansil, A.; Mukerjee, S.

    2015-03-01

    Catalysts based on Fe/N/C clusters can support the oxygen-reduction reaction (ORR) without the use of expensive metals such as platinum. These systems can also prevent some poisonous species to block the active sites from the reactant. We have performed spin-polarized calculations on various Fe/N/C fragments using the Vienna Ab initio Simulation Package (VASP) code. Some results are compared to similar calculations obtained with the Gaussian code. We investigate the partial density of states (PDOS) of the 3d orbitals near the Fermi level and calculate the binding energies of several ligands. Correlations of the binding energies with the 3d electronic PDOS's are used to propose electronic descriptors of the ORR associated with the 3d states of Fe. We also suggest a structural model for the most active site with a ferrous ion (Fe2+) in the high spin state or the so-called Doublet 3 (D3).

  14. Resonant gate driver with efficient gate energy recovery and switching loss reduction

    NASA Astrophysics Data System (ADS)

    Kim, I.-G.; Kwak, S.-S.

    2016-04-01

    This article describes a novel resonant gate driver for charging the gate capacitor of power metal-oxide semiconductor field-effect-transistors (MOSFETs) that operate at a high switching frequency in power converters. The proposed resonant gate driver is designed with three small MOSFETs to build up the inductor current in addition to an inductor for temporary energy storage. The proposed resonant gate driver recovers the CV2 gate loss, which is the largest loss dissipated in the gate resistance in conventional gate drivers. In addition, the switching loss is reduced at the instants of turn on and turn off in the power MOSFETs of power converters by using the proposed gate driver. Mathematical analyses of the total loss appearing in the gate driver circuit and the switching loss reduction in the power switch of power converters are discussed. Finally, the proposed resonant gate driver is verified with experimental results at a switching frequency of 1 MHz.

  15. Effect of geometrical uncertainties on the performance of heat exchangers using an efficient POD-based model reduction technique

    NASA Astrophysics Data System (ADS)

    Abraham, S.; Ghorbaniasl, G.; Raisee, M.; Lacor, C.

    2016-06-01

    The present paper aims at assessing the effect of manufacturing tolerances on the performance of heat exchangers. To this end, a two-dimensional square rib-roughened cooling channel is considered and uncertainties are introduced along the rib profile, using a Karhunen-Loéve expansion including 20 uncertainties. In order to break the curse of dimensionality and keep the overall computational cost within acceptable limits, an efficient uncertainty quantification strategy is followed. A sensitivity analysis is first performed on a coarse grid, enabling the most important dimension to be identified and to remove the ones which have not any significant effect on the output of interest. Afterwards, an efficient Proper Orthogonal Decomposition based dimension reduction technique is implemented in order to propagate uncertainties through the CFD model. It is shown that heat transfer predictions are strongly affected by geometrical uncertainties while no significant effect was found for the pressure drop.

  16. Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Huanhuan; Liu, Xiangqian; He, Guangli; Zhang, Xiaoxing; Bao, Shujuan; Hu, Weihua

    2015-04-01

    Efficient electrocatalyst of oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and heteroatom-doped carbon materials have demonstrated promising catalytic performance towards ORR. In this paper we report a bioinspired method to synthesize nitrogen/sulfur (N/S) co-doped graphene as an efficient ORR electrocatalyst via self-polymerization of polydopamine (PDA) thin layer on graphene oxide sheets, followed by reacting with cysteine and finally thermal annealing in Argon (Ar) atmosphere. As-prepared N/S co-doped graphene exhibits significantly enhanced ORR catalytic activity in alkaline solution compared with pristine graphene or N-doped graphene. It also displays long-term operation stability and strong tolerance to methanol poison effect, indicating it a promising ORR electrocatalyst.

  17. Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I.

    PubMed

    Martin-Higueras, Cristina; Luis-Lima, Sergio; Salido, Eduardo

    2016-04-01

    Primary hyperoxaluria type 1 (PH1) is caused by deficient alanine-glyoxylate aminotransferase, the human peroxisomal enzyme that detoxifies glyoxylate. Glycolate is one of the best-known substrates leading to glyoxylate production, via peroxisomal glycolate oxidase (GO). Using genetically modified mice, we herein report GO as a safe and efficient target for substrate reduction therapy (SRT) in PH1. We first generated a GO-deficient mouse (Hao1(-/-)) that presented high urine glycolate levels but no additional phenotype. Next, we produced double KO mice (Agxt1(-/-) Hao1(-/-)) that showed low levels of oxalate excretion compared with hyperoxaluric mice model (Agxt1(-/-)). Previous studies have identified some GO inhibitors, such as 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole (CCPST). We herein report that CCPST inhibits GO in Agxt1(-/-) hepatocytes and significantly reduces their oxalate production, starting at 25 µM. We also tested the ability of orally administered CCPST to reduce oxalate excretion in Agxt1(-/-) mice, showing that 30-50% reduction in urine oxalate can be achieved. In summary, we present proof-of-concept evidence for SRT in PH1. These encouraging results should be followed by a medicinal chemistry programme that might yield more potent GO inhibitors and eventually could result in a pharmacological treatment for this rare and severe inborn error of metabolism. PMID:26689264

  18. Combustion efficiency: Greenhouse gas emission reductions from the power generation sector

    SciTech Connect

    Kane, R.; South, D.W.; Fish, A.L.

    1993-12-31

    Concern for the possibility of an enhanced greenhouse effect and global climate change (GCC) has often been associated with energy use in general, and fossil fuel combustion in particular, because of associated emissions of CO{sub 2} and other greenhouse gases (GHG). Therefore, energy policies play a significant role in determining greenhouse gas emissions. The generation of electricity and power from more efficient fossil energy technologies provides an opportunity to significantly lower GHG emissions, together with other pollutants. The U.S. government oversees a broad-based program to facilitate the development, demonstration, and deployment of these technologies. Advanced fossil technologies offer other benefits as well, in that they permit continued use of widely available fuels such as coal. An international perspective is critical for assessing the role of these fuels, since countries differ in terms of their ability to maximize these benefits. Often, new technologies are considered the domain of industrialized countries. Yet more efficient technologies may have their greatest potential - to concurrently permit the utilization of indigenous fuels and to lower global GHG emissions in developing countries, especially those in the Asia-Pacific region.

  19. Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water.

    PubMed

    Weigelhofer, Gabriele; Hein, Thomas

    2015-09-01

    A laboratory column experiment was conducted to test the efficiency of denitrifying bioreactors for the nitrate (NO3-N) removal in drainage waters at different flow rates and after desiccation. In addition, we investigated detrimental side effects in terms of the release of nitrite (NO2-N), ammonium (NH4-N), phosphate (PO4-P), dissolved organic carbon (DOC), methane (CH4), and dinitrogen oxide (N2O). The NO3-N removal efficiency decreased with increasing NO3-N concentrations, increasing flow rates, and after desiccation. Bioreactors with purely organic fillings showed higher NO3-N removal rates (42.6-55.7 g NO3-N m(-3) day(-1)) than those with organic and inorganic fillings (6.5-21.4 g NO3-N m(-3) day(-1)). The release of NO2-N and DOC was considerable and resulted in concentrations of up to 800 μg NO2-N L(-1)and 25 mg DOC L(-1) in the effluent water. N2O concentrations increased by 4.0 to 15.3 μg N2O-N L(-1) between the influent and the effluent, while CH4 production rates were low. Our study confirms the high potential of denitrifying bioreactors to mitigate NO3-N pollution in drainage waters, but highlights also the potential risks for the environment. PMID:25943519

  20. Medicare and Medicaid programs; regulatory provisions to promote program efficiency, transparency, and burden reduction; Part II.

    PubMed

    2014-05-12

    This final rule reforms Medicare regulations that CMS has identified as unnecessary, obsolete, or excessively burdensome on health care providers and suppliers, as well as certain regulations under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). This final rule also increases the ability of health care professionals to devote resources to improving patient care, by eliminating or reducing requirements that impede quality patient care or that divert resources away from providing high quality patient care. We are issuing this rule to achieve regulatory reforms under Executive Order 13563 on improving regulation and regulatory review and the Department's plan for retrospective review of existing rules. This is the latest in a series of rules developed by CMS over the last 5 years to reform existing rules to reduce unnecessary costs and increase flexibility for health care providers. PMID:24818301

  1. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    PubMed Central

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Mieke W. J.; Benes, Nieck E.; Koper, Marc T. M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas–liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology. PMID:26888578

  2. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NASA Astrophysics Data System (ADS)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Mieke W. J.; Benes, Nieck E.; Koper, Marc T. M.; Mul, Guido

    2016-02-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas-liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology.

  3. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction.

    PubMed

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Mieke W J; Benes, Nieck E; Koper, Marc T M; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas-liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology. PMID:26888578

  4. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction.

    PubMed

    Yang, Zhi; Yao, Zhen; Li, Guifa; Fang, Guoyong; Nie, Huagui; Liu, Zheng; Zhou, Xuemei; Chen, Xi'an; Huang, Shaoming

    2012-01-24

    Tailoring the electronic arrangement of graphene by doping is a practical strategy for producing significantly improved materials for the oxygen-reduction reaction (ORR) in fuel cells (FCs). Recent studies have proven that the carbon materials doped with the elements, which have the larger (N) or smaller (P, B) electronegative atoms than carbon such as N-doped carbon nanotubes (CNTs), P-doped graphite layers and B-doped CNTs, have also shown pronounced catalytic activity. Herein, we find that the graphenes doped with the elements, which have the similar electronegativity with carbon such as sulfur and selenium, can also exhibit better catalytic activity than the commercial Pt/C in alkaline media, indicating that these doped graphenes hold great potential for a substitute for Pt-based catalysts in FCs. The experimental results are believed to be significant because they not only give further insight into the ORR mechanism of these metal-free doped carbon materials, but also open a way to fabricate other new low-cost NPMCs with high electrocatalytic activity by a simple, economical, and scalable approach for real FC applications. PMID:22201338

  5. POD-Based Model Reduction toward Efficient Simulation of Flow in NuclearReactor Components

    NASA Astrophysics Data System (ADS)

    Ahmadpoor, Mohammad; Banyay, Greg; Mazumdar, Sagnik; Jana, Anirban; Kimber, Mark; Brigham, John

    2013-11-01

    The long-term objective of this research is reduced-order modeling (ROM) to simulate and understand the turbulent mixing inside the lower plenum of a Very High Temperature Reactor, while the present study focuses on confined isothermal jet flow. In general, two steps are required to generate a basis for a ROM: (1) acquisition of an ensemble of possible solution fields for the system; and (2) extracting key features of the ensemble to create the basis. Proper Orthogonal Decomposition (POD) is one approach for extracting features from an ensemble. For this work POD is used to capture the parametric variation of a flow with Reynolds (Re) number and time. Two approaches are considered for model reduction: (1) a regression-based approach, which does not keep the mathematical structure of the modeling, but rather uses interpolation and/or extrapolation to predict flow fields at different Re number or different times and (2) a Galerkin-projection approach in which the Navier-Stokes equations are projected onto the POD modes to obtain low-dimensional ordinary differential equations to represent the fluid flow under conditions outside of the original ensemble.

  6. Achievement of an efficient 1053 nm Nd:YLF polarized laser based on different thermal lensing effects

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Xu, Shan; Huang, Chenghui; Chen, Weidong; Zhuang, Fengjiang; Huang, Lingxiong; Chen, Zhenqiang; Zhang, Ge

    2012-09-01

    The negative and positive thermal focal lengths for 1047 nm and 1053 nm were respectively demonstrated through analyzing different thermal lensing effects along the π- and σ-polarizations in a plane-parallel resonator. A compact and efficient diode-end-pumped 1053 nm Nd:YLF polarized laser is presented. As high as 11.2 W output power of the polarized 1053 nm laser has been obtained at an absorbed pump power of 22.3 W with an optical-optical efficiency of 50% and a slope efficiency of 53%. With the aid of a ray propagation matrix and a λ/4 wave plate, different thermal lensing effects for the π- and σ-polarizations have been theoretically analyzed and experimentally verified.

  7. The Impacts of Budget Reductions on Indiana's Public Schools: The Impact of Budget Changes on Student Achievement, Personnel, and Class Size for Public School Corporations in the State of Indiana

    ERIC Educational Resources Information Center

    Jarman, Del W.; Boyland, Lori G.

    2011-01-01

    In recent years, economic downturn and changes to Indiana's school funding have resulted in significant financial reductions in General Fund allocations for many of Indiana's public school corporations. The main purpose of this statewide study is to examine the possible impacts of these budget reductions on class size and student achievement. This…

  8. Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology

    SciTech Connect

    2010-01-12

    Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

  9. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  10. Rod Visual Pigment Optimizes Active State to Achieve Efficient G Protein Activation as Compared with Cone Visual Pigments*

    PubMed Central

    Kojima, Keiichi; Imamoto, Yasushi; Maeda, Ryo; Yamashita, Takahiro; Shichida, Yoshinori

    2014-01-01

    Most vertebrate retinas contain two types of photoreceptor cells, rods and cones, which show different photoresponses to mediate scotopic and photopic vision, respectively. These cells contain different types of visual pigments, rhodopsin and cone visual pigments, respectively, but little is known about the molecular properties of cone visual pigments under physiological conditions, making it difficult to link the molecular properties of rhodopsin and cone visual pigments with the differences in photoresponse between rods and cones. Here we prepared bovine and mouse rhodopsin (bvRh and mRh) and chicken and mouse green-sensitive cone visual pigments (cG and mG) embedded in nanodiscs and applied time-resolved fluorescence spectroscopy to compare their Gt activation efficiencies. Rhodopsin exhibited greater Gt activation efficiencies than cone visual pigments. Especially, the Gt activation efficiency of mRh was about 2.5-fold greater than that of mG at 37 °C, which is consistent with our previous electrophysiological data of knock-in mice. Although the active state (Meta-II) was in equilibrium with inactive states (Meta-I and Meta-III), quantitative determination of Meta-II in the equilibrium showed that the Gt activation efficiency per Meta-II of bvRh was also greater than those of cG and mG. These results indicated that efficient Gt activation by rhodopsin, resulting from an optimized active state of rhodopsin, is one of the causes of the high amplification efficiency of rods. PMID:24375403

  11. Chronotype and Improved Sleep Efficiency Independently Predict Depressive Symptom Reduction after Group Cognitive Behavioral Therapy for Insomnia

    PubMed Central

    Bei, Bei; Ong, Jason C.; Rajaratnam, Shantha M.W.; Manber, Rachel

    2015-01-01

    Study Objectives: Cognitive behavioral therapy for insomnia (CBT-I) has been shown to improve both sleep and depressive symptoms, but predictors of depression outcome following CBT-I have not been well examined. This study investigated how chronotype (i.e., morningness-eveningness trait) and changes in sleep efficiency (SE) were related to changes in depressive symptoms among recipients of CBT-I. Methods: Included were 419 adult insomnia outpatients from a sleep disorders clinic (43.20% males, age mean ± standard deviation = 48.14 ± 14.02). All participants completed the Composite Scale of Morningness and attended at least 4 sessions of a 6-session group CBT-I. SE was extracted from sleep diary; depressive symptoms were assessed using the Beck Depression Inventory (BDI) prior to (Baseline), and at the end (End) of intervention. Results: Multilevel structural equation modeling revealed that from Baseline to End, SE increased and BDI decreased significantly. Controlling for age, sex, BDI, and SE at Baseline, stronger evening chronotype and less improvement in SE significantly and uniquely predicted less reduction in BDI from Baseline to End. Chronotype did not predict improvement in SE. Conclusions: In an insomnia outpatient sample, SE and depressive symptoms improved significantly after a CBT-I group intervention. All chronotypes benefited from sleep improvement, but those with greater eveningness and/or less sleep improvement experienced less reduction in depressive symptom severity. This suggests that evening preference and insomnia symptoms may have distinct relationships with mood, raising the possibility that the effect of CBT-I on depressive symptoms could be enhanced by assessing and addressing circadian factors. Citation: Bei B, Ong JC, Rajaratnam SM, Manber R. Chronotype and improved sleep efficiency independently predict depressive symptom reduction after group cognitive behavioral therapy for insomnia. J Clin Sleep Med 2015;11(9):1021–1027. PMID

  12. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  13. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction

    SciTech Connect

    Jennifer Rumsey

    2005-12-31

    Cummins Inc. is a world leader in the development and production of diesel engines for on-highway vehicles, off-highway industrial machines, and power generation units. Cummins Inc. diesel products cover a 50-3000 HP range. The power range for this project includes 174-750 HP to achieve EPA's Tier 3 emission levels of 4.0 NOx+NMHC gm/kW-hr and 0.2 PM gm/kWhr and Tier 4 Interim emission levels of 2.0 gm/kW-hr NOx and 0.02 gm/kW-hr PM. Cummins' anticipated product offerings for Tier 4 in this range include the following: QSB6.7, QSC8.3, QSL9, QSM11, QSX15, QSK19. (For reference, numerical values indicate engine displacement in liters, the letter designation ns indicate the product model). A summary of the EPA's mobile off-highway emissions requirements is given in Figure 1.

  14. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode.

    PubMed

    Ding, Chunmei; Qin, Wei; Wang, Nan; Liu, Guiji; Wang, Zhiliang; Yan, Pengli; Shi, Jingying; Li, Can

    2014-08-01

    The solar-to-hydrogen (STH) efficiency of a traditional mono-photoelectrode photoelectrochemical water splitting system has long been limited as large external bias is required. Herein, overall water splitting with STH efficiency exceeding 2.5% was achieved using a self-biased photoelectrochemical-photovoltaic coupled system consisting of an all earth-abundant photoanode and a Si-solar-cell-based photocathode connected in series under parallel illumination. We found that parallel irradiation mode shows higher efficiency than tandem illumination especially for photoanodes with a wide light absorption range, probably as the driving force for water splitting reaction is larger and the photovoltage loss is smaller in the former. This work essentially takes advantage of a tandem solar cell which can enhance the solar-to-electricity efficiency from another point of view. PMID:24956231

  15. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp.

    PubMed

    Parr, L B; Perkins, R G; Mason, C F

    2002-04-01

    The duckweeds Lemna minor L. and L. minuscula Herter reduced PSII quantum efficiency (F'q/F'm) of the filamentous green alga Cladophora glomerata Kützing by up to 42% over seven days when floating above mats of C. glomerata in containers. Dissolved oxygen (DO) increased by 23% at 30 degrees C in containers with C. glomerata over controls. But when the water surface in the containers was covered with Lemna spp. floating above C. glomerata, DO was 83% lower at 30 degrees C over seven days than in control samples with no duckweed or alga. Dissolved oxygen was lower beneath a thick mat (1 cm) of either Lemna spp. covering the surface than under a thin layer (single-frond canopy). PAM fluorimetry showed that maximum PSII efficiency (Fv/Fm) of C. glomerata in containers was reduced under a canopy of L. minor by 17% over seven days, and under L. minuscula by 22%. F'q/F'm of C. glomerata in containers exposed to 51 micromol m(-2) s(-1) PPFD decreased under a canopy of L. minor by 16% over seven days, and under L. minuscula by 19% compared to controls. When light response curves were compared, F'q/F'm was significantly reduced under canopies of L. minor at the highest temperatures tested (28 degrees C and 30 degrees C). L. minor significantly reduced relative electron transport rate (rel. ETR) of the controls by up to 71% at 30 degrees C. Relative electron transport rate did not reach light saturation point (Esat) except at 28 degrees and 30 degrees C under mats of L. minor. Whereas the highest rate of production (rel. ETRmax) and Esat increased with temperature in controls, under a canopy of Lemna, decreases were observed. It is suggested that, during periods of high summer temperature and irradiance, shading inhibits oxygenic photosynthesis in mats of C. glomerata beneath canopies of Lenma spp. This results in less oxygen being produced by the C. glomerata (oxygen produced by Lemna spp. is not released into the water), and this may further inhibit the C. glomerata by

  16. An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors.

    PubMed

    Ghasemi, Farshid; Chamanzar, Maysamreza; Eftekhar, Ali A; Adibi, Ali

    2014-11-21

    A systematic study of the limit of detection (LOD) in resonance-based silicon photonic lab-on-chip sensors is presented. The effects of the noise, temperature fluctuations, and the fundamental thermodynamic limit of the resonator are studied. Wavelength noise is identified as the dominant source of noise, and an efficient technique for suppressing this noise is presented. A large ensemble of statistical data from the transmission measurements in a laser-scanning configuration on five silicon nitride (SiN) microrings is collected to discuss and identify the sources of noise. The experimental results show that the LOD is limited by a 3σ wavelength noise of ∼1.8 pm. We present a sub-periodic interferometric technique, relying on an inverse algorithm, to suppress this noise. Our technique reduces the wavelength noise by more than one order of magnitude to an ensemble average of 3σ = 120 fm, for a resonator quality factor (Q) of about 5 × 10(4) without any temperature stabilization or cooling. This technique is readily amenable to on-chip integration to realize highly accurate and low-cost lab-on-chip sensors. PMID:25243248

  17. Enhancing simulation of efficiency with analytical tools. [combining computer simulation and analytical techniques for cost reduction

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.

    1974-01-01

    Some means of combining both computer simulation and anlytical techniques are indicated in order to mutually enhance their efficiency as design tools and to motivate those involved in engineering design to consider using such combinations. While the idea is not new, heavy reliance on computers often seems to overshadow the potential utility of analytical tools. Although the example used is drawn from the area of dynamics and control, the principles espoused are applicable to other fields. In the example the parameter plane stability analysis technique is described briefly and extended beyond that reported in the literature to increase its utility (through a simple set of recursive formulas) and its applicability (through the portrayal of the effect of varying the sampling period of the computer). The numerical values that were rapidly selected by analysis were found to be correct for the hybrid computer simulation for which they were needed. This obviated the need for cut-and-try methods to choose the numerical values, thereby saving both time and computer utilization.

  18. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Yu, Jiaguo; Cao, Shaowen; Cui, Can; Cheng, Bei

    2015-12-01

    Photocatalytic conversion of CO2 into hydrocarbon fuels using semiconductor photocatalysts has attracted great attention, which is considered as a promising approach to resolve the energy shortage and greenhouse effect. In this work, amine-functionalized g-C3N4 was prepared by heating urea at 500 °C, with a subsequent functionalization treatment by monoethanolamine solution. The amine-functionalized g-C3N4 exhibits improved photocatalytic performance on CO2 photoreduction, which can be attributed to the enhanced CO2 adsorption capacity. The optimized photocatalyst shows much higher CO2 conversion efficiency as compared to pure g-C3N4 under the same conditions, with a CH4-production rate of 0.34 μmol h-1 g-1 and CH3OH-production rate of 0.28 μmol h-1 g-1. This work demonstrates the surface amine functionalization is a successful strategy to improve the CO2 adsorption capacity of g-C3N4 for the enhancement of CO2 photoreduction activity.

  19. Reduction of large set data transmission using algorithmically corrected model-based techniques for bandwidth efficiency

    NASA Astrophysics Data System (ADS)

    Khair, Joseph Daniel

    Communication requirements and demands on deployed systems are increasing daily. This increase is due to the desire for more capability, but also, due to the changing landscape of threats on remote vehicles. As such, it is important that we continue to find new and innovative ways to transmit data to and from these remote systems, consistent with this changing landscape. Specifically, this research shows that data can be transmitted to a remote system effectively and efficiently with a model-based approach using real-time updates, called Algorithmically Corrected Model-based Technique (ACMBT), resulting in substantial savings in communications overhead. To demonstrate this model-based data transmission technique, a hardware-based test fixture was designed and built. Execution and analysis software was created to perform a series of characterizations demonstrating the effectiveness of the new transmission method. The new approach was compared to a traditional transmission approach in the same environment, and the results were analyzed and presented. A Figure of Merit (FOM) was devised and presented to allow standardized comparison of traditional and proposed data transmission methodologies alongside bandwidth utilization metrics. The results of this research have successfully shown the model-based technique to be feasible. Additionally, this research has opened the trade space for future discussion and implementation of this technique.

  20. Pathogen reduction efficiency of on-site treatment processes in eco-sanitation system.

    PubMed

    Endale, Yohannes Tesfaye; Yirsaw, Biruck Desalegn; Asfaw, Seyoum Leta

    2012-07-01

    An experimental study was conducted to assess the pathogen removal efficiency of primary treatment of ecological sanitation (eco-san) system. Ash, lime and soil were used as covering and treatment materials of faeces in the system. A significant rise in pH was observed when the faeces were treated with lime and ash, with a pH value of 11.3 and 9, respectively. Lime treatment was effective in complete destruction of faecal coliforms within 24 h while ash treatment took 30 days of storage to give the same result. On the other hand, no immediate destruction of Ascaris ova was observed during primary treatment of eco-san faeces. Dehydration and storage were other parameters which were considered in the experiment. Faecal coliforms tolerated a moisture content of 3% in untreated faeces while a large number of Ascaris lumbricoides eggs were inactivated by the same level of desiccation, even in the absence of alkaline treatment. The study showed a strong direct relationship between moisture content and viability of Ascaris egg (r = 0.806, p = 0.01) and a negative correlation between viability of eggs and storage time (r = -0.895, p = 0.01). Generally, the treatment methods used in this experiment showed a substantial potential of faeces sanitization, with removals ranging from 54 to 100% after a minimum of 40 days storage. PMID:22446972

  1. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    SciTech Connect

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

  2. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures.

    PubMed

    Zhu, Chengzhou; Li, He; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-02-01

    Developing a low cost, highly active, durable cathode towards an oxygen reduction reaction (ORR) is one of the high-priority research directions for commercialization of low-temperature polymer electrolyte membrane fuel cells (PEMFCs). However, the electrochemical performance of PEMFCs is still hindered by the high cost and insufficient durability of the traditional Pt-based cathode catalysts. Under these circumstances, the search for efficient alternatives to replace Pt for constructing highly efficient nonprecious metal catalysts (NPMCs) has been growing intensively and has received great interest. Combining with the compositional effects, the accurate design of NPMCs with 3D porous nanostructures plays a significant role in further enhancing ORR performance. These 3D porous architectures are able to provide higher specific surface areas and larger pore volumes, not only maximizing the availability of electron transfer within the nanosized electrocatalyst surface area but also providing better mass transport of reactants to the electrocatalyst. In this Tutorial Review, we focus on the rational design and synthesis of different 3D porous carbon-based nanomaterials, such as heteroatom-doped carbon, metal-nitrogen-carbon nanostructures and a series of carbon/nonprecious metal-based hybrids. More importantly, their enhanced ORR performances are also demonstrated by virtue of their favorably porous morphologies and compositional effects. Finally, the future trends and perspectives for the highly efficient porous NPMCs regarding the material design are discussed, with an emphasis on substantial development of advanced carbon-based NPMCs for ORR in the near future. PMID:26658546

  3. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  4. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling.

    PubMed

    Wanner, Christoph; Zink, Sonja; Eggenberger, Urs; Mäder, Urs

    2012-04-01

    In Thun, Switzerland, a permeable reactive barrier (PRB) for Cr(VI) reduction by gray cast iron was installed in May 2008. The PRB is composed of a double array of vertical piles containing iron shavings and gravel. The aquifer in Thun is almost saturated with dissolved oxygen and the groundwater flow velocities are ca. 10-15m/day. Two years after PRB installation Cr(VI) concentrations still permanently exceed the Swiss threshold value for contaminated sites downstream of the barrier at selected localities. Groundwater δ(53/52)Cr(SRM979) measurements were used to track Cr(VI) reduction induced by the PRB. δ(53/52)Cr(SRM979) values of two samples downstream of the PRB showed a clear fractionation towards more positive values compared to four samples from the hotspot, which is clear evidence of Cr(VI) reduction induced by the PRB. Another downstream sample did not show a shift to more positive δ(53/52)Cr(SRM979) values. Because this latter location correlates with the highest downstream Cr(VI) concentration it is proposed that a part of the Cr(VI) plume is bypassing the barrier. Using a Rayleigh fractionation model a minimum present-day overall Cr(VI) reduction efficiency of ca. 15% was estimated. A series of 2D model simulations, including the fractionation of Cr isotopes, confirm that only a PRB bypass of parts of the Cr(VI) plume can lead to the observed values. Additionally, the simulations revealed that the proposed bypass occurs due to an insufficient permeability of the individual PRB piles. It is concluded that with this type of PRB a complete and long-lasting Cr(VI) reduction is extremely difficult to achieve for Cr(VI) contaminations located in nearly oxygen and calcium carbonate saturated aquifer in a regime of high groundwater velocities. Additional remediation action would limit the environmental impact and allow to reach target concentrations. PMID:22343010

  5. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  6. Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications

    NASA Astrophysics Data System (ADS)

    O'Connor, S. M.; Lynch, J. P.; Gilbert, A. C.

    2014-08-01

    Compressed sensing (CS) is a powerful new data acquisition paradigm that seeks to accurately reconstruct unknown sparse signals from very few (relative to the target signal dimension) random projections. The specific objective of this study is to save wireless sensor energy by using CS to simultaneously reduce data sampling rates, on-board storage requirements, and communication data payloads. For field-deployed low power wireless sensors that are often operated with limited energy sources, reduced communication translates directly into reduced power consumption and improved operational reliability. In this study, acceleration data from a multi-girder steel-concrete deck composite bridge are processed for the extraction of mode shapes. A wireless sensor node previously designed to perform traditional uniform, Nyquist rate sampling is modified to perform asynchronous, effectively sub-Nyquist rate sampling. The sub-Nyquist data are transmitted off-site to a computational server for reconstruction using the CoSaMP matching pursuit recovery algorithm and further processed for extraction of the structure’s mode shapes. The mode shape metric used for reconstruction quality is the modal assurance criterion (MAC), an indicator of the consistency between CS and traditional Nyquist acquired mode shapes. A comprehensive investigation of modal accuracy from a dense set of acceleration response data reveals that MAC values above 0.90 are obtained for the first four modes of a bridge structure when at least 20% of the original signal is sampled using the CS framework. Reduced data collection, storage and communication requirements are found to lead to substantial reductions in the energy requirements of wireless sensor networks at the expense of modal accuracy. Specifically, total energy reductions of 10-60% can be obtained for a sensor network with 10-100 sensor nodes, respectively. The reduced energy requirements of the CS sensor nodes are shown to directly result in

  7. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  8. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  9. In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction.

    PubMed

    Sun, Qiao; Sun, Caixia; Du, Aijun; Dou, Shixue; Li, Zhen

    2016-08-01

    Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs. PMID:27396486

  10. NASA Glenn's Advanced Subsonic Combustion Rig Supported the Ultra-Efficient Engine Technology Project's Emissions Reduction Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.

    2004-01-01

    The Advanced Subsonic Combustor Rig (ASCR) is NASA Glenn Research Center's unique high-pressure, high-temperature combustor facility supporting the emissions reduction element of the Ultra-Efficient Engine Technology (UEET) Project. The facility can simulate combustor inlet test conditions up to a pressure of 900 psig and a temperature of 1200 F (non-vitiated). ASCR completed three sector tests in fiscal year 2003 for General Electric, Pratt & Whitney, and Rolls-Royce North America. This will provide NASA and U.S. engine manufacturers the information necessary to develop future low-emission combustors and will help them to better understand durability and operability at these high pressures and temperatures.

  11. Enantioselective organocatalytic reduction of β-trifluoromethyl nitroalkenes: an efficient strategy for the synthesis of chiral β-trifluoromethyl amines.

    PubMed

    Massolo, Elisabetta; Benaglia, Maurizio; Orlandi, Manuel; Rossi, Sergio; Celentano, Giuseppe

    2015-02-23

    An efficient organocatalytic stereoselective reduction of β-trifluoromethyl-substituted nitroalkenes, mediated by 3,5-dicarboxylic ester-dihydropyridines (Hantzsch ester type), has been successfully developed. A multifunctional thiourea-based (S)-valine derivative was found to be the catalyst of choice, promoting the reaction in up to 97% ee. The methodology has been applied to a wide variety of substrates, leading to the formation of differently substituted precursors of enantiomerically enriched β-trifluoromethyl amines. The mechanism of the reaction and the mode of action of the metal-free catalytic species were computationally investigated; on the basis of DFT transition-state (TS) analysis, a model of stereoselection was also proposed. PMID:25573847

  12. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.

    PubMed

    Lee, Jang-Soo; Park, Gi Su; Lee, Ho Il; Kim, Sun Tai; Cao, Ruiguo; Liu, Meilin; Cho, Jaephil

    2011-12-14

    A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity of MnOx while acting as a supporting matrix for the catalyst. The large surface area of the amorphous MnOx nanowires, together with other microscopic features (e.g., high density of surface defects), potentially offers more active sites for oxygen adsorption, thus significantly enhancing ORR activity. In particular, a Zn-air battery based on this composite air electrode exhibits a peak power density of ∼190 mW/cm2, which is far superior to those based on a commercial air cathode with Mn3O4 catalysts. PMID:22050041

  13. Synthesis of Hierarchical (BiO)2CO3 Nanosheets Microspheres toward Efficient Photocatalystic Reduction of CO2 into CO

    NASA Astrophysics Data System (ADS)

    Yang, Huohai; Bai, Yang; Chen, Ting; Shi, Xian; Zhu, Yu-chuan

    2016-04-01

    In this paper, hierarchical (BiO)2CO3 nanosheets microspheres were synthesized with dry ice as carbon source, and characterized by X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectra (DRS). The photocatalytic results showed that (BiO)2CO3 display much higher photocatalytic activity than BiOCl and TiO2 for photocatalystic reduction of CO2 under UV-visible light. The photocatalytic mechanism study revealled that (BiO)2CO3 display better separation efficiency of photoinduced charge carriers due to the large interlayer spacing (1.3675 nm).

  14. In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Sun, Caixia; Du, Aijun; Dou, Shixue; Li, Zhen

    2016-07-01

    Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs.Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03288e

  15. Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts.

    PubMed

    Ma, Ming; Trześniewski, Bartek J; Xie, Jie; Smith, Wilson A

    2016-08-01

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a lower overpotential compared to that of untreated Ag. Notably, the Ag resulting from Ag oxide is capable of electrochemically reducing CO2 to CO with approximately 80 % catalytic selectivity at a moderate overpotential of 0.49 V, which is much higher than that (ca. 4 %) of untreated Ag under identical conditions. Electrokinetic studies show that the improved catalytic activity is ascribed to the enhanced stabilization of COOH(.) intermediate. Furthermore, highly nanostructured Ag is likely able to create a high local pH near the catalyst surface, which may also facilitate the catalytic activity for the reduction of CO2 with suppressed H2 evolution. PMID:27377237

  16. Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction

    PubMed Central

    Wang, Jiacheng; Ma, Ruguang; Zhou, Zhenzhen; Liu, Guanghui; Liu, Qian

    2015-01-01

    Efficient metal-free electrocatalysts for oxygen reduction reaction (ORR) are highly expected in future low-cost energy systems. We have successfully prepared crumpled, sheet-like, sulfur-doped graphene by magnesiothermic reduction of easily available, low-cost, nontoxic CO2 (in the form of Na2CO3) and Na2SO4 as the carbon and sulfur sources, respectively. At high temperature, Mg can reduce not only carbon in the oxidation state of +4 in CO32− to form graphene, but also sulfur in SO42− from its highest (+6) to lowest valence which was hybridized into the carbon sp2 framework. Various characterization results show that sulfur-doped graphene with only few layers has an appropriate sulfur content, hierarchically robust porous structure, large surface area/pore volume, and highly graphitized textures. The S-doped graphene samples exhibit not only a high activity for ORR with a four-electron pathway, but also superior durability and tolerance to MeOH crossover to 40% Pt/C. This is mainly ascribed to the combination of sulfur-related active sites and hierarchical porous textures, facilitating fast diffusion of oxygen molecules and electrolyte to catalytic sites and release of products from the sites. PMID:25790856

  17. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water.

    PubMed

    Ying, Yulong; Liu, Yu; Wang, Xinyu; Mao, Yiyin; Cao, Wei; Hu, Pan; Peng, Xinsheng

    2015-01-28

    Two dimensional (2-D) Ti3C2Tx nanosheets are obtained by etching bulk Ti3C2Tx powders in HF solution and delaminating ultrasonically, which exhibit excellent removal capacity for toxic Cr(VI) from water, due to their high surface area, well dispersibility, and reductivity. The Ti3C2Tx nanosheets delaminated by 10% HF solution present more efficient Cr(VI) removal performance with capacity of 250 mg g(-1), and the residual concentration of Cr(VI) in treated water is less than 5 ppb, far below the concentration (0.05 ppm) of Cr(VI) in the drinking water standard recommended by the World Health Organization. This kind of 2-D Ti3C2Tx nanosheet can not only remove Cr(VI) rapidly and effectively in one step from aqueous solution by reducing Cr(VI) to Cr(III) but also adsorb the reduced Cr(III) simultaneously. Furthermore, these reductive 2-D Ti3C2Tx nanosheets are generally explored to remove other oxidant agents, such as K3[Fe(CN)6], KMnO4, and NaAuCl4 solutions, by converting them to low oxidation states. These significantly expand the potential applications of 2-D Ti3C2Tx nanosheets in water treatment. PMID:25559042

  18. Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jiacheng; Ma, Ruguang; Zhou, Zhenzhen; Liu, Guanghui; Liu, Qian

    2015-03-01

    Efficient metal-free electrocatalysts for oxygen reduction reaction (ORR) are highly expected in future low-cost energy systems. We have successfully prepared crumpled, sheet-like, sulfur-doped graphene by magnesiothermic reduction of easily available, low-cost, nontoxic CO2 (in the form of Na2CO3) and Na2SO4 as the carbon and sulfur sources, respectively. At high temperature, Mg can reduce not only carbon in the oxidation state of +4 in CO32- to form graphene, but also sulfur in SO42- from its highest (+6) to lowest valence which was hybridized into the carbon sp2 framework. Various characterization results show that sulfur-doped graphene with only few layers has an appropriate sulfur content, hierarchically robust porous structure, large surface area/pore volume, and highly graphitized textures. The S-doped graphene samples exhibit not only a high activity for ORR with a four-electron pathway, but also superior durability and tolerance to MeOH crossover to 40% Pt/C. This is mainly ascribed to the combination of sulfur-related active sites and hierarchical porous textures, facilitating fast diffusion of oxygen molecules and electrolyte to catalytic sites and release of products from the sites.

  19. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    PubMed

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO. PMID:25354234

  20. A Novel Trihybrid Material Based on Renewables: An Efficient Recyclable Heterogeneous Catalyst for C-C Coupling and Reduction Reactions.

    PubMed

    Majumdar, Rakhi; Tantayanon, Supawan; Gopal Bag, Braja

    2016-09-01

    The generation of organic-inorganic hybrid materials from renewable resources and their utilization in basic and applied areas has been at the forefront of research in recent years for sustainable development. Herein, a novel organic-inorganic trihybrid material was synthesized by in situ generation of palladium nanoparticles (PdNPs) in a hybrid gel matrix based on renewable chemicals. Constituents of the hybrid gel included a pentacyclic triterpenoid arjunolic acid extractable from Terminalia arjuna and the leaf extract of Chrysophyllum cainito rich in flavonoids. We took advantage of the presence of flavonoid molecules in this hybrid gel to generate an advanced trihybrid gel through in situ reduction of doped Pd(II) salts to stable PdNPs. The xerogel of this trihybrid material was used as a recyclable heterogeneous catalyst for C-C coupling and reduction reactions in aqueous media. We also demonstrated that the in situ generated PdNPs containing trihybrid material was a more efficient catalyst than the trihybrid material generated with presynthesized PdNPs. PMID:27511441

  1. CO2 Reduction to CO in Water: Carbon Nanotube-Gold Nanohybrid as a Selective and Efficient Electrocatalyst.

    PubMed

    Huan, Tran Ngoc; Prakash, Praveen; Simon, Philippe; Rousse, Gwenaëlle; Xu, X; Artero, Vincent; Gravel, Edmond; Doris, Eric; Fontecave, Marc

    2016-09-01

    A gold-based nanostructure has been demonstrated as promising materials for the selective electroreduction of CO2 to CO in aqueous conditions. In this work, we present a carbon nanotube-gold nanohybrid as a selective and efficient electrocatalyst for the reduction of CO2 in 0.5 m NaHCO3 . The hybrid material exhibits remarkable activity with a current density of 10 mA cm(-2) at -0.55 V versus standard hydrogen electrode with a stable CO production rate (0.52 μmol s(-1) ) after 4 h electrolysis. Monodispersed gold nanoparticles anchored on carbon nanotubes through a layer-by-layer method allows very little Au loading and thus minimization of the cost of electrode fabrication with a mass activity up to 100 A g(-1) at -0.55 V versus reversible hydrogen electrode. It is 33 times higher than a previous report for monodisperse Au nanoparticles (3 A g(-1) ) while ensuring selectivity (70 % faradaic yield of CO) at comparable reduction potential. PMID:27492905

  2. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells

    PubMed Central

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057

  3. Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction.

    PubMed

    Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing

    2016-05-18

    A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity. PMID:27104739

  4. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.

    PubMed

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N H

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 10(4) s(-1) at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  5. Reduction of solar cell efficiency by edge defects across the back-surface-field junction - A developed perimeter model

    NASA Technical Reports Server (NTRS)

    Sah, C. T.; Yamakawa, K. A.; Lutwack, R.

    1982-01-01

    Material imperfections, impurity clusters and fabrication defects across the back-surface-field junction can degrade the performance of high-efficiency solar cells. The degradation from defects appearing on the circumference of a solar cell is analyzed using a two-region developed perimeter device model. The width of the defective perimeter region is characterized by the range or the distance-of-influence of the defective edge and this width is about two diffusion lengths. The defective edge is characterized by a surface recombination velocity. Family of theoretical curves and numerical examples are presented to show that significant reduction of open-circuit voltage can occur in high-efficiency cells which are thin compared with the diffusion length. In one example, the degradation is decreased from 135 mV to 75 mV when the cell size is increased from 10 to 100 times the diffusion length in a thin cell whose thickness is 1% of the diffusion length.

  6. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    DOE PAGESBeta

    Wang, Jie; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli; Wu, Zexing

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo2O4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo2O4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo2O4/C nanoparticles exhibit superior long-term stability for both the ORR and OER compared to commercial Pt/C.more » The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.« less

  7. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media

    PubMed Central

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N. H.

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 104 s−1 at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  8. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    PubMed

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass. PMID:25922489

  9. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    PubMed

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS. PMID:26125605

  10. Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes.

    PubMed

    Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge

    2016-02-10

    It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs. PMID:26828128

  11. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    PubMed Central

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  12. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  13. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages.

    PubMed

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  14. Further reduction of minimal first-met bad markings for the computationally efficient synthesis of a maximally permissive controller

    NASA Astrophysics Data System (ADS)

    Liu, GaiYun; Chao, Daniel Yuh

    2015-08-01

    To date, research on the supervisor design for flexible manufacturing systems focuses on speeding up the computation of optimal (maximally permissive) liveness-enforcing controllers. Recent deadlock prevention policies for systems of simple sequential processes with resources (S3PR) reduce the computation burden by considering only the minimal portion of all first-met bad markings (FBMs). Maximal permissiveness is ensured by not forbidding any live state. This paper proposes a method to further reduce the size of minimal set of FBMs to efficiently solve integer linear programming problems while maintaining maximal permissiveness using a vector-covering approach. This paper improves the previous work and achieves the simplest structure with the minimal number of monitors.

  15. Implementation of a compressive sampling scheme for wireless sensors to achieve energy efficiency in a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    O'Connor, Sean M.; Lynch, Jerome P.; Gilbert, Anna C.

    2013-04-01

    Wireless sensors have emerged to offer low-cost sensors with impressive functionality (e.g., data acquisition, computing, and communication) and modular installations. Such advantages enable higher nodal densities than tethered systems resulting in increased spatial resolution of the monitoring system. However, high nodal density comes at a cost as huge amounts of data are generated, weighing heavy on power sources, transmission bandwidth, and data management requirements, often making data compression necessary. The traditional compression paradigm consists of high rate (>Nyquist) uniform sampling and storage of the entire target signal followed by some desired compression scheme prior to transmission. The recently proposed compressed sensing (CS) framework combines the acquisition and compression stage together, thus removing the need for storage and operation of the full target signal prior to transmission. The effectiveness of the CS approach hinges on the presence of a sparse representation of the target signal in a known basis, similarly exploited by several traditional compressive sensing applications today (e.g., imaging, MRI). Field implementations of CS schemes in wireless SHM systems have been challenging due to the lack of commercially available sensing units capable of sampling methods (e.g., random) consistent with the compressed sensing framework, often moving evaluation of CS techniques to simulation and post-processing. The research presented here describes implementation of a CS sampling scheme to the Narada wireless sensing node and the energy efficiencies observed in the deployed sensors. Of interest in this study is the compressibility of acceleration response signals collected from a multi-girder steel-concrete composite bridge. The study shows the benefit of CS in reducing data requirements while ensuring data analysis on compressed data remain accurate.

  16. Pt-Doped NiFe₂O₄ Spinel as a Highly Efficient Catalyst for H₂ Selective Catalytic Reduction of NO at Room Temperature.

    PubMed

    Sun, Wei; Qiao, Kai; Liu, Ji-Yuan; Cao, Li-Mei; Gong, Xue-Qing; Yang, Ji

    2016-04-11

    H2 selective catalytic reduction (H2-SCR) has been proposed as a promising technology for controlling NOx emission because hydrogen is clean and does not emit greenhouse gases. We demonstrate that Pt doped into a nickel ferrite spinel structure can afford a high catalytic activity of H2-SCR. A superior NO conversion of 96% can be achieved by employing a novel NiFe1.95Pt0.05O4 spinel-type catalyst at 60 °C. This novel catalyst is different from traditional H2-SCR catalysts, which focus on the role of metallic Pt species and neglect the effect of oxidized Pt states in the reduction of NO. The obtained Raman and XPS spectra indicate that Pt in the spinel lattice has different valence states with Pt(2+) occupying the tetrahedral sites and Pt(4+) residing in the octahedral ones. These oxidation states of Pt enhance the back-donation process, and the lack of filling electrons of the 5d band causes Pt to more readily hybridize with the 5σ orbital of the NO molecule, especially for octahedral Pt(4+), which enhances the NO chemisorption on the Pt sites. We also performed DFT calculations to confirm the enhancement of adsorption of NO onto Pt sites when doped into the Ni-Fe spinel structure. The prepared Pt/Ni-Fe catalysts indicate that increasing the dispersity of Pt on the surfaces of the individual Ni-Fe spinel-type catalysts can efficiently promote the H2-SCR activity. Our demonstration provides new insight into designing advanced catalysts for H2-SCR. PMID:26982816

  17. Combined steam-ultrasound treatment of 2 seconds achieves significant high aerobic count and Enterobacteriaceae reduction on naturally contaminated food boxes, crates, conveyor belts, and meat knives.

    PubMed

    Musavian, Hanieh S; Butt, Tariq M; Larsen, Annette Baltzer; Krebs, Niels

    2015-02-01

    Food contact surfaces require rigorous sanitation procedures for decontamination, although these methods very often fail to efficiently clean and disinfect surfaces that are visibly contaminated with food residues and possible biofilms. In this study, the results of a short treatment (1 to 2 s) of combined steam (95°C) and ultrasound (SonoSteam) of industrial fish and meat transportation boxes and live-chicken transportation crates naturally contaminated with food and fecal residues were investigated. Aerobic counts of 5.0 to 6.0 log CFU/24 cm(2) and an Enterobacteriaceae spp. level of 2.0 CFU/24 cm(2) were found on the surfaces prior to the treatment. After 1 s of treatment, the aerobic counts were significantly (P < 0.0001) reduced, and within 2 s, reductions below the detection limit (<10 CFU) were reached. Enterobacteriaceae spp. were reduced to a level below the detection limit with only 1 s of treatment. Two seconds of steam-ultrasound treatment was also applied on two different types of plastic modular conveyor belts with hinge pins and one type of flat flexible rubber belt, all visibly contaminated with food residues. The aerobic counts of 3.0 to 5.0 CFU/50 cm(2) were significantly (P < 0.05) reduced, while Enterobacteriaceae spp. were reduced to a level below the detection limit. Industrial meat knives were contaminated with aerobic counts of 6.0 log CFU/5 cm(2) on the handle and 5.2 log CFU/14 cm(2) on the steel. The level of Enterobacteriaceae spp. contamination was approximately 2.5 log CFU on the handle and steel. Two seconds of steam-ultrasound treatment reduced the aerobic counts and Enterobacteriaceae spp. to levels below the detection limit on both handle and steel. This study shows that the steam-ultrasound treatment may be an effective replacement for disinfection processes and that it can be used for continuous disinfection at fast process lines. However, the treatment may not be able to replace efficient cleaning processes used to remove high

  18. NITRO-HYDROLYSIS: AN ENERGY EFFICIENT SOURCE REDUCTION AND CHEMICAL PRODUCTION PROCESS FOR WASTEWATER TREATMENT PLANT BIOSOLIDS

    SciTech Connect

    Klasson, KT

    2003-03-10

    The nitro-hydrolysis process has been demonstrated in the laboratory in batch tests on one municipal waste stream. This project was designed to take the next step toward commercialization for both industrial and municipal wastewater treatment facility (WWTF) by demonstrating the feasibility of the process on a small scale. In addition, a 1-lb/hr continuous treatment system was constructed at University of Tennessee to treat the Kuwahee WWTF (Knoxville, TN) sludge in future work. The nitro-hydrolysis work was conducted at University of Tennessee in the Chemical Engineering Department and the gas and liquid analysis were performed at Oak Ridge National Laboratory. Nitro-hydrolysis of sludge proved a very efficient way of reducing sludge volume, producing a treated solution which contained unreacted solids (probably inorganics such as sand and silt) that settled quickly. Formic acid was one of the main organic acid products of reaction when larger quantities of nitric acid were used in the nitrolysis. When less nitric acid was used formic acid was initially produced but was later consumed in the reactions. The other major organic acid produced was acetic acid which doubled in concentration during the reaction when larger quantities of nitric acid were used. Propionic acid and butyric acid were not produced or consumed in these experiments. It is projected that the commercial use of nitro-hydrolysis at municipal wastewater treatment plants alone would result in a total estimated energy savings of greater than 20 trillion Btu/yr. A net reduction of 415,000 metric tons of biosolids per year would be realized and an estimated annual cost reduction of $122M/yr.

  19. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE.

    PubMed

    Aulenta, Federico; Catervi, Alessandro; Majone, Mauro; Panero, Stefania; Reale, Priscilla; Rossetti, Simona

    2007-04-01

    The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors. PMID:17438815

  20. Surface Grafted Hyper-Branched Polyglycerol Stabilized Ag and AuNPs Heterogeneous Catalysts for Efficient Reduction of Congo Red.

    PubMed

    Murugan, Eagambaram; Shanmugam, Paramasivam

    2016-01-01

    Six types of insoluble polymer-supported beads immobilized with Ag and AuNPs nanoparticle catalysts were synthesized using newly prepared three different types of polymer-supported poly(styrene)-co-poly(vinyl benzene chloride) matrix (PS-PVBC), surface grafted with (i) triethanolamine (TEA), (ii) glycidyl trimethyl ammonium chloride (GTMAC) and (iii) hyper-branched polyglycerol (HPG) and Ag and AuNPs as a catalytic moiety and thus yield polymer-supported nanoparticle catalysts viz., PS-PVBC-TEA-AgNPs and AuNPs, PS-PVBC-g-GTMAC-AgNPs and AuNPs and PS-PVBC-g-GTMAC-AgNPs and AuNPs catalyst respectively. These bead-shaped heterogonous nanoparticle catalysts were characterized by UV-Vis, FTIR, FESEM, HRTEM and TGA techniques. The efficiency for stabilization/loading of metal nanoparticles with respect to varied intensities of hyper-branched chain grafted onto their matrix was screened by determining their comparative catalytic activity. The catalytic potential of these catalysts was inspected through reduction of Congo Red (CR) keeping pseudo first order identical reaction condition. The observed k(obs) values reveal that irrespective of metal the catalyst derived from hyper-branched polyglycerol as stabilizing agent viz., PS-PVBC-g-HPG-AgNPs and PS-PVBC-g-HPG-AuNPs shows (k(obs) = 3.98 x 10⁻² min⁻¹ and k(obs) = 4.54 x 10⁻² min⁻¹) four and two times greater activity than the catalyst derived from TEA and GTMAC hyper-branched chain. Further, for the same reaction PS-PVBC-g-HPG-AuNPs showed more efficiency than the PS-PVBC-g-HPG AgNPs catalyst. The stability and reusability of the superior catalyst viz., PS-PVBC-g-HPG-AuNPs catalyst was observed to be good even at the sixth cycle. This catalyst can be continuously used to conduct the reduction of various dyes in continuous mode operation in industrial scale. PMID:27398471

  1. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Linjie; Su, Zixue; Jiang, Feilong; Yang, Lingling; Qian, Jinjie; Zhou, Youfu; Li, Wenmu; Hong, Maochun

    2014-05-01

    Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and hierarchical porosity with well-conducting networks. The promising potential of NGPCs as metal-free electrocatalysts for oxygen reduction reactions (ORR) in fuel cells is demonstrated. Compared with commercial Pt/C, the optimized NGPC-1000-10 (carbonized at 1000 °C for 10 h) catalyst exhibits comparable electrocatalytic activity via an efficient four-electron-dominant ORR process coupled with superior methanol tolerance as well as cycling stability in alkaline media. Furthermore, the controlled experiments reveal that the optimum activity of NGPC-1000-10 can be attributed to the synergetic contributions of the abundant active sites with high graphitic-N portion, high surface area and porosity, and the high degree of graphitization. Our findings suggest that solely MOF-derived heteroatom-doped carbon materials can be a promising alternative for Pt-based catalysts in fuel cells.Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and hierarchical porosity with well-conducting networks. The promising potential of NGPCs as metal-free electrocatalysts for oxygen reduction reactions (ORR) in fuel cells is demonstrated. Compared with commercial Pt/C, the optimized NGPC-1000-10 (carbonized at 1000 °C for 10 h) catalyst exhibits comparable

  2. Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer.

    PubMed

    Piao, Mei-Lan; Kim, Nam

    2014-04-01

    We developed a head-mounted display (HMD) that achieved high levels of color uniformity and optical efficiency. The full-color holographic volume grating (HVG) attached on the specially designed wedge-shaped waveguide HMD system provided a 17° horizontal field of view (FOV). Theoretical analyses showed that the proposed waveguide resolved the problems of thickness and limited FOV. In this system, the HVG was recorded using a special sequential recording process on single photopolymer unit with 633, 532, and 473 nm wavelengths. The results confirm that the designed and fabricated waveguide can be employed in future commercial HMS. PMID:24787179

  3. Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking.

    PubMed

    Huang, Juan; Xue, Yanan; Cai, Ning; Zhang, Han; Wen, Kaikai; Luo, Xiaogang; Long, Sihui; Yu, Faquan

    2015-01-01

    To reduce leakage on the drug-delivery pathway to minimize side effect of reduction or pH sensitive drug delivery systems, we designed a glutathione (GSH)/pH co-triggered magnetic nanogel drug delivery system for doxorubicin (DOX) based on the GSH concentration and pH difference between intracellular and extracellular environments. The introduction of superparamagnetic iron oxide nanoparticles (SPION) was intended for magnetic targeting. The magnetic DOX-loaded nanogel was then prepared by the oxidation of thiolated alginate with thiolated SPION in the presence of DOX. The nanogel size can be readily regulated in a range of 120-320 nm upon preparation conditions, with a negative surface charge of around -40 mV. Saturation magnetization was estimated at 27.4 emu/g Fe by VSM. In vitro release was conducted in simulated cancerous environment conditions such as a high GSH concentration and mild acidity. As a result, the nanogel expressed, upon dual stimuli of pH 5/10 mM GSH, significantly higher accumulative release than upon single stimulus of pH 5 without GSH or pH 7.4/10 mM GSH. In vitro cytotoxicity against HeLa cells clearly illustrated that the nanogel could effectively inhibit cell growth, and the IC50 was figured out to be 2.3 μg/mL of the nanogel, while the nanogel exclusive of DOX was nontoxic. Confocal laser scanning microscopy observation, combined with the result of Prussian blue staining, indicated that DOX was efficiently internalized into HeLa cells through endocytosis, released into the cytoplasm, and then principally entered the nuclei. The quantitative examination of the iron content revealed an exponential increase in the cellular uptake and an exponential decrease in the uptake efficiency with the fed nanogel. This drug-loaded nanogel could be a promising drug carrier for effective tumor-targeted chemotherapy. PMID:25491958

  4. Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, You-Lin; Shi, Cheng-Xiang; Xu, Xue-Yan; Sun, Ping-Chuan; Chen, Tie-Hong

    2015-06-01

    Using hierarchically mesoporous silica spheres as a hard template and methyl violet as carbon and nitrogen source, nitrogen-doped hierarchically porous carbon spheres (N-HCS) are successfully prepared via a nanocasting method. The nitrogen-doped carbon spheres obtained after carbonization at 1000 °C (N-HCS-1000) exhibit a hierarchically micro-meso-macroporous structure with a relatively high surface area (BET) of 1413 m2 g-1 and a notably large pore volume of 2.96 cm3 g-1. In an oxygen reduction reaction (ORR) in alkaline media, the N-HCS-1000 material exhibits excellent activity with high current density, and its onset potential is notably close to that of the commercial Pt/C catalyst. The efficient catalytic activity of this catalyst could be attributed to the high electrical conductivity of the nitrogen-doped carbon matrix as well as the hierarchically porous framework. This catalyst also exhibits better methanol crossover resistance and higher stability than the commercial Pt/C catalyst.

  5. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage.

    PubMed

    Hu, Chuangang; Wang, Lixia; Zhao, Yang; Ye, Minhui; Chen, Qing; Feng, Zhihai; Qu, Liangti

    2014-07-21

    Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting current, stability and tolerance to methanol crossover effect, but is also better than most of the nanostructured carbon-based catalysts reported previously. On the other hand, as an anode material for lithium ion batteries, the N-CC@CNTs obtained also exhibit an excellent reversible capacity of ca. 1337 mA h g(-1) at 0.5 A g(-1), outstanding rate capability and long cycling stability, even at a current density of 20 A g(-1). The capacity is the highest among all the heteroatom-doped carbon materials reported so far, and is even higher than that of many of the composites of metal, metal oxides or metal sulfides with carbon materials. PMID:24906180

  6. A Stiffness Reduction Method for efficient absorption of waves at boundaries for use in commercial Finite Element codes.

    PubMed

    Pettit, J R; Walker, A; Cawley, P; Lowe, M J S

    2014-09-01

    Commercially available Finite Element packages are being used increasingly for modelling elastic wave propagation problems. Demand for improved capability has resulted in a drive to maximise the efficiency of the solver whilst maintaining a reliable solution. Modelling waves in unbound elastic media to high levels of accuracy presents a challenge for commercial packages, requiring the removal of unwanted reflections from model boundaries. For time domain explicit solvers, Absorbing Layers by Increasing Damping (ALID) have proven successful because they offer flexible application to modellers and, unlike the Perfectly Matched Layers (PMLs) approach, they are readily implemented in most commercial Finite Element software without requiring access to the source code. However, despite good overall performance, this technique requires the spatial model to extend significantly outside the domain of interest. Here, a Stiffness Reduction Method (SRM) has been developed that operates within a significantly reduced spatial domain. The technique is applied by altering the damping and stiffness matrices of the system, inducing decay of any incident wave. Absorbing region variables are expressed as a function of known model constants, helping to apply the technique to generic elastodynamic problems. The SRM has been shown to perform significantly better than ALID, with results confirmed by both numerical and analytical means. PMID:24359871

  7. Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Kakaei, Karim; Balavandi, Amin

    2016-02-01

    We demonstrate F-, Cl-, Br- and I-doped reduced graphene oxide (XRGO) as metal-free graphene electro-catalysts for oxygen reduction reaction (ORR) in alkaline media. Reduced graphene oxide (GO) is prepared from graphite electrode using electrochemical exfoliation. In situ doping of halide in a graphene film has many problems. In this technique, different halides individually or all of them were mixed with the RGO and ionic liquids precursor at H2SO4 solution. Then we have evaluated the effectiveness of doping and performed electrochemical measurements of the ORR activity on XRGO. Fourier-transform infrared spectroscopy spectra show a variety of the halogen-containing functional groups. Energy-dispersive X-ray spectroscopy analysis confirmed the presence of doped halogens in RGO. Raman spectroscopy shows a high density of defects in the RGO layer. The electrochemical properties of the XRGO catalysts on carbon paper as a gas diffusion electrode (GDE) are investigated by several electrochemical methods in oxygen saturated alkaline solutions. The catalytic activity of the XRGO and Pt-C electrodes for ORR is 50 and 30mAcm(-2) at -1V in GDEs. This enhanced efficiency is the result of the influence of the nature and percentage of the halogen, especially fluorine presence in the graphene layer. PMID:26513736

  8. N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Lu, Wangting; Cao, Feifei; Xiao, Zhidong; Zheng, Xinsheng

    2016-01-01

    Development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is still a great challenge for the large-scale application of fuel cells and metal-air batteries. Herein, a noble metal-free ORR electrocatalyst in the form of N-doped graphene coupled with part of Co nanoparticles encased in N-doped graphitic shells (named as SUCo-0.03-800) is prepared by facile one-step pyrolysis of the mixture of sucrose, urea and cobalt nitrate. The novel structure is confirmed by High Resolution-TEM, XRD, XPS and Raman spectroscopy. SUCo-0.03-800 presents comparable ORR catalytic activity to commercial Pt/C catalyst with a dominating four-electron pathway under alkaline conditions, and both of its mass activity and volume activity also outperform Co-free N-doped graphene and other Co/N-C hybrids with higher Co content, which may probably be ascribed to the high specific surface area, novel structure and synergistic effect between encased Co nanoparticles and N-doped graphitic shell. Additionally, SUCo-0.03-800 also shows outstanding stability and improved selectivity towards ORR, making it a promising alternative to Pt with potential application in fuel cells and metal-air batteries.

  9. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    NASA Astrophysics Data System (ADS)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  10. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    NASA Astrophysics Data System (ADS)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-04-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  11. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields. PMID:26016854

  12. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice.

    PubMed

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Singh, Pradyumna Kumar; Kumar, Smita; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Norton, Gareth John; Dhankher, Om Parkash; Tripathi, Rudra Deo

    2015-11-15

    Arsenic (As) contamination is a global issue, with South Asia and South East Asia being worst affected. Rice is major crop in these regions and can potentially pose serious health risks due to its known As accumulation potential. Sulfur (S) is an essential macronutrient and a vital element to combat As toxicity. The aim of this study was to investigate the role of S with regards to As toxicity in rice under different S regimes. To achieve this aim, plants were stressed with AsIII and AsV under three different S conditions (low sulfur (0.5mM), normal sulfur (3.5mM) and high sulfur (5.0mM)). High S treatment resulted in increased root As accumulation, likely due to As complexation through enhanced synthesis of thiolic ligands, such as non-protein thiols and phytochelatins, which restricted As translocation to the shoots. Enzymes of S assimilatory pathways and downstream thiolic metabolites were up-regulated with increased S supplementation; however, to maintain optimum concentrations of S, transcript levels of sulfate transporters were down-regulated at high S concentration. Oxidative stress generated due to As was counterbalanced in the high S treatment by reducing hydrogen peroxide concentration and enhancing antioxidant enzyme activities. The high S concentration resulted in reduced transcript levels of Lsi2 (a known transporter of As). This reduction in Lsi2 expression level is a probable reason for low shoot As accumulation, which has potential implications in reducing the risk of As in the food chain. PMID:26073379

  13. Highly Functional TNTs with Superb Photocatalytic, Optical, and Electronic Performance Achieving Record PV Efficiency of 10.1% for 1D-Based DSSCs.

    PubMed

    Qadir, Muhammad Bilal; Li, Yuewen; Sahito, Iftikhar Ali; Arbab, Alvira Ayoub; Sun, Kyung Chul; Mengal, Naveed; Memon, Anam Ali; Jeong, Sung Hoon

    2016-09-01

    Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF-TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF-TNTs by using commercial and cheaper materials for cost-effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye-sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer-Emmett-Teller (BET), electrochemical impedance spectrum, incident-photon-to-current efficiency, and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy characterizations are proving the functionality of HF-TNTs for DSSCs. HF-TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C-TNTs). The DSSCs having HF-TNT and its composite-based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC , quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N-719 dye is achieved, for 1D-based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye-sensitized solar cells, Li-ion batteries, photocatalysis process, ion-exchange/adsorption process, and photoelectrochemical devices. PMID:27432775

  14. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage

    NASA Astrophysics Data System (ADS)

    Hu, Chuangang; Wang, Lixia; Zhao, Yang; Ye, Minhui; Chen, Qing; Feng, Zhihai; Qu, Liangti

    2014-06-01

    Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting current, stability and tolerance to methanol crossover effect, but is also better than most of the nanostructured carbon-based catalysts reported previously. On the other hand, as an anode material for lithium ion batteries, the N-CC@CNTs obtained also exhibit an excellent reversible capacity of ca. 1337 mA h g-1 at 0.5 A g-1, outstanding rate capability and long cycling stability, even at a current density of 20 A g-1. The capacity is the highest among all the heteroatom-doped carbon materials reported so far, and is even higher than that of many of the composites of metal, metal oxides or metal sulfides with carbon materials.Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting

  15. Shewanella-mediated biosynthesis of manganese oxide micro-/nanocubes as efficient electrocatalysts for the oxygen reduction reaction.

    PubMed

    Jiang, Congcong; Guo, Zhaoyan; Zhu, Ying; Liu, Huan; Wan, Meixiang; Jiang, Lei

    2015-01-01

    Developing efficient electrocatalysts for the oxygen reduction reaction (ORR) is critical for promoting the widespread application of fuel cells and metal-air batteries. Here, we develop a biological low-cost, ecofriendly method for the synthesis of Mn2 O3 micro-/nanocubes by calcination of MnCO3 precursors in an oxygen atmosphere. Microcubic MnCO3 precursors with an edge length of 2.5 μm were fabricated by dissimilatory metal-reducing Shewanella loihica PV-4 in the presence of MnO4 (-) as the sole electron acceptor under anaerobic conditions. After calcining the MnCO3 precursors at 500 and 700 °C, porous Mn2 O3 -500 and Mn2 O3 -700 also showed microcubic morphology, while their edge lengths decreased to 1.8 μm due to thermal decomposition. Moreover, the surfaces of the Mn2 O3 microcubes were covered by granular nanoparticles with average diameters in the range of 18-202 nm, depending on the calcination temperatures. Electrochemical measurements demonstrated that the porous Mn2 O3 -500 micro-/nanocubes exhibit promising catalytic activity towards the ORR in an alkaline medium, which should be due to a synergistic effect of the overlapping molecular orbitals of oxygen/manganese and the hierarchically porous structures that are favorable for oxygen absorption. Moreover, these Mn2 O3 micro-/nanocubes possess better stability than commercial Pt/C catalysts and methanol-tolerance property in alkaline solution. Thus the Shewanella-mediated biosynthesis method we provided here might be a new strategy for the preparation of various transition metal oxides as high-performance ORR electrocatalysts at low cost. PMID:25425435

  16. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions.

    PubMed

    Jiang, Hongliang; Zhu, Yihua; Feng, Qian; Su, Yunhe; Yang, Xiaoling; Li, Chunzhong

    2014-03-10

    Despite tremendous progress in developing doped carbocatalysts for the oxygen reduction reaction (ORR), the ORR activity of current metal-free carbocatalysts is still inferior to that of conventional Pt/C catalysts, especially in acidic media and neutral solution. Moreover, it also remains a challenge to develop an effective and scalable method for the synthesis of metal-free carbocatalysts. Herein, we have developed nitrogen and phosphorus dual-doped hierarchical porous carbon foams (HP-NPCs) as efficient metal-free electrocatalysts for ORR. The HP-NPCs were prepared for the first time by copyrolyzing nitrogen- and phosphorus-containing precursors and poly(vinyl alcohol)/polystyrene (PVA/PS) hydrogel composites as in situ templates. Remarkably, the resulting HP-NPCs possess controllable nitrogen and phosphorus content, high surface area, and a hierarchical interconnected macro-/mesoporous structure. In studying the effects of the HP-NPCs on the ORR, we found that the as-prepared HP-NPC materials exhibited not only excellent catalytic activity for ORR in basic, neutral, and acidic media, but also much better tolerance for methanol oxidation and much higher stability than the commercial, state-of-the-art Pt/C catalysts. Because of all these outstanding features, it is expected that the HP-NPC material will be a very suitable catalyst for next-generation fuel cells and lithium-air batteries. In addition, the novel synthetic method described here might be extended to the preparation of many other kinds of hierarchical porous carbon materials or porous carbon that contains metal oxide for wide applications including energy storage, catalysis, and electrocatalysis. PMID:24520023

  17. Strongly-local reductions and the complexity/efficient approximability of algebra and optimization on abstract algebraic structures

    SciTech Connect

    Hunt, H. B.; Marathe, M. V.; Stearns, R. E.

    2001-01-01

    We demonstrate how the concepts of algebraic representability and strongly-local reductions developed here and in [HSM00] can be used to characterize the computational complexity/efficient approximability of a number of basic problems and their variants, on various abstract algebraic structures F. These problems include the following: (1) A1gebra:Determine the solvability, unique solvability, number of solutions, etc., of a system of equations on F. Determine the equivalence of two formulas or straight-line programs on F. 2. 0ptimization:Let {epsilon} > 0. (a) Determine the maximum number of simultaneously satisfiable equations in a system of equations on F; or approximate this number within a multiplicative factor of n{sup {epsilon}}. (b) Determine the maximum value of an objective function subject to satisfiable algebraically expressed constraints on F; or approximate this maximum value within a multiplicative factor of n{sup {epsilon}}. (c) Given a formula or straight-line program, find a minimum size equivalent formula or straightline program; or find an equivalent formula or straight-line program of size {le} f (minimum). Both finite and infinite algebraic structures are considered. These finite structures include all finite nondegenerate lattices and all finite rings or semi-rings with a nonzero element idempotent under multiplication (e.g. all non-degenerate finite unitary rings or semi-rings); and these infinite structures include the natural numbers, integers, real numbers, various algebras on these structures, all ordered rings, many cancellative semi-rings, and all infinite lattices with two elements a,b such that a is covered by b. Our results significantly extend a number of results by Ladner [La89], Condon, et. al. [CF+93], Khanna, et.al [KSW97], Cr951 and Zuckerman [Zu93] on the complexity and approximbaility of combinatorial problems.

  18. Scenarios of U.S. Carbon Reductions: Potential Impacts of Energy-Efficient and Low-Carbon Technologies by 2010 and Beyond

    SciTech Connect

    Brown, M.A.

    1997-01-01

    This report presents the results of a study conducted by five US Department of Energy national laboratories that quantifies the potential for energy-efficient and low-carbon technologies to reduce carbon emissions in the US. The stimulus for this study derives from a growing recognition that any national effort to reduce the growth of greenhouse gas emissions must consider ways of increasing the productivity of energy use. To add greater definition to this view, they quantify the reductions in carbon emissions that can be attained through the improved performance and increased penetration of efficient and low-carbon technologies by the year 2010. They also take a longer-term perspective by characterizing the potential for future research and development to produce further carbon reductions over the next quarter century. As such, this report makes a strong case for the value of energy technology research, development, demonstration, and diffusion as a public response to global climate change. Three overarching conclusions emerge from their analysis of alternative carbon reduction scenarios. First, a vigorous national commitment to develop and deploy cost-effective energy-efficient and low-carbon technologies could reverse the trend toward increasing carbon emissions. Along with utility sector investments, such a commitment could halt the growth in US energy consumption and carbon emissions so that levels in 2010 are close to those in 1997 (for energy) and in 1990 (for carbon). It must be noted that such a vigorous national commitment would have to go far beyond current efforts. Second, if feasible ways are found to implement the carbon reductions, the cases analyzed in the study are judged to yield energy savings that are roughly equal to or greater than costs. Third, a next generation of energy-efficient and low-carbon technologies promises to enable the continuation of an aggressive pace of carbon reductions over the next quarter century.

  19. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    SciTech Connect

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jr., Jonathan J.

    2015-04-01

    The influence of a dilute InxGa1-xN (x~0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that the improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.

  20. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    DOE PAGESBeta

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jr., Jonathan J.

    2015-04-01

    The influence of a dilute InxGa1-xN (x~0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that the improved radiative efficiency resultedmore » from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less

  1. Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers

    SciTech Connect

    Armstrong, Andrew M. Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jonathan J.

    2015-04-07

    The influence of a dilute In{sub x}Ga{sub 1-x}N (x ∼ 0.03) underlayer (UL) grown below a single In{sub 0.16}Ga{sub 0.84}N quantum well (SQW), within a light-emitting diode (LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than the LED without an UL, while the radiative recombination rates were nearly identical. This suggests that the improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.

  2. Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jonathan J.

    2015-04-01

    The influence of a dilute InxGa1-xN (x ˜ 0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode (LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than the LED without an UL, while the radiative recombination rates were nearly identical. This suggests that the improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.

  3. High efficiency RCCI combustion

    NASA Astrophysics Data System (ADS)

    Splitter, Derek A.

    An experimental investigation of the pragmatic limits of Reactivity Controlled Compression Ignition (RCCI) engine efficiency was performed. The study utilized engine experiments combined with zero-dimensional modeling. Initially, simulations were used to suggest conditions of high engine efficiency with RCCI. Preliminary simulations suggested that high efficiency could be obtained by using a very dilute charge with a high compression ratio. Moreover, the preliminary simulations further suggested that with simultaneous 50% reductions in heat transfer and incomplete combustion, 60% gross thermal efficiency may be achievable with RCCI. Following the initial simulations, experiments to investigate the combustion process, fuel effects, and methods to reduce heat transfer and incomplete combustion reduction were conducted. The results demonstrated that the engine cycle and combustion process are linked, and if high efficiency is to be had, then the combustion event must be tailored to the initial cycle conditions. It was found that reductions to engine heat transfer are a key enabler to increasing engine efficiency. In addition, it was found that the piston oil jet gallery cooling in RCCI may be unnecessary, as it had a negative impact on efficiency. Without piston oil gallery cooling, it was found that RCCI was nearly adiabatic, achieving 95% of the theoretical maximum cycle efficiency (air standard Otto cycle efficiency).

  4. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer.

    PubMed

    Ayán-Varela, M; Paredes, J I; Guardia, L; Villar-Rodil, S; Munuera, J M; Díaz-González, M; Fernández-Sánchez, C; Martínez-Alonso, A; Tascón, J M D

    2015-05-20

    The stable dispersion of graphene flakes in an aqueous medium is highly desirable for the development of materials based on this two-dimensional carbon structure, but current production protocols that make use of a number of surfactants typically suffer from limitations regarding graphene concentration or the amount of surfactant required to colloidally stabilize the sheets. Here, we demonstrate that an innocuous and readily available derivative of vitamin B2, namely the sodium salt of flavin mononucleotide (FMNS), is a highly efficient dispersant in the preparation of aqueous dispersions of defect-free, few-layer graphene flakes. Most notably, graphene concentrations in water as high as ∼50 mg mL(-1) using low amounts of FMNS (FMNS/graphene mass ratios of about 0.04) could be attained, which facilitated the formation of free-standing graphene films displaying high electrical conductivity (∼52000 S m(-1)) without the need of carrying out thermal annealing or other types of post-treatment. The excellent performance of FMNS as a graphene dispersant could be attributed to the combined effect of strong adsorption on the sheets through the isoalloxazine moiety of the molecule and efficient colloidal stabilization provided by its negatively charged phosphate group. The FMNS-stabilized graphene sheets could be decorated with nanoparticles of several noble metals (Ag, Pd, and Pt), and the resulting hybrids exhibited a high catalytic activity in the reduction of nitroarenes and electroreduction of oxygen. Overall, the present results should expedite the processing and implementation of graphene in, e.g., conductive inks, composites, and hybrid materials with practical utility in a wide range of applications. PMID:25915172

  5. Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction.

    PubMed

    Zhang, Jintao; Guo, Chunxian; Zhang, Lianying; Li, Chang Ming

    2013-07-18

    Three-dimensional manganese oxide is directly grown on reduced graphene oxide (RGO) sheets, exhibiting comparable catalytic activity, higher selectivity and better stability towards oxygen reduction reaction than those of the commercial Pt/XC-72 catalyst. PMID:23745182

  6. Decontamination method using heat and relative humidity for radish seeds achieves a 7-log reduction of Escherichia coli O157:H7 without affecting product quality.

    PubMed

    Kim, Y B; Kim, H W; Song, M K; Rhee, M S

    2015-05-18

    We developed a novel decontamination method to inactivate Escherichia coli O157:H7 on radish seeds without adversely affecting seed germination or product quality. The use of heat (55, 60, and 65 °C) combined with relative humidity (RH; 25, 45, 65, 85, and 100%) for 24h was evaluated for effective microbial reduction and preservation of seed germination rates. A significant two-way interaction of heat and RH was observed for both microbial reduction and germination rate (P<0.0001). Increases in heat and RH were associated with corresponding reductions in E. coli O157:H7 and in germination rate (P<0.05). The order of lethality for the different treatments was generally as follows: no treatment <55 °C/25-65% RH ≒60 °C/25-45% RH ≒65 °C/25% RH <55 °C/85% RH =60 °C/65% RH <55 °C/100% RH =60 °C/85-100% RH =65 °C/45-100% RH. The most effective condition, 65 °C/45% RH, completely inactivated E. coli O157:H7 on the seeds (7.0 log CFU/g reduction) and had no significant effect on the germination rate (85.4%; P>0.05) or product quality. The method uses only heat and relative humidity without chemicals, and is thus applicable as a general decontamination procedure in spout producing plants where the use of growth chambers is the norm. PMID:25732001

  7. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.

    PubMed

    Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin

    2016-01-01

    This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability. PMID:26575476

  8. A Class Size Reduction (CSR) Implementation Plan Based on an Evaluative Study of CSRs for the Improvement of Third Grade Reading Achievement

    ERIC Educational Resources Information Center

    Vandyke, Barbara Adrienne

    2009-01-01

    For too long, educators have been left to their own devices when implementing educational policies, initiatives, strategies, and interventions, and they have longed to see the full benefits of these programs, especially in reading achievement. However, instead of determining whether a policy/initiative is working, educators have been asked to…

  9. Enhancement of activity of RuSex electrocatalyst by modification with nanostructured iridium towards more efficient reduction of oxygen

    NASA Astrophysics Data System (ADS)

    Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.

    2013-12-01

    Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.

  10. Impact of diabetes duration on achieved reductions in glycated haemoglobin, fasting plasma glucose and body weight with liraglutide treatment for up to 28 weeks: a meta-analysis of seven phase III trials.

    PubMed

    Seufert, J; Bailey, T; Barkholt Christensen, S; Nauck, M A

    2016-07-01

    This meta-analysis of seven randomized, placebo-controlled studies (total 3222 patients) evaluated whether type 2 diabetes (T2D) duration affects the changes in blood glucose control and body weight that can be achieved with liraglutide and placebo. With liraglutide 1.2 mg, shorter diabetes duration was associated with a significantly greater, but clinically non-relevant, difference in glycated haemoglobin (HbA1c) reduction (p < 0.05), i.e. a 0.18% (1.96 mmol/mol) reduction in HbA1c per 10 years shorter diabetes duration. With liraglutide 1.8 mg, shorter diabetes duration was associated with a small but statistically significant trend for greater fasting plasma glucose (FPG) reduction (p < 0.05), i.e. a 0.38 mmol/l reduction in FPG per 10 years shorter diabetes duration. Neither the liraglutide 1.8 mg nor placebo results showed a significant association between HbA1c and diabetes duration and neither the liraglutide 1.2 mg nor placebo results showed a significant association between FPG and diabetes duration. Likewise, neither liraglutide nor placebo showed a significant association between change in weight and diabetes duration. These results suggest diabetes duration has a clinically negligible effect on achievable blood glucose control and weight outcomes with liraglutide and placebo in patients with T2D. PMID:26679282

  11. Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach

    NASA Astrophysics Data System (ADS)

    Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob

    2016-03-01

    We present a Krylov model-order reduction approach to efficiently compute the spontaneous decay (SD) rate of arbitrarily shaped 3D nanosized resonators. We exploit the symmetry of Maxwell's equations to efficiently construct so-called reduced-order models that approximate the SD rate of a quantum emitter embedded in a resonating nanostructure. The models allow for frequency sweeps, meaning that a single model provides SD rate approximations over an entire spectral interval of interest. Field approximations and dominant quasinormal modes can be determined at low cost as well.

  12. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application

    NASA Astrophysics Data System (ADS)

    Tian, Jingqi; Liu, Qian; Ge, Chenjiao; Xing, Zhicai; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O.; Sun, Xuping

    2013-09-01

    In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C3N4) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, respectively.In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C3N4) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, respectively. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c3nr02031b

  13. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions.

    PubMed

    Carlos de Sá, Luís; Luís, Luís G; Guilhermino, Lúcia

    2015-01-01

    Microplastics (MP) are ubiquitous contaminants able to cause adverse effects on organisms. Three hypotheses were tested here: early Pomatoschistus microps juveniles can ingest MP; the presence of MP may reduce fish predatory performance and efficiency; developmental conditions may influence the preyselection capability of fish. Predatory bioassays were carried out with juveniles from two estuaries with differences in environmental conditions: Minho (M-est) and Lima (L-est) Rivers (NW Iberian coast). Polyethylene MP spheres (3 types) alone and in combination with Artemia nauplii were offered as prey.All the MP types were ingested, suggesting confusion with food. Under simultaneous exposure to MP and Artemia, L-est fish showed a significant reduction of the predatory performance (65%) and efficiency (upto 50%), while M-est fish did not, suggesting that developmental conditions may influence the preyselection capability of fish. The MP-induced reduction of food intake may decrease individual and population fitness. PMID:25463733

  14. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application.

    PubMed

    Tian, Jingqi; Liu, Qian; Ge, Chenjiao; Xing, Zhicai; Asiri, Abdullah M; Al-Youbi, Abdulrahman O; Sun, Xuping

    2013-10-01

    In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C₃N₄) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, respectively. PMID:23934305

  15. How Many Letters Should Preschoolers in Public Programs Know? The Diagnostic Efficiency of Various Preschool Letter-Naming Benchmarks for Predicting First-Grade Literacy Achievement

    PubMed Central

    Piasta, Shayne B.; Petscher, Yaacov; Justice, Laura M.

    2015-01-01

    Review of current federal and state standards indicates little consensus or empirical justification regarding appropriate goals, often referred to as benchmarks, for preschool letter-name learning. The present study investigated the diagnostic efficiency of various letter-naming benchmarks using a longitudinal database of 371 children who attended publicly funded preschools. Children’s uppercase and lowercase letter-naming abilities were assessed at the end of preschool, and their literacy achievement on 3 standardized measures was assessed at the end of 1st grade. Diagnostic indices (sensitivity, specificity, and negative and positive predictive power) were generated to examine the extent to which attainment of various preschool letter-naming benchmarks was associated with later risk for literacy difficulties. Results indicated generally high negative predictive power for benchmarks requiring children to know 10 or more letter names by the end of preschool. Balancing across all diagnostic indices, optimal benchmarks of 18 uppercase and 15 lowercase letter names were identified. These findings are discussed in terms of educational implications, limitations, and future directions. PMID:26346643

  16. 10-methylacridine derivatives acting as efficient and stable photocatalysts in reductive dehalogenation of halogenated compounds with sodium borohydride via photoinduced electron transfer

    SciTech Connect

    Ishikawa, Masashi; Fukuzumi, Shunichi )

    1990-11-21

    10-Methylacridine derivatives, 9,10-dihydro-10-methylacridine (AcrH{sub 2}) and acriflavine (AFH{sup +}), act as efficient and stable photocatalysts in reductive dechlorination of p-chlorobiphenyl (ClBP) as well as dehalogenation of other halogenated compounds with sodium borohydride (NaBH{sub 4}) in a mixture of acetonitrile and H{sub 2}O (9:1 v/v) at 298 K. The reductive dechlorination proceeds via the reduction of ClBP by the singlet excited state ({sup 1}AcrH{sub 2}*) to yield dechlorinated product (biphenyl) and 10-methylacridinium ion (AcrH{sup +}), followed by the facile reduction of AcrH{sup +} with NaBH{sub 4} to regenerate AcrH{sub 2}. The absence of the primary kinetic isotope effect as well as the comparison of the observed rate constants with those predicted by using the Marcus theory of electron transfer indicates that the reduction of halogenated compounds (RX) by the singlet excited state ({sup 1}AcrH{sub 2}*) proceeds via photoinduced electron transfer from {sup 1}AcrH{sub 2}* to RX, which results in the cleavage of C-X bonds.

  17. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method. PMID:26024214

  18. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    EPA Science Inventory

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  19. A Facile Route to Bimetal and Nitrogen-Codoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction.

    PubMed

    Zhang, Zhengping; Dou, Meiling; Liu, Haijing; Dai, Liming; Wang, Feng

    2016-08-01

    Bimetal nitrogen-doped carbon with both Fe and Co, derived from the pyrolysis carbon of iron and cobalt phthalocyanine-based conjugated polymer networks, possesses a few-layer graphene-like texture with hierarchical porosity in meso/micro multimodal pore size distribution. The novel electrocatalyst exhibits Pt-like catalytic activity and much higher catalytic durability for oxygen reduction. PMID:27389707

  20. TIGRE: Combinator graph reduction on the RTX 2000

    NASA Technical Reports Server (NTRS)

    Koopman, Philip, Jr.

    1990-01-01

    An efficient evaluation technique is examined for lazy functional programs based on combinator graph reduction. Graph reduction is widely believed to be slow and inefficient, but an abstract machine called the Threaded Interpretive Graph Reduction Engine (TIGRE) achieves a substantial speedup over previous reduction techniques. The runtime system of TIGRE is a threaded system that permits self-modifying program execution with compiler-guaranteed safety. This paper describes an implementation of TIGRE in Forth for the Harris RTX 2000 stack processor.

  1. N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions.

    PubMed

    Zhang, Jintao; Qu, Liangti; Shi, Gaoquan; Liu, Jiangyong; Chen, Jianfeng; Dai, Liming

    2016-02-01

    The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template-free approach to three-dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self-assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal-free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn-air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g(-1) ) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells. PMID:26709954

  2. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin

    2013-07-01

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO2 into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO2 into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min-1, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO2, and even water splitting into hydrogen and oxygen under visible light.

  3. Reduction-Sensitive Polymeric Micelles Based on Docetaxel-Polymer Conjugates Via Disulfide Linker for Efficient Cancer Therapy.

    PubMed

    Guo, Yuanyuan; Zhang, Pei; Zhao, Qingyun; Wang, Kaiming; Luan, Yuxia

    2016-03-01

    In this article, the low-molecular weight biodegradable methoxy poly (ethylene glycol)-poly (d,l-lactide-co-glycolide) (PP) is chosen as polymeric skeleton to be conjugated with docetaxel (DTX) by disulfide bond (PP-SS-DTX) to construct the reduction-sensitive drug delivery system. The conjugates are synthesized via three steps and are further employed to physically load free DTX to develop the PP-SS-DTX/DTX micelles which exhibit many merits including high drug loading content, good stability, and stimuli-sensitive release of drugs. The hydrodynamic diameter of PP-SS-DTX/DTX micelles determined by DLS is 112.3 nm. The hemolysis assay reveals the good blood compatibility of PP-SS-DTX/DTX micelles. In order to investigate the reductive sensitivity of PP-SS-DTX/DTX micelles, dithiothreitol (DTT) is added into the release medium and a programmed drug release mode is observed in the conjugated micelles. In vitro cytotoxity assay shows that the PP-SS-DTX/DTX micelles are more cytotoxic than that of free DTX solution for both MCF-7 and B16F10 cancer cells. In addition, the PP-SS-DTX/DTX micelles also show a higher cellular uptake rate than that of free DTX. Hence, the prepared reduction-sensitive PP-SS-DTX/DTX micelles are effective on inhibiting cancer cells compared with the free DTX which would be a promising carrier in cancer therapy. PMID:26647779

  4. Electrodeposition of palladium on carbon nanotubes modified nickel foam as an efficient electrocatalyst towards hydrogen peroxide reduction

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cao, Bo; Tao, Yue; Hu, Miao; Feng, Chengcheng; Wang, Lei; Jiang, Zhao; Cao, Dianxue; Zhang, Ying

    2015-12-01

    In this article, a three-dimensional electrode (Pd-CNT/Ni foam) based on Pd nanoparticles and carbon nanotubes (CNTs) is successfully developed by a simple "dipping and drying" process and a potentiostatic deposition technology for H2O2 reduction in base medium. The composition and structure of Pd-CNT/Ni foam electrode are examined by X-ray diffractometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, respectively. The cyclic voltammetry (CV) and chronoamperometry (CA) techniques are applied to determine the electrochemical performance. The electrode exhibits a high catalytic activity for H2O2 electroreduction, and it outperforms Pd/Ni foam electrode without CNT coating. At the reduction potential of -0.8 V, the reduction currents on Pd-CNT/Ni foam electrode can reach 323 mA cm-2, however, it is only 192 mA cm-2 on Pd/Ni foam electrode, which is increased by 68.2%. The impressive electrocatalytic performance is largely attributed to the superior open structure and high electronic conductivity, which allows the high utilization of Pd surfaces and makes the electrode have higher electrochemical activity. These findings may provide the opportunity on preparing binder-free carbon-supported electrode in the application of fuel cells.

  5. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  6. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes.

    PubMed

    Liang, Ruowen; Jing, Fenfen; Shen, Lijuan; Qin, Na; Wu, Ling

    2015-04-28

    A bifunctional photocatalyst-Fe-benzenedicarboxylate (MIL-53(Fe)) has been synthesized successfully via a facile solvothermal method. The resulting MIL-53(Fe) photocatalyst exhibited an excellent visible light (λ≥ 420nm) photocatalytic activity for the reduction of Cr(VI), the reduction rate have reached about 100% after 40min of visible light irradiation, which has been more efficient than that of N-doped TiO2 (85%) under identical experimental conditions. Further experimental results have revealed that the photocatalytic activity of MIL-53(Fe) for the reduction of Cr(VI) can be drastically affected by the pH value of the reaction solution, the hole scavenger and atmosphere. Moreover, MIL-53(Fe) has exhibited considerable photocatalytic activity in the mixed systems (Cr(VI)/dyes). After 6h of visible light illumination, the reduction ratio of Cr(VI) and the degradation ratio of dyes have been exceed 60% and 80%, respectively. More significantly, the synergistic effect can also be found during the process of photocatalytic treatment of Cr(VI) contained wastewater under the same photocatalytic reaction conditions, which makes it a potential candidate for environmental restoration. Finally, a possible reaction mechanism has also been investigated in detail. PMID:25677473

  7. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  8. Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Mohammadi Ziarani, Ghodsi

    2015-01-01

    In this study, the photocatalytic efficiency of anatase-type TiO2 nanoparticles synthesized using the sol-gel low-temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV-light-assisted photo and NaBH4 -assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed-bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH-modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH-modified Cu/TiO2 nanoparticles. PMID:25809844

  9. Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes.

    PubMed

    Lalaoui, Noémie; Elouarzaki, Kamal; Le Goff, Alan; Holzinger, Michael; Cosnier, Serge

    2013-10-18

    We report the functionalization of multi-walled carbon nanotube (MWCNT) electrodes by oxidative electropolymerization of pyrrole monomers bearing pyrene and N-hydroxysuccinimide groups. Both polymers were applied to the immobilization and electrical wiring of Trametes versicolor laccase via chemical grafting or non-covalent binding. A "pseudo" host-guest interaction of polymerized pyrene with a hydrophobic cavity of laccase was used for the oriented enzyme immobilization on MWCNT electrodes. The latter leads to higher catalytic current for oxygen reduction (1.85 mA cm(-2)) and higher electroenzymatic stability (50% after one month). PMID:23994955

  10. Biotransformation of the Antibiotic Danofloxacin by Xylaria longipes Leads to an Efficient Reduction of Its Antibacterial Activity.

    PubMed

    Rusch, Marina; Kauschat, Annika; Spielmeyer, Astrid; Römpp, Andreas; Hausmann, Heike; Zorn, Holger; Hamscher, Gerd

    2015-08-12

    Fluoroquinolones are considered as critically important antibiotics. However, they are used in appreciable quantities in veterinary medicine. Liquid manure and feces can contain substantial amounts of unmetabolized antibiotics and, thus, antibiotics can enter the environment if manure is used for soil fertilization. In this study, the microbial biotransformation of the synthetic veterinary fluoroquinolone danofloxacin by the ascomycete Xylaria longipes was investigated. Fungal submerged cultures led to a regioselective and almost quantitative formation of a single metabolite within 3 days. The metabolite was unequivocally identified as danofloxacin N-oxide by high-resolution mass spectrometry and one- and two-dimensional nuclear magnetic resonance spectroscopic techniques. An oxidation of the terminal nitrogen of the substituted piperazine moiety of the substance led to a remarkable reduction of 80% of the initial antibacterial activity. Thus, fungal enzymes involved in the biotransformation process might possess the potential to reduce the entrance of antibiotics via biotransformation of these compounds. PMID:26189577

  11. Defective TiO2-supported Cu nanoparticles as efficient and stable electrocatalysts for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Song, Yang; Chen, Shaowei

    2014-12-01

    Nanocomposites based on TiO2-supported copper nanoparticles were prepared by a hydrothermal method where copper nanoparticles with or without the passivation of 1-decyne were chemically grown onto TiO2 nanocolloid surfaces (and hence denoted as CuHC10/TiO2 and Cu/TiO2, respectively). Transmission electron microscopy measurements showed that the size of the hybrid nanoparticles was 5-15 nm in diameter with clearly defined lattice fringes for anatase TiO2(101) and Cu(111). The formation of anatase TiO2 nanoparticles was also observed by X-ray diffraction measurements. FTIR measurements confirmed successful attachment of alkyne ligands onto the surface of the copper nanoparticles via Cu-C&z.tbd; interfacial bonds in CuHC10/TiO2. XPS measurements suggested the formation of CuO in both samples with a higher concentration in Cu/TiO2, and interestingly Ti3+ species were found in CuHC10/TiO2 but were absent in Cu/TiO2 or TiO2 nanoparticles. Electrochemical studies demonstrated that both Cu/TiO2 and CuHC10/TiO2 exhibited a markedly improved electrocatalytic performance in the oxygen reduction reaction, as compared to TiO2 nanocolloids alone, in the context of the onset potential, the number of electrons transferred and the kinetic current density. Importantly, among the series, CuHC10/TiO2 exhibited the best ORR activity with a high current density, an almost four-electron reduction pathway and long-term stability after 4000 cycles at high potentials, which may be ascribed to the defective TiO2 structures in combination with surface ligand engineering.Nanocomposites based on TiO2-supported copper nanoparticles were prepared by a hydrothermal method where copper nanoparticles with or without the passivation of 1-decyne were chemically grown onto TiO2 nanocolloid surfaces (and hence denoted as CuHC10/TiO2 and Cu/TiO2, respectively). Transmission electron microscopy measurements showed that the size of the hybrid nanoparticles was 5-15 nm in diameter with clearly defined

  12. Reduction of Efficiency Droop in Semipolar (1101) InGaN/GaN Light Emitting Diodes Grown on Patterned Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Da-Wei; Lin, Chien-Chung; Li, Zhen-Yu; Chang, Wei-Ting; Hsu, Hung-Wen; Kuo, Hao-Chung; Lu, Tien-Chang; Wang, Shing-Chung; Liao, Wei-Tsai; Tanikawa, Tomoyuki; Honda, Yoshio; Yamaguchi, Masahito; Sawaki, Nobuhiko

    2011-01-01

    We present a study of semi-polar (1101) InGaN-based light emitting diodes (LEDs) grown on patterned (001) Si substrates by atmospheric-pressure metal organic chemical vapor deposition. A transmission electron microscopy image of the semi-polar template shows that the threading dislocation density was decreased significantly. From electroluminescence measurement, semi-polar LEDs exhibit little blue-shift and low efficiency droop at a high injection current because the reduction of the polarization field not only made the band diagram smoother but also restricted electron overflow to the p-GaN layer as shown in simulations. These results indicate that semi-polar InGaN-based LEDs can possess a high radiative recombination rate and low efficiency droop at a high injection current.

  13. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles

    SciTech Connect

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui; Yao, Yu-Feng; Shih, Pei-Ying; Chen, Horng-Shyang; Hsieh, Chieh; Kiang, Yean-Woei Yang, C. C.; Kuo, Yang

    2014-09-08

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with the case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.

  14. Closed reduction and internal fixation for intertrochanteric femoral fractures is safer and more efficient using two fluoroscopes simultaneously.

    PubMed

    Brin, Y S; Palmanovich, E; Aliev, E; Laver, L; Yaacobi, E; Nyska, M; Kish, B J

    2014-07-01

    The purpose of the study was to assess whether using two fluoroscopes simultaneously in closed reduction and internal fixation of a stable intertrochanteric fracture reduces radiation and operation time. Patients who sustained a stable intertrochanteric femoral fracture were operated in our institution with closed reduction and internal fixation. They were randomly allocated to be operated with the assistance of one or two fluoroscopes. With one device, the radiology technician controlled and moved it to the desired anterior-posterior or axial view. With two fluoroscopes, one was positioned in the anterior-posterior view and the other in the axial view, both controlled by the surgeon. Total radiation and operation time were collected for all patients and compared between the two groups. A total of 27 patients participated in the study. One fluoroscope was used for 13 surgeries and two in 14. Total radiation time was shorter with two fluoroscopes compared to the use of one (36.6±8.6s versus 51.2±18.9s, respectively; p<0.02), as was total operation time (24.3±4.2min and 34.7±11.9min, respectively; p<0.01). Working simultaneously with two fluoroscopic devices is safer for the medical team in the operating theatre, because it decreases the patient's radiation exposure, wound exposure time, and anaesthesia time. It saves operating room time and fluoroscopy personnel during the operation. When operating on hip fractures that are planned to be reduced and fixated, we recommend working with two fluoroscopes simultaneously. PMID:24656301

  15. Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry.

    PubMed

    Eng, Alex Yong Sheng; Sofer, Zdeněk; Huber, Štěpán; Bouša, Daniel; Maryško, Miroslav; Pumera, Martin

    2015-11-16

    Interest in chemical functionalisation of graphenes today is largely driven by associated changes to its physical and material properties. Functionalisation with hydrogen was employed to obtain hydrogenated graphenes (also termed graphane if fully hydrogenated), which exhibited properties including fluorescence, magnetism and a tuneable band gap. Although the classical Birch reduction has been employed for hydrogenation of graphite oxide, variation exists between the choice of alkali metals and alcohols/water as quenching agents. A systematic study of electron (Li, Na, K, Cs) and proton sources (tBuOH, iPrOH, MeOH, H2O) has been performed to identify optimal conditions. The proton source exerted a great influence on the resulting hydrogenation with water and out-performed alcohols, and the lowest carbon-to-hydrogen ratio was observed with sodium and water with composition of C1.4H1O0.3. Although ferromagnetism at room temperature correlates well with increasing hydrogen concentrations, small contributions from trace iron impurities cannot be completely eliminated. In contrast, hydrogenated graphenes exhibit a significant paramagnetic moment at low temperatures that has no correlation with impurities, and therefore, originates from the carbon system. This is in comparison to graphene, which is strongly diamagnetic, and concentrations of paramagnetic centres in hydrogenated graphenes are one order of magnitude larger than that in graphite. Nonetheless, hydrogenation over a particular level might also excessively disrupt intrinsic sp(2) conjugation, resulting in unintended reduction of electrochemical properties. This was observed with heterogeneous electron-transfer rates and it was postulated that hydrogenated graphenes should generally have high defect densities, but only moderately high hydrogenation, should they be employed as electrode materials. PMID:26457373

  16. Industrial Waste Reduction Program

    SciTech Connect

    Not Available

    1991-10-24

    US industry generates over 12 billion tons of wastes each year. These wastes consist of undesirable by-products of industrial production that are discarded into our environment. Energy is an integral part of these wastes; it is found in the embodied energy of industrial feedstocks not optimally used, in the energy content of the wastes themselves, and in the energy needed to transport, treat, and dispose of wastes. Estimates of the potential energy savings from reducing industrial wastes range from three to four quadrillion Btu per year -- enough to meet the annual energy needs of 30 million American homes. This document presents a plan for the Industrial Waste Reduction Program, which has been designed to help achieve national goals for energy efficiency and waste minimization. The objective of the program is to improve the energy efficiency of industrial processes through cost-effective waste reduction. The initial program focus is on waste reduction opportunities in the production and use of chemicals, due to the significant amount of energy used in these activities and the large amounts of hazardous and toxic wastes they generate. The chemical industry will be the initial subject of a series of waste reduction opportunity assessments conducted as part of the program. Assessments of other industries and waste problems will follow.

  17. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  18. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen

    2016-07-01

    Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR.Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the

  19. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction

    NASA Astrophysics Data System (ADS)

    Yu, Dingshan; Wei, Li; Jiang, Wenchao; Wang, Hong; Sun, Bo; Zhang, Qiang; Goh, Kunli; Si, Rongmei; Chen, Yuan

    2013-03-01

    Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both hydrazine oxidation (its current generation ability is comparable to that of 10 wt% Pt-C catalyst) and oxygen reduction (its limiting current is comparable to that of 20 wt% Pt-C catalyst) with four-electron transfer processes and excellent durability.Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both

  20. Use of combined steam-water and organic rankine cycles for achieving better efficiency of gas turbine units and internal combustion engines

    NASA Astrophysics Data System (ADS)

    Gotovskiy, M. A.; Grinman, M. I.; Fomin, V. I.; Aref'ev, V. K.; Grigor'ev, A. A.

    2012-03-01

    Innovative concepts of recovering waste heat using low-boiling working fluids, due to which the the efficiency can be increased to 28-30%, are presented. If distributed generation of electricity or combined production of heat and electricity is implemented, the electrical efficiency can reach 58-60% and the fuel heat utilization factor, 90%.

  1. Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release.

    PubMed

    Chen, Wei; Achazi, Katharina; Schade, Boris; Haag, Rainer

    2015-05-10

    Charge-conversional and reduction-sensitive polyvinyl alcohol (PVA) nanogels were developed for efficient cancer treatment by enhanced cell uptake and intracellular triggered doxorubicin (DOX) release. These PVA nanogels were prepared in a straightforward manner by inverse nanoprecipitation via "click" reaction with an average diameter of 118nm. The introduction of COOH into the PVA nanogels efficiently improved the DOX encapsulation due to the electrostatic interaction. The in vitro release result showed that the decrease of electrostatic interaction between COOH and DOX under a mimicking endosomal pH, in combination with the cleavage of the intervening disulfide bonds in response to a high glutathione (GSH) concentration led to a fast and complete release of DOX. Furthermore, confocal laser scanning microscopy (CLSM) revealed that the ultra pH-sensitive terminal groups allowed nanogels to reverse their surface charge from negative to positive under a tumor extracellular pH (6.5-6.8) which facilitated cell internalization. MTT assays and real time cell analysis (RTCA) showed that these DOX-loaded charge-conversional and reducible PVA nanogels had much better cell toxicity than DOX-loaded non-charge-conversional or reduction-insensitive PVA nanogels following 48h of incubation. These novel charge-conversional and stimuli-responsive PVA nanogels are highly promising for targeted intracellular anticancer drug release. PMID:25445693

  2. A Versatile Iron-Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction.

    PubMed

    Wei, Jing; Liang, Yan; Hu, Yaoxin; Kong, Biao; Simon, George P; Zhang, Jin; Jiang, San Ping; Wang, Huanting

    2016-01-22

    The conversion of biomass into valuable carbon composites as efficient non-precious metal oxygen-reduction electrocatalysts is attractive for the development of commercially viable polymer electrolyte membrane fuel-cell technology. Herein, a versatile iron-tannin-framework ink coating strategy is developed to fabricate cellulose-derived Fe3 C/Fe-N-C catalysts using commercial filter paper, tissue, or cotton as a carbon source, an iron-tannin framework as an iron source, and dicyandiamide as a nitrogen source. The oxygen reduction performance of the resultant Fe3C/Fe-N-C catalysts shows a high onset potential (i.e. 0.98 V vs the reversible hydrogen electrode (RHE)), and large kinetic current density normalized to both geometric electrode area and mass of catalysts (6.4 mA cm(-2) and 32 mA mg(-1) at 0.80 V vs RHE) in alkaline condition. This method can even be used to prepare efficient catalysts using waste carbon sources, such as used polyurethane foam. PMID:26661901

  3. High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction

    NASA Astrophysics Data System (ADS)

    You, Chenghang; Zheng, Ruiping; Shu, Ting; Liu, Lina; Liao, Shijun

    2016-08-01

    A highly porous N self-doped carbon catalyst, with three dimensional morphology/structures and high surface area (810.8 m2 g-1), is prepared through a pyrolysis procedure with polyacrylonitrile as the precursor, and zinc oxide (ZnO) as the templates/pore former. The catalyst exhibits excellent activity and stability towards oxygen reduction reaction (ORR) in alkaline medium, as well as outstanding methanol tolerance and stability. For our optimal catalyst PAC/ZnO-900, its half-wave potential is 26 mV more positive (0.859 V, vs. RHE) than that of commercial Pt/C catalyst (0.833 V, vs. RHE), and its current density at 0.88 V (vs. RHE) is almost twice as high as that of Pt/C catalyst (-1.922 and -0.957 mA cm-2, respectively). It is found that the addition of ZnO plays a crucial role for the formation of catalysts' 3D porous structures and high ORR performance. With the addition of ZnO in precursor, the surface area of the catalyst is enhanced by 13 times, and the ORR activity is enhanced by 10 times. Also, pyrolyzing temperature seems to be another important factor significantly affected the structure and performance of the catalyst.

  4. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media.

    PubMed

    Wu, Nan; Wang, Yingde; Lei, Yongpeng; Wang, Bing; Han, Cheng; Gou, Yanzi; Shi, Qi; Fang, Dong

    2015-01-01

    One-dimensional electrospun nanofibers have emerged as a potential candidate for high-performance oxygen reduction reaction (ORR) catalysts. However, contact resistance among the neighbouring nanofibers hinders the electron transport. Here, we report the preparation of interconnected Fe-N/C nanofiber networks (Fe-N/C NNs) with low electrical resistance via electrospinning followed by maturing and pyrolysis. The Fe-N/C NNs show excellent ORR activity with onset and half-wave potential of 55 and 108 mV less than those of Pt/C catalyst in 0.5 M H2SO4. Intriguingly, the resulting Fe-N/C NNs exhibit 34% higher peak current density and superior durability than generic Fe-N/C ones with similar microstructure and chemical compositions. Additionally, it also displays much better durability and methanol tolerance than Pt/C catalyst. The higher electroactivity is mainly due to the more effective electron transport between the interconnected nanofibers. Thus, our findings provide a novel insight into the design of functional electrospun nanofibers for the application in energy storage and conversion fields. PMID:26615799

  5. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts.

    PubMed

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-04-14

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. PMID:25779978

  6. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction.

    PubMed

    Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen

    2016-08-01

    Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR. PMID:27405086

  7. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Qin, Yong; Li, Juan; Yuan, Jie; Kong, Yong; Tao, Yongxin; Lin, Furong; Li, Shan

    2014-12-01

    Hollow mesoporous carbon nitride nanosphere (HMCN) is firstly prepared via an etching route using hollow mesoporous silica as a sacrificial template. The as-obtained HMCN is a uniform spherical particle with a diameter of ∼300 nm,and possesses a high specific surface area up to 439 m2 g-1. Hollow mesoporous carbon nitride nanosphere/three-dimensional (3D) graphene composite (HMCN-G) is subsequently fabricated via a hydrothermal treatment of HMCN with graphene oxide. As an electrocatalyst for oxygen reduction reaction (ORR), the HMCN-G shows significantly enhanced electrocatalytic activity compared to bulk graphitic carbon nitride (g-C3N4) and HMCN in terms of the electron-transfer number, current density and onset potential. Increased density of catalytically active sites and improved accessibility to electrolyte enabled by the hollow and mesoporous architecture of HMCN, and high conductivity induced from graphene are considered to contribute to the remarkable electrocatalytic performance of the HMCN-G. Furthermore, HMCN-G exhibits superior methanol tolerance to Pt/C catalyst, suggesting that it is a promising metal-free electrocatalyst for polymer electrolyte membrane fuel cell (PEMFC).

  8. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media

    PubMed Central

    Wu, Nan; Wang, Yingde; Lei, Yongpeng; Wang, Bing; Han, Cheng; Gou, Yanzi; Shi, Qi; Fang, Dong

    2015-01-01

    One-dimensional electrospun nanofibers have emerged as a potential candidate for high-performance oxygen reduction reaction (ORR) catalysts. However, contact resistance among the neighbouring nanofibers hinders the electron transport. Here, we report the preparation of interconnected Fe-N/C nanofiber networks (Fe-N/C NNs) with low electrical resistance via electrospinning followed by maturing and pyrolysis. The Fe-N/C NNs show excellent ORR activity with onset and half-wave potential of 55 and 108 mV less than those of Pt/C catalyst in 0.5 M H2SO4. Intriguingly, the resulting Fe-N/C NNs exhibit 34% higher peak current density and superior durability than generic Fe-N/C ones with similar microstructure and chemical compositions. Additionally, it also displays much better durability and methanol tolerance than Pt/C catalyst. The higher electroactivity is mainly due to the more effective electron transport between the interconnected nanofibers. Thus, our findings provide a novel insight into the design of functional electrospun nanofibers for the application in energy storage and conversion fields. PMID:26615799

  9. Two-Dimensional Core-Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction.

    PubMed

    Yuan, Kai; Zhuang, Xiaodong; Fu, Haiyan; Brunklaus, Gunther; Forster, Michael; Chen, Yiwang; Feng, Xinliang; Scherf, Ullrich

    2016-06-01

    Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have drawn much attention due to their unique physical and chemical properties. Using TMDs as templates for the generation of 2D sandwich-like materials with remarkable properties still remains a great challenge due to their poor solvent processability. Herein, MoS2 -coupled sandwich-like conjugated microporous polymers (M-CMPs) with high specific surface area were successfully developed by using functionalized MoS2 nanosheets as template. As-prepared M-CMPs were further used as precursors for preparation of MoS2 -embedded nitrogen-doped porous carbon nanosheets, which were revealed as novel electrocatalysts for oxygen reduction reaction with mainly four-electron transfer mechanism and ultralow half-wave potential in comparison with commercial Pt/C catalyst. Our strategy to core-shelled sandwich-like hybrids paves a way for a new class of 2D hybrids for energy conversion and storage. PMID:27100378

  10. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Jeon, In-Yup; Choi, Hyun-Jung; Choi, Min; Seo, Jeong-Min; Jung, Sun-Min; Kim, Min-Jung; Zhang, Sheng; Zhang, Lipeng; Xia, Zhenhai; Dai, Liming; Park, Noejung; Baek, Jong-Beom

    2013-06-01

    A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl2, Br2 and I2, respectively. High BET surface areas of 471, 579 and 662 m2/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination during the ball-milling and subsequent workup processes. The newly-developed XGnPs can be well dispersed in various solvents, and hence are solution processable. Furthermore, XGnPs showed remarkable electrocatalytic activities toward oxygen reduction reaction (ORR) with a high selectivity, good tolerance to methanol crossover/CO poisoning effects, and excellent long-term cycle stability. First-principle density-functional calculations revealed that halogenated graphene edges could provide decent adsorption sites for oxygen molecules, in a good agreement with the experimental observations.

  11. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction.

    PubMed

    Zehtab Yazdi, Alireza; Fei, Huilong; Ye, Ruquan; Wang, Gunuk; Tour, James; Sundararaj, Uttandaraman

    2015-04-15

    Bamboo structured nitrogen doped multiwalled carbon nanotubes have been helically unzipped, and nitrogen doped graphene oxide nanoribbons (CNx-GONRs) with a multifaceted microstructure have been obtained. CNx-GONRs have then been codoped with nitrogen and boron by simultaneous thermal annealing in ammonia and boron oxide atmospheres, respectively. The effects of the codoping time and temperature on the concentration of the dopants and their functional groups have been extensively investigated. X-ray photoelectron spectroscopy results indicate that pyridinic and BC3 are the main nitrogen and boron functional groups, respectively, in the codoped samples. The oxygen reduction reaction (ORR) properties of the samples have been measured in an alkaline electrolyte and compared with the state-of-the-art Pt/C (20%) electrocatalyst. The results show that the nitrogen/boron codoped graphene nanoribbons with helically unzipped structures (CNx/CBx-GNRs) can compete with the Pt/C (20%) electrocatalyst in all of the key ORR properties: onset potential, exchange current density, four electron pathway selectivity, kinetic current density, and stability. The development of such graphene nanoribbon-based electrocatalyst could be a harbinger of precious metal-free carbon-based nanomaterials for ORR applications. PMID:25793636

  12. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    PubMed

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-01

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions. PMID:25191790

  13. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Yingde; Lei, Yongpeng; Wang, Bing; Han, Cheng; Gou, Yanzi; Shi, Qi; Fang, Dong

    2015-11-01

    One-dimensional electrospun nanofibers have emerged as a potential candidate for high-performance oxygen reduction reaction (ORR) catalysts. However, contact resistance among the neighbouring nanofibers hinders the electron transport. Here, we report the preparation of interconnected Fe-N/C nanofiber networks (Fe-N/C NNs) with low electrical resistance via electrospinning followed by maturing and pyrolysis. The Fe-N/C NNs show excellent ORR activity with onset and half-wave potential of 55 and 108 mV less than those of Pt/C catalyst in 0.5 M H2SO4. Intriguingly, the resulting Fe-N/C NNs exhibit 34% higher peak current density and superior durability than generic Fe-N/C ones with similar microstructure and chemical compositions. Additionally, it also displays much better durability and methanol tolerance than Pt/C catalyst. The higher electroactivity is mainly due to the more effective electron transport between the interconnected nanofibers. Thus, our findings provide a novel insight into the design of functional electrospun nanofibers for the application in energy storage and conversion fields.

  14. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter < 2 nm) were controllably electrochemically reduced on nitrogen-doped graphene (NG) using effective single-stranded oligonucleotide sequences (ssDNA) as the performed template in absence of any other reluctant. The ssDNA is significant for providing AgNCs with growth template and anchoring the cluster on graphene surface. The strong interaction between the AgNCs, ssDNA and NG renders the as-synthesized AgNCs/NG composite with high-performance onset potential, half-wave potential and mass activity for ORR approaching to commercial Pt/C catalyst, and remarkably superior ORR performance than NG and Ag nanoparticle/NG. Importantly, the AgNCs/NG composite shows excellent methanol tolerance and accelerated electrochemical stability (8000 cycles), which is vital in high performance fuel cells, batteries and nanodevices.

  15. Marginal cost curves for water footprint reduction in irrigated agriculture: a policy and decision making guide for efficient water use in crop production

    NASA Astrophysics Data System (ADS)

    Chukalla, Abebe; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Reducing water footprints (WF) in irrigated crop production is an essential element in water management, particularly in water-scarce areas. To achieve this, policy and decision making need to be supported with information on marginal cost curves that rank measures to reduce the WF according to their cost-effectiveness and enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a certain reasonable WF benchmark. This paper aims to develop marginal cost curves (MCC) for WF reduction. The AquaCrop model is used to explore the effect of different measures on evapotranspiration and crop yield and thus WF that is used as input in the MCC. Measures relate to three dimensions of management practices: irrigation techniques (furrow, sprinkler, drip and subsurface drip); irrigation strategies (full and deficit irrigation); and mulching practices (no mulching, organic and synthetic mulching). A WF benchmark per crop is calculated as resulting from the best-available production technology. The marginal cost curve is plotted using the ratios of the marginal cost to WF reduction of the measures as ordinate, ranking with marginal costs rise with the increase of the reduction effort. For each measure, the marginal cost to reduce WF is estimated by comparing the associated WF and net present value (NPV) to the reference case (furrow irrigation, full irrigation, no mulching). The NPV for each measure is based on its capital costs, operation and maintenances costs (O&M) and revenues. A range of cases is considered, including: different crops, soil types and different environments. Key words: marginal cost curve, water footprint benchmark, soil water balance, crop growth, AquaCrop

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang

    2012-05-15

    China’s annual crude steel production in 2010 was 638.7 Mt accounting for nearly half of the world’s annual crude steel production in the same year. Around 461 TWh of electricity and 14,872 PJ of fuel were consumed to produce this quantity of steel in 2010. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese iron and steel industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 416 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 139 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 237 Mt CO2. The FCSC model for the iron and steel industry shows cumulative cost-effective fuel savings potential of 11,999 PJ, and the total technical fuel saving potential is 12,139. The CO2 emissions reduction associated with cost-effective and technical fuel savings is 1,191 Mt CO2 and 1,205 Mt CO2, respectively. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  17. Facile and green reduction of covalently PEGylated nanographene oxide via a `water-only' route for high-efficiency photothermal therapy

    NASA Astrophysics Data System (ADS)

    Chen, Jingqin; Wang, Xiaoping; Chen, Tongsheng

    2014-02-01

    A facile and green strategy is reported for the fabrication of nanosized and reduced covalently PEGylated graphene oxide (nrGO-PEG) with great biocompatibility and high near-infrared (NIR) absorbance. Covalently PEGylated nGO (nGO-PEG) was synthesized by the reaction of nGO-COOH and methoxypolyethylene glycol amine (mPEG-NH2). The neutral and purified nGO-PEG solution was then directly bathed in water at 90°C for 24 h without any additive to obtain nrGO-PEG. Covalent PEGylation not only prevented the aggregation of nGO but also dramatically promoted the reduction extent of nGO during this reduction process. The resulting single-layered nrGO-PEG sheets were approximately 50 nm in average lateral dimension and exhibited great biocompatibility and approximately 7.6-fold increment in NIR absorption. Moreover, this facile reduction process repaired the aromatic structure of GO. CCK-8 and flow cytometry (FCM) assays showed that exposure of A549 cells to 100 μg/mL of nrGO-PEG for 2 h, exhibiting 71.5% of uptake ratio, did not induce significant cytotoxicity. However, after irradiation with 808 nm laser (0.6 W/cm2) for 5 min, the cells incubated with 6 μg/mL of nrGO-PEG solution showed approximately 90% decrease of cell viability, demonstrating the high-efficiency photothermal therapy of nrGO-PEG to tumor cells in vitro. This work established nrGO-PEG as a promising photothermal agent due to its small size, great biocompatibility, high photothermal efficiency, and low cost.

  18. Efficient Reduction of CO2 to CO with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials

    PubMed Central

    2015-01-01

    The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth–carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi3+ precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25–30 mA/cm2 and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1–0.5 mmol·cm–2·h–1 at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm2. This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel. PMID:24783975

  19. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials.

    PubMed

    Medina-Ramos, Jonnathan; DiMeglio, John L; Rosenthal, Joel

    2014-06-11

    The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth-carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi(3+) precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25-30 mA/cm(2) and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1-0.5 mmol·cm(-2)·h(-1) at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm(2). This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel. PMID:24783975

  20. Cobalt Ferrite Bearing Nitrogen-Doped Reduced Graphene Oxide Layers Spatially Separated with Microporous Carbon as Efficient Oxygen Reduction Electrocatalyst.

    PubMed

    Kashyap, Varchaswal; Singh, Santosh K; Kurungot, Sreekumar

    2016-08-17

    The present work discloses how high-quality dispersion of fine particles of cobalt ferrite (CF) could be attained on nitrogen-doped reduced graphene oxide (CF/N-rGO) and how this material in association with a microporous carbon phase could deliver significantly enhanced activity toward electrochemical oxygen reduction reaction (ORR). Our study indicates that the microporous carbon phase plays a critical role in spatially separating the layers of CF/N-rGO and in creating a favorable atmosphere to ensure the seamless distribution of the reactants to the active sites located on CF/N-rGO. In terms of the ORR current density, the heat-treated hybrid catalyst at 150 °C (CF/N-rGO-150) is found to be clearly outperforming (7.4 ± 0.5 mA/cm(2)) the state-of-the-art 20 wt % Pt-supported carbon catalyst (PtC) (5.4 ± 0.5 mA/cm(2)). The mass activity and stability of CF-N-rGO-150 are distinctly superior to PtC even after 5000 electrochemical cycles. As a realistic system level exploration of the catalyst, testing of a primary zinc-air battery could be demonstrated using CF/N-rGO-150 as the cathode catalyst. The battery is giving a galvanostatic discharge time of 15 h at a discharge current density of 20 mA/cm(2) and a specific capacity of ∼630 mAh g(-1) in 6 M KOH by using a Zn foil as the anode. Distinctly, the battery performance of this system is found to be superior to that of PtC in less concentrated KOH solution as the electrolyte. PMID:27464229

  1. Enhancing digestion efficiency of POME in anaerobic sequencing batch reactor with ozonation pretreatment and cycle time reduction.

    PubMed

    Chaiprapat, Sumate; Laklam, Tanyaluk

    2011-03-01

    Ozonation pretreatment was applied to palm oil mill effluent (POME) prior to anaerobic digestion using the anaerobic sequencing batch reactor (ASBR). Ozonation increased BOD/COD by 37.9% with a COD loss of only 3.3%. At organic loads of 6.48-12.96 kg COD/m(3)/d, feeding with non-ozonated POME caused a system failure. The ozonated POME gave significantly higher TCOD removal at loadings 6.52 and 9.04 kg COD/m(3)/d but failed to sustain the operation at loading 11.67 kg COD/m(3)/d. Effects of cycle time (CT) and hydraulic retention time (HRT) were determined using quadratic regression model. The generated response surface and contour plot showed that at this high load conditions (6.52-11.67 kg COD/m(3)/d), longer HRT and shorter CT gave the ASBR higher organic removal efficiency and methane yield. The model was able to satisfactorily describe the relationship of these two key operating parameters. PMID:21215615

  2. Significant reduction in spin pumping efficiency in a platinum/yttrium iron garnet bilayer at low temperature

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Ando, Yuichiro; Ohshima, Ryo; Dushenko, Sergey; Higuchi, Yukio; Shinjo, Teruya; Jürgen von Bardeleben, Hans; Shiraishi, Masashi

    2016-05-01

    The temperature evolution of a direct-current electromotive force (EMF) generated by spin pumping and the inverse-spin Hall effect in a platinum (Pt)/yttrium iron garnet (YIG) bilayer was investigated down to 80 K. The magnitude of the EMF decreased significantly with decreasing temperature and disappeared at approximately 80 K. 40-nm-thick YIG films fabricated by a metal organic decomposition method exhibited single-peak ferrimagnetic resonance (FMR) spectra without any spin wave resonance, which allowed us to precisely analyze the FMR spectra. We determined that the temperature evolution of the Gilbert damping constant is the dominant factor in the temperature dependence of the EMF. The comparison of the FMR linewidth between the X- and Q-bands revealed that an increase in Gilbert damping constant at low temperatures is not due to the enhancement of the spin pumping efficiency but due to an additional spin relaxation in the YIG film itself, which reduces the precession angle of the magnetization under the FMR conditions.

  3. Long-term efficiency of infliximab in patients with ankylosing spondylitis: real life data confirm the potential for dose reduction

    PubMed Central

    Heldmann, F; van den Bosch, F; Burmester, G; Gaston, H; van der Horst-Bruinsma, I E; Krause, A; Schmidt, R; Schneider, M; Sieper, J; Andermann, B; van Tubergen, A; Witt, M; Braun, J

    2016-01-01

    Objective To analyse the treatment outcome of patients with ankylosing spondylitis (AS) in the European AS infliximab cohort (EASIC) study after a total period of 8 years with specific focus on dosage and the duration of intervals between infliximab infusions. Methods EASIC included patients with AS who had received infliximab for 2 years as part of the ASSERT trial. After that period, rheumatologists were free to change the dose or the intervals of infliximab. Clinical data were status at baseline, end of ASSERT and for a total of 8 years of follow-up. Results Of the initially 71 patients with AS from EASIC, 55 patients (77.5%) had completed the 8th year of anti-tumour necrosis factor (TNF) treatment. Of those, 48 patients (87.3%) still continued on infliximab. The mean infusion interval increased slightly from 6 to 7.1±1.5 weeks, while 45.8% patients had increased the intervals up to a maximum of 12 weeks. The mean infliximab dose remained stable over time, with a minimum of 3.1 mg/kg and a maximum of 6.4 mg/kg. In patients receiving <5 mg/kg infliximab, the mean infusion interval increased to 7.0±1.2 weeks. In total, the mean cumulative dose per patient and per year decreased from 3566.30 to 2973.60 mg. Conclusions We could observe that over a follow-up of 8 years of treatment with infliximab, >85% patients still remained on the same treatment, without any major safety events. Furthermore, both the infusion intervals and also the mean infliximab dose were modestly reduced in ≥70% of the patients without the loss of clinical efficiency. PMID:27493791

  4. A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; Lu, Yizhong; Wang, Xiaodan; Bao, Yu; Chen, Wei; Niu, Li

    2014-11-01

    The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous distribution of abundant Co-Nx active sites, and a well-defined three-dimensional mesoporous structure of the N-doped graphene support. The high activity and long-term stability of the low cost g-VB12 make it a promising ORR electrocatalyst in alkaline fuel cells.The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous

  5. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    SciTech Connect

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  6. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    SciTech Connect

    Parker, D.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  7. Examining the Impact of an Integrative Method of Using Technology on Students' Achievement and Efficiency of Computer Usage and on Pedagogical Procedure in Geometry

    ERIC Educational Resources Information Center

    Gurevich, Irina; Gurev, Dvora

    2012-01-01

    In the current study we follow the development of the pedagogical procedure for the course "Constructions in Geometry" that resulted from using dynamic geometry software (DGS), where the computer became an integral part of the educational process. Furthermore, we examine the influence of integrating DGS into the course on students' achievement and…

  8. Synthesis of Cu-Fe{sub 3}O{sub 4}@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    SciTech Connect

    Xu, Ran; Bi, Huiping; He, Guangyu; Zhu, Junwu; Chen, Haiqun

    2014-09-15

    Highlights: • The Cu-Fe{sub 3}O{sub 4}@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe{sub 3}O{sub 4}@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe{sub 3}O{sub 4}@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe{sub 3}O{sub 4}@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe{sub 3}O{sub 4} NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe{sub 3}O{sub 4}@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability.

  9. Prospects of Thickness Reduction of the CdTe Layer in Highly Efficient CdTe Solar Cells Towards 1 µm

    NASA Astrophysics Data System (ADS)

    Amin, Nowshad; Isaka, Takayuki; Okamoto, Tamotsu; Yamada, Akira; Konagai, Makoto

    1999-08-01

    This study focuses on the technique for the stable growth of CdTe (1.44 eV) with thickness near its absorption length, 1 µm, by close spaced sublimation (hereafter CSS) process, in order to achieve high conversion efficiency. X-ray diffraction (XRD) spectroscopy was carried out to examine the microstructure of the films. Current-voltage (I V) characteristics, spectral response and other features of the solar cells using these CdTe films were investigated to elucidate the optimum conditions for achieving the best performance in such thin (1 µm) CdTe solar cells. Thickness was found to be reduced by controlling the temperature profile used during CSS growth. The temperature profile was found to be an important factor in growing high-quality thin films. By controlling the growth parameters and optimizing the annealing temperature at different fabrication steps, we have succeeded, to date, in achieving cell efficiencies of 14.3% (open-circuit voltage (Voc): 0.82 V, short-circuit current (Jsc): 25.2 mA/cm2, fill factor (F.F.): 0.695, area: 1 cm2) with 5 µm, 11.4% (Voc: 0.77 V, Jsc: 23.7 mA/cm2, F.F.: 0.63, area: 1 cm2) with 1.5 µm and 11.2% (Voc: 0.77 V, Jsc: 23.1 mA/cm2, F.F.: 0.63, area: 1 cm2) with only 1 µm of CdTe layer thickness at an air mass of 1.5 without antireflection coatings. This is important for establishing a strong foundation before developing a new structure (e.g., glass/ITO/CdS/CdTe/ZnTe/Ag configuration) with a back surface field of wide-bandgap material (e.g., ZnTe).

  10. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes.

    PubMed

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-07-21

    This study deals with the exploration of NixCo₁-xFe₂O₄ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co₀.₄Ni₀.₆Fe₂O₄ (154.02 m(2) g(-1)). Co₀.₄Ni₀.₆Fe₂O₄ showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe₂O₄ was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH₄ on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni(2+) in to the cobalt ferrite lattice due to octahedral site preference of Ni(2+). Almost 99% degradation was achieved in 20 min using NiFe₂O₄ nanoparticles as catalyst. PMID:24902783

  11. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes

    NASA Astrophysics Data System (ADS)

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-06-01

    This study deals with the exploration of NixCo1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co0.4Ni0.6Fe2O4 (154.02 m2 g-1). Co0.4Ni0.6Fe2O4 showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe2O4 was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH4 on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni2+ in to the cobalt ferrite lattice due to octahedral site preference of Ni2+. Almost 99% degradation was achieved in 20 min using NiFe2O4 nanoparticles as catalyst.

  12. Use of Stochastic Simulation to Evaluate the Reduction in Methane Emissions and Improvement in Reproductive Efficiency from Routine Hormonal Interventions in Dairy Herds.

    PubMed

    Archer, Simon C; Hudson, Christopher D; Green, Martin J

    2015-01-01

    This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set. PMID:26061424

  13. Use of Stochastic Simulation to Evaluate the Reduction in Methane Emissions and Improvement in Reproductive Efficiency from Routine Hormonal Interventions in Dairy Herds

    PubMed Central

    Archer, Simon C.; Hudson, Christopher D.; Green, Martin J.

    2015-01-01

    This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set. PMID:26061424

  14. Mesoporous polyacrylic acid supported silver nanoparticles as an efficient catalyst for reductive coupling of nitrobenzenes and alcohols using glycerol as hydrogen source.

    PubMed

    Mandi, Usha; Roy, Anupam Singha; Kundu, Sudipta K; Roy, Susmita; Bhaumik, Asim; Islam, Sk Manirul

    2016-06-15

    Silver nanoparticle immobilized mesoporous cross-linked polyacrylic acid (Ag-MCP-1) has been synthesized via aqueous-phase polymerization of acrylic acid followed by the surface immobilization with silver nanoparticles. The nanocomposite material has been characterized by different spectroscopic techniques. Powder X-ray diffraction patterns revealed the formation of silver nanoparticles, while transmission electron microscope image showed that Ag nanoparticles are formed and uniformly dispersed in the mesoporous polyacrylic acid. The Ag-MCP-1 nanocomposite can be used as an efficient heterogeneous catalyst in the reductive coupling of nitrobenzenes and alcohols using glycerol as hydrogen source. This nanocomposite can be reused more than five times without any significant decrease in its catalytic activity. PMID:27038284

  15. Nitrogen and sulfur co-doped carbon with three-dimensional ordered macroporosity: An efficient metal-free oxygen reduction catalyst derived from ionic liquid

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Shi, Liang; Lei, Jiaheng; Liu, Dan; Qu, Deyu; Xie, Zhizhong; Du, Xiaodi; Yang, Peng; Hu, Xiaosong; Li, Junsheng; Tang, Haolin

    2016-08-01

    The development of efficient and durable catalyst for oxygen reduction reaction (ORR) is critical for the practical application of proton exchange membrane fuel cell (PEMFC). A novel imidazole based ionic liquid is synthesized in this study and used subsequently for the preparation of a N and S co-doped metal-free catalyst with three dimensional ordered microstructure. The catalyst prepared at 1100 °C showed improved ORR catalytic performance and stability compared to commercial Pt/C catalyst. We demonstrate that the high graphitic N content and high degree of graphitization of the synthesized catalyst is responsible for its superb ORR activity. Our results suggest that the N and S co-doped metal-free catalyst reported here is a promising alternative to traditional ORR catalyst based on noble metal. Furthermore, the current study also demonstrate that importance of morphology engineering in the development of high performance ORR catalyst.

  16. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction.

    PubMed

    Xu, Jiaoxing; Dong, Guofa; Jin, Chuanhong; Huang, Meihua; Guan, Lunhui

    2013-03-01

    S and N co-doped, few-layered graphene oxide is synthesized by using pyrimidine and thiophene as precursors for the application of the oxygen reduction reaction (ORR). The dual-doped catalyst with pyrrolic/graphitic N-dominant structures exhibits competitive catalytic activity (10.0 mA cm(-2) kinetic-limiting current density at -0.25 V) that is superior to that for mono N-doped carbon nanomaterials. This is because of a synergetic effect of N and S co-doping. Furthermore, the dual-doped catalyst also shows an efficient four-electron-dominant ORR process, which has excellent methanol tolerance and improved durability in comparison to commercial Pt/C catalysts. PMID:23404829

  17. How Many Letters Should Preschoolers in Public Programs Know? The Diagnostic Efficiency of Various Preschool Letter-Naming Benchmarks for Predicting First-Grade Literacy Achievement

    ERIC Educational Resources Information Center

    Piasta, Shayne B.; Petscher, Yaacov; Justice, Laura M.

    2012-01-01

    Review of current federal and state standards indicates little consensus or empirical justification regarding appropriate goals, often referred to as benchmarks, for preschool letter-name learning. The present study investigated the diagnostic efficiency of various letter-naming benchmarks using a longitudinal database of 371 children who attended…

  18. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offers a general approach to enhance Pd catalysis in acid for ORB.

  19. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE PAGESBeta

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offersmore » a general approach to enhance Pd catalysis in acid for ORB.« less

  20. Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells.

    PubMed

    Cao, Chun; Wei, Liling; Su, Min; Wang, Gang; Shen, Jianquan

    2016-08-01

    A novel low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon (N/Fe-C) with three-dimensional porous structure is employed as efficient oxygen reduction catalyst in microbial fuel cells (MFCs). The electrochemical active area is significantly improved to 617.19m(2)g(-1) in N/Fe-C by Fe-doping. And N/Fe-C (4.21at.% N, 0.11at.% Fe) exhibits excellent electrocatalytic activity with the oxygen reduction potential of -0.07V (vs. Ag/AgCl) which is comparable to commercial Pt/C. In MFCs tests, the maximum power density and output voltage with N/Fe-C are enhanced to 745mWm(-2) and 562mV (external resistance 1kΩ), which are 11% and 0.72% higher than Pt/C (0.5mgPtcm(-2)), respectively. Besides, the long-term stability of N/Fe-C retains better for more than one week. Moreover, the charge transfer resistance (Rct) values are recorded by the impedance measurements, and the low Rct of N/Fe-C is also result in better catalytic activity. PMID:27155262

  1. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide.

    PubMed

    Megarajan, Sengan; Ayaz Ahmed, Khan Behlol; Rajendra Kumar Reddy, G; Suresh Kumar, P; Anbazhagan, Veerappan

    2016-02-01

    Herein, we present a simple and green method for the synthesis of gold nanoparticles (AuNPs) using the phytoproteins of spinach leaves. Under ambient sunlight irradiation, the isolated phytoprotein complex from spinach leaves reduces the gold chloride aqueous solution and stabilizes the formed AuNPs. As prepared nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, zeta potential, transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The surface plasmon resonance (SPR) maximum for AuNPs was observed at 520 nm. The zeta potential value estimated for the AuNPs is -27.0 mV, indicating that the NPs are well separated. Transmission electron micrographs revealed that the particles are spherical in nature with the size range from 10 to 15 nm. AuNPs act as a catalyst in the degradation of an azo dye, methyl orange in an aqueous environment. The reduction rate was determined to be pseudo-first order. Electrocatalytic efficiency of the synthesized AuNPs via this green approach was studied by chronoamperometry using ascorbic acid and hydrogen peroxide as a model compound for oxidation and reduction, respectively. Electrocatalytic studies indicate that the gold nanoparticles can be used to detect ascorbic acid and hydrogen peroxide in micromolar concentrations with response time less than 3s. PMID:26722997

  2. Rational design of aggregation-induced emission luminogen with weak electron donor-acceptor interaction to achieve highly efficient undoped bilayer OLEDs.

    PubMed

    Chen, Long; Jiang, Yibin; Nie, Han; Hu, Rongrong; Kwok, Hoi Sing; Huang, Fei; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong

    2014-10-01

    In this work, two tailored luminogens (TPE-NB and TPE-PNPB) consisting of tetraphenylethene (TPE), diphenylamino, and dimesitylboryl as a π-conjugated linkage, electron donor, and electron acceptor, respectively, are synthesized and characterized. Their thermal stabilities, photophysical properties, solvachromism, fluorescence decays, electronic structures, electrochemical behaviors, and electroluminescence (EL) properties are investigated systematically, and the impacts of electron donor-acceptor (D-A) interaction on optoelectronic properties are discussed. Due to the presence of a TPE unit, both luminogens show aggregation-induced emission, but strong D-A interaction causes a decrease in emission efficiency and red-shifts in photoluminescence and EL emissions. The luminogen, TPE-PNPB, with a weak D-A interaction fluoresces strongly in solid film with a high fluorescence quantum yield of 94%. The trilayer OLED [ITO/NPB (60 nm)/TPE-PNPB (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] utilizing TPE-PNPB as a light emitter shows a peak luminance of 49 993 cd m(-2) and high EL efficiencies up to 15.7 cd A(-1), 12.9 lm W(-1), and 5.12%. The bilayer OLED [ITO/TPE-PNPB (80 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] adopting TPE-PNPB as a light emitter and hole transporter simultaneously affords even better EL efficiencies of 16.2 cd A(-1), 14.4 lm W(-1), and 5.35% in ambient air, revealing that TPE-PNPB is an eximious p-type light emitter. PMID:25254940

  3. Cytoplasmic delivery of ribozymes leads to efficient reduction in alpha-lactalbumin mRNA levels in C127I mouse cells.

    PubMed Central

    L'Huillier, P J; Davis, S R; Bellamy, A R

    1992-01-01

    Ribozymes targeted to five sites along the alpha-lactalbumin (alpha-lac) mRNA were delivered to the cytoplasm of mouse C127I mammary cells using the T7-vaccinia virus delivery system and the amount of alpha-lac mRNA was monitored 24-48 h post-transfection. Three target sites were selected in the alpha-lac coding region (nucleotides 15, 145 and 361) and two were located in the 3' non-coding region (nucleotides 442 and 694). Acting in trans and at a target:ribozyme ratio of 1:1000, ribozymes targeting sites 361 and 694 reduced alpha-lac mRNA by > 80%; another two ribozymes (targeting nucleotides 442 and 145) reduced mRNA levels by 80 and 60% respectively; the fifth ribozyme (targeting nucleotide 15, near the AUG) was largely ineffective. The kinetic activity (kcat) of each ribozyme in vitro was somewhat predictive of the activity of the two ribozymes that targeted nucleotides 361 and 694, but was not predictive of the in vivo activity of the other three ribozymes. Down-regulation of the intracellular levels of alpha-lac paralleled the ribozyme-dependent reduction achieved for mRNA. For site 442, the reduction in both mRNA and protein was attributed to the catalytic activity of the ribozyme rather than to the antisense effects of the flanking arms, because delivery of an engineered (catalytically-inactive) variant had no effect on mRNA levels and a minimal effect on the level of alpha-lac present in the cell. Images PMID:1425576

  4. Carbon black-derived graphene quantum dots composited with carbon aerogel as a highly efficient and stable reduction catalyst for the iodide/tri-iodide couple

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chieh; Lu, Shih-Yuan

    2014-12-01

    A microwave-assisted oxidative cleavage process is developed to prepare graphene quantum dots (GQDs) from carbon black. The size evolution of the resulting carbonaceous products is studied. In one hour, GQDs of a size less than 10 nm and thickness less than 2 nm are obtained. These GQDs are further composited with mesoporous carbon aerogels (CA) by a filtration process to form GQD-decorated CA composites (GQD/CA). The GQD/CA composite is applied as a catalyst electrode for the reduction of I3- to I-, a critical electrolyte regeneration reaction in dye-sensitized solar cells (DSSCs). Also investigated are Pt electrodes, the expensive traditional counter electrode material for DSSCs, and plain CA electrodes for comparison. Based on data derived from cyclic voltammograms and Tafel plots, the GQD/CA composite exhibits catalytic efficiencies comparable to that of Pt electrodes and better than that of plain CA electrodes. The GQD/CA electrodes, however, surpass the Pt electrodes in terms of long-term stability. The cathodic current drops significantly after 500 cycles for the Pt and plain CA electrodes, whereas the cathodic current is slightly increased for the GQD/CA electrodes. The GQD/CA composite thus proves to be an inexpensive, efficient, and stable alternative to Pt as the counter electrode material for DSSCs.A microwave-assisted oxidative cleavage process is developed to prepare graphene quantum dots (GQDs) from carbon black. The size evolution of the resulting carbonaceous products is studied. In one hour, GQDs of a size less than 10 nm and thickness less than 2 nm are obtained. These GQDs are further composited with mesoporous carbon aerogels (CA) by a filtration process to form GQD-decorated CA composites (GQD/CA). The GQD/CA composite is applied as a catalyst electrode for the reduction of I3- to I-, a critical electrolyte regeneration reaction in dye-sensitized solar cells (DSSCs). Also investigated are Pt electrodes, the expensive traditional counter

  5. Pd-Catalyzed oxidative isomerization of propargylic acetates: highly efficient access to α-acetoxyenones via alkenyl Csp(2)-O bond-forming reductive elimination from Pd(IV).

    PubMed

    Li, Jun; Yang, Wenjie; Yan, Fachao; Liu, Qing; Wang, Ping; Li, Yueyun; Zhao, Yi; Dong, Yunhui; Liu, Hui

    2016-08-23

    A Pd(ii)/(iv)-catalyzed oxidative isomerization of propargylic acetates developed for the synthesis of polysubstituted alkenyl acetates is described. The reductive elimination of alkenyl Csp(2)-OAc bonds from Pd(IV) intermediates is achieved. Mechanistic studies indicate that the reaction mechanism consists of trans acetoxypalladation of a triple bond, isomerization, oxidative addition with PhI(OAc)2 and alkenyl C-OAc bond reductive elimination. PMID:27500292

  6. C/EBPa-Mediated Activation of MicroRNAs 34a and 223 Inhibits Lef1 Expression To Achieve Efficient Reprogramming into Macrophages

    PubMed Central

    Rodriguez-Ubreva, Javier; Ciudad, Laura; van Oevelen, Chris; Parra, Maribel; Graf, Thomas

    2014-01-01

    MicroRNAs (miRNAs) exert negative effects on gene expression and influence cell lineage choice during hematopoiesis. C/EBPa-induced pre-B cell-to-macrophage transdifferentiation provides an excellent model to investigate the contribution of miRNAs to hematopoietic cell identity, especially because the two cell types involved fall into separate lymphoid and myeloid branches. In this process, efficient repression of the B cell-specific program is essential to ensure transdifferentation and macrophage function. miRNA profiling revealed that upregulation of miRNAs is highly predominant compared with downregulation and that C/EBPa directly regulates several upregulated miRNAs. We also determined that miRNA 34a (miR-34a) and miR-223 sharply accelerate C/EBPa-mediated transdifferentiation, whereas their depletion delays this process. These two miRNAs affect the transdifferentiation efficiency and activity of macrophages, including their lipopolysaccharide (LPS)-dependent inflammatory response. miR-34a and miR-223 directly target and downregulate the lymphoid transcription factor Lef1, whose ectopic expression delays transdifferentiation to an extent similar to that seen with miR-34a and miR-223 depletion. In addition, ectopic introduction of Lef1 in macrophages causes upregulation of B cell markers, including CD19, Pax5, and Ikzf3. Our report demonstrates the importance of these miRNAs in ensuring the erasure of key B cell transcription factors, such as Lef1, and reinforces the notion of their essential role in fine-tuning the control required for establishing cell identity. PMID:24421386

  7. C/EBPa-mediated activation of microRNAs 34a and 223 inhibits Lef1 expression to achieve efficient reprogramming into macrophages.

    PubMed

    Rodriguez-Ubreva, Javier; Ciudad, Laura; van Oevelen, Chris; Parra, Maribel; Graf, Thomas; Ballestar, Esteban

    2014-03-01

    MicroRNAs (miRNAs) exert negative effects on gene expression and influence cell lineage choice during hematopoiesis. C/EBPa-induced pre-B cell-to-macrophage transdifferentiation provides an excellent model to investigate the contribution of miRNAs to hematopoietic cell identity, especially because the two cell types involved fall into separate lymphoid and myeloid branches. In this process, efficient repression of the B cell-specific program is essential to ensure transdifferentation and macrophage function. miRNA profiling revealed that upregulation of miRNAs is highly predominant compared with downregulation and that C/EBPa directly regulates several upregulated miRNAs. We also determined that miRNA 34a (miR-34a) and miR-223 sharply accelerate C/EBPa-mediated transdifferentiation, whereas their depletion delays this process. These two miRNAs affect the transdifferentiation efficiency and activity of macrophages, including their lipopolysaccharide (LPS)-dependent inflammatory response. miR-34a and miR-223 directly target and downregulate the lymphoid transcription factor Lef1, whose ectopic expression delays transdifferentiation to an extent similar to that seen with miR-34a and miR-223 depletion. In addition, ectopic introduction of Lef1 in macrophages causes upregulation of B cell markers, including CD19, Pax5, and Ikzf3. Our report demonstrates the importance of these miRNAs in ensuring the erasure of key B cell transcription factors, such as Lef1, and reinforces the notion of their essential role in fine-tuning the control required for establishing cell identity. PMID:24421386

  8. Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride)

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; An, Qi; Luan, Xinglong; Huang, Hongwei; Li, Xiaowei; Meng, Zilin; Tong, Wangshu; Chen, Xiaodong; Chu, Paul K.; Zhang, Yihe

    2015-08-01

    A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03256c

  9. A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Li, Jin-Cheng; Zhao, Shi-Yong; Hou, Peng-Xiang; Fang, Ruo-Pian; Liu, Chang; Liang, Ji; Luan, Jian; Shan, Xu-Yi; Cheng, Hui-Ming

    2015-11-01

    A nitrogen-doped mesoporous carbon containing a network of carbon nanotubes (CNTs) was produced for use as a catalyst for the oxygen reduction reaction (ORR). SiO2 nanoparticles were decorated with clusters of Fe atoms to act as catalyst seeds for CNT growth, after which the material was impregnated with aniline. After polymerization of the aniline, the material was pyrolysed and the SiO2 was removed by acid treatment. The resulting carbon-based hybrid also contained some Fe from the CNT growth catalyst and was doped with N from the aniline. The Fe-N species act as active catalytic sites and the CNT network enables efficient electron transport in the material. Mesopores left by the removal of the SiO2 template provide short transport pathways and easy access to ions. As a result, the catalyst showed not only excellent ORR activity, with 59 mV more positive onset potential and 30 mV more positive half-wave potential than a Pt/C catalyst, but also much longer durability and stronger tolerance to methanol crossover than a Pt/C catalyst.A nitrogen-doped mesoporous carbon containing a network of carbon nanotubes (CNTs) was produced for use as a catalyst for the oxygen reduction reaction (ORR). SiO2 nanoparticles were decorated with clusters of Fe atoms to act as catalyst seeds for CNT growth, after which the material was impregnated with aniline. After polymerization of the aniline, the material was pyrolysed and the SiO2 was removed by acid treatment. The resulting carbon-based hybrid also contained some Fe from the CNT growth catalyst and was doped with N from the aniline. The Fe-N species act as active catalytic sites and the CNT network enables efficient electron transport in the material. Mesopores left by the removal of the SiO2 template provide short transport pathways and easy access to ions. As a result, the catalyst showed not only excellent ORR activity, with 59 mV more positive onset potential and 30 mV more positive half-wave potential than a Pt/C catalyst

  10. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    NASA Astrophysics Data System (ADS)

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-01

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 μm occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  11. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    SciTech Connect

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  12. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst

    PubMed Central

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g−1, and a peak power density of 65 mW cm−2, which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  13. Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn2O4 Nanodots Supported on Graphene.

    PubMed

    Du, Jing; Chen, Chengcheng; Cheng, Fangyi; Chen, Jun

    2015-06-01

    Transition-metal oxides have attracted extensive interest as oxygen-reduction/evolution reaction (ORR/OER) catalyst alternatives to precious Pt-based materials but generally exhibit limited electrocatalytic performance due to their large overpotential and low specific activity. We here report a rapid synthesis of spinel-type CoMn2O4 nanodots (NDs, below 3 nm) monodispersed on graphene for highly efficient electrocatalytic ORR/OER in 0.1 M KOH solution. The preparation of the composite involves the reaction of manganese and cobalt salts in mixed surfactant-solvent-water solution at mild temperature (120 °C) and air. CoMn2O4 NDs homogeneously distributed on carbonaceous substrates show strong coupling and facile charge transfer. Remarkably, graphene-supported CoMn2O4 NDs showed 20 mV higher ORR half-wave potential, twice the kinetic current, and better catalytic durability compared to the benchmark carbon-supported Pt nanoparticles (Pt/C). Moreover, CoMn2O4/reduced graphene oxide afforded electrocatalytic OER with a current density of 10 mA cm(-2) at a low potential of 1.54 V and a small Tafel slope of ∼56 mV/dec. This indicates that the composite of CoMn2O4 nanodots monodispersed on graphene is promising as highly efficient bifunctional electrocatalysts of ORR and OER that can be used in the areas of fuel cells and rechargeable metal-air batteries. PMID:25989252

  14. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    PubMed

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  15. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    PubMed

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. PMID:27467416

  16. Highly efficient dye-sensitized solar cells achieved through using Pt-free Nb2O5/C composite counter electrode and iodide-free redox couples

    NASA Astrophysics Data System (ADS)

    Li, Ling; Lu, Qi; Li, Wenyan; Li, Xiaowei; Hagfeldt, Anders; Zhang, Wenming; Wu, Mingxing

    2016-03-01

    To improve the catalytic activity of Nb2O5, a composite Nb2O5/C (Nb2O5 imbedded in carbon support) is synthesized with a simple in situ method and then introduced the composite into dye-sensitized solar cells (DSCs) as a counter electrode (CE) catalyst. Based on the analysis of the cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel-polarization curve measurements, the catalytic activity of the Nb2O5/C composite for the regeneration of iodide-free redox couples of polysulfide (T2/T-) and cobalt complex (Co3+/2+) is indeed enhanced significantly as compared with pure Nb2O5, because the composite electrode eliminates the particle aggregation and forms a mesoporous network structure with large pore size. The T2/T- electrolyte based DSCs with Nb2O5/C CE yields a high power conversion efficiency (PCE) of 6.11%, generating a great improvement of 63.8% as compared to the Pt CE based DSCs. In addition, the Nb2O5/C exhibits higher catalytic activity than Pt for regenerating the Co3+/2+ redox couple and the DSCs using Nb2O5/C CE shows a high PCE of 9.86%.

  17. Hysteresis-free, stable and efficient perovskite solar cells achieved by vacuum-treated thermal annealing of CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Xie, Fengxian; Zhang, Di; Choy, Wallace C. H.

    2015-09-01

    The lead halide-based perovskite solar cells have emerged as a promising candidate in photovoltaic applications. However, the precise control over the morphologiy of the perovskite films (minimizing pore formation) and enhanced stability and reproducibility of the devices remain challenging, even though both will be necessary for further advancements. Here we introduce vacuum-assisted thermal annealing as a means of controlling the composition and morphology of the CH3NH3PbI3 films formed from PbCl2 and CH3NH3I as precursors. We identify the critical role that the CH3NH3Cl generated as a byproduct during the pervoskite synthesis plays for the photovoltaic performance of the perovskite film. Removing this byproduct through vacuum-assisted thermal annealing we succeeded in producing pure, pore-free planar CH3NH3PbI3 films showing high conversion efficiency (PCE) reaching 14.5%). Removal of CH3NH3Cl strongly attenuate the photocurrent hysteresis.

  18. Efficient reinforcement learning of a reservoir network model of parametric working memory achieved with a cluster population winner-take-all readout mechanism.

    PubMed

    Cheng, Zhenbo; Deng, Zhidong; Hu, Xiaolin; Zhang, Bo; Yang, Tianming

    2015-12-01

    The brain often has to make decisions based on information stored in working memory, but the neural circuitry underlying working memory is not fully understood. Many theoretical efforts have been focused on modeling the persistent delay period activity in the prefrontal areas that is believed to represent working memory. Recent experiments reveal that the delay period activity in the prefrontal cortex is neither static nor homogeneous as previously assumed. Models based on reservoir networks have been proposed to model such a dynamical activity pattern. The connections between neurons within a reservoir are random and do not require explicit tuning. Information storage does not depend on the stable states of the network. However, it is not clear how the encoded information can be retrieved for decision making with a biologically realistic algorithm. We therefore built a reservoir-based neural network to model the neuronal responses of the prefrontal cortex in a somatosensory delayed discrimination task. We first illustrate that the neurons in the reservoir exhibit a heterogeneous and dynamical delay period activity observed in previous experiments. Then we show that a cluster population circuit decodes the information from the reservoir with a winner-take-all mechanism and contributes to the decision making. Finally, we show that the model achieves a good performance rapidly by shaping only the readout with reinforcement learning. Our model reproduces important features of previous behavior and neurophysiology data. We illustrate for the first time how task-specific information stored in a reservoir network can be retrieved with a biologically plausible reinforcement learning training scheme. PMID:26445865

  19. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    PubMed Central

    Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L∗d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L∗d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR. PMID:24672398

  20. A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution

    NASA Astrophysics Data System (ADS)

    Bian, Weiyong; Yang, Zhenrong; Strasser, Peter; Yang, Ruizhi

    2014-03-01

    Development of efficient electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) remain key issues for the commercialization of fuel cells and metal-air batteries. In this study, A CoFe2O4/graphene nanohybrid is facilely synthesized via a two-step process and applied as an electrocatalyst for the ORR and the OER. The as-prepared CoFe2O4/graphene nanohybrid demonstrates excellent catalytic activity for the ORR. At the same mass loading, the Tafel slope of CoFe2O4/graphene electrocatalyst for the ORR is comparable to that of the commercial Pt/C (20 wt% Pt on Vulcan XC-72, Johnson Matthey). The ORR on CoFe2O4/graphene mainly favours a direct 4e- reaction pathway. The CoFe2O4/graphene nanohybrid also affords high catalytic activity for the OER. The chronoamperometric tests show that CoFe2O4/graphene catalyst exhibits excellent stability for both the ORR and the OER, outperforming the commercial Pt/C. The high electrocatalytic activity and durability of CoFe2O4/graphene nanohybrid are attributed to the strong coupling between CoFe2O4 nanoparticles and graphene.

  1. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    PubMed Central

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-01-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm−2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production. PMID:26839148

  2. Co@Co3 O4 @PPD Core@bishell Nanoparticle-Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Wang, Zhijuan; Li, Bing; Ge, Xiaoming; Goh, F W Thomas; Zhang, Xiao; Du, Guojun; Wuu, Delvin; Liu, Zhaolin; Andy Hor, T S; Zhang, Hua; Zong, Yun

    2016-05-01

    Durable electrocatalysts with high catalytic activity toward oxygen reduction reaction (ORR) are crucial to high-performance primary zinc-air batteries (ZnABs) and direct methanol fuel cells (DMFCs). An efficient composite electrocatalyst, Co@Co3 O4 core@shell nanoparticles (NPs) embedded in pyrolyzed polydopamine (PPD) is reported, i.e., in Co@Co3 O4 @PPD core@bishell structure, obtained via a three-step sequential process involving hydrothermal synthesis, high temperature calcination under nitrogen atmosphere, and gentle heating in air. With Co@Co3 O4 NPs encapsulated by ultrathin highly graphitized N-doped carbon, the catalyst exhibits excellent stability in aqueous alkaline solution over extended period and good tolerance to methanol crossover effect. The integration of N-doped graphitic carbon outer shell and ultrathin nanocrystalline Co3 O4 inner shell enable high ORR activity of the core@bishell NPs, as evidenced by ZnABs using catalyst of Co@Co3 O4 @PPD in air-cathode which delivers a stable voltage profile over 40 h at a discharge current density of as high as 20 mA cm(-2) . PMID:27031907

  3. Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction.

    PubMed

    Panomsuwan, Gasidit; Saito, Nagahiro; Ishizaki, Takahiro

    2016-03-23

    Metal-free nitrogen-doped carbon materials are currently considered at the forefront of potential alternative cathode catalysts for the oxygen reduction reaction (ORR) in fuel cell technology. Despite numerous efforts in this area over the past decade, rational design and development of a new catalyst system based on nitrogen-doped carbon materials via an innovative approach still present intriguing challenges in ORR catalysis research. Herein, a new kind of nitrogen-doped carbon nanoparticle-carbon nanofiber (NCNP-CNF) composite with highly efficient and stable ORR catalytic activity has been developed via a new approach assisted by a solution plasma process. The integration of NCNPs and CNFs by the solution plasma process can lead to a unique morphological feature and modify physicochemical properties. The NCNP-CNF composite exhibits a significantly enhanced ORR activity through a dominant four-electron pathway in an alkaline solution. The enhancement in ORR activity of NCNP-CNF composite can be attributed to the synergistic effects of good electron transport from highly graphitized CNFs as well as abundance of exposed catalytic sites and meso/macroporosity from NCNPs. More importantly, NCNP-CNF composite reveals excellent long-term durability and high tolerance to methanol crossover compared with those of a commercial 20 wt % supported on Vulcan XC-72. We expect that NCNP-CNF composite prepared by this synthetic approach can be a promising metal-free cathode catalyst candidate for ORR in fuel cells and metal-air batteries. PMID:26908214

  4. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction.

    PubMed

    Vij, Varun; Tiwari, Jitendra N; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S

    2016-01-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp(2) carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm(-2) at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production. PMID:26839148

  5. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  6. Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction.

    PubMed

    Barman, Barun Kumar; Nanda, Karuna Kar

    2015-03-01

    Here, we demonstrate an uninterrupted galvanic replacement reaction (GRR) for the synthesis of metallic (Ag, Cu and Sn) and bimetallic (Cu-M, M=Ag, Au, Pt and Pd) sponges/dendrites by sacrificing the low reduction potential metals (Mg in our case) in acidic medium. The acidic medium prevents the oxide formation on Mg surface and facilitates the uninterrupted reaction. The morphology of dendritic/spongy structures is controlled by the volume of acid used for this reaction. The growth mechanism of the spongy/dendritic microstructures is explained by diffusion-limited aggregate model (DLA), which is also largely affected by the volume of acid. The significance of this method is that the yield can be easily predicted, which is a major challenge for the commercialization of the products. Furthermore, the synthesis is complete in 1-2 minutes at room temperature. We show that the sponges/dendrites efficiently act as catalysts to reduce 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4-a widely studied conversion process. PMID:25628256

  7. Biogenic hydrogen conversion of de-oiled jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights, and CO2 reduction efficiency.

    PubMed

    Kumar, Gopalakrishnan; Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L ∗ d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55 °C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L ∗ d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30 °C, and pH 7.0. PCR-DGGE analysis revealed that combination of cellulolytic and fermentative bacteria were present in the hydrogen producing ASBR. PMID:24672398

  8. Evaluating Opportunities for Achieving Cost Efficiencies Through the Introduction of PrePex Device Male Circumcision in Adult VMMC Programs in Zambia and Zimbabwe

    PubMed Central

    Chintu, Naminga; Yano, Nanako; Mugurungi, Owen; Tambatamba, Bushimbwa; Ncube, Gertrude; Xaba, Sinokuthemba; Mpasela, Felton; Muguza, Edward; Mangono, Tichakunda; Madidi, Ngonidzashe; Samona, Alick; Tagar, Elva; Hatzold, Karin

    2016-01-01

    Background: Results from recent costing studies have put into question potential Voluntary Medical Male Circumcision (VMMC) cost savings with the introduction of the PrePex device. Methods: We evaluated the cost drivers and the overall unit cost of VMMC for a variety of service delivery models providing either surgical VMMC or both PrePex and surgery using current program data in Zimbabwe and Zambia. In Zimbabwe, 3 hypothetical PrePex only models were also included. For all models, clients aged 18 years and older were assumed to be medically eligible for PrePex and uptake was based on current program data from sites providing both methods. Direct costs included costs for consumables, including surgical VMMC kits for the forceps-guided method, device (US $12), human resources, demand creation, supply chain, waste management, training, and transport. Results: Results for both countries suggest limited potential for PrePex to generate cost savings when adding the device to current surgical service delivery models. However, results for the hypothetical rural Integrated PrePex model in Zimbabwe suggest the potential for material unit cost savings (US $35 per VMMC vs. US $65–69 for existing surgical models). Conclusions: This analysis illustrates that models designed to leverage PrePex's advantages, namely the potential for integrating services in rural clinics and less stringent infrastructure requirements, may present opportunities for improved cost efficiency and service integration. Countries seeking to scale up VMMC in rural settings might consider integrating PrePex only MC services at the primary health care level to reduce costs while also increasing VMMC access and coverage. PMID:27331598

  9. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGESBeta

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; Schueller, Michael; Kim, Dohyun; Nauth, Alexander; Weber, Carina; Kim, Sung Won; Hooker, Jacob M.; Ma, Ling; et al

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required tomore » overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  10. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    SciTech Connect

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; Schueller, Michael; Kim, Dohyun; Nauth, Alexander; Weber, Carina; Kim, Sung Won; Hooker, Jacob M.; Ma, Ling; Qu, Wenchao

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.

  11. Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction.

    PubMed

    Lu, Lei; Hao, Qingli; Lei, Wu; Xia, Xifeng; Liu, Peng; Sun, Dongping; Wang, Xin; Yang, Xujie

    2015-11-18

    Catalysts with low-cost, high activity and stability toward oxygen reduction reaction (ORR) are extremely desirable, but its development still remains a great challenge. Here, a novel magnetically separable hybrid of multimetal oxide, cobalt ferrite (CoFe2O4), anchored on nitrogen-doped reduced graphene oxide (CoFe2O4/NG) is prepared via a facile solvothermal method followed by calcination at 500 °C. The structure of CoFe2O4/NG and the interaction of both components are analyzed by several techniques. The possible formation of Co/Fe-N interaction in the CoFe2O4/NG catalyst is found. As a result, the well-combination of CoFe2O4 nanoparticles with NG and its improved crystallinity lead to a synergistic and efficient catalyst with high performance to ORR through a four-electron-transfer process in alkaline medium. The CoFe2O4/NG exhibits particularly comparable catalytic activity as commercial Pt/C catalyst, and superior stability against methanol oxidation and CO poisoning. Meanwhile, it has been proved that both nitrogen doping and the spinel structure of CoFe2O4 can have a significant contribution to the catalytic activity by contrast experiments. Multimetal oxide hybrid demonstrates better catalysis to ORR than a single metal oxide hybrid. All results make the low-cost and magnetically separable CoFe2O4/NG a promising alternative for costly platinum-based ORR catalyst in fuel cells and metal-air batteries. PMID:26390018

  12. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has

  13. An Approach towards Reduction of Routing Paths for Mobile Networks

    SciTech Connect

    Thakurta, P. K. Guha; Sinha, Prothoma; Mallick, Nilesh; Bandyopadhyay, Subhansu

    2010-10-26

    The foundation of various routing paths for a specific call requesting cell has been proposed in this paper. To improve searching efficiency, the number of routing paths has been reduced to a large extent. Hence, this reduction is based on the computation of frequent item sets. The performance of this proposed model is evaluated with respect to a parameter known as 'Occurrence Index (O{sub i})'. With such reduction, a significant performance gain would be achieved.

  14. An Approach towards Reduction of Routing Paths for Mobile Networks

    NASA Astrophysics Data System (ADS)

    Thakurta, P. K. Guha; Sinha, Prothoma; Mallick, Nilesh; Bandyopadhyay, Subhansu

    2010-10-01

    The foundation of various routing paths for a specific call requesting cell has been proposed in this paper. To improve searching efficiency, the number of routing paths has been reduced to a large extent. Hence, this reduction is based on the computation of frequent item sets. The performance of this proposed model is evaluated with respect to a parameter known as "Occurrence Index (Oi)". With such reduction, a significant performance gain would be achieved.

  15. Energy Efficiency Programs in K-12 Schools: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs. Local Government Climate and Energy Strategy Series

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2011

    2011-01-01

    Saving energy through energy efficiency improvements can cost less than generating, transmitting, and distributing energy from power plants, and provides multiple economic and environmental benefits. Local governments can promote energy efficiency in their jurisdictions by developing and implementing strategies that improve the efficiency of…

  16. NOx reduction by electron beam-produced nitrogen atom injection

    DOEpatents

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  17. Achieving Goal Blood Pressure.

    PubMed

    Laurent, Stéphane

    2015-07-01

    Both monotherapy and combination therapy options are appropriate for antihypertensive therapy according to the 2013 European Society of Hypertension (ESH)/European Society of Cardiology (ESC) guidelines. Most patients require more than one agent to achieve blood pressure (BP) control, and adding a second agent is more effective than doubling the dose of existing therapy. The addition of a third agent may be required to achieve adequate BP reductions in some patients. Single-pill fixed-dose combinations (FDCs) allow multiple-drug regimens to be delivered without any negative impact on patient compliance or persistence with therapy. FDCs also have documented beneficial clinical effects and use of FDCs containing two or three agents is recommended by the 2013 ESH/ESC guidelines. PMID:26002423

  18. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide.

    PubMed

    Gao, Guoping; Jiao, Yan; Waclawik, Eric R; Du, Aijun

    2016-05-18

    Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply. PMID:27116595

  19. Radon reduction

    SciTech Connect

    Hamilton, M.A. )

    1990-11-01

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials.

  20. Serum Neutralization Assay Can Efficiently Replace Plaque Reduction Neutralization Test for Detection and Quantitation of West Nile Virus Antibodies in Human and Animal Serum Samples

    PubMed Central

    Di Gennaro, Annapia; Casaccia, Claudia; Conte, Annamaria; Monaco, Federica; Savini, Giovanni

    2014-01-01

    A serum neutralization assay (SN) was compared with the official plaque reduction neutralization test for the quantitation of West Nile virus antibodies. A total of 1,348 samples from equid sera and 38 from human sera were tested by these two methods. Statistically significant differences were not observed, thus supporting the use of SN for routine purposes. PMID:25100824

  1. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction.

    PubMed

    Peera, S Gouse; Arunchander, A; Sahu, A K

    2016-08-14

    Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ∼110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity

  2. Selecting the best defect reduction methodology

    SciTech Connect

    Hinckley, C.M.; Barkan, P.

    1994-04-01

    Defect rates less than 10 parts per million, unimaginable a few years ago, have become the standard of world-class quality. To reduce defects, companies are aggressively implementing various quality methodologies, such as Statistical Quality Control Motorola`s Six Sigma, or Shingo`s poka-yok. Although each quality methodology reduces defects, selection has been based on an intuitive sense without understanding their relative effectiveness in each application. A missing link in developing superior defect reduction strategies has been a lack of a general defect model that clarifies the unique focus of each method. Toward the goal of efficient defect reduction, we have developed an event tree which addresses a broad spectrum of quality factors and two defect sources, namely, error and variation. The Quality Control Tree (QCT) predictions are more consistent with production experience than obtained by the other methodologies considered independently. The QCT demonstrates that world-class defect rates cannot be achieved through focusing on a single defect source or quality control factor, a common weakness of many methodologies. We have shown that the most efficient defect reduction strategy depend on the relative strengths and weaknesses of each organization. The QCT can help each organization identify the most promising defect reduction opportunities for achieving its goals.

  3. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO{sub 2} into methanol under visible light irradiation

    SciTech Connect

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin

    2013-07-15

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup −1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper

  4. N-doped crumpled graphene derived from vapor phase deposition of PPy on graphene aerogel as an efficient oxygen reduction reaction electrocatalyst.

    PubMed

    Wang, Meng; Wang, Jiazhao; Hou, Yuyang; Shi, Dongqi; Wexler, David; Poynton, Simon D; Slade, Robert C T; Zhang, Weimin; Liu, Huakun; Chen, Jun

    2015-04-01

    Nitrogen-doped crumpled graphene (NCG) is successfully synthesized via vapor phase deposition of polypyrrole onto graphene aerogel followed by thermal treatment. The NCG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable electrocatalytic performance with the commercial Pt/C in alkaline membrane exchange fuel cells because of the well-regulated nitrogen doping and the robust micro-3D crumpled porous nanostructure. PMID:25804889

  5. Scalable and Cost-Effective Synthesis of Highly Efficient Fe2N-Based Oxygen Reduction Catalyst Derived from Seaweed Biomass.

    PubMed

    Liu, Long; Yang, Xianfeng; Ma, Na; Liu, Haitao; Xia, Yanzhi; Chen, Chengmeng; Yang, Dongjiang; Yao, Xiangdong

    2016-03-01

    A simple and scalable synthesis of a 3D Fe2N-based nanoaerogel is reported with superior oxygen reduction reaction activity from waste seaweed biomass, addressed the growing energy scarcity. The merits are due to the synergistic effect of the 3D porous hybrid aerogel support with excellent electrical conductivity, convenient mass transport and O2 adsorption, and core/shell structured Fe2N/N-doped amorphous carbon nanoparticles. PMID:26753802

  6. Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts.

    PubMed

    Shang, Lu; Yu, Huijun; Huang, Xing; Bian, Tong; Shi, Run; Zhao, Yufei; Waterhouse, Geoffrey I N; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2016-02-24

    A well-dispersed Co,N co-doped carbon nanoframework (Co,N-CNF) with hierarchically porous structure is successfully synthesized from zeolitic imidazolate framework (ZIF) precursors via a mesoporous-silica-protected calcination strategy. By preventing the irreversible fusion and aggregation during the high-temperature pyrolysis step with this protection strategy, the Co,N-CNF exhibits comparable oxygen reduction reaction (ORR) catalytic activity to that of commercial Pt catalysts with the same loading. PMID:26677131

  7. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Peera, S. Gouse; Arunchander, A.; Sahu, A. K.

    2016-07-01

    Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ~110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity and

  8. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Peera, S. Gouse; Arunchander, A.; Sahu, A. K.

    2016-07-01

    Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ~110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity and

  9. High partial feed conversion efficiency appears to be a persistent trait associated with reduction in selected measures of methane emissions in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States enteric methane (CH4) contributes approximately 21% of all anthropogenic CH4 emissions. Alongside dietary manipulations, exploiting among-animal variation in feed conversion efficiency (FCE) may offer possible CH4 mitigation strategies. This experiment was designed to evaluate t...

  10. Energy efficiency in the U.S. residential sector: An engineering and economic assessment of opportunities for large energy savings and greenhouse gas emissions reductions

    NASA Astrophysics Data System (ADS)

    Lima de Azevedo, Ines Margarida

    Energy efficiency and conservation is a very promising part of a portfolio of the needed strategies to mitigate climate change. Several technologies and energy efficiency measures in the residential sector offer potential for large energy savings. However, while energy efficiency options are currently considered as a means of reducing carbon emissions, there is still large uncertainty about the effect of such measures on overall carbon savings. The first part of this thesis provides a national assessment of the energy efficiency potential in the residential sector under several different scenarios, which include the perspectives of different economic agents (consumers, utilities, ESCOs, and a society). The scenarios also include maximizing energy, electricity or carbon dioxide savings. The second part of this thesis deals with a detailed assessment of the potential for white-light LEDs for energy and carbon dioxide savings in the U.S. commercial and residential sectors. Solid-state lighting shows great promise as a source of efficient, affordable, color-balanced white light. Indeed, assuming market discount rates, the present work demonstrates that white solid-state lighting already has a lower levelized annual cost (LAC) than incandescent bulbs and that it will be lower than that of the most efficient fluorescent bulbs by the end of this decade. However, a large literature indicates that households do not make their decisions in terms of simple expected economic value. The present analysis shows that incorporating the findings from literature on high implicit discount rates from households when performing decisions towards efficient technologies delays the adoption of white LEDs by a couple of years. After a review of the technology, the present work compares the electricity consumption, carbon emissions and cost-effectiveness of current lighting technologies, when accounting for expected performance evolution through 2015. Simulations of lighting electricity

  11. From Mono to Tris-1,2,3-triazole-Stabilized Gold Nanoparticles and Their Compared Catalytic Efficiency in 4-Nitrophenol Reduction.

    PubMed

    Wang, Changlong; Salmon, Lionel; Li, Qian; Igartua, María Echeverría; Moya, Sergio; Ciganda, Roberto; Ruiz, Jaime; Astruc, Didier

    2016-07-01

    Mono-, bis-, and tris-1,2,3-triazole ligands are used for the stabilization of gold nanoparticles (AuNPs), and the catalytic activities of these AuNPs in 4-nitrophenol reduction by NaBH4 in water are compared as well as with polyethylene glycol 2000 (PEG)- and polyvinylpyrrolidone (PVP)-stabilized AuNPs. The excellent catalytic results specifically obtained with the tris-triazolate ligand terminated by a PEG tail are taken into account by the synergy between the weakness of the tris-triazole-AuNP bond combined with the stabilizing ligand bulk. PMID:27304517

  12. Efficient Scheduling of Scientific Workflows with Energy Reduction Using Novel Discrete Particle Swarm Optimization and Dynamic Voltage Scaling for Computational Grids.

    PubMed

    Christobel, M; Tamil Selvi, S; Benedict, Shajulin

    2015-01-01

    One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO) algorithm based on the particle's best position (pbDPSO) and global best position (gbDPSO) is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF) and First Come First Serve (FCFS) algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER) and Dynamic Voltage Scaling (DVS) were used in the proposed DPSO algorithm. PMID:26075296

  13. Efficient Scheduling of Scientific Workflows with Energy Reduction Using Novel Discrete Particle Swarm Optimization and Dynamic Voltage Scaling for Computational Grids

    PubMed Central

    Christobel, M.; Tamil Selvi, S.; Benedict, Shajulin

    2015-01-01

    One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO) algorithm based on the particle's best position (pbDPSO) and global best position (gbDPSO) is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF) and First Come First Serve (FCFS) algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER) and Dynamic Voltage Scaling (DVS) were used in the proposed DPSO algorithm. PMID:26075296

  14. Reduction of efficiency droop in green strain-compensated InGaN/InGaN light-emitting diodes grown on InGaN substrate

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Chung, Tae-Hoon; Hyeob Baek, Jong; Ahn, Doyeol

    2015-02-01

    The efficiency droop characteristics of green strain-compensated InGaN/InGaN light-emitting diodes (LEDs) grown on an InGaN substrate are investigated by using the multi-band effective mass theory and drift-diffusion model. The radiative recombination coefficient Beff of the strain-compensated quantum well (QW) structure is shown to be much larger than that of the conventional QW structure. Also, we find that the effective active volume of the LEDs increases with the inclusion of strain-compensated layers. This can be explained by the fact that the overlap between electron and hole concentrations increases owing to the decrease in internal field. As a result, the efficiency droop phenomenon for the strain-compensated LEDs is expected to be reduced, compared with that for conventional LEDs.

  15. Carbon-shell-decorated p-semiconductor PbMoO4 nanocrystals for efficient and stable photocathode of photoelectrochemical water reduction

    NASA Astrophysics Data System (ADS)

    Wang, Ligang; Tang, Hanqin; Tian, Yang

    2016-07-01

    Photoelectrochemical (PEC) water splitting using semiconductors is a promising method for the future scalable production of renewable hydrogen fuels. The critical issues in PEC water splitting include the development of the photoelectrode materials with high efficiency and long-term stability, especially for p-type semiconductor photocathodes. Herein, we report the use of citric acid (CA) pyrolysis to prepare carbon-shell-decorated PbMoO4 (C@PbMoO4) nanocrystals via a simple solvothermal method. Different carbon shell thicknesses below 10 nm were generated by varying the amount of CA in the precursor solution. In contrast, without using CA, bare PbMoO4 nanocrystals were obtained. The PEC experiments showed that 2-nm carbon shell could preferably improve the water splitting performance of PbMoO4: the photocurrent density of 2-nm C@PbMoO4 is nearly 2-fold high as that of bare PbMoO4 at 0 V versus reversible hydrogen electrode (RHE). The surface charge transfer efficiency of 2-nm C@PbMoO4 in the PEC process was tested to increase from 83% to 90.4%, the charge separation efficiency enhanced 56%, and the PEC stability also greatly increased compared to those of the bare PbMoO4 nanocrystals. This strategy could be applied to other p-type semiconducting photocathodes for low-cost solar-fuel-generation devices.

  16. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  17. Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wu, Yijin; Zhao, Shenlong; Zhao, Kun; Tu, Tengxiu; Zheng, Jianzhong; Chen, Jie; Zhou, Haifeng; Chen, Dejian; Li, Shunxing

    2016-04-01

    A simple, low-cost and large-scale synthesis method for the carbonized porous cubes (CPCs) containing Fe and N co-doped porous carbon hybrid (Fe-Nx/C) with controlled-morphology, uniform elemental distribution and well-defined pore size is developed by pyrolyzing bimetallic FeIII-modified IRMOF-3 cubes in Argon atmosphere at 800 °C. Furtherly, the CPCs are used as the electrocatalyst for oxygen reduction reaction in alkaline solution. Impressively, the CPCs hybrid exhibits a superior electrocatalytic activity with high onset potential (0.93 V) and half-wave potential (0.78 V), and excellent stability, which is attributed to the synergistic effect of its high the surface to volume ratio, well-defined pore size, multi-active composition and high exposed catalytic active sites. We believe the materials based on earth-abundant elements have a huge potential to apply in catalysis, energy, and environment.

  18. [The change in efficiency of protective measures for reduction of 137Cs accumulation by agricultural plants in various periods after the Chernobyl accident].

    PubMed

    Panov, A V; Aleksakhin, R M; Muzalevskaia, A A

    2011-01-01

    Dynamics of 137Cs transfer factors to plants and the effects of protective measures on this radionuclide accumulation in the agricultural production is estimated on the example of the south-western regions of Bryansk District. Three periods in decreasing the 137Cs content in plants during 20 years after the Chernobyl accident are identified. The contribution of radionuclide decay, natural biogeochemical processes and protective measures aimed at reduction of the 137Cs accumulation in agricultural plants during various periods after radioactive fallout is shown. Maximum permissible levels of 137Cs contamination of cultivated lands, where crop products meeting current standards may be obtained, at different scopes of protective measures on radioactive-contaminated territories are forecasted. Periods after radioactive fallout, when crop and forage products meeting radiological standards are obtained, are assessed. PMID:21520624

  19. Development of Methodologies For The Analysis of The Efficiency of Flood Reduction Measures In The Rhine Basin On The Basis of Reference Floods (deflood)

    NASA Astrophysics Data System (ADS)

    Krahe, P.; Herpertz, D.; Buiteveld, H.; Busch, N.; Engel, H.; Helbig, A.; Naef, F.; Wilke, K.

    After some years of extreme flooding in the 1990s extended efforts were made to im- prove flood protection by means of an integrated river basin management. Part of this strategy is the implementation of decentralised flood reduction measures (FRM). With this in mind, the CHR/IRMA-SPONGE Project DEFLOOD was initiated. By estab- lishing a set of methodological tools this project aims at making a step further towards a quantitative hydrological evaluation of the effects of local FRM on flood generation in large river basins. The basin of the River Mosel and in particular, the basin of its tributary Saar served as case study area for testing the methodological approach. A framework for an integrated river basin modelling approach (FIRM U Flood Reduc- tion) based on generation of hydrometeorological reference conditions, precipitation- runoff modelling and flood routing procedures was set up. In this approach interfaces to incorporate the results of scenario calculations by meso-scale hydrological mod- elling are defined in order to study the downstream propagation of the effect of decen- tralised flood reduction measures including the potential retention along minor rivers in large rivers. Examples for scenario calculations are given. Based on the experience gained the strategy for the use of the methodological framework within the context of river basin management practice are identified. The application of the methodol- ogy requires a set of actions which has to be installed in the Rhine/Meuse basins. The recommendations suggest that - beside progress in hydrological modelling - a base of knowledge needs to be built up and administered which encompasses hydrologically relevant information on the actual state and prospected developments in the River Rhine basin. Furthermore, problem-oriented hydrological process studies in selected small-scale river basins ought to be carried out. Based on these studies conceptual meso-scale modelling approaches can be improved and

  20. A novel approach for enhancing the catalytic efficiency of a protease at low temperature: reduction in substrate inhibition by chemical modification.

    PubMed

    Siddiqui, Khawar Sohail; Parkin, Don M; Curmi, Paul M G; De Francisci, Davide; Poljak, Anne; Barrow, Kevin; Noble, Malcolm H; Trewhella, Jill; Cavicchioli, Ricardo

    2009-07-01

    The alkaline protease, savinase was chemically modified to enhance the productivity of the enzyme at low temperatures on a complex polymeric protein (azocasein) substrate. At 5 and 15 degrees C, savinase modified with ficol or dextran hydrolyzed fivefold more azocasein than the unmodified savinase. Kinetic studies showed that the catalytic improvements are associated with changes in uncompetitive substrate inhibition with K(i) values of modified savinases sixfold higher than the unmodified savinase. Modeling of small-angle scattering data indicates that two substrate molecules bind on opposing sides of the enzyme. The combined kinetic and structural data indicate that the polysaccharide modifier sterically blocks the allosteric site and reduces substrate inhibition. In contrast to the properties of cold-active enzymes that generally manifest as low activation enthalpy and high flexibility, this study shows that increased activity and productivity at low temperature can be achieved by reducing uncompetitive substrate inhibition, and that this can be achieved using chemical modification with an enzyme in a commercial enzyme-formulation. PMID:19288442

  1. Efficient synthesis of Empagliflozin, an inhibitor of SGLT-2, utilizing an AlCl3-promoted silane reduction of a β-glycopyranoside.

    PubMed

    Wang, Xiao-jun; Zhang, Li; Byrne, Denis; Nummy, Larry; Weber, Dirk; Krishnamurthy, Dhileep; Yee, Nathan; Senanayake, Chris H

    2014-08-15

    An efficient production synthesis of the SGLT-2 inhibitor Empagliflozin (5) from acid 1 is described. The key tactical stage involves I/Mg exchange of aryl iodide 2 followed by addition to glucono lactone 3 in THF. Subsequent in situ treatment of the resulting lactol with HCl in MeOH produces β-anomeric methyl glycopyranoside 4 which is, without isolation, directly reduced with Et3SiH mediated by AlCl3 as a Lewis acid in CH2Cl2/MeCN to afford 5 in 50% overall yield. The process was implemented for production on a metric ton scale for commercial launch. PMID:25061799

  2. An efficient and robust design optimisation of multi-state flow network for multiple commodities using generalised reliability evaluation algorithm and edge reduction method

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Cheng; Lin, Po Ting

    2015-10-01

    The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The reliability of delivering commodities from a source node to a sink node in the network is maximised to find the optimal routing. However, the design problem is not simple due to randomly distributed attributes in each path, multiple commodities with variable path capacities and the allowable time constraints for delivery. This paper presents the design optimisation of the multi-state flow network (MSFN) for multiple commodities. We propose an efficient and robust approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and to find the optimal routing subject to the allowable time constraints. The delivery rates of the path segments are evaluated and the minimal-speed arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. The reliability of the optimal routing is at least higher than worst-case measure. Three benchmark examples are utilised to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.

  3. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    NASA Astrophysics Data System (ADS)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic

  4. Synthesis of an efficient heteroatom-doped carbon electro-catalyst for oxygen reduction reaction by pyrolysis of protein-rich pulse flour cooked with SiO2 nanoparticles.

    PubMed

    Gokhale, Rohan; Unni, Sreekuttan M; Puthusseri, Dhanya; Kurungot, Sreekumar; Ogale, Satishchandra

    2014-03-01

    Development of a highly durable, fuel-tolerant, metal-free electro-catalyst for oxygen reduction reaction (ORR) is essential for robust and cost-effective Anion Exchange Membrane Fuel Cells (AEMFCs). Herein, we report the development of a nitrogen-doped (N-doped) hierarchically porous carbon-based efficient ORR electrocatalyst from protein-rich pulses. The process involves 3D silica nanoparticle templating of the pulse flour(s) followed by their double pyrolysis. The detailed experiments are performed on gram flour (derived from chickpeas) without any in situ/ex situ addition of dopants. The N-doped porous carbon thus generated shows remarkable electrocatalytic activity towards ORR in the alkaline medium. The oxygen reduction on this material follows the desired 4-electron transfer mechanism involving the direct reduction pathway. Additionally, the synthesized carbon catalyst also exhibits good electrochemical stability and fuel tolerance. The results are also obtained and compared with the case of soybean flour having higher nitrogen content to highlight the significance of different parameters in the ORR catalyst performance. PMID:24452060

  5. Using nitrogen-rich polymeric network and iron(II) acetate as precursors to synthesize highly efficient electrocatalyst for oxygen reduction reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Chen, Hongbiao; Yang, Duanguang; Gao, Yong; Li, Huaming

    2016-03-01

    Carbon-supported transition metal/nitrogen (M-N/C) materials are considered as one of the most promising electrocatalysts for the oxygen reduction reaction (ORR) owing to their high ORR electrocatalytic activity, long-term stability, and excellent methanol tolerance. So far only a few examples of such catalysts are prepared from N-containing polymers. Herein, we report a novel Fe-N/C catalyst using a nitrogen-rich polymeric network and iron(II) acetate as the precursors. The porous polymeric network is fabricated by one-step Friedel-Crafts reaction of a low-cost cross-linker, formaldehyde dimethyl acetal, with 2,4,6-tripyrrol-1,3,5-triazine. Compared to commercial Pt/C catalyst, the as-prepared Fe-N/C electrocatalyst exhibits superior ORR activity in alkaline electrolyte, and comparable ORR activity in acidic medium. The results obtained are significant for the development of new Fe-N/C electrocatalysts for fuel cells.

  6. Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction.

    PubMed

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2016-01-28

    In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread commercial application prospects, not only as bioimaging probes but also as promising electrocatalysts for the metal-free ORR. PMID:26739885

  7. Fabrication of PdCo Bimetallic Nanoparticles Anchored on Three-Dimensional Ordered N-Doped Porous Carbon as an Efficient Catalyst for Oxygen Reduction Reaction.

    PubMed

    Xue, Hairong; Tang, Jing; Gong, Hao; Guo, Hu; Fan, Xiaoli; Wang, Tao; He, Jianping; Yamauchi, Yusuke

    2016-08-17

    PdCo bimetallic nanoparticles (NPs) anchored on three-dimensional (3D) ordered N-doped porous carbon (PdCo/NPC) were fabricated by an in situ synthesis. Within this composite, N-doped porous carbon (NPC) with an ordered mesoporous structure possesses a high surface area (659.6 m(2) g(-1)), which can facilitate electrolyte infiltration. NPC also acts as a perfect 3D conductive network, guaranteeing fast electron transport. In addition, homogeneously distributed PdCo alloy NPs (∼15 nm) combined with the doping of the N element can significantly improve the electrocatalytic activity for the oxygen reduction reaction (ORR). Due to the structural and material superiority, although the weight percentage of PdCo NPs (∼8 wt%) is much smaller than that of commercial Pt/C (20 wt%), the PdCo/NPC catalyst exhibits similar excellent electrocatalytic activity; however, its superior durability and methanol-tolerance ability of the ORR are as great as those of commercial Pt/C in alkaline media. PMID:27441490

  8. Porous VO(x)N(y) nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction.

    PubMed

    Huang, K; Bi, K; Lu, Y K; Zhang, R; Liu, J; Wang, W J; Tang, H L; Wang, Y G; Lei, M

    2015-01-01

    Novel nanocomposites of carbon nanotubes supported porous VO(x)N(y) nonoribbons (VO(x)N(y)-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VO(x)N(y)-CNTs. Inspiringly, the results indicate that VO(x)N(y)-CNTs catalyst exhibits a 0.4 mA/cm(2) larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VO(x)N(y)-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells. PMID:26616719

  9. Porous VOxNy nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction

    PubMed Central

    Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.

    2015-01-01

    Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells. PMID:26616719

  10. Nitrogen- and boron-co-doped core-shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhong, Shengkui; Zhou, Lihua; Wu, Ling; Tang, Lianfeng; He, Qiyi; Ahmed, Jalal

    2014-12-01

    The most severe bottleneck hindering the widespread application of fuel cell technologies is the difficulty in obtaining an inexpensive and abundant oxygen reduction reaction (ORR) catalyst. The concept of a heteroatom-doped carbon-based metal-free catalyst has recently attracted interest. In this study, a metal-free carbon nanoparticles-based catalyst hybridized with dual nitrogen and boron components was synthesized to catalyze the ORR in microbial fuel cells (MFCs). Multiple physical and chemical characterizations confirmed that the synthetic method enabled the incorporation of both nitrogen and boron dopants. The electrochemical measurements indicated that the co-existence of nitrogen and boron could enhance the ORR kinetics by reducing the overpotential and increasing the current density. The results from the kinetic studies indicated that the nitrogen and boron induced an oxygen adsorption mechanism and a four-electron-dominated reaction pathway for the as-prepared catalyst that was very similar to those induced by Pt/C. The MFC results showed that a maximum power density of ∼642 mW m-2 was obtained using the as-prepared catalyst, which is comparable to that obtained using expensive Pt catalyst. The prepared nitrogen- and boron-co-doped carbon nanoparticles might be an alternative cathode catalyst for MFC applications if large-scale applications and price are considered.

  11. Using model reduction to predict the soil-surface C18OO flux: an example of representing complex biogeochemical dynamics in a computationally efficient manner

    NASA Astrophysics Data System (ADS)

    Riley, W. J.

    2012-11-01

    Earth System Models (ESMs) must calculate large-scale interactions between the land and atmosphere while accurately characterizing fine-scale spatial heterogeneity in water, carbon, and nutrient dynamics. We present here a high-dimensional model representation (HDMR) approach that allows detailed process representation of a coupled carbon and water tracer (the δ18O value of the soil-surface CO2 flux (δFs)) in a computationally tractable manner. δFs depends on the δ18O value of soil water, soil moisture, soil temperature, and soil CO2 production (all of which are depth-dependent), and the δ18O value of above-surface CO2. We tested the HDMR approach over a growing season in a C4-dominated pasture using two vertical soil discretizations. The difference between the HDMR approach and the full model solution in the three-month integrated isoflux was less than 0.2% (0.5 mol m-2‰), and the approach is up to 100 times faster than the full numerical solution. This type of model reduction approach allows representation of complex coupled biogeochemical processes in regional and global climate models and can be extended to characterize subgrid-scale spatial heterogeneity.

  12. Using model reduction to predict the soil-surface C18OO flux: an example of representing complex biogeochemical dynamics in a computationally efficient manner

    NASA Astrophysics Data System (ADS)

    Riley, W. J.

    2013-03-01

    Earth system models (ESMs) must calculate large-scale interactions between the land and atmosphere while accurately characterizing fine-scale spatial heterogeneity in water, carbon, and other nutrient dynamics. We present here a high-dimension model representation (HDMR) approach that allows detailed process representation of a coupled carbon and water tracer (the δ18O value of the soil-surface CO2 flux (δ Fs)) in a computationally tractable manner. δ Fs depends on the δ18O value of soil water, soil moisture and temperature, and soil CO2 production (all of which are depth dependent), and the δ18O value of above-surface CO2. We tested the HDMR approach over a growing season in a C4-dominated pasture using two vertical soil discretizations. The difference between the HDMR approach and the full model solution in the three-month integrated isoflux was less than 0.2% (0.5 mol m-2 ‰), and the approach is up to 100 times faster than the full numerical solution. This type of model reduction approach allows representation of complex coupled biogeochemical processes in regional and global climate models and can be extended to characterize subgrid-scale spatial heterogeneity.

  13. Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yisi; Li, Jie; Li, Wenzhang; Li, Yaomin; Chen, Qiyuan; Zhan, Faqi

    2015-12-01

    Spinel CoMn2O4 (CMO) nanoparticles grown on three-dimensional (3D) nitrogen-doped graphene areogel (NGA) is prepared by a facile two-step hydrothermal method. The NGA not only possesses the intrinsic property of graphene, but also has abundant pore conformations for supporting spinel metal oxide nanoparticles, thus would be suitable as a good electrocatalysts' support for oxygen reduction reaction (ORR). The structure, morphology, porous properties, and chemical composition of CMO/NGA are investigated by X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, nitrogen adsorption-desorption measurements, and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of catalysts is discussed by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and rotating disk electrode (RDE) measurements in O2-saturated 0.1 M KOH electrolyte. The CMO/NGA hybrid exhibits more positive onset potential and half-wave potential, faster charge transfer than that of CMO and NGA, and its electrocatalytic performance is comparable with the commercial 20 wt.% Pt/C. Furthermore, it mainly favors a direct 4e- reaction pathway, and has excellent ethanol tolerance and high durability, which is attributed to the unique 3D crumpled porous nanostructure of NGA with large specific area and fast electron transport, and the synergic covalent coupling between the CoMn2O4 nanoparticles and NGA.

  14. Porous VOxNy nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.

    2015-11-01

    Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.

  15. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  16. Cobaltite oxide nanosheets anchored graphene nanocomposite as an efficient oxygen reduction reaction (ORR) catalyst for the application of lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Gnana kumar, G.; Christy, Maria; Jang, Hosaeng; Nahm, Kee Suk

    2015-08-01

    The graphene/cubic cobaltite oxide nanosheets (rGO/Co3O4) with a face centered cubic crystalline structure are synthesized and are exploited as effective cathode catalysts in high performance Lithium-air batteries. The morphological images enunciate that 220 nm average diameter of Co3O4 nanosheets are effectively anchored over the graphene sheets and the diameter of individual nanoparticles that construct the cubic nanosheets is 5 nm. The growth and composite formation mechanisms of prepared nanostructures are identified from Raman and FT-IR spectroscopic techniques. rGO/Co3O4 composite exhibits a lower voltage, high discharge capacity of 4150 mAh g-1 and displays superior cyclability without any capacity losses, signifying the excellent rechargeability of the fabricated electrodes. The post mortem analysis of electrodes specify the existence of lithium peroxide (Li2O2), lithium oxide (Li2O) and lithium carbonate (Li2CO3) discharge products, revealing the involved electrochemical reaction of Lithium-air batteries. The excellent electrochemical properties of rGO/Co3O4 composite is due to the combination of rapid electrokinetics of electron transport and high electrocatalytic activity toward oxygen reduction reaction given via the synergetic effects of rGO and cubic Co3O4 nanosheets. These findings provide fundamental knowledge on understanding the influence of morphological and structural properties of graphene based nanostructures toward Lithium-air battery performances.

  17. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer.

    PubMed

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-21

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm(2) g(-1)) and a pore volume of 1.14 cm(3) g(-1). Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated. PMID:26692228

  18. Footprint reduction's 'multiple paybacks'.

    PubMed

    2010-06-01

    Some of the measures that EFM personnel can take to further reduce their estates' carbon footprint at a time when pressure to cut energy consumption must be balanced both against the requirement to create the best possible patient environment, and new medical technology that may require substantial energy to operate, were the focus of a recent IHEEM carbon reduction seminar in London. The one-day event, "Planning to achieve Carbon Reduction Commitment targets for healthcare premises", also included a look at the key steps affected healthcare organisations, and especially their estates teams, need to be taking already to ensure compliance with the new Carbon Reduction Commitment scheme. PMID:20597381

  19. Metal-catalyzed electroless etching and nanoimprinting silicon nanowire-based solar cells: Silicon nanowire defect reduction and efficiency enhancement by two-step H2 annealing

    NASA Astrophysics Data System (ADS)

    Jevasuwan, Wipakorn; Nakajima, Kiyomi; Sugimoto, Yoshimasa; Fukata, Naoki

    2016-06-01

    The effects of H2 annealing on material properties including defects of silicon nanowire (SiNW) surface and Si film layer for solar cell application were investigated. Single-junction solar cells consisting of n-SiNWs and chemical vapor deposition grown p-Si matrix were demonstrated using two-step H2 annealing. n-SiNWs formed by two different methods of metal-catalyzed electroless etching and nanoimprinting followed by the Bosch process were compared. Two-step H2 annealing at 900 °C for 10 min after both n-SiNW formations and subsequent p-Si matrix deposition effectively improved SiNW surface and p-Si crystallinity, resulting in higher solar cell efficiency.

  20. Television noise reduction device

    NASA Technical Reports Server (NTRS)

    Gordon, B. L.; Stamps, J. C. (Inventor)

    1975-01-01

    A noise reduction system that divides the color video signal into its luminance and chrominance components is reported. The luminance component of a given frame is summed with the luminance component of at least one preceding frame which was stored on a disc recorder. The summation is carried out so as to achieve a signal amplitude equivalent to that of the original signal. The averaged luminance signal is then recombined with the chrominance signal to achieve a noise-reduced television signal.