Sample records for achieve high accuracy

  1. Photon caliper to achieve submillimeter positioning accuracy

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  2. Preliminary study of GPS orbit determination accuracy achievable from worldwide tracking data

    NASA Technical Reports Server (NTRS)

    Larden, D. R.; Bender, P. L.

    1982-01-01

    The improvement in the orbit accuracy if high accuracy tracking data from a substantially larger number of ground stations is available was investigated. Observations from 20 ground stations indicate that 20 cm or better accuracy can be achieved for the horizontal coordinates of the GPS satellites. With this accuracy, the contribution to the error budget for determining 1000 km baselines by GPS geodetic receivers would be only about 1 cm.

  3. Preliminary study of GPS orbit determination accuracy achievable from worldwide tracking data

    NASA Technical Reports Server (NTRS)

    Larden, D. R.; Bender, P. L.

    1983-01-01

    The improvement in the orbit accuracy if high accuracy tracking data from a substantially larger number of ground stations is available was investigated. Observations from 20 ground stations indicate that 20 cm or better accuracy can be achieved for the horizontal coordinates of the GPS satellites. With this accuracy, the contribution to the error budget for determining 1000 km baselines by GPS geodetic receivers would be only about 1 cm. Previously announced in STAR as N83-14605

  4. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    ERIC Educational Resources Information Center

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  5. Interactional Effects of Instructional Quality and Teacher Judgement Accuracy on Achievement.

    ERIC Educational Resources Information Center

    Helmke, Andreas; Schrader, Friedrich-Wilhelm

    1987-01-01

    Analysis of predictions of 32 teachers regarding 690 fifth-graders' scores on a mathematics achievement test found that the combination of high judgement accuracy with varied instructional techniques was particularly favorable to students in contrast to a combination of high diagnostic sensitivity with a low frequency of cues or individual…

  6. High accuracy in short ISS missions

    NASA Astrophysics Data System (ADS)

    Rüeger, J. M.

    1986-06-01

    Traditionally Inertial Surveying Systems ( ISS) are used for missions of 30 km to 100 km length. Today, a new type of ISS application is emanating from an increased need for survey control densification in urban areas often in connection with land information systems or cadastral surveys. The accuracy requirements of urban surveys are usually high. The loss in accuracy caused by the coordinate transfer between IMU and ground marks is investigated and an offsetting system based on electronic tacheometers is proposed. An offsetting system based on a Hewlett-Packard HP 3820A electronic tacheometer has been tested in Sydney (Australia) in connection with a vehicle mounted LITTON Auto-Surveyor System II. On missions over 750 m ( 8 stations, 25 minutes duration, 3.5 minute ZUPT intervals, mean offset distances 9 metres) accuracies of 37 mm (one sigma) in position and 8 mm in elevation were achieved. Some improvements to the LITTON Auto-Surveyor System II are suggested which would improve the accuracies even further.

  7. An angle encoder for super-high resolution and super-high accuracy using SelfA

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  8. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  9. Experimental studies of high-accuracy RFID localization with channel impairments

    NASA Astrophysics Data System (ADS)

    Pauls, Eric; Zhang, Yimin D.

    2015-05-01

    Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.

  10. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  11. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  12. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    NASA Astrophysics Data System (ADS)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  13. High accuracy wavelength calibration for a scanning visible spectrometer.

    PubMed

    Scotti, Filippo; Bell, Ronald E

    2010-10-01

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤0.2 Å. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of ∼0.25 Å has been demonstrated. With the addition of a high resolution (0.075 arc  sec) optical encoder on the grating stage, greater precision (∼0.005 Å) is possible, allowing absolute velocity measurements within ∼0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  14. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    NASA Astrophysics Data System (ADS)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  15. Achieving accuracy in first-principles calculations for EOS: basis completeness at high temperatures

    NASA Astrophysics Data System (ADS)

    Wills, John; Mattsson, Ann

    2013-06-01

    First-principles electronic structure calculations can provide EOS data in regimes of pressure and temperature where accurate experimental data is difficult or impossible to obtain. This lack, however, also precludes validation of calculations in those regimes. Factors that influence the accuracy of first-principles data include (1) theoretical approximations and (2) computational approximations used in implementing and solving the underlying equations. In the first category are the approximate exchange/correlation functionals and approximate wave equations approximating the Dirac equation; in the second are basis completeness, series convergence, and truncation errors. We are using two rather different electronic structure methods (VASP and RSPt) to make definitive the requirements for accuracy of the second type, common to both. In this talk, we discuss requirements for converged calculation at high temperature and moderated pressure. At convergence we show that both methods give identical results. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Teaching High-Accuracy Global Positioning System to Undergraduates Using Online Processing Services

    ERIC Educational Resources Information Center

    Wang, Guoquan

    2013-01-01

    High-accuracy Global Positioning System (GPS) has become an important geoscientific tool used to measure ground motions associated with plate movements, glacial movements, volcanoes, active faults, landslides, subsidence, slow earthquake events, as well as large earthquakes. Complex calculations are required in order to achieve high-precision…

  17. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    PubMed

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  18. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    PubMed

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  19. The Effect of Moderate and High-Intensity Fatigue on Groundstroke Accuracy in Expert and Non-Expert Tennis Players

    PubMed Central

    Lyons, Mark; Al-Nakeeb, Yahya; Hankey, Joanne; Nevill, Alan

    2013-01-01

    Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player’s achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expert (13 male, 4 female) tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70%) and high-intensities (90%) set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test). Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA’s revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player’s achievement goal indicators. Future research is required to explore the effects of fatigue on performance in

  20. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  1. The relation between children's accuracy estimates of their physical competence and achievement-related characteristics.

    PubMed

    Weiss, M R; Horn, T S

    1990-09-01

    The relationship between perceptions of competence and control, achievement, and motivated behavior in youth sport has been a topic of considerable interest. The purpose of this study was to examine whether children who are under-, accurate, or overestimators of their physical competence differ in their achievement characteristics. Children (N = 133), 8 to 13 years of age, who were attending a summer sport program, completed a series of questionnaires designed to assess perceptions of competence and control, motivational orientation, and competitive trait anxiety. Measures of physical competence were obtained by teachers' ratings that paralleled the children's measure of perceived competence. Perceived competence and teachers' ratings were standardized by grade level, and an accuracy score was computed from the difference between these scores. Children were then categorized as underestimators, accurate raters, or overestimators according to upper and lower quartiles of this distribution. A 2 x 2 x 3 (age level by gender by accuracy) MANCOVA revealed a significant gender by accuracy interaction. Underestimating girls were lower in challenge motivation, higher in trait anxiety, and more external in their control perceptions than accurate or overestimators. Underestimating boys were higher in perceived unknown control than accurate and overestimating boys. It was concluded that children who seriously underestimate their perceived competence may be likely candidates for discontinuation of sport activities or low levels of physical achievement.

  2. Accuracy of Self-Reported College GPA: Gender-Moderated Differences by Achievement Level and Academic Self-Efficacy

    ERIC Educational Resources Information Center

    Caskie, Grace I. L.; Sutton, MaryAnn C.; Eckhardt, Amanda G.

    2014-01-01

    Assessments of college academic achievement tend to rely on self-reported GPA values, yet evidence is limited regarding the accuracy of those values. With a sample of 194 undergraduate college students, the present study examined whether accuracy of self-reported GPA differed based on level of academic performance or level of academic…

  3. Two high accuracy digital integrators for Rogowski current transducers.

    PubMed

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  4. Two high accuracy digital integrators for Rogowski current transducers

    NASA Astrophysics Data System (ADS)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  5. High accuracy position response calibration method for a micro-channel plate ion detector

    NASA Astrophysics Data System (ADS)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Müller, P.; Knecht, A.; Liénard, E.; Kossin, M.; Sternberg, M. G.; Swanson, H. E.; Zumwalt, D. W.

    2016-11-01

    We have developed a position response calibration method for a micro-channel plate (MCP) detector with a delay-line anode position readout scheme. Using an in situ calibration mask, an accuracy of 8 μm and a resolution of 85 μm (FWHM) have been achieved for MeV-scale α particles and ions with energies of ∼10 keV. At this level of accuracy, the difference between the MCP position responses to high-energy α particles and low-energy ions is significant. The improved performance of the MCP detector can find applications in many fields of AMO and nuclear physics. In our case, it helps reducing systematic uncertainties in a high-precision nuclear β-decay experiment.

  6. Making High Accuracy Null Depth Measurements for the LBTI Exozodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Oliver; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William C.; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  7. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  8. High-accuracy user identification using EEG biometrics.

    PubMed

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  9. Making High Accuracy Null Depth Measurements for the LBTI ExoZodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthew; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of approximately 12 zodis per star, for a representative ensemble of approximately 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  10. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    PubMed

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  11. High Accuracy Transistor Compact Model Calibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirementsmore » require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.« less

  12. A new ultra-high-accuracy angle generator: current status and future direction

    NASA Astrophysics Data System (ADS)

    Guertin, Christian F.; Geckeler, Ralf D.

    2017-09-01

    Lack of an extreme high-accuracy angular positioning device available in the United States has left a gap in industrial and scientific efforts conducted there, requiring certain user groups to undertake time-consuming work with overseas laboratories. Specifically, in x-ray mirror metrology the global research community is advancing the state-of-the-art to unprecedented levels. We aim to fill this U.S. gap by developing a versatile high-accuracy angle generator as a part of the national metrology tool set for x-ray mirror metrology and other important industries. Using an established calibration technique to measure the errors of the encoder scale graduations for full-rotation rotary encoders, we implemented an optimized arrangement of sensors positioned to minimize propagation of calibration errors. Our initial feasibility research shows that upon scaling to a full prototype and including additional calibration techniques we can expect to achieve uncertainties at the level of 0.01 arcsec (50 nrad) or better and offer the immense advantage of a highly automatable and customizable product to the commercial market.

  13. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon.

    PubMed

    Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H

    2015-11-17

    Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.

  14. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  15. The construction of high-accuracy schemes for acoustic equations

    NASA Technical Reports Server (NTRS)

    Tang, Lei; Baeder, James D.

    1995-01-01

    An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.

  16. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    PubMed

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  17. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  18. The Effects of Direct Written Corrective Feedback on Improvement of Grammatical Accuracy of High-Proficient L2 Learners

    ERIC Educational Resources Information Center

    Farrokhi, Farahman; Sattarpour, Simin

    2012-01-01

    The present article reports the findings of a study that explored(1) whether direct written corrective feedback (CF) can help high-proficient L2 learners, who has already achieved a rather high level of accuracy in English, improve in the accurate use of two functions of English articles (the use of "a" for first mention and…

  19. High Achievers: 23rd Annual Survey. Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This report presents data from an annual survey of high school student leaders and high achievers. It is noted that of the nearly 700,000 high achievers featured in this edition, 5,000 students were sent the survey and 2,092 questionnaires were completed. Subjects were high school juniors and seniors selected for recognition by their principals or…

  20. High accuracy LADAR scene projector calibration sensor development

    NASA Astrophysics Data System (ADS)

    Kim, Hajin J.; Cornell, Michael C.; Naumann, Charles B.; Bowden, Mark H.

    2008-04-01

    A sensor system for the characterization of infrared laser radar scene projectors has been developed. Available sensor systems do not provide sufficient range resolution to evaluate the high precision LADAR projector systems developed by the U.S. Army Research, Development and Engineering Command (RDECOM) Aviation and Missile Research, Development and Engineering Center (AMRDEC). With timing precision capability to a fraction of a nanosecond, it can confirm the accuracy of simulated return pulses from a nominal range of up to 6.5 km to a resolution of 4cm. Increased range can be achieved through firmware reconfiguration. Two independent amplitude triggers measure both rise and fall time providing a judgment of pulse shape and allowing estimation of the contained energy. Each return channel can measure up to 32 returns per trigger characterizing each return pulse independently. Currently efforts include extending the capability to 8 channels. This paper outlines the development, testing, capabilities and limitations of this new sensor system.

  1. Accuracy and Calibration of High Explosive Thermodynamic Equations of State

    NASA Astrophysics Data System (ADS)

    Baker, Ernest L.; Capellos, Christos; Stiel, Leonard I.; Pincay, Jack

    2010-10-01

    The Jones-Wilkins-Lee-Baker (JWLB) equation of state (EOS) was developed to more accurately describe overdriven detonation while maintaining an accurate description of high explosive products expansion work output. The increased mathematical complexity of the JWLB high explosive equations of state provides increased accuracy for practical problems of interest. Increased numbers of parameters are often justified based on improved physics descriptions but can also mean increased calibration complexity. A generalized extent of aluminum reaction Jones-Wilkins-Lee (JWL)-based EOS was developed in order to more accurately describe the observed behavior of aluminized explosives detonation products expansion. A calibration method was developed to describe the unreacted, partially reacted, and completely reacted explosive using nonlinear optimization. A reasonable calibration of a generalized extent of aluminum reaction JWLB EOS as a function of aluminum reaction fraction has not yet been achieved due to the increased mathematical complexity of the JWLB form.

  2. Accuracy Assessment of Professional Grade Unmanned Systems for High Precision Airborne Mapping

    NASA Astrophysics Data System (ADS)

    Mostafa, M. M. R.

    2017-08-01

    Recently, sophisticated multi-sensor systems have been implemented on-board modern Unmanned Aerial Systems. This allows for producing a variety of mapping products for different mapping applications. The resulting accuracies match the traditional well engineered manned systems. This paper presents the results of a geometric accuracy assessment project for unmanned systems equipped with multi-sensor systems for direct georeferencing purposes. There are a number of parameters that either individually or collectively affect the quality and accuracy of a final airborne mapping product. This paper focuses on identifying and explaining these parameters and their mutual interaction and correlation. Accuracy Assessment of the final ground object positioning accuracy is presented through real-world 8 flight missions that were flown in Quebec, Canada. The achievable precision of map production is addressed in some detail.

  3. Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry

    NASA Astrophysics Data System (ADS)

    Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki

    2015-08-01

    In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.

  4. High-accuracy calculations of the rotation-vibration spectrum of {{\\rm{H}}}_{3}^{+}

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Polyansky, Oleg L.; Zobov, Nikolai F.; Alijah, Alexander; Császár, Attila G.

    2017-12-01

    Calculation of the rotation-vibration spectrum of {{{H}}}3+, as well as of its deuterated isotopologues, with near-spectroscopic accuracy requires the development of sophisticated theoretical models, methods, and codes. The present paper reviews the state-of-the-art in these fields. Computation of rovibrational states on a given potential energy surface (PES) has now become standard for triatomic molecules, at least up to intermediate energies, due to developments achieved by the present authors and others. However, highly accurate Born-Oppenheimer energies leading to highly accurate PESs are not accessible even for this two-electron system using conventional electronic structure procedures (e.g. configuration-interaction or coupled-cluster techniques with extrapolation to the complete (atom-centered Gaussian) basis set limit). For this purpose, highly specialized techniques must be used, e.g. those employing explicitly correlated Gaussians and nonlinear parameter optimizations. It has also become evident that a very dense grid of ab initio points is required to obtain reliable representations of the computed points extending from the minimum to the asymptotic limits. Furthermore, adiabatic, relativistic, and quantum electrodynamic correction terms need to be considered to achieve near-spectroscopic accuracy during calculation of the rotation-vibration spectrum of {{{H}}}3+. The remaining and most intractable problem is then the treatment of the effects of non-adiabatic coupling on the rovibrational energies, which, in the worst cases, may lead to corrections on the order of several cm-1. A promising way of handling this difficulty is the further development of effective, motion- or even coordinate-dependent, masses and mass surfaces. Finally, the unresolved challenge of how to describe and elucidate the experimental pre-dissociation spectra of {{{H}}}3+ and its isotopologues is discussed.

  5. Achieving behavioral control with millisecond resolution in a high-level programming environment.

    PubMed

    Asaad, Wael F; Eskandar, Emad N

    2008-08-30

    The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.

  6. Achieving behavioral control with millisecond resolution in a high-level programming environment

    PubMed Central

    Asaad, Wael F.; Eskandar, Emad N.

    2008-01-01

    The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the one millisecond time-scale that is relevant for the alignment of behavioral and neural events. PMID:18606188

  7. Poor Results for High Achievers

    ERIC Educational Resources Information Center

    Bui, Sa; Imberman, Scott; Craig, Steven

    2012-01-01

    Three million students in the United States are classified as gifted, yet little is known about the effectiveness of traditional gifted and talented (G&T) programs. In theory, G&T programs might help high-achieving students because they group them with other high achievers and typically offer specially trained teachers and a more advanced…

  8. 16th Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    The report presents data from 2,043 questionnaires completed by secondary student leaders and high achievers. Ss were selected for recognition in "Who's Who Among American High School Students" by their principals or guidance counselors, national youth organizations, or the publishing company because of high achievement in academics, activities,…

  9. Certified ion implantation fluence by high accuracy RBS.

    PubMed

    Colaux, Julien L; Jeynes, Chris; Heasman, Keith C; Gwilliam, Russell M

    2015-05-07

    From measurements over the last two years we have demonstrated that the charge collection system based on Faraday cups can robustly give near-1% absolute implantation fluence accuracy for our electrostatically scanned 200 kV Danfysik ion implanter, using four-point-probe mapping with a demonstrated accuracy of 2%, and accurate Rutherford backscattering spectrometry (RBS) of test implants from our quality assurance programme. The RBS is traceable to the certified reference material IRMM-ERM-EG001/BAM-L001, and involves convenient calibrations both of the electronic gain of the spectrometry system (at about 0.1% accuracy) and of the RBS beam energy (at 0.06% accuracy). We demonstrate that accurate RBS is a definitive method to determine quantity of material. It is therefore useful for certifying high quality reference standards, and is also extensible to other kinds of samples such as thin self-supporting films of pure elements. The more powerful technique of Total-IBA may inherit the accuracy of RBS.

  10. Enabling Technologies for High-accuracy Multiangle Spectropolarimetric Imaging from Space

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Macenka, Steven A.; Seshndri, Suresh; Bruce, Carl E; Jau, Bruno; Chipman, Russell A.; Cairns, Brian; Christoph, Keller; Foo, Leslie D.

    2004-01-01

    Satellite remote sensing plays a major role in measuring the optical and radiative properties, environmental impact, and spatial and temporal distribution of tropospheric aerosols. In this paper, we envision a new generation of spaceborne imager that integrates the unique strengths of multispectral, multiangle, and polarimetric approaches, thereby achieving better accuracies in aerosol optical depth and particle properties than can be achieved using any one method by itself. Design goals include spectral coverage from the near-UV to the shortwave infrared; global coverage within a few days; intensity and polarimetric imaging simultaneously at multiple view angles; kilometer to sub-kilometer spatial resolution; and measurement of the degree of linear polarization for a subset of the spectral complement with an uncertainty of 0.5% or less. The latter requirement is technically the most challenging. In particular, an approach for dealing with inter-detector gain variations is essential to avoid false polarization signals. We propose using rapid modulation of the input polarization state to overcome this problem, using a high-speed variable retarder in the camera design. Technologies for rapid retardance modulation include mechanically rotating retarders, liquid crystals, and photoelastic modulators (PEMs). We conclude that the latter are the most suitable.

  11. Mathematics Achievement in High- and Low-Achieving Secondary Schools

    ERIC Educational Resources Information Center

    Mohammadpour, Ebrahim; Shekarchizadeh, Ahmadreza

    2015-01-01

    This paper identifies the amount of variance in mathematics achievement in high- and low-achieving schools that can be explained by school-level factors, while controlling for student-level factors. The data were obtained from 2679 Iranian eighth graders who participated in the 2007 Trends in International Mathematics and Science Study. Of the…

  12. High-Accuracy Finite Element Method: Benchmark Calculations

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel

    2018-02-01

    We describe a new high-accuracy finite element scheme with simplex elements for solving the elliptic boundary-value problems and show its efficiency on benchmark solutions of the Helmholtz equation for the triangle membrane and hypercube.

  13. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  14. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  15. Advanced Computational Methods for High-accuracy Refinement of Protein Low-quality Models

    NASA Astrophysics Data System (ADS)

    Zang, Tianwu

    Predicting the 3-dimentional structure of protein has been a major interest in the modern computational biology. While lots of successful methods can generate models with 3˜5A root-mean-square deviation (RMSD) from the solution, the progress of refining these models is quite slow. It is therefore urgently needed to develop effective methods to bring low-quality models to higher-accuracy ranges (e.g., less than 2 A RMSD). In this thesis, I present several novel computational methods to address the high-accuracy refinement problem. First, an enhanced sampling method, named parallel continuous simulated tempering (PCST), is developed to accelerate the molecular dynamics (MD) simulation. Second, two energy biasing methods, Structure-Based Model (SBM) and Ensemble-Based Model (EBM), are introduced to perform targeted sampling around important conformations. Third, a three-step method is developed to blindly select high-quality models along the MD simulation. These methods work together to make significant refinement of low-quality models without any knowledge of the solution. The effectiveness of these methods is examined in different applications. Using the PCST-SBM method, models with higher global distance test scores (GDT_TS) are generated and selected in the MD simulation of 18 targets from the refinement category of the 10th Critical Assessment of Structure Prediction (CASP10). In addition, in the refinement test of two CASP10 targets using the PCST-EBM method, it is indicated that EBM may bring the initial model to even higher-quality levels. Furthermore, a multi-round refinement protocol of PCST-SBM improves the model quality of a protein to the level that is sufficient high for the molecular replacement in X-ray crystallography. Our results justify the crucial position of enhanced sampling in the protein structure prediction and demonstrate that a considerable improvement of low-accuracy structures is still achievable with current force fields.

  16. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    NASA Astrophysics Data System (ADS)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  17. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  18. Initial development of high-accuracy CFRP panel for DATE5 antenna

    NASA Astrophysics Data System (ADS)

    Qian, Yuan; Lou, Zheng; Hao, Xufeng; Zhu, Jing; Cheng, Jingquan; Wang, Hairen; Zuo, Yingxi; Yang, Ji

    2016-07-01

    DATE5 antenna, which is a 5m telescope for terahertz exploration, will be sited at Dome A, Antarctica. It is necessary to keep high surface accuracy of the primary reflector panels so that high observing efficiency can be achieved. In antenna field, carbon fiber reinforced composite (CFRP) sandwich panels are widely used as these panels are light in weight, high in strength, low in thermal expansion, and cheap in mass fabrication. In DATE5 project, CFRP panels are important panel candidates. In the design study phase, a CFRP prototype panel of 1-meter size is initially developed for the verification purpose. This paper introduces the material arrangement in the sandwich panel, measured performance of this testing sandwich structure samples, and together with the panel forming process. For anti-icing in the South Pole region, a special CFRP heating film is embedded in the front skin of sandwich panel. The properties of some types of basic building materials are tested. Base on the results, the deformation of prototype panel with different sandwich structures and skin layers are simulated and a best structural concept is selected. The panel mold used is a high accuracy one with a surface rms error of 1.4 μm. Prototype panels are replicated from the mold. Room temperature curing resin is used to reduce the thermal deformation in the resin transfer process. In the curing, vacuum negative pressure technology is also used to increase the volume content of carbon fiber. After the measurement of the three coordinate measure machine (CMM), a prototype CFRP panel of 5.1 μm rms surface error is developed initially.

  19. Critical thinking and accuracy of nurses' diagnoses.

    PubMed

    Lunney, Margaret

    2003-01-01

    Interpretations of patient data are complex and diverse, contributing to a risk of low accuracy nursing diagnoses. This risk is confirmed in research findings that accuracy of nurses' diagnoses varied widely from high to low. Highly accurate diagnoses are essential, however, to guide nursing interventions for the achievement of positive health outcomes. Development of critical thinking abilities is likely to improve accuracy of nurses' diagnoses. New views of critical thinking serve as a basis for critical thinking in nursing. Seven cognitive skills and ten habits of mind are identified as dimensions of critical thinking for use in the diagnostic process. Application of the cognitive skills of critical thinking illustrates the importance of using critical thinking for accuracy of nurses' diagnoses. Ten strategies are proposed for self-development of critical thinking abilities.

  20. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  1. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallstrom, Jason O.; Ni, Zheng Richard

    This STTR Phase I project assessed the feasibility of a new CO 2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO 2 concentrations, as well as themore » electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO 2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO 2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO 2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States.« less

  2. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    DTIC Science & Technology

    1992-05-01

    High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization A Thesis Presented by Louis Joseph PoehIman, Captain, USAF B.S., U.S. Air...High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization by Louis Joseph Poehlman, Captain, USAF Submitted to the Department of...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback

  3. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  4. Increasing Accuracy in Computed Inviscid Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Roger

    2004-01-01

    A technique has been devised to increase the accuracy of computational simulations of flows of inviscid fluids by increasing the accuracy with which surface boundary conditions are represented. This technique is expected to be especially beneficial for computational aeroacoustics, wherein it enables proper accounting, not only for acoustic waves, but also for vorticity and entropy waves, at surfaces. Heretofore, inviscid nonlinear surface boundary conditions have been limited to third-order accuracy in time for stationary surfaces and to first-order accuracy in time for moving surfaces. For steady-state calculations, it may be possible to achieve higher accuracy in space, but high accuracy in time is needed for efficient simulation of multiscale unsteady flow phenomena. The present technique is the first surface treatment that provides the needed high accuracy through proper accounting of higher-order time derivatives. The present technique is founded on a method known in art as the Hermitian modified solution approximation (MESA) scheme. This is because high time accuracy at a surface depends upon, among other things, correction of the spatial cross-derivatives of flow variables, and many of these cross-derivatives are included explicitly on the computational grid in the MESA scheme. (Alternatively, a related method other than the MESA scheme could be used, as long as the method involves consistent application of the effects of the cross-derivatives.) While the mathematical derivation of the present technique is too lengthy and complex to fit within the space available for this article, the technique itself can be characterized in relatively simple terms: The technique involves correction of surface-normal spatial pressure derivatives at a boundary surface to satisfy the governing equations and the boundary conditions and thereby achieve arbitrarily high orders of time accuracy in special cases. The boundary conditions can now include a potentially infinite number

  5. Spectroscopy of H3+ based on a new high-accuracy global potential energy surface.

    PubMed

    Polyansky, Oleg L; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Ovsyannikov, Roman I; Tennyson, Jonathan; Lodi, Lorenzo; Szidarovszky, Tamás; Császár, Attila G

    2012-11-13

    The molecular ion H(3)(+) is the simplest polyatomic and poly-electronic molecular system, and its spectrum constitutes an important benchmark for which precise answers can be obtained ab initio from the equations of quantum mechanics. Significant progress in the computation of the ro-vibrational spectrum of H(3)(+) is discussed. A new, global potential energy surface (PES) based on ab initio points computed with an average accuracy of 0.01 cm(-1) relative to the non-relativistic limit has recently been constructed. An analytical representation of these points is provided, exhibiting a standard deviation of 0.097 cm(-1). Problems with earlier fits are discussed. The new PES is used for the computation of transition frequencies. Recently measured lines at visible wavelengths combined with previously determined infrared ro-vibrational data show that an accuracy of the order of 0.1 cm(-1) is achieved by these computations. In order to achieve this degree of accuracy, relativistic, adiabatic and non-adiabatic effects must be properly accounted for. The accuracy of these calculations facilitates the reassignment of some measured lines, further reducing the standard deviation between experiment and theory.

  6. Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi

    2015-01-01

    An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.

  7. Unfulfilled Potential: High-Achieving Minority Students and the High School Achievement Gap in Math

    ERIC Educational Resources Information Center

    Kotok, Stephen

    2017-01-01

    This study uses multilevel modeling to examine a subset of the highest performing 9th graders and explores the extent that achievement gaps in math widen for high performing African American and Latino students and their high performing White and Asian peers during high school. Using nationally representative data from the High School Longitudinal…

  8. Counterstereotypic Identity among High-Achieving Black Students

    ERIC Educational Resources Information Center

    Harpalani, Vinay

    2017-01-01

    This article examines how racial stereotypes affect achievement and identity formation among low income, urban Black adolescents. Specifically, the major question addressed is: how do high-achieving Black students succeed academically despite negative stereotypes of their intellectual abilities? Results indicate that high-achieving Black youth,…

  9. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  10. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.

    PubMed

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.

  11. Self Regulated Learning of High Achievers

    ERIC Educational Resources Information Center

    Rathod, Ami

    2010-01-01

    The study was conducted on high achievers of Senior Secondary school. Main objectives were to identify the self regulated learners among the high achievers, to find out dominant components and characteristics operative in self regulated learners and to compare self regulated learning of learners with respect to their subject (science and non…

  12. High-density marker imputation accuracy in sixteen French cattle breeds.

    PubMed

    Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal

    2013-09-03

    Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No

  13. COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy

    NASA Astrophysics Data System (ADS)

    Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun

    2014-09-01

    In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.

  14. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, M.; Bowman, B.; Branson, J.

    The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.

  15. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  16. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  17. High Accuracy Fuel Flowmeter, Phase 1

    NASA Technical Reports Server (NTRS)

    Mayer, C.; Rose, L.; Chan, A.; Chin, B.; Gregory, W.

    1983-01-01

    Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation.

  18. High-density marker imputation accuracy in sixteen French cattle breeds

    PubMed Central

    2013-01-01

    Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at

  19. Portable oil bath for high-accuracy resistance transfer and maintenance

    NASA Astrophysics Data System (ADS)

    Shiota, Fuyuhiko

    1999-10-01

    A portable oil bath containing one standard resistor for high-accuracy resistance transfer and maintenance was developed and operated for seven years in the National Research Laboratory of Metrology. The aim of the bath is to save labor and apparatus for high-accuracy resistance transfer and maintenance by consistently keeping the standard resistor in an optimum environmental condition. The details of the prototype system, including its performance, are described together with some suggestions for a more practical bath design, which adopts the same concept.

  20. Online High School Achievement versus Traditional High School Achievement

    ERIC Educational Resources Information Center

    Blohm, Katherine E.

    2017-01-01

    The following study examined the question of student achievement in online charter schools and how the achievement scores of students at online charter schools compare to achievement scores of students at traditional schools. Arizona has seen explosive growth in charter schools and online charter schools. A study comparing how these two types of…

  1. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy

    PubMed Central

    Li, Chuang; Cordovilla, Francisco; Jagdheesh, R.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with four-grooved membrane combined with rood beam to measure low pressure. In this investigation, the design, optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress distribution and deflection of sensitive elements using finite element method, a novel structure featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built. Curve fittings of the mechanical stress and deflection based on FEM simulation results are performed to establish the relationship between mechanical performance and structure dimension. A combination of FEM and curve fitting method is carried out to determine the structural dimensions. The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less than 1 psi. PMID:29393916

  2. High-accuracy contouring using projection moiré

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.

    2005-09-01

    Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.

  3. High-accuracy Aspheric X-ray Mirror Metrology Using Software Configurable Optical Test System/deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Run; Su, Peng; Burge, James H.

    The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.

  4. New perspectives for high accuracy SLR with second generation geodesic satellites

    NASA Technical Reports Server (NTRS)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return

  5. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  6. A Promising Tool to Achieve Chemical Accuracy for Density Functional Theory Calculations on Y-NO Homolysis Bond Dissociation Energies

    PubMed Central

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol−1) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol−1 to 0.15 and 0.18 kcal·mol−1, respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol−1. This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules. PMID:22942689

  7. Estimating Achievable Accuracy for Global Imaging Spectroscopy Measurement of Non-Photosynthetic Vegetation Cover

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Kokaly, R. F.; Daughtry, C. S. T.; Roberts, D. A.; Thompson, D. R.; Chambers, J. Q.; Nagler, P. L.; Okin, G. S.; Scarth, P.

    2016-12-01

    Terrestrial vegetation is dynamic, expressing seasonal, annual, and long-term changes in response to climate and disturbance. Phenology and disturbance (e.g. drought, insect attack, and wildfire) can result in a transition from photosynthesizing "green" vegetation to non-photosynthetic vegetation (NPV). NPV cover can include dead and senescent vegetation, plant litter, agricultural residues, and non-photosynthesizing stem tissue. NPV cover is poorly captured by conventional remote sensing vegetation indices, but it is readily separable from substrate cover based on spectral absorption features in the shortwave infrared. We will present past research motivating the need for global NPV measurements, establishing that mapping seasonal NPV cover is critical for improving our understanding of ecosystem function and carbon dynamics. We will also present new research that helps determine a best achievable accuracy for NPV cover estimation. To test the sensitivity of different NPV cover estimation methods, we simulated satellite imaging spectrometer data using field spectra collected over mixtures of NPV, green vegetation, and soil substrate. We incorporated atmospheric transmittance and modeled sensor noise to create simulated spectra with spectral resolutions ranging from 10 to 30 nm. We applied multiple methods of NPV estimation to the simulated spectra, including spectral indices, spectral feature analysis, multiple endmember spectral mixture analysis, and partial least squares regression, and compared the accuracy and bias of each method. These results prescribe sensor characteristics for an imaging spectrometer mission with NPV measurement capabilities, as well as a "Quantified Earth Science Objective" for global measurement of NPV cover. Copyright 2016, all rights reserved.

  8. Attitudes and Opinions from the Nation's High Achieving Teens. 18th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Educational Communications, Inc., Lake Forest, IL.

    This document contains factsheets and news releases which cite findings from a national survey of 1,985 high achieving high school students. Factsheets describe the Who's Who Among American High School Students recognition and service program for high school students and explain the Who's Who survey. A summary report of this eighteenth annual…

  9. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  10. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    NASA Astrophysics Data System (ADS)

    Zhai, C.; Shao, M.; Saini, N. S.; Sandhu, J. S.; Werne, T. A.; Choi, P.; Ely, T. A.; Jacobs, C.; Lazio, J.; Martin-Mur, T. J.; Owen, W. K.; Preston, R. A.; Turyshev, S. G.

    2017-12-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package to be carried on the Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  11. What factors determine academic achievement in high achieving undergraduate medical students? A qualitative study.

    PubMed

    Abdulghani, Hamza M; Al-Drees, Abdulmajeed A; Khalil, Mahmood S; Ahmad, Farah; Ponnamperuma, Gominda G; Amin, Zubair

    2014-04-01

    Medical students' academic achievement is affected by many factors such as motivational beliefs and emotions. Although students with high intellectual capacity are selected to study medicine, their academic performance varies widely. The aim of this study is to explore the high achieving students' perceptions of factors contributing to academic achievement. Focus group discussions (FGD) were carried out with 10 male and 9 female high achieving (scores more than 85% in all tests) students, from the second, third, fourth and fifth academic years. During the FGDs, the students were encouraged to reflect on their learning strategies and activities. The discussion was audio-recorded, transcribed and analysed qualitatively. Factors influencing high academic achievement include: attendance to lectures, early revision, prioritization of learning needs, deep learning, learning in small groups, mind mapping, learning in skills lab, learning with patients, learning from mistakes, time management, and family support. Internal motivation and expected examination results are important drivers of high academic performance. Management of non-academic issues like sleep deprivation, homesickness, language barriers, and stress is also important for academic success. Addressing these factors, which might be unique for a given student community, in a systematic manner would be helpful to improve students' performance.

  12. Influence of measuring algorithm on shape accuracy in the compensating turning of high gradient thin-wall parts

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi

    2015-02-01

    In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.

  13. Child Effortful Control, Teacher-student Relationships, and Achievement in Academically At-risk Children: Additive and Interactive Effects

    PubMed Central

    Liew, Jeffrey; Chen, Qi; Hughes, Jan N.

    2009-01-01

    The joint contributions of child effortful control (using inhibitory control and task accuracy as behavioral indices) and positive teacher-student relationships at first grade on reading and mathematics achievement at second grade were examined in 761 children who were predominantly from low-income and ethnic minority backgrounds and assessed to be academically at-risk at entry to first grade. Analyses accounted for clustering effects, covariates, baselines of effortful control measures, and prior levels of achievement. Even with such conservative statistical controls, interactive effects were found for task accuracy and positive teacher-student relationships on future achievement. Results suggest that task accuracy served as a protective factor so that children with high task accuracy performed well academically despite not having positive teacher-student relationships. Further, positive teacher-student relationships served as a compensatory factor so that children with low task accuracy performed just as well as those with high task accuracy if they were paired with a positive and supportive teacher. Importantly, results indicate that the influence of positive teacher-student relationships on future achievement was most pronounced for students with low effortful control on tasks that require fine motor skills, accuracy, and attention-related skills. Study results have implications for narrowing achievement disparities for academically at-risk children. PMID:20161421

  14. Child Effortful Control, Teacher-student Relationships, and Achievement in Academically At-risk Children: Additive and Interactive Effects.

    PubMed

    Liew, Jeffrey; Chen, Qi; Hughes, Jan N

    2010-01-01

    The joint contributions of child effortful control (using inhibitory control and task accuracy as behavioral indices) and positive teacher-student relationships at first grade on reading and mathematics achievement at second grade were examined in 761 children who were predominantly from low-income and ethnic minority backgrounds and assessed to be academically at-risk at entry to first grade. Analyses accounted for clustering effects, covariates, baselines of effortful control measures, and prior levels of achievement. Even with such conservative statistical controls, interactive effects were found for task accuracy and positive teacher-student relationships on future achievement. Results suggest that task accuracy served as a protective factor so that children with high task accuracy performed well academically despite not having positive teacher-student relationships. Further, positive teacher-student relationships served as a compensatory factor so that children with low task accuracy performed just as well as those with high task accuracy if they were paired with a positive and supportive teacher. Importantly, results indicate that the influence of positive teacher-student relationships on future achievement was most pronounced for students with low effortful control on tasks that require fine motor skills, accuracy, and attention-related skills. Study results have implications for narrowing achievement disparities for academically at-risk children.

  15. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    NASA Astrophysics Data System (ADS)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  16. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  17. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    PubMed

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Perspectives of High-Achieving Women on Teaching

    ERIC Educational Resources Information Center

    Snodgrass, Helen

    2010-01-01

    High-achieving women are significantly less likely to enter the teaching profession than they were just 40 years ago. Why? While the social and economic reasons for this decline have been well documented in the literature, what is lacking is a discussion with high-achieving women, as they make their first career decisions, about their perceptions…

  19. Diagnostic accuracy of high-definition CT coronary angiography in high-risk patients.

    PubMed

    Iyengar, S S; Morgan-Hughes, G; Ukoumunne, O; Clayton, B; Davies, E J; Nikolaou, V; Hyde, C J; Shore, A C; Roobottom, C A

    2016-02-01

    To assess the diagnostic accuracy of computed tomography coronary angiography (CTCA) using a combination of high-definition CT (HD-CTCA) and high level of reader experience, with invasive coronary angiography (ICA) as the reference standard, in high-risk patients for the investigation of coronary artery disease (CAD). Three hundred high-risk patients underwent HD-CTCA and ICA. Independent experts evaluated the images for the presence of significant CAD, defined primarily as the presence of moderate (≥ 50%) stenosis and secondarily as the presence of severe (≥ 70%) stenosis in at least one coronary segment, in a blinded fashion. HD-CTCA was compared to ICA as the reference standard. No patients were excluded. Two hundred and six patients (69%) had moderate and 178 (59%) had severe stenosis in at least one vessel at ICA. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.1%, 97.9%, 99% and 93.9% for moderate stenosis, and 98.9%, 93.4%, 95.7% and 98.3%, for severe stenosis, on a per-patient basis. The combination of HD-CTCA and experienced readers applied to a high-risk population, results in high diagnostic accuracy comparable to ICA. Modern generation CT systems in experienced hands might be considered for an expanded role. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. SAME-DAY FINE-NEEDLE ASPIRATION CYTOLOGY DIAGNOSIS FOR THYROID NODULES ACHIEVES RAPID ANXIETY DECREASE AND HIGH DIAGNOSTIC ACCURACY.

    PubMed

    Lodewijk, Lutske; Vriens, Menno R; Vorselaars, Wessel M C M; van der Meij, Nick T M; Kist, Jakob W; Barentsz, Maarten W; Verkooijen, Helena M; Rinkes, Inne H M Borel; Valk, Gerlof D

    2016-05-01

    The time between the moment of referral for the diagnostic workup for thyroid nodules and the outcome can be worrisome for patients. In general, patients experience high levels of anxiety during the evaluation of a lesion suspicious for cancer. Therefore, the implementation of same-day fine-needle aspiration cytology (FNAC) diagnosis is becoming standard-of-care for many solid tumors. Our aim was to assess the feasibility of same-day FNAC diagnosis for thyroid nodules and to assess patient anxiety during the diagnostic process. For feasibility of same-day FNAC diagnosis, we assessed the proportion of patients receiving a diagnosis at the end of the visit. Accuracy was measured by comparing histology with the FNAC result. Patient anxiety was measured by the State Trait Anxiety Inventory at 6 moments during the diagnostic workup. Of the 131 included patients, 112 (86%) were female, and the mean age was 53 years. All patients, except those with a nondiagnostic FNAC result (n = 26; 20%), had a diagnosis at the end of the day. There were only two discordant results. Anxiety levels at the beginning of the day were high throughout the group, State Trait Anxiety Inventory (STAI) score 43.1 (SD 2.0) and decreased significantly more in patients with a benign FNAC result (STAI score 30.2), compared to patients with a malignant or indeterminate result (STAI score 39.6). Distress of patients with a thyroid nodule undergoing same-day FNAC diagnostics was high. Same-day FNAC diagnosis is feasible and accurate for the evaluation of thyroid nodules. Therefore, same-day FNAC diagnosis seems a safer, more patient-friendly approach to diagnose thyroid nodules.

  1. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  2. High-Reproducibility and High-Accuracy Method for Automated Topic Classification

    NASA Astrophysics Data System (ADS)

    Lancichinetti, Andrea; Sirer, M. Irmak; Wang, Jane X.; Acuna, Daniel; Körding, Konrad; Amaral, Luís A. Nunes

    2015-01-01

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent searching, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches from community detection in networks, we propose a new algorithm that displays high reproducibility and high accuracy and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure.

  3. High accuracy GNSS based navigation in GEO

    NASA Astrophysics Data System (ADS)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  4. Psychosocial Keys to African American Achievement? Examining the Relationship between Achievement and Psychosocial Variables in High Achieving African Americans

    ERIC Educational Resources Information Center

    Dixson, Dante D.; Roberson, Cyrell C. B.; Worrell, Frank C.

    2017-01-01

    Grit, growth mindset, ethnic identity, and other group orientation are four psychosocial variables that have been associated with academic achievement in adolescent populations. In a sample of 105 high achieving African American high school students (cumulative grade point average [GPA] > 3.0), we examined whether these four psychosocial…

  5. 22nd Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This study surveyed high school students (N=1,879) who were student leaders or high achievers in the spring of 1991 for the purpose of determining their attitudes. Students were members of the junior or senior high school class during the 1990-91 academic year and were selected for recognition by their principals or guidance counselors, other…

  6. High accuracy digital aging monitor based on PLL-VCO circuit

    NASA Astrophysics Data System (ADS)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  7. Achievable accuracy of hip screw holding power estimation by insertion torque measurement.

    PubMed

    Erani, Paolo; Baleani, Massimiliano

    2018-02-01

    To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. 21st Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted by Who's Who Among American High School Students during the spring of 1990, to determine the attitudes of student leaders in U.S. high schools. A survey of high achievers sent to 5,000 students was completed and returned by approximately 2,000 students. All students were members of the junior or senior class during the…

  9. Attitudes and Opinions from the Nation's High Achieving Teens: 26th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    A national survey of 3,351 high achieving high school students (junior and senior level) was conducted. All students had A or B averages. Topics covered include lifestyles, political beliefs, violence and entertainment, education, cheating, school violence, sexual violence and date rape, peer pressure, popularity, suicide, drugs and alcohol,…

  10. A proposal for limited criminal liability in high-accuracy endoscopic sinus surgery.

    PubMed

    Voultsos, P; Casini, M; Ricci, G; Tambone, V; Midolo, E; Spagnolo, A G

    2017-02-01

    The aim of the present study is to propose legal reform limiting surgeons' criminal liability in high-accuracy and high-risk surgery such as endoscopic sinus surgery (ESS). The study includes a review of the medical literature, focusing on identifying and examining reasons why ESS carries a very high risk of serious complications related to inaccurate surgical manoeuvers and reviewing British and Italian legal theory and case-law on medical negligence, especially with regard to Italian Law 189/2012 (so called "Balduzzi" Law). It was found that serious complications due to inaccurate surgical manoeuvers may occur in ESS regardless of the skill, experience and prudence/diligence of the surgeon. Subjectivity should be essential to medical negligence, especially regarding high-accuracy surgery. Italian Law 189/2012 represents a good basis for the limitation of criminal liability resulting from inaccurate manoeuvres in high-accuracy surgery such as ESS. It is concluded that ESS surgeons should be relieved of criminal liability in cases of simple/ordinary negligence where guidelines have been observed. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  11. Factors affecting the achievement of Japanese-style deep knee flexion after total knee arthroplasty using posterior-stabilized prosthesis with high-flex knee design.

    PubMed

    Niki, Yasuo; Takeda, Yuki; Harato, Kengo; Suda, Yasunori

    2015-11-01

    Achievement of very deep knee flexion after total knee arthroplasty (TKA) can play a critical role in the satisfaction of patients who demand a floor-sitting lifestyle and engage in high-flexion daily activities (e.g., seiza-sitting). Seiza-sitting is characterized by the knees flexed >145º and feet turned sole upwards underneath the buttocks with the tibia internally rotated. The present study investigated factors affecting the achievement of seiza-sitting after TKA using posterior-stabilized total knee prosthesis with high-flex knee design. Subjects comprised 32 patients who underwent TKA with high-flex knee prosthesis and achieved seiza-sitting (knee flexion >145º) postoperatively. Another 32 patients served as controls who were capable of knee flexion >145º preoperatively, but failed to achieve seiza-sitting postoperatively. Accuracy of femoral and tibial component positions was assessed in terms of deviation from the ideal position using a two-dimensional to three-dimensional matching technique. Accuracies of the component position, posterior condylar offset ratio and intraoperative gap length were compared between the two groups. The proportion of patients with >3º internally rotated tibial component was significantly higher in patients who failed at seiza-sitting (41 %) than among patients who achieved it (13 %, p = 0.021). Comparison of intraoperative gap length between patient groups revealed that gap length at 135º flexion was significantly larger in patients who achieved seiza-sitting (4.2 ± 0.4 mm) than in patients who failed at it (2.7 ± 0.4 mm, p = 0.007). Conversely, no significant differences in gap inclination were seen between the groups. From the perspective of surgical factors, accurate implant positioning, particularly rotational alignment of the tibial component, and maintenance of a sufficient joint gap at 135º flexion appear to represent critical factors for achieving >145º of deep knee flexion after TKA.

  12. Attitudes and Opinions from the Nation's High Achieving Teens. 24th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey represents information compiled by the largest national survey of adolescent leaders and high achievers. Of the 5,000 students selected demographically from "Who's Who Among American High School Students," 1,957 responded. All students surveyed had "A" or "B" averages, and 98% planned on attending college. Questions were asked about…

  13. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  14. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    PubMed Central

    Qi, Jun; Liu, Guo-Ping

    2017-01-01

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal. PMID:29113126

  15. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    PubMed

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  16. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  17. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  18. Student Perceptions of High-Achieving Classmates

    ERIC Educational Resources Information Center

    Händel, Marion; Vialle, Wilma; Ziegler, Albert

    2013-01-01

    The reported study investigated students' perceptions of their high-performing classmates in terms of intelligence, social skills, and conscientiousness in different school subjects. The school subjects for study were examined with regard to cognitive, physical, and gender-specific issues. The results show that high academic achievements in…

  19. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information

    PubMed Central

    Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki

    2016-01-01

    Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492

  20. Self-Concept and Achievement Motivation of High School Students

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Vimala, A.

    2013-01-01

    The present study "Self-concept and Achievement Motivation of High School Students" was investigated to find the relationship between Self-concept and Achievement Motivation of High School Students. Data for the study were collected using Self-concept Questionnaire developed by Raj Kumar Saraswath (1984) and Achievement Motive Test (ACMT)…

  1. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel.

    PubMed

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-06-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.

  2. The Relationship between Self-Esteem and Academic Achievement in a Group of High, Medium, and Low Secondary Public High School Achievers.

    ERIC Educational Resources Information Center

    Thomas-Brantley, Betty J.

    This study investigated the relationship between self-esteem and academic achievement in a group of 150 high, medium, and low achievers at a large midwestern public high school. Correlating data from the Coopersmith Inventory of self-esteem with grades, cumulative grade point averages, and class rank, the study disclosed a positive correlation…

  3. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.

  4. High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Li, Beiwen; Zhang, Song

    2017-07-01

    This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  5. Review of "High-Achieving Students in the Era of NCLB"

    ERIC Educational Resources Information Center

    Camilli, Gregory

    2008-01-01

    A recent report from the Fordham Institute considers potential instructional policies for high-achieving students that should be considered in the forthcoming reauthorization of the No Child Left Behind Act. The report finds: 1) achievement growth among high-achieving students has been slower than that of low-achieving students; 2) this trend can…

  6. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  7. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    PubMed

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  8. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2013-08-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  9. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  10. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel

    PubMed Central

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-01-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies. PMID:28401899

  11. The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation.

    PubMed

    Luan, Tu; Woolliams, John A; Lien, Sigbjørn; Kent, Matthew; Svendsen, Morten; Meuwissen, Theo H E

    2009-11-01

    Genomic Selection (GS) is a newly developed tool for the estimation of breeding values for quantitative traits through the use of dense markers covering the whole genome. For a successful application of GS, accuracy of the prediction of genomewide breeding value (GW-EBV) is a key issue to consider. Here we investigated the accuracy and possible bias of GW-EBV prediction, using real bovine SNP genotyping (18,991 SNPs) and phenotypic data of 500 Norwegian Red bulls. The study was performed on milk yield, fat yield, protein yield, first lactation mastitis traits, and calving ease. Three methods, best linear unbiased prediction (G-BLUP), Bayesian statistics (BayesB), and a mixture model approach (MIXTURE), were used to estimate marker effects, and their accuracy and bias were estimated by using cross-validation. The accuracies of the GW-EBV prediction were found to vary widely between 0.12 and 0.62. G-BLUP gave overall the highest accuracy. We observed a strong relationship between the accuracy of the prediction and the heritability of the trait. GW-EBV prediction for production traits with high heritability achieved higher accuracy and also lower bias than health traits with low heritability. To achieve a similar accuracy for the health traits probably more records will be needed.

  12. Improving CID, HCD, and ETD FT MS/MS degradome-peptidome identifications using high accuracy mass information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yufeng; Tolic, Nikola; Purvine, Samuel O.

    2011-11-07

    The peptidome (i.e. processed and degraded forms of proteins) of e.g. blood can potentially provide insights into disease processes, as well as a source of candidate biomarkers that are unobtainable using conventional bottom-up proteomics approaches. MS dissociation methods, including CID, HCD, and ETD, can each contribute distinct identifications using conventional peptide identification methods (Shen et al. J. Proteome Res. 2011), but such samples still pose significant analysis and informatics challenges. In this work, we explored a simple approach for better utilization of high accuracy fragment ion mass measurements provided e.g. by FT MS/MS and demonstrate significant improvements relative to conventionalmore » descriptive and probabilistic scores methods. For example, at the same FDR level we identified 20-40% more peptides than SEQUEST and Mascot scoring methods using high accuracy fragment ion information (e.g., <10 mass errors) from CID, HCD, and ETD spectra. Species identified covered >90% of all those identified from SEQUEST, Mascot, and MS-GF scoring methods. Additionally, we found that the merging the different fragment spectra provided >60% more species using the UStags method than achieved previously, and enabled >1000 peptidome components to be identified from a single human blood plasma sample with a 0.6% peptide-level FDR, and providing an improved basis for investigation of potentially disease-related peptidome components.« less

  13. Computer simulation and discussion of high-accuracy laser direction finding in real time

    NASA Astrophysics Data System (ADS)

    Chen, Wenyi; Chen, Yongzhi

    1997-12-01

    On condition that CCD is used as the sensor, there are at least five methods that can be used to realize laser's direction finding with high accuracy. They are: image matching method, radiation center method, geometric center method, center of rectangle envelope method and center of maximum run length method. The first three can get the highest accuracy but working in real-time it is too complicated to realize and the cost is very expansive. The other two can also get high accuracy, and it is not difficult to realize working in real time. By using a single-chip microcomputer and an ordinary CCD camera a very simple system can get the position information of a laser beam. The data rate is 50 times per second.

  14. Academic attainment and the high school science experiences among high-achieving African American males

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  15. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  16. Setting Educational Priorities: High Achievers Speak Out. White Paper.

    ERIC Educational Resources Information Center

    Dickeson, Robert C.

    Noting that high achieving Indiana high school students can provide important insights into the educational system in the state, this study examined the opinions of recipients of Ameritchieve recognition, National Merit finalists, African-American students who were National Achievement finalists, and national Hispanic Scholar finalists, all from…

  17. Edge technique lidar for high accuracy, high spatial resolution wind measurement in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.

    1995-01-01

    The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.

  18. Statistical algorithms improve accuracy of gene fusion detection

    PubMed Central

    Hsieh, Gillian; Bierman, Rob; Szabo, Linda; Lee, Alex Gia; Freeman, Donald E.; Watson, Nathaniel; Sweet-Cordero, E. Alejandro

    2017-01-01

    Abstract Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors. PMID:28541529

  19. From 16-bit to high-accuracy IDCT approximation: fruits of single architecture affliation

    NASA Astrophysics Data System (ADS)

    Liu, Lijie; Tran, Trac D.; Topiwala, Pankaj

    2007-09-01

    In this paper, we demonstrate an effective unified framework for high-accuracy approximation of the irrational co-effcient floating-point IDCT by a single integer-coeffcient fixed-point architecture. Our framework is based on a modified version of the Loeffler's sparse DCT factorization, and the IDCT architecture is constructed via a cascade of dyadic lifting steps and butterflies. We illustrate that simply varying the accuracy of the approximating parameters yields a large family of standard-compliant IDCTs, from rare 16-bit approximations catering to portable computing to ultra-high-accuracy 32-bit versions that virtually eliminate any drifting effect when pairing with the 64-bit floating-point IDCT at the encoder. Drifting performances of the proposed IDCTs along with existing popular IDCT algorithms in H.263+, MPEG-2 and MPEG-4 are also demonstrated.

  20. High accuracy broadband infrared spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan

    Mueller matrix spectroscopy or Spectropolarimetry combines conventional spectroscopy with polarimetry, providing more information than can be gleaned from spectroscopy alone. Experimental studies on infrared polarization properties of materials covering a broad spectral range have been scarce due to the lack of available instrumentation. This dissertation aims to fill the gap by the design, development, calibration and testing of a broadband Fourier Transform Infra-Red (FT-IR) spectropolarimeter. The instrument operates over the 3-12 mum waveband and offers better overall accuracy compared to the previous generation instruments. Accurate calibration of a broadband spectropolarimeter is a non-trivial task due to the inherent complexity of the measurement process. An improved calibration technique is proposed for the spectropolarimeter and numerical simulations are conducted to study the effectiveness of the proposed technique. Insights into the geometrical structure of the polarimetric measurement matrix is provided to aid further research towards global optimization of Mueller matrix polarimeters. A high performance infrared wire-grid polarizer is characterized using the spectropolarimeter. Mueller matrix spectrum measurements on Penicillin and pine pollen are also presented.

  1. Strategies for Achieving High Sequencing Accuracy for Low Diversity Samples and Avoiding Sample Bleeding Using Illumina Platform

    PubMed Central

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer’s, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how

  2. Improving the Accuracy of the Chebyshev Rational Approximation Method Using Substeps

    DOE PAGES

    Isotalo, Aarno; Pusa, Maria

    2016-05-01

    The Chebyshev Rational Approximation Method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant sub-steps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the LU decompositions for the linear solves required in CRAM only need to be formed on the first substep. Themore » improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. Lastly, with substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit.« less

  3. High-accuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range

    PubMed Central

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-01-01

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680–1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed. PMID:27137334

  4. Accuracy of Handheld Blood Glucose Meters at High Altitude

    PubMed Central

    de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. Methodology/Principal Findings Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs) were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias <15% from reference glucose (when >6.5 mmol/L) and <1 mmol/L from reference glucose (when <6.5 mmol/L). No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. Conclusion At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy. PMID:21103399

  5. Read-only high accuracy volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  6. You are so beautiful... to me: seeing beyond biases and achieving accuracy in romantic relationships.

    PubMed

    Solomon, Brittany C; Vazire, Simine

    2014-09-01

    Do romantic partners see each other realistically, or do they have overly positive perceptions of each other? Research has shown that realism and positivity co-exist in romantic partners' perceptions (Boyes & Fletcher, 2007). The current study takes a novel approach to explaining this seemingly paradoxical effect when it comes to physical attractiveness--a highly evaluative trait that is especially relevant to romantic relationships. Specifically, we argue that people are aware that others do not see their partners as positively as they do. Using both mean differences and correlational approaches, we test the hypothesis that despite their own biased and idiosyncratic perceptions, people have 2 types of partner-knowledge: insight into how their partners see themselves (i.e., identity accuracy) and insight into how others see their partners (i.e., reputation accuracy). Our results suggest that romantic partners have some awareness of each other's identity and reputation for physical attractiveness, supporting theories that couple members' perceptions are driven by motives to fulfill both esteem- and epistemic-related needs (i.e., to see their partners positively and realistically). 2014 APA, all rights reserved

  7. A design of optical modulation system with pixel-level modulation accuracy

    NASA Astrophysics Data System (ADS)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  8. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  9. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  10. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.

    2002-06-01

    Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.

  11. Scientific Temper among Academically High and Low Achieving Adolescent Girls

    ERIC Educational Resources Information Center

    Kour, Sunmeet

    2015-01-01

    The present study was undertaken to compare the scientific temper of high and low achieving adolescent girl students. Random sampling technique was used to draw the sample from various high schools of District Srinagar. The sample for the present study consisted of 120 school going adolescent girls (60 high and 60 low achievers). Data was…

  12. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  13. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    NASA Astrophysics Data System (ADS)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  14. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  15. Swing arm profilometer: high accuracy testing for large reaction-bonded silicon carbide optics with a capacitive probe

    NASA Astrophysics Data System (ADS)

    Xiong, Ling; Luo, Xiao; Hu, Hai-xiang; Zhang, Zhi-yu; Zhang, Feng; Zheng, Li-gong; Zhang, Xue-jun

    2017-08-01

    A feasible way to improve the manufacturing efficiency of large reaction-bonded silicon carbide optics is to increase the processing accuracy in the ground stage before polishing, which requires high accuracy metrology. A swing arm profilometer (SAP) has been used to measure large optics during the ground stage. A method has been developed for improving the measurement accuracy of SAP using a capacitive probe and implementing calibrations. The experimental result compared with the interferometer test shows the accuracy of 0.068 μm in root-mean-square (RMS) and maps in 37 low-order Zernike terms show accuracy of 0.048 μm RMS, which shows a powerful capability to provide a major input in high-precision grinding.

  16. Achieving high performance on the Intel Paragon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, D.S.; Maccabe, B.; Riesen, R.

    1993-11-01

    When presented with a new supercomputer most users will first ask {open_quotes}How much faster will my applications run?{close_quotes} and then add a fearful {open_quotes}How much effort will it take me to convert to the new machine?{close_quotes} This paper describes some lessons learned at Sandia while asking these questions about the new 1800+ node Intel Paragon. The authors conclude that the operating system is crucial to both achieving high performance and allowing easy conversion from previous parallel implementations to a new machine. Using the Sandia/UNM Operating System (SUNMOS) they were able to port a LU factorization of dense matrices from themore » nCUBE2 to the Paragon and achieve 92% scaled speed-up on 1024 nodes. Thus on a 44,000 by 44,000 matrix which had required over 10 hours on the previous machine, they completed in less than 1/2 hour at a rate of over 40 GFLOPS. Two keys to achieving such high performance were the small size of SUNMOS (less than 256 kbytes) and the ability to send large messages with very low overhead.« less

  17. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy

    USGS Publications Warehouse

    Fulford, Janice M.; Clayton, Christopher S.

    2015-10-09

    The calibration device and proposed method were used to calibrate a sample of in-service USGS steel and electric groundwater tapes. The sample of in-service groundwater steel tapes were in relatively good condition. All steel tapes, except one, were accurate to ±0.01 ft per 100 ft over their entire length. One steel tape, which had obvious damage in the first hundred feet, was marginally outside the accuracy of ±0.01 ft per 100 ft by 0.001 ft. The sample of in-service groundwater-level electric tapes were in a range of conditions—from like new, with cosmetic damage, to nonfunctional. The in-service electric tapes did not meet the USGS accuracy recommendation of ±0.01 ft. In-service electric tapes, except for the nonfunctional tape, were accurate to about ±0.03 ft per 100 ft. A comparison of new with in-service electric tapes found that steel-core electric tapes maintained their length and accuracy better than electric tapes without a steel core. The in-service steel tapes could be used as is and achieve USGS accuracy recommendations for groundwater-level measurements. The in-service electric tapes require tape corrections to achieve USGS accuracy recommendations for groundwater-level measurement.

  18. The Meaning High-Achieving African-American Males in an Urban High School Ascribe to Mathematics

    ERIC Educational Resources Information Center

    Thompson, LaTasha; Davis, Julius

    2013-01-01

    Many researchers, educators, administrators, policymakers and members of the general public doubt the prevalence of high-achieving African-American males in urban high schools capable of excelling in mathematics. As part of a larger study, the current study explored the educational experiences of four high-achieving African-American males…

  19. Field Accuracy Test of Rpas Photogrammetry

    NASA Astrophysics Data System (ADS)

    Barry, P.; Coakley, R.

    2013-08-01

    Baseline Surveys Ltd is a company which specialises in the supply of accurate geospatial data, such as cadastral, topographic and engineering survey data to commercial and government bodies. Baseline Surveys Ltd invested in aerial drone photogrammetric technology and had a requirement to establish the spatial accuracy of the geographic data derived from our unmanned aerial vehicle (UAV) photogrammetry before marketing our new aerial mapping service. Having supplied the construction industry with survey data for over 20 years, we felt that is was crucial for our clients to clearly understand the accuracy of our photogrammetry so they can safely make informed spatial decisions, within the known accuracy limitations of our data. This information would also inform us on how and where UAV photogrammetry can be utilised. What we wanted to find out was the actual accuracy that can be reliably achieved using a UAV to collect data under field conditions throughout a 2 Ha site. We flew a UAV over the test area in a "lawnmower track" pattern with an 80% front and 80% side overlap; we placed 45 ground markers as check points and surveyed them in using network Real Time Kinematic Global Positioning System (RTK GPS). We specifically designed the ground markers to meet our accuracy needs. We established 10 separate ground markers as control points and inputted these into our photo modelling software, Agisoft PhotoScan. The remaining GPS coordinated check point data were added later in ArcMap to the completed orthomosaic and digital elevation model so we could accurately compare the UAV photogrammetry XYZ data with the RTK GPS XYZ data at highly reliable common points. The accuracy we achieved throughout the 45 check points was 95% reliably within 41 mm horizontally and 68 mm vertically and with an 11.7 mm ground sample distance taken from a flight altitude above ground level of 90 m.The area covered by one image was 70.2 m × 46.4 m, which equals 0.325 Ha. This finding has shown

  20. The influence of achievement goals on the constructive activity of low achievers during collaborative problem solving.

    PubMed

    Gabriele, Anthony J

    2007-03-01

    Previous research on small-group learning has found that level of constructive activity (solving or explaining how to solve problems using ideas stated or implied in the explanation provided by a partner) was a better predictor of post-test achievement than either a student's prior achievement or the quality of help received (Webb, Troper, & Fall, 1995). The purpose of this study was to extend this research by examining the influence of additional factors, in particular, achievement goals and comprehension monitoring, on low achieving students' constructive activity after receiving help from a high achieving peer. Thirty-two low achieving upper elementary students from an urban school district in the mid-west of the United States were paired with high achieving partners. Videotape data from a previously reported study on peer collaboration were transcribed and reanalyzed. In that study, dyads were randomly assigned instructions designed to induce either a learning or performance goal and were videotaped as they worked together to solve a set of mathematical word problems. The following day, students were individually post-tested on problems similar to the ones worked on in pairs. Consistent with previous research, low achieving students' level of constructive activity predicted post-test performance. In addition, constructive activity was found to mediate the relationship between achievement goals and learning. However, achievement goals were not related to low achievers constructive use of help. Instead, achievement goals were related to low achievers' relative accuracy in comprehension monitoring, which in turn was related to level of constructive activity. The meaning of these results for understanding the processes by which low achievers learn from peer help and implications for classroom practice are discussed.

  1. Researches on High Accuracy Prediction Methods of Earth Orientation Parameters

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2015-09-01

    The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients

  2. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  3. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  4. Checking the predictive accuracy of basic symptoms against ultra high-risk criteria and testing of a multivariable prediction model: Evidence from a prospective three-year observational study of persons at clinical high-risk for psychosis.

    PubMed

    Hengartner, M P; Heekeren, K; Dvorsky, D; Walitza, S; Rössler, W; Theodoridou, A

    2017-09-01

    The aim of this study was to critically examine the prognostic validity of various clinical high-risk (CHR) criteria alone and in combination with additional clinical characteristics. A total of 188 CHR positive persons from the region of Zurich, Switzerland (mean age 20.5 years; 60.2% male), meeting ultra high-risk (UHR) and/or basic symptoms (BS) criteria, were followed over three years. The test battery included the Structured Interview for Prodromal Syndromes (SIPS), verbal IQ and many other screening tools. Conversion to psychosis was defined according to ICD-10 criteria for schizophrenia (F20) or brief psychotic disorder (F23). Altogether n=24 persons developed manifest psychosis within three years and according to Kaplan-Meier survival analysis, the projected conversion rate was 17.5%. The predictive accuracy of UHR was statistically significant but poor (area under the curve [AUC]=0.65, P<.05), whereas BS did not predict psychosis beyond mere chance (AUC=0.52, P=.730). Sensitivity and specificity were 0.83 and 0.47 for UHR, and 0.96 and 0.09 for BS. UHR plus BS achieved an AUC=0.66, with sensitivity and specificity of 0.75 and 0.56. In comparison, baseline antipsychotic medication yielded a predictive accuracy of AUC=0.62 (sensitivity=0.42; specificity=0.82). A multivariable prediction model comprising continuous measures of positive symptoms and verbal IQ achieved a substantially improved prognostic accuracy (AUC=0.85; sensitivity=0.86; specificity=0.85; positive predictive value=0.54; negative predictive value=0.97). We showed that BS have no predictive accuracy beyond chance, while UHR criteria poorly predict conversion to psychosis. Combining BS with UHR criteria did not improve the predictive accuracy of UHR alone. In contrast, dimensional measures of both positive symptoms and verbal IQ showed excellent prognostic validity. A critical re-thinking of binary at-risk criteria is necessary in order to improve the prognosis of psychotic disorders

  5. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  6. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  7. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhou; Tu, Juan; Cheng, Jianchun

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  8. High Achievement in Mathematics Education in India: A Report from Mumbai

    ERIC Educational Resources Information Center

    Raman, Manya

    2010-01-01

    This paper reports a study aimed at characterizing the conditions that lead to high achievement in mathematics in India. The study involved eight schools in the greater Mumbai region. The main result of the study is that the notion of high achievement itself is problematic, as reflected in the reports about mathematics achievement within and…

  9. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  10. High Involvement Mothers of High Achieving Children: Potential Theoretical Explanations

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.

    2013-01-01

    In American society, parents who have high aspirations for the achievements of their children are often viewed by others in a negative light. Various pejoratives such as "pushy parent," "helicopter parent," "stage mother," and "soccer mom" are used in the common vernacular to describe these parents. Multiple…

  11. Gender Differences in Attitudes toward Mathematics between Low-Achieving and High-Achieving Fifth Grade Elementary Students.

    ERIC Educational Resources Information Center

    Rathbone, A. Sue

    Possible gender differences in attitudes toward mathematics were studied between low-achieving and high-achieving fifth-grade students in selected elementary schools within a large, metropolitan area. The attitudes of pre-adolescent children at an intermediate grade level were assessed to determine the effects of rapidly emerging gender-related…

  12. Effects of Partner's Ability on the Achievement and Conceptual Organization of High-Achieving Fifth-Grade Students.

    ERIC Educational Resources Information Center

    Carter, Glenda; Jones, M. Gail; Rua, Melissa

    2003-01-01

    Investigates high-achieving fifth-grade students' achievement gains and conceptual reorganization on convection. Features an instructional sequence of three dyadic inquiry investigations related to convection currents as well as pre- and post-assessment consisting of a multiple-choice test, a card sorting task, construction of a concept map, and…

  13. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    ERIC Educational Resources Information Center

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  14. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  15. Achieving accuracy in first-principles calculations at extreme temperature and pressure

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann; Wills, John

    2013-06-01

    First-principles calculations are increasingly used to provide EOS data at pressures and temperatures where experimental data is difficult or impossible to obtain. The lack of experimental data, however, also precludes validation of the calculations in those regimes. Factors influencing the accuracy of first-principles data include theoretical approximations, and computational approximations used in implementing and solving the underlying equations. The first category includes approximate exchange-correlation functionals and wave equations simplifying the Dirac equation. In the second category are, e.g., basis completeness and pseudo-potentials. While the first category is extremely hard to assess without experimental data, inaccuracies of the second type should be well controlled. We are using two rather different electronic structure methods (VASP and RSPt) to make explicit the requirements for accuracy of the second type. We will discuss the VASP Projector Augmented Wave potentials, with examples for Li and Mo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.

    PubMed

    Junker, André; Brenner, Karl-Heinz

    2018-03-01

    The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.

  17. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression.

    PubMed

    Lemieux, Sébastien

    2006-08-25

    The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  18. Recognition memory and awareness: A high-frequency advantage in the accuracy of knowing.

    PubMed

    Gregg, Vernon H; Gardiner, John M; Karayianni, Irene; Konstantinou, Ira

    2006-04-01

    The well-established advantage of low-frequency words over high-frequency words in recognition memory has been found to occur in remembering and not knowing. Two experiments employed remember and know judgements, and divided attention to investigate the possibility of an effect of word frequency on know responses given appropriate study conditions. With undivided attention at study, the usual low-frequency advantage in the accuracy of remember responses, but no effect on know responses, was obtained. Under a demanding divided attention task at encoding, a high-frequency advantage in the accuracy of know responses was obtained. The results are discussed in relation to theories of knowing, particularly those incorporating perceptual and conceptual fluency.

  19. Achieving High Reliability with People, Processes, and Technology.

    PubMed

    Saunders, Candice L; Brennan, John A

    2017-01-01

    High reliability as a corporate value in healthcare can be achieved by meeting the "Quadruple Aim" of improving population health, reducing per capita costs, enhancing the patient experience, and improving provider wellness. This drive starts with the board of trustees, CEO, and other senior leaders who ingrain high reliability throughout the organization. At WellStar Health System, the board developed an ambitious goal to become a top-decile health system in safety and quality metrics. To achieve this goal, WellStar has embarked on a journey toward high reliability and has committed to Lean management practices consistent with the Institute for Healthcare Improvement's definition of a high-reliability organization (HRO): one that is committed to the prevention of failure, early identification and mitigation of failure, and redesign of processes based on identifiable failures. In the end, a successful HRO can provide safe, effective, patient- and family-centered, timely, efficient, and equitable care through a convergence of people, processes, and technology.

  20. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    NASA Astrophysics Data System (ADS)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  1. The Upper and Lower Bounds of the Prediction Accuracies of Ensemble Methods for Binary Classification

    PubMed Central

    Wang, Xueyi; Davidson, Nicholas J.

    2011-01-01

    Ensemble methods have been widely used to improve prediction accuracy over individual classifiers. In this paper, we achieve a few results about the prediction accuracies of ensemble methods for binary classification that are missed or misinterpreted in previous literature. First we show the upper and lower bounds of the prediction accuracies (i.e. the best and worst possible prediction accuracies) of ensemble methods. Next we show that an ensemble method can achieve > 0.5 prediction accuracy, while individual classifiers have < 0.5 prediction accuracies. Furthermore, for individual classifiers with different prediction accuracies, the average of the individual accuracies determines the upper and lower bounds. We perform two experiments to verify the results and show that it is hard to achieve the upper and lower bounds accuracies by random individual classifiers and better algorithms need to be developed. PMID:21853162

  2. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  3. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  4. Identification and delineation of areas flood hazard using high accuracy of DEM data

    NASA Astrophysics Data System (ADS)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  5. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Kronenwetter, Jeffrey; Carter, Delano R.; Todirita, Monica; Chu, Donald

    2016-01-01

    The GOES-R magnetometer accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. To achieve this, the sensor itself has better than 1 nT accuracy. Because zero offset and scale factor drift over time, it is also necessary to perform annual calibration maneuvers. To predict performance, we used covariance analysis and attempted to corroborate it with simulations. Although not perfect, the two generally agree and show the expected behaviors. With the annual calibration regimen, these predictions suggest that the magnetometers will meet their accuracy requirements.

  6. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    NASA Astrophysics Data System (ADS)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV

  7. Research on High Accuracy Detection of Red Tide Hyperspecrral Based on Deep Learning Cnn

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Ma, Y.; An, J.

    2018-04-01

    Increasing frequency in red tide outbreaks has been reported around the world. It is of great concern due to not only their adverse effects on human health and marine organisms, but also their impacts on the economy of the affected areas. this paper put forward a high accuracy detection method based on a fully-connected deep CNN detection model with 8-layers to monitor red tide in hyperspectral remote sensing images, then make a discussion of the glint suppression method for improving the accuracy of red tide detection. The results show that the proposed CNN hyperspectral detection model can detect red tide accurately and effectively. The red tide detection accuracy of the proposed CNN model based on original image and filter-image is 95.58 % and 97.45 %, respectively, and compared with the SVM method, the CNN detection accuracy is increased by 7.52 % and 2.25 %. Compared with SVM method base on original image, the red tide CNN detection accuracy based on filter-image increased by 8.62 % and 6.37 %. It also indicates that the image glint affects the accuracy of red tide detection seriously.

  8. Vocational interests of intellectually gifted and highly achieving young adults.

    PubMed

    Vock, Miriam; Köller, Olaf; Nagy, Gabriel

    2013-06-01

    Vocational interests play a central role in the vocational decision-making process and are decisive for the later job satisfaction and vocational success. Based on Ackerman's (1996) notion of trait complexes, specific interest profiles of gifted high-school graduates can be expected. Vocational interests of gifted and highly achieving adolescents were compared to those of their less intelligent/achieving peers according to Holland's (1997) RIASEC model. Further, the impact of intelligence and achievement on interests were analysed while statistically controlling for potentially influencing variables. Changes in interests over time were investigated. N= 4,694 German students (age: M= 19.5, SD= .80; 54.6% females) participated in the study (TOSCA; Köller, Watermann, Trautwein, & Lüdtke, 2004). Interests were assessed in participants' final year at school and again 2 years later (N= 2,318). Gifted participants reported stronger investigative and realistic interests, but lower social interests than less intelligent participants. Highly achieving participants reported higher investigative and (in wave 2) higher artistic interests. Considerable gender differences were found: gifted girls had a flat interest profile, while gifted boys had pronounced realistic and investigative and low social interests. Multilevel multiple regression analyses predicting interests by intelligence and school achievement revealed stable interest profiles. Beyond a strong gender effect, intelligence and school achievement each contributed substantially to the prediction of vocational interests. At the time around graduation from high school, gifted young adults show stable interest profiles, which strongly differ between gender and intelligence groups. These differences are relevant for programmes for the gifted and for vocational counselling. ©2012 The British Psychological Society.

  9. Evaluation of registration accuracy between Sentinel-2 and Landsat 8

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia

    2016-08-01

    Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).

  10. Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.

    2012-07-01

    This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.

  11. Establishment of a high accuracy geoid correction model and geodata edge match

    NASA Astrophysics Data System (ADS)

    Xi, Ruifeng

    This research has developed a theoretical and practical methodology for efficiently and accurately determining sub-decimeter level regional geoids and centimeter level local geoids to meet regional surveying and local engineering requirements. This research also provides a highly accurate static DGPS network data pre-processing, post-processing and adjustment method and a procedure for a large GPS network like the state level HRAN project. The research also developed an efficient and accurate methodology to join soil coverages in GIS ARE/INFO. A total of 181 GPS stations has been pre-processed and post-processed to obtain an absolute accuracy better than 1.5cm at 95% of the stations, and at all stations having a 0.5 ppm average relative accuracy. A total of 167 GPS stations in Iowa and around Iowa have been included in the adjustment. After evaluating GEOID96 and GEOID99, a more accurate and suitable geoid model has been established in Iowa. This new Iowa regional geoid model improved the accuracy from a sub-decimeter 10˜20 centimeter to 5˜10 centimeter. The local kinematic geoid model, developed using Kalman filtering, gives results better than third order leveling accuracy requirement with 1.5 cm standard deviation.

  12. Accuracy evaluation of 3D lidar data from small UAV

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  13. High accuracy fuel flowmeter. Phase 2C and 3: The mass flowrate calibration of high accuracy fuel flowmeters

    NASA Technical Reports Server (NTRS)

    Craft, D. William

    1992-01-01

    A facility for the precise calibration of mass fuel flowmeters and turbine flowmeters located at AMETEK Aerospace Products Inc., Wilmington, Massachusetts is described. This facility is referred to as the Test and Calibration System (TACS). It is believed to be the most accurate test facility available for the calibration of jet engine fuel density measurement. The product of the volumetric flow rate measurement and the density measurement, results in a true mass flow rate determination. A dual-turbine flowmeter was designed during this program. The dual-turbine flowmeter was calibrated on the TACS to show the characteristics of this type of flowmeter. An angular momentum flowmeter was also calibrated on the TACS to demonstrate the accuracy of a true mass flowmeter having a 'state-of-the-art' design accuracy.

  14. Constructing better classifier ensemble based on weighted accuracy and diversity measure.

    PubMed

    Zeng, Xiaodong; Wong, Derek F; Chao, Lidia S

    2014-01-01

    A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.

  15. Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure

    PubMed Central

    Chao, Lidia S.

    2014-01-01

    A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. PMID:24672402

  16. Improvement on Timing Accuracy of LIDAR for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, W.; Zhou, X.; Huang, Y.; He, C.; Li, X.; Zhang, L.

    2018-05-01

    The traditional timing discrimination technique for laser rangefinding in remote sensing, which is lower in measurement performance and also has a larger error, has been unable to meet the high precision measurement and high definition lidar image. To solve this problem, an improvement of timing accuracy based on the improved leading-edge timing discrimination (LED) is proposed. Firstly, the method enables the corresponding timing point of the same threshold to move forward with the multiple amplifying of the received signal. Then, timing information is sampled, and fitted the timing points through algorithms in MATLAB software. Finally, the minimum timing error is calculated by the fitting function. Thereby, the timing error of the received signal from the lidar is compressed and the lidar data quality is improved. Experiments show that timing error can be significantly reduced by the multiple amplifying of the received signal and the algorithm of fitting the parameters, and a timing accuracy of 4.63 ps is achieved.

  17. How the Leaders of One High-Achieving, Large, Urban High School Communicate with Latino Families about Math

    ERIC Educational Resources Information Center

    Kittelson, Andrea

    2016-01-01

    The purpose of this instrumental case study was to understand the ways in which the leaders of one high-achieving, large, urban high school communicate with Latino families about math with the intent to shine a light on the issue of communication with families as it relates to student achievement and the persistent math achievement gap among…

  18. Existing methods for improving the accuracy of digital-to-analog converters

    NASA Astrophysics Data System (ADS)

    Eielsen, Arnfinn A.; Fleming, Andrew J.

    2017-09-01

    The performance of digital-to-analog converters is principally limited by errors in the output voltage levels. Such errors are known as element mismatch and are quantified by the integral non-linearity. Element mismatch limits the achievable accuracy and resolution in high-precision applications as it causes gain and offset errors, as well as harmonic distortion. In this article, five existing methods for mitigating the effects of element mismatch are compared: physical level calibration, dynamic element matching, noise-shaping with digital calibration, large periodic high-frequency dithering, and large stochastic high-pass dithering. These methods are suitable for improving accuracy when using digital-to-analog converters that use multiple discrete output levels to reconstruct time-varying signals. The methods improve linearity and therefore reduce harmonic distortion and can be retrofitted to existing systems with minor hardware variations. The performance of each method is compared theoretically and confirmed by simulations and experiments. Experimental results demonstrate that three of the five methods provide significant improvements in the resolution and accuracy when applied to a general-purpose digital-to-analog converter. As such, these methods can directly improve performance in a wide range of applications including nanopositioning, metrology, and optics.

  19. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  20. The Role of Principal Leadership in Achievement beyond Test Scores: An Examination of Leadership, Differentiated Curriculum and High-Achieving Students

    ERIC Educational Resources Information Center

    Else, Danielle F.

    2013-01-01

    Though research has validated a link between principal leadership and student achievement, questions remain regarding the specific relationship between the principal and high-achieving learners. This association facilitates understanding about forming curricular decisions for high ability learners. The study was conducted to examine the perceived…

  1. Optimization of pencil beam f-theta lens for high-accuracy metrology

    NASA Astrophysics Data System (ADS)

    Peng, Chuanqian; He, Yumei; Wang, Jie

    2018-01-01

    Pencil beam deflectometric profilers are common instruments for high-accuracy surface slope metrology of x-ray mirrors in synchrotron facilities. An f-theta optical system is a key optical component of the deflectometric profilers and is used to perform the linear angle-to-position conversion. Traditional optimization procedures of the f-theta systems are not directly related to the angle-to-position conversion relation and are performed with stops of large size and a fixed working distance, which means they may not be suitable for the design of f-theta systems working with a small-sized pencil beam within a working distance range for ultra-high-accuracy metrology. If an f-theta system is not well-designed, aberrations of the f-theta system will introduce many systematic errors into the measurement. A least-squares' fitting procedure was used to optimize the configuration parameters of an f-theta system. Simulations using ZEMAX software showed that the optimized f-theta system significantly suppressed the angle-to-position conversion errors caused by aberrations. Any pencil-beam f-theta optical system can be optimized with the help of this optimization method.

  2. A Study of Impulsivity in Low-Achieving and High-Achieving Boys from Lower Income Homes. Final Report.

    ERIC Educational Resources Information Center

    Cohen, Shirley

    The purpose of this study was to explore the concept of impulsivity as a stylistic dimension affecting cognitive behavior, and whether impulsivity operates as a comprehensive, inflexible orientation in low achievers more than in high achievers. The Matching Familiar Figures Test, the Porteus Maze Test, and the Stroop Color-Word Test were used to…

  3. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  4. An Examination of Achievement Related Behavior of High and Low Achieving Inner City Pupils.

    ERIC Educational Resources Information Center

    Derevensky, Jeffrey L.; And Others

    This study investigated the behavioral differences between high and low achieving students in two Canadian inner city schools. One school consisted predominantly of first generation Portuguese, Greek, and Chinese children, while the other served a predominantly second or third generation population of English speaking Canadians. An academic…

  5. A real-time freehand ultrasound calibration system with automatic accuracy feedback and control.

    PubMed

    Chen, Thomas Kuiran; Thurston, Adrian D; Ellis, Randy E; Abolmaesumi, Purang

    2009-01-01

    This article describes a fully automatic, real-time, freehand ultrasound calibration system. The system was designed to be simple and sterilizable, intended for operating-room usage. The calibration system employed an automatic-error-retrieval and accuracy-control mechanism based on a set of ground-truth data. Extensive validations were conducted on a data set of 10,000 images in 50 independent calibration trials to thoroughly investigate the accuracy, robustness, and performance of the calibration system. On average, the calibration accuracy (measured in three-dimensional reconstruction error against a known ground truth) of all 50 trials was 0.66 mm. In addition, the calibration errors converged to submillimeter in 98% of all trials within 12.5 s on average. Overall, the calibration system was able to consistently, efficiently and robustly achieve high calibration accuracy with real-time performance.

  6. High accuracy-nationwide differential global positioning system test and analysis : phase II report

    DOT National Transportation Integrated Search

    2005-07-01

    The High Accuracy-Nationwide Differential Global Positioning System (HA-NDGPS) program focused on the development of compression and broadcast techniques to provide users over a large area wit very accurate radio navigation solutions. The goal was ac...

  7. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel

    NASA Astrophysics Data System (ADS)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie

    2011-05-01

    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  8. Accuracy Analysis on Large Blocks of High Resolution Images

    NASA Technical Reports Server (NTRS)

    Passini, Richardo M.

    2007-01-01

    Although high altitude frequencies effects are removed at the time of basic image generation, low altitude (Yaw) effects are still present in form of affinity/angular affinity. They are effectively removed by additional parameters. Bundle block adjustment based on properly weighted ephemeris/altitude quaternions (BBABEQ) are not enough to remove the systematic effect. Moreover, due to the narrow FOV of the HRSI, position and altitude are highly correlated making it almost impossible to separate and remove their systematic effects without extending the geometric model (Self-Calib.) The systematic effects gets evident on the increase of accuracy (in terms of RMSE at GCPs) for looser and relaxed ground control at the expense of large and strong block deformation with large residuals at check points. Systematic errors are most freely distributed and their effects propagated all over the block.

  9. High-accuracy peak picking of proteomics data using wavelet techniques.

    PubMed

    Lange, Eva; Gröpl, Clemens; Reinert, Knut; Kohlbacher, Oliver; Hildebrandt, Andreas

    2006-01-01

    A new peak picking algorithm for the analysis of mass spectrometric (MS) data is presented. It is independent of the underlying machine or ionization method, and is able to resolve highly convoluted and asymmetric signals. The method uses the multiscale nature of spectrometric data by first detecting the mass peaks in the wavelet-transformed signal before a given asymmetric peak function is fitted to the raw data. In an optional third stage, the resulting fit can be further improved using techniques from nonlinear optimization. In contrast to currently established techniques (e.g. SNAP, Apex) our algorithm is able to separate overlapping peaks of multiply charged peptides in ESI-MS data of low resolution. Its improved accuracy with respect to peak positions makes it a valuable preprocessing method for MS-based identification and quantification experiments. The method has been validated on a number of different annotated test cases, where it compares favorably in both runtime and accuracy with currently established techniques. An implementation of the algorithm is freely available in our open source framework OpenMS.

  10. Biculturalism and Academic Achievement of African American High School Students

    ERIC Educational Resources Information Center

    Rust, Jonathan P.; Jackson, Margo A.; Ponterotto, Joseph G.; Blumberg, Fran C.

    2011-01-01

    Biculturalism was examined as a factor that may positively affect the academic achievement of African American high school students, beyond cultural identity and self-esteem. Hierarchical regression analyses determined that cultural identity and academic self-esteem were important factors for academic achievement, but not biculturalism.…

  11. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy

    Treesearch

    S.E. Reutebuch; R.J. McGaughey; H.-E. Andersen; W.W. Carson

    2003-01-01

    Airborne laser scanning systems can provide terrain elevation data for open areas with a vertical accuracy of 15 cm. In this study, a high-resolution digital terrain model (DTM) was produced from high-density lidar data. Vegetation in the 500-ha mountainous study area varied from bare ground to dense 70-year-old conifer forest. Conventional ground survey methods were...

  12. System and method for generating a displacement with ultra-high accuracy using a fabry-perot interferometer

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A system and method for generating a desired displacement of an object, i.e., a target, from a reference position with ultra-high accuracy utilizes a Fabry-Perot etalon having an expandable tube cavity for resolving, with an Iodine stabilized laser, displacements with high accuracy and for effecting (as an actuator) displacements of the target. A mechanical amplifier in the form of a micropositioning stage has a platform and a frame which are movable relative to one another, and the tube cavity of the etalon is connected between the platform and frame so that an adjustment in length of the cavity effects a corresponding, amplified movement of the frame relative to the cavity. Therefore, in order to provide a preselected magnitude of displacement of the stage frame relative to the platform, the etalon tube cavity is adjusted in length by a corresponding amount. The system and method are particularly well-suited for use when calibrating a high accuracy measuring device.

  13. The Chinese High School Student's Stress in the School and Academic Achievement

    ERIC Educational Resources Information Center

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  14. A Comparison of Emotional-Motivational (A-R-D Theory) Personality Characteristics in Learning Disabled, Normal Achieving, and High Achieving Children.

    ERIC Educational Resources Information Center

    Hufano, Linda D.

    The study examined emotional-motivational personality characteristics of 15 learning disabled, 15 normal achieving, and 15 high achieving students (grades 3-5). The study tested the hypothesis derived from the A-R-D (attitude-reinforcer-discriminative) theory of motivation that learning disabled (LD) children differ from normal and high achieving…

  15. Parenting Style, Perfectionism, and Creativity in High-Ability and High-Achieving Young Adults

    ERIC Educational Resources Information Center

    Miller, Angie L.; Lambert, Amber D.; Speirs Neumeister, Kristie L.

    2012-01-01

    The current study explores the potential relationships among perceived parenting style, perfectionism, and creativity in a high-ability and high-achieving young adult population. Using data from 323 honors college students at a Midwestern university, bivariate correlations suggested positive relationships between (a) permissive parenting style and…

  16. Improving Speaking Accuracy through Awareness

    ERIC Educational Resources Information Center

    Dormer, Jan Edwards

    2013-01-01

    Increased English learner accuracy can be achieved by leading students through six stages of awareness. The first three awareness stages build up students' motivation to improve, and the second three provide learners with crucial input for change. The final result is "sustained language awareness," resulting in ongoing…

  17. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  18. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  19. Teachers' Judgements of Students' Foreign-Language Achievement

    ERIC Educational Resources Information Center

    Zhu, Mingjing; Urhahne, Detlef

    2015-01-01

    Numerous studies have been conducted on the accuracy of teacher judgement in different educational areas such as mathematics, language arts and reading. Teacher judgement of students' foreign-language achievement, however, has been rarely investigated. The study aimed to examine the accuracy of teacher judgement of students' foreign-language…

  20. Gender, Student Motivation and Academic Achievement in a Midsized Wisconsin High School

    ERIC Educational Resources Information Center

    Lutzke, Steven Ronald

    2013-01-01

    This mixed-methods study investigated relationships among gender, academic motivation and achievement in a mid-sized Wisconsin high school. A questionnaire was developed that focused on perceived ability, achievement motives and achievement goals. Interviews with teachers focused on relationships among academic motivation and gender achievement.…

  1. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  2. Success Despite Socioeconomics: A Case Study of a High-Achieving, High-Poverty School

    ERIC Educational Resources Information Center

    Tilley, Thomas Brent; Smith, Samuel J.; Claxton, Russell L.

    2012-01-01

    This case study of a high-achieving, high-poverty school describes the school's leadership, culture, and programs that contributed to its success. Data were collected from two surveys (the School Culture Survey and the Vanderbilt Assessment of Leadership in Education), observations at the school site, and interviews with school personnel. The…

  3. High-accuracy microassembly by intelligent vision systems and smart sensor integration

    NASA Astrophysics Data System (ADS)

    Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael

    2003-10-01

    Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.

  4. Automatic and robust extrinsic camera calibration for high-accuracy mobile mapping

    NASA Astrophysics Data System (ADS)

    Goeman, Werner; Douterloigne, Koen; Bogaert, Peter; Pires, Rui; Gautama, Sidharta

    2012-10-01

    A mobile mapping system (MMS) is the answer of the geoinformation community to the exponentially growing demand for various geospatial data with increasingly higher accuracies and captured by multiple sensors. As the mobile mapping technology is pushed to explore its use for various applications on water, rail, or road, the need emerges to have an external sensor calibration procedure which is portable, fast and easy to perform. This way, sensors can be mounted and demounted depending on the application requirements without the need for time consuming calibration procedures. A new methodology is presented to provide a high quality external calibration of cameras which is automatic, robust and fool proof.The MMS uses an Applanix POSLV420, which is a tightly coupled GPS/INS positioning system. The cameras used are Point Grey color video cameras synchronized with the GPS/INS system. The method uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration a well studied absolute orientation problem needs to be solved. Here, a mutual information based image registration technique is studied for automatic alignment of the ranging pole. Finally, a few benchmarking tests are done under various lighting conditions which proves the methodology's robustness, by showing high absolute stereo measurement accuracies of a few centimeters.

  5. Academic Self-Efficacy of High Achieving Students in Mexico

    ERIC Educational Resources Information Center

    Camelo-Lavadores, Ana Karen; Sánchez-Escobedo, Pedro; Pinto-Sosa, Jesus

    2017-01-01

    The purpose of this study was to explore for differences in the academic self-efficacy of Mexican high school students. A gird questionnaire was administered to 1,460 students form private and public schools. As expected, high achieving students showed significantly higher academic self-efficacy that their peers. However, interesting gender…

  6. Longitudinal study of low and high achievers in early mathematics.

    PubMed

    Navarro, Jose I; Aguilar, Manuel; Marchena, Esperanza; Ruiz, Gonzalo; Menacho, Inmaculada; Van Luit, Johannes E H

    2012-03-01

    Longitudinal studies allow us to identify, which specific maths skills are weak in young children, and whether there is a continuing weakness in these areas throughout their school years. This 2-year study investigated whether certain socio-demographic variables affect early mathematical competency in children aged 5-7 years. A randomly selected sample of 127 students (64 female; 63 male) participated. At the start of the study, the students were approximately 5 years old (M= 5.2; SD= 0.28; range = 4.5-5.8). The students were assessed using the Early Numeracy Test and then allocated to a high (n= 26), middle (n= 76), or low (n= 25) achievers group. The same children were assessed again with the Early Numeracy Test at 6 and 7 years old, respectively. Eight socio-demographic characteristics were also evaluated: family model, education of the parent(s), job of the parent(s), number of family members, birth order, number of computers at home, frequency of teacher visits, and hours watching television. Early Numeracy Test scores were more consistent for the high-achievers group than for the low-achievers group. Approximately 5.5% of low achievers obtained low scores throughout the study. A link between specific socio-demographic characteristics and early achievement in mathematics was only found for number of computers at home. The level of mathematical ability among students aged 5-7 years remains relatively stable regardless of the initial level of achievement. However, early screening for mathematics learning disabilities could be useful in helping low-achieving students overcome learning obstacles. ©2011 The British Psychological Society.

  7. What Does Quality Programming Mean for High Achieving Students?

    ERIC Educational Resources Information Center

    Samudzi, Cleo

    2008-01-01

    The Missouri Academy of Science, Mathematics and Computing (Missouri Academy) is a two-year accelerated, early-entrance-to-college, residential school that matches the level, complexity and pace of the curriculum with the readiness and motivation of high achieving high school students. The school is a part of Northwest Missouri State University…

  8. Speed, Dissipation, and Accuracy in Early T-cell Recognition

    NASA Astrophysics Data System (ADS)

    Cui, Wenping; Mehta, Pankaj

    In the immune system, T cells can perform self-foreign discrimination with great foreign ligand sensitivity, high decision speed and low energy cost. There is significant evidence T-cells achieve such great performance with a mechanism: kinetic proofreading(KPR). KPR-based mechanisms actively consume energy to increase the specificity of T-cell recognition. An important theoretical question arises: how to understand trade-offs and fundamental limits on accuracy, speed, and dissipation (energy consumption). Recent theoretical work suggests that it is always possible to reduce the the error of KPR-based mechanisms by waiting longer and/or consuming more energy. Surprisingly, we find that this is not the case and that there actually exists an optimal point in the speed-energy-accuracy plane for KPR and its generalizations. This work was supported by NIH R35 and Simons MMLS Grant.

  9. International note: between-domain relations of Chinese high school students' academic achievements.

    PubMed

    Yangyang, Liu

    2012-08-01

    The present study examined the between-domain relations of Chinese high school students' academic achievements. In a sample of 1870 Chinese 10th grade students, the results indicated that Chinese high school students' academic achievements were correlated across nine subjects. In line with the previous Western findings, the findings suggested that academic achievement was largely domain-general in nature. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  10. Verification of dosimetric accuracy on the TrueBeam STx: rounded leaf effect of the high definition MLC.

    PubMed

    Kielar, Kayla N; Mok, Ed; Hsu, Annie; Wang, Lei; Luxton, Gary

    2012-10-01

    The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in

  11. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    PubMed Central

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  12. Threatened and Placed at Risk: High Achieving African American Males in Urban High Schools

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    This study investigated the risk and protective factors of 11 high-achieving African American males attending 4 urban charter high schools in a Midwestern city to determine what factors account for their resilience and success in mathematics courses, and in high school more generally. This research was guided by a Phenomenological Variant of…

  13. The Impact of Formative Assessment on Students in a High Achieving Middle School

    ERIC Educational Resources Information Center

    Toungette, William Thomas

    2012-01-01

    With the passage of the No Child Left Behind mandate, school systems clamored to ensure that all students showed academic growth. For schools with a high-achieving population, this could be a daunting task. This analysis examined the impact formative assessment had on student achievement in a high-achieving, middle school by measuring three…

  14. Cost, accuracy, and consistency comparisons of land use maps made from high-altitutde aircraft photography and ERTS imagery

    USGS Publications Warehouse

    Fitzpatrick, Katherine A.

    1975-01-01

    Accuracy analyses for the land use maps of the Central Atlantic Regional Ecological Test Site were performed for a 1-percent sample of the area. Researchers compared Level II land use maps produced at three scales, 1:24,000, 1:100,000, and 1:250,000 from high-altitude photography, with each other and with point data obtained in the field. They employed the same procedures to determine the accuracy of the Level I land use maps produced at 1:250,000 from high-altitude photography and color composite ERTS imagery. The accuracy of the Level II maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000, and 73.0 percent at 1:250,000. The accuracy of the Level I 1:250,000 maps produced from high-altitude aircraft photography was 76.5 percent and for those produced from ERTS imagery was 69.5 percent The cost of Level II land use mapping at 1:24,000 was found to be high ($11.93 per km2 ). The cost of mapping at 1:100,000 ($1.75) was about 2 times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent. Level I land use maps, when mapped from highaltitude photography, were about 4 times as expensive as the maps produced from ERTS imagery, although the accuracy is 7.0 percent greater. The Level I land use category that is least accurately mapped from ERTS imagery is urban and built-up land in the non-urban areas; in the urbanized areas, built-up land is more reliably mapped.

  15. Variability of Diabetes Alert Dog Accuracy in a Real-World Setting

    PubMed Central

    Gonder-Frederick, Linda A.; Grabman, Jesse H.; Shepard, Jaclyn A.; Tripathi, Anand V.; Ducar, Dallas M.; McElgunn, Zachary R.

    2017-01-01

    Background: Diabetes alert dogs (DADs) are growing in popularity as an alternative method of glucose monitoring for individuals with type 1 diabetes (T1D). Only a few empirical studies have assessed DAD accuracy, with inconsistent results. The present study examined DAD accuracy and variability in performance in real-world conditions using a convenience sample of owner-report diaries. Method: Eighteen DAD owners (44.4% female; 77.8% youth) with T1D completed diaries of DAD alerts during the first year after placement. Diary entries included daily BG readings and DAD alerts. For each DAD, percentage hits (alert with BG ≤ 5.0 or ≥ 11.1 mmol/L; ≤90 or ≥200 mg/dl), percentage misses (no alert with BG out of range), and percentage false alarms (alert with BG in range) were computed. Sensitivity, specificity, positive likelihood ratio (PLR), and true positive rates were also calculated. Results: Overall comparison of DAD Hits to Misses yielded significantly more Hits for both low and high BG. Total sensitivity was 57.0%, with increased sensitivity to low BG (59.2%) compared to high BG (56.1%). Total specificity was 49.3% and PLR = 1.12. However, high variability in accuracy was observed across DADs, with low BG sensitivity ranging from 33% to 100%. Number of DADs achieving ≥ 60%, 65% and 70% true positive rates was 71%, 50% and 44%, respectively. Conclusions: DADs may be able to detect out-of-range BG, but variability across DADs is evident. Larger trials are needed to further assess DAD accuracy and to identify factors influencing the complexity of DAD accuracy in BG detection. PMID:28627305

  16. Brain Hemisphericity and Mathematics Achievement of High School Students

    ERIC Educational Resources Information Center

    Fernandez, Sanny F.

    2011-01-01

    This study aimed to find out the brain hemisphericity and mathematics achievement of high school students. The respondents of the study were the 168 first year high school students of Colegio de San Jose, during school year 2010-2011 who were chosen through stratified random sampling. The descriptive and interview methods of research were used in…

  17. Professional Competences of Teachers for Fostering Creativity and Supporting High-Achieving Students

    ERIC Educational Resources Information Center

    Hoth, Jessica; Kaiser, Gabriele; Busse, Andreas; Döhrmann, Martina; König, Johannes; Blömeke, Sigrid

    2017-01-01

    This paper addresses an important task teachers face in class: the identification and support of creative and high-achieving students. In particular, we examine whether primary teachers (1) have acquired professional knowledge during teacher education that is necessary to foster creativity and to teach high-achieving students, and whether they (2)…

  18. High-Accuracy Decoupling Estimation of the Systematic Coordinate Errors of an INS and Intensified High Dynamic Star Tracker Based on the Constrained Least Squares Method

    PubMed Central

    Jiang, Jie; Yu, Wenbo; Zhang, Guangjun

    2017-01-01

    Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179

  19. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    PubMed

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  20. Secure Fingerprint Identification of High Accuracy

    DTIC Science & Technology

    2014-01-01

    secure ) solution of complexity O(n3) based on Gaussian elimination. When it is applied to biometrics X and Y with mX and mY minutiae, respectively...collections of biometric data in use today include, for example, fingerprint, face, and iris images collected by the US Department of Homeland Security ...work we focus on fingerprint data due to popularity and good accuracy of this type of biometry. We formulate the problem of private, or secure , finger

  1. Factors Determining the Inter-observer Variability and Diagnostic Accuracy of High-resolution Manometry for Esophageal Motility Disorders.

    PubMed

    Kim, Ji Hyun; Kim, Sung Eun; Cho, Yu Kyung; Lim, Chul-Hyun; Park, Moo In; Hwang, Jin Won; Jang, Jae-Sik; Oh, Minkyung

    2018-01-30

    Although high-resolution manometry (HRM) has the advantage of visual intuitiveness, its diagnostic validity remains under debate. The aim of this study was to evaluate the diagnostic accuracy of HRM for esophageal motility disorders. Six staff members and 8 trainees were recruited for the study. In total, 40 patients enrolled in manometry studies at 3 institutes were selected. Captured images of 10 representative swallows and a single swallow in analyzing mode in both high-resolution pressure topography (HRPT) and conventional line tracing formats were provided with calculated metrics. Assessments of esophageal motility disorders showed fair agreement for HRPT and moderate agreement for conventional line tracing (κ = 0.40 and 0.58, respectively). With the HRPT format, the k value was higher in category A (esophagogastric junction [EGJ] relaxation abnormality) than in categories B (major body peristalsis abnormalities with intact EGJ relaxation) and C (minor body peristalsis abnormalities or normal body peristalsis with intact EGJ relaxation). The overall exact diagnostic accuracy for the HRPT format was 58.8% and rater's position was an independent factor for exact diagnostic accuracy. The diagnostic accuracy for major disorders was 63.4% with the HRPT format. The frequency of major discrepancies was higher for category B disorders than for category A disorders (38.4% vs 15.4%; P < 0.001). The interpreter's experience significantly affected the exact diagnostic accuracy of HRM for esophageal motility disorders. The diagnostic accuracy for major disorders was higher for achalasia than distal esophageal spasm and jackhammer esophagus.

  2. Best Practices for Achieving High, Rapid Reading Gains

    ERIC Educational Resources Information Center

    Carbo, Marie

    2008-01-01

    The percentage of students who read at the proficient level on the National Assessment of Educational Progress (NAEP) has not improved, and is appallingly low. In order for students to achieve high reading gains and become life-long readers, reading comprehension and reading enjoyment must be the top two goals. This article presents several…

  3. Limits on the Accuracy of Linking. Research Report. ETS RR-10-22

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2010-01-01

    Sampling errors limit the accuracy with which forms can be linked. Limitations on accuracy are especially important in testing programs in which a very large number of forms are employed. Standard inequalities in mathematical statistics may be used to establish lower bounds on the achievable inking accuracy. To illustrate results, a variety of…

  4. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  5. Bullying and Victimization Rates among Gifted and High-Achieving Students

    ERIC Educational Resources Information Center

    Peters, Megan Parker; Bain, Sherry K.

    2011-01-01

    Bullying and victimization rates among 90 gifted and nongifted, high-achieving (HA) high school students were assessed by using the Reynolds Bully Victimization Scale (BVS; W. M. Reynolds, 2003). The mean scores indicate that gifted and HA high school students bully others and are victimized by others generally at unelevated rates based on BVS…

  6. The Social Accuracy Model of Interpersonal Perception: Assessing Individual Differences in Perceptive and Expressive Accuracy

    ERIC Educational Resources Information Center

    Biesanz, Jeremy C.

    2010-01-01

    The social accuracy model of interpersonal perception (SAM) is a componential model that estimates perceiver and target effects of different components of accuracy across traits simultaneously. For instance, Jane may be generally accurate in her perceptions of others and thus high in "perceptive accuracy"--the extent to which a particular…

  7. The Relationship Between Eyewitness Confidence and Identification Accuracy: A New Synthesis.

    PubMed

    Wixted, John T; Wells, Gary L

    2017-05-01

    The U.S. legal system increasingly accepts the idea that the confidence expressed by an eyewitness who identified a suspect from a lineup provides little information as to the accuracy of that identification. There was a time when this pessimistic assessment was entirely reasonable because of the questionable eyewitness-identification procedures that police commonly employed. However, after more than 30 years of eyewitness-identification research, our understanding of how to properly conduct a lineup has evolved considerably, and the time seems ripe to ask how eyewitness confidence informs accuracy under more pristine testing conditions (e.g., initial, uncontaminated memory tests using fair lineups, with no lineup administrator influence, and with an immediate confidence statement). Under those conditions, mock-crime studies and police department field studies have consistently shown that, for adults, (a) confidence and accuracy are strongly related and (b) high-confidence suspect identifications are remarkably accurate. However, when certain non-pristine testing conditions prevail (e.g., when unfair lineups are used), the accuracy of even a high-confidence suspect ID is seriously compromised. Unfortunately, some jurisdictions have not yet made reforms that would create pristine testing conditions and, hence, our conclusions about the reliability of high-confidence identifications cannot yet be applied to those jurisdictions. However, understanding the information value of eyewitness confidence under pristine testing conditions can help the criminal justice system to simultaneously achieve both of its main objectives: to exonerate the innocent (by better appreciating that initial, low-confidence suspect identifications are error prone) and to convict the guilty (by better appreciating that initial, high-confidence suspect identifications are surprisingly accurate under proper testing conditions).

  8. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package.

    PubMed

    Wallace, Jonathan; Wang, Martha O; Thompson, Paul; Busso, Mallory; Belle, Vaijayantee; Mammoser, Nicole; Kim, Kyobum; Fisher, John P; Siblani, Ali; Xu, Yueshuo; Welter, Jean F; Lennon, Donald P; Sun, Jiayang; Caplan, Arnold I; Dean, David

    2014-03-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.

  9. Diagnostic accuracy of routine blood examinations and CSF lactate level for post-neurosurgical bacterial meningitis.

    PubMed

    Zhang, Yang; Xiao, Xiong; Zhang, Junting; Gao, Zhixian; Ji, Nan; Zhang, Liwei

    2017-06-01

    To evaluate the diagnostic accuracy of routine blood examinations and Cerebrospinal Fluid (CSF) lactate level for Post-neurosurgical Bacterial Meningitis (PBM) at a large sample-size of post-neurosurgical patients. The diagnostic accuracies of routine blood examinations and CSF lactate level to distinguish between PAM and PBM were evaluated with the values of the Area Under the Curve of the Receiver Operating Characteristic (AUC -ROC ) by retrospectively analyzing the datasets of post-neurosurgical patients in the clinical information databases. The diagnostic accuracy of routine blood examinations was relatively low (AUC -ROC <0.7). The CSF lactate level achieved rather high diagnostic accuracy (AUC -ROC =0.891; CI 95%, 0.852-0.922). The variables of patient age, operation duration, surgical diagnosis and postoperative days (the interval days between the neurosurgery and examinations) were shown to affect the diagnostic accuracy of these examinations. The variables were integrated with routine blood examinations and CSF lactate level by Fisher discriminant analysis to improve their diagnostic accuracy. As a result, the diagnostic accuracy of blood examinations and CSF lactate level was significantly improved with an AUC -ROC value=0.760 (CI 95%, 0.737-0.782) and 0.921 (CI 95%, 0.887-0.948) respectively. The PBM diagnostic accuracy of routine blood examinations was relatively low, whereas the accuracy of CSF lactate level was high. Some variables that are involved in the incidence of PBM can also affect the diagnostic accuracy for PBM. Taking into account the effects of these variables significantly improves the diagnostic accuracies of routine blood examinations and CSF lactate level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A method which can enhance the optical-centering accuracy

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua

    2014-09-01

    Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.

  11. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms.

    PubMed

    Phillips, P Jonathon; Yates, Amy N; Hu, Ying; Hahn, Carina A; Noyes, Eilidh; Jackson, Kelsey; Cavazos, Jacqueline G; Jeckeln, Géraldine; Ranjan, Rajeev; Sankaranarayanan, Swami; Chen, Jun-Cheng; Castillo, Carlos D; Chellappa, Rama; White, David; O'Toole, Alice J

    2018-06-12

    Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible. Copyright © 2018 the Author(s). Published by PNAS.

  12. HIV-1 tropism testing in subjects achieving undetectable HIV-1 RNA: diagnostic accuracy, viral evolution and compartmentalization.

    PubMed

    Pou, Christian; Codoñer, Francisco M; Thielen, Alexander; Bellido, Rocío; Pérez-Álvarez, Susana; Cabrera, Cecilia; Dalmau, Judith; Curriu, Marta; Lie, Yolanda; Noguera-Julian, Marc; Puig, Jordi; Martínez-Picado, Javier; Blanco, Julià; Coakley, Eoin; Däumer, Martin; Clotet, Bonaventura; Paredes, Roger

    2013-01-01

    Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs). However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain. We designed a proof-of-concept study including 30 chronically HIV-1-infected individuals who achieved HIV-1 RNA <50 copies/mL during at least 2 years after first-line ART initiation. First, we determined the diagnostic accuracy of 454 and population sequencing of gp120 V3-loops in plasma and PBMCs, as well as of MT-2 assays before ART initiation. The Enhanced Sensitivity Trofile Assay (ESTA) was used as the technical reference standard. 454 sequencing of plasma viruses provided the highest agreement with ESTA. The accuracy of 454 sequencing decreased in PBMCs due to reduced specificity. Population sequencing in plasma and PBMCs was slightly less accurate than plasma 454 sequencing, being less sensitive but more specific. MT-2 assays had low sensitivity but 100% specificity. Then, we used optimized 454 sequence data to investigate viral evolution in PBMCs during viremia suppression and only found evolution of R5 viruses in one subject. No de novo CXCR4-using HIV-1 production was observed over time. Finally, Slatkin-Maddison tests suggested that plasma and cell-associated V3 forms were sometimes compartmentalized. The absence of tropism shifts during viremia suppression suggests that, when available, testing of stored plasma samples is generally safe and informative, provided that HIV-1 suppression is maintained. Tropism testing in PBMCs may not necessarily produce equivalent biological results to plasma, because the structure of viral populations and the diagnostic performance of tropism assays may sometimes vary between compartments. Thereby, proviral DNA tropism testing

  13. 2×2 dominant achievement goal profiles in high-level swimmers.

    PubMed

    Fernandez-Rio, Javier; Cecchini Estrada, Jose A; Mendez-Giménez, Antonio; Fernández-Garcia, Benjamín; Saavedra, Pablo

    2014-01-01

    The goal of this study was to assess achievement goal dominance, self-determined situational motivation and competence in high-level swimmers before and after three training sessions set at different working intensities (medium, sub-maximal and maximal). Nineteen athletes (males, n=9, 18.00±2.32 years; females, n=10, 16.30±2.01 years, range = 14-18) agreed to participate. They completed a questionnaire that included the Dominant Achievement Goal assessment instrument, the 2×2 Achievement Goals Questionnaire for Sport (AGQ-S), The Situational Motivation Scale (SIMS) and the Competence subscale of the Basic Psychological Needs in Exercise questionnaire (BPNES). Results indicated that participants overwhelmingly showed mastery-approach achievement goal dominance, and it remained stable at the conclusion of the different training sessions under all intensity levels. This profile was positively correlated to self-determined situational motivation and competence. However, swimmers' feelings of competence increased only after the medium intensity level training session. After the completion of the maximal intensity training session, swimmers' self-determined motivation was significantly lower compared to the other two training sessions, which could be caused by a temporary period of burnout. Results indicated that high-level swimmers had a distinct mastery-approach dominant achievement goal profile that was not affected by the workload of the different training sessions. They also showed high levels of self-determined situational motivation and competence. However, heavy workloads should be controlled because they can cause transitory burnout.

  14. High-accuracy 3D measurement system based on multi-view and structured light

    NASA Astrophysics Data System (ADS)

    Li, Mingyue; Weng, Dongdong; Li, Yufeng; Zhang, Longbin; Zhou, Haiyun

    2013-12-01

    3D surface reconstruction is one of the most important topics in Spatial Augmented Reality (SAR). Using structured light is a simple and rapid method to reconstruct the objects. In order to improve the precision of 3D reconstruction, we present a high-accuracy multi-view 3D measurement system based on Gray-code and Phase-shift. We use a camera and a light projector that casts structured light patterns on the objects. In this system, we use only one camera to take photos on the left and right sides of the object respectively. In addition, we use VisualSFM to process the relationships between each perspective, so the camera calibration can be omitted and the positions to place the camera are no longer limited. We also set appropriate exposure time to make the scenes covered by gray-code patterns more recognizable. All of the points above make the reconstruction more precise. We took experiments on different kinds of objects, and a large number of experimental results verify the feasibility and high accuracy of the system.

  15. Novel technique to suppress hydrocarbon contamination for high accuracy determination of carbon content in steel by FE-EPMA

    PubMed Central

    Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito

    2016-01-01

    In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281

  16. Genomic selection accuracies within and between environments and small breeding groups in white spruce.

    PubMed

    Beaulieu, Jean; Doerksen, Trevor K; MacKay, John; Rainville, André; Bousquet, Jean

    2014-12-02

    Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested. Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71-0.79) and moderately high for growth (r = 0.52-0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies. Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that

  17. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    NASA Astrophysics Data System (ADS)

    Reuss, Matthias; Fördős, Ferenc; Blom, Hans; Öktem, Ozan; Högberg, Björn; Brismar, Hjalmar

    2017-02-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM.

  18. When high achievers and low achievers work in the same group: the roles of group heterogeneity and processes in project-based learning.

    PubMed

    Cheng, Rebecca Wing-yi; Lam, Shui-fong; Chan, Joanne Chung-yan

    2008-06-01

    There has been an ongoing debate about the inconsistent effects of heterogeneous ability grouping on students in small group work such as project-based learning. The present research investigated the roles of group heterogeneity and processes in project-based learning. At the student level, we examined the interaction effect between students' within-group achievement and group processes on their self- and collective efficacy. At the group level, we examined how group heterogeneity was associated with the average self- and collective efficacy reported by the groups. The participants were 1,921 Hong Kong secondary students in 367 project-based learning groups. Student achievement was determined by school examination marks. Group processes, self-efficacy and collective efficacy were measured by a student-report questionnaire. Hierarchical linear modelling was used to analyse the nested data. When individual students in each group were taken as the unit of analysis, results indicated an interaction effect of group processes and students' within-group achievement on the discrepancy between collective- and self-efficacy. When compared with low achievers, high achievers reported lower collective efficacy than self-efficacy when group processes were of low quality. However, both low and high achievers reported higher collective efficacy than self-efficacy when group processes were of high quality. With 367 groups taken as the unit of analysis, the results showed that group heterogeneity, group gender composition and group size were not related to the discrepancy between collective- and self-efficacy reported by the students. Group heterogeneity was not a determinant factor in students' learning efficacy. Instead, the quality of group processes played a pivotal role because both high and low achievers were able to benefit when group processes were of high quality.

  19. High Stakes for High Achievers: State Accountability in the Age of ESSA

    ERIC Educational Resources Information Center

    Petrilli, Michael J.; Griffith, David; Wright, Brandon L.; Kim, Audrey

    2016-01-01

    In this report, the authors examine the extent to which states' current (or planned) accountability systems for elementary and middle schools attend to the needs of high-achieving students, and how these systems might be redesigned under the Every Student Succeeds Act (ESSA) to better serve all students. In their view, states can and should take…

  20. Partially pre-calculated weights for the backpropagation learning regime and high accuracy function mapping using continuous input RAM-based sigma-pi nets.

    PubMed

    Neville, R S; Stonham, T J; Glover, R J

    2000-01-01

    In this article we present a methodology that partially pre-calculates the weight updates of the backpropagation learning regime and obtains high accuracy function mapping. The paper shows how to implement neural units in a digital formulation which enables the weights to be quantised to 8-bits and the activations to 9-bits. A novel methodology is introduced to enable the accuracy of sigma-pi units to be increased by expanding their internal state space. We, also, introduce a novel means of implementing bit-streams in ring memories instead of utilising shift registers. The investigation utilises digital "Higher Order" sigma-pi nodes and studies continuous input RAM-based sigma-pi units. The units are trained with the backpropagation learning regime to learn functions to a high accuracy. The neural model is the sigma-pi units which can be implemented in digital microelectronic technology. The ability to perform tasks that require the input of real-valued information, is one of the central requirements of any cognitive system that utilises artificial neural network methodologies. In this article we present recent research which investigates a technique that can be used for mapping accurate real-valued functions to RAM-nets. One of our goals was to achieve accuracies of better than 1% for target output functions in the range Y epsilon [0,1], this is equivalent to an average Mean Square Error (MSE) over all training vectors of 0.0001 or an error modulus of 0.01. We present a development of the sigma-pi node which enables the provision of high accuracy outputs. The sigma-pi neural model was initially developed by Gurney (Learning in nets of structured hypercubes. PhD Thesis, Department of Electrical Engineering, Brunel University, Middlessex, UK, 1989; available as Technical Memo CN/R/144). Gurney's neuron models, the Time Integration Node (TIN), utilises an activation that was derived from a bit-stream. In this article we present a new methodology for storing sigma

  1. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery.

    PubMed

    Kobler, Jan-Philipp; Nuelle, Kathrin; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lueder A; Kotlarski, Jens; Ortmaier, Tobias

    2016-03-01

    Minimally invasive cochlear implantation is a novel surgical technique which requires highly accurate guidance of a drilling tool along a trajectory from the mastoid surface toward the basal turn of the cochlea. The authors propose a passive, reconfigurable, parallel robot which can be directly attached to bone anchors implanted in a patient's skull, avoiding the need for surgical tracking systems. Prior to clinical trials, methods are necessary to patient specifically optimize the configuration of the mechanism with respect to accuracy and stability. Furthermore, the achievable accuracy has to be determined experimentally. A comprehensive error model of the proposed mechanism is established, taking into account all relevant error sources identified in previous studies. Two optimization criteria to exploit the given task redundancy and reconfigurability of the passive robot are derived from the model. The achievable accuracy of the optimized robot configurations is first estimated with the help of a Monte Carlo simulation approach and finally evaluated in drilling experiments using synthetic temporal bone specimen. Experimental results demonstrate that the bone-attached mechanism exhibits a mean targeting accuracy of [Formula: see text] mm under realistic conditions. A systematic targeting error is observed, which indicates that accurate identification of the passive robot's kinematic parameters could further reduce deviations from planned drill trajectories. The accuracy of the proposed mechanism demonstrates its suitability for minimally invasive cochlear implantation. Future work will focus on further evaluation experiments on temporal bone specimen.

  2. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  3. Practically Perfect in Every Way: Can Reframing Perfectionism for High-Achieving Undergraduates Impact Academic Resilience?

    ERIC Educational Resources Information Center

    Dickinson, Mary J.; Dickinson, David A. G.

    2015-01-01

    This study focuses on a pan-disciplinary scheme that targeted high-achieving undergraduate students. Earlier research from the scheme argued that high achievers have discernibly different learning and personal development support needs. One of the most frequent self-reported challenges within this high-achieving group is perfectionism. This…

  4. The Relationship between Parental Involvement and Student Achievement in a Rural Florida High School

    ERIC Educational Resources Information Center

    Jackson, Willie A.

    2011-01-01

    Parental involvement is viewed as critical to the development of effective schools and student achievement. The relationship between parental involvement and achievement test scores at a rural high school in Florida was not known. This high school has not met the state standards as determined by the Florida Comprehensive Achievement Test (FCAT)…

  5. Relationships among Stress, Coping, and Mental Health in High-Achieving High School Students

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Shaunessy, Elizabeth; Hardesty, Robin

    2008-01-01

    This study investigates the relationships among stress, coping, and mental health in 139 students participating in an International Baccalaureate (IB) high school diploma program. Mental health was assessed using both positive indicators (life satisfaction, academic achievement, academic self-efficacy) and negative indicators (psychopathology) of…

  6. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  7. Face Configuration Accuracy and Processing Speed among Adults with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Faja, Susan; Webb, Sara Jane; Merkle, Kristen; Aylward, Elizabeth; Dawson, Geraldine

    2009-01-01

    The present study investigates the accuracy and speed of face processing employed by high-functioning adults with autism spectrum disorders (ASDs). Two behavioral experiments measured sensitivity to distances between features and face recognition when performance depended on holistic versus featural information. Results suggest adults with ASD…

  8. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  9. Expanding Opportunities for High Academic Achievement: An International Baccalaureate Diploma Program in an Urban High School

    ERIC Educational Resources Information Center

    Mayer, Anysia P.

    2008-01-01

    Students of color are consistently underrepresented in honors and gifted programs nationwide, and even high-achieving students share many of the risk factors with their low-achieving peers. The study presented in this paper employed mixed methods to investigate the relationship between the design of a rigorous college preparatory program, the…

  10. Feasibility of a GNSS-Probe for Creating Digital Maps of High Accuracy and Integrity

    NASA Astrophysics Data System (ADS)

    Vartziotis, Dimitris; Poulis, Alkis; Minogiannis, Alexandros; Siozos, Panayiotis; Goudas, Iraklis; Samson, Jaron; Tossaint, Michel

    The “ROADSCANNER” project addresses the need for increased accuracy and integrity Digital Maps (DM) utilizing the latest developments in GNSS, in order to provide the required datasets for novel applications, such as navigation based Safety Applications, Advanced Driver Assistance Systems (ADAS) and Digital Automotive Simulations. The activity covered in the current paper is the feasibility study, preliminary tests, initial product design and development plan for an EGNOS enabled vehicle probe. The vehicle probe will be used for generating high accuracy, high integrity and ADAS compatible digital maps of roads, employing a multiple passes methodology supported by sophisticated refinement algorithms. Furthermore, the vehicle probe will be equipped with pavement scanning and other data fusion equipment, in order to produce 3D road surface models compatible with standards of road-tire simulation applications. The project was assigned to NIKI Ltd under the 1st Call for Ideas in the frame of the ESA - Greece Task Force.

  11. Theoferometer for High Accuracy Optical Alignment and Metrology

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Leviton, Doug; Koterba, Seth

    2004-01-01

    The accurate measurement of the orientation of optical parts and systems is a pressing problem for upcoming space missions, such as stellar interferometers, requiring the knowledge and maintenance of positions to the sub-arcsecond level. Theodolites, the devices commonly used to make these measurements, cannot provide the needed level of accuracy. This paper describes the design, construction, and testing of an interferometer system to fill the widening gap between future requirements and current capabilities. A Twyman-Green interferometer mounted on a 2 degree of freedom rotation stage is able to obtain sub-arcsecond, gravity-referenced tilt measurements of a sample alignment cube. Dubbed a 'theoferometer,' this device offers greater ease-of-use, accuracy, and repeatability than conventional methods, making it a suitable 21st-century replacement for the theodolite.

  12. The Effects of Alcohol Intoxication on Accuracy and the Confidence–Accuracy Relationship in Photographic Simultaneous Line‐ups

    PubMed Central

    Colloff, Melissa F.; Karoğlu, Nilda; Zelek, Katarzyna; Ryder, Hannah; Humphries, Joyce E.; Takarangi, Melanie K.T.

    2017-01-01

    Summary Acute alcohol intoxication during encoding can impair subsequent identification accuracy, but results across studies have been inconsistent, with studies often finding no effect. Little is also known about how alcohol intoxication affects the identification confidence–accuracy relationship. We randomly assigned women (N = 153) to consume alcohol (dosed to achieve a 0.08% blood alcohol content) or tonic water, controlling for alcohol expectancy. Women then participated in an interactive hypothetical sexual assault scenario and, 24 hours or 7 days later, attempted to identify the assailant from a perpetrator present or a perpetrator absent simultaneous line‐up and reported their decision confidence. Overall, levels of identification accuracy were similar across the alcohol and tonic water groups. However, women who had consumed tonic water as opposed to alcohol identified the assailant with higher confidence on average. Further, calibration analyses suggested that confidence is predictive of accuracy regardless of alcohol consumption. The theoretical and applied implications of our results are discussed.© 2017 The Authors Applied Cognitive Psychology Published by John Wiley & Sons Ltd. PMID:28781426

  13. Achieving high aspect ratio wrinkles by modifying material network stress.

    PubMed

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  14. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels.

    PubMed

    Erbe, M; Hayes, B J; Matukumalli, L K; Goswami, S; Bowman, P J; Reich, C M; Mason, B A; Goddard, M E

    2012-07-01

    Achieving accurate genomic estimated breeding values for dairy cattle requires a very large reference population of genotyped and phenotyped individuals. Assembling such reference populations has been achieved for breeds such as Holstein, but is challenging for breeds with fewer individuals. An alternative is to use a multi-breed reference population, such that smaller breeds gain some advantage in accuracy of genomic estimated breeding values (GEBV) from information from larger breeds. However, this requires that marker-quantitative trait loci associations persist across breeds. Here, we assessed the gain in accuracy of GEBV in Jersey cattle as a result of using a combined Holstein and Jersey reference population, with either 39,745 or 624,213 single nucleotide polymorphism (SNP) markers. The surrogate used for accuracy was the correlation of GEBV with daughter trait deviations in a validation population. Two methods were used to predict breeding values, either a genomic BLUP (GBLUP_mod), or a new method, BayesR, which used a mixture of normal distributions as the prior for SNP effects, including one distribution that set SNP effects to zero. The GBLUP_mod method scaled both the genomic relationship matrix and the additive relationship matrix to a base at the time the breeds diverged, and regressed the genomic relationship matrix to account for sampling errors in estimating relationship coefficients due to a finite number of markers, before combining the 2 matrices. Although these modifications did result in less biased breeding values for Jerseys compared with an unmodified genomic relationship matrix, BayesR gave the highest accuracies of GEBV for the 3 traits investigated (milk yield, fat yield, and protein yield), with an average increase in accuracy compared with GBLUP_mod across the 3 traits of 0.05 for both Jerseys and Holsteins. The advantage was limited for either Jerseys or Holsteins in using 624,213 SNP rather than 39,745 SNP (0.01 for Holsteins and 0

  15. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through

  16. The Effects of Various High School Scheduling Models on Student Achievement in Michigan

    ERIC Educational Resources Information Center

    Pickell, Russell E.

    2017-01-01

    This study reviews research and data to determine whether student achievement is affected by the high school scheduling model, and whether changes in scheduling models result in statistically significant changes in student achievement, as measured by the ACT Composite, ACT English Language Arts, and ACT Math scores. The high school scheduling…

  17. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level.

  18. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements.

    PubMed

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level.

  19. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    NASA Astrophysics Data System (ADS)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  20. Massive metrology using fast e-beam technology improves OPC model accuracy by >2x at faster turnaround time

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Wang, Lei; Wang, Jazer; Wang, ChangAn; Shi, Hong-Fei; Guerrero, James; Feng, Mu; Zhang, Qiang; Liang, Jiao; Guo, Yunbo; Zhang, Chen; Wallow, Tom; Rio, David; Wang, Lester; Wang, Alvin; Wang, Jen-Shiang; Gronlund, Keith; Lang, Jun; Koh, Kar Kit; Zhang, Dong Qing; Zhang, Hongxin; Krishnamurthy, Subramanian; Fei, Ray; Lin, Chiawen; Fang, Wei; Wang, Fei

    2018-03-01

    Classical SEM metrology, CD-SEM, uses low data rate and extensive frame-averaging technique to achieve high-quality SEM imaging for high-precision metrology. The drawbacks include prolonged data collection time and larger photoresist shrinkage due to excess electron dosage. This paper will introduce a novel e-beam metrology system based on a high data rate, large probe current, and ultra-low noise electron optics design. At the same level of metrology precision, this high speed e-beam metrology system could significantly shorten data collection time and reduce electron dosage. In this work, the data collection speed is higher than 7,000 images per hr. Moreover, a novel large field of view (LFOV) capability at high resolution was enabled by an advanced electron deflection system design. The area coverage by LFOV is >100x larger than classical SEM. Superior metrology precision throughout the whole image has been achieved, and high quality metrology data could be extracted from full field. This new capability on metrology will further improve metrology data collection speed to support the need for large volume of metrology data from OPC model calibration of next generation technology. The shrinking EPE (Edge Placement Error) budget places more stringent requirement on OPC model accuracy, which is increasingly limited by metrology errors. In the current practice of metrology data collection and data processing to model calibration flow, CD-SEM throughput becomes a bottleneck that limits the amount of metrology measurements available for OPC model calibration, impacting pattern coverage and model accuracy especially for 2D pattern prediction. To address the trade-off in metrology sampling and model accuracy constrained by the cycle time requirement, this paper employs the high speed e-beam metrology system and a new computational software solution to take full advantage of the large volume data and significantly reduce both systematic and random metrology errors. The

  1. Accuracy and high-speed technique for autoprocessing of Young's fringes

    NASA Astrophysics Data System (ADS)

    Chen, Wenyi; Tan, Yushan

    1991-12-01

    In this paper, an accurate and high-speed method for auto-processing of Young's fringes is proposed. A group of 1-D sampled intensity values along three or more different directions are taken from Young's fringes, and the fringe spacings of each direction are obtained by 1-D FFT respectively. Two directions that have smaller fringe spacing are selected from all directions. The accurate fringe spacings along these two directions are obtained by using orthogonal coherent phase detection technique (OCPD). The actual spacing and angle of Young's fringes, therefore, can be calculated. In this paper, the principle of OCPD is introduced in detail. The accuracy of the method is evaluated theoretically and experimentally.

  2. Antecedents to High Educational Achievement Among Southwestern Mexican Americans.

    ERIC Educational Resources Information Center

    Amodeo, Luiza B.; Martin, Jeanette

    The study examined antecedents to high educational achievement of 42 selected Mexican Americans (university professors, third-year law students, and third- and fourth-year medical students) in 5 southwestern universities (4 in California and 1 in New Mexico). Two related considerations prompted the investigation: failure of many Mexican Americans…

  3. Estimation and filtering techniques for high-accuracy GPS applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1989-01-01

    Techniques for determination of very precise orbits for satellites of the Global Positioning System (GPS) are currently being studied and demonstrated. These techniques can be used to make cm-accurate measurements of station locations relative to the geocenter, monitor earth orientation over timescales of hours, and provide tropospheric and clock delay calibrations during observations made with deep space radio antennas at sites where the GPS receivers have been collocated. For high-earth orbiters, meter-level knowledge of position will be available from GPS, while at low altitudes, sub-decimeter accuracy will be possible. Estimation of satellite orbits and other parameters such as ground station positions is carried out with a multi-satellite batch sequential pseudo-epoch state process noise filter. Both square-root information filtering (SRIF) and UD-factorized covariance filtering formulations are implemented in the software.

  4. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    PubMed Central

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-01-01

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385

  5. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    PubMed

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  6. The Effects of Student Characteristics on Teachers' Judgment Accuracy: Disentangling Ethnicity, Minority Status, and Achievement

    ERIC Educational Resources Information Center

    Kaiser, Johanna; Südkamp, Anna; Möller, Jens

    2017-01-01

    Teachers' judgments of students' academic achievement are not only affected by the achievement themselves but also by several other characteristics such as ethnicity, gender, and minority status. In real-life classrooms, achievement and further characteristics are often confounded. We disentangled achievement, ethnicity and minority status and…

  7. Depth extraction method with high accuracy in integral imaging based on moving array lenslet technique

    NASA Astrophysics Data System (ADS)

    Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing

    2018-03-01

    In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.

  8. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  9. High-Achieving and Average Students' Reading Growth: Contrasting School and Summer Trajectories

    ERIC Educational Resources Information Center

    Rambo-Hernandez, Karen E.; McCoach, D. Betsy

    2015-01-01

    Much is unknown about how initially high-achieving students grow academically, especially given the measurement issues inherent in assessing growth for the highest performing students. This study compared initially high-achieving and average students' growth in reading (in a cohort of third-grade students from 2,000 schools) over 3 years.…

  10. Achievementrap: How America is Failing Millions of High-Achieving Students from Lower-Income Families

    ERIC Educational Resources Information Center

    Wyner, Joshua S.; Bridgeland, John M.; DiIulio, John J., Jr.

    2007-01-01

    This report chronicles the experiences of high-achieving lower-income students during elementary school, high school, college, and graduate school. Millions of high-achieving lower-income students are found in urban, suburban, and rural communities all across America, reflecting the racial, ethnic, and gender composition of the nation's schools,…

  11. School factors affecting postsecondary career pursuits of high-achieving girls in mathematics and science

    NASA Astrophysics Data System (ADS)

    Yoo, Hyunsil

    This study examined the influences of secondary school experiences of high-achieving girls in math and science on their postsecondary career pursuits in science fields. Specifically, using the National Education Longitudinal Study of 1988 (NELS:88), the study investigated how science class experiences in high school affect science career persistence of high-achieving girls over and above personal and family factors. Selecting the top 10% on the 8 th grade math and science achievement tests from two panel samples of 1988--1994 and 1988--2000, this study examined which science instructional experiences (i.e., lecture-oriented, experiment-oriented, and student-oriented) best predicted college major choices and postsecondary degree attainments in the fields of science after controlling for personal and family factors. A two-stage test was employed for the analysis of each panel sample. The first test examined the dichotomous career pursuits between science careers and non-science careers and the second test examined the dichotomous pursuits within science careers: "hard" science and "soft" science. Logistic regression procedures were used with consideration of panel weights and design effects. This study identified that experiment-oriented and student-oriented instructional practices seem to positively affect science career pursuits of high-achieving females, while lecture-oriented instruction negatively affected their science career pursuits, and that the longitudinal effects of the two positive instructional contributors to science career pursuits appear to be differential between major choice and degree attainment. This study also found that the influences of instructional practices seem to be slight for general females, while those for high-achieving females were highly considerable, regardless of whether negative or positive. Another result of the study found that only student-oriented instruction seemed to have positive effects for high-achieving males. In

  12. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the

  13. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  14. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  15. Self-Esteem and Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Moradi Sheykhjan, Tohid; Jabari, Kamran; Rajeswari, K.

    2014-01-01

    The primary purpose of this study was to determine the influence of self-esteem on academic achievement among high school students in Miandoab City of Iran. The methodology of the research is descriptive and correlation that descriptive and inferential statistics were used to analyze the data. Statistical Society includes male and female high…

  16. Supplementary Education: The Hidden Curriculum of High Academic Achievement

    ERIC Educational Resources Information Center

    Gordon, Edmund W., Ed.; Bridglall, Beatrice L., Ed.; Meroe, Aundra Saa, Ed.

    2004-01-01

    In this book, the editors argue that while access to schools that enable and expect academic achievement is a necessary ingredient for the education of students, schools alone may not be sufficient to ensure universally high levels of academic development. Supplemental educational experiences may also be needed. The idea of supplementary education…

  17. Achieving High Performance on the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1998-01-01

    The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.

  18. Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions.

    PubMed

    Ma, Liheng; Zhan, Dejun; Jiang, Guangwen; Fu, Sihua; Jia, Hui; Wang, Xingshu; Huang, Zongsheng; Zheng, Jiaxing; Hu, Feng; Wu, Wei; Qin, Shiqiao

    2015-09-01

    The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques. The attitude transforms between different star image frames are measured by the strap-down gyro unit precisely. With the ACF method, a much larger star image frame is obtained through the combination of adjacent frames. As a result, the degradation of attitude accuracy caused by motion-blurring are compensated for. The improvement of the attitude accuracy is approximately proportional to the square root of the number of correlated star image frames. Simulations and experimental results indicate that the ACF approach is effective in removing random noises and improving the attitude determination accuracy of the star sensor under highly dynamic conditions.

  19. The effects of modeling instruction on high school physics academic achievement

    NASA Astrophysics Data System (ADS)

    Wright, Tiffanie L.

    The purpose of this study was to explore whether Modeling Instruction, compared to traditional lecturing, is an effective instructional method to promote academic achievement in selected high school physics classes at a rural middle Tennessee high school. This study used an ex post facto , quasi-experimental research methodology. The independent variables in this study were the instructional methods of teaching. The treatment variable was Modeling Instruction and the control variable was traditional lecture instruction. The Treatment Group consisted of participants in Physical World Concepts who received Modeling Instruction. The Control Group consisted of participants in Physical Science who received traditional lecture instruction. The dependent variable was gains scores on the Force Concepts Inventory (FCI). The participants for this study were 133 students each in both the Treatment and Control Groups (n = 266), who attended a public, high school in rural middle Tennessee. The participants were administered the Force Concepts Inventory (FCI) prior to being taught the mechanics of physics. The FCI data were entered into the computer-based Statistical Package for the Social Science (SPSS). Two independent samples t-tests were conducted to answer the research questions. There was a statistically significant difference between the treatment and control groups concerning the instructional method. Modeling Instructional methods were found to be effective in increasing the academic achievement of students in high school physics. There was no statistically significant difference between FCI gains scores for gender. Gender was found to have no effect on the academic achievement of students in high school physics classes. However, even though there was not a statistically significant difference, female students' gains scores were higher than male students' gains scores when Modeling Instructional methods of teaching were used. Based on these findings, it is recommended

  20. Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.

    PubMed

    Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin

    2015-05-01

    For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

  1. High-accuracy fiber-optic shape sensing

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Froggatt, Mark E.; Kreger, Stephen T.; Seeley, Ryan J.; Gifford, Dawn K.; Sang, Alexander K.; Wolfe, Matthew S.

    2007-04-01

    We describe the results of a study of the performance characteristics of a monolithic fiber-optic shape sensor array. Distributed strain measurements in a multi-core optical fiber interrogated with the optical frequency domain reflectometry technique are used to deduce the shape of the optical fiber; referencing to a coordinate system yields position information. Two sensing techniques are discussed herein: the first employing fiber Bragg gratings and the second employing the intrinsic Rayleigh backscatter of the optical fiber. We have measured shape and position under a variety of circumstances and report the accuracy and precision of these measurements. A discussion of error sources is included.

  2. Generating high-accuracy urban distribution map for short-term change monitoring based on convolutional neural network by utilizing SAR imagery

    NASA Astrophysics Data System (ADS)

    Iino, Shota; Ito, Riho; Doi, Kento; Imaizumi, Tomoyuki; Hikosaka, Shuhei

    2017-10-01

    In the developing countries, urban areas are expanding rapidly. With the rapid developments, a short term monitoring of urban changes is important. A constant observation and creation of urban distribution map of high accuracy and without noise pollution are the key issues for the short term monitoring. SAR satellites are highly suitable for day or night and regardless of atmospheric weather condition observations for this type of study. The current study highlights the methodology of generating high-accuracy urban distribution maps derived from the SAR satellite imagery based on Convolutional Neural Network (CNN), which showed the outstanding results for image classification. Several improvements on SAR polarization combinations and dataset construction were performed for increasing the accuracy. As an additional data, Digital Surface Model (DSM), which are useful to classify land cover, were added to improve the accuracy. From the obtained result, high-accuracy urban distribution map satisfying the quality for short-term monitoring was generated. For the evaluation, urban changes were extracted by taking the difference of urban distribution maps. The change analysis with time series of imageries revealed the locations of urban change areas for short-term. Comparisons with optical satellites were performed for validating the results. Finally, analysis of the urban changes combining X-band, L-band and C-band SAR satellites was attempted to increase the opportunity of acquiring satellite imageries. Further analysis will be conducted as future work of the present study

  3. Testing of the high accuracy inertial navigation system in the Shuttle Avionics Integration Lab

    NASA Technical Reports Server (NTRS)

    Strachan, Russell L.; Evans, James M.

    1991-01-01

    The description, results, and interpretation is presented of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and KT-70 Inertial Measurement Unit (IMU). The objective was to show the HAINS can replace the KT-70 IMU in the space shuttle Orbiter, both singularly and totally. This testing was performed in the Guidance, Navigation, and Control Test Station (GTS) of the Shuttle Avionics Integration Lab (SAIL). A variety of differences between the two instruments are explained. Four, 5 day test sessions were conducted varying the number and slot position of the HAINS and KT-70 IMUs. The various steps in the calibration and alignment procedure are explained. Results and their interpretation are presented. The HAINS displayed a high level of performance accuracy previously unseen with the KT-70 IMU. The most significant improvement of the performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4 hr specification requirement. The results obtained from the SAIL tests were generally well beyond the requirements of the procurement specification.

  4. Early College High School: Closing the Latino Achievement Gap

    ERIC Educational Resources Information Center

    Beall, Kristen Ann

    2016-01-01

    The population of United States Latino students is growing at a rapid rate but their academic achievement lags behind white and Asian students. This issue has significant consequences for the nation's economy, as the job market continues to demand more education and better skills. Early College High School programs have the potential to improve…

  5. Achievement as Resistance: The Development of a Critical Race Achievement Ideology among Black Achievers

    ERIC Educational Resources Information Center

    Carter, Dorinda J.

    2008-01-01

    In this article, Dorinda Carter examines the embodiment of a critical race achievement ideology in high-achieving black students. She conducted a yearlong qualitative investigation of the adaptive behaviors that nine high-achieving black students developed and employed to navigate the process of schooling at an upper-class, predominantly white,…

  6. Student Academic Achievement in Rural vs. Non-Rural High Schools in Wisconsin

    ERIC Educational Resources Information Center

    Droessler Mersch, Rebecca L.

    2012-01-01

    This study analyzed how Wisconsin rural public high schools' academic achievement compared to their city, suburb and town peers while controlling for ten factors. The Wisconsin Knowledge and Concepts Examination (WKCE) measured academic achievement for tenth graders including reading, language arts, mathematics, science and social studies. The ten…

  7. Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Rossi, A.; Giblin, S. P.; Fletcher, J. D.; Hudson, F. E.; Möttönen, M.; Kataoka, M.; Dzurak, A. S.

    2017-10-01

    Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of e f within a measurement uncertainty as low as 0.27 ppm.

  8. ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.

    PubMed

    Morota, Gota

    2017-12-20

    Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.

  9. The Credibility of Children's Testimony: Can Children Control the Accuracy of Their Memory Reports?

    ERIC Educational Resources Information Center

    Koriat, Asher; Goldsmith, Morris; Schneider, Wolfgang; Nakash-Dura, Michal

    2001-01-01

    Three experiments examined children's strategic regulation of memory accuracy. Found that younger (7 to 9 years) and older (10 to 12 years) children could enhance the accuracy of their testimony by screening out wrong answers under free-report conditions. Findings suggest a developmental trend in level of memory accuracy actually achieved.…

  10. The Impact of Developmental Advising for High-Achieving Minority Students.

    ERIC Educational Resources Information Center

    Novels, Alphonse N.; Ender, Steven C.

    1988-01-01

    The impact of developmental advising activities with high-achieving Black students at Indiana University of Pennsylvania was investigated. Results indicate that involvement in developmental advising had a positive impact on participating students' cumulative grade point average. (Author/MLW)

  11. Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data.

    PubMed

    Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok

    2016-12-05

    High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.

  12. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    NASA Astrophysics Data System (ADS)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  13. Block Adjustment and Image Matching of WORLDVIEW-3 Stereo Pairs and Accuracy Evaluation

    NASA Astrophysics Data System (ADS)

    Zuo, C.; Xiao, X.; Hou, Q.; Li, B.

    2018-05-01

    WorldView-3, as a high-resolution commercial earth observation satellite, which is launched by Digital Global, provides panchromatic imagery of 0.31 m resolution. The positioning accuracy is less than 3.5 meter CE90 without ground control, which can use for large scale topographic mapping. This paper presented the block adjustment for WorldView-3 based on RPC model and achieved the accuracy of 1 : 2000 scale topographic mapping with few control points. On the base of stereo orientation result, this paper applied two kinds of image matching algorithm for DSM extraction: LQM and SGM. Finally, this paper compared the accuracy of the point cloud generated by the two image matching methods with the reference data which was acquired by an airborne laser scanner. The results showed that the RPC adjustment model of WorldView-3 image with small number of GCPs could satisfy the requirement of Chinese Surveying and Mapping regulations for 1 : 2000 scale topographic maps. And the point cloud result obtained through WorldView-3 stereo image matching had higher elevation accuracy, the RMS error of elevation for bare ground area is 0.45 m, while for buildings the accuracy can almost reach 1 meter.

  14. Parent Involvement Practices of High-Achieving Elementary Science Students

    NASA Astrophysics Data System (ADS)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  15. High-accuracy and high-sensitivity spectroscopic measurement of dinitrogen pentoxide (N2O5) in an atmospheric simulation chamber using a quantum cascade laser.

    PubMed

    Yi, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur, Cecile; Cassez, Andy; Fertein, Eric; Gao, Xiaoming; Chen, Weidong

    2017-12-04

    A spectroscopic instrument based on a mid-infrared external cavity quantum cascade laser (EC-QCL) was developed for high-accuracy measurements of dinitrogen pentoxide (N 2 O 5 ) at the ppbv-level. A specific concentration retrieval algorithm was developed to remove, from the broadband absorption spectrum of N 2 O 5 , both etalon fringes resulting from the EC-QCL intrinsic structure and spectral interference lines of H 2 O vapour absorption, which led to a significant improvement in measurement accuracy and detection sensitivity (by a factor of 10), compared to using a traditional algorithm for gas concentration retrieval. The developed EC-QCL-based N 2 O 5 sensing platform was evaluated by real-time tracking N 2 O 5 concentration in its most important nocturnal tropospheric chemical reaction of NO 3 + NO 2 ↔ N 2 O 5 in an atmospheric simulation chamber. Based on an optical absorption path-length of L eff = 70 m, a minimum detection limit of 15 ppbv was achieved with a 25 s integration time and it was down to 3 ppbv in 400 s. The equilibrium rate constant K eq involved in the above chemical reaction was determined with direct concentration measurements using the developed EC-QCL sensing platform, which was in good agreement with the theoretical value deduced from a referenced empirical formula under well controlled experimental conditions. The present work demonstrates the potential and the unique advantage of the use of a modern external cavity quantum cascade laser for applications in direct quantitative measurement of broadband absorption of key molecular species involved in chemical kinetic and climate-change related tropospheric chemistry.

  16. High-accuracy single-pass InSAR DEM for large-scale flood hazard applications

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Faherty, D.; Moller, D.

    2017-12-01

    In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.

  17. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  18. Geoid undulation accuracy

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  19. QCL- and CO_2 Laser-Based Mid-Ir Spectrometers for High Accuracy Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sow, P. L. T.; Chanteau, B.; Auguste, F.; Mejri, S.; Tokunaga, S. K.; Argence, B.; Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Daussy, C.; Darquie, B.; Nicolodi, D.; Abgrall, M.; Le Coq, Y.; Santarelli, G.

    2013-06-01

    With their rich internal structure, molecules can play a decisive role in precision tests of fundamental physics. They are now being used, for example in our group, to test fundamental symmetries such as parity and time reversal, and to measure either absolute values of fundamental constants or their temporal variation. Most of those experiments can be cast as the measurement of molecular frequencies. Ultra-stable and accurate sources in the mid-IR spectral region, the so-called molecular fingerprint region that hosts many intense rovibrational signatures, are thus highly desirable. We report on the development of a widely tunable quantum cascade laser (QCL) based spectrometer. Our first characterization of a free-running cw near-room-temperature DFB 10.3 μm QCL led to a ˜200 kHz linewidth beat-note with our frequency-stabilized CO_2 laser. Narrowing of the QCL linewidth was achieved by straightforwardly phase-locking the QCL to the CO_2 laser. The great stability of the CO_2 laser was transferred to the QCL resulting in a record linewidth of a few tens of hertz. The use of QCLs will allow the study of any species showing absorption between 3 and 25 μm which will broaden the scope of our experimental setups dedicated to molecular spectroscopy-based precision measurements. Eventually we want to lock the QCL to a frequency comb itself stabilized to an ultra-stable near-IR reference provided via a 43-km long fibre by the French metrological institute and monitored against atomic fountain clocks. We report on the demonstration of this locking-scheme with a ˜10 μm CO_2 laser resulting in record 10^{-14}-10^{-15} fractional accuracy and stability. Stabilizing a QCL this way will free us from having to lock it to a molecular transition or a CO_2 laser. It will make it possible for any laboratory to have a stabilized QCL at any desired wavelength with spectral performances currently only achievable in the visible and near-IR, in metrological institutes.

  20. Three Decades of Precision Orbit Determination Progress, Achievements, Future Challenges and its Vital Contribution to Oceanography and Climate Research

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott; Rowlands, David; Lemoine, Frank; Zelensky, Nikita; Beckley, Brian; Klosko, Steve; Chinn, Doug

    2006-01-01

    Although satellite altimetry has been around for thirty years, the last fifteen beginning with the launch of TOPEX/Poseidon (TP) have yielded an abundance of significant results including: monitoring of ENS0 events, detection of internal tides, determination of accurate global tides, unambiguous delineation of Rossby waves and their propagation characteristics, accurate determination of geostrophic currents, and a multi-decadal time series of mean sea level trend and dynamic ocean topography variability. While the high level of accuracy being achieved is a result of both instrument maturity and the quality of models and correction algorithms applied to the data, improving the quality of the Climate Data Records produced from altimetry is highly dependent on concurrent progress being made in fields such as orbit determination. The precision orbits form the reference frame from which the radar altimeter observations are made. Therefore, the accuracy of the altimetric mapping is limited to a great extent by the accuracy to which a satellite orbit can be computed. The TP mission represents the first time that the radial component of an altimeter orbit was routinely computed with an accuracy of 2-cm. Recently it has been demonstrated that it is possible to compute the radial component of Jason orbits with an accuracy of better than 1-cm. Additionally, still further improvements in TP orbits are being achieved with new techniques and algorithms largely developed from combined Jason and TP data analysis. While these recent POD achievements are impressive, the new accuracies are now revealing subtle systematic orbit error that manifest as both intra and inter annual ocean topography errors. Additionally the construction of inter-decadal time series of climate data records requires the removal of systematic differences across multiple missions. Current and future efforts must focus on the understanding and reduction of these errors in order to generate a complete and

  1. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  2. High fat diet promotes achievement of peak bone mass in young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fatmore » mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.« less

  3. The system of high accuracy UV spectral radiation system

    NASA Astrophysics Data System (ADS)

    Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang

    2016-10-01

    UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.

  4. Remote sensing and the Mississippi high accuracy reference network

    NASA Technical Reports Server (NTRS)

    Mick, Mark; Alexander, Timothy M.; Woolley, Stan

    1994-01-01

    Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.

  5. Development of a three-dimensional high-order strand-grids approach

    NASA Astrophysics Data System (ADS)

    Tong, Oisin

    Development of a novel high-order flux correction method on strand grids is presented. The method uses a combination of flux correction in the unstructured plane and summation-by-parts operators in the strand direction to achieve high-fidelity solutions. Low-order truncation errors are cancelled with accurate flux and solution gradients in the flux correction method, thereby achieving a formal order of accuracy of 3, although higher orders are often obtained, especially for highly viscous flows. In this work, the scheme is extended to high-Reynolds number computations in both two and three dimensions. Turbulence closure is achieved with a robust version of the Spalart-Allmaras turbulence model that accommodates negative values of the turbulence working variable, and the Menter SST turbulence model, which blends the k-epsilon and k-o turbulence models for better accuracy. A major advantage of this high-order formulation is the ability to implement traditional finite volume-like limiters to cleanly capture shocked and discontinuous flows. In this work, this approach is explored via a symmetric limited positive (SLIP) limiter. Extensive verification and validation is conducted in two and three dimensions to determine the accuracy and fidelity of the scheme for a number of different cases. Verification studies show that the scheme achieves better than third order accuracy for low and high-Reynolds number flows. Cost studies show that in three-dimensions, the third-order flux correction scheme requires only 30% more walltime than a traditional second-order scheme on strand grids to achieve the same level of convergence. In order to overcome meshing issues at sharp corners and other small-scale features, a unique approach to traditional geometry, coined "asymptotic geometry," is explored. Asymptotic geometry is achieved by filtering out small-scale features in a level set domain through min/max flow. This approach is combined with a curvature based strand shortening

  6. Time needed to achieve completeness and accuracy in bedside lung ultrasound reporting in intensive care unit.

    PubMed

    Tutino, Lorenzo; Cianchi, Giovanni; Barbani, Francesco; Batacchi, Stefano; Cammelli, Rita; Peris, Adriano

    2010-08-12

    The use of lung ultrasound (LUS) in ICU is increasing but ultrasonographic patterns of lung are often difficult to quantify by different operators. The aim of this study was to evaluate the accuracy and quality of LUS reporting after the introduction of a standardized electronic recording sheet. Intensivists were trained for LUS following a teaching programme. From April 2008, an electronic sheet was designed and introduced in ICU database in order to uniform LUS examination reporting. A mark from 0 to 24 has been given for each exam by two senior intensivists not involved in the survey. The mark assigned was based on completeness of a precise reporting scheme, concerning the main finding of LUS. A cut off of 15 was considered sufficiency. The study comprehended 12 months of observations and a total of 637 LUS. Initially, although some improvement in the reports completeness, still the accuracy and precision of examination reporting was below 15. The time required to reach a sufficient quality was 7 months. A linear trend in physicians progress was observed. The uniformity in teaching programme and examinations reporting system permits to improve the level of completeness and accuracy of LUS reporting, helping physicians in following lung pathology evolution.

  7. Small Body Landing Accuracy Using In-Situ Navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Nandi, Sumita; Broschart, Stephen; Wallace, Mark; Olson, Corwin; Cangahuala, L. Alberto

    2011-01-01

    Spacecraft landings on small bodies (asteroids and comets) can require target accuracies too stringent to be met using ground-based navigation alone, especially if specific landing site requirements must be met for safety or to meet science goals. In-situ optical observations coupled with onboard navigation processing can meet the tighter accuracy requirements to enable such missions. Recent developments in deep space navigation capability include a self-contained autonomous navigation system (used in flight on three missions) and a landmark tracking system (used experimentally on the Japanese Hayabusa mission). The merging of these two technologies forms a methodology to perform autonomous onboard navigation around small bodies. This paper presents an overview of these systems, as well as the results from Monte Carlo studies to quantify the achievable landing accuracies by using these methods. Sensitivity of the results to variations in spacecraft maneuver execution error, attitude control accuracy and unmodeled forces are examined. Cases for two bodies, a small asteroid and on a mid-size comet, are presented.

  8. High-alignment-accuracy transfer printing of passive silicon waveguide structures.

    PubMed

    Ye, Nan; Muliuk, Grigorij; Trindade, Antonio Jose; Bower, Chris; Zhang, Jing; Uvin, Sarah; Van Thourhout, Dries; Roelkens, Gunther

    2018-01-22

    We demonstrate the transfer printing of passive silicon devices on a silicon-on-insulator target waveguide wafer. Adiabatic taper structures and directional coupler structures were designed for 1310 nm and 1600 nm wavelength coupling tolerant for ± 1 µm misalignment. The release of silicon devices from the silicon substrate was realized by underetching the buried oxide layer while protecting the back-end stack. Devices were successfully picked by a PDMS stamp, by breaking the tethers that kept the silicon coupons in place on the source substrate, and printed with high alignment accuracy on a silicon photonic target wafer. Coupling losses of -1.5 +/- 0.5 dB for the adiabatic taper at 1310 nm wavelength and -0.5 +/- 0.5 dB for the directional coupler at 1600 nm wavelength are obtained.

  9. Examining Organizational Practices That Predict Persistence among High-Achieving Black Males in High School

    ERIC Educational Resources Information Center

    Anderson, Kenneth Alonzo

    2016-01-01

    Background/Context: This article summarizes an increasing trend of antideficit Black male research in mathematics and highlights opportunities to add to the research. A review of the literature shows that antideficit researchers often examine relationships between individual traits and persistence of high-achieving Black males in mathematics.…

  10. Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium

    PubMed Central

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; Mitchell, Robert B.; Vogel, Kenneth P.; Buell, C. Robin; Casler, Michael D.

    2016-01-01

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs. PMID:26869619

  11. High accuracy demodulation for twin-grating based sensor network with hybrid TDM/FDM

    NASA Astrophysics Data System (ADS)

    Ai, Fan; Sun, Qizhen; Cheng, Jianwei; Luo, Yiyang; Yan, Zhijun; Liu, Deming

    2017-04-01

    We demonstrate a high accuracy demodulation platform with a tunable Fabry-Perot filter (TFF) for twin-grating based fiber optic sensing network with hybrid TDM/FDM. The hybrid TDM/FDM scheme can improve the spatial resolution to centimeter but increases the requirement of high spectrum resolution. To realize the demodulation of the complex twin-grating spectrum, we adopt the TFF demodulation method and compensate the environmental temperature change and nonlinear effect through calibration FBGs. The performance of the demodulation module is tested by a temperature experiment. Spectrum resolution of 1pm is realized with precision of 2.5pm while the environmental temperature of TFF changes 9.3°C.

  12. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  13. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2017-07-01

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement. These 3 mm × 3 mm detectors were fabricated from 50 μm thick freestanding and flexible 10B enriched h-BN (h-10BN) films, grown by metal organic chemical vapor deposition followed by mechanical separation from sapphire substrates. Mobility-lifetime results suggested that holes are the majority carriers in unintentionally doped h-BN. The detectors were tested under thermal neutron irradiation from californium-252 (252Cf) moderated by a high density polyethylene moderator. A thermal neutron detection efficiency of ˜53% was achieved at a bias voltage of 200 V. Conforming to traditional solid-state detectors, the realization of h-BN epilayers with enhanced electrical transport properties is the key to enable scaling up the device sizes. More specifically, the present results revealed that achieving an electrical resistivity of greater than 1014 Ωṡcm and a leakage current density of below 3 × 10-10 A/cm2 is needed to fabricate large area h-BN detectors and provided guidance for achieving high sensitivity solid state neutron detectors based on h-BN.

  14. Potential accuracy of translation estimation between radar and optical images

    NASA Astrophysics Data System (ADS)

    Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.

    2015-10-01

    This paper investigates the potential accuracy achievable for optical to radar image registration by area-based approach. The analysis is carried out mainly based on the Cramér-Rao Lower Bound (CRLB) on translation estimation accuracy previously proposed by the authors and called CRLBfBm. This bound is now modified to take into account radar image speckle noise properties: spatial correlation and signal-dependency. The newly derived theoretical bound is fed with noise and texture parameters estimated for the co-registered pair of optical Landsat 8 and radar SIR-C images. It is found that difficulty of optical to radar image registration stems more from speckle noise influence than from dissimilarity of the considered kinds of images. At finer scales (and higher speckle noise level), probability of finding control fragments (CF) suitable for registration is low (1% or less) but overall number of such fragments is high thanks to image size. Conversely, at the coarse scale, where speckle noise level is reduced, probability of finding CFs suitable for registration can be as high as 40%, but overall number of such CFs is lower. Thus, the study confirms and supports area-based multiresolution approach for optical to radar registration where coarse scales are used for fast registration "lock" and finer scales for reaching higher registration accuracy. The CRLBfBm is found inaccurate for the main scale due to intensive speckle noise influence. For other scales, the validity of the CRLBfBm bound is confirmed by calculating statistical efficiency of area-based registration method based on normalized correlation coefficient (NCC) measure that takes high values of about 25%.

  15. [Method for evaluating the positional accuracy of a six-degrees-of-freedom radiotherapy couch using high definition digital cameras].

    PubMed

    Takemura, Akihiro; Ueda, Shinichi; Noto, Kimiya; Kurata, Yuichi; Shoji, Saori

    2011-01-01

    In this study, we proposed and evaluated a positional accuracy assessment method with two high-resolution digital cameras for add-on six-degrees-of-freedom radiotherapy (6D) couches. Two high resolution digital cameras (D5000, Nikon Co.) were used in this accuracy assessment method. These cameras were placed on two orthogonal axes of a linear accelerator (LINAC) coordinate system and focused on the isocenter of the LINAC. Pictures of a needle that was fixed on the 6D couch were taken by the cameras during couch motions of translation and rotation of each axis. The coordinates of the needle in the pictures were obtained using manual measurement, and the coordinate error of the needle was calculated. The accuracy of a HexaPOD evo (Elekta AB, Sweden) was evaluated using this method. All of the mean values of the X, Y, and Z coordinate errors in the translation tests were within ±0.1 mm. However, the standard deviation of the Z coordinate errors in the Z translation test was 0.24 mm, which is higher than the others. In the X rotation test, we found that the X coordinate of the rotational origin of the 6D couch was shifted. We proposed an accuracy assessment method for a 6D couch. The method was able to evaluate the accuracy of the motion of only the 6D couch and revealed the deviation of the origin of the couch rotation. This accuracy assessment method is effective for evaluating add-on 6D couch positioning.

  16. Accuracy requirements and uncertainties in radiotherapy: a report of the International Atomic Energy Agency.

    PubMed

    van der Merwe, Debbie; Van Dyk, Jacob; Healy, Brendan; Zubizarreta, Eduardo; Izewska, Joanna; Mijnheer, Ben; Meghzifene, Ahmed

    2017-01-01

    Radiotherapy technology continues to advance and the expectation of improved outcomes requires greater accuracy in various radiotherapy steps. Different factors affect the overall accuracy of dose delivery. Institutional comprehensive quality assurance (QA) programs should ensure that uncertainties are maintained at acceptable levels. The International Atomic Energy Agency has recently developed a report summarizing the accuracy achievable and the suggested action levels, for each step in the radiotherapy process. Overview of the report: The report seeks to promote awareness and encourage quantification of uncertainties in order to promote safer and more effective patient treatments. The radiotherapy process and the radiobiological and clinical frameworks that define the need for accuracy are depicted. Factors that influence uncertainty are described for a range of techniques, technologies and systems. Methodologies for determining and combining uncertainties are presented, and strategies for reducing uncertainties through QA programs are suggested. The role of quality audits in providing international benchmarking of achievable accuracy and realistic action levels is also discussed. The report concludes with nine general recommendations: (1) Radiotherapy should be applied as accurately as reasonably achievable, technical and biological factors being taken into account. (2) For consistency in prescribing, reporting and recording, recommendations of the International Commission on Radiation Units and Measurements should be implemented. (3) Each institution should determine uncertainties for their treatment procedures. Sample data are tabulated for typical clinical scenarios with estimates of the levels of accuracy that are practically achievable and suggested action levels. (4) Independent dosimetry audits should be performed regularly. (5) Comprehensive quality assurance programs should be in place. (6) Professional staff should be appropriately

  17. Beyond Academic Reputation: Factors that Influence the College of First Choice for High Achieving Students

    ERIC Educational Resources Information Center

    Schoenherr, Holly J.

    2009-01-01

    Studies that have investigated college choice factors for high-achieving students repeatedly cite academic reputation as one of the top indicators of choice but have not indicated why some high-achieving students choose to attend universities with a less prestigious reputation than the more highly prestigious options available to them. The purpose…

  18. Achieving sub-pixel geolocation accuracy in support of MODIS land science

    USGS Publications Warehouse

    Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, David P.; Storey, James C.; Patt, F.S.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands—29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1σ) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1σ) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications.

  19. Comparative Diagnostic Accuracy of the ACE-III, MIS, MMSE, MoCA, and RUDAS for Screening of Alzheimer Disease.

    PubMed

    Matías-Guiu, Jordi A; Valles-Salgado, María; Rognoni, Teresa; Hamre-Gil, Frank; Moreno-Ramos, Teresa; Matías-Guiu, Jorge

    2017-01-01

    Our aim was to evaluate and compare the diagnostic properties of 5 screening tests for the diagnosis of mild Alzheimer disease (AD). We conducted a prospective and cross-sectional study of 92 patients with mild AD and of 68 healthy controls from our Department of Neurology. The diagnostic properties of the following tests were compared: Mini-Mental State Examination (MMSE), Addenbrooke's Cognitive Examination III (ACE-III), Memory Impairment Screen (MIS), Montreal Cognitive Assessment (MoCA), and Rowland Universal Dementia Assessment Scale (RUDAS). All tests yielded high diagnostic accuracy, with the ACE-III achieving the best diagnostic properties. The area under the curve was 0.897 for the ACE-III, 0.889 for the RUDAS, 0.874 for the MMSE, 0.866 for the MIS, and 0.856 for the MoCA. The Mini-ACE score from the ACE-III showed the highest diagnostic capacity (area under the curve 0.939). Memory scores of the ACE-III and of the RUDAS showed a better diagnostic accuracy than those of the MMSE and of the MoCA. All tests, especially the ACE-III, conveyed a higher diagnostic accuracy in patients with full primary education than in the less educated group. Implementing normative data improved the diagnostic accuracy of the ACE-III but not that of the other tests. The ACE-III achieved the highest diagnostic accuracy. This better discrimination was more evident in the more educated group. © 2017 S. Karger AG, Basel.

  20. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  1. Thematic Accuracy Assessment of the 2011 National Land ...

    EPA Pesticide Factsheets

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment of agreement between map and reference labels for the three, single-date NLCD land cover products at Level II and Level I of the classification hierarchy, and agreement for 17 land cover change reporting themes based on Level I classes (e.g., forest loss; forest gain; forest, no change) for three change periods (2001–2006, 2006–2011, and 2001–2011). The single-date overall accuracies were 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011, 2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover components of NLCD 2011 were approximately 4% higher (at Level II and Level I) than the overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-specific user's and producer's accuracies for many of the 17 change reporting themes. User's accuracies were high for the no change reporting themes, commonly exceeding 85%, but were typically much lower for the reporting themes that represented change. Only forest l

  2. Achieving Literacy Excellence through Identifying and Utilizing High Yield Strategies

    ERIC Educational Resources Information Center

    Hardison, Ashley

    2017-01-01

    The purpose of this study was to delve into the literacy instructional strategies of selected high-performing K-2 teachers in a Clark County, Nevada school district. The study assessed the efficacy of teachers using five core literacy components: phonemic awareness, phonics, vocabulary, fluency, and comprehension for student achievement. High…

  3. High-accuracy deep-UV Ramsey-comb spectroscopy in krypton

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Altmann, Robert K.; Dreissen, Laura S.; Eikema, Kjeld S. E.

    2017-01-01

    In this paper, we present a detailed account of the first precision Ramsey-comb spectroscopy in the deep UV. We excite krypton in an atomic beam using pairs of frequency-comb laser pulses that have been amplified to the millijoule level and upconverted through frequency doubling in BBO crystals. The resulting phase-coherent deep-UV pulses at 212.55 nm are used in the Ramsey-comb method to excite the two-photon 4p^6 → 4p^5 5p [1/2 ]_0 transition. For the {}^{84}Kr isotope, we find a transition frequency of 2829833101679(103) kHz. The fractional accuracy of 3.7 × 10^{-11} is 34 times better than previous measurements, and also the isotope shifts are measured with improved accuracy. This demonstration shows the potential of Ramsey-comb excitation for precision spectroscopy at short wavelengths.

  4. The effect of clock, media, and station location errors on Doppler measurement accuracy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.

    1993-01-01

    Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.

  5. Assessment of the Thematic Accuracy of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2015-08-01

    Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.

  6. High Achieving Girls in Mathematics: What's Wrong with Working Hard?

    ERIC Educational Resources Information Center

    Howe, Ann C.; Berenson, Sarah B.

    2003-01-01

    The participation of women in graduate studies and mathematics-related careers remains a social and economic problem in the United States. Part of a larger study to understand this lack of participation, here we present preliminary findings of girls who are high achievers in middle grades mathematics. This interpretive study documents girls'…

  7. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  8. High accuracy differential pressure measurements using fluid-filled catheters - A feasibility study in compliant tubes.

    PubMed

    Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2015-09-18

    High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Gender and High School Chemistry: Student Perceptions on Achievement in a Selective Setting

    ERIC Educational Resources Information Center

    Cousins, Andrew; Mills, Martin

    2015-01-01

    This paper reports on research undertaken in a middle-class Australian school. The focus of the research was on the relationship between gender and students' engagement with high school chemistry. Achievement data from many OECD [Organisation for Economic Co-operation and Development] countries suggest that middle-class girls are achieving equally…

  10. A high accuracy sequential solver for simulation and active control of a longitudinal combustion instability

    NASA Technical Reports Server (NTRS)

    Shyy, W.; Thakur, S.; Udaykumar, H. S.

    1993-01-01

    A high accuracy convection scheme using a sequential solution technique has been developed and applied to simulate the longitudinal combustion instability and its active control. The scheme has been devised in the spirit of the Total Variation Diminishing (TVD) concept with special source term treatment. Due to the substantial heat release effect, a clear delineation of the key elements employed by the scheme, i.e., the adjustable damping factor and the source term treatment has been made. By comparing with the first-order upwind scheme previously utilized, the present results exhibit less damping and are free from spurious oscillations, offering improved quantitative accuracy while confirming the spectral analysis reported earlier. A simple feedback type of active control has been found to be capable of enhancing or attenuating the magnitude of the combustion instability.

  11. Cadastral Database Positional Accuracy Improvement

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  12. The High Trust Classroom: Raising Achievement from the Inside Out

    ERIC Educational Resources Information Center

    Moore, Lonnie

    2009-01-01

    This book provides a roadmap to developing a high-trust classroom, a classroom: (1) With increased student achievement; (2) With few discipline problems; (3) Where students are intrinsically motivated; and (4) Where the teacher can confidently use creative lesson planning. The author presents a simple step by step approach to earning the trust of…

  13. A Longitudinal Investigation of Project-Based Instruction and Student Achievement in High School Social Studies

    ERIC Educational Resources Information Center

    Summers, Emily J.; Dickinson, Gail

    2012-01-01

    This longitudinal study focused on how project-based instruction (PBI) influenced secondary social studies students' academic achievement and promoted College and Career Readiness (CCR). We explored and compared student achievement in a PBI high school versus a traditional instruction high school within the same rural school district. While…

  14. Accuracy increase of self-compensator

    NASA Astrophysics Data System (ADS)

    Zhambalova, S. Ts; Vinogradova, A. A.

    2018-03-01

    In this paper, the authors consider a self-compensation system and a method for increasing its accuracy, without compromising the condition of the information theory of measuring devices. The result can be achieved using the pulse control of the tracking system in the dead zone (the zone of the proportional section of the amplifier's characteristic). Pulse control allows one to increase the control power, but the input signal of the amplifier is infinitesimal. To do this, the authors use the conversion scheme for the input quantity. It is also possible to reduce the dead band, but the system becomes unstable. The amount of information received from the instrument, correcting circuits complicates the system, and, reducing the feedback coefficient dramatically, reduces the speed. Thanks to this, without compromising the measurement condition, the authors increase the accuracy of the self-compensation system. The implementation technique allows increasing the power of the input signal by many orders of magnitude.

  15. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis.

    PubMed

    van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk

    2017-10-01

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.

  16. Accuracy assessment of NLCD 2006 land cover and impervious surface

    USGS Publications Warehouse

    Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.

    2013-01-01

    Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.

  17. Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four

    ERIC Educational Resources Information Center

    Stanley, Ashley M.

    2011-01-01

    The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…

  18. Low and High Mathematics Achievement in Japanese, Chinese, and American Elementary-School Children.

    ERIC Educational Resources Information Center

    Uttal, David H.; And Others

    1988-01-01

    First and fifth grade students who scored high or low on a mathematics test were tested for intellectual ability and reading achievement. Students and their mothers were interviewed. Results indicated that factors associated with levels of achievement in mathematics operate in a similar fashion across three cultures that differ greatly in their…

  19. Neutrino mass from cosmology: impact of high-accuracy measurement of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Toyokazu; Ichikawa, Kazuhide; Takahashi, Tomo; Greenhill, Lincoln

    2010-03-01

    Non-zero neutrino mass would affect the evolution of the Universe in observable ways, and a strong constraint on the mass can be achieved using combinations of cosmological data sets. We focus on the power spectrum of cosmic microwave background (CMB) anisotropies, the Hubble constant H0, and the length scale for baryon acoustic oscillations (BAO) to investigate the constraint on the neutrino mass, mν. We analyze data from multiple existing CMB studies (WMAP5, ACBAR, CBI, BOOMERANG, and QUAD), recent measurement of H0 (SHOES), with about two times lower uncertainty (5 %) than previous estimates, and recent treatments of BAO from the Sloan Digital Sky Survey (SDSS). We obtained an upper limit of mν < 0.2eV (95 % C.L.), for a flat ΛCDM model. This is a 40 % reduction in the limit derived from previous H0 estimates and one-third lower than can be achieved with extant CMB and BAO data. We also analyze the impact of smaller uncertainty on measurements of H0 as may be anticipated in the near term, in combination with CMB data from the Planck mission, and BAO data from the SDSS/BOSS program. We demonstrate the possibility of a 5σ detection for a fiducial neutrino mass of 0.1 eV or a 95 % upper limit of 0.04 eV for a fiducial of mν = 0 eV. These constraints are about 50 % better than those achieved without external constraint. We further investigate the impact on modeling where the dark-energy equation of state is constant but not necessarily -1, or where a non-flat universe is allowed. In these cases, the next-generation accuracies of Planck, BOSS, and 1 % measurement of H0 would all be required to obtain the limit mν < 0.05-0.06 eV (95 % C.L.) for the fiducial of mν = 0 eV. The independence of systematics argues for pursuit of both BAO and H0 measurements.

  20. Accuracy of genomic prediction in switchgrass ( Panicum virgatum L.) improved by accounting for linkage disequilibrium

    DOE PAGES

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; ...

    2016-02-11

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less

  1. Accuracy of genomic prediction in switchgrass ( Panicum virgatum L.) improved by accounting for linkage disequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less

  2. Using Large Data to Analyze the Effect of Learning Attitude for Cooperative Learning between the High Achievement Students and the Low Achievement Students

    ERIC Educational Resources Information Center

    Chia-Ling, Hsu; Ya-Fung, Chang

    2017-01-01

    This study is to investigate the effect of the cooperation learning between the high achievement students and the low achievement students. Nowadays, the influences of the flipped classroom are all over the world in the secondary school education. Therefore, the cooperative learning becomes hot teaching strategies again. However, the learning…

  3. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid.

    PubMed

    Strambini, L M; Longo, A; Scarano, S; Prescimone, T; Palchetti, I; Minunni, M; Giannessi, D; Barillaro, G

    2015-04-15

    In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20% of the actual glucose level for 96% of measures) and reproducibility (coefficient of variation 8.56%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Social Power Increases Interoceptive Accuracy

    PubMed Central

    Moeini-Jazani, Mehrad; Knoeferle, Klemens; de Molière, Laura; Gatti, Elia; Warlop, Luk

    2017-01-01

    Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research. PMID:28824501

  5. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  6. Accuracy versus transparency in pharmacoeconomic modelling: finding the right balance.

    PubMed

    Eddy, David M

    2006-01-01

    As modellers push to make their models more accurate, the ability of others to understand the models can decrease, causing the models to lose transparency. When this type of conflict between accuracy and transparency occurs, the question arises, "Where do we want to operate on that spectrum?" This paper argues that in such cases we should give absolute priority to accuracy: push for whatever degree of accuracy is needed to answer the question being asked, try to maximise transparency within that constraint, and find other ways to replace what we wanted to get from transparency. There are several reasons. The fundamental purpose of a model is to help us get the right answer to a question and, by any measure, the expected value of a model is proportional to its accuracy. Ironically, we use transparency as a way to judge accuracy. But transparency is not a very powerful or useful way to do this. It rarely enables us to actually replicate the model's results and, even if we could, replication would not tell us the model's accuracy. Transparency rarely provides even face validity; from the content expert's perspective, the simplifications that modellers have to make usually raise more questions than they answer. Transparency does enable modellers to alert users to weaknesses in their models, but that can be achieved simply by listing the model's limitations and does not get us any closer to real accuracy. Sensitivity analysis tests the importance of uncertainty about the variables in a model, but does not tell us about the variables that were omitted or the structure of the model. What people really want to know is whether a model actually works. Transparency by itself can't answer this; only demonstrations that the model accurately calculates or predicts real events can. Rigorous simulations of clinical trials are a good place to start. This is the type of empirical validation we need to provide if the potential of mathematical models in pharmacoeconomics is to be

  7. "It's a Way of Life for Us": High Mobility and High Achievement in Department of Defense Schools.

    ERIC Educational Resources Information Center

    Smrekar, Claire E.; Owens, Debra E.

    2003-01-01

    Examines the academic performance of students in U.S. Department of Defense Education Activity (DoDEA) schools, which have high student mobility. Some observers contend that these students' high achievement is a function of their middle class family and community characteristics. Asserts that DoDEA schools simultaneously "do the right…

  8. Mo' Money, Mo' Problems? High-Achieving Black High School Students' Experiences with Resources, Racial Climate, and Resilience

    ERIC Educational Resources Information Center

    Allen, Walter; Griffin, Kimberly

    2006-01-01

    A multi-site case study analyzed the college preparatory processes of nine African American high achievers attending a well-resourced, suburban high school and eight academically successful African Americans attending a low-resourced urban school. Students at both schools experienced barriers, that is, racial climate and a lack of resources, that…

  9. Monitoring techniques for high accuracy interference fit assembly processes

    NASA Astrophysics Data System (ADS)

    Liuti, A.; Vedugo, F. Rodriguez; Paone, N.; Ungaro, C.

    2016-06-01

    In the automotive industry, there are many assembly processes that require a high geometric accuracy, in the micrometer range; generally open-loop controllers cannot meet these requirements. This results in an increased defect rate and high production costs. This paper presents an experimental study of interference fit process, aimed to evaluate the aspects which have the most impact on the uncertainty in the final positioning. The press-fitting process considered, consists in a press machine operating with a piezoelectric actuator to press a plug into a sleeve. Plug and sleeve are designed and machined to obtain a known interference fit. Differential displacement and velocity measurements of the plug with respect to the sleeve are measured by a fiber optic differential laser Doppler vibrometer. Different driving signals of the piezo actuator allow to have an insight into the differences between a linear and a pulsating press action. The paper highlights how the press-fit assembly process is characterized by two main phases: the first is an elastic deformation of the plug and sleeve, which produces a reversible displacement, the second is a sliding of the plug with respect to the sleeve, which results in an irreversible displacement and finally realizes the assembly. The simultaneous measurements of the displacement and the force have permitted to define characteristic features in the signal useful to identify the start of the irreversible movement. These indicators could be used to develop a control logic in a press assembly process.

  10. Teacher Support, Instructional Practices, Student Motivation, and Mathematics Achievement in High School

    ERIC Educational Resources Information Center

    Yu, Rongrong; Singh, Kusum

    2018-01-01

    The authors examined the relationships among teacher classroom practices, student motivation, and mathematics achievement in high school. The data for this study was drawn from the base-year data of High School Longitudinal Study of 2009. Structural equation modeling method was used to estimate the relationships among variables. The results…

  11. The impact of including children with intellectual disability in general education classrooms on the academic achievement of their low-, average-, and high-achieving peers.

    PubMed

    Sermier Dessemontet, Rachel; Bless, Gérard

    2013-03-01

    This study aimed at assessing the impact of including children with intellectual disability (ID) in general education classrooms with support on the academic achievement of their low-, average-, and high-achieving peers without disability. A quasi-experimental study was conducted with an experimental group of 202 pupils from classrooms with an included child with mild or moderate ID, and a control group of 202 pupils from classrooms with no included children with special educational needs (matched pairs sample). The progress of these 2 groups in their academic achievement was compared over a period of 1 school year. No significant difference was found in the progress of the low-, average-, or high-achieving pupils from classrooms with or without inclusion. The results suggest that including children with ID in primary general education classrooms with support does not have a negative impact on the progress of pupils without disability.

  12. Instructional, Transformational, and Managerial Leadership and Student Achievement: High School Principals Make a Difference

    ERIC Educational Resources Information Center

    Valentine, Jerry W.; Prater, Mike

    2011-01-01

    This statewide study examined the relationships between principal managerial, instructional, and transformational leadership and student achievement in public high schools. Differences in student achievement were found when schools were grouped according to principal leadership factors. Principal leadership behaviors promoting instructional and…

  13. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  14. The high accuracy data processing system of laser interferometry signals based on MSP430

    NASA Astrophysics Data System (ADS)

    Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong

    2009-07-01

    Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.

  15. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  16. Striving for Excellence Sometimes Hinders High Achievers: Performance-Approach Goals Deplete Arithmetical Performance in Students with High Working Memory Capacity

    PubMed Central

    Crouzevialle, Marie; Smeding, Annique; Butera, Fabrizio

    2015-01-01

    We tested whether the goal to attain normative superiority over other students, referred to as performance-approach goals, is particularly distractive for high-Working Memory Capacity (WMC) students—that is, those who are used to being high achievers. Indeed, WMC is positively related to high-order cognitive performance and academic success, a record of success that confers benefits on high-WMC as compared to low-WMC students. We tested whether such benefits may turn out to be a burden under performance-approach goal pursuit. Indeed, for high achievers, aiming to rise above others may represent an opportunity to reaffirm their positive status—a stake susceptible to trigger disruptive outcome concerns that interfere with task processing. Results revealed that with performance-approach goals—as compared to goals with no emphasis on social comparison—the higher the students’ WMC, the lower their performance at a complex arithmetic task (Experiment 1). Crucially, this pattern appeared to be driven by uncertainty regarding the chances to outclass others (Experiment 2). Moreover, an accessibility measure suggested the mediational role played by status-related concerns in the observed disruption of performance. We discuss why high-stake situations can paradoxically lead high-achievers to sub-optimally perform when high-order cognitive performance is at play. PMID:26407097

  17. Accuracy comparison among different machine learning techniques for detecting malicious codes

    NASA Astrophysics Data System (ADS)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  18. The Relation of High-Achieving Adolescents' Social Perceptions and Motivation to Teachers' Nominations for Advanced Programs

    ERIC Educational Resources Information Center

    Barber, Carolyn; Torney-Purta, Judith

    2008-01-01

    The discrepancies between test-based and teacher-based criteria of high achievement are well-documented for students of all ages. This study seeks to determine whether certain high school students who score high on tests of academic achievement are more likely than others to be nominated for advanced academic programs by their teachers. Using…

  19. Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species

    NASA Astrophysics Data System (ADS)

    Hatzenbuhler, Chelsea; Kelly, John R.; Martinson, John; Okum, Sara; Pilgrim, Erik

    2017-04-01

    High-throughput DNA metabarcoding has gained recognition as a potentially powerful tool for biomonitoring, including early detection of aquatic invasive species (AIS). DNA based techniques are advancing, but our understanding of the limits to detection for metabarcoding complex samples is inadequate. For detecting AIS at an early stage of invasion when the species is rare, accuracy at low detection limits is key. To evaluate the utility of metabarcoding in future fish community monitoring programs, we conducted several experiments to determine the sensitivity and accuracy of routine metabarcoding methods. Experimental mixes used larval fish tissue from multiple “common” species spiked with varying proportions of tissue from an additional “rare” species. Pyrosequencing of genetic marker, COI (cytochrome c oxidase subunit I) and subsequent sequence data analysis provided experimental evidence of low-level detection of the target “rare” species at biomass percentages as low as 0.02% of total sample biomass. Limits to detection varied interspecifically and were susceptible to amplification bias. Moreover, results showed some data processing methods can skew sequence-based biodiversity measurements from corresponding relative biomass abundances and increase false absences. We suggest caution in interpreting presence/absence and relative abundance in larval fish assemblages until metabarcoding methods are optimized for accuracy and precision.

  20. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  1. Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS

    NASA Astrophysics Data System (ADS)

    Saadeddin, Kamal; Abdel-Hafez, Mamoun F.; Jaradat, Mohammad A.; Jarrah, Mohammad Amin

    2013-12-01

    In this paper, a low-cost navigation system that fuses the measurements of the inertial navigation system (INS) and the global positioning system (GPS) receiver is developed. First, the system's dynamics are obtained based on a vehicle's kinematic model. Second, the INS and GPS measurements are fused using an extended Kalman filter (EKF) approach. Subsequently, an artificial intelligence based approach for the fusion of INS/GPS measurements is developed based on an Input-Delayed Adaptive Neuro-Fuzzy Inference System (IDANFIS). Experimental tests are conducted to demonstrate the performance of the two sensor fusion approaches. It is found that the use of the proposed IDANFIS approach achieves a reduction in the integration development time and an improvement in the estimation accuracy of the vehicle's position and velocity compared to the EKF based approach.

  2. Locating very high energy gamma-ray sources with arcminute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  3. Improving LUC estimation accuracy with multiple classification system for studying impact of urbanization on watershed flood

    NASA Astrophysics Data System (ADS)

    Dou, P.

    2017-12-01

    Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).

  4. Accuracy assessment of high-rate GPS measurements for seismology

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  5. A note on the accuracy of spectral method applied to nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Wong, Peter S.

    1994-01-01

    Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.

  6. A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection

    NASA Astrophysics Data System (ADS)

    Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.

    2002-10-01

    A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  7. "Battleship Numberline": A Digital Game for Improving Estimation Accuracy on Fraction Number Lines

    ERIC Educational Resources Information Center

    Lomas, Derek; Ching, Dixie; Stampfer, Eliane; Sandoval, Melanie; Koedinger, Ken

    2011-01-01

    Given the strong relationship between number line estimation accuracy and math achievement, might a computer-based number line game help improve math achievement? In one study by Rittle-Johnson, Siegler and Alibali (2001), a simple digital game called "Catch the Monster" provided practice in estimating the location of decimals on a…

  8. Challenges to achievement of metal sustainability in our high-tech society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izatt, Reed M.; Izatt, Steven R.; Bruening, Ronald L.

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challengesmore » to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.« less

  9. Investigating the Accuracy of Teachers' Word Frequency Intuitions

    ERIC Educational Resources Information Center

    McCrostie, James

    2007-01-01

    Previous research has found that native English speakers can judge, with a relatively high degree of accuracy, the frequency of words in the English language. However, there has been little investigation of the ability to judge the frequency of high and middle frequency words. Similarly, the accuracy of EFL teachers' frequency judgements remains…

  10. Muscular and Aerobic Fitness, Working Memory, and Academic Achievement in Children.

    PubMed

    Kao, Shih-Chun; Westfall, Daniel R; Parks, Andrew C; Pontifex, Matthew B; Hillman, Charles H

    2017-03-01

    This study investigated the relationship between aerobic and muscular fitness with working memory and academic achievement in preadolescent children. Seventy-nine 9- to 11-yr-old children completed an aerobic fitness assessment using a graded exercise test; a muscular fitness assessment consisting of upper body, lower body, and core exercises; a serial n-back task to assess working memory; and an academic achievement test of mathematics and reading. Hierarchical regression analyses indicated that after controlling for demographic variables (age, sex, grade, IQ, socioeconomic status), aerobic fitness was associated with greater response accuracy and d' in the 2-back condition and increased mathematic performance in algebraic functions. Muscular fitness was associated with increased response accuracy and d', and longer reaction time in the 2-back condition. Further, the associations of muscular fitness with response accuracy and d' in the 2-back condition were independent of aerobic fitness. The current findings suggest the differential relationships between the aerobic and the muscular aspects of physical fitness with working memory and academic achievement. With the majority of research focusing on childhood health benefits of aerobic fitness, this study suggests the importance of muscular fitness to cognitive health during preadolescence.

  11. Can an educational application increase risk perception accuracy amongst patients attending a high-risk breast cancer clinic?

    PubMed

    Keohane, D; Lehane, E; Rutherford, E; Livingstone, V; Kelly, L; Kaimkhani, S; O'Connell, F; Redmond, H P; Corrigan, M A

    2017-04-01

    To design, develop and test the effect of an educational initiative to improve risk perception amongst patients attending a high-risk breast cancer clinic. This was achieved through three objectives - 1. identifying an optimal method of presenting risk data, 2. designing and building a risk application, and 3. testing the ability of the application to successfully modify patients perceived risk of cancer. A mobile application was developed for this project using best practice methods for displaying risk information. Patients (n = 84) were randomly allocated into two groups - 'Control' or 'Treatment'. Both groups underwent standard risk counseling while the application was employed in the 'Treatment' group. The patients were surveyed before their session, immediately after and six weeks later. Increases in accuracy were seen in both groups with larger increases demonstrated in the 'Treatment' group with 'Personal 10 Year Risk' statistically significant ('Control' group increase from 21% to 48% vs the 'Treatment' group increase from 33% to 71% - p = 0.003). This project demonstrated trends towards improved risk perception, however mixed logistic regression was unable to show a 30% difference between groups. Numerical literacy and understanding of risk were identified as issues amongst the general population. Overestimating risk remains high amongst attendees. Using mobile applications to convey risk information to patients is a new and evolving area with a corresponding paucity of data. We have demonstrated its potential and emphasised the importance of designing how this information is communicated to patients in order to make it understandable and meaningful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Very high resolution aerial films

    NASA Astrophysics Data System (ADS)

    Becker, Rolf

    1986-11-01

    The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.

  13. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  14. High fat diet promotes achievement of peak bone mass in young rats.

    PubMed

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R; Bhat, Manoj Kumar

    2014-12-05

    The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  15. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    PubMed

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant

  16. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs

    PubMed Central

    Dilthey, Alexander T.; Gourraud, Pierre-Antoine; McVean, Gil

    2016-01-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30–250 CPU hours per sample) remain a significant

  17. Evaluative and Behavioral Correlates to Intrarehearsal Achievement in High School Bands

    ERIC Educational Resources Information Center

    Montemayor, Mark

    2014-01-01

    The purpose of this study was to investigate relationships of teaching effectiveness, ensemble performance quality, and selected rehearsal procedures to various measures of intrarehearsal achievement (i.e., musical improvement exhibited by an ensemble during the course of a single rehearsal). Twenty-nine high school bands were observed in two…

  18. Spatial Experiences of High Academic Achievers: Insights from a Developmental Perspective

    ERIC Educational Resources Information Center

    Weckbacher, Lisa Marie; Okamoto, Yukari

    2012-01-01

    The study explored the relationship between types of spatial experiences and spatial abilities among 13- to 14-year-old high academic achievers. Each participant completed two spatial tasks and a survey assessing favored spatial activities across five categories (computers, toys, sports, music, and art) and three developmental periods (early…

  19. Impact of Physical Environment on Academic Achievement of High School Youth.

    ERIC Educational Resources Information Center

    Burkhalter, Bettye B.

    1983-01-01

    To study the relationship of the physical environment to high school students' academic achievement, 60 students participated in an experiential career exploration program at the Alabama Space and Rocket Center while 108 students participated in a traditional careers program. Tests indicated the former group improved more in career choice…

  20. Academic achievement and career choice in science: Perceptions of African American urban high school students

    NASA Astrophysics Data System (ADS)

    Jones, Sheila Kay

    2007-12-01

    Low test scores in science and fewer career choices in science among African American high school students than their White counterparts has resulted in lower interest during high school and an underrepresentation of African Americans in science and engineering fields. Reasons for this underachievement are not known. This qualitative study used a grounded theory methodology to examine what influence parental involvement, ethnic identity, and early mentoring had on the academic achievement in science and career choice in science of African American urban high school 10th grade students. Using semi-structured open-ended questions in individual interviews and focus groups, twenty participants responded to questions about African American urban high school student achievement in science and their career choice in science. The median age of participants was 15 years; 85% had passed either high school biology or physical science. The findings of the study revealed influences and interactions of selected factors on African American urban high school achievement in science. Sensing potential emerged as the overarching theme with six subthemes; A Taste of Knowledge, Sounds I Hear, Aromatic Barriers, What Others See, The Touch of Others, and The Sixth Sense. These themes correlate to the natural senses of the human body. A disconnect between what science is, their own individual learning and success, and what their participation in science could mean for them and the future of the larger society. Insight into appropriate intervention strategies to improve African American urban high school achievement in science was gained.

  1. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    PubMed Central

    Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi

    2016-01-01

    Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362

  2. The effects of guided inquiry instruction on student achievement in high school biology

    NASA Astrophysics Data System (ADS)

    Vass, Laszlo

    The purpose of this quantitative, quasi-experimental study was to measure the effect of a student-centered instructional method called guided inquiry on the achievement of students in a unit of study in high school biology. The study used a non-random sample of 109 students, the control group of 55 students enrolled in high school one, received teacher centered instruction while the experimental group of 54 students enrolled at high school two received student-centered, guided inquiry instruction. The pretest-posttest design of the study analyzed scores using an independent t-test, a dependent t-test (p = <.001), an ANCOVA (p = .007), mixed method ANOVA (p = .024) and hierarchical linear regression (p = <.001). The experimental group that received guided inquiry instruction had statistically significantly higher achievement than the control group.

  3. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  4. High-accuracy identification of incident HIV-1 infections using a sequence clustering based diversity measure.

    PubMed

    Xia, Xia-Yu; Ge, Meng; Hsi, Jenny H; He, Xiang; Ruan, Yu-Hua; Wang, Zhi-Xin; Shao, Yi-Ming; Pan, Xian-Ming

    2014-01-01

    Accurate estimates of HIV-1 incidence are essential for monitoring epidemic trends and evaluating intervention efforts. However, the long asymptomatic stage of HIV-1 infection makes it difficult to effectively distinguish incident infections from chronic ones. Current incidence assays based on serology or viral sequence diversity are both still lacking in accuracy. In the present work, a sequence clustering based diversity (SCBD) assay was devised by utilizing the fact that viral sequences derived from each transmitted/founder (T/F) strain tend to cluster together at early stage, and that only the intra-cluster diversity is correlated with the time since HIV-1 infection. The dot-matrix pairwise alignment was used to eliminate the disproportional impact of insertion/deletions (indels) and recombination events, and so was the proportion of clusterable sequences (Pc) as an index to identify late chronic infections with declined viral genetic diversity. Tested on a dataset containing 398 incident and 163 chronic infection cases collected from the Los Alamos HIV database (last modified 2/8/2012), our SCBD method achieved 99.5% sensitivity and 98.8% specificity, with an overall accuracy of 99.3%. Further analysis and evaluation also suggested its performance was not affected by host factors such as the viral subtypes and transmission routes. The SCBD method demonstrated the potential of sequencing based techniques to become useful for identifying incident infections. Its use may be most advantageous for settings with low to moderate incidence relative to available resources. The online service is available at http://www.bioinfo.tsinghua.edu.cn:8080/SCBD/index.jsp.

  5. Interobserver variability and accuracy of high-definition endoscopic diagnosis for gastric intestinal metaplasia among experienced and inexperienced endoscopists.

    PubMed

    Hyun, Yil Sik; Han, Dong Soo; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-05-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM.

  6. Updating flood maps efficiently using existing hydraulic models, very-high-accuracy elevation data, and a geographic information system; a pilot study on the Nisqually River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.

    2001-01-01

    A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between

  7. The Effect of Technology Integration on High School Students' Literacy Achievement

    ERIC Educational Resources Information Center

    Robinson, Kara

    2016-01-01

    This literature review presents a critical appraisal of current research on the role technology integration plays in high school students' literacy achievement. It identifies the gaps within the research through comprehensive analysis. The review develops an argument that the use of laptops in secondary English classrooms has a significant impact…

  8. Parts-Per-Billion Mass Measurement Accuracy Achieved through the Combination of Multiple Linear Regression and Automatic Gain Control in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Williams, D. Keith; Muddiman, David C.

    2008-01-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to achieve unprecedented mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement. Even through the use of automatic gain control (AGC), the total ion population is not constant between spectra. Multiple linear regression calibration in conjunction with AGC is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. This ability allows for the extension of dynamic range of the instrument while allowing mean MMA values to remain less than 1 ppm. In addition, multiple linear regression calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level. PMID:17539605

  9. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    PubMed

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Modified sine bar device measures small angles with high accuracy

    NASA Technical Reports Server (NTRS)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  11. Increased genomic prediction accuracy in wheat breeding using a large Australian panel.

    PubMed

    Norman, Adam; Taylor, Julian; Tanaka, Emi; Telfer, Paul; Edwards, James; Martinant, Jean-Pierre; Kuchel, Haydn

    2017-12-01

    Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom Axiom TM Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.

  12. Moving to higher ground: Closing the high school science achievement gap

    NASA Astrophysics Data System (ADS)

    Mebane, Joyce Graham

    The purpose of this study was to examine the perceptions of West High School constituents (students, parents, teachers, administrators, and guidance counselors) about the readiness and interest of African American students at West High School to take Advanced Placement (AP) and International Baccalaureate (IB) science courses as a strategy for closing the achievement gap. This case study utilized individual interviews and questionnaires for data collection. The participants were selected biology students and their parents, teachers, administrators, and guidance counselors at West High School. The results of the study indicated that just over half the students and teachers, most parents, and all guidance counselors thought African American students were prepared to take AP science courses. Only one of the three administrators thought the students were prepared to take AP science courses. Between one-half and two-thirds of the students, parents, teachers, and administrators thought students were interested in taking an AP science course. Only two of the guidance counselors thought there was interest among the African American students in taking AP science courses. The general consensus among the constituents about the readiness and interest of African American students at West High School to take IB science courses was that it is too early in the process to really make definitive statements. West is a prospective IB school and the program is new and not yet in place. Educators at the West High School community must find reasons to expect each student to succeed. Lower expectations often translate into lower academic demands and less rigor in courses. Lower academic demands and less rigor in courses translate into less than adequate performance by students. When teachers and administrators maintain high expectations, they encourage students to aim high rather than slide by with mediocre effort (Lumsden, 1997). As a result of the study, the following suggestions should

  13. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  14. Systematic review of discharge coding accuracy

    PubMed Central

    Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.

    2012-01-01

    Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302

  15. High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method

    NASA Astrophysics Data System (ADS)

    Gillon, M.; Pont, F.; Moutou, C.; Bouchy, F.; Courbin, F.; Sohy, S.; Magain, P.

    2006-11-01

    A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large-scale variations of the spatial resolution from one image to another. A recent deconvolution-based photometry algorithm fulfills all these requirements, and it also increases the resolution of astronomical images, which is an important advantage for the detection of blends and the discrimination of false positives in transit photometry. We made some changes to this algorithm to optimize it for transit photometry and used it to reduce NTT/SUSI2 observations of two transits of OGLE-TR-113b. This reduction has led to two very high precision transit light curves with a low level of systematic residuals, used together with former photometric and spectroscopic measurements to derive new stellar and planetary parameters in excellent agreement with previous ones, but significantly more precise.

  16. Consequences of the Confucian Culture: High Achievement but Negative Psychological Attributes?

    ERIC Educational Resources Information Center

    Ho, Irene T.; Hau, Kit-Tai

    2010-01-01

    In "Unforgiving Confucian culture: A breeding ground for high academic achievement, test anxiety and self-doubt?" Stankov (in press) provides three reasons for caution against over-glorifying the academic excellence of Confucian Asian learners, namely that it may lead to a reluctance to change their rote learning approach which is not conducive to…

  17. High-Stakes Testing and Student Achievement: Updated Analyses with NAEP Data

    ERIC Educational Resources Information Center

    Nichols, Sharon L.; Glass, Gene V.; Berliner, David C.

    2012-01-01

    The present research is a follow-up study of earlier published analyses that looked at the relationship between high-stakes testing pressure and student achievement in 25 states. Using the previously derived Accountability Pressure Index (APR) as a measure of state-level policy pressure for performance on standardized tests, a series of…

  18. Growing into Equity: Professional Learning and Personalization in High-Achieving Schools

    ERIC Educational Resources Information Center

    Gleason, Sonia Caus; Gerzon, Nancy

    2013-01-01

    What makes a Title I school high-achieving, and what can we all learn from that experience? Professional learning and leadership that supports personalized instruction makes the difference, as captured in the ground-breaking research of authors Sonia Caus Gleason and Nancy Gerzon. This illuminating book shows how four outstanding schools are…

  19. High School Success: An Effective Intervention for Achievement and Dropout Prevention

    ERIC Educational Resources Information Center

    Lowder, Christopher Michael

    2012-01-01

    The purpose of this mixed-design study was to use quantitative and qualitative research to explore the effects of High School Success (a course for at-risk ninth graders) and its effectiveness on student achievement, attendance, and dropout prevention. The research questions address whether there is a significant difference between at-risk ninth…

  20. Very high precision and accuracy analysis of triple isotopic ratios of water. A critical instrumentation comparison study.

    NASA Astrophysics Data System (ADS)

    Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi

    2017-04-01

    We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.

  1. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis.

    PubMed

    Foong, Shaohui; Sun, Zhenglong

    2016-08-12

    In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.

  2. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  3. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.

    PubMed

    Zhang, Yuanwei; Yang, Yifan; Zhang, Huan; Jiang, Xiaohua; Xu, Bo; Xue, Yu; Cao, Yunxia; Zhai, Qian; Zhai, Yong; Xu, Mingqing; Cooke, Howard J; Shi, Qinghua

    2011-05-15

    High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.

  4. High resolution microendoscopy for classification of colorectal polyps.

    PubMed

    Chang, S S; Shukla, R; Polydorides, A D; Vila, P M; Lee, M; Han, H; Kedia, P; Lewis, J; Gonzalez, S; Kim, M K; Harpaz, N; Godbold, J; Richards-Kortum, R; Anandasabapathy, S

    2013-07-01

    It can be difficult to distinguish adenomas from benign polyps during routine colonoscopy. High resolution microendoscopy (HRME) is a novel method for imaging colorectal mucosa with subcellular detail. HRME criteria for the classification of colorectal neoplasia have not been previously described. Study goals were to develop criteria to characterize HRME images of colorectal mucosa (normal, hyperplastic polyps, adenomas, cancer) and to determine the accuracy and interobserver variability for the discrimination of neoplastic from non-neoplastic polyps when these criteria were applied by novice and expert microendoscopists. Two expert pathologists created consensus HRME image criteria using images from 68 patients with polyps who had undergone colonoscopy plus HRME. Using these criteria, HRME expert and novice microendoscopists were shown a set of training images and then tested to determine accuracy and interobserver variability. Expert microendoscopists identified neoplasia with sensitivity, specificity, and accuracy of 67 % (95 % confidence interval [CI] 58 % - 75 %), 97 % (94 % - 100 %), and 87 %, respectively. Nonexperts achieved sensitivity, specificity, and accuracy of 73 % (66 % - 80 %), 91 % (80 % - 100 %), and 85 %, respectively. Overall, neoplasia were identified with sensitivity 70 % (65 % - 76 %), specificity 94 % (87 % - 100 %), and accuracy 85 %. Kappa values were: experts 0.86; nonexperts 0.72; and overall 0.78. Using the new criteria, observers achieved high specificity and substantial interobserver agreement for distinguishing benign polyps from neoplasia. Increased expertise in HRME imaging improves accuracy. This low-cost microendoscopic platform may be an alternative to confocal microendoscopy in lower-resource or community-based settings.

  5. Working Memory Load and Reminder Effect on Event-Based Prospective Memory of High- and Low-Achieving Students in Math.

    PubMed

    Chen, Youzhen; Lian, Rong; Yang, Lixian; Liu, Jianrong; Meng, Yingfang

    The effects of working memory (WM) demand and reminders on an event-based prospective memory (PM) task were compared between students with low and high achievement in math. WM load (1- and 2-back tasks) was manipulated as a within-subject factor and reminder (with or without reminder) as a between-subject factor. Results showed that high-achieving students outperformed low-achieving students on all PM and n-back tasks. Use of a reminder improved PM performance and thus reduced prospective interference; the performance of ongoing tasks also improved for all students. Both PM and n-back performances in low WM load were better than in high WM load. High WM load had more influence on low-achieving students than on high-achieving students. Results suggest that low-achieving students in math were weak at PM and influenced more by high WM load. Thus, it is important to train these students to set up an obvious reminder for their PM and improve their WM.

  6. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  7. Martial arts striking hand peak acceleration, accuracy and consistency.

    PubMed

    Neto, Osmar Pinto; Marzullo, Ana Carolina De Miranda; Bolander, Richard P; Bir, Cynthia A

    2013-01-01

    The goal of this paper was to investigate the possible trade-off between peak hand acceleration and accuracy and consistency of hand strikes performed by martial artists of different training experiences. Ten male martial artists with training experience ranging from one to nine years volunteered to participate in the experiment. Each participant performed 12 maximum effort goal-directed strikes. Hand acceleration during the strikes was obtained using a tri-axial accelerometer block. A pressure sensor matrix was used to determine the accuracy and consistency of the strikes. Accuracy was estimated by the radial distance between the centroid of each subject's 12 strikes and the target, whereas consistency was estimated by the square root of the 12 strikes mean squared distance from their centroid. We found that training experience was significantly correlated to hand peak acceleration prior to impact (r(2)=0.456, p =0.032) and accuracy (r(2)=0. 621, p=0.012). These correlations suggest that more experienced participants exhibited higher hand peak accelerations and at the same time were more accurate. Training experience, however, was not correlated to consistency (r(2)=0.085, p=0.413). Overall, our results suggest that martial arts training may lead practitioners to achieve higher striking hand accelerations with better accuracy and no change in striking consistency.

  8. Mindmapping: Its effects on student achievement in high school biology

    NASA Astrophysics Data System (ADS)

    Cunningham, Glennis Edge

    The primary goal of schools is to promote the highest degree of learning possible. Yet teachers spend the majority of their time engaged in lecturing while students spend the majority of their time passively present (Cawelti, 1997, Grinder, 1991; Jackson & Davis, 2000; Jenkins, 1996). Helping students develop proficiency in learning, which translates into using that expertise to construct knowledge in subject domains, is a crucial goal of education. Students need exposure to teaching and learning practices that prepare them for both the classroom and their places in the future workforce (Ettinger, 1998; Longley, Goodchild, Maguire, & Rhind, 2001; NRC, 1996; Texley & Wild, 1996). The purpose of this study was to determine if achievement in high school science courses could be enhanced utilizing mindmapping. The subjects were primarily 9th and 10th graders (n = 147) at a suburban South Texas high school. A pretest-posttest control group design was selected to determine the effects of mindmapping on student achievement as measured by a teacher-developed, panel-validated instrument. Follow-up interviews were conducted with the teacher and a purposive sample of students (n = 7) to determine their perceptions of mindmapping and its effects on teaching and learning. Mindmapping is a strategy for visually displaying large amounts of conceptual, hierarchical information in a concise, organized, and accessible format. Mindmaps arrange information similar to that found on the traditional topic outline into colorful spatial displays that offer the user a view of the "forest" as well as the "trees" (Hyerle, 1996; Wandersee, 1990b). An independent samples t-test and a one-way analysis of covariance (ANCOVA) determined no significant difference in achievement between the groups. The experimental group improved in achievement at least as much as the control group. Several factors may have played a role in the lack of statistically significant results. These factors include the

  9. Effects of Full-Time and Part-Time High-Ability Programs on Developments in Students' Achievement Emotions

    ERIC Educational Resources Information Center

    Hornstra, Lisette; van der Veen, Ineke; Peetsma, Thea

    2017-01-01

    This study focused on effects of high-ability programs on students' achievement emotions, i.e. emotions that students experience that are associated with achievement activities. Participants were students in grade 4-6 of primary education: 218 students attended full-time high-ability programs, 245 attended part-time high-ability programs (i.e.…

  10. The Impact of Reading Success Academy on High School Reading Achievement

    ERIC Educational Resources Information Center

    Burlison, Kelly; Chave, Josh

    2014-01-01

    The study explores the effectiveness of the Reading Success Academy on the reading achievement of the selected group of ninth-grade students in a comprehensive high school. We examine in what ways the Reading Success Academy may improve the reading proficiency rates and amount of reading growth of ninth-grade students. The results indicate that…

  11. An Examination of High-Achieving First-Generation College Students from Low-Income Backgrounds

    ERIC Educational Resources Information Center

    Hébert, Thomas P.

    2018-01-01

    Experiences of 10 high-achieving first-generation college students from low-income backgrounds were the focus of this qualitative research study. Family adversity and difficult personal experiences during adolescence were major themes; however, students benefitted from emotionally supportive K-12 educators and academic rigor in high school.…

  12. The Relationship between Principals' Instructional Focus and Academic Achievement of High Poverty Students

    ERIC Educational Resources Information Center

    Aste, Mahri

    2009-01-01

    The purpose of the study was to determine the relationship between teacher perceptions of the frequency and effectiveness of principal instructional leadership behaviors and student achievement in high-poverty elementary schools. In order to accomplish the purpose, survey methodology was employed. Teachers from six high-poverty elementary schools…

  13. Performance of search strategies to retrieve systematic reviews of diagnostic test accuracy from the Cochrane Library.

    PubMed

    Huang, Yuansheng; Yang, Zhirong; Wang, Jing; Zhuo, Lin; Li, Zhixia; Zhan, Siyan

    2016-05-06

    To compare the performance of search strategies to retrieve systematic reviews of diagnostic test accuracy from The Cochrane Library. Databases of CDSR and DARE in the Cochrane Library were searched for systematic reviews of diagnostic test accuracy published between 2008 and 2012 through nine search strategies. Each strategy consists of one group or combination of groups of searching filters about diagnostic test accuracy. Four groups of diagnostic filters were used. The Strategy combing all the filters was used as the reference to determine the sensitivity, precision, and the sensitivity x precision product for another eight Strategies. The reference Strategy retrieved 8029 records, of which 832 were eligible. The strategy only composed of MeSH terms about "accuracy measures" achieved the highest values in both precision (69.71%) and product (52.45%) with a moderate sensitivity (75.24%). The combination of MeSH terms and free text words about "accuracy measures" contributed little to increasing the sensitivity. Strategies composed of filters about "diagnosis" had similar sensitivity but lower precision and product to those composed of filters about "accuracy measures". MeSH term "exp'diagnosis' " achieved the lowest precision (9.78%) and product (7.91%), while its hyponym retrieved only half the number of records at the expense of missing 53 target articles. The precision was negatively correlated with sensitivities among the nine strategies. Compared to the filters about "diagnosis", the filters about "accuracy measures" achieved similar sensitivities but higher precision. When combining both terms, sensitivity of the strategy was enhanced obviously. The combination of MeSH terms and free text words about the same concept seemed to be meaningless for enhancing sensitivity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Interethnic differences in the accuracy of anthropometric indicators of obesity in screening for high risk of coronary heart disease

    PubMed Central

    Herrera, VM; Casas, JP; Miranda, JJ; Perel, P; Pichardo, R; González, A; Sanchez, JR; Ferreccio, C; Aguilera, X; Silva, E; Oróstegui, M; Gómez, LF; Chirinos, JA; Medina-Lezama, J; Pérez, CM; Suárez, E; Ortiz, AP; Rosero, L; Schapochnik, N; Ortiz, Z; Ferrante, D; Diaz, M; Bautista, LE

    2009-01-01

    Background Cut points for defining obesity have been derived from mortality data among Whites from Europe and the United States and their accuracy to screen for high risk of coronary heart disease (CHD) in other ethnic groups has been questioned. Objective To compare the accuracy and to define ethnic and gender-specific optimal cut points for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) when they are used in screening for high risk of CHD in the Latin-American and the US populations. Methods We estimated the accuracy and optimal cut points for BMI, WC and WHR to screen for CHD risk in Latin Americans (n=18 976), non-Hispanic Whites (Whites; n=8956), non-Hispanic Blacks (Blacks; n=5205) and Hispanics (n=5803). High risk of CHD was defined as a 10-year risk ≥20% (Framingham equation). The area under the receiver operator characteristic curve (AUC) and the misclassification-cost term were used to assess accuracy and to identify optimal cut points. Results WHR had the highest AUC in all ethnic groups (from 0.75 to 0.82) and BMI had the lowest (from 0.50 to 0.59). Optimal cut point for BMI was similar across ethnic/gender groups (27 kg/m2). In women, cut points for WC (94 cm) and WHR (0.91) were consistent by ethnicity. In men, cut points for WC and WHR varied significantly with ethnicity: from 91 cm in Latin Americans to 102 cm in Whites, and from 0.94 in Latin Americans to 0.99 in Hispanics, respectively. Conclusion WHR is the most accurate anthropometric indicator to screen for high risk of CHD, whereas BMI is almost uninformative. The same BMI cut point should be used in all men and women. Unique cut points for WC and WHR should be used in all women, but ethnic-specific cut points seem warranted among men. PMID:19238159

  15. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-06

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  16. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    PubMed

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  17. Accuracy testing of electric groundwater-level measurement tapes

    USGS Publications Warehouse

    Jelinski, Jim; Clayton, Christopher S.; Fulford, Janice M.

    2015-01-01

    The accuracy tests demonstrated that none of the electric-tape models tested consistently met the suggested USGS accuracy of ±0.01 ft. The test data show that the tape models in the study should give a water-level measurement that is accurate to roughly ±0.05 ft per 100 ft without additional calibration. To meet USGS accuracy guidelines, the electric-tape models tested will need to be individually calibrated. Specific conductance also plays a part in tape accuracy. The probes will not work in water with specific conductance values near zero, and the accuracy of one probe was unreliable in very high conductivity water (10,000 microsiemens per centimeter).

  18. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  19. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy.

    PubMed

    Arapiraca, A F C; Jonsson, Dan; Mohallem, J R

    2011-12-28

    We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.

  20. Dimensional accuracy of aluminium extrusions in mechanical calibration

    NASA Astrophysics Data System (ADS)

    Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode

    2018-05-01

    Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.

  1. The Effect of "Cover, Copy, and Compare" on Spelling Accuracy of High School Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Zielinski, Katie; McLaughlin, T. F.; Derby, K. Mark

    2012-01-01

    The purpose of this study was to evaluate the effectiveness of cover, copy, and compare (CCC) on spelling accuracy for three high school aged students with learning disabilities. CCC is a student-managed procedure that teaches discrete skills through self-tutoring and error correction. The effectiveness of CCC was evaluated using a multiple…

  2. Accuracy Validation of Large-scale Block Adjustment without Control of ZY3 Images over China

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2016-06-01

    Mapping from optical satellite images without ground control is one of the goals of photogrammetry. Using 8802 three linear array stereo images (a total of 26406 images) of ZY3 over China, we propose a large-scale and non-control block adjustment method of optical satellite images based on the RPC model, in which a single image is regarded as an adjustment unit to be organized. To overcome the block distortion caused by unstable adjustment without ground control and the excessive accumulation of errors, we use virtual control points created by the initial RPC model of the images as the weighted observations and add them into the adjustment model to refine the adjustment. We use 8000 uniformly distributed high precision check points to evaluate the geometric accuracy of the DOM (Digital Ortho Model) and DSM (Digital Surface Model) production, for which the standard deviations of plane and elevation are 3.6 m and 4.2 m respectively. The geometric accuracy is consistent across the whole block and the mosaic accuracy of neighboring DOM is within a pixel, thus, the seamless mosaic could take place. This method achieves the goal of an accuracy of mapping without ground control better than 5 m for the whole China from ZY3 satellite images.

  3. The development of science achievement in middle and high school. Individual differences and school effects.

    PubMed

    Ma, Xin; Wilkins, Jesse L M

    2002-08-01

    Using data from the Longitudinal Study of American Youth (LSAY), hierarchical linear models (HLMs) were used to model the growth of student science achievement in three areas (biology, physical science, and environmental science) during middle and high school. Results showed significant growth in science achievement across all areas. The growth was quadratic across all areas, with rapid growth at the beginning grades of middle school but slow growth at the ending grades of high school. At the student level, socioeconomic status (SES) and age were related to the rate of growth in all areas. There were no gender differences in the rate of growth in any of the three areas. At the school level, variables associated with school context (school mean SES and school size) and variables associated with school climate (principal leadership, academic expectation, and teacher autonomy) were related to the growth in science achievement. Initial (Grade 7) status in science achievement was not associated with the rate of growth in science achievement among either students or schools in any of the three areas.

  4. The High-Potential Fast-Flying Achiever: Themes from the English Language Literature 1976-1995.

    ERIC Educational Resources Information Center

    Altman, Yochanan

    1997-01-01

    Review of business management literature from the United States, United Kingdom, and Canada identified the following: the images of high flyer, fast track, and high achiever; the meaning of success; emphasis on performance; corporate rites of passage; and opportunities for women to be high flyers. (SK)

  5. The Effect of the Time Management Art on Academic Achievement among High School Students in Jordan

    ERIC Educational Resources Information Center

    Al-Zoubi, Maysoon

    2016-01-01

    This study aimed at recognizing the effect of the Time Management Art on academic achievement among high school students in the Hashemite Kingdom of Jordan. The researcher employed the descriptive-analytic research to achieve the purpose of the study where he chose a sample of (2000) high school female and male students as respondents to the…

  6. High accuracy method for the application of isotope dilution to gas chromatography/mass spectrometric analysis of gases.

    PubMed

    Milton, Martin J T; Wang, Jian

    2003-01-01

    A new isotope dilution mass spectrometry (IDMS) method for high-accuracy quantitative analysis of gases has been developed and validated by the analysis of standard mixtures of carbon dioxide in nitrogen. The method does not require certified isotopic reference materials and does not require direct measurements of the highly enriched spike. The relative uncertainty of the method is shown to be 0.2%. Reproduced with the permission of Her Majesty's Stationery Office. Copyright Crown copyright 2003.

  7. One-to-One Computing and Student Achievement in Ohio High Schools

    ERIC Educational Resources Information Center

    Williams, Nancy L.; Larwin, Karen H.

    2016-01-01

    This study explores the impact of one-to-one computing on student achievement in Ohio high schools as measured by performance on the Ohio Graduation Test (OGT). The sample included 24 treatment schools that were individually paired with a similar control school. An interrupted time series methodology was deployed to examine OGT data over a period…

  8. The Role of Teachers at University: What Do High Achiever Students Look for?

    ERIC Educational Resources Information Center

    Monteiro, Silvia; Almeida, Leandro S.; Vasconcelos, Rosa M.

    2012-01-01

    The perceptions of students about their teachers have interested the academic and scientific community, regarding the improvement of the quality of higher education. This paper presents data obtained from interviews conducted with ten high achiever engineering students and focuses on the characteristics of teachers that are highly valued by the…

  9. Incremental Theory of Intelligence Moderated the Relationship between Prior Achievement and School Engagement in Chinese High School Students

    PubMed Central

    Li, Ping; Zhou, Nan; Zhang, Yuchi; Xiong, Qing; Nie, Ruihong; Fang, Xiaoyi

    2017-01-01

    School engagement plays a prominent role in promoting academic accomplishments. In contrast to the relative wealth of research that examined the impact of students’ school engagement on their academic achievement, considerably less research has investigated the effect of high school students’ prior achievement on their school engagement. The present study examined the relationship between prior achievement and school engagement among Chinese high school students. Based on the Dweck’s social-cognitive theory of motivation, we further examined the moderating effect of students’ theories of intelligence (TOIs) on this relationship. A total of 4036 (2066 girls) students from five public high school enrolled in grades 10 reported their high school entrance exam achievement in Chinese, Math and English, school engagement, and TOIs. Results showed that (a) students’ prior achievement predicted their behavioral, emotional, and cognitive engagement, respectively, and (b) the association between prior achievement and behavioral, emotional, and cognitive engagement is strong for students with an incremental theory but not for those with an entity theory in the emotional and cognitive engagement. These findings suggest that prior achievement and incremental theory were implicated in relation to adolescents’ school engagement. Implications and future research directions were discussed. PMID:29021772

  10. The effects of chronic achievement motivation and achievement primes on the activation of achievement and fun goals.

    PubMed

    Hart, William; Albarracín, Dolores

    2009-12-01

    This research examined the hypothesis that situational achievement cues can elicit achievement or fun goals depending on chronic differences in achievement motivation. In 4 studies, chronic differences in achievement motivation were measured, and achievement-denoting words were used to influence behavior. The effects of these variables were assessed on self-report inventories, task performance, task resumption following an interruption, and the pursuit of means relevant to achieving or having fun. Findings indicated that achievement priming (vs. control priming) activated a goal to achieve and inhibited a goal to have fun in individuals with chronically high-achievement motivation but activated a goal to have fun and inhibited a goal to achieve in individuals with chronically low-achievement motivation.

  11. The Effects of Chronic Achievement Motivation and Achievement Primes on the Activation of Achievement and Fun Goals

    PubMed Central

    Hart, William; Albarracín, Dolores

    2013-01-01

    This research examined the hypothesis that situational achievement cues can elicit achievement or fun goals depending on chronic differences in achievement motivation. In 4 studies, chronic differences in achievement motivation were measured, and achievement-denoting words were used to influence behavior. The effects of these variables were assessed on self-report inventories, task performance, task resumption following an interruption, and the pursuit of means relevant to achieving or having fun. Findings indicated that achievement priming (vs. control priming) activated a goal to achieve and inhibited a goal to have fun in individuals with chronically high-achievement motivation but activated a goal to have fun and inhibited a goal to achieve in individuals with chronically low-achievement motivation. PMID:19968423

  12. Achieving high coverage in Rwanda's national human papillomavirus vaccination programme.

    PubMed

    Binagwaho, Agnes; Wagner, Claire M; Gatera, Maurice; Karema, Corine; Nutt, Cameron T; Ngabo, Fidele

    2012-08-01

    Virtually all women who have cervical cancer are infected with the human papillomavirus (HPV). Of the 275,000 women who die from cervical cancer every year, 88% live in developing countries. Two vaccines against the HPV have been approved. However, vaccine implementation in low-income countries tends to lag behind implementation in high-income countries by 15 to 20 years. In 2011, Rwanda's Ministry of Health partnered with Merck to offer the Gardasil HPV vaccine to all girls of appropriate age. The Ministry formed a "public-private community partnership" to ensure effective and equitable delivery. Thanks to a strong national focus on health systems strengthening, more than 90% of all Rwandan infants aged 12-23 months receive all basic immunizations recommended by the World Health Organization. In 2011, Rwanda's HPV vaccination programme achieved 93.23% coverage after the first three-dose course of vaccination among girls in grade six. This was made possible through school-based vaccination and community involvement in identifying girls absent from or not enrolled in school. A nationwide sensitization campaign preceded delivery of the first dose. Through a series of innovative partnerships, Rwanda reduced the historical two-decade gap in vaccine introduction between high- and low-income countries to just five years. High coverage rates were achieved due to a delivery strategy that built on Rwanda's strong vaccination system and human resources framework. Following the GAVI Alliance's decision to begin financing HPV vaccination, Rwanda's example should motivate other countries to explore universal HPV vaccine coverage, although implementation must be tailored to the local context.

  13. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Interobserver Variability and Accuracy of High-Definition Endoscopic Diagnosis for Gastric Intestinal Metaplasia among Experienced and Inexperienced Endoscopists

    PubMed Central

    Hyun, Yil Sik; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-01-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM. PMID:23678267

  15. Raising the stakes: How students' motivation for mathematics associates with high- and low-stakes test achievement.

    PubMed

    Simzar, Rahila M; Martinez, Marcela; Rutherford, Teomara; Domina, Thurston; Conley, AnneMarie M

    2015-04-01

    This study uses data from an urban school district to examine the relation between students' motivational beliefs about mathematics and high- versus low-stakes math test performance. We use ordinary least squares and quantile regression analyses and find that the association between students' motivation and test performance differs based on the stakes of the exam. Students' math self-efficacy and performance avoidance goal orientation were the strongest predictors for both exams; however, students' math self-efficacy was more strongly related to achievement on the low-stakes exam. Students' motivational beliefs had a stronger association at the low-stakes exam proficiency cutoff than they did at the high-stakes passing cutoff. Lastly, the negative association between performance avoidance goals and high-stakes performance showed a decreasing trend across the achievement distribution, suggesting that performance avoidance goals are more detrimental for lower achieving students. These findings help parse out the ways motivation influences achievement under different stakes.

  16. An Examination of Home, School, and Community Experiences of High-Achieving Deaf Adults

    ERIC Educational Resources Information Center

    Tanner, Kara Kunst

    2017-01-01

    This qualitative study investigated the academic, community, and family experiences of adults who are profoundly deaf. The deaf adults were categorized as high-achieving by having attended college post-high school. The intent of this study is to give teachers, parents, and other deaf students, insight into the factors responsible for contributing…

  17. The Relationship between Self-Efficacy and Achievement in At-Risk High School Students

    ERIC Educational Resources Information Center

    Gold, Jarrett Graham

    2010-01-01

    The focus of this quantitative survey study was the examination of the relationship between self-efficacy and academic achievement in 164 at-risk high school students. The study used Bandura's self-efficacy as the theoretical framework. The research questions involved understanding the levels of self-efficacy in at-risk high school students and…

  18. The Relationship between Thinking Style Differences and Career Choices for High-Achieving Students

    ERIC Educational Resources Information Center

    Kim, Mihyeon

    2011-01-01

    The intent of this study was to present information about high-achieving students' career decision making associated with thinking styles. We gathered data from two International Baccalaureate (IB) programs and a Governor's School Program with a sample of 209 high-school students. The findings of this study demonstrated that the effect of program…

  19. An Emerging Professional Identity: Influences on the Achievement of High-Ability First-Generation College Females

    ERIC Educational Resources Information Center

    Speirs Neumeister, Kristie L.; Rinker, Julie

    2006-01-01

    Using a qualitative interview design, this study examined factors contributing to the academic achievement of gifted first-generation college females. Findings indicated an emerging professional identity as the primary influence on achievement. The participants' high ability served as a passport to accessing coursework, extracurricular…

  20. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.

    PubMed

    Kraemer, D; Chen, G

    2014-02-01

    Accurate measurements of thermal conductivity are of great importance for materials research and development. Steady-state methods determine thermal conductivity directly from the proportionality between heat flow and an applied temperature difference (Fourier Law). Although theoretically simple, in practice, achieving high accuracies with steady-state methods is challenging and requires rather complex experimental setups due to temperature sensor uncertainties and parasitic heat loss. We developed a simple differential steady-state method in which the sample is mounted between an electric heater and a temperature-controlled heat sink. Our method calibrates for parasitic heat losses from the electric heater during the measurement by maintaining a constant heater temperature close to the environmental temperature while varying the heat sink temperature. This enables a large signal-to-noise ratio which permits accurate measurements of samples with small thermal conductance values without an additional heater calibration measurement or sophisticated heater guards to eliminate parasitic heater losses. Additionally, the differential nature of the method largely eliminates the uncertainties of the temperature sensors, permitting measurements with small temperature differences, which is advantageous for samples with high thermal conductance values and/or with strongly temperature-dependent thermal conductivities. In order to accelerate measurements of more than one sample, the proposed method allows for measuring several samples consecutively at each temperature measurement point without adding significant error. We demonstrate the method by performing thermal conductivity measurements on commercial bulk thermoelectric Bi2Te3 samples in the temperature range of 30-150 °C with an error below 3%.

  1. Cohort versus Non-Cohort High School Students' Math Performance: Achievement Test Scores and Coursework

    ERIC Educational Resources Information Center

    Parke, Carol S.; Keener, Dana

    2011-01-01

    The purpose of this study is to compare multiple measures of mathematics achievement for 1,378 cohort students who attended the same high school in a district from 9th to 12th grade with non-cohort students in each grade level. Results show that mobility had an impact on math achievement. After accounting for gender, ethnicity, and SES, adjusted…

  2. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    PubMed

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  3. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections

    PubMed Central

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761

  4. Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry.

    PubMed

    Görgens, Christian; Guddat, Sven; Thomas, Andreas; Wachsmuth, Philipp; Orlovius, Anne-Katrin; Sigmund, Gerd; Thevis, Mario; Schänzer, Wilhelm

    2016-11-30

    So far, in sports drug testing compounds of different classes are processed and measured using different screening procedures. The constantly increasing number of samples in doping analysis, as well as the large number of substances with doping related, pharmacological effects require the development of even more powerful assays than those already employed in sports drug testing, indispensably with reduced sample preparation procedures. The analysis of native urine samples after direct injection provides a promising analytical approach, which thereby possesses a broad applicability to many different compounds and their metabolites, without a time-consuming sample preparation. In this study, a novel multi-target approach based on liquid chromatography and high resolution/high accuracy mass spectrometry is presented to screen for more than 200 analytes of various classes of doping agents far below the required detection limits in sports drug testing. Here, classic groups of drugs as diuretics, stimulants, β 2 -agonists, narcotics and anabolic androgenic steroids as well as various newer target compounds like hypoxia-inducible factor (HIF) stabilizers, selective androgen receptor modulators (SARMs), selective estrogen receptor modulators (SERMs), plasma volume expanders and other doping related compounds, listed in the 2016 WADA prohibited list were implemented. As a main achievement, growth hormone releasing peptides could be implemented, which chemically belong to the group of small peptides (<2kDa) and are commonly determined by laborious and time-consuming stand-alone assays. The assay was fully validated for qualitative purposes considering the parameters specificity, robustness (rRT: <2%), intra- (CV: 1.7-18.4 %) and inter-day precision (CV: 2.3-18.3%) at three concentration levels, linearity (R 2 >0.99), limit of detection (0.1-25ng/mL; 3'OH-stanozolol glucuronide: 50pg/mL; dextran/HES: 10μg/mL) and matrix effects. Copyright © 2016 Elsevier B.V. All rights

  5. Heterogeneity in High Math Achievement across Schools: Evidence from the American Mathematics Competitions. NBER Working Paper No. 18277

    ERIC Educational Resources Information Center

    Ellison, Glenn; Swanson, Ashley

    2012-01-01

    This paper explores differences in the frequency with which students from different schools reach high levels of math achievement. Data from the American Mathematics Competitions is used to produce counts of high-scoring students from more than two thousand public, coeducational, non-magnet, non-charter U.S. high schools. High-achieving students…

  6. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    PubMed

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  7. The accuracy of the ATLAS muon X-ray tomograph

    NASA Astrophysics Data System (ADS)

    Avramidou, R.; Berbiers, J.; Boudineau, C.; Dechelette, C.; Drakoulakos, D.; Fabjan, C.; Grau, S.; Gschwendtner, E.; Maugain, J.-M.; Rieder, H.; Rangod, S.; Rohrbach, F.; Sbrissa, E.; Sedykh, E.; Sedykh, I.; Smirnov, Y.; Vertogradov, L.; Vichou, I.

    2003-01-01

    A gigantic detector, the ATLAS project, is under construction at CERN for particle physics research at the Large Hadron Collider which is to be ready by 2006. An X-ray tomograph has been developed, designed and constructed at CERN in order to control the mechanical quality of the ATLAS muon chambers. We reached a measurement accuracy of 2 μm systematic and 2 μm statistical uncertainties in the horizontal and vertical directions in the working area 220 cm (horizontal)×60 cm (vertical). Here we describe in detail the fundamental approach of the basic principle chosen to achieve such good accuracy. In order to crosscheck our precision, key results of measurements are presented.

  8. High-accuracy process based on the corrective calibration of removal function in the magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Zhong, Xianyun; Fan, Bin; Wu, Fan

    2017-08-01

    The corrective calibration of the removal function plays an important role in the magnetorheological finishing (MRF) high-accuracy process. This paper mainly investigates the asymmetrical characteristic of the MRF removal function shape and further analyzes its influence on the surface residual error by means of an iteration algorithm and simulations. By comparing the ripple errors and convergence ratios based on the ideal MRF tool function and the deflected tool function, the mathematical models for calibrating the deviation of horizontal and flowing directions are presented. Meanwhile, revised mathematical models for the coordinate transformation of an MRF machine is also established. Furthermore, a Ø140-mm fused silica plane and a Ø196 mm, f/1∶1, fused silica concave sphere samples are taken as the experiments. After two runs, the plane mirror final surface error reaches PV 17.7 nm, RMS 1.75 nm, and the polishing time is 16 min in total; after three runs, the sphere mirror final surfer error reaches RMS 2.7 nm and the polishing time is 70 min in total. The convergence ratios are 96.2% and 93.5%, respectively. The spherical simulation error and the polishing result are almost consistent, which fully validate the efficiency and feasibility of the calibration method of MRF removal function error using for the high-accuracy subaperture optical manufacturing.

  9. Role of optics in the accuracy of depth-from-defocus systems: comment.

    PubMed

    Blendowske, Ralf

    2007-10-01

    In their paper "Role of optics in the accuracy of depth-from-defocus systems" [J. Opt. Soc. Am. A24, 967 (2007)] the authors Blayvas, Kimmel, and Rivlin discuss the effect of optics on the depth reconstruction accuracy. To this end they applied an approach in Fourier space. An alternative derivation of their result in the spatial domain, based on geometrical optics, is presented and compared with their outcome. A better agreement with experimental data is achieved if some unclarities are refined.

  10. Mathematics Achievement with Digital Game-Based Learning in High School Algebra 1 Classes

    ERIC Educational Resources Information Center

    Ferguson, Terri Lynn Kurley

    2014-01-01

    This study examined the impact of digital game-based learning (DGBL) on mathematics achievement in a rural high school setting in North Carolina. A causal comparative research design was used in this study to collect data to determine the effectiveness of DGBL in high school Algebra 1 classes. Data were collected from the North Carolina…

  11. Spectral reflectance inversion with high accuracy on green target

    NASA Astrophysics Data System (ADS)

    Jiang, Le; Yuan, Jinping; Li, Yong; Bai, Tingzhu; Liu, Shuoqiong; Jin, Jianzhou; Shen, Jiyun

    2016-09-01

    Using Landsat-7 ETM remote sensing data, the inversion of spectral reflectance of green wheat in visible and near infrared waveband in Yingke, China is studied. In order to solve the problem of lower inversion accuracy, custom atmospheric conditions method based on moderate resolution transmission model (MODTRAN) is put forward. Real atmospheric parameters are considered when adopting this method. The atmospheric radiative transfer theory to calculate atmospheric parameters is introduced first and then the inversion process of spectral reflectance is illustrated in detail. At last the inversion result is compared with simulated atmospheric conditions method which was a widely used method by previous researchers. The comparison shows that the inversion accuracy of this paper's method is higher in all inversion bands; the inversed spectral reflectance curve by this paper's method is more similar to the measured reflectance curve of wheat and better reflects the spectral reflectance characteristics of green plant which is very different from green artificial target. Thus, whether a green target is a plant or artificial target can be judged by reflectance inversion based on remote sensing image. This paper's research is helpful for the judgment of green artificial target hidden in the greenery, which has a great significance on the precise strike of green camouflaged weapons in military field.

  12. Number-Density Measurements of CO2 in Real Time with an Optical Frequency Comb for High Accuracy and Precision

    NASA Astrophysics Data System (ADS)

    Scholten, Sarah K.; Perrella, Christopher; Anstie, James D.; White, Richard T.; Al-Ashwal, Waddah; Hébert, Nicolas Bourbeau; Genest, Jérôme; Luiten, Andre N.

    2018-05-01

    Real-time and accurate measurements of gas properties are highly desirable for numerous real-world applications. Here, we use an optical-frequency comb to demonstrate absolute number-density and temperature measurements of a sample gas with state-of-the-art precision and accuracy. The technique is demonstrated by measuring the number density of 12C16O2 with an accuracy of better than 1% and a precision of 0.04% in a measurement and analysis cycle of less than 1 s. This technique is transferable to numerous molecular species, thus offering an avenue for near-universal gas concentration measurements.

  13. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    PubMed

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  14. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-26

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  15. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    PubMed Central

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-01

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart. PMID:26821029

  16. A geospatial framework for improving the vertical accuracy of elevation models in Florida's coastal Everglades

    NASA Astrophysics Data System (ADS)

    Cooper, H.; Zhang, C.; Sirianni, M.

    2016-12-01

    South Florida relies upon the health of the Everglades, the largest subtropical wetland in North America, as a vital source of water. Since the late 1800's, this imperiled ecosystem has been highly engineered to meet human needs of flood control and water use. The Comprehensive Everglades Restoration Plan (CERP) was initiated in 2000 to restore original water flows to the Everglades and improve overall ecosystem health, while also aiming to achieve balance with human water usage. Due to subtle changes in the Everglades terrain, better vertical accuracy elevation data are needed to model groundwater and surface water levels that are integral to monitoring the effects of restoration under impacts such as sea-level rise. The current best available elevation datasets for the coastal Everglades include High Accuracy Elevation Data (HAED) and Florida Department of Emergency Management (FDEM) Light Detection and Ranging (LiDAR). However, the horizontal resolution of the HAED data is too coarse ( 400 m) for fine scale mapping, and the LiDAR data does not contain an accuracy assessment for coastal Everglades' vegetation communities. The purpose of this study is to develop a framework for generating better vertical accuracy and horizontal resolution Digital Elevation Models in the Flamingo District of Everglades National Park. In the framework, field work is conducted to collect RTK GPS and total station elevation measurements for mangrove swamp, coastal prairies, and freshwater marsh, and the proposed accuracy assessment and elevation modeling methodology is integrated with a Geographical Information System (GIS). It is anticipated that this study will provide more accurate models of the soil substrate elevation that can be used by restoration planners to better predict the future state of the Everglades ecosystem.

  17. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  18. Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing.

    PubMed

    Mizuno, Yosuke; Nakamura, Kentaro

    2010-12-01

    We investigated the dependences of Brillouin frequency shift (BFS) on strain and temperature in a perfluorinated graded-index polymer optical fiber (PFGI-POF) at 1.55 μm wavelength. They showed negative dependences with coefficients of -121.8 MHz/% and -4.09 MHz/K, respectively, which are -0.2 and -3.5 times as large as those in silica fibers. These unique BFS dependences indicate that the Brillouin scattering in PFGI-POFs has a big potential for strain-insensitive high-accuracy temperature sensing.

  19. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  20. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    USGS Publications Warehouse

    Moorhead, Jerry; Gowda, Prasanna H.; Hobbins, Michael; Senay, Gabriel; Paul, George; Marek, Thomas; Porter, Dana

    2015-01-01

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETrefmaps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.

  1. Conflicts and Communication between High-Achieving Chinese American Adolescents and Their Parents

    ERIC Educational Resources Information Center

    Qin, Desiree Baolian; Chang, Tzu-Fen; Han, Eun-Jin; Chee, Grace

    2012-01-01

    Drawing on in-depth interview data collected on 18 high-achieving Chinese American students, the authors examine domains of acculturation-based conflicts, parent and child internal conflicts, and conflict resolution in their families. Their analyses show that well-established negative communication patterns in educational expectations, divergent…

  2. Unforgiving Confucian Culture: A Breeding Ground for High Academic Achievement, Test Anxiety and Self-Doubt?

    ERIC Educational Resources Information Center

    Stankov, Lazar

    2010-01-01

    This paper reviews findings from several studies that contribute to our understanding of cross-cultural differences in academic achievement, anxiety and self-doubt. The focus is on comparisons between Confucian Asian and European regions. Recent studies indicate that high academic achievement of students from Confucian Asian countries is…

  3. Closing the Mathematics Achievement Gap in High-Poverty Middle Schools: Enablers and Constraints

    ERIC Educational Resources Information Center

    Balfanz, Robert; Byrnes, Vaughan

    2006-01-01

    The mathematics achievement levels of U.S. students fall far behind those of other developed nations; within the United States itself, the students who are falling behind come predominantly from high-poverty and high-minority areas. This article reports on a series of analyses that followed 4 cohorts of students from 3 such schools through the 5th…

  4. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  5. High construal level can help negotiators to reach integrative agreements: The role of information exchange and judgement accuracy.

    PubMed

    Wening, Stefanie; Keith, Nina; Abele, Andrea E

    2016-06-01

    In negotiations, a focus on interests (why negotiators want something) is key to integrative agreements. Yet, many negotiators spontaneously focus on positions (what they want), with suboptimal outcomes. Our research applies construal-level theory to negotiations and proposes that a high construal level instigates a focus on interests during negotiations which, in turn, positively affects outcomes. In particular, we tested the notion that the effect of construal level on outcomes was mediated by information exchange and judgement accuracy. Finally, we expected the mere mode of presentation of task material to affect construal levels and manipulated construal levels using concrete versus abstract negotiation tasks. In two experiments, participants negotiated in dyads in either a high- or low-construal-level condition. In Study 1, high-construal-level dyads outperformed dyads in the low-construal-level condition; this main effect was mediated by information exchange. Study 2 replicated both the main and mediation effects using judgement accuracy as mediator and additionally yielded a positive effect of a high construal level on a second, more complex negotiation task. These results not only provide empirical evidence for the theoretically proposed link between construal levels and negotiation outcomes but also shed light on the processes underlying this effect. © 2015 The British Psychological Society.

  6. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  7. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  8. Examining School Improvement through the Lens of Principal and Teacher Flow of Influence in High-Achieving, High-Poverty Schools

    ERIC Educational Resources Information Center

    Murley, Lisa Downing; Keedy, John L.; Welsh, John F.

    2008-01-01

    Based on the social exchange theory of Homans, Gouldner, and Malinowski, this sociocultural analysis of three elementary schools focused on principal-teacher and teacher-teacher exchanges of instructional influence. Two questions were asked: (a) In what ways, if any, do principals and teachers in high-achieving, high-poverty schools exchange…

  9. Cause and Cure - Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD researchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where simplex elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identifies the reason behind the difficulties in use of such high-aspect ratio simplex elements is formulated using two different approaches and presented here. Drawing insights from the analysis, a potential solution to avoid that pitfall is also provided as part of this work. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, how the gradient evaluation procedures of the CESE framework can be effectively used to produce accurate and stable results on such high-aspect ratio simplex meshes is also showcased.

  10. Optimizing digital elevation models (DEMs) accuracy for planning and design of mobile communication networks

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud A.

    2004-02-01

    Digital elevation models (DEMs) are important tools in the planning, design and maintenance of mobile communication networks. This research paper proposes a method for generating high accuracy DEMs based on SPOT satellite 1A stereo pair images, ground control points (GCP) and Erdas OrthoBASE Pro image processing software. DEMs with 0.2911 m mean error were achieved for the hilly and heavily populated city of Amman. The generated DEM was used to design a mobile communication network resulted in a minimum number of radio base transceiver stations, maximum number of covered regions and less than 2% of dead zones.

  11. What do we mean by accuracy in geomagnetic measurements?

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  12. High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max

    2003-01-01

    A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  13. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  14. Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1994-01-01

    Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.

  15. Predicting Early Academic Failure in High School from Prior Academic Achievement, Psychosocial Characteristics, and Behavior

    ERIC Educational Resources Information Center

    Casillas, Alex; Robbins, Steve; Allen, Jeff; Kuo, Yi-Lung; Hanson, Mary Ann; Schmeiser, Cynthia

    2012-01-01

    The authors examined the differential effects of prior academic achievement, psychosocial, behavioral, demographic, and school context factors on early high school grade point average (GPA) using a prospective study of 4,660 middle-school students from 24 schools. The findings suggest that (a) prior grades and standardized achievement are the…

  16. Balancing Dreams and Realities: The College Choice Process for High-Achieving Latinas

    ERIC Educational Resources Information Center

    Hernández, Ebelia

    2015-01-01

    This study's narratives of 17 high-achieving Latinas revealed how their college choice was a constant balancing of individual and family expectations, being "close, but far enough away," and "getting your money's worth." With the use of critical race theory, further analysis revealed the influence of "familismo" on…

  17. Student Achievement and Attitude in a Satellite-Delivered High School Science Course.

    ERIC Educational Resources Information Center

    Martin, Elaine D.; Rainey, Larry

    1993-01-01

    Discusses results of a study of high school students that was conducted to determine, through measures of student achievement, the educational effectiveness of interactive satellite delivery compared with traditional classroom instruction in anatomy and physiology and to compare the attitudes toward anatomy and physiology of distance students and…

  18. High-Stakes Testing and Student Achievement: Does Accountability Pressure Increase Student Learning?

    ERIC Educational Resources Information Center

    Nichols, Sharon L.; Glass, Gene V.; Berliner, David C.

    2006-01-01

    This study examined the relationship between high-stakes testing pressure and student achievement across 25 states. Standardized portfolios were created for each study state. Each portfolio contained a range of documents that told the "story" of accountability implementation and impact in that state. Using the "law of comparative…

  19. High accuracy switched-current circuits using an improved dynamic mirror

    NASA Technical Reports Server (NTRS)

    Zweigle, G.; Fiez, T.

    1991-01-01

    The switched-current technique, a recently developed circuit approach to analog signal processing, has emerged as an alternative/compliment to the well established switched-capacitor circuit technique. High speed switched-current circuits offer potential cost and power savings over slower switched-capacitor circuits. Accuracy improvements are a primary concern at this stage in the development of the switched-current technique. Use of the dynamic current mirror has produced circuits that are insensitive to transistor matching errors. The dynamic current mirror has been limited by other sources of error including clock-feedthrough and voltage transient errors. In this paper we present an improved switched-current building block using the dynamic current mirror. Utilizing current feedback the errors due to current imbalance in the dynamic current mirror are reduced. Simulations indicate that this feedback can reduce total harmonic distortion by as much as 9 dB. Additionally, we have developed a clock-feedthrough reduction scheme for which simulations reveal a potential 10 dB total harmonic distortion improvement. The clock-feedthrough reduction scheme also significantly reduces offset errors and allows for cancellation with a constant current source. Experimental results confirm the simulated improvements.

  20. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.

    PubMed

    Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm

    2015-07-01

    In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT < 2.0%); linearity (R > 0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects.