Science.gov

Sample records for achieve high electron

  1. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  2. Achievement of balanced high frequency and high breakdown by InGaAs-based high-electron-mobility transistors with slant field plates

    NASA Astrophysics Data System (ADS)

    Hosotani, Tomotaka; Otsuji, Taiichi; Suemitsu, Tetsuya

    2016-11-01

    InGaAs-based high-electron-mobility transistors (HEMTs) with SiCN-based multistep slant field plates (FPs) and two-step recess (TSR) gates are fabricated and characterized. The slant FPs, which were originally developed for GaN-HEMTs, are integrated with InGaAs-HEMTs to increase the breakdown voltage (BV). The BVs of InGaAs-HEMTs increase by a factor of 1.5-2. However, FPs have a negative effect on the current gain cutoff frequency (f T). Consequently, BV and f T have a trade-off relationship. The combination of slant FPs and TSR gates enables the achievement of a balanced BV and f T of 8.0 V and 106 GHz, respectively, in 130-nm-gate-length InGaAs-HEMTs.

  3. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  4. Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO2 Electron Extraction Layer.

    PubMed

    Huang, Aibin; Lei, Lei; Zhu, Jingting; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-01-25

    The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO2 electron transport layer (ETL). Under optimized condition, TiO2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm(-2) was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.

  5. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  6. Highly Functional TNTs with Superb Photocatalytic, Optical, and Electronic Performance Achieving Record PV Efficiency of 10.1% for 1D-Based DSSCs.

    PubMed

    Qadir, Muhammad Bilal; Li, Yuewen; Sahito, Iftikhar Ali; Arbab, Alvira Ayoub; Sun, Kyung Chul; Mengal, Naveed; Memon, Anam Ali; Jeong, Sung Hoon

    2016-09-01

    Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF-TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF-TNTs by using commercial and cheaper materials for cost-effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye-sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer-Emmett-Teller (BET), electrochemical impedance spectrum, incident-photon-to-current efficiency, and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy characterizations are proving the functionality of HF-TNTs for DSSCs. HF-TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C-TNTs). The DSSCs having HF-TNT and its composite-based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC , quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N-719 dye is achieved, for 1D-based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye-sensitized solar cells, Li-ion batteries, photocatalysis process, ion-exchange/adsorption process, and photoelectrochemical devices.

  7. High Availability Electronics Standards

    SciTech Connect

    Larsen, R.S.; /SLAC

    2006-12-13

    Availability modeling of the proposed International Linear Collider (ILC) predicts unacceptably low uptime with current electronics systems designs. High Availability (HA) analysis is being used as a guideline for all major machine systems including sources, utilities, cryogenics, magnets, power supplies, instrumentation and controls. R&D teams are seeking to achieve total machine high availability with nominal impact on system cost. The focus of this paper is the investigation of commercial standard HA architectures and packaging for Accelerator Controls and Instrumentation. Application of HA design principles to power systems and detector instrumentation are also discussed.

  8. Record high electron mobility of 6.3 cm² V⁻¹ s⁻¹ achieved for polymer semiconductors using a new building block.

    PubMed

    Sun, Bin; Hong, Wei; Yan, Zhuangqing; Aziz, Hany; Li, Yuning

    2014-05-01

    A new electron acceptor building block, 3,6-di(pyridin-2-yl)pyrrolo[3,4-c ]pyrrole-1,4(2H ,5H)-dione (DBPy), is used to construct a donor-acceptor polymer, PDBPyBT. This polymer exhibits a strong self-assembly capability, to form highly crystalline and oriented thin films with a short π-π stacking distance of 0.36 nm. PDBPyBT shows ambipolar charge-transport performance in organic thin-film transistors, reaching a record high electron-mobility value of 6.30 cm(2) V(-1) s(-1).

  9. High-performance n-type organic semiconductors: incorporating specific electron-withdrawing motifs to achieve tight molecular stacking and optimized energy levels.

    PubMed

    Yun, Sun Woo; Kim, Jong H; Shin, Seunghoon; Yang, Hoichang; An, Byeong-Kwan; Yang, Lin; Park, Soo Young

    2012-02-14

    Novel π–conjugated cyanostilbene-based semiconductors (Hex-3,5-TFPTA and Hex-4-TFPTA) with tight molecular stacking and optimized energy levels are synthesized. Hex-4-TFPTA exhibits high-performance n-type organic field-effect transistor (OFET) properties with electron mobilities as high as 2.14 cm2 V−1s−1 and on-off current ratios

  10. Rational design of aggregation-induced emission luminogen with weak electron donor-acceptor interaction to achieve highly efficient undoped bilayer OLEDs.

    PubMed

    Chen, Long; Jiang, Yibin; Nie, Han; Hu, Rongrong; Kwok, Hoi Sing; Huang, Fei; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong

    2014-10-08

    In this work, two tailored luminogens (TPE-NB and TPE-PNPB) consisting of tetraphenylethene (TPE), diphenylamino, and dimesitylboryl as a π-conjugated linkage, electron donor, and electron acceptor, respectively, are synthesized and characterized. Their thermal stabilities, photophysical properties, solvachromism, fluorescence decays, electronic structures, electrochemical behaviors, and electroluminescence (EL) properties are investigated systematically, and the impacts of electron donor-acceptor (D-A) interaction on optoelectronic properties are discussed. Due to the presence of a TPE unit, both luminogens show aggregation-induced emission, but strong D-A interaction causes a decrease in emission efficiency and red-shifts in photoluminescence and EL emissions. The luminogen, TPE-PNPB, with a weak D-A interaction fluoresces strongly in solid film with a high fluorescence quantum yield of 94%. The trilayer OLED [ITO/NPB (60 nm)/TPE-PNPB (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] utilizing TPE-PNPB as a light emitter shows a peak luminance of 49 993 cd m(-2) and high EL efficiencies up to 15.7 cd A(-1), 12.9 lm W(-1), and 5.12%. The bilayer OLED [ITO/TPE-PNPB (80 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] adopting TPE-PNPB as a light emitter and hole transporter simultaneously affords even better EL efficiencies of 16.2 cd A(-1), 14.4 lm W(-1), and 5.35% in ambient air, revealing that TPE-PNPB is an eximious p-type light emitter.

  11. Achieving appropriate regulations for electronic cigarettes

    PubMed Central

    Saitta, Daniela; Ferro, Giancarlo Antonio

    2014-01-01

    A growing body of scientific studies show that e-cigarettes may serve as an acceptable substitute for smoking tobacco cigarettes, thereby reducing or eliminating exposure to harmful elements in smoke. The success of e-cigarettes is such that sales of these products are rapidly gaining on traditional cigarettes. The rapidly evolving phenomenon is raising concerns for the health community, pharmaceutical industry, health regulators and state governments. Obviously, these products need to be adequately regulated, primarily to protect users. Depending on the form and intended scope, certain regulatory decisions may have diverse unintended consequences on public health and may face many different challenges. Ideally, before any regulations are enacted, the regulatory body will require sufficient scientific research to verify that a problem does exist, quantify the problem, explore all potential solutions including making no change at all, determine the possible consequences of each, and then select the solution that is best for public health. Here we present an overview on the existing and deeming regulatory decisions for electronic cigarettes. We challenge them, based on the mounting scientific evidence with the ultimate goal of proposing appropriate recommendations while minimizing potential unintended consequences of ill-informed regulation. PMID:24587890

  12. What Is Important in Electronic Textbooks for Students of Different Achievement Levels?

    ERIC Educational Resources Information Center

    Luik, Piret; Mikk, Jaan

    2008-01-01

    This paper reports the findings of a study that explored which characteristics of electronic textbooks correlated with knowledge acquisition by learners of different achievement levels. The study was carried out on 35 units of electronic textbooks that were studied by 19 high-achieving and 19 low-achieving students in four Estonian schools. The…

  13. The Constraints of Poverty on High Achievement

    ERIC Educational Resources Information Center

    Burney, Virginia H.; Beilke, Jayne R.

    2008-01-01

    Research studies on school success often focus on the impact of discrete elements such as race, culture, ethnicity, gender, language, or school location on high achievement. The condition of poverty, however, may be the most important of all student differences in relation to high achievement; although not all schools have racial diversity, nearly…

  14. Self Regulated Learning of High Achievers

    ERIC Educational Resources Information Center

    Rathod, Ami

    2010-01-01

    The study was conducted on high achievers of Senior Secondary school. Main objectives were to identify the self regulated learners among the high achievers, to find out dominant components and characteristics operative in self regulated learners and to compare self regulated learning of learners with respect to their subject (science and non…

  15. Systemic Reform and Minority Student High Achievement.

    ERIC Educational Resources Information Center

    Treisman, Philip Uri; Surles, Stephanie A.

    The under-representation of African American and Hispanic American students among high achievers on standardized tests, honors graduates of most colleges, and practitioners of mathematics and science professions is well-documented. This paper explores the extent to which the current educational reform movement is achieving the goal of…

  16. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  17. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  18. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  19. Student Perceptions of High-Achieving Classmates

    ERIC Educational Resources Information Center

    Händel, Marion; Vialle, Wilma; Ziegler, Albert

    2013-01-01

    The reported study investigated students' perceptions of their high-performing classmates in terms of intelligence, social skills, and conscientiousness in different school subjects. The school subjects for study were examined with regard to cognitive, physical, and gender-specific issues. The results show that high academic achievements in…

  20. High Stakes Testing and Student Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    The effects of high stakes testing may be critical in the lives of public school students and may have many consequences for schools and teachers. There are no easy answers in measuring student achievement and in holding teachers accountable for learner progress. High stakes testing also involves responsibilities on the part of the principal who…

  1. High Achievers: 23rd Annual Survey. Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This report presents data from an annual survey of high school student leaders and high achievers. It is noted that of the nearly 700,000 high achievers featured in this edition, 5,000 students were sent the survey and 2,092 questionnaires were completed. Subjects were high school juniors and seniors selected for recognition by their principals or…

  2. Effects of Notetaking Format on Achievement When Studying Electronic Text.

    ERIC Educational Resources Information Center

    Katayama, Andrew D.; Crooks, Steven M.; Nelson, Charles E.

    Two experiments were conducted to investigate the effects of notetaking on achievement while studying electronic text. In the first experiment, 83 students studied 1 of 3 sets of notes (partial, skeletal, and control) for the effects on posttest performance (on fact, structure, and transfer tests). No differences were found between groups on the…

  3. High brightness electron sources

    SciTech Connect

    Sheffield, R.L.

    1995-07-01

    High energy physics accelerators and free electron lasers put increased demands on the electron beam sources. This paper describes the present research on attaining intense bright electron beams using photoinjectors. Recent results from the experimental programs will be given. The performance advantages and difficulties presently faced by researchers will be discussed, and the following topics will be covered. Progress has been made in photocathode materials, both in lifetime and quantum efficiency. Cesium telluride has demonstrated significantly longer lifetimes than cesium antimonide at 10{sup {minus}8} torr. However, the laser system is more difficult because cesium telluride requires quadrupled YLF instead of the doubled YLF required for cesium antimonide. The difficulty in using photoinjectors is primarily the drive laser, in particular the amplitude stability. Finally, emittance measurements of photoinjector systems can be complicated by the non-thermal nature of the electron beam. An example of the difficulty in measuring beam emittance is given.

  4. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  5. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  6. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  7. Early predictors of high school mathematics achievement.

    PubMed

    Siegler, Robert S; Duncan, Greg J; Davis-Kean, Pamela E; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Chen, Meichu

    2012-07-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics achievement. Analyses of large, nationally representative, longitudinal data sets from the United States and the United Kingdom revealed that elementary school students' knowledge of fractions and of division uniquely predicts those students' knowledge of algebra and overall mathematics achievement in high school, 5 or 6 years later, even after statistically controlling for other types of mathematical knowledge, general intellectual ability, working memory, and family income and education. Implications of these findings for understanding and improving mathematics learning are discussed.

  8. Attitudes and Opinions from the Nation's High Achieving Teens. 18th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Educational Communications, Inc., Lake Forest, IL.

    This document contains factsheets and news releases which cite findings from a national survey of 1,985 high achieving high school students. Factsheets describe the Who's Who Among American High School Students recognition and service program for high school students and explain the Who's Who survey. A summary report of this eighteenth annual…

  9. Achieving High-Temperature Ferromagnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat

    Topological insulators (TIs) are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens new opportunities for creating next-generation electronic and spintronic devices, including TI-based quantum computation. Introducing ferromagnetic order into a TI system without compromising its distinctive quantum coherent features could lead to a realization of several predicted novel physical phenomena. In particular, achieving robust long-range magnetic order at the TI surface at specific locations without introducing spin scattering centers could open up new possibilities for devices. Here, we demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (FMI) to a TI (Bi2Se3); this interfacial ferromagnetism persists up to room temperature, even though the FMI (EuS) is known to order ferromagnetically only at low temperatures (<17 K). The induced magnetism at the interface resulting from the large spin-orbit interaction and spin-momentum locking feature of the TI surface is found to greatly enhance the magnetic ordering (Curie) temperature of the TI/FMI bilayer system. Due to the short range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a TI, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered TI could allow for an efficient manipulation of the magnetization dynamics by an electric field, providing an energy efficient topological control mechanism for future spin-based technologies. Work supported by MIT MRSEC through the MRSEC Program of NSF under award number DMR-0819762, NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

  10. 22nd Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This study surveyed high school students (N=1,879) who were student leaders or high achievers in the spring of 1991 for the purpose of determining their attitudes. Students were members of the junior or senior high school class during the 1990-91 academic year and were selected for recognition by their principals or guidance counselors, other…

  11. Attitudes and Opinions from the Nation's High Achieving Teens: 26th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    A national survey of 3,351 high achieving high school students (junior and senior level) was conducted. All students had A or B averages. Topics covered include lifestyles, political beliefs, violence and entertainment, education, cheating, school violence, sexual violence and date rape, peer pressure, popularity, suicide, drugs and alcohol,…

  12. Attitudes and Opinions from the Nation's High Achieving Teens. 24th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey represents information compiled by the largest national survey of adolescent leaders and high achievers. Of the 5,000 students selected demographically from "Who's Who Among American High School Students," 1,957 responded. All students surveyed had "A" or "B" averages, and 98% planned on attending college. Questions were asked about…

  13. Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing

    NASA Astrophysics Data System (ADS)

    Huang, Shyh-Jer; Chou, Cheng-Wei; Su, Yan-Kuin; Lin, Jyun-Hao; Yu, Hsin-Chieh; Chen, De-Long; Ruan, Jian-Long

    2017-04-01

    In this paper, we present a technique to fabricate normally off GaN-based high-electron mobility transistor (HEMT) by sputtering and post-annealing p-NiOx capping layer. The p-NiOx layer is produced by sputtering at room temperature and post-annealing at 500 °C for 30 min in pure O2 environment to achieve high hole concentration. The Vth shifts from -3 V in the conventional transistor to 0.33 V, and on/off current ratio became 107. The forward and reverse gate breakdown increase from 3.5 V and -78 V to 10 V and -198 V, respectively. The reverse gate leakage current is 10-9 A/mm, and the off-state drain-leakage current is 10-8 A/mm. The Vth hysteresis is extremely small at about 33 mV. We also investigate the mechanism that increases hole concentration of p-NiOx after annealing in oxygen environment resulted from the change of Ni2+ to Ni3+ and the surge of (111)-orientation.

  14. High Involvement Mothers of High Achieving Children: Potential Theoretical Explanations

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.

    2013-01-01

    In American society, parents who have high aspirations for the achievements of their children are often viewed by others in a negative light. Various pejoratives such as "pushy parent," "helicopter parent," "stage mother," and "soccer mom" are used in the common vernacular to describe these parents. Multiple…

  15. Does High School Homework Increase Academic Achievement?

    ERIC Educational Resources Information Center

    Kalenkoski, Charlene Marie; Pabilonia, Sabrina Wulff

    2017-01-01

    Although previous research has shown that homework improves students' academic achievement, the majority of these studies use data on students' homework time from retrospective questionnaires, which may be less accurate than time-diary data. We use data from the combined Child Development Supplement (CDS) and the Transition to Adulthood Survey…

  16. Factors Implicated in High Mathematics Achievement

    ERIC Educational Resources Information Center

    Forgasz, Helen J.; Hill, Janelle C.

    2013-01-01

    The most recent Program for International Student Assessment (PISA) (2009) mathematical literacy results provide evidence that in Western English-speaking countries, including Australia, the gender gap in achievement appears to be widening in favour of males. In the study reported in this article, the aim was to explore the effects of gender,…

  17. High Ability Readers and the Achievement Gap

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.; Parke, Cynthia J.; Bramble, Joan G.

    2004-01-01

    To close the achievement gap, the "No Child Left Behind" law calls for all students to make appropriate yearly progress. This presumably means that progress is being made by capable readers at the same time progress is being made by struggling readers. However, there appear to be unintended effects of "No Child Left Behind"…

  18. High brightness picosecond electron gun

    SciTech Connect

    Merano, M.; Collin, S.; Renucci, P.; Gatri, M.; Sonderegger, S.; Crottini, A.; Ganiere, J.D.; Deveaud, B.

    2005-08-15

    We have developed a high brightness picosecond electron gun. We have used it to replace the thermionic electron gun of a commercial scanning electron microscope (SEM) in order to perform time-resolved cathodoluminescence experiments. Picosecond electron pulses are produced, at a repetition rate of 80.7 MHz, by femtosecond mode-locked laser pulses focused on a metal photocathode. This system has a normalized axial brightness of 93 A/cm{sup 2} sr kV, allowing for a spatial resolution of 50 nm in the secondary electron imaging mode of the SEM. The temporal width of the electron pulse is 12 ps.

  19. Novosibirsk Free Electron Laser: Recent Achievements and Future Prospects

    NASA Astrophysics Data System (ADS)

    Shevchenko, O. A.; Arbuzov, V. S.; Vinokurov, N. A.; Vobly, P. D.; Volkov, V. N.; Getmanov, Ya. V.; Davidyuk, I. V.; Deychuly, O. I.; Dementyev, E. N.; Dovzhenko, B. A.; Knyazev, B. A.; Kolobanov, E. I.; Kondakov, A. A.; Kozak, V. R.; Kozyrev, E. V.; Kubarev, V. V.; Kulipanov, G. N.; Kuper, E. A.; Kuptsov, I. V.; Kurkin, G. Ya.; Krutikhin, S. A.; Medvedev, L. E.; Motygin, S. V.; Ovchar, V. K.; Osipov, V. N.; Petrov, V. M.; Pilan, A. M.; Popik, V. M.; Repkov, V. V.; Salikova, T. V.; Sedlyarov, I. K.; Serednyakov, S. S.; Skrinsky, A. N.; Tararyshkin, S. V.; Tribendis, A. G.; Cheskidov, V. G.; Chernov, K. N.; Shcheglov, M. A.

    2017-02-01

    Free electron lasers (FELs) are unique sources of electromagnetic radiation with tunable wavelength. A high-power FEL has been created at the G. I.Budker Institute for Nuclear Physics. Its radiation frequency can be tuned over a wide range in the terahertz and infrared spectral ranges. As the source of electron bunches, this FEL uses a multi-turn energy-recovery linac, which has five straight sections. Three sections are used for three FELs which operate in different wavelength ranges (90-240 μm for the first, 37-80 μm for the second, and 5-20 μm for the third ones). The first and the second FELs were commissioned in 2003 and 2009, respectively. They are used for various applied and research problems now. The third FEL is installed on the last, forth accelerator loop, in which the electron energy is the maximum. It comprises three undulator sections and a 40 m optical cavity. The first lasing of this FEL was obtained in the summer of 2015. The radiation wavelength was 9 μm and the average power was about 100 W. The design power is 1 kW at a pulse repetition rate of 3.75 MHz. Radiation of the third FEL will be delivered to user stations from the protected hall in the near future. The third FEL commissioning results are presented and the current status of the first and second FELs as well as their future development prospects are described.

  20. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  1. High-Achieving Students in the Era of NCLB

    ERIC Educational Resources Information Center

    Loveless, Tom; Parkas, Steve; Duffett, Ann

    2008-01-01

    This report contains two separate studies examining the status of high-achieving students in the No Child Left Behind (NCLB) era. Part I, An Analysis of NAEP Data, authored by Brookings Institution scholar Tom Loveless, examines achievement trends for high-achieving students (defined, like low-achieving students, by their performance on the…

  2. Improving Student Achievement: A Study of High-Poverty Schools with Higher Student Achievement Outcomes

    ERIC Educational Resources Information Center

    Butz, Stephen D.

    2012-01-01

    This research examined the education system at high-poverty schools that had significantly higher student achievement levels as compared to similar schools with lower student achievement levels. A multischool qualitative case study was conducted of the educational systems where there was a significant difference in the scores achieved on the…

  3. Novel Architectures for Achieving Direct Electron Transfer in Enzymatic Biofuel Cells

    NASA Astrophysics Data System (ADS)

    Blaik, Rita A.

    Enzymatic biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving direct electron transfer with high enzyme concentrations in a simple system. In this dissertation, methods of constructing electrodes consisting of enzymes attached to nanoparticle-enhanced substrates that serve as high surface area templates are evaluated. In the first method described, glucose oxidase is covalently attached to gold nanoparticles that are assembled onto genetically engineered M13 bacteriophage. The resulting anodes achieve a high peak current per area and a significant improvement in enzyme surface coverage. In the second system, fructose dehydrogenase, a membrane-bound enzyme that has the natural ability to achieve direct electron transfer, is immobilized into a matrix consisting of binders and carbon nanotubes to extend the lifetime of the anode. For the cathode, bilirubin oxidase is immobilized in a carbon nanotube and sol-gel matrix to achieve direct electron transfer. Finally, a full fuel cell consisting of both an anode and cathode is constructed and evaluated with each system described.

  4. Achieving unusual oxidation state of matter under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Lin, Haiqing; Ma, Yanming; Miao, Maosheng

    2013-03-01

    Pressure has many effects to matter including the reduction of the volume, the increase of the coordination number and the broadening of the band-widths. In the past, most of the high-pressure studies focused on structural and electronic state phase transitions. Using first principles calculations and a bias-free structural search method, we will demonstrate that high pressure can lead to high oxidation state of elements that can never be achieved under ambient condition, making high pressure technique a nice tool to explore many traditional topics in solid state and molecular chemistry. As an example, we will show that Hg can transfer the electrons in its outmost d shell to F atoms and form HgF4 molecular crystals under pressure, thereby acting as a true transition metal. Group IIB elements, including Zn, Cd, and Hg are usually defined as post-transition metals because they are commonly oxidized only to the +2 state. Their d shells are completely filled and do not participate in the formation of chemical bonds. Although the synthesis of HgF4 molecules in gas phase was reported before, the molecules show strong instabilities and dissociate. Therefore, the transition metal propensity of Hg remains an open question.

  5. Achieving strategic surety for high consequence software

    SciTech Connect

    Pollock, G.M.

    1996-09-01

    A strategic surety roadmap for high consequence software systems under the High Integrity Software (HIS) Program at Sandia National Laboratories guides research in identifying methodologies to improve software surety. Selected research tracks within this roadmap are identified and described detailing current technology and outlining advancements to be pursued over the coming decade to reach HIS goals. The tracks discussed herein focus on Correctness by Design, and System Immunology{trademark}. Specific projects are discussed with greater detail given on projects involving Correct Specification via Visualization, Synthesis, & Analysis; Visualization of Abstract Objects; and Correct Implementation of Components.

  6. Norview High School: Leadership Fosters Achievment

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    Often little unsaid things demonstrate what is truly important in a school. When teachers have common planning time and all of the department chairs share a single space as they do at Norview High School in Norfolk, VA, the unmistakable message is that instructional collaboration and leadership are expected and valued. Norview, an urban,…

  7. Self-Concept and Achievement Motivation of High School Students

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Vimala, A.

    2013-01-01

    The present study "Self-concept and Achievement Motivation of High School Students" was investigated to find the relationship between Self-concept and Achievement Motivation of High School Students. Data for the study were collected using Self-concept Questionnaire developed by Raj Kumar Saraswath (1984) and Achievement Motive Test (ACMT)…

  8. Gun requirements to achieve high field spheromaks

    SciTech Connect

    Fowler, T K

    1999-03-04

    It is shown that a gun similar to that in the SSPX could demonstrate the high fields required for Pulsed Spheromak reactors merely by prolonging the pulse. Important considerations are choosing the voltage to exceed ohmic losses; designing the gun to avoid wasteful short-circuiting of current within the gun; and the injection efficiency factor, f, determined by the ''sag'' in the profile of {lambda} = {mu}{sub o}j/B. Typically f = 0.75 in experiments, giving an overall efficiency > 50 % if short-circuiting is avoided. Theoretical transport models agree qualitatively with the need for a finite gradient in h to pump in helicity by current-driven tearing modes and suggest that pressure-driven resistive modes would not compete with current-driven modes during a buildup to ohmic ignition.

  9. High electron mobility in bathophenanthroline

    NASA Astrophysics Data System (ADS)

    Naka, Shigeki; Okada, Hiroyuki; Onnagawa, Hiroyoshi; Tsutsui, Tetsuo

    2000-01-01

    We have measured electron mobility in vacuum-deposited films of 4,7-diphenyl-1,10phenanthroline (bathophenanthroline, or BPhen) using a time-of-flight technique. Electron transport was highly dispersive for BPhen with a dispersion parameter of a value 0.30. The electron mobility in excess of 10-4 cm2/V s has been observed at electric fields of the order of 105 V/cm with weakly dependent on the electric field. The characteristic energy of the distribution is obtained a value 0.09 eV. It is directly confirmed that the BPhen has superior electron-transport capability.

  10. A Electronic Voting Scheme Achieved by Using Quantum Proxy Signature

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Ding, Li-Yuan; Yu, Yao-Feng; Li, Peng-Fei

    2016-09-01

    In this paper, we propose a new electronic voting scheme using Bell entangled states as quantum channels. This scheme is based on quantum proxy signature. The voter Alice, vote management center Bob, teller Charlie and scrutineer Diana only perform single particle measurement to realize the electronic voting process. So the scheme reduces the technical difficulty and increases operation efficiency. It can be easily realized. We use quantum key distribution and one-time pad to guarantee its unconditional security. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, unforgetability and undeniability.

  11. Electronic Play, Study, Communication, and Adolescent Achievement, 2003-2008

    ERIC Educational Resources Information Center

    Hofferth, Sandra L.; Moon, Ui Jeong

    2012-01-01

    Adolescents' time spent messaging, exploring websites, and studying on the computer increased between 2003 and 2008. Using data from the Panel Study of Income Dynamics Child Development Supplement, this study examines how such changes have influenced individual achievement and behavior from childhood to adolescence. Greater communications and…

  12. Scientific Temper among Academically High and Low Achieving Adolescent Girls

    ERIC Educational Resources Information Center

    Kour, Sunmeet

    2015-01-01

    The present study was undertaken to compare the scientific temper of high and low achieving adolescent girl students. Random sampling technique was used to draw the sample from various high schools of District Srinagar. The sample for the present study consisted of 120 school going adolescent girls (60 high and 60 low achievers). Data was…

  13. High Intensity Polarized Electron Gun

    SciTech Connect

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  14. Electronic Play, Study, Communication, and Adolescent Achievement, 2003 to 2008.

    PubMed

    Hofferth, Sandra L; Moon, Ui Jeong

    2012-06-01

    Adolescents' time spent messaging, exploring websites, and studying on the computer increased between 2003 and 2008. Using data from the Panel Study of Income Dynamics Child Development Supplement, this study examines how such changes have influenced individual achievement and behavior from childhood to adolescence. Greater communications and Internet web time proved detrimental to vocabulary and reading whereas the increased use of computer games was associated with increased reading and problem-solving scores, particularly for girls and minority children. Increased use of the computer for studying was associated with increased test scores for girls but not boys. The consequences are more benign than many feared. Groups that have traditionally used the computer less (girls, minority children) appear to benefit from greater use.

  15. Achieving Long Confinement in a Toroidal Electron Plasma

    SciTech Connect

    Marler, J. P.; Smoniewski, J.; Ha Bao; Stoneking, M. R.

    2009-03-30

    We observe the m = 1 diocotron mode in a partial toroidal trap, and use it as the primary diagnostic for observing the plasma confinement. The frequency of the m = 1 mode, which is approximately proportional to the trapped charge, decays on a three second timescale. The confinement time exceeds, by at least an order of magnitude, the confinement observed in all other toroidal traps for non-neutral plasmas and approaches the theoretical limit set by magnetic pumping transport. Numerical simulations that include toroidal effects are employed to accurately extract plasma charge, equilibrium position and m = 1 mode amplitude from the experimental data. Future work will include attempts to withdraw the electron source in order to study confinement in a full torus.

  16. The "Renaissance Child": High Achievement and Gender in Late Modernity

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky

    2012-01-01

    This paper draws on the concept of the "Renaissance Child" to illustrate the ways in which gender influences the opportunities and possibilities of high-achieving pupils. Using data from a study of 12-13-year high-achieving boys and girls based in schools in England, the paper considers the ways in which a group of popular boys was able…

  17. Holographic generation of highly twisted electron beams.

    PubMed

    Grillo, Vincenzo; Gazzadi, Gian Carlo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2015-01-23

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wave front corresponding to the electron's wave function forms a helical structure with a number of twists given by the angular speed. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a conventional electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nanofabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200ℏ. Based on a novel technique the value of orbital angular momentum of the generated beam is measured and then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction and, thus, may be used in the study of the magnetic properties of materials and for manipulating nanoparticles.

  18. Using electronic portfolios to measure student achievement and assess curricular integrity.

    PubMed

    Ramey, Sandra L; Hay, M Louise

    2003-01-01

    Successful achievement of program outcomes is the primary goal of nursing education programs. Electronic portfolios are a contemporary method by which to measure student achievement, assess curricular efficacy, and evaluate program integrity in nursing education. The authors outline the sequential process of understanding, introducing, and integrating electronic portfolios into a curriculum.

  19. High Efficiency Transverse D. C. Electron Beams.

    DTIC Science & Technology

    1984-10-01

    cathode er pressures is also possible, however, the electron beam be- materials. For example, copper beryllium has a high secon- comes poorly collimated as...50-50% by weight 0.6 acceptable Molybdenum-MgO 6. Graphite 0.1 low 7. Copper 0.05 very high .1 8. Copper- beryllium 98-2% 0.05 very high 9. Stainless...reached 10% of the initial value at a total energy of BEAM S HEET 725 J/cm2. Annealing of doped polysilicon and silicide films was also achieved. Fig

  20. High Intensity Polarized Electron Sources

    SciTech Connect

    Poelker, M.; Adderley, P.; Brittian, J.; Clark, J.; Grames, J.; Hansknecht, J.; McCarter, J.; Stutzman, M. L.; Suleiman, R.; Surles-Law, K.

    2008-02-06

    During the 1990s, at numerous facilities world wide, extensive R and D devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source R and D. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular - Q-weak, a parity violation experiment that will look for physics beyond the Standard Model--requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlated current asymmetry less than 0.1 ppm. Neighboring halls will continue taking beam during Q-weak, pushing the total average beam current from the gun beyond 300 uA. This workshop contribution describes R and D at Jefferson Lab, dedicated toward extending the operating current of polarized electron sources to meet the requirements of high current experiments at CEBAF and to better appreciate the technological challenges of new accelerators, particularly high average current machines like eRHIC that require at least 25 mA at high polarization.

  1. Test-Taking Strategies of High and Low Mathematics Achievers

    ERIC Educational Resources Information Center

    Hong, Eunsook; Sas, Maggie; Sas, John C.

    2006-01-01

    The authors explored test-preparation and test-taking strategies that high school students used in algebra tests. From a pool of high school students (N = 156), 61 students participated in interviews, and of those interviewed, 26 represented those who were high achieving as well as highly interested in mathematics (n = 15) vs. those who were low…

  2. Some Correlates of High School Foreign Language Achievement.

    ERIC Educational Resources Information Center

    Beanblossom, Gary F.

    This paper investigates the influences of traditional kinds of verbal and quantitative achievement and aptitude variables on high school foreign language achievement, as measured by Modern Language Association and University of Washington tests of language skills administered to entering college students. The report focuses on: (1) the sample and…

  3. High precision phase-shifting electron holography

    PubMed

    Yamamoto; Kawajiri; Tanji; Hibino; Hirayama

    2000-01-01

    Today's information-oriented society requires high density and high quality magnetic recording media. The quantitative observation of fine magnetic structures by electron holography is greatly anticipated in the development of such new recording materials. However, the magnetic fields around particles <50 nm have not been observed, because the fields are too weak to observe in the usual way. Here we present a highly precise phase measurement technique: improved phase-shifting electron holography. Using this method, the electric field around a charged polystyrene latex particle (100 nm in diameter) and the magnetic field around iron particles (30 nm in diameter) are observed precisely. A precision of the reconstructed phase image of 2pi/300 rad is achieved in the image of the latex particle.

  4. Attitudes and Opinions from the Nation's High Achieving Teens: 29th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report presents the 1998 statistical findings of the annual survey to determine the attitudes of national high school student leaders. Questionnaires were completed by 3,123 high school juniors and seniors, all of whom were selected for recognition in "Who's Who among American High School Students." In addition to demographic…

  5. Achievement Motivation Training for Potential High School Dropouts. Achievement Motivation Development Project Working Paper Number 4.

    ERIC Educational Resources Information Center

    McClelland, David C.

    This pilot project sought to determine if instruction in achievement motivation would help potential dropouts to complete their schooling. Subjects were tenth grade students in a suburban Boston high school. A one-week residential course during winter and spring vacations was taken by one group of six boys and a second group of four. Equated…

  6. Attitudes and Opinions from the Nation's High Achieving Teens: 28th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 28th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,210 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1997 edition of "Who's Who Among American High School Students." The report presents demographic information on the…

  7. Attitudes and Opinions from the Nation's High Achieving Teens: 27th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 27th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,370 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1996 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  8. High Intensity Polarized Electron Sources

    SciTech Connect

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-02-01

    During the 1990s, at numerous facilities world wide, extensive R&D devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source R&D. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  9. Electron-electron Interactions in Highly Doped Heterojunction

    NASA Astrophysics Data System (ADS)

    Bukhenskyy, K. V.; Dubois, A. B.; Gordova, T. V.; Kucheryavyy, S. I.; Mashnina, S. N.; Safoshkin, A. S.

    We report results from calculations of temperature-dependent intra and intersubband electron-electron scattering rates in two subbands in a two-dimentional (2D) quantum structure in Random Phase Approximations (RPA). Electron-electron interactions in a single highly doped heterojunction are considered taking into account both intra- and intersubband transitions. Expressions are derived for the time of electron-electron interaction, matrix elements of the full screening potential and dynamic dielectric function in a 2D electron system with the fine structure of the energy spectrum, and for the electron density spatial distribution. The theoretical dependences provide a good description of the experimental times of Landau levels collisional broadening.

  10. Attitudes and Opinions from the Nation's High Achieving Teens. 25th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted during the spring of 1994 for the purpose of determining the attitudes of student leaders in the nation's high schools. Eight thousand surveys were sent out to students, of which 3177 were returned. All students surveyed were members of the junior or senior class during the 1993-94 academic year. They were selected for…

  11. What Does Quality Programming Mean for High Achieving Students?

    ERIC Educational Resources Information Center

    Samudzi, Cleo

    2008-01-01

    The Missouri Academy of Science, Mathematics and Computing (Missouri Academy) is a two-year accelerated, early-entrance-to-college, residential school that matches the level, complexity and pace of the curriculum with the readiness and motivation of high achieving high school students. The school is a part of Northwest Missouri State University…

  12. High School Employment and Academic Achievement: A Note for Educators

    ERIC Educational Resources Information Center

    Keister, Mary; Hall, Joshua

    2010-01-01

    Educators are often in a position to affect student decisions to work during the school term. This study reviews and summarizes the literature on the effect that employment during high school has on academic achievement. The available evidence suggests that part-time jobs for high school students are beneficial as long as the number of hours…

  13. High-Stakes Testing: Does It Increase Achievement?

    ERIC Educational Resources Information Center

    Nichols, Sharon L.

    2007-01-01

    I review the literature on the impact on student achievement of high-stakes testing. Its popularity as a mechanism for holding educators accountable has triggered studies to examine whether its promise to increase student learning has been fulfilled. The review concludes there is no consistent evidence to suggest high-stakes testing leads to…

  14. Brain Hemisphericity and Mathematics Achievement of High School Students

    ERIC Educational Resources Information Center

    Fernandez, Sanny F.

    2011-01-01

    This study aimed to find out the brain hemisphericity and mathematics achievement of high school students. The respondents of the study were the 168 first year high school students of Colegio de San Jose, during school year 2010-2011 who were chosen through stratified random sampling. The descriptive and interview methods of research were used in…

  15. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  16. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  17. Achieving the College Dream? Examining Disparities in Access to College Information among High Achieving and Non-High Achieving Latina Students

    ERIC Educational Resources Information Center

    Kimura-Walsh, Erin; Yamamura, Erica K.; Griffin, Kimberly A.; Allen, Walter R.

    2009-01-01

    Using an Opportunity to Learn (OTL) framework, this study examines the college preparatory experiences of Latina high and non-high achievers at an urban Latina/o majority high school. Findings indicate that students relied almost exclusively on school resources to navigate their college preparation process. However, the school provided…

  18. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  19. Self-Esteem and Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Moradi Sheykhjan, Tohid; Jabari, Kamran; Rajeswari, K.

    2014-01-01

    The primary purpose of this study was to determine the influence of self-esteem on academic achievement among high school students in Miandoab City of Iran. The methodology of the research is descriptive and correlation that descriptive and inferential statistics were used to analyze the data. Statistical Society includes male and female high…

  20. Comparison of Achievement of Students in High School Courses

    ERIC Educational Resources Information Center

    Troxel, Verne A.

    1970-01-01

    Compares student achievements on common objectives of CHEMS, CBA, and "Modern Chemistry high school chemistry courses. Results indicate the three couses are not equally effective in meeting their objectives. CHEMS and CBA develop a better understanding of chemistry and science, as well as develop greater ability for critical thinking. CBA…

  1. Relationship between High School Leadership Team Practices and Student Achievement

    ERIC Educational Resources Information Center

    McInnis, Timothy M.

    2009-01-01

    This study investigated if a relationship existed between student achievement in 10th grade Missouri Assessment Program mathematics and 11th grade communication arts scores in 2007 and high school leadership team perceptions of the extent to which they demonstrated leadership practices. The secondary purpose was to compare perceptional…

  2. Early College High School: Closing the Latino Achievement Gap

    ERIC Educational Resources Information Center

    Beall, Kristen Ann

    2016-01-01

    The population of United States Latino students is growing at a rapid rate but their academic achievement lags behind white and Asian students. This issue has significant consequences for the nation's economy, as the job market continues to demand more education and better skills. Early College High School programs have the potential to improve…

  3. Parent Involvement Practices of High-Achieving Elementary Science Students

    NASA Astrophysics Data System (ADS)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  4. Microfabricated high-throughput electronic particle detector.

    PubMed

    Wood, D K; Requa, M V; Cleland, A N

    2007-10-01

    We describe the design, fabrication, and use of a radio frequency reflectometer integrated with a microfluidic system, applied to the very high-throughput measurement of micron-scale particles, passing in a microfluidic channel through the sensor region. The device operates as a microfabricated Coulter counter [U.S. Patent No. 2656508 (1953)], similar to a design we have described previously, but here with significantly improved electrode geometry as well as including electronic tuning of the reflectometer; the two improvements yielding an improvement by more than a factor of 10 in the signal to noise and in the diametric discrimination of single particles. We demonstrate the high-throughput discrimination of polystyrene beads with diameters in the 4-10 microm range, achieving diametric resolutions comparable to the intrinsic spread of diameters in the bead distribution, at rates in excess of 15 x 10(6) beads/h.

  5. The Construction of Black High-Achiever Identities in a Predominantly White High School

    ERIC Educational Resources Information Center

    Andrews, Dorinda J. Carter

    2009-01-01

    In this article, I examine how black students construct their racial and achievement self-concepts in a predominantly white high school to enact a black achiever identity. By listening to these students talk about the importance of race and achievement to their lives, I came to understand how racialized the task of achieving was for them even…

  6. Improving science achievement at high-poverty urban middle schools

    NASA Astrophysics Data System (ADS)

    Ruby, Allen

    2006-11-01

    A large percentage of U.S. students attending high-poverty urban middle schools achieve low levels of science proficiency, posing significant challenges to their success in high school science and to national and local efforts to reform science education. Through its work in Philadelphia schools, the Center for Social Organization of Schools at Johns Hopkins University developed a teacher-support model to address variation in science curricula, lack of materials, and underprepared teachers that combined with initial low levels of proficiency block improvements in science achievement. The model includes a common science curriculum based on NSF-supported materials commercially available, ongoing teacher professional development built around day-to-day lessons, and regular in-class support of teachers by expert peer coaches. One cohort of students at three Philadelphia middle schools using the model was followed from the end of fourth grade through seventh grade. Their gains in science achievement and achievement levels were substantially greater than students at 3 matched control schools and the 23 district middle schools serving a similar student population. Under school-by-school comparisons, these results held for the two schools with adequate implementation. Using widely available materials and techniques, the model can be adopted and modified by school partners and districts.

  7. The Will to Achieve: A Phenomenological Study of the Experiences of African American High Achieving Students and Their Parents

    ERIC Educational Resources Information Center

    Spencer, Natalie Faye

    2012-01-01

    The purpose of this research study was to understand the experiences of high achieving African American students and their parents. The experiences of high achieving African American students and their parents have been missing from literature on the academic achievement of African American students. Much of the literature that has been published…

  8. Electron channeling radiation experiments at very high electron bunch charges

    SciTech Connect

    Carrigan, R.A. Jr.; Freudenberger, J.; Fritzler, S.; Genz, H.; Richter, A.; Ushakov, A.; Zilges, A.; Sellschop, J.P.F.

    2003-12-01

    Plasmas offer the possibility of high acceleration gradients. An intriguing suggestion is to use the higher plasma densities possible in solids to get extremely high gradients. Although solid-state plasmas might produce high gradients they would pose daunting problems. Crystal channeling has been suggested as one mechanism to address these challenges. There is no experimental or theoretical guidance on channeling for intense electron beams. A high-density plasma in a crystal lattice could quench the channeling process. An experiment has been carried out at the Fermilab NICADD Photoinjector Laboratory to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than that in earlier experiments.

  9. Achieving High Performance on the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1998-01-01

    The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.

  10. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    SciTech Connect

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  11. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  12. Effects of Developed Electronic Instructional Medium on Students' Achievement in Biology

    ERIC Educational Resources Information Center

    Chinna, Nsofor Caroline; Dada, Momoh Gabriel

    2013-01-01

    The study investigated the effects of developed electronic instructional medium (video DVD instructional package) on students' achievement in Biology. It was guided by two research questions and two hypotheses, using a quasi-experimental, pretest-postest control group design. The sample comprised of 180 senior secondary, year two students from six…

  13. The Effects of Multimedia and Learning Style on Student Achievement in Online Electronics Course

    ERIC Educational Resources Information Center

    Surjono, Herman Dwi

    2015-01-01

    This experimental study investigated the effects of multimedia preferences and learning styles on undergraduate student achievement in an adaptive e-learning system for electronics course at the Yogyakarta State University Indonesia. The findings showed that students in which their multimedia preferences and learning style matched with the way the…

  14. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  15. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-01

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite.

  16. Unlocking Emergent Talent: Supporting High Achievement of Low-Income, High Ability Students

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Clarenbach, Jane

    2012-01-01

    This report takes a comprehensive look at achievement for low-income promising learners--past, present, and future. At its core, it challenges the nation to move beyond its near-singular focus of achieving minimum performance for all students, to identifying and developing the talent of all students who are capable of high achievement, including…

  17. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  18. High power induction free electron laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1988-12-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35 percent. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 micrometers. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these experiments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  19. High Power Induction Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1989-07-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35%. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 IA. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these expriments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  20. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  1. High performance flexible electronics for biomedical devices.

    PubMed

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  2. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  3. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD).

    PubMed

    Ji, Jiantao; Peng, Yongzhen; Wang, Bo; Wang, Shuying

    2017-01-01

    This study proposed a novel strategy for achievement of partial denitrification driven by endogenous carbon sources in an anaerobic/anoxic/aerobic activated sludge system. Results showed that in the steady-stage, the nitrate-to-nitrite transformation ratio (NTR) was kept at around 87% without nitrate in the effluent. During the anaerobic period, exogenous carbon sources was completely taken up, accompanied by the consumption of glycogen and production of polyhydroxyalkanoates (PHAs). During the anoxic period, nitrate was reduced to nitrite by using PHAs as carbon sources, followed by the replenishment of glycogen. Thus, the phenotype of denitrifying GAOs was clearly observed and endogenous partial denitrification (EPD) occurred. Furthermore, results showed the nitrate reduction was prior to the nitrite reduction in the presence of nitrate, which led to the high nitrite accumulation.

  4. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  5. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  6. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  7. How to achieve high-level expression of microbial enzymes

    PubMed Central

    Liu, Long; Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field. PMID:23686280

  8. Effects of Partner's Ability on the Achievement and Conceptual Organization of High-Achieving Fifth-Grade Students.

    ERIC Educational Resources Information Center

    Carter, Glenda; Jones, M. Gail; Rua, Melissa

    2003-01-01

    Investigates high-achieving fifth-grade students' achievement gains and conceptual reorganization on convection. Features an instructional sequence of three dyadic inquiry investigations related to convection currents as well as pre- and post-assessment consisting of a multiple-choice test, a card sorting task, construction of a concept map, and…

  9. Comparison of the Level of Using Metacognitive Strategies during Study between High Achieving and Low Achieving Prospective Teachers

    ERIC Educational Resources Information Center

    Doganay, Ahmet; Demir, Ozden

    2011-01-01

    The main purpose of this study is to compare the level of using metacognitive strategies during study between high achieving and low achieving prospective classroom teachers. This study was designed as a mixed method study. Metacognitive Learning Strategies Scale developed by Namlu (2004) was used to measure the use of metacognitive strategies…

  10. Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression

    SciTech Connect

    Hollmann, E. M.; Commaux, Nicolas JC; Eidietis, N. W.; Evans, T. E.; Humphreys, D. A.; James, A. N.; Jernigan, T. C.; Parks, P. B.; Strait, E. J.; Wesley, J. C.; Yu, J.H.; Austin, M. E.; Baylor, Larry R; Brooks, N. H.; Izzo, V. A.; Jackson, G. L.; Van Zeeland, M. A.; Wu, W.

    2010-01-01

    Experiments have been performed in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] toward understanding runaway electron formation and amplification during rapid discharge shutdown, as well as toward achieving complete collisional suppression of these runaway electrons via massive delivery of impurities. Runaway acceleration and amplification appear to be well explained using the zero-dimensional (0D) current quench toroidal electric field. 0D or even one-dimensional modeling using a Dreicer seed term, however, appears to be too small to explain the initial runaway seed formation. Up to 15% of the line-average electron density required for complete runaway suppression has been achieved in the middle of the current quench using optimized massive gas injection with multiple small gas valves firing simultaneously. The novel rapid shutdown techniques of massive shattered pellet injection and shell pellet injection have been demonstrated for the first time. Experiments using external magnetic perturbations to deconfine runaways have shown promising preliminary results. (C) 2010 American Institute of Physics. [doi:10.1063/1.3309426

  11. Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression

    SciTech Connect

    Hollmann, E. M.; James, A. N.; Yu, J. H.; Izzo, V. A.; Commaux, N.; Jernigan, T. C.; Baylor, L. R.; Eidietis, N. W.; Parks, P. B.; Wesley, J. C.; Brooks, N. H.; Jackson, G. L.; Zeeland, M. A. van; Wu, W.; Evans, T. E.; Humphreys, D. A.; Strait, E. J.; Austin, M. E.

    2010-05-15

    Experiments have been performed in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] toward understanding runaway electron formation and amplification during rapid discharge shutdown, as well as toward achieving complete collisional suppression of these runaway electrons via massive delivery of impurities. Runaway acceleration and amplification appear to be well explained using the zero-dimensional (0D) current quench toroidal electric field. 0D or even one-dimensional modeling using a Dreicer seed term, however, appears to be too small to explain the initial runaway seed formation. Up to 15% of the line-average electron density required for complete runaway suppression has been achieved in the middle of the current quench using optimized massive gas injection with multiple small gas valves firing simultaneously. The novel rapid shutdown techniques of massive shattered pellet injection and shell pellet injection have been demonstrated for the first time. Experiments using external magnetic perturbations to deconfine runaways have shown promising preliminary results.

  12. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  13. Does Recreational Computer Use Affect High School Achievement?

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Berland, Matthew

    2013-01-01

    Historically, the relationship between student academic achievement and use of computers for fun and video gaming has been described from a multitude of perspectives, from positive, to negative, to neutral. However, recent research has indicated that computer use and video gaming may be positively associated with achievement, yet these studies…

  14. Student Perception of Academic Achievement Factors at High School

    ERIC Educational Resources Information Center

    Bahar, Mustafa

    2016-01-01

    Measuring the quality of the "product" is elemental in education, and most studies depend on observational data about student achievement factors, focusing overwhelmingly on quantitative data namely achievement scores, school data like attendance, facilities, expenditure class size, etc. But there is little evidence of learner…

  15. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  16. Threatened and Placed at Risk: High Achieving African American Males in Urban High Schools

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    This study investigated the risk and protective factors of 11 high-achieving African American males attending 4 urban charter high schools in a Midwestern city to determine what factors account for their resilience and success in mathematics courses, and in high school more generally. This research was guided by a Phenomenological Variant of…

  17. Challenges to achievement of metal sustainability in our high-tech society

    SciTech Connect

    Izatt, Reed M.; Izatt, Steven R.; Bruening, Ronald L.; Izatt, Neil; Moyer, Bruce A

    2014-01-01

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.

  18. The Effect of Music Participation on Mathematical Achievement and Overall Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Cox, H. A.; Stephens, L. J.

    2006-01-01

    A study was conducted on high school students, comparing those with some music credits to those with none. No statistically significant difference was found in their mean math grade point averages (GPA) or their mean cumulative GPAs. Students were then separated into two groups based on the number of music credits. Students who had earned at least…

  19. An Effect of Levels of Learning Ability and Types of Feedback in Electronic Portfolio on Learning Achievement of Students in Electronic Media Production for Education Subject

    ERIC Educational Resources Information Center

    Koraneekij, Prakob

    2008-01-01

    The purpose of this research was to study an effect of levels of learning ability and types of feedback in an electronic portfolio on learning achievement of students in electronic media production for education subject. The samples were 113 students registered in Electronic Media Production for Education Subject divided into 6 groups : 3 control…

  20. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  1. Work at FNAL to achieve long electron drift lifetime in liquid argon

    SciTech Connect

    Finley, D.; Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Rapidis, P.A.; Tope, T.; /Fermilab

    2006-10-01

    This note records some of the work done between July 2005 and July 2006 to achieve long (many milliseconds) electron drift lifetimes in liquid argon at Fermilab. The work is part of a process to develop some experience at Fermilab with the technology required to construct a large liquid argon TPC. This technology has been largely developed by the ICARUS collaboration in Europe and this process can be seen as technology transfer. The capability to produce liquid argon in which electrons have drift lifetimes of several milliseconds is crucial to a successful device. Liquid argon calorimeters have been successfully operated at Fermilab; their electro-negative contaminants are at the level of 10{sup -7} while the TPC we are considering requires a contamination level at the level of 10{sup -11}, tens of parts per trillion (ppt). As well as demonstrating the ability to produce liquid argon at this level of purity, the work is part of a program to test the effect on the electron drift time of candidate materials for the construction of a TPC in liquid argon.

  2. Academic attainment and the high school science experiences among high-achieving African American males

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  3. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  4. Dominant Achievement Goals across Tracks in High School

    ERIC Educational Resources Information Center

    Scheltinga, Peter A. M.; Kuyper, Hans; Timmermans, Anneke C.; van der Werf, Greetje P. C.

    2016-01-01

    The dominant achievement goals (DAGs) of 7,008 students in the third grade of Dutch secondary education (US grade 9) were investigated, based on Elliot & McGregors' 2 × 2 framework (2001), in relation to track-level and motivational variables. We found the mastery-approach goal and the performance-approach goal, generally considered adaptive,…

  5. Charter High Schools: Closing the Achievement Gap. Innovations in Education

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    The eight schools profiled in this document are serving different populations, but all of them are closing the achievement gap between low-income, minority, and special needs students and their peers. By trying out innovative new strategies, these schools are blazing a trail for others to follow. They are dispelling the myth that some students can…

  6. "Brains before "Beauty"?" High Achieving Girls, School and Gender Identities

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky; Read, Barbara

    2010-01-01

    In recent years educational policy on gender and achievement has concentrated on boys' underachievement, frequently comparing it with the academic success of girls. This has encouraged a perception of girls as the "winners" of the educational stakes and assumes that they no longer experience the kinds of gender inequalities identified in…

  7. Parenting Style, Perfectionism, and Creativity in High-Ability and High-Achieving Young Adults

    ERIC Educational Resources Information Center

    Miller, Angie L.; Lambert, Amber D.; Speirs Neumeister, Kristie L.

    2012-01-01

    The current study explores the potential relationships among perceived parenting style, perfectionism, and creativity in a high-ability and high-achieving young adult population. Using data from 323 honors college students at a Midwestern university, bivariate correlations suggested positive relationships between (a) permissive parenting style and…

  8. Success Despite Socioeconomics: A Case Study of a High-Achieving, High-Poverty School

    ERIC Educational Resources Information Center

    Tilley, Thomas Brent; Smith, Samuel J.; Claxton, Russell L.

    2012-01-01

    This case study of a high-achieving, high-poverty school describes the school's leadership, culture, and programs that contributed to its success. Data were collected from two surveys (the School Culture Survey and the Vanderbilt Assessment of Leadership in Education), observations at the school site, and interviews with school personnel. The…

  9. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  10. High Electron Mobility Transistors (HEMT). Selected Papers

    DTIC Science & Technology

    2010-06-01

    phase shifts experienced by the incident electron aElectronic mail: linzhou@asu.edu. FIG. 1. Cross-sectional high-resolution TEM image recorded in 112...strongly diffracting condition and has a uniform potential through its projected thickness, then the relationship between the holographic phase shift ...of AFRL-RY-WP-TR-2010-1178. 15. SUBJECT TERMS microelectronics, heterostructure, holography , modeling/simulation 16. SECURITY CLASSIFICATION OF

  11. High-Power Amplifier Free Electron Lasers

    DTIC Science & Technology

    2006-06-01

    society, including laser pointers , printers, compact-disc players, DVD players, product scanners and even as instruments in medical procedures. With...FREE ELECTRON LASERS by Tyrone Y. Voughs June 2006 Thesis Advisor: William B. Colson Co-Advisor: Robert L. Armstead...2006 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE High-Power Amplifier Free Electron Lasers 6. AUTHOR(S) LT Tyrone Y

  12. High Extraction Free-Electron Laser Experiments.

    DTIC Science & Technology

    1983-03-29

    intended to demonstrate that the tapered wiggler can provide significant electron kinectic energy extraction on a single pass through the wiggler...experiment has been constructed and initial energy extraction measurements have been made. The intent of the experiment is to demonstrate the high...laser beams making a single simultaneous pass through the wiggler. The interaction of these beams is monitored by comparison of the electron energy

  13. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  14. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    SciTech Connect

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  15. AlGaN/GaN metal-insulator-semiconductor high-electron mobility transistors with high on/off current ratio of over 5 × 1010 achieved by ozone pretreatment and using ozone oxidant for Al2O3 gate insulator

    NASA Astrophysics Data System (ADS)

    Tokuda, Hirokuni; Asubar, Joel T.; Kuzuhara, Masaaki

    2016-12-01

    This letter describes DC characteristics of AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with Al2O3 deposited by atomic layer deposition (ALD) as gate dielectric. Comparison was made for the samples deposited using ozone (O3) or water as oxidant. The effect of pretreatment, where O3 was solely supplied prior to depositing Al2O3, was also investigated. The MIS-HEMT with O3 pretreatment and Al2O3 gate dielectric deposited using O3 as the oxidant exhibited the most desirable characteristics with an excellent high on/off current ratio of 7.1 × 1010, and a low sub-threshold swing (SS) of 73 mV/dec.

  16. High-resolution transmission electron microscopy: the ultimate nanoanalytical technique.

    PubMed

    Thomas, John Meurig; Midgley, Paul A

    2004-06-07

    To be able to determine the elemental composition and morphology of individual nanoparticles consisting of no more than a dozen or so atoms that weigh a few zeptograms (10(-21) g) is but one of the attainments of modern electron microscopy. With slightly larger specimens (embracing a few unit cells of the structure) their symmetry, crystallographic phase, unit-cell dimension, chemical composition and often the valence state (from parallel electron spectroscopic measurements) of the constituent atoms may also be determined using a scanning beam of electrons of ca. 0.5 nm diameter. Nowadays electron crystallography, which treats the digital data of electron diffraction (ED) and high-resolution transmission electron microscope (HRTEM) images of minute (ca. 10(-18)g) specimens in a quantitatively rigorous manner, solves hitherto unknown structures just as X-ray diffraction does with bulk single crystals. In addition, electron tomography (see cover photograph and its animation) enables a three-dimensional picture of the internal structure of minute objects, such as nanocatalysts in a single pore, as well as structural faults such as micro-fissures, to be constructed with a resolution of 1 nm from an angular series of two-dimensional (projected) images. Very recently (since this article was first written) a new meaning has been given to electron crystallography as a result of the spatio-temporal resolution of surface phenomena achieved on a femtosecond timescale.

  17. Optics of high-performance electron microscopes.

    PubMed

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.

  18. Optics of high-performance electron microscopes*

    PubMed Central

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933

  19. Electronic Transitions in f-electron Metals at High Pressures:

    SciTech Connect

    Yoo, C; Maddox, B; Lazicki, A; Iota, V; Klepeis, J P; McMahan, A

    2007-02-08

    This study was to investigate unusual phase transitions driven by electron correlation effects that occur in many f-band transition metals and are often accompanied by large volume changes: {approx}20% at the {delta}-{alpha} transition in Pu and 5-15% for analogous transitions in Ce, Pr, and Gd. The exact nature of these transitions has not been well understood, including the short-range correlation effects themselves, their relation to long-range crystalline order, the possible existence of remnants of the transitions in the liquid, the role of magnetic moments and order, the critical behavior, and dynamics of the transitions, among other issues. Many of these questions represent forefront physics challenges central to Stockpile materials and are also important in understanding the high-pressure behavior of other f- and d-band transition metal compounds including 3d-magnetic transition monoxide (TMO, TM=Mn, Fe, Co, Ni). The overarching goal of this study was, therefore, to understand the relationships between crystal structure and electronic structure of transition metals at high pressures, by using the nation's brightest third-generation synchrotron x-ray at the Advanced Photon Source (APS). Significant progresses have been made, including new discoveries of the Mott transition in MnO at 105 GPa and Kondo-like 4f-electron dehybridization and new developments of high-pressure resonance inelastic x-ray spectroscopy and x-ray emission spectroscopy. These scientific discoveries and technology developments provide new insights and enabling tools to understand scientific challenges in stockpile materials. The project has broader impacts in training two SEGRF graduate students and developing an university collaboration (funded through SSAAP).

  20. The Relationship between Self-Esteem and Academic Achievement in a Group of High, Medium, and Low Secondary Public High School Achievers.

    ERIC Educational Resources Information Center

    Thomas-Brantley, Betty J.

    This study investigated the relationship between self-esteem and academic achievement in a group of 150 high, medium, and low achievers at a large midwestern public high school. Correlating data from the Coopersmith Inventory of self-esteem with grades, cumulative grade point averages, and class rank, the study disclosed a positive correlation…

  1. High Brightness and high polarization electron source using transmission photocathode

    SciTech Connect

    Yamamoto, Naoto; Jin Xiuguang; Ujihara, Toru; Takeda, Yoshikazu; Mano, Atsushi; Nakagawa, Yasuhide; Nakanishi, Tsutomu; Okumi, Shoji; Yamamoto, Masahiro; Konomi, Taro; Ohshima, Takashi; Saka, Takashi; Kato, Toshihiro; Horinaka, Hiromichi; Yasue, Tsuneo; Koshikawa, Takanori

    2009-08-04

    A transmission photocathode was fabricated based on GaAs-GaAsP strained superlattice layers on a GaP substrate and a 20 kV-gun was built to generate the polarized electron beams with the diameter of a few micro-meter. As the results, the reduced brightness of 1.3x10{sup 7} A/cm{sup 2}/sr and the polarization of 90% were achieved.

  2. Relationships among Stress, Coping, and Mental Health in High-Achieving High School Students

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Shaunessy, Elizabeth; Hardesty, Robin

    2008-01-01

    This study investigates the relationships among stress, coping, and mental health in 139 students participating in an International Baccalaureate (IB) high school diploma program. Mental health was assessed using both positive indicators (life satisfaction, academic achievement, academic self-efficacy) and negative indicators (psychopathology) of…

  3. Examining Organizational Practices That Predict Persistence among High-Achieving Black Males in High School

    ERIC Educational Resources Information Center

    Anderson, Kenneth Alonzo

    2016-01-01

    Background/Context: This article summarizes an increasing trend of antideficit Black male research in mathematics and highlights opportunities to add to the research. A review of the literature shows that antideficit researchers often examine relationships between individual traits and persistence of high-achieving Black males in mathematics.…

  4. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  5. Relationship between High School Mathematical Achievement and Quantitative GPA

    ERIC Educational Resources Information Center

    Brown, Jennifer L.; Halpin, Glennelle; Halpin, Gerald

    2015-01-01

    The demand for STEM graduates has increased, but the number of incoming freshmen who declare a STEM major has remained stagnant. High school courses, such as calculus, can open or close the gate for students interested in careers in STEM. The purpose of this study was to determine if high school mathematics preparation was a significant…

  6. The Relationship of Electronic Grade Book Access to Student Achievement, Student Attendance, and Parent-Teacher Communication

    ERIC Educational Resources Information Center

    Mathern, Mark S.

    2009-01-01

    Increasing access to online databases from home has raised the value of computer use for retrieving student achievement information. This study's purpose was to examine the relationship of family use of an electronic reporting mechanism in the home to student achievement, attendance, and home-school communication. Using communication as a parent…

  7. High performances CNTFETs achieved using CNT networks for selective gas sensing

    NASA Astrophysics Data System (ADS)

    Gorintin, Louis; Bondavalli, Paolo; Legagneux, Pierre; Pribat, Didier

    2009-08-01

    Our study deals with the utilization of carbon nanotubes networks based transistors with different metal electrodes for highly selective gas sensing. Indeed, carbon nanotubes networks can be used as semi conducting materials to achieve good performances transistors. These devices are extremely sensitive to the change of the Schottky barrier heights between Single Wall Carbon Nanotubes (SWCNTs) and drain/source metal electrodes: the gas adsorption creates an interfacial dipole that modifies the metal work function and so the bending and the height of the Schottky barrier at the contacts. Moreover each gas interacts specifically with each metal identifying a sort of electronic fingerprinting. Using airbrush technique for deposition, we have been able to achieve uniform random networks of carbon nanotubes suitable for large area applications and mass production such as fabrication of CNT based gas sensors. These networks enable us to achieve transistors with on/off ratio of more than 5 orders of magnitude. To reach these characteristics, the density of the CNT network has been adjusted in order to reach the percolation threshold only for semi-conducting nanotubes. These optimized devices have allowed us to tune the sensitivity (improving it) of our sensors for highly selective detection of DiMethyl-Methyl-Phosphonate (DMMP, a sarin stimulant), and even volatile drug precursors using Pd, Au and Mo electrodes.

  8. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  9. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  10. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-08-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  11. High-Current Energy-Recovering Electron Linacs

    SciTech Connect

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  12. Practically Perfect in Every Way: Can Reframing Perfectionism for High-Achieving Undergraduates Impact Academic Resilience?

    ERIC Educational Resources Information Center

    Dickinson, Mary J.; Dickinson, David A. G.

    2015-01-01

    This study focuses on a pan-disciplinary scheme that targeted high-achieving undergraduate students. Earlier research from the scheme argued that high achievers have discernibly different learning and personal development support needs. One of the most frequent self-reported challenges within this high-achieving group is perfectionism. This…

  13. High Achiever: A School Modernization Uncovers Hidden Potential.

    ERIC Educational Resources Information Center

    Babcock, Regina Raiford

    2003-01-01

    Describes the renovation of Lisle Senior High School in Lisle, Illinois, including the educational context and design goals. Includes information on the architects, suppliers, and construction team. Also includes the floor plan and photographs. (EV)

  14. Gender, Student Motivation and Academic Achievement in a Midsized Wisconsin High School

    ERIC Educational Resources Information Center

    Lutzke, Steven Ronald

    2013-01-01

    This mixed-methods study investigated relationships among gender, academic motivation and achievement in a mid-sized Wisconsin high school. A questionnaire was developed that focused on perceived ability, achievement motives and achievement goals. Interviews with teachers focused on relationships among academic motivation and gender achievement.…

  15. Student Achievement Data Systems in High and Low Performing Schools

    ERIC Educational Resources Information Center

    Stachowiak, Jeannie E.

    2013-01-01

    The purpose of this study was to determine if there was a difference in how high and low performing elementary school districts use and analyze data to differentiate instruction, make changes to district/grade level curriculum, determine professional development needs, determine teacher effectiveness, and determine the use of school district…

  16. Behaviour and achievement disorders in children with high intelligence.

    PubMed

    Barchmann, H; Kinze, W

    1990-01-01

    With 6% of the patients of a childpsychiatric population using treatment a high intelligence with an IQ of over 120 was the result. This is in agreement with the results by Reinhard (1981), but is below the results by Schmidt (1977) and justifies neither the association to a higher talent as risk factor nor as protective factor in view of a potential psychic illness. 341 child-neuropsychiatric patients with hyperkinetic syndrome (55%), Enuresis (28%), reactions of adaptation (5%), specific emotional disturbances in childhood (4%), Encopresis (3%), Psychalgy (3%) and tics (2%) were studied; thereby 22 highly intelligent patients were compared with average intelligent patients. With high intelligence better performances of concentration, more reflexive style of study, better school notes and more favourable motor capabilities, less pronounced signs of anxiety and neuroticism are found, but also a poorer social adaptation and less favourable effects of treatment. Concerning the poorer chances of treatment with high intelligence however the behaviour-therapeutic concentration of our therapy has to be pointed out, which might not offer an optimal chance for development.

  17. Organizational Citizenship of Faculty and Achievement of High School Students

    ERIC Educational Resources Information Center

    DiPaola, Michael F.; Hoy, Wayne K.

    2005-01-01

    All successful organizations, including successful high schools, have employees who go beyond their formal job responsibilities and freely give of their time and energy to succeed. Organ was the first to use the phrase "organizational citizenship behavior" (OCB) to denote organizationally beneficial behavior of workers that was not prescribed but…

  18. Common Core and America's High-Achieving Students

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.

    2015-01-01

    While the merit and politics of the Common Core State Standards (CCSS) have been much debated and discussed, one topic has been virtually ignored: What do the standards portend for America's high-ability students? This brief addresses that question and provides guidance for CCSS-implementing districts and schools as they seek to help these…

  19. Syllabication Skills and Reading Achievement of High School Students.

    ERIC Educational Resources Information Center

    Curry, Robert L.; Geis, Lynna

    A sample of 175 students, constituting grades 10, 11, and 12 of two high schools, was used in the validation of a new Syllabication Skills Test. On the first day, the students completed four forms of the syllabication test; on the second, they completed Survey F of the Gates-MacGinitie Reading Tests. Means and standard deviations were similar for…

  20. Technology's Achilles Heel: Achieving High-Quality Implementation

    ERIC Educational Resources Information Center

    Hall, Gene E.

    2010-01-01

    An inherent characteristic of technology education is the continual development of new technologies and creating innovative applications of already existing technologies. As exciting as these innovations can be, technology educators and school staffs are frequently challenged to accomplish high levels of implementation. The metaphor of the…

  1. Alternative High School Scheduling. Student Achievement and Behavior. Research Report.

    ERIC Educational Resources Information Center

    Pisapia, John; Westfall, Amy Lynn

    In 1995 the Metropolitan Educational Research Consortium (MERC), Richmond (Virginia) commissioned a study of alternative high school scheduling modules to determine the effects of different schedules on teaching strategies, teacher and student satisfaction, and student and school performance. This report presents results of an analysis of student…

  2. High-Achieving Schools Put Equity Front and Center

    ERIC Educational Resources Information Center

    Gleason, Sonia Caus; Gerzon, Nancy

    2014-01-01

    How does professional learning look and feel in high-poverty schools where every student makes at least one year's worth of progress every year? How do schools and leaders put all the varied components of professional learning together so that they support all students learning every day? What professional learning grounds and sustains educators…

  3. More High-Achieving Students Are Choosing Community Colleges First

    ERIC Educational Resources Information Center

    Pluviose, David

    2008-01-01

    Certainly, "Tonight Show" host Jay Leno has nurtured the perception that community colleges are a punishment for underperforming high school students by joking that community colleges aren't "real colleges." This article shows that this perception belies the reality that contemporary community colleges serve students seeking trade skills but also…

  4. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  5. Diamond switches for high temperature electronics

    SciTech Connect

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng

    1996-04-25

    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  6. Impact of learning orientation on African American children's attitudes toward high-achieving peers.

    PubMed

    Marryshow, Derrick; Hurley, Eric A; Allen, Brenda A; Tyler, Kenneth M; Boykin, A Wade

    2005-01-01

    This study examined Ogbu's widely accepted thesis that African American students reject high academic achievement because they perceive its limited utility in a world where their upward mobility is constrained by racial discrimination. Boykin's psychosocial integrity model contends that Black students value high achievement but that discrepancies between their formative cultural experiences and those imposed in school lead them to reject the modes of achievement available in classrooms. Ninety Black children completed a measure of attitudes toward students who achieve via mainstream or African American cultural values. Participants rejected the mainstream achievers and embraced the African American cultural achievers. Moreover, they expected their teachers to embrace the mainstream achievers and reject those who achieved through high-verve behavior. Results suggest that Boykin's thesis is a needed refinement to Ogbu's ideas. They indicate that Black children may reject not high achievement but some of the mainstream cultural values and behaviors on which success in mainstream classrooms is made contingent.

  7. High luminosity electron-hadron collider eRHIC

    SciTech Connect

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  8. Achieving High Reliability Operations Through Multi-Program Integration

    SciTech Connect

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  9. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  10. Polystyrene negative resist for high-resolution electron beam lithography

    PubMed Central

    2011-01-01

    We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL) resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern. PMID:21749679

  11. From Dropout to High Achiever: An Understanding of Academic Excellence through the Ethnography of High and Low Achieving Secondary School Students.

    ERIC Educational Resources Information Center

    Cuellar, Alfredo

    This paper, a follow-up to a previous review of literature on academic excellence that synthesized information from the United States and Mexico, describes an ethnographic study of high-achieving and low-achieving Hispanic secondary school students from Calexico, California and Mexicali, Baja California Mexico. Five students for each group were…

  12. Achieving high data reduction with integral cubic B-splines

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.

    1993-01-01

    During geometry processing, tangent directions at the data points are frequently readily available from the computation process that generates the points. It is desirable to utilize this information to improve the accuracy of curve fitting and to improve data reduction. This paper presents a curve fitting method which utilizes both position and tangent direction data. This method produces G(exp 1) non-rational B-spline curves. From the examples, the method demonstrates very good data reduction rates while maintaining high accuracy in both position and tangent direction.

  13. Challenges to achievement of metal sustainability in our high-tech society.

    PubMed

    Izatt, Reed M; Izatt, Steven R; Bruening, Ronald L; Izatt, Neil E; Moyer, Bruce A

    2014-04-21

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

  14. Investigation of a nanofabrication process to achieve high aspect-ratio nanostructures on a quartz substrate.

    PubMed

    Mohamed, K; Alkaisi, M M

    2013-01-11

    This work investigates the development of a nanofabrication process to achieve high aspect-ratio nanostructures on quartz substrates using electron beam lithography (EBL) patterning and fluorinated plasma etching processes. An imaging layer of a poly(methyl methacrylate) bi-layer resist was spun coated on quartz substrate and exposed by an e-beam with the designed patterns of sub-100 nm feature sizes using a Raith-150 EBL patterning tool. Additive pattern transfer was employed by depositing a 40 nm thick Nichrome layer on the resist pattern using a metal evaporator which was later lifted off by soaking in acetone. Nichrome was employed as an etch mask and an Oxford Plasmalab 80Plus reactive ion etcher was used for the etching process. The etching process was carried out in a gas mixture of CHF(3)/Ar with a flow rate ratio of 50/30 sccm, pressure of 20 mTorr, radiofrequency power of 200 W and at room temperature. These etching process parameters were found to achieve a 10 nm min(-1) etch rate and tall vertical side walls profile. An aspect-ratio of 10:1 was achieved on 60 nm feature size structures.

  15. Investigation of a nanofabrication process to achieve high aspect-ratio nanostructures on a quartz substrate

    NASA Astrophysics Data System (ADS)

    Mohamed, K.; Alkaisi, M. M.

    2013-01-01

    This work investigates the development of a nanofabrication process to achieve high aspect-ratio nanostructures on quartz substrates using electron beam lithography (EBL) patterning and fluorinated plasma etching processes. An imaging layer of a poly(methyl methacrylate) bi-layer resist was spun coated on quartz substrate and exposed by an e-beam with the designed patterns of sub-100 nm feature sizes using a Raith-150 EBL patterning tool. Additive pattern transfer was employed by depositing a 40 nm thick Nichrome layer on the resist pattern using a metal evaporator which was later lifted off by soaking in acetone. Nichrome was employed as an etch mask and an Oxford Plasmalab 80Plus reactive ion etcher was used for the etching process. The etching process was carried out in a gas mixture of CHF3/Ar with a flow rate ratio of 50/30 sccm, pressure of 20 mTorr, radiofrequency power of 200 W and at room temperature. These etching process parameters were found to achieve a 10 nm min-1 etch rate and tall vertical side walls profile. An aspect-ratio of 10:1 was achieved on 60 nm feature size structures.

  16. High Achievement in Mathematics Education in India: A Report from Mumbai

    ERIC Educational Resources Information Center

    Raman, Manya

    2010-01-01

    This paper reports a study aimed at characterizing the conditions that lead to high achievement in mathematics in India. The study involved eight schools in the greater Mumbai region. The main result of the study is that the notion of high achievement itself is problematic, as reflected in the reports about mathematics achievement within and…

  17. Rectangular Dielectric-loaded Structures for Achieving High Acceleration Gradients

    NASA Astrophysics Data System (ADS)

    Wang, Changbiao; Yakovlev, V. P.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    2006-11-01

    Rectangular dielectric-loaded structures are described that may sustain higher acceleration gradients than conventional all-metal structures with similar apertures. One structure is a test cavity designed to ascertain the breakdown limits of dielectrics, while a second structure could be the basis for a two-beam accelerator. CVD diamond is an attractive dielectric for a high-gradient structure, since the published DC breakdown limit for CVD diamond is ˜ 2 GV/m, although the limit has never been determined for RF fields. Here we present a design of a diamond-lined test cavity to measure the breakdown limit. The designed cavity operates at 34 GHz, where with 10-MW input power it is expected to produce an ˜800 MV/m field on the diamond surface—provided breakdown is avoided. The two channel rectangular dielectric-loaded waveguide could be a two-beam accelerator structure, in which a drive beam is in one channel and an accelerated beam is in the other. The RF power produced by drive bunches in the drive channel is continuously coupled to the acceleration channel. The ratio of fields in the channels (transformer ratio) for the operating mode can be designed by adjusting the dimensions of the structure. An example of the two-channel structure is described, in which a train of five 3-nC drive bunches excites wake fields in the accelerator channel of up to 1.3 GV/m with a transformer ratio of 10 for the design mode.

  18. Highly integrated electronics for the star TPC

    SciTech Connect

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H.

    1991-12-31

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  19. High-resolution observation by double-biprism electron holography

    SciTech Connect

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-12-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes.

  20. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  1. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  2. High Density Mastering Using Electron Beam

    NASA Astrophysics Data System (ADS)

    Kojima, Yoshiaki; Kitahara, Hiroaki; Kasono, Osamu; Katsumura, Masahiro; Wada, Yasumitsu

    1998-04-01

    A mastering system for the next-generation digital versatile disk (DVD) is required to have a higher resolution compared with the conventional mastering systems. We have developed an electron beam mastering machine which features a thermal field emitter and a vacuum sealed air spindle motor. Beam displacement caused by magnetic fluctuation with spindle rotation was about 60 nm(p-p) in both the radial and tangential directions. Considering the servo gain of a read-out system, it has little influence on the read-out signal in terms of tracking errors and jitters. The disk performance was evaluated by recording either the 8/16 modulation signal or a groove on the disk. The electron beam recording showed better jitter values from the disk playback than those from a laser beam recorder. The deviation of track pitch was 44 nm(p-p). We also confirmed the high density recording with a capacity reaching 30 GB.

  3. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  4. High-Throughput Methods for Electron Crystallography

    PubMed Central

    Stokes, David L.; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas

    2013-01-01

    Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing the natural environment of a lipid membrane. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, images and diffraction can be recorded by electron microscopy. The corresponding data can be combined to produce a three-dimensional reconstruction which, under favorable conditions, can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative and potentially complementary methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on detergent complexation by cyclodextrin; a specialized pipetting robot has been designed not only to titrate cyclodextrin, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described. PMID:23132066

  5. Formal Operational Precocity and Achievement in Biology among Some Nigerian High School Students.

    ERIC Educational Resources Information Center

    Ehindero, Olusola Joseph

    1979-01-01

    Compares the performances on a battery of six Piagetian tasks of 80 Nigerian high school students classified as high and low achievers in biology. The relationship between performance of very bright biology students (high achievers) and intellectual precocity is also investigated. (HM)

  6. The Chinese High School Student's Stress in the School and Academic Achievement

    ERIC Educational Resources Information Center

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  7. Beyond Academic Reputation: Factors that Influence the College of First Choice for High Achieving Students

    ERIC Educational Resources Information Center

    Schoenherr, Holly J.

    2009-01-01

    Studies that have investigated college choice factors for high-achieving students repeatedly cite academic reputation as one of the top indicators of choice but have not indicated why some high-achieving students choose to attend universities with a less prestigious reputation than the more highly prestigious options available to them. The purpose…

  8. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  9. The Effects of Web-Based/Non-Web-Based Problem-Solving Instruction and High/Low Achievement on Students' Problem-Solving Ability and Biology Achievement

    ERIC Educational Resources Information Center

    Yu, Wen-Feng; She, Hsiao-Ching; Lee, Yu-Mei

    2010-01-01

    This study investigates the effects of two factors: the mode of problem-solving instruction (i.e. Web-based versus non-Web-based) and the level of academic achievement (i.e. high achievers versus low achievers) on students' problem-solving ability and biology achievement. A quasi-experimental design was used, in which the experimental group…

  10. High voltage electron microscopy of lunar samples

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Lunar pyroxenes from Apollo 11, 12, 14, and 15 were investigated. The iron-rich and magnesium-rich pyroxene specimens were crushed to a grain size of ca. 50 microns and studied by a combination of X-ray and electron diffraction, electron microscopy, 57 Fe Mossbauer spectroscopy and X-ray crystallography techniques. Highly ordered, uniform electron-dense bands, corresponding to exsolution lamellae, with average widths of ca. 230A to 1000A dependent on the source specimen were observed. These were?qr separated by wider, less-dense interband spacings with average widths of ca. 330A to 3100A. In heating experiments, splitting of the dense bands into finer structures, leading finally to obliteration of the exsolution lamellae was recorded. The extensive exsolution is evidence for significantly slower cooling rates, or possibly annealing, at temperatures in the subsolidus range, adding evidence that annealing of rock from the surface of the moon took place at ca. 600 C. Correlation of the band structure with magnetic ordering at low temperatures and iron clustering within the bands was studied.

  11. High Thermal Conductivity Graphite Electronic Components

    NASA Astrophysics Data System (ADS)

    Peck, S. O.; Young, G. L.; Mellberg, W. J.; Wellman, A. F.; Cooney, J. E.

    1996-08-01

    This project will apply high thermal conductivity graphite to three major spacecraft electronic components: (1) the thermal plane of a printed wiring board, (2) the subassembly or tray that holds the board, and (3) the equipment panel that the tray mounts on. The complete heat transfer path from chip level heat source to radiative rejection on the exterior surface of the equipment panel will therefore be addressed. Thermal and structural requirements representative of current spacecraft will drive an optimized solution strategy. The project will be completed by fabricating the three prototypical test articles and measuring their performance in a representative space environment.

  12. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGES

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  13. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  14. Ultra-high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  15. Ultra-high resolution electron microscopy

    DOE PAGES

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed tomore » describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.« less

  16. Ultra-high resolution electron microscopy

    SciTech Connect

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  17. APES: Acute Precipitating Electron Spectrometer -- A high time resolution monodirectional magnetic deflection electron spectrometer

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.; Grubbs, G.; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-06-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm × 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm × 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  18. Achieving High Strength and High Ductility in Friction Stir-Processed Cast Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Panigrahi, Sushanta K.; Mishra, Rajiv S.

    2013-08-01

    Friction stir processing (FSP) is emerging as an effective tool for microstructural modification and property enhancement. As-cast AZ91 magnesium alloy was friction stir processed with one-pass and two-pass to examine the influence of processing conditions on microstructural evolution and corresponding mechanical properties. Grain refinement accompanied with development of strong basal texture was observed for both processing conditions. Ultrafine-grained (UFG) AZ91 was achieved under two-pass FSP with fine precipitates distributed on the grain boundary. The processed UFG AZ91 exhibited a high tensile strength of ~435 MPa (117 pct improvement) and tensile fracture elongation of ~23 pct. The promising combination of strength and ductility is attributed to the elimination of casting porosity, and high density of fine precipitates in an UFG structure with quite low dislocation density. The effects of grain size, precipitate, and texture on deformation behavior have been discussed.

  19. Estimating the Reliability of Electronic Parts in High Radiation Fields

    NASA Technical Reports Server (NTRS)

    Everline, Chester; Clark, Karla; Man, Guy; Rasmussen, Robert; Johnston, Allan; Kohlhase, Charles; Paulos, Todd

    2008-01-01

    Radiation effects on materials and electronic parts constrain the lifetime of flight systems visiting Europa. Understanding mission lifetime limits is critical to the design and planning of such a mission. Therefore, the operational aspects of radiation dose are a mission success issue. To predict and manage mission lifetime in a high radiation environment, system engineers need capable tools to trade radiation design choices against system design and reliability, and science achievements. Conventional tools and approaches provided past missions with conservative designs without the ability to predict their lifetime beyond the baseline mission.This paper describes a more systematic approach to understanding spacecraft design margin, allowing better prediction of spacecraft lifetime. This is possible because of newly available electronic parts radiation effects statistics and an enhanced spacecraft system reliability methodology. This new approach can be used in conjunction with traditional approaches for mission design. This paper describes the fundamentals of the new methodology.

  20. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    ERIC Educational Resources Information Center

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  1. The Effect of the Time Management Art on Academic Achievement among High School Students in Jordan

    ERIC Educational Resources Information Center

    Al-Zoubi, Maysoon

    2016-01-01

    This study aimed at recognizing the effect of the Time Management Art on academic achievement among high school students in the Hashemite Kingdom of Jordan. The researcher employed the descriptive-analytic research to achieve the purpose of the study where he chose a sample of (2000) high school female and male students as respondents to the…

  2. Effects of a Collaborative Science Intervention on High Achieving Students' Learning Anxiety and Attitudes toward Science

    ERIC Educational Resources Information Center

    Hong, Zuway-R.

    2010-01-01

    This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized…

  3. Individual and Longitudinal Differences among High and Low-Achieving, LD, and ADHD L2 Learners

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Humbach, Nancy; Javorsky, James

    2008-01-01

    High-achieving (HA) and low-achieving (LA), learning disabled (LD), and attention deficit hyperactivity disorder (ADHD) high school students were followed over two years of L2 study and compared on measures of L1 literacy (reading and writing) in elementary school, L1 cognitive ability, L2 aptitude, oral and written L2 proficiency, and L2 word…

  4. International Note: Between-Domain Relations of Chinese High School Students' Academic Achievements

    ERIC Educational Resources Information Center

    Yangyang, Liu

    2012-01-01

    The present study examined the between-domain relations of Chinese high school students' academic achievements. In a sample of 1870 Chinese 10th grade students, the results indicated that Chinese high school students' academic achievements were correlated across nine subjects. In line with the previous Western findings, the findings suggested that…

  5. A Longitudinal Investigation of Project-Based Instruction and Student Achievement in High School Social Studies

    ERIC Educational Resources Information Center

    Summers, Emily J.; Dickinson, Gail

    2012-01-01

    This longitudinal study focused on how project-based instruction (PBI) influenced secondary social studies students' academic achievement and promoted College and Career Readiness (CCR). We explored and compared student achievement in a PBI high school versus a traditional instruction high school within the same rural school district. While…

  6. Parent-Child Relations and Psychological Adjustment among High-Achieving Chinese and European American Adolescents

    ERIC Educational Resources Information Center

    Qin, Desiree Baolian; Rak, Eniko; Rana, Meenal; Donnellan, M. Brent

    2012-01-01

    Chinese American students are often perceived as problem-free high achievers. Recent research, however, suggests that high-achieving Chinese American students can experience elevated levels of stress, especially comparing to their peers from other ethnic groups. In this paper, we examine how family dynamics may influence psychological adjustment…

  7. High-Achieving and Average Students' Reading Growth: Contrasting School and Summer Trajectories

    ERIC Educational Resources Information Center

    Rambo-Hernandez, Karen E.; McCoach, D. Betsy

    2015-01-01

    Much is unknown about how initially high-achieving students grow academically, especially given the measurement issues inherent in assessing growth for the highest performing students. This study compared initially high-achieving and average students' growth in reading (in a cohort of third-grade students from 2,000 schools) over 3 years.…

  8. Electron attachment to halomethanes at high temperatures

    NASA Astrophysics Data System (ADS)

    Miller, T. M.; Friedman, J. F.; Schaffer, L. C.; Viggiano, A. A.

    2009-10-01

    We have modified our high-temperature flowing-afterglow apparatus to include a movable Langmuir probe, a 4-needle reactant gas inlet, and a microwave discharge plasma source for the purpose of measuring electron attachment rate constants at high temperatures. We have focused initially on molecules which have very small attachment rate constants, ka, at room temperature to see if their behavior at high temperatures can be described in Arrhenius fashion. We have reported ka for CH3Cl, but only above 600 K, because the value at 600 K was quite small: 5.8 x10-12 cm^3 s-1. The Arrhenius plot for these data imply ka = 10-17 cm^3 s-1 at 300 K, a value that is so small as to be immeasurable with any current apparatus. We now have ka for other halomethanes, CF3Cl, CF2Cl2, and CH2Cl2. The halomethane data cover seven orders-of-magnitude in ka. Electron attachment to CF3Cl is endothermic by 143 meV at 300 K, but our measurements indicate that there is a barrier of about 400 meV, probably related to the energy at which the anion surface crosses that of the neutral. The reactions for CH3Cl, CF2Cl2, and CH2Cl2 are exothermic, but our data again indicate large barriers to attachment which accounts for the extremely slow attachment at 300 K. From these data and literature measurements at 300 K, one can make educated guesses as to the behavior of ka for other halomethanes.

  9. The Meaning High-Achieving African-American Males in an Urban High School Ascribe to Mathematics

    ERIC Educational Resources Information Center

    Thompson, LaTasha; Davis, Julius

    2013-01-01

    Many researchers, educators, administrators, policymakers and members of the general public doubt the prevalence of high-achieving African-American males in urban high schools capable of excelling in mathematics. As part of a larger study, the current study explored the educational experiences of four high-achieving African-American males…

  10. Towards highly stable polymer electronics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nikolka, Mark; Nasrallah, Iyad; Broch, Katharina; Sadhanala, Aditya; Hurhangee, Michael; McCulloch, Iain; Sirringhaus, Henning

    2016-11-01

    Due to their ease of processing, organic semiconductors are promising candidates for applications in high performance flexible displays and fast organic electronic circuitry. Recently, a lot of advances have been made on organic semiconductors exhibiting surprisingly high performance and carrier mobilities exceeding those of amorphous silicon. However, there remain significant concerns about their operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode (OLED) displays. Here, we report a novel technique for dramatically improving the operational stress stability, performance and uniformity of high mobility polymer field-effect transistors by the addition of specific small molecule additives to the polymer semiconductor film. We demonstrate for the first time polymer FETs that exhibit stable threshold voltages with threshold voltage shifts of less than 1V when subjected to a constant current operational stress for 1 day under conditions that are representative for applications in OLED active matrix displays. The approach constitutes in our view a technological breakthrough; it also makes the device characteristics independent of the atmosphere in which it is operated, causes a significant reduction in contact resistance and significantly improves device uniformity. We will discuss in detail the microscopic mechanism by which the molecular additives lead to this significant improvement in device performance and stability.

  11. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  12. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  13. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  14. Autonomous Information Fading and Provision to Achieve High Response Time in Distributed Information Systems

    NASA Astrophysics Data System (ADS)

    Lu, Xiaodong; Arfaoui, Helene; Mori, Kinji

    In highly dynamic electronic commerce environment, the need for adaptability and rapid response time to information service systems has become increasingly important. In order to cope with the continuously changing conditions of service provision and utilization, Faded Information Field (FIF) has been proposed. FIF is a distributed information service system architecture, sustained by push/pull mobile agents to bring high-assurance of services through a recursive demand-oriented provision of the most popular information closer to the users to make a tradeoff between the cost of information service allocation and access. In this paper, based on the analysis of the relationship that exists among the users distribution, information provision and access time, we propose the technology for FIF design to resolve the competing requirements of users and providers to improve users' access time. In addition, to achieve dynamic load balancing with changing users preference, the autonomous information reallocation technology is proposed. We proved the effectiveness of the proposed technology through the simulation and comparison with the conventional system.

  15. Stretchable electronics for wearable and high-current applications

    NASA Astrophysics Data System (ADS)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  16. Diagnostics and electron-optics of a high current electron beam in the TANDEM free electron laser - status report

    SciTech Connect

    Arensburg, A.; Avramovich, A.; Chairman, D.

    1995-12-31

    In the construction of the Israeli TANDEM FEL the major task is to develop a high quality electron optic system. The goal is to focus the e-beam to a minimal radius (1 mm) in the interaction region (the wiggler). Furthermore, good focusing throughout the accelerator is essential in order to achieve high transport efficiency avoiding discharge and voltage drop of the high voltage terminal. We have completed the electron optical design and component procurement, including 8 quadrupole lenses 4 steering coils and an electrostatic control system. All are being assembled into the high voltage terminal and controlled by a fiber optic link. Diagnostic means based on fluorescent screens and compact CCD camera cards placed at the HV terminal and at the end of the e-gun injector have been developed. We report first measurements of the beam emittance at the entrance to the Tandem accelerator tube using the {open_quote}pepper pot{close_quote} technique. The experiment consists of passing the 0.5 Amp beam through a thin plate which is perforated with an army of 0.5 mm holes. The spots produced on a fluorescent screen placed 90 cm from the pepper pot were recorded with a CCD camera and a frame grabber. The measured normalized emittance is lower than 10{pi} mm mR which is quite close to the technical limit of dispenser cathode e-guns of the kind we have. Recent results of the measured transport efficiency and the diagnostics of the high current (1A, 1.5MV) electron-optical system will be reported.

  17. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    SciTech Connect

    Guo, Li Qiang Ding, Jian Ning; Huang, Yu Kai; Zhu, Li Qiang

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  18. The impact of collective teacher efficacy on student achievement in high school science

    NASA Astrophysics Data System (ADS)

    Burcham, Mark W.

    This dissertation was designed to examine the impact of collective teacher efficacy on high school science achievement by looking at relationships among collective teacher efficacy, its two constructs, group competence and group task analysis, and high school science achievement scores at four rural high schools in Northwestern North Carolina. The researcher gathered historical test data from the testing coordinator from the school system and then administered the Collective Teacher Efficacy Instrument, developed by Goddard, Hoy, and Woolfolk Hoy (2000), to 24 science teachers from the four high schools. Using this information, the researcher conducted statistical analyses to determine the relationships among collective teacher efficacy, group competence, and group task analysis as compared with the tested science curriculum (physical science, biology, chemistry, and physics). The researcher also examined which construct was the most contributing factor and examined differences in efficacy levels and student achievement levels at each high school. Analysis of the data from this study indicated collective teacher efficacy, as well as its two constructs, group competence and group task analysis, does have a positive impact on student achievement in high school science. Analysis of the data revealed group competence is the major contributing factor for student achievement in biology and group task analysis is the major contributing factor for student achievement in physical science, chemistry, and physics. Further analysis of the data in this study, also revealed that the two high schools with the highest levels of collective teacher efficacy had the highest levels of student achievement.

  19. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    NASA Astrophysics Data System (ADS)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  20. Achieving High Rates and High Uniformity in Copper Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Nolan, Lucy Marjorie

    The chemical mechanical polishing of Copper (Cu-CMP) is a complex and poorly understood process. Despite this, it is widely used throughout the semiconductor and microelectronics industries, and makes up a significant portion of wafer processing costs. In these contexts, desirable polishing outcomes such as a high rate of removal from the copper surface, and high removal rate uniformity, are achieved largely by trial-and-error. In this study, the same outcomes are pursued through a systematic investigation of polishing lubrication characteristics and abrasive and oxidiser concentrations in the polishing slurry. A strong link between lubrication characteristics, quantified by the dimensionless Sommerfield number, and the uniformity of polishing is demonstrated. A mechanism for the observed relationship is proposed, based on an adaptation of hydrodynamic lubrication theory. The overall rate of removal is maximized by polishing in a slurry containing oxidiser and abrasives in a synergistic ratio. Polishing away from this ratio has additional effects on the overall quality of the surface produced. Transport of slurry across the polishing pad is investigated by using tracers; the results demonstrate that slurry usage can be reduced in many circumstances with no impact on overall polishing outcomes, reducing overall processing costs. These findings are combined to design a polishing process, with good results.

  1. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    PubMed Central

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30–60 μm, exhibiting a typical basal texture, fine grains of 1–5 μm and ultrafine (sub) grains of 200–500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  2. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    NASA Astrophysics Data System (ADS)

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-11-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  3. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process.

    PubMed

    Wang, Hui-Yuan; Yu, Zhao-Peng; Zhang, Lei; Liu, Chun-Guo; Zha, Min; Wang, Cheng; Jiang, Qi-Chuan

    2015-11-25

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  4. New York State Superintendents and Board Presidents Attitudes on Superintendent Responsibilities in High-Achieving and Low-Achieving School Districts

    ERIC Educational Resources Information Center

    Murphy, Matthew J.

    2009-01-01

    The purpose of this study is to determine the perceptions of New York State superintendents and board presidents in high-achieving and low-achieving school districts on the six superintendent leadership responsibilities identified by Waters and Marzano (2006) and their relationship to improving student achievement: (1) creating research-relevant…

  5. Understanding and Reversing Underachievement, Low Achievement, and Achievement Gaps among High-Ability African American Males in Urban School Contexts

    ERIC Educational Resources Information Center

    Ford, Donna Y.; Moore, James L., III

    2013-01-01

    This article focuses on the achievement gap, with attention devoted to underachievement and low achievement among African American males in urban school contexts. More specifically, the article explains problems and issues facing or confronting these Black male students in urban education settings. A central part of this discussion is grounded in…

  6. Gender and High School Chemistry: Student Perceptions on Achievement in a Selective Setting

    ERIC Educational Resources Information Center

    Cousins, Andrew; Mills, Martin

    2015-01-01

    This paper reports on research undertaken in a middle-class Australian school. The focus of the research was on the relationship between gender and students' engagement with high school chemistry. Achievement data from many OECD [Organisation for Economic Co-operation and Development] countries suggest that middle-class girls are achieving equally…

  7. Achievement Motivation in High School: Contrasting Theoretical Models in the Classroom.

    ERIC Educational Resources Information Center

    Garcia-Celay, I. Montero; Tapia, J. Alonso

    1992-01-01

    Three models of achievement motivation in the classroom are contrasted. Results with 155 high school students suggest that the model of C. S. Dweck and E. S. Elliott offers a better explanation of the relationships among achievement motivation, attributions, emotional reactions, expectancies, and performance than do the other models. (SLD)

  8. Predicting Early Academic Failure in High School from Prior Academic Achievement, Psychosocial Characteristics, and Behavior

    ERIC Educational Resources Information Center

    Casillas, Alex; Robbins, Steve; Allen, Jeff; Kuo, Yi-Lung; Hanson, Mary Ann; Schmeiser, Cynthia

    2012-01-01

    The authors examined the differential effects of prior academic achievement, psychosocial, behavioral, demographic, and school context factors on early high school grade point average (GPA) using a prospective study of 4,660 middle-school students from 24 schools. The findings suggest that (a) prior grades and standardized achievement are the…

  9. Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four

    ERIC Educational Resources Information Center

    Stanley, Ashley M.

    2011-01-01

    The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…

  10. An Analysis of Mathematics Course Sequences for Low Achieving Students at a Comprehensive Technical High School

    ERIC Educational Resources Information Center

    Edge, D. Michael

    2011-01-01

    This non-experimental study attempted to determine how the different prescribed mathematic tracks offered at a comprehensive technical high school influenced the mathematics performance of low-achieving students on standardized assessments of mathematics achievement. The goal was to provide an analysis of any statistically significant differences…

  11. The Impact of Charter Schools on Promoting High Levels of Mathematics Achievement

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.; Makel, Matthew C.; Rapp, Kelly E.

    2007-01-01

    This study compares achievement levels for high ability students attending charter schools and students in traditional public schools in Georgia. Researchers examined student achievement (as assessed by the state's Criterion-Referenced Competency Tests) using three comparison groups: students in the closest traditional schools with similar grade…

  12. A Quantitative Comparison of Pennsylvania High School Student Achievement by Middle States Association's Accreditation Status

    ERIC Educational Resources Information Center

    Johnson, Christopher A.

    2012-01-01

    As public school accountability for student achievement has continued to increase, prior to and as a result of the No Child Left Behind Act of 2001, schools have sought ways of bringing new instructional services to their students to raise their levels of achievement. Some Pennsylvania public high schools have attempted to improve student…

  13. Unforgiving Confucian Culture: A Breeding Ground for High Academic Achievement, Test Anxiety and Self-Doubt?

    ERIC Educational Resources Information Center

    Stankov, Lazar

    2010-01-01

    This paper reviews findings from several studies that contribute to our understanding of cross-cultural differences in academic achievement, anxiety and self-doubt. The focus is on comparisons between Confucian Asian and European regions. Recent studies indicate that high academic achievement of students from Confucian Asian countries is…

  14. Instructional, Transformational, and Managerial Leadership and Student Achievement: High School Principals Make a Difference

    ERIC Educational Resources Information Center

    Valentine, Jerry W.; Prater, Mike

    2011-01-01

    This statewide study examined the relationships between principal managerial, instructional, and transformational leadership and student achievement in public high schools. Differences in student achievement were found when schools were grouped according to principal leadership factors. Principal leadership behaviors promoting instructional and…

  15. Cohort versus Non-Cohort High School Students' Math Performance: Achievement Test Scores and Coursework

    ERIC Educational Resources Information Center

    Parke, Carol S.; Keener, Dana

    2011-01-01

    The purpose of this study is to compare multiple measures of mathematics achievement for 1,378 cohort students who attended the same high school in a district from 9th to 12th grade with non-cohort students in each grade level. Results show that mobility had an impact on math achievement. After accounting for gender, ethnicity, and SES, adjusted…

  16. Proposal for a High-Brightness Pulsed Electron Source

    SciTech Connect

    Zolotorev, M.; Commins, E.D.; Heifets, S.; Sannibale, F.; /LBL, Berkeley /UC, Berkeley /SLAC

    2006-10-16

    We propose a novel scheme for a high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography. A description of the proposed scheme is presented.

  17. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Mukherjee, Subhrangsu; Ade, Harald; Hou, Jianhui

    2016-11-01

    Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

  18. A summary of high-temperature electronics research and development

    SciTech Connect

    Thome, F.V.; King, D.B.

    1991-10-18

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab.

  19. Impacts of comprehensive reading instruction on diverse outcomes of low- and high-achieving readers.

    PubMed

    Guthrie, John T; McRae, Angela; Coddington, Cassandra S; Lutz Klauda, Susan; Wigfield, Allan; Barbosa, Pedro

    2009-01-01

    Low-achieving readers in Grade 5 often lack comprehension strategies, domain knowledge, word recognition skills, fluency, and motivation to read. Students with such multiple reading needs seem likely to benefit from instruction that supports each of these reading processes. The authors tested this expectation experimentally by comparing the effects of Concept-Oriented Reading Instruction (CORI) with traditional instruction (TI) on several outcomes in a 12-week intervention for low achievers and high achievers. Low achievers in the CORI group were afforded explicit instruction, leveled texts, and motivation support. Compared with TI students, CORI students scored higher on posttest measures of word recognition speed, reading comprehension on the Gates-MacGinitie Reading Test, and ecological knowledge. CORI was equally effective for lower achievers and higher achievers. Explicitly supporting multiple aspects of reading simultaneously appeared to benefit diverse learners on a range of reading outcomes.

  20. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors.

    PubMed

    Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam

    2013-01-01

    Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays.

  1. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors

    PubMed Central

    Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam

    2013-01-01

    Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a “dream” display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays. PMID:23492854

  2. Understanding the Elements of Operational Reliability: A Key for Achieving High Reliability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2010-01-01

    This viewgraph presentation reviews operational reliability and its role in achieving high reliability through design and process reliability. The topics include: 1) Reliability Engineering Major Areas and interfaces; 2) Design Reliability; 3) Process Reliability; and 4) Reliability Applications.

  3. A Quantitative Literature Review of Cooperative Learning Effects on High School and College Chemistry Achievement.

    ERIC Educational Resources Information Center

    Bowen, Craig W.

    2000-01-01

    Describes meta-analysis, a quantitative approach to conducting literature reviews. Illustrates the power of this technique by reporting the quantitative effects of cooperative learning on chemistry achievement in high school and college classes. (Contains 32 references.) (WRM)

  4. Electronics Troubleshooting. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Lodahl, Dan

    This learning module for a postsecondary electronics course in solid state circuits is designed to help teachers lead students through electronics troubleshooting. The module is intended to be used for a second-semester technical college course for electromechanical technology majors. The module introduces students to semiconductor devices and…

  5. A Comparison of Emotional-Motivational (A-R-D Theory) Personality Characteristics in Learning Disabled, Normal Achieving, and High Achieving Children.

    ERIC Educational Resources Information Center

    Hufano, Linda D.

    The study examined emotional-motivational personality characteristics of 15 learning disabled, 15 normal achieving, and 15 high achieving students (grades 3-5). The study tested the hypothesis derived from the A-R-D (attitude-reinforcer-discriminative) theory of motivation that learning disabled (LD) children differ from normal and high achieving…

  6. The Outward Bound Bridging Course for Low-Achieving High School Males: Effect on Academic Achievement and Multidimensional Self-Concepts.

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Richards, Garry

    The Outward Bound Bridging Course is a 6-week residential program designed to improve academic achievement and self-concepts in low-achieving high school males. During 1980-1984, five courses were conducted for 66 Australian high school males. Most of them were ninth grade students, chosen on the basis of poor academic performance, an apparent…

  7. High gain free electron laser at ETA

    NASA Astrophysics Data System (ADS)

    Orzechowski, T. J.; Prosnitz, D.; Halbach, K.; Kuenning, R.; Paul, A.; Hopkins, D.; Sessler, A.; Stover, G.; Tanabe, J.; Wurtele, J.

    1983-02-01

    A single pass, tapered electron wiggler and associated beam transport was constructed. The system is designed to transport 1 kA of 4.5 MeV electrons ith an emittance of 30 millirad cm. The planar wiggler is provided by a pulsed electromagnet. The interaction region is an oversized rectangular waveguide. Quadrupole fields stabilize the beam in the plane parallel to the wiggler field. The 3 meter long wiggler has a 9.8 cm period. The Free Electron Laser (FEL) serves as an amplifier for input frequencies of 35 GHz and 140 GZz. The facility is designed to produce better than 500 Megawatts peak power.

  8. Race and Ethnic Differences in College Achievement: Does High School Attended Matter?

    PubMed Central

    Fletcher, Jason M.; Tienda, Marta

    2012-01-01

    This paper uses 10 years of enrollment data at four Texas public universities to examine whether, to what extent, and in what ways high school attended contributes to racial and ethnic differences in college achievement. Like previous studies, we show that controlling for observable pre-college achievement variables (e.g. test scores, class rank) shrinks, but does not eliminate, sizable racial differences in college achievement. Fixed-effects models that take into account differences across high schools that minority and nonminority youth attend largely eliminate, and often reverse, black-white and Hispanic-white gaps in several measures of college achievement. Our results, which are quite robust across universities of varying selectivity, illustrate how high school quality foments race and ethnic inequality in postsecondary achievement. Leveling inequities in the quality of high schools that minority students attend is a long-run agenda, but remediation programs that compensate for instructional shortfalls at low performing high schools may help close achievement gaps in the interim. PMID:23136447

  9. Race and Ethnic Differences in College Achievement: Does High School Attended Matter?

    PubMed

    Fletcher, Jason M; Tienda, Marta

    2010-01-01

    This paper uses 10 years of enrollment data at four Texas public universities to examine whether, to what extent, and in what ways high school attended contributes to racial and ethnic differences in college achievement. Like previous studies, we show that controlling for observable pre-college achievement variables (e.g. test scores, class rank) shrinks, but does not eliminate, sizable racial differences in college achievement. Fixed-effects models that take into account differences across high schools that minority and nonminority youth attend largely eliminate, and often reverse, black-white and Hispanic-white gaps in several measures of college achievement. Our results, which are quite robust across universities of varying selectivity, illustrate how high school quality foments race and ethnic inequality in postsecondary achievement. Leveling inequities in the quality of high schools that minority students attend is a long-run agenda, but remediation programs that compensate for instructional shortfalls at low performing high schools may help close achievement gaps in the interim.

  10. Convergence of electronic bands for high performance bulk thermoelectrics.

    PubMed

    Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron; Wang, Heng; Chen, Lidong; Snyder, G Jeffrey

    2011-05-05

    Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe(1-x)Se(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.

  11. High Count Rate Electron Probe Microanalysis.

    PubMed

    Geller, Joseph D; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller.

  12. Social Goals, Social Status, and Problem Behavior among Low-Achieving and High-Achieving Adolescents from Rural Schools

    ERIC Educational Resources Information Center

    Ludden, Alison Bryant

    2012-01-01

    The current research examines how social goals and perceptions of what is needed for social status at school relate to school misbehavior and substance use among rural adolescents (N = 683). Results indicate that social goals and perceptions of social status have differential links to problem behaviors depending upon adolescents' achievement.…

  13. High temperature electronic excitation and ionization rates in gases

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick

    1991-01-01

    The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.

  14. Advances in High-Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Henfling, J. A.

    2001-05-01

    It has long been known that SOI (Silicon-On-Insulator) electronics are more resistant to elevated temperatures and radiation than common bulk silicon devices. Bulk silicon devices are used in consumer grade electronics. A new line of SOI devices have a proven life of 5 years at 225\\deg C where commercial electronics have an 80% failure rate at 180\\deg C and above. This improvement is the result of building each transistor on a non-conductive 'glass' substrate. The transistor isolation reduces the effects of heat, radiation and in general provides for better performing devices with greatly increased life expectancies. This paper shows how SOI electronics can greatly increase the instrumentation life of permanently installed electronics within the wellbore at any temperature. Information is provided from an SOI designed logging tool operating without any heat-shielding up to 300\\deg C. Additional information is provided on the future of micro-machines built out of silicon, silicon-carbide, and diamond. Silicon micro-machines are already being used to measure pressure, inclination, rotation and vibration. In the future, these micro-machines will offer a significant jump in technology for wellbore instrumentation.

  15. The Impact of Block Scheduling on Student Achievement, Attendance, and Discipline at the High School Level

    ERIC Educational Resources Information Center

    Williams, Charles, Jr.

    2011-01-01

    The purpose of this study was to determine the impact block scheduling has on (a) student academic achievement, discipline, and attendance, and (b) administrator, teacher, and student perceptions. The study compared 2005-2010 data from a high school utilizing the A/B block schedule and a high school under a traditional schedule, in one suburban…

  16. The Role of Teachers at University: What Do High Achiever Students Look for?

    ERIC Educational Resources Information Center

    Monteiro, Silvia; Almeida, Leandro S.; Vasconcelos, Rosa M.

    2012-01-01

    The perceptions of students about their teachers have interested the academic and scientific community, regarding the improvement of the quality of higher education. This paper presents data obtained from interviews conducted with ten high achiever engineering students and focuses on the characteristics of teachers that are highly valued by the…

  17. Study-Orientation of High and Low Academic Achievers at Secondary Level in Pakistan

    ERIC Educational Resources Information Center

    Sarwar, Muhammad; Bashir, Muhammad; Khan, Muhammad Naemullah; Khan, Muhammad Saeed

    2009-01-01

    The study orientation of low and high academic achievers was compared, measured through a self-developed study orientation scale (SOS) primarily based on 47 items comparing study habits and attitude. Students' marks obtained in the 10th grade Examination determined the measure of academic performance. The analysis revealed that the high achievers…

  18. What Works Clearinghouse Quick Review: "Expanding College Opportunities for High-Achieving, Low Income Students"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    This study examined the effects of providing low-income, high-achieving high school seniors with college application guidance and information about the costs of college. The "application guidance" included information about deadlines and requirements for college applications at nearby institutions, at the state's flagship institution, and at in-…

  19. The Relationship between Self-Efficacy and Achievement in At-Risk High School Students

    ERIC Educational Resources Information Center

    Gold, Jarrett Graham

    2010-01-01

    The focus of this quantitative survey study was the examination of the relationship between self-efficacy and academic achievement in 164 at-risk high school students. The study used Bandura's self-efficacy as the theoretical framework. The research questions involved understanding the levels of self-efficacy in at-risk high school students and…

  20. The Contribution of Limbic Learning Aptitude to Achievement in High School. Final Report.

    ERIC Educational Resources Information Center

    Ax, Albert F.; And Others

    Achievement in earning grades in high school was resolved into its intellectual and motivational components. This study employed tests of I.Q., personality inventories and classical and operant conditioning of autonomic nervous system controlled variables. Eleven procedures were given to 99 Black inner city high school seniors. Six physiological…

  1. The Effects of Modeling Instruction on High School Physics Academic Achievement

    ERIC Educational Resources Information Center

    Wright, Tiffanie L.

    2012-01-01

    The purpose of this study was to explore whether Modeling Instruction, compared to traditional lecturing, is an effective instructional method to promote academic achievement in selected high school physics classes at a rural middle Tennessee high school. This study used an "ex post facto," quasi-experimental research methodology. The…

  2. Improving High School Students' Mathematics Achievement through the Use of Motivational Strategies.

    ERIC Educational Resources Information Center

    Portal, Jamie; Sampson, Lisa

    This report describes a program for motivating students in mathematics in order to improve achievement at the high school level. The targeted population consisted of high school students in a middle class community located in a suburb of a large metropolitan area. The problems of underachievement were documented through data collected from surveys…

  3. Coping with High-Achieving Transnationalist Immigrant Students: The Experience of Israeli Teachers

    ERIC Educational Resources Information Center

    Eisikovits, Rivka A.

    2008-01-01

    Little attention has been paid to teacher attitudes toward high-achieving culturally diverse student groups. This in-depth study focuses on the experience of Israeli teachers who tell the story of a decade and a half of educational work with their highly motivated, academically successful immigrant students from the Former Soviet Union. The paper…

  4. 10 Strategies for Raising Achievement and Improving High School Completion Rates

    ERIC Educational Resources Information Center

    Bottoms, Gene

    2004-01-01

    No state can afford to have the percentage of young people who are failing to finish high school remain at the present levels nor can they afford to ease the standards. This document discusses the following 10 strategies that states can implement to raise achievement and increase high school completion rates: (1) Initiate a transition program for…

  5. Emotional Intelligence as a Predictor of Leadership of Kuwaiti High and Low Achieving 11th Graders

    ERIC Educational Resources Information Center

    Alnabhan, Mousa

    2010-01-01

    The current study examined the association between emotional intelligence (EI) and the Leadership components (L) of high school students in the state of Kuwait. The possibility of predicting each leadership component via emotional intelligence components was investigated for high and low achievers. A sample of 11th grade students from Kuwaiti…

  6. Dual Enrollment Programs: A Comparative Study of High School Students' College Academic Achievement at Different Settings

    ERIC Educational Resources Information Center

    Flores, Agnes L. Acker

    2012-01-01

    The "ex post facto" causal-comparative study examined the academic achievement of high school students who took their dual credit English or mathematics college credit-bearing course in two different environments, namely, the college setting and the high school setting. Due to non-experimental nature of the study, no causal inferences…

  7. Classroom Environment, Instructional Resources, and Teaching Differences in High-Performing Kentucky Schools with Achievement Gaps.

    ERIC Educational Resources Information Center

    Meehan, Merrill L.; Cowley, Kimberly S.; Schumacher, Debbie; Hauser, Brenda; Croom, Nona D. M.

    This study examined differences at the classroom level between Kentucky schools with minimum versus large gaps in academic achievement between particular groups of students. Data were gathered via observations of 213 classrooms at 18 elementary, middle, and high schools. Although all the schools were identified as high-performing in terms of…

  8. A Case Study of 21st Century Skills in High Achieving Elementary Schools in Pennsylvania

    ERIC Educational Resources Information Center

    Egnor, Gregory P.

    2013-01-01

    This study examines if practices that advocate for 21st century skills are in conflict with the mandates of NCLB. Interviews with influential school leaders of high achieving elementary schools focused on collecting data about 21st century skills. This study was designed to (a) Determine if 21st century skills are addressed in high achieving…

  9. Small Classes in the Early Grades, Academic Achievement, and Graduating From High School

    ERIC Educational Resources Information Center

    Finn, Jeremy D.; Gerber, Susan B.; Boyd-Zaharias, Jayne

    2005-01-01

    This investigation addressed 3 questions about the long-term effects of early school experiences: (a) Is participation in small classes in the early grades (K-3) related to high school graduation? (b) Is academic achievement in K-3 related to high school graduation? (c) If class size is related to graduation, is the relationship explained by the…

  10. The Relationship between Thinking Style Differences and Career Choices for High-Achieving Students

    ERIC Educational Resources Information Center

    Kim, Mihyeon

    2011-01-01

    The intent of this study was to present information about high-achieving students' career decision making associated with thinking styles. We gathered data from two International Baccalaureate (IB) programs and a Governor's School Program with a sample of 209 high-school students. The findings of this study demonstrated that the effect of program…

  11. CHEER, Canadian high energy electron ring

    NASA Astrophysics Data System (ADS)

    Hemingway, R. J.

    The Institute of Particle Physics (IPP) in Canada have received funds from the Natural Sciences and Engineering Research Council (NSERC) to pursue a study which looks at the feasibility of adding an external electron storage ring at one of the long straight sections of the Tevatron. The machine, as currently configured, has a 300 MeV Linac injector, a 300 MeV accumulator ring, a 2 GeV booster synchrotron, and a 10 GeV storage ring holding 120 mA of either electrons or positrons. Particular attention has been paid to beam polarisation and the design of the interaction region.

  12. Gallium Nitride (GaN) High Power Electronics (FY11)

    DTIC Science & Technology

    2012-01-01

    Gallium Nitride (GaN) High Power Electronics (FY11) by Kenneth A. Jones, Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander...Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5903 January 2012 Gallium Nitride (GaN) High Power Electronics (FY11) Kenneth A...DSI 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Gallium Nitride (GaN) High Power Electronics (FY11) 5a. CONTRACT NUMBER 5b. GRANT

  13. Does Homogeneous Ability Grouping for High School Honors English Instruction Benefit the High Achiever?

    ERIC Educational Resources Information Center

    Hostetter, Douglas Paul

    2013-01-01

    Public schools are examining their policies and instructional practices to address the achievement gap exposed by the reporting requirements of NCLB (Wenglinski, 2004). As accountability measures and stakes rise, there is a call for an improved use of scientific evidence to inform educational policymaking (Wiseman, 2010). In terms of the…

  14. Academic achievement and career choice in science: Perceptions of African American urban high school students

    NASA Astrophysics Data System (ADS)

    Jones, Sheila Kay

    2007-12-01

    Low test scores in science and fewer career choices in science among African American high school students than their White counterparts has resulted in lower interest during high school and an underrepresentation of African Americans in science and engineering fields. Reasons for this underachievement are not known. This qualitative study used a grounded theory methodology to examine what influence parental involvement, ethnic identity, and early mentoring had on the academic achievement in science and career choice in science of African American urban high school 10th grade students. Using semi-structured open-ended questions in individual interviews and focus groups, twenty participants responded to questions about African American urban high school student achievement in science and their career choice in science. The median age of participants was 15 years; 85% had passed either high school biology or physical science. The findings of the study revealed influences and interactions of selected factors on African American urban high school achievement in science. Sensing potential emerged as the overarching theme with six subthemes; A Taste of Knowledge, Sounds I Hear, Aromatic Barriers, What Others See, The Touch of Others, and The Sixth Sense. These themes correlate to the natural senses of the human body. A disconnect between what science is, their own individual learning and success, and what their participation in science could mean for them and the future of the larger society. Insight into appropriate intervention strategies to improve African American urban high school achievement in science was gained.

  15. ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.

    SciTech Connect

    WANG, L.; WEI, J.

    2005-05-16

    Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

  16. Patterns of Self-Regulation: Patterns of Self-Regulatory Strategy Use among Low-Achieving and High-Achieving University Students

    ERIC Educational Resources Information Center

    Ruban, Lilia; Reis, Sally M.

    2006-01-01

    The present mixed-methods study attempts to provide insights into the nature, idiosyncrasies, and inter- and intra-individual patterns of academic self-regulatory strategy use among two different populations of university students. Low-achieving (n = 49) and high-achieving students (n = 131) described their self-regulatory strategy use in their…

  17. High temperature superconducting films and multilayers for electronics

    NASA Astrophysics Data System (ADS)

    Gavaler, John R.; Talvacchio, John

    1994-04-01

    The overall objective of this program was to develop a materials and fundamental device base for high-transition-temperature superconducting (HTS) electronics capable of operating at greater than 50K. Progress is reported on four tasks which address problems fundamental to the understanding of the superconducting state in HTS films, the application of HTS films in passive microwave circuits, the realization of HTS digital electronics, and the development of new superconducting devices. Large-area epitaxial YBCO films with low RF losses developed under this program and techniques for depositing them on both sides of single-crystal substrates were used in other Westinghouse and government-funded programs to develop HTS channelized filterbanks, delay lines, UHF antenna matching networks, and low-phase-noise resonators. An understanding was achieved of the role of oxygenation during film growth and the effect of film microstructure on RF losses. For HTS digital circuit fabrication, both active devices step-edge and edge-type YBCO Josephson junctions and trilayer BKBO junctions and passive structures were developed, such as crossovers, vias, and contacts. These capabilities were transfered to other Westinghouse and government-funded programs which demonstrated the first HTS SFQ circuits and SQUID's with integrated ground planes.

  18. The High Latitude D Region During Electron Precipitation Events

    NASA Technical Reports Server (NTRS)

    Hargreaves, J. K.; Collis, P. N.; Korth, A.

    1984-01-01

    The fluxes of energetic electrons entering the high-latitude atmosphere during auroral radio absorption events and their effect on the electron density in the auroral D region are discussed. An attempt was made to calculate the radio absorption during precipitation events from the fluxes of energetic electrons measured at geosynchronous orbit, and then to consider the use of absorption measurements to indicate the magnetospheric particle fluxes, the production rates, and electron densities in the D region.

  19. High temperature electronics and instrumentation seminar proceedings

    SciTech Connect

    Veneruso, A.F.; Arnold, C.; Simpson, R.S.

    1980-05-01

    This seminar was tailored to address the needs of the borehole logging industry and to stimulate the development and application of this technology, for logging geothermal, hot oil and gas, and steam injection wells. The technical sessions covered the following topics: hybrid circuits, electronic devices, transducers, cables and connectors, materials, mechanical tools and thermal protection. Thirty-eight papers are included. Separate entries were prepared for each one. (MHR)

  20. 2×2 dominant achievement goal profiles in high-level swimmers.

    PubMed

    Fernandez-Rio, Javier; Cecchini Estrada, Jose A; Mendez-Giménez, Antonio; Fernández-Garcia, Benjamín; Saavedra, Pablo

    2014-01-01

    The goal of this study was to assess achievement goal dominance, self-determined situational motivation and competence in high-level swimmers before and after three training sessions set at different working intensities (medium, sub-maximal and maximal). Nineteen athletes (males, n=9, 18.00±2.32 years; females, n=10, 16.30±2.01 years, range = 14-18) agreed to participate. They completed a questionnaire that included the Dominant Achievement Goal assessment instrument, the 2×2 Achievement Goals Questionnaire for Sport (AGQ-S), The Situational Motivation Scale (SIMS) and the Competence subscale of the Basic Psychological Needs in Exercise questionnaire (BPNES). Results indicated that participants overwhelmingly showed mastery-approach achievement goal dominance, and it remained stable at the conclusion of the different training sessions under all intensity levels. This profile was positively correlated to self-determined situational motivation and competence. However, swimmers' feelings of competence increased only after the medium intensity level training session. After the completion of the maximal intensity training session, swimmers' self-determined motivation was significantly lower compared to the other two training sessions, which could be caused by a temporary period of burnout. Results indicated that high-level swimmers had a distinct mastery-approach dominant achievement goal profile that was not affected by the workload of the different training sessions. They also showed high levels of self-determined situational motivation and competence. However, heavy workloads should be controlled because they can cause transitory burnout.

  1. Monolithic electronics for nuclear and high-energy physics experiments

    SciTech Connect

    Young, G.R.

    1994-12-31

    Electronic instrumentation for large fixed-target and collider experiments is rapidly moving to the use of highly integrated electronics wherever it is cost effective. This trend is aided by the development of circuit building blocks useful for nuclear and high-energy physics instrumentation and has accelerated recently with the development of monolithic silicon chips with multiple functions on one substrate. Examples of recent developments are given, together with remarks on the rationale for use of monolithic electronics and economic considerations.

  2. Materials for high-density electronic packaging and interconnection

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  3. High IQ Is Sufficient to Explain the High Achievements in Math and Science of the East Asian Peoples

    ERIC Educational Resources Information Center

    Lynn, Richard

    2010-01-01

    It is argued that it is unnecessary to propose that Confucian values explain the high achievements in math and science of the North East Asian peoples, and that these can be satisfactorily and more parsimoniously be explained by their high IQs.

  4. "It's a Way of Life for Us": High Mobility and High Achievement in Department of Defense Schools.

    ERIC Educational Resources Information Center

    Smrekar, Claire E.; Owens, Debra E.

    2003-01-01

    Examines the academic performance of students in U.S. Department of Defense Education Activity (DoDEA) schools, which have high student mobility. Some observers contend that these students' high achievement is a function of their middle class family and community characteristics. Asserts that DoDEA schools simultaneously "do the right…

  5. SHEEBA: A spatial high energy electron beam analyzer

    NASA Astrophysics Data System (ADS)

    Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Gizzi, Leonida A.

    2005-05-01

    Electron bunches with large energy and angle spread are not easy to be analyzed with conventional spectrometers. In this article, a device for the detection of high energy electrons is presented. This detector, based on the traces left by electrons on a stack of dosimetric films, together with an original numerical algorithm for traces deconvolution, is able to characterize both angularly and spectrally (up to some mega-electron-volts) a broad-spectrum electron bunch. A numerical test was successfully performed with a virtual electron beam, which was in turn reconstructed using a Montecarlo code (based on the CERN library GEANT4). Due to its simplicity and small size, the spatial high energy electron beam analyzer (SHEEBA) detector is particularly suitable to be used in laser plasma acceleration experiments.

  6. Runaway electron dynamics in tokamak plasmas with high impurity content

    SciTech Connect

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-15

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  7. Runaway electron dynamics in tokamak plasmas with high impurity content

    NASA Astrophysics Data System (ADS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-01

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  8. Effects of Part-Time Work on School Achievement During High School

    ERIC Educational Resources Information Center

    Singh, Kusum; Chang, Mido; Dika, Sandra

    2007-01-01

    The authors explored the effects of part-time work on school achievement during high school. To estimate the true effects of part-time work on school grades, the authors included family background, students' educational aspirations, and school engagement as controls. Although a substantial literature exists on the relationship of part-time work…

  9. The Federal Transformation Intervention Model in Persistently Lowest Achieving High Schools: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Le Patner, Michelle B.

    2012-01-01

    This study examined the American Recovery and Reinvestment Act federal mandate of the Transformation Intervention Model (TIM) outlined by the School Improvement Grant, which was designed to turn around persistently lowest achieving schools. The study was conducted in four high schools in a large Southern California urban district that selected the…

  10. Balancing Dreams and Realities: The College Choice Process for High-Achieving Latinas

    ERIC Educational Resources Information Center

    Hernández, Ebelia

    2015-01-01

    This study's narratives of 17 high-achieving Latinas revealed how their college choice was a constant balancing of individual and family expectations, being "close, but far enough away," and "getting your money's worth." With the use of critical race theory, further analysis revealed the influence of "familismo" on…

  11. Fostering the Promise of High Achieving Mathematics Students through Curriculum Differentiation

    ERIC Educational Resources Information Center

    Zmood, Simone

    2014-01-01

    Recent research suggests some teachers may not have a wide range of teaching and learning strategies for their most proficient mathematics students, which could impact on these students' learning and ongoing improvement in performance. This paper outlines the different drivers of high achievement and explores the main curriculum differentiation…

  12. Being Labeled "Nerd": Factors that Influence the Social Acceptance of High-Achieving Students

    ERIC Educational Resources Information Center

    Rentzsch, Katrin; Schutz, Astrid; Schroder-Abe, Michela

    2011-01-01

    The present investigation addresses the question of whether certain factors can protect high-achieving students at risk for being labeled a nerd against devaluation. In 2 studies, 125 and 317 students from Grade 8 evaluated vignettes describing average students and students who were called "nerds." Results indicate that being modest…

  13. Conflicts and Communication between High-Achieving Chinese American Adolescents and Their Parents

    ERIC Educational Resources Information Center

    Qin, Desiree Baolian; Chang, Tzu-Fen; Han, Eun-Jin; Chee, Grace

    2012-01-01

    Drawing on in-depth interview data collected on 18 high-achieving Chinese American students, the authors examine domains of acculturation-based conflicts, parent and child internal conflicts, and conflict resolution in their families. Their analyses show that well-established negative communication patterns in educational expectations, divergent…

  14. The College-Choice Process of High Achieving Freshmen: A Comparative Case Study

    ERIC Educational Resources Information Center

    Dale, Amanda

    2010-01-01

    The purpose of this study was to examine the college-choice process of high achieving students. Employing current literature and previous research, it combined current models of college choice and the influential factors identified throughout the literature while utilizing the concept of bounded rationality to create a conceptual framework to…

  15. Examining the Relationship between Selected Variables and the Academic Achievement of African American High School Students

    ERIC Educational Resources Information Center

    Graham, David Mark

    2009-01-01

    Research investigating the impact of factors such as gender, socioeconomic status, racial socialization, and academic self-concept on the academic achievement of African American high school students has been of interest to scholars for decades. Previous literature has focused much attention on the relationship of each of these constructs and…

  16. The Transition Experiences of High-Achieving, Low-Income Undergraduates in an Elite College Environment

    ERIC Educational Resources Information Center

    McLoughlin, Paul J., II

    2012-01-01

    This hermeneutic phenomenological study describes the lived experiences of high-achieving, low-income undergraduates and their transition into a college environment historically reserved for wealthy students. The results of this study indicate that these students are flourishing in full need-based financial aid programs as a result of their own…

  17. Examining the Predictive Power of Autonomy and Self-Evaluation on High School Students' Language Achievement

    ERIC Educational Resources Information Center

    Yuksel, Ismail; Toker, Yalcin

    2013-01-01

    This study aims to determine language learners' autonomy, self-evaluation levels and to examine the predictive power of these two variables on language achievement. The study was designed as mixed method design and was conducted with 108 high school students. Data were collected through an autonomy scale, a self-evaluation scale, schools record on…

  18. Mathematics Attitudes and Achievement of U.S. High School Sophomores Based on Race

    ERIC Educational Resources Information Center

    Martinez, James

    2017-01-01

    What are high school students thinking? The purpose of this study was to examine the degree that psychosocial attitudes affect academic achievement in mathematics for students of different races during secondary schooling. Based on a quantitative methodology, data was gathered from a nationally distributed survey involving over 16,000 student…

  19. The Effects of Alcohol Use on Academic Achievement in High School

    ERIC Educational Resources Information Center

    Balsa, Ana I.; Giuliano, Laura M.; French, Michael T.

    2011-01-01

    This paper examines the effects of alcohol use on high school students' quality of learning. We estimate fixed-effects models using data from the National Longitudinal Study of Adolescent Health. Our primary measure of academic achievement is the student's grade point average (GPA) abstracted from official school transcripts. We find that…

  20. Growing into Equity: Professional Learning and Personalization in High-Achieving Schools

    ERIC Educational Resources Information Center

    Gleason, Sonia Caus; Gerzon, Nancy

    2013-01-01

    What makes a Title I school high-achieving, and what can we all learn from that experience? Professional learning and leadership that supports personalized instruction makes the difference, as captured in the ground-breaking research of authors Sonia Caus Gleason and Nancy Gerzon. This illuminating book shows how four outstanding schools are…

  1. Further Evidence of an Engagement-Achievement Paradox among U.S. High School Students

    ERIC Educational Resources Information Center

    Shernoff, David J.; Schmidt, Jennifer A.

    2008-01-01

    Achievement, engagement, and students' quality of experience were compared by racial and ethnic group in a sample of students (N = 586) drawn from 13 high schools with diverse ethnic and socioeconomic student populations. Using the Experience Sampling Method (ESM), 3,529 samples of classroom experiences were analyzed along with self-reported…

  2. Impact of Physical Environment on Academic Achievement of High School Youth.

    ERIC Educational Resources Information Center

    Burkhalter, Bettye B.

    1983-01-01

    To study the relationship of the physical environment to high school students' academic achievement, 60 students participated in an experiential career exploration program at the Alabama Space and Rocket Center while 108 students participated in a traditional careers program. Tests indicated the former group improved more in career choice…

  3. Reliability and Validity Evidence for Achievement Goal Models in High School Physical Education Settings

    ERIC Educational Resources Information Center

    Guan, Jianmin; McBride, Ron; Xiang, Ping

    2007-01-01

    Although empirical research in academic areas provides support for both a 3-factor as well as a 4-factor achievement goal model, both models were proposed and tested with a collegiate sample. Little is known about the generalizability of either model with high school level samples. This study was designed to examine whether the 3-factor model…

  4. Antecedent and Concurrent Psychosocial Skills That Support High Levels of Achievement within Talent Domains

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Subotnik, Rena F.; Worrell, Frank C.

    2015-01-01

    Motivation and emotional regulation are important for the sustained focused study and practice required for high levels of achievement and creative productivity in adulthood. Using the talent development model proposed by the authors as a framework, the authors discuss several important psychosocial skills based on the psychological research…

  5. How High-Achieving African American Undergraduate Men Negotiate Cultural Challenges at a Predominantly White Institution

    ERIC Educational Resources Information Center

    Bradley, Elva Elaine

    2010-01-01

    In this study I examine the manner in which high-achieving African American undergraduate men negotiate cultural challenges in a predominantly White institution (PWI). Cultural theory underpins the conceptual framework of this case study. Basing the study in cultural theory provided a lens through which to view the lived experiences of the twenty…

  6. Central American Refugees and U.S. High Schools. A Psychosocial Study of Motivation and Achievement.

    ERIC Educational Resources Information Center

    Suarez-Orozco, Marcelo M.

    This ethnographic study documents and interprets key school, work, and family life issues in the lives and experiences of a sampling of recent immigrants from the war-torn Central American nations; and suggests a psychocultural theory of achievement motivation. Information was gathered from observation in two urban high schools, interviews with 50…

  7. The Impact of Inclusion on the Academic Achievement of High School Special Education Students

    ERIC Educational Resources Information Center

    Dawkins, Harold Smith

    2010-01-01

    This dissertation examined the impact of inclusion on the academic achievement outcome of high school special education students as measured by English 1, biology, and algebra 1 as a function of gender, ethnicity, and years of inclusion. The study also examined the generalizations with confidence that could be made about the use of inclusion…

  8. Experiencing More Mathematics Anxiety than Expected? Contrasting Trait and State Anxiety in High Achieving Students

    ERIC Educational Resources Information Center

    Roos, A.-L.; Bieg, M.; Goetz, T.; Frenzel, A. C.; Taxer, J.; Zeidner, M.

    2015-01-01

    This study examined mathematics anxiety among high and low achieving students (N = 237, grades 9 and 10) by contrasting trait (habitual) and state (momentary) assessments of anxiety. Previous studies have found that trait anxiety measures are typically rated higher than state measures. Furthermore, the academic self-concept has been identified to…

  9. High-Stakes Testing and Student Achievement: Updated Analyses with NAEP Data

    ERIC Educational Resources Information Center

    Nichols, Sharon L.; Glass, Gene V.; Berliner, David C.

    2012-01-01

    The present research is a follow-up study of earlier published analyses that looked at the relationship between high-stakes testing pressure and student achievement in 25 states. Using the previously derived Accountability Pressure Index (APR) as a measure of state-level policy pressure for performance on standardized tests, a series of…

  10. Standardized Tests as Measurements of Achievement: Does the High School Assessment Program (HSAP) Measure Up?

    ERIC Educational Resources Information Center

    Ray, Susan Amanda

    2008-01-01

    Purpose: The purpose of this study was to determine the correlation between HSAP scores and various measures of classroom achievement such as overall GPA, End Of Course Scores and SAT/ACT scores of Berea High School [BHS] students in the classes of 2005-2006 and 2006-2007. Methodology: The researcher collected the following data for random samples…

  11. Brain Structure and Resting-State Functional Connectivity in University Professors with High Academic Achievement

    ERIC Educational Resources Information Center

    Li, Weiwei; Yang, Wenjing; Li, Wenfu; Li, Yadan; Wei, Dongtao; Li, Huimin; Qiu, Jiang; Zhang, Qinglin

    2015-01-01

    Creative persons play an important role in technical innovation and social progress. There is little research on the neural correlates with researchers with high academic achievement. We used a combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity analysis, rsFC) approach to examine the…

  12. Ugandan Immigrant Students' Perceptions of Barriers to Academic Achievement in American High Schools

    ERIC Educational Resources Information Center

    Ssekannyo, Denis

    2010-01-01

    In a world that is now a global village, enterprising individuals, especially from Third World countries, who make it to greener pastures do not leave their children behind. But with a long list of barriers to academic achievement associated with immigrant and minority students in American high schools, an understanding of the experiences and…

  13. Students' High School Organizational Leadership Opportunities and Their Influences on Academic Achievement and Civic Participation

    ERIC Educational Resources Information Center

    Elemen, Jennifer E.

    2015-01-01

    The purpose of this quantitative study was to analyze high school leadership praxis for its inclusion of students in organizational leadership dialogue and decision-making and the influences of these factors on student achievement and civic participation. Survey questionnaire data were provided by 215 full-time enrolled undergraduate students from…

  14. Achievement, School Integration, and Self-Efficacy in Single-Sex and Coeducational Parochial High Schools

    ERIC Educational Resources Information Center

    Micucci, Kara Hanson

    2014-01-01

    A structural model for prior achievement, school integration, and self-efficacy was developed using Tinto's theory of student attrition and Bandura's self-efficacy theory. The model was tested and revised using a sample of 1,452 males and females from single-sex and coeducational parochial high schools. Results indicated that the theoretically…

  15. The Relationship between Illinois School District Superintendent Longevity and High School Student Achievement

    ERIC Educational Resources Information Center

    Libka, Robert J.

    2012-01-01

    Frequent changes in school district superintendents may be having a detrimental impact on student achievement. Rapid changes in leadership today parallel the present (NCLB) era of high stakes state assessments. The goal of the study was to provide correlation research that would have a positive effect on school district management, superintendent…

  16. Effect of Textbook Readability on Student Achievement in High School Chemistry.

    ERIC Educational Resources Information Center

    Rapp, D. Neil

    2001-01-01

    Notes the readability level of many high school chemistry textbooks is far above students' reading levels. Conducts two separate studies, making every effort to keep the two classes as similar as possible in all aspects except text. Finds strong evidence that changing the chemistry textbook resulted in an increase in student achievement. Suggests…

  17. Negative Relationship between Achievement in High School and Self-Concept in College.

    ERIC Educational Resources Information Center

    Wolfe, Raymond N.; Grosch, James W.

    Social learning theory implies that there should be a significant positive relationship between academic performance and self-concept and outcomes of recent meta-analyses support this prediction. While path-analytic studies of high school samples in the 1960s and 1970s demonstrated that ability and achievement each made a small positive…

  18. The Impact of Reading Success Academy on High School Reading Achievement

    ERIC Educational Resources Information Center

    Burlison, Kelly; Chave, Josh

    2014-01-01

    The study explores the effectiveness of the Reading Success Academy on the reading achievement of the selected group of ninth-grade students in a comprehensive high school. We examine in what ways the Reading Success Academy may improve the reading proficiency rates and amount of reading growth of ninth-grade students. The results indicate that…

  19. Black High Achieving Undergraduate Mathematics Majors Discuss Success and Persistence in Mathematics

    ERIC Educational Resources Information Center

    Ellington, Roni M.; Frederick, Rona

    2010-01-01

    Experiences of eight Black high-achieving college junior and senior mathematics majors are examined to discern which social and cultural factors shape success and persistence in mathematics. College persistence literature as well as mathematics education studies that document Black students' success in mathematics were used as frameworks to…

  20. Teaching Practices in Grade 5 Mathematics Classrooms with High-Achieving English Learner Students

    ERIC Educational Resources Information Center

    Merritt, Eileen G.; Palacios, Natalia; Banse, Holland; Rimm-Kaufman, Sara E.; Leis, Micela

    2017-01-01

    Teachers need more clarity about effective teaching practices as they strive to help their low-achieving students understand mathematics. Our study describes the instructional practices used by two teachers who, by value-added metrics, would be considered "highly effective teachers" in classrooms with a majority of students who were…

  1. One-to-One Computing and Student Achievement in Ohio High Schools

    ERIC Educational Resources Information Center

    Williams, Nancy L.; Larwin, Karen H.

    2016-01-01

    This study explores the impact of one-to-one computing on student achievement in Ohio high schools as measured by performance on the Ohio Graduation Test (OGT). The sample included 24 treatment schools that were individually paired with a similar control school. An interrupted time series methodology was deployed to examine OGT data over a period…

  2. Emotional Intelligence and Academic Achievement of High School Students in Kanyakumari District

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Deepa, T.

    2013-01-01

    The objective of the study is to find the significant relationship between emotional intelligence and academic achievement of high school students with reference to the background variables. Survey method was employed. Two tools are used in this study namely self-made Trait Emotional Intelligence Questionnaire Short Form (TEIQue SF) and the…

  3. Integrating Economic and Social Policy: Good Practices from High-Achieving Countries. Innocenti Working Papers.

    ERIC Educational Resources Information Center

    Mehrotra, Santosh

    This paper examines the successes of 10 "high achievers," countries with social indicators far higher than might be expected, given their national wealth, pulling together the lessons learned for social policy in the developing world. The 10 countries identified are Costa Rica, Cuba, Barbados, Botswana, Zimbabwe, Mauritius, Kerala, Sri…

  4. Spatial Experiences of High Academic Achievers: Insights from a Developmental Perspective

    ERIC Educational Resources Information Center

    Weckbacher, Lisa Marie; Okamoto, Yukari

    2012-01-01

    The study explored the relationship between types of spatial experiences and spatial abilities among 13- to 14-year-old high academic achievers. Each participant completed two spatial tasks and a survey assessing favored spatial activities across five categories (computers, toys, sports, music, and art) and three developmental periods (early…

  5. The Impact of High School Size on Math Achievement and Dropout Rate

    ERIC Educational Resources Information Center

    Werblow, Jacob; Duesbery, Luke

    2009-01-01

    The study explores the ways in which school size influences two important student outcomes commonly used in school effects research: growth in mathematics achievement and dropout rate. Past research suggests that smaller high schools can lead to increased benefits for students. In this study, multilevel analytic models of the first two waves of…

  6. Filial Piety and Academic Motivation: High-Achieving Students in an International School in South Korea

    ERIC Educational Resources Information Center

    Tam, Jonathan

    2016-01-01

    This study uses self-determination theory to explore the mechanisms of filial piety in the academic motivation of eight high-achieving secondary school seniors at an international school in South Korea, resulting in several findings. First, the students attributed their parents' values and expectations as a major source of the students'…

  7. Obesity, High-Calorie Food Intake, and Academic Achievement Trends among U.S. School Children

    ERIC Educational Resources Information Center

    Li, Jian; O'Connell, Ann A.

    2012-01-01

    The authors investigated children's self-reported high-calorie food intake in Grade 5 and its relationship to trends in obesity status and academic achievement over the first 6 years of school. They used 3-level hierarchical linear models in the large-scale database (the Early Childhood Longitudinal Study--Kindergarten Cohort). Findings indicated…

  8. Teachers and Student Achievement in the Chicago Public High Schools. WP 2002-28. Revised

    ERIC Educational Resources Information Center

    Aaronson, Daniel; Barrow, Lisa; Sander, William

    2003-01-01

    Using unique administrative data on Chicago public high school students and their teachers, we are able to estimate the importance of teachers on student mathematical achievement. We find that teachers are educationally and statistically important. To be sure, sampling variation and other measurement issues can strongly influence estimates of…

  9. Social Media Use, Loneliness, and Academic Achievement: A Correlational Study with Urban High School Students

    ERIC Educational Resources Information Center

    Neto, Roque; Golz, Nancy; Polega, Meaghan

    2015-01-01

    This study explored the association between social media use, loneliness, and academic achievement in high school students and identified the demographic characteristics associated with these three elements. This study also aimed to identify the percentage of variance in loneliness accounted for by social media use and GPA. Participants were 345…

  10. Actively Closing the Gap? Social Class, Organized Activities, and Academic Achievement in High School

    ERIC Educational Resources Information Center

    Morris, David S.

    2015-01-01

    Participation in Organized Activities (OA) is associated with positive behavioral and developmental outcomes in children. However, less is known about how particular aspects of participation affect the academic achievement of high school students from different social class positions. Using the Education Longitudinal Study of 2002, this study…

  11. Turkish High School Students' Biology Achievement in Relation to Academic Self-Regulation

    ERIC Educational Resources Information Center

    Yumusak, Necmettin; Sungur, Semra; Cakiroglu, Jale

    2007-01-01

    This study aimed at investigating the contribution of motivational beliefs, cognitive, and metacognitive strategy use to Turkish high school students' achievement in biology. In order to investigate the specified purpose of the study, 519 tenth-grade students were administered the Motivated Strategies for Learning Questionnaire (Pintrich, Smith,…

  12. Communication Satisfaction, Organizational Citizenship Behavior and the Relationship to Student Achievement in High Schools

    ERIC Educational Resources Information Center

    Blanchard, Gayle A.

    2012-01-01

    This study used a correlational design that allowed the researcher to examine the relationship among communication satisfaction, organizational citizenship behaviors (OCB) and student achievement. High school teachers were surveyed from a convenience sample of 12 school districts in Arizona. Established instruments were used to survey teachers'…

  13. Consequences of the Confucian Culture: High Achievement but Negative Psychological Attributes?

    ERIC Educational Resources Information Center

    Ho, Irene T.; Hau, Kit-Tai

    2010-01-01

    In "Unforgiving Confucian culture: A breeding ground for high academic achievement, test anxiety and self-doubt?" Stankov (in press) provides three reasons for caution against over-glorifying the academic excellence of Confucian Asian learners, namely that it may lead to a reluctance to change their rote learning approach which is not conducive to…

  14. Evaluative and Behavioral Correlates to Intrarehearsal Achievement in High School Bands

    ERIC Educational Resources Information Center

    Montemayor, Mark

    2014-01-01

    The purpose of this study was to investigate relationships of teaching effectiveness, ensemble performance quality, and selected rehearsal procedures to various measures of intrarehearsal achievement (i.e., musical improvement exhibited by an ensemble during the course of a single rehearsal). Twenty-nine high school bands were observed in two…

  15. Faculty Perceptions of High-Achieving Male Collegians: A Critical Race Theory Analysis

    ERIC Educational Resources Information Center

    Comeaux, Eddie

    2013-01-01

    Critical race theory was employed as an interpretive framework to explore faculty perceptions of the academic accomplishments of high-achieving Black and White male collegians. Using photo elicitation methodology, faculty participants responded to a randomly assigned photograph of and vignette about either a Black or White male student. While most…

  16. Self-Graded and Teacher-Graded Achievement in a BSCS High School Biology Course.

    ERIC Educational Resources Information Center

    Good, Wallace Martin

    The effect of self-grading on biology students exposed to the same instruction (except grading) in an upper-middle class public school was investigated by comparing self-graded and teacher-graded populations in (1) achievement in high school biology, (2) level of aspiration behavior, (3) critical thinking skills, and (4) productivity. The…

  17. Cognitive Abilities and Motivational Processes in High School Students' Situational Engagement and Achievement in Science.

    ERIC Educational Resources Information Center

    Lau, Shun; Roeser, Robert W.

    2002-01-01

    Building on R. Snow's two pathways to achievement outcomes (1989), examined how cognitive and motivational factors associated with the performance and commitment pathways respectively contributed to prediction of outcomes in science for 491 high school students. Results are consistent with Snow's conjecture that factors related to both pathways…

  18. Overall Findings: Common Practices and Procedures across Schools. High Achieving Schools Study. Synthesis Report

    ERIC Educational Resources Information Center

    Mohajeri-Nelson, Nazanin; Bamberry, Lynn; Dunaway, Wendy; Hunter, Ellen; Klein, Jeff; Kuntz, Courtney; Negley, Tina; Singer, Robin; Ottenbreit, Rebekah; Young, Eric

    2015-01-01

    This report summarizes the factors that were commonly noted across five high achieving elementary schools in Colorado: (1) Burlington; (2) Canyon Creek; (3) Soaring Eagles; (4) South Lakewood; and (5) Tavelli. After 10 days of onsite visits to participating schools, noteworthy commonalities surfaced across the schools. Policies, practices, and…

  19. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  20. Spectral shape variation of interstellar electrons at high energies

    NASA Technical Reports Server (NTRS)

    Tan, L. C.

    1985-01-01

    The high energy electron spectrum analysis has shown that the electron intensity inside the H2 cloud region, or in a spiral arm, should be much lower than that outside it and the observed electron energy spectrum should flatten again at about 1 TeV. In the framework of the leady box model the recently established rigidity dependence of the escape pathlength of cosmic rays would predict a high energy electron spectrum which is flatter than the observed one. This divergence is explained by assuming that the leaky box model can only apply to cosmic ray heavy nuclei, and light nuclei and electrons in cosmic rays may have different behaviors in the interstellar propagation. Therefore, the measured data on high energy electrons should be analyzed based on the proposed nonuniform galactic disk (NUGD) mode.

  1. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  2. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.

    PubMed

    Wang, Yilei; Pillai, Suresh Kumar Raman; Chan-Park, Mary B

    2013-09-09

    Single-walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next-generation printed electronic transistor materials. However, large-scale solution-based parallel assembly of SWNTs to obtain high-performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution-based technique can achieve this. Herein a novel solution-based technique, the immersion-cum-shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s-SWNTs). By immersing an aminosilane-treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT-based field-effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 10(4) and mobility 46.5 cm(2) /Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm(2) and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large-scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large-area electronics.

  3. Interaction of an Ultrarelativistic Electron Bunch Train with a W-Band Accelerating Structure: High Power and High Gradient.

    PubMed

    Wang, D; Antipov, S; Jing, C; Power, J G; Conde, M; Wisniewski, E; Liu, W; Qiu, J; Ha, G; Dolgashev, V; Tang, C; Gai, W

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to the interference of the wakefields from the two bunches, was measured as a function of bunch separation. Measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.

  4. Interaction of an Ultrarelativistic Electron Bunch Train with a W -Band Accelerating Structure: High Power and High Gradient

    NASA Astrophysics Data System (ADS)

    Wang, D.; Antipov, S.; Jing, C.; Power, J. G.; Conde, M.; Wisniewski, E.; Liu, W.; Qiu, J.; Ha, G.; Dolgashev, V.; Tang, C.; Gai, W.

    2016-02-01

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to the interference of the wakefields from the two bunches, was measured as a function of bunch separation. Measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.

  5. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  6. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    SciTech Connect

    Wang, D.; Antipov, S.; Jing, C.; Power, J. G.; Conde, M.; Wisniewski, E.; Liu, W.; Qiu, J.; Ha, G.; Dolgashev, V.; Tang, C.; Gai, W.

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to the interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.

  7. High Expectations--High Achievement on Literacy: "What Shall We Do in This Hangman's Hour?"

    ERIC Educational Resources Information Center

    Linnakyla, Pirjo

    Finland is a country of great expectations on literacy and literacy education. High expectations and demands have, however, a darker side. High expectations of society, parents, and teachers may have an effect on the students' self-esteem. The economic recession in the early 1990s strongly accelerated the change in literacy demands and…

  8. Cultivating a Growth Mindset in Students at a High-Achieving High School

    ERIC Educational Resources Information Center

    Fegley, Alan D.

    2010-01-01

    The purpose of this EPP is to develop a plan for changing the mindset of a large number of Haddonfield Memorial High School (HMHS) students from a fixed mindset to a growth mindset. HMHS is by most conventional measures a high performing school. Typically 100% of the students graduate with 96% of the students attending two or four year colleges…

  9. No More 1s: High Expectations Can Lead to High Achievement

    ERIC Educational Resources Information Center

    Cervone, Laureen; DiMartino, Lisa; Kerr, Kris

    2010-01-01

    The school district in Middletown, New York, in the state's Orange County, today serves close to 7,000 students in four elementary schools, two middle schools, and one high school. The district is classified by the state in the highest of three Need-to-Resource-Capacity groups, an urban or suburban school district with high student needs in…

  10. Examining the Success Factors of High-Achieving Puerto Rican Male High-School Students

    ERIC Educational Resources Information Center

    Garrett, Tomas; Antrop-Gonzalez, Rene; Velez, William

    2010-01-01

    This article works to dispel the myth that Latino urban high-school students are not capable of performing at high academic levels. Whereas much educational research emphasizes the academic underachievement of urban Latino students, this article counteracts this research by describing the four success factors that three working-class Puerto Rican…

  11. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  12. Modeling stability of growth between mathematics and science achievement during middle and high school.

    PubMed

    Ma, Xin; Ma, Lingling

    2004-04-01

    In this study, the authors introduced a multivariate multilevel model to estimate the consistency among students and schools in the rates of growth between mathematics and science achievement during the entire middle and high school years with data from the Longitudinal Study of American Youth (LSAY). There was no evident consistency in the rates of growth between mathematics and science achievement among students, and this inconsistency was not much influenced by student characteristics and school characteristics. However, there was evident consistency in the average rates of growth between mathematics and science achievement among schools, and this consistency was influenced by student characteristics and school characteristics. Major school-level variables associated with parental involvement did not show any significant impacts on consistency among either students or schools. Results call for educational policies that promote collaboration between mathematics and science departments or teachers.

  13. Relationship of constructivist learning environment to student attitudes and achievement in high school mathematics and science

    NASA Astrophysics Data System (ADS)

    Dethlefs, Theresa Marie

    This study investigated the relationship of constructivist learning environment and standards-based teaching practices to student achievement and attitudes (self-efficacy, intrinsic value, and learning strategies) in Algebra and Biology. Further, these relationships were examined as a function of student gender and prior achievement. A purposive sample of 804 high school students enrolled in Biology I, Algebra I, or Advanced Algebra was selected for inclusion in this study. Although the dimensions of constructivist learning environment that contributed to predicting student achievement and attitudes varied by content area and criterion, the results of the present study generally provide strong support for a positive relationship between constructivist learning environment and student attitudes, but little support for a direct relationship to student achievement. Teacher reports of overall constructivist learning environment were not correlated with achievement or attitudes. Observer reports of constructivist learning environment were correlated with student intrinsic value and learning strategies. Student reports of constructivist learning environment were correlated with all three attitude measures. Multiple regression findings showed that neither overall constructivist learning environment nor standards-based teaching practices predicted achievement in any of the content areas. Overall constructivist learning environment and standards-based teaching practices were significant positive predictors of student intrinsic value and learning strategies in all three content areas, after controlling for student and classroom demographic variables. Overall constructivist learning environment and standards-based teaching practices were also significant positive predictors of self-efficacy in Algebra 1. In addition, standards-based teaching practices was a significant positive predictor of student self-efficacy in Biology. No specific dimensions of constructivist learning

  14. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    NASA Astrophysics Data System (ADS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-05-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation.

  15. Peace of Mind, Academic Motivation, and Academic Achievement in Filipino High School Students.

    PubMed

    Datu, Jesus Alfonso D

    2017-04-09

    Recent literature has recognized the advantageous role of low-arousal positive affect such as feelings of peacefulness and internal harmony in collectivist cultures. However, limited research has explored the benefits of low-arousal affective states in the educational setting. The current study examined the link of peace of mind (PoM) to academic motivation (i.e., amotivation, controlled motivation, and autonomous motivation) and academic achievement among 525 Filipino high school students. Findings revealed that PoM was positively associated with academic achievement β = .16, p < .05, autonomous motivation β = .48, p < .001, and controlled motivation β = .25, p < .01. As expected, PoM was negatively related to amotivation β = -.19, p < .05, and autonomous motivation was positively associated with academic achievement β = .52, p < .01. Furthermore, the results of bias-corrected bootstrap analyses at 95% confidence interval based on 5,000 bootstrapped resamples demonstrated that peace of mind had an indirect influence on academic achievement through the mediating effects of autonomous motivation. In terms of the effect sizes, the findings showed that PoM explained about 1% to 18% of the variance in academic achievement and motivation. The theoretical and practical implications of the results are elucidated.

  16. The role of chronotype, gender, test anxiety, and conscientiousness in academic achievement of high school students.

    PubMed

    Rahafar, Arash; Maghsudloo, Mahdis; Farhangnia, Sajedeh; Vollmer, Christian; Randler, Christoph

    2016-01-01

    Previous findings have demonstrated that chronotype (morningness/intermediate/eveningness) is correlated with cognitive functions, that is, people show higher mental performance when they do a test at their preferred time of day. Empirical studies found a relationship between morningness and higher learning achievement at school and university. However, only a few of them controlled for other moderating and mediating variables. In this study, we included chronotype, gender, conscientiousness and test anxiety in a structural equation model (SEM) with grade point average (GPA) as academic achievement outcome. Participants were 158 high school students and results revealed that boys and girls differed in GPA and test anxiety significantly, with girls reporting better grades and higher test anxiety. Moreover, there was a positive correlation between conscientiousness and GPA (r = 0.17) and morningness (r = 0.29), respectively, and a negative correlation between conscientiousness and test anxiety (r = -0.22). The SEM demonstrated that gender was the strongest predictor of academic achievement. Lower test anxiety predicted higher GPA in girls but not in boys. Additionally, chronotype as moderator revealed a significant association between gender and GPA for evening types and intermediate types, while intermediate types showed a significant relationship between test anxiety and GPA. Our results suggest that gender is an essential predictor of academic achievement even stronger than low or absent test anxiety. Future studies are needed to explore how gender and chronotype act together in a longitudinal panel design and how chronotype is mediated by conscientiousness in the prediction of academic achievement.

  17. High-coherence electron and ion bunches from laser-cooled atoms.

    PubMed

    Sparkes, Ben M; Thompson, Daniel J; McCulloch, Andrew J; Murphy, Dene; Speirs, Rory W; Torrance, Joshua S J; Scholten, Robert E

    2014-08-01

    Cold atom electron and ion sources produce electron bunches and ion beams by photoionization of laser-cooled atoms. They offer high coherence and the potential for high brightness, with applications including ultra-fast electron-diffractive imaging of dynamic processes at the nanoscale. The effective brightness of electron sources has been limited by nonlinear divergence caused by repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that electron bunches with ellipsoidal shape and uniform density distribution have linear internal Coulomb fields, such that the Coulomb explosion can be reversed using conventional optics. Our source can create bunches shaped in three dimensions and hence in principle achieve the transverse spatial coherence and brightness needed for picosecond-diffractive imaging with nanometer resolution. Here we present results showing how the shaping capability can be used to measure the spatial coherence properties of the cold electron source. We also investigate space-charge effects with ions and generate electron bunches with durations of a few hundred picoseconds. Future development of the cold atom electron and ion source will increase the bunch charge and charge density, demonstrate reversal of Coulomb explosion, and ultimately, ultra-fast coherent electron-diffractive imaging.

  18. High fat diet promotes achievement of peak bone mass in young rats

    SciTech Connect

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  19. Computer-Based Drill and Practice in Arithmetic: Widening the Gap between High- and Low-Achieving Students.

    ERIC Educational Resources Information Center

    Hativa, Nira

    1988-01-01

    The differential effects of computer-assisted instruction for high-achieving and low-achieving students were examined for seven elementary students of varied background. Higher-achieving students were more able to adjust to the requirements of computer work and to derive benefit from it than were lower-achieving students. Implications for teaching…

  20. Achievement Motivation of the High School Students: A Case Study among Different Communities of Goalpara District of Assam

    ERIC Educational Resources Information Center

    Sarangi, C.

    2015-01-01

    Achievement motivation is a consistent striving force of an individual to achieve success to a certain standard of excellence in competing situation. In this study an attempt was made to study the effect of achievement motivation on the academic achievement of the high school students of tribal and non tribal communities in relation to their sex…

  1. 130 kV High-Resolution Electron Beam Lithography System for Sub-10-nm Nanofabrication

    NASA Astrophysics Data System (ADS)

    Okino, Teruaki; Kuba, Yukio; Shibata, Masahiro; Ohyi, Hideyuki

    2013-06-01

    An electron beam lithography (EBL) system, CABL-UH, with a 130 kV high acceleration voltage has been developed that succeeded in minimizing beam size by minimizing Coulomb blur. This system has a short single-stage electron beam (EB) gun with an alignment function of two extractor centers to minimize Coulomb blur. This gun has also succeeded in thoroughly avoiding microdischarges. By adopting this EB gun and many other techniques, high resolution and long-term high stability have been achieved and an extremely fine pattern (4 nm line) has been delineated.

  2. First high-temperature electronics products survey 2005.

    SciTech Connect

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  3. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  4. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  5. Properties of the electron cloud in a high-energy positron and electron storage ring

    SciTech Connect

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  6. Modeling ion-induced electrons in the High Current Experimenta)

    NASA Astrophysics Data System (ADS)

    Stoltz, P. H.; Verboncoeur, J. P.; Cohen, R. H.; Molvik, A. W.; Vay, J.-L.; Veitzer, S. A.

    2006-05-01

    A primary concern for high current ion accelerators is contaminant electrons. These electrons can interfere with the beam ions, causing emittance growth and beam loss. Numerical simulation is a main tool for understanding the interaction of the ion beam with the contaminant electrons, but these simulations then require accurate models of electron generation. These models include ion-induced electron emission from ions hitting the beam pipe walls or diagnostics. However, major codes for modeling ion beam transport are written in different programming languages and used on different computing platforms. For electron generation models to be maximally useful, researchers should be able to use them easily from many languages and platforms. A model of ion-induced electrons including the electron energy distribution is presented here, including a discussion of how to use the Babel software tool to make these models available in multiple languages and how to use the GNU Autotools to make them available on multiple platforms. An application to simulation of the end region of the High Current Experiment is shown. These simulations show formation of a virtual cathode with a potential energy well of amplitude 12.0eV, approximately six times the most probable energy of the ion-induced electrons. Oscillations of the virtual cathode could lead to possible longitudinal and transverse modulation of the density of the electrons moving out of the virtual cathode.

  7. Modeling ion-induced electrons in the High Current Experiment

    SciTech Connect

    Stoltz, P.H.; Verboncoeur, J.P.; Cohen, R.H.; Molvik, A.W.; Vay, J.-L.; Veitzer, S.A.

    2006-05-15

    A primary concern for high current ion accelerators is contaminant electrons. These electrons can interfere with the beam ions, causing emittance growth and beam loss. Numerical simulation is a main tool for understanding the interaction of the ion beam with the contaminant electrons, but these simulations then require accurate models of electron generation. These models include ion-induced electron emission from ions hitting the beam pipe walls or diagnostics. However, major codes for modeling ion beam transport are written in different programming languages and used on different computing platforms. For electron generation models to be maximally useful, researchers should be able to use them easily from many languages and platforms. A model of ion-induced electrons including the electron energy distribution is presented here, including a discussion of how to use the Babel software tool to make these models available in multiple languages and how to use the GNU Autotools to make them available on multiple platforms. An application to simulation of the end region of the High Current Experiment is shown. These simulations show formation of a virtual cathode with a potential energy well of amplitude 12.0 eV, approximately six times the most probable energy of the ion-induced electrons. Oscillations of the virtual cathode could lead to possible longitudinal and transverse modulation of the density of the electrons moving out of the virtual cathode.

  8. High-Power Electron Accelerators for Space (and other) Applications

    SciTech Connect

    Nguyen, Dinh Cong; Lewellen, John W.

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  9. Electronic effects in high-energy radiation damage in iron.

    PubMed

    Zarkadoula, E; Daraszewicz, S L; Duffy, D M; Seaton, M A; Todorov, I T; Nordlund, K; Dove, M T; Trachenko, K

    2014-02-26

    Electronic effects have been shown to be important in high-energy radiation damage processes where a high electronic temperature is expected, yet their effects are not currently understood. Here, we perform molecular dynamics simulations of high-energy collision cascades in α-iron using a coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron-phonon interaction. We subsequently compare it with the model employing electronic stopping only, and find several interesting novel insights. The 2T-MD results in both decreased damage production in the thermal spike and faster relaxation of the damage at short times. Notably, the 2T-MD model gives a similar amount of final damage at longer times, which we interpret to be the result of two competing effects: a smaller amount of short-time damage and a shorter time available for damage recovery.

  10. Solvent additive to achieve highly ordered nanostructural semicrystalline DPP copolymers: toward a high charge carrier mobility.

    PubMed

    An, Tae Kyu; Kang, Il; Yun, Hui-jun; Cha, Hyojung; Hwang, Jihun; Park, Seonuk; Kim, Jiye; Kim, Yu Jin; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi; Park, Chan Eon

    2013-12-23

    A facile spin-coating method in which a small percentage of the solvent additive, 1-chloronaphthalene (CN), is found to increase the drying time during film deposition, is reported. The field-effect mobility of a PDPPDBTE film cast from a chloroform-CN mixed solution is 0.46 cm(2) V(-1) s(-1). The addition of CN to the chloroform solution facilitates the formation of highly crystalline polymer structures.

  11. High speed cineradiography using electronic imaging

    NASA Astrophysics Data System (ADS)

    Lucero, J. P.; Fry, D. A.; Gaskill, W. E.; Henderson, R. L.; Crawford, T. R.; Carey, N. E.

    1992-12-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 10(exp 5)/sec for up to five total images.

  12. High-speed cineradiography using electronic imaging

    NASA Astrophysics Data System (ADS)

    Lucero, Jacob P.; Fry, David A.; Gaskill, William E.; Henderson, R. L.; Crawford, Ted R.; Carey, N. E.

    1993-01-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 105/sec for up to five total images.

  13. Weighting mean timers for high energy physics electronics

    SciTech Connect

    J. Wu

    1998-11-01

    A new family of electronics circuits, weighting mean timer, is presented in this technical memo. Weighting mean timers can be used in high energy physics experiment electronics to implement the \\concurrence" condition in hardware trigger stage. Several possible architectures of weighting mean timers have been discussed.

  14. Simulation of nanosecond high voltage discharges in dense gases governed by runaway electrons

    SciTech Connect

    Babich, L.P.; Kutsyk, I.M.

    1995-12-31

    In the present communication results of the first attempt to simulate overall dynamics of high voltage discharge in dense gases at high overvoltages are presented. The model of energy group was adopted. On a large scale the population of free electrons was divided in three energy groups: low energy electrons, runaway electrons (REs) and electrons of intermediate energies. The conventional Lorentz approximation of electron distribution function is adequate to describe low energy electrons on the basis of the Boltzmann kinetic equation. A differential equation was deduced to simulate the evolution of low-energy electron number density. The upper boundary {epsilon}{sub max} of this energy domain was determined as the energy, where the approximation was violated. To pass from the differential description to discreet model it was convenient to introduce k{sub max} energy groups of smaller scale {triangle}{epsilon} << {epsilon}{sub max} and divide the space domain x {element_of} [0, d] on i{sub max} space zones {triangle}x{sub i}. Thus the overall description of low energy electron kinetics was reduced to a system of equations with [k{sub max}, i{sub max}] dimension. To simulate REs, beforehand an auxiliary calculations should have been carried out to determine a share of electrons {gamma} with the initial energy {epsilon}{sub max}, which in the course of some time t{sub r} achieved the runaway energy threshold {epsilon}{sub th}. This time was adopted 0.1 ns to be essentially less than a characteristic time of applied voltage pulse variation. Data on {gamma} as a function of E allowed to calculate a number of REs electrons in every space zone. It was assumed that at every time step the share 5 of low-energy electrons, obtained energy >{epsilon}{sub max}, instantiously achieved the threshold {epsilon}{sub th}, whereas the others returned back to low-energy domain.

  15. Achieving High Pressure Shock Hugoniot Measurements in Cylindrical Geometry Utilizing a High-Explosive Pulsed Power Drive

    DTIC Science & Technology

    2011-06-01

    to conduct high velocity material experiments and measure shock velocities at pressures near 1 TPa. The DEMG (Disk Explosive Magnetic Generator ... Explosive Magnetic Generator ) will be able to achieve extremely high currents with as much as 70 MA usable for driving a z-pinch experiment. In this...shock velocities at pressures near 1 TPa. The DEMG (Disk Explosive Magnetic Generator ) is used to drive a >60MA current that accelerates an aluminum

  16. The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence

    PubMed Central

    Krapohl, Eva; Rimfeld, Kaili; Shakeshaft, Nicholas G.; Trzaskowski, Maciej; McMillan, Andrew; Pingault, Jean-Baptiste; Asbury, Kathryn; Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Because educational achievement at the end of compulsory schooling represents a major tipping point in life, understanding its causes and correlates is important for individual children, their families, and society. Here we identify the general ingredients of educational achievement using a multivariate design that goes beyond intelligence to consider a wide range of predictors, such as self-efficacy, personality, and behavior problems, to assess their independent and joint contributions to educational achievement. We use a genetically sensitive design to address the question of why educational achievement is so highly heritable. We focus on the results of a United Kingdom-wide examination, the General Certificate of Secondary Education (GCSE), which is administered at the end of compulsory education at age 16. GCSE scores were obtained for 13,306 twins at age 16, whom we also assessed contemporaneously on 83 scales that were condensed to nine broad psychological domains, including intelligence, self-efficacy, personality, well-being, and behavior problems. The mean of GCSE core subjects (English, mathematics, science) is more heritable (62%) than the nine predictor domains (35–58%). Each of the domains correlates significantly with GCSE results, and these correlations are largely mediated genetically. The main finding is that, although intelligence accounts for more of the heritability of GCSE than any other single domain, the other domains collectively account for about as much GCSE heritability as intelligence. Together with intelligence, these domains account for 75% of the heritability of GCSE. We conclude that the high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. PMID:25288728

  17. The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence.

    PubMed

    Krapohl, Eva; Rimfeld, Kaili; Shakeshaft, Nicholas G; Trzaskowski, Maciej; McMillan, Andrew; Pingault, Jean-Baptiste; Asbury, Kathryn; Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Plomin, Robert

    2014-10-21

    Because educational achievement at the end of compulsory schooling represents a major tipping point in life, understanding its causes and correlates is important for individual children, their families, and society. Here we identify the general ingredients of educational achievement using a multivariate design that goes beyond intelligence to consider a wide range of predictors, such as self-efficacy, personality, and behavior problems, to assess their independent and joint contributions to educational achievement. We use a genetically sensitive design to address the question of why educational achievement is so highly heritable. We focus on the results of a United Kingdom-wide examination, the General Certificate of Secondary Education (GCSE), which is administered at the end of compulsory education at age 16. GCSE scores were obtained for 13,306 twins at age 16, whom we also assessed contemporaneously on 83 scales that were condensed to nine broad psychological domains, including intelligence, self-efficacy, personality, well-being, and behavior problems. The mean of GCSE core subjects (English, mathematics, science) is more heritable (62%) than the nine predictor domains (35-58%). Each of the domains correlates significantly with GCSE results, and these correlations are largely mediated genetically. The main finding is that, although intelligence accounts for more of the heritability of GCSE than any other single domain, the other domains collectively account for about as much GCSE heritability as intelligence. Together with intelligence, these domains account for 75% of the heritability of GCSE. We conclude that the high heritability of educational achievement reflects many genetically influenced traits, not just intelligence.

  18. Performance of the SLC polarized electron source with high polarization

    SciTech Connect

    Clendenin, J.E.; Alley, R.K.; Aoyagi, H.

    1993-04-01

    For the 1992 operating cycle of the SLAC Linear Collider (SLC), the polarized electron source (PES) during its maiden run successfully met the pulse intensity and overall efficiency requirements of the SLC. However, the polarization of the bulk GaAs cathode was low ({approximately}27%) and the pulse-to-pulse stability was marginal. We have shown that adequate charge for the SLC can be extracted from a strained layer cathode having P{sub e}{approximately}80% even though the quantum efficiency (QE) is < 1%. The recent addition of a separate chamber to the PES-which allows cathodes to be loaded into the gun after the vacuum bake and after high voltage (HV) processing without breaking vacuum-increases the reliability for achieving an adequate photoelectron yield. A new SLAC-built pulsed Ti:sapphire laser permits operation of the PES at the required wavelength with sufficient power to fully saturate the yield, and thus improve the e{sup {minus}} beam stability. The performance of the PES during the 1993 SLC operating cycle with these and other improvements is discussed.

  19. Motivational profiles in high school students: Differences in behavioural and emotional homework engagement and academic achievement.

    PubMed

    Regueiro, Bibiana; Núñez, José C; Valle, Antonio; Piñeiro, Isabel; Rodríguez, Susana; Rosário, Pedro

    2016-12-12

    This work examined whether combinations of academic and non-academic goals generated different motivational profiles in high school students. Besides, differences in homework behavioural engagement (i.e. amount of homework, time spent in homework, homework time management), homework emotional engagement (i.e. homework anxiety) and academic achievement were analysed. Participants were 714 high school students (43.4% boys and 56.6% girls). The study of potential motivational profiles was conducted by latent profile analysis, and the differences between the motivational profiles regarding homework variables and academic achievement were analysed using multivariate analysis. The results indicate the existence of five groups of motivational profiles: a group of students with multiple goals, a group of unmotivated students, two groups of students with a predominance of learning goals and, finally, a group comprising students with a high fear of failure. Both the group with multiple goals and the learning goals-oriented groups reported to do more homework, spending more time on homework, making better use of that time and having a higher academic achievement than counterparts. The avoidance-failure group and the group with multiple goals showed higher levels of homework anxiety. Globally, these results provide support for a person-centred approach.

  20. Family Processes, SES, and Family Structure Differentially Affect Academic Self-Concepts and Achievement of Gifted High School Students.

    ERIC Educational Resources Information Center

    Verna, Marilyn Ann; Campbell, James Reed; Beasley, Mark

    A study involving 109 male and 116 female high achieving high school students (ages 16-18) and their parents investigated the causal linkages among home environment, self-concepts, prior ability, and socioeconomic status on mathematics achievement, science achievement, and Scholastic Aptitude Test-Quantitative (SAT-Q) and Verbal scores. Students…

  1. Microbunched electron cooling for high-energy hadron beams.

    PubMed

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  2. High energy electron-positron experiments

    NASA Astrophysics Data System (ADS)

    Dong-Chul, Son

    We carried out e(+)e(-) experiments in two centers of mass energy regions: the AMY experiment in a 60 GeV region and the L 3 experiment in a 90 GeV region. The two experiments have both tested the Electroweak Standard model with high precision and measured the important coupling constants in QCD. The two-photon physics were also studied and new particles and related new physics were searched for. The results of AMY experiments includes those of measurements of hadronic production cross section, leptonic production cross sections, and their ratios, the forward-backward asymmetries of leptons and b-quarks and most of the data were consistent with the predictions of the Standard Model. The L 3 experiments, with the high resolution L 3 detector and many Z's recorded, have measured the mass and the widths of Z, the g(sub v) and g(sub A) of leptons, the forward-backward asymmetries of b-quarks, tau polarizations, and related the sin(sup 2)theta(sub W). They also tested the QCD and QED and searched for Higgs particles and other new particles in vain. But the L 3 observed a rather followed the L 3 searching for an unknown s-channel scalar boson but only obtained the limits on (2 J+1)(Gamma) x BR(gamma)(gamma).

  3. Achieving high strength and high electrical conductivity in Ag/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Wei, M. Z.; Xu, L. J.; Shi, J.; Pan, G. J.; Cao, Z. H.; Meng, X. K.

    2015-01-01

    In this work, we investigated the microstructure evolution of Ag/Cu multilayers and its influences on the hardness and electric resistivity with individual layer thickness (h) ranging from 3 to 50 nm. The hardness increases with the decreasing h in the range of 5-20 nm. The barrier to dislocation transmission by stacking faults, twin boundaries, and interfaces leads to hardness enhancement. Simultaneously, in order to get high conductivity, the strong textures in-layers were induced to form for reducing the amount of grain boundaries. The resistivity keeps low even when h decreases to 10 nm. Furthermore, we developed a facile model to evaluate the comprehensive property of Ag/Cu multilayers—the results indicate that the best combination of strength and conductivity occurs when h = 10 nm.

  4. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  5. Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials

    SciTech Connect

    Henry, Roger Neil; Chipman, Nathan Alan; Rajamani, R. K.

    2001-04-01

    The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials.

  6. Proposal for a High-Brightness Pulsed Electron Source

    SciTech Connect

    Zolotorev, Max; Commins, Eugene D.; Heifets, Sam; Sannibale,Fernando

    2006-03-15

    We propose a novel scheme for a high-brightness pulsedelectron source, which has the potential for many useful applications inelectron microscopy, inverse photo-emission, low energy electronscattering experiments, and electron holography. A description of theproposed scheme is presented.

  7. Achieving high efficiency laminated polymer solar cell with interfacial modified metallic electrode and pressure induced crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbo; Bi, Yu; Huang, Jinsong

    2011-02-01

    We report efficient laminated organic photovoltaic device with efficiency approach the optimized device by regular method based on Poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The high efficiency is mainly attributed to the formation of a concrete polymer/metal interface mechanically and electrically by the use of electronic-glue, and using the highly conductive and flexible silver film as anode to reduce photovoltage loss and modifying its work function for efficiency hole extraction by ultraviolet/ozone treatment, and the pressure induced crystallization of PCBM.

  8. Progress toward achieving high power and high efficiency semipolar LEDs and their characterization

    NASA Astrophysics Data System (ADS)

    Zhong, Hong

    Performance of current commercially available wurtzite nitride based light-emitting diodes (LEDs), grown along the polar (0001) c-plane orientation, is limited by the presence of polarization-related electric fields inside multi-quantum wells (MQWs). The discontinuities in both spontaneous and piezoelectric polarization at the heterointerfaces result in internal electric fields in the quantum wells. These electric fields cause carrier separation [quantum confined Stark effect (QCSE)] and reduce the radiative recombination rate within the quantum wells. One approach to reduce and possibly eliminate the polarization-related effects is to grow III-nitride devices on crystal planes that are inclined with respect to the c-axis, i.e., on semipolar planes. In this dissertation, metalorganic chemical vapor deposition (MOCVD) has been employed for the homoepitaxial growth of GaN based LEDs on semipolar orientations. As a consequence of growing on high-quality bulk GaN substrates, the LEDs have significantly reduced threading dislocation and stacking fault densities, resulting in remarkable improvements in EQE and output power. High efficiency semipolar (1011) violet-blue and blue LEDs have been demonstrated without any intentional effort to enhance the light extraction from those devices. Optimizations of epitaxial structures have led to increased output power and external quantum efficiency. A silicone encapsulated single quantum well blue LED with peak wavelength of 444 nm with output power of 24.3 mW, external quantum efficiency of 43% and luminous efficacy of 75 lm/W (with phosphorescent coating) at 20 mA has been demonstrated. Polarization fields in strained (1011) and (112¯2) InGaN quantum wells have been experimentally determined through bias-dependent optical studies. Our results show that the polarization field flips its direction in semipolar InGaN quantum wells with large inclination angles (i.e. around 60°). This suggests that there exists a polarization

  9. Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability.

    PubMed

    Cheng, Tao; Zhang, Yizhou; Lai, Wen-Yong; Huang, Wei

    2015-06-10

    Flexible and stretchable electronics represent today's cutting-edge electronic technologies. As the most-fundamental component of electronics, the thin-film electrode remains the research frontier due to its key role in the successful development of flexible and stretchable electronic devices. Stretchability, however, is generally more challenging to achieve than flexibility. Stretchable electronic devices demand, above all else, that the thin-film electrodes have the capacity to absorb a large level of strain (>1%) without obvious changes in their electrical performance. This article reviews the progress in strategies for obtaining highly stretchable thin-film electrodes. Applications of stretchable thin-film electrodes fabricated via these strategies are described. Some perspectives and challenges in this field are also put forward.

  10. Is the electron radiation length constant at high energies?

    PubMed

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  11. Optical Thermal Characterization Enables High-Performance Electronics Applications

    SciTech Connect

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  12. A Study of Gifted High, Moderate, and Low Achievers in Their Personal Characteristics and Attitudes toward School and Teachers

    ERIC Educational Resources Information Center

    Abu-Hamour, Bashir; Al-Hmouz, Hanan

    2013-01-01

    This study examines the problem of underachievement among gifted high school students. Low achievers were compared to high and moderate achievers on their motivation, self-regulation, and attitudes toward their school and teachers. Participants were all highly able students from grades 10 and 11 in an academically selective gifted high school in…

  13. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    SciTech Connect

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  14. REVIEW OF VARIOUS APPROACHES TO ADDRESS HIGH CURRENTS IN SRF ELECTRON LINACS.

    SciTech Connect

    BEN-ZVI, I.

    2005-07-10

    The combination of high-brightness electron sources and high-current SRF Energy Recovery Linacs (ERL) leads to a new emerging technology: High-power, high-brightness electron beams. This technology enables extremely high average power Free-Electron Lasers, a new generation of extreme brightness light sources, electron coolers of high-energy hadron storage rings, polarized electron-hadron colliders of very high luminosity, compact Thomson scattering X-ray sources, terahertz radiation generators and much more. What is typical for many of these applications is the need for very high current, defined here as over 100 mA average current, and high brightness, which is charge dependant, but needs to be in the range of between sub micron up to perhaps 50 microns, usually the lower--the better. Suffice it to say that while there are a number of projects aiming at this level of performance, none is anywhere near it. This work will review the problems associated with the achievement of such performance and the various approaches taken in a number of laboratories around the world to address the issues.

  15. Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction.

    PubMed

    Yu, Hui; Shan, Xiaonan; Wang, Shaopeng; Tao, Nongjian

    2017-03-07

    Surface plasmon resonance microscopy (SPRM) is a powerful platform for biomedical imaging and molecular binding kinetics analysis. However, the spatial resolution of SPRM along the plasmon propagation direction (longitudinal) is determined by the decaying length of the plasmonic wave, which can be as large as tens of microns. Different methods have been proposed to improve the spatial resolution, but each at the expense of decreased sensitivity or temporal resolution. Here we present a method to achieve high spatial resolution SPRM based on deconvolution of complex field. The method does not require additional optical setup and improves the spatial resolution in the longitudinal direction. We applied the method to image nanoparticles and achieved close-to-diffraction limit resolution in both longitudinal and transverse directions.

  16. The effects of modeling instruction on high school physics academic achievement

    NASA Astrophysics Data System (ADS)

    Wright, Tiffanie L.

    The purpose of this study was to explore whether Modeling Instruction, compared to traditional lecturing, is an effective instructional method to promote academic achievement in selected high school physics classes at a rural middle Tennessee high school. This study used an ex post facto , quasi-experimental research methodology. The independent variables in this study were the instructional methods of teaching. The treatment variable was Modeling Instruction and the control variable was traditional lecture instruction. The Treatment Group consisted of participants in Physical World Concepts who received Modeling Instruction. The Control Group consisted of participants in Physical Science who received traditional lecture instruction. The dependent variable was gains scores on the Force Concepts Inventory (FCI). The participants for this study were 133 students each in both the Treatment and Control Groups (n = 266), who attended a public, high school in rural middle Tennessee. The participants were administered the Force Concepts Inventory (FCI) prior to being taught the mechanics of physics. The FCI data were entered into the computer-based Statistical Package for the Social Science (SPSS). Two independent samples t-tests were conducted to answer the research questions. There was a statistically significant difference between the treatment and control groups concerning the instructional method. Modeling Instructional methods were found to be effective in increasing the academic achievement of students in high school physics. There was no statistically significant difference between FCI gains scores for gender. Gender was found to have no effect on the academic achievement of students in high school physics classes. However, even though there was not a statistically significant difference, female students' gains scores were higher than male students' gains scores when Modeling Instructional methods of teaching were used. Based on these findings, it is recommended

  17. Creating and Steering Highly Directional Electron Beams in Graphene

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Hao; Gorini, Cosimo; Richter, Klaus

    2017-02-01

    We put forward a concept to create highly collimated, nondispersive electron beams in pseudorelativistic Dirac materials such as graphene or topological insulator surfaces. Combining negative refraction and Klein collimation at a parabolic p n junction, the proposed lens generates beams, as narrow as the focal length, that stay focused over scales of several microns and can be steered by a magnetic field without losing collimation. We demonstrate the lens capabilities by applying it to two paradigmatic settings of graphene electron optics: We propose a setup for observing high-resolution angle-dependent Klein tunneling, and, exploiting the intimate quantum-to-classical correspondence of these focused electron waves, we consider high-fidelity transverse magnetic focusing accompanied by simulations for current mapping through scanning gate microscopy. Our proposal opens up new perspectives for next-generation graphene electron optics experiments.

  18. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  19. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  20. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  1. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  2. A method of forming a high-quality electron beam for free electron masers

    SciTech Connect

    Samsonov, S.V.; Bratman, V.L.; Manuilov, V.N.

    1995-12-31

    A large number of electron microwave devices require initially rectilinear high-quality electron beams for effective operation. In FEMS such beams are pumped up to sufficiently high operating-oscillation velocity and small initial particle oscillations (cyclotron oscillations if the beam is focused by an axial magnetic field) can lead to a rather large transverse velocity spread and, correspondingly, axial velocity spread. Thus, an acute problem for these devices (essentially more important than for Cherenkov-type devices) is the formation of a beam in which electrons initially move along the axis with minimum oscillations. A new method to form such a beam by a two-electrode axially-symmetrical gun of simple configuration immersed in a uniform axial magnetic field is discussed in this paper. This method allows to improve the quality of an electron beam passing through a narrow anode outlet. It is well-known that the anode aperture acts as an electrostatic lens and disperses the electron beam. In the presence of an axial magnetic field this unwanted dispersing action can be compensated simultaneously for all electrons of the paraxial electron beam by means of a magnetic field generated by a small additional coil placed down-stream from the anode aperture. If the coil length is equal to half the electron Larmor step, then the action of the border cod fields comes to two kicks which, being correctly phased, compensate the spurious rotary electron velocities. Computer simulations using the EPOSR-code intended for the calculation of electron guns both for the temperature- and space-charge-limited regimes prove the effectiveness of this method. In particular, for a version of field-emission gun the correcting coil reduces about five times the maximum transverse velocity in the beam. Positive effect from applying this method was proved at a realization of a high-efficiency CARM-oscillator.

  3. High Temperature Electronics for Intelligent Harsh Environment Sensors

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2008-01-01

    The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  4. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  5. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect

    Williams, J.; Biedron, S.; Harris, J.; Martinez, J.; Milton, S. V.; Van Keuren, J.; Benson, Steve V.; Evtushenko, Pavel; Neil, George R.; Zhang, Shukui

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  6. Achieving High Performance in AC-Field Driven Organic Light Sources

    PubMed Central

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance. PMID:27063414

  7. Achieving High Performance in AC-Field Driven Organic Light Sources

    NASA Astrophysics Data System (ADS)

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-04-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance.

  8. Laboratory design for high-performance electron microscopy

    SciTech Connect

    O'Keefe, Michael A.; Turner, John H.; Hetherington, Crispin J.D.; Cullis, A.G.; Carragher, Bridget; Jenkins, Ron; Milgrim, Julie; Milligan,Ronald A.; Potter, Clinton S.; Allard, Lawrence F.; Blom, Douglas A.; Degenhardt, Lynn; Sides, William H.

    2004-04-23

    Proliferation of electron microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.

  9. Subpixel shift with Fourier transform to achieve efficient and high-quality image interpolation

    NASA Astrophysics Data System (ADS)

    Chen, Qin-Sheng; Weinhous, Martin S.

    1999-05-01

    A new approach to image interpolation is proposed. Different from the conventional scheme, the interpolation of a digital image is achieved with a sub-unity coordinate shift technique. In the approach, the original image is first shifted by sub-unity distances matching the locations where the image values need to be restored. The original and the shifted images are then interspersed together, yielding an interpolated image. High quality sub-unity image shift which is crucial to the approach is accomplished by implementing the shift theorem of Fourier transformation. It is well known that under the Nyquist sampling criterion, the most accurate image interpolation can be achieved with the interpolating function (sinc function). A major drawback is its computation efficiency. The present approach can achieve an interpolation quality as good as that with the sinc function since the sub-unity shift in Fourier domain is equivalent to shifting the sinc function in spatial domain, while the efficiency, thanks to the fast Fourier transform, is very much improved. In comparison to the conventional interpolation techniques such as linear or cubic B-spline interpolation, the interpolation accuracy is significantly enhanced. In order to compensate for the under-sampling effects in the interpolation of 3D medical images owing to a larger inter-slice distance, proper window functions were recommended. The application of the approach to 2- and 3-D CT and MRI images produced satisfactory interpolation results.

  10. Cognitive abilities and motivational processes in high school students' science achievement and engagement

    NASA Astrophysics Data System (ADS)

    Lau, Shun

    The dissertation presents two analytic approaches, a variable-centered and person-centered approach, to investigating holistic patterns of the cognitive, motivational, and affective correlates of science achievement and engagement in a sample of 491 10th and 11th grade high-school students. Building on Snow's (1989) idea of two pathways to achievement outcomes, Study 1 adopted a variable-centered approach to examining how cognitive and motivational factors associated with the performance and commitment pathways, respectively, contributed to the prediction of achievement outcomes in science. Results of hierarchical regression analyses showed that (a) students' cognitive abilities were the strongest predictors of their performance in science as measured by standardized test scores; (b) motivational processes enhanced the predictive validity for science test scores and grades beyond the variance accounted for by ability and demography; (c) motivational processes were the strongest predictors of students' commitment to science in the form of situational engagement and anticipated choices of science-related college majors and careers; and (d) competence beliefs served as a point of contact between the performance and commitment pathways. These results are consistent with Snow's (1989) conjecture that both performance and commitment pathway-related factors are necessary for understanding the full range of person-level inputs to achievement outcomes. Study 2 adopted a person-centered approach to examining holistic organizations of psychological factors within individuals and their relations to science achievement and engagement. Four types of students characterized by unique configurations of cognitive, motivational, and affective attributes were identified in both the male and female subsamples using inverse factor analysis. Type membership was found to distinguish students in various indicators of science achievement and engagement. Two of the four types were also found

  11. A new high school science program and its effect on student achievement in mathematics and science

    NASA Astrophysics Data System (ADS)

    Goodman, Robert

    Student achievement in mathematics and science is a high educational priority worldwide. The American educational system is not meeting its objectives for these subjects: our students are performing below international standards. The problem is endemic, leading to the conclusion that it is structural. During the last seven years, I have led the creation and implementation of a program whose aim is to address this problem. The structure of this program stresses horizontal and vertical curriculum articulations in order to increase curriculum efficiency and meaningfulness to students. My first aim, in conducting this study, was to determine the program's effectiveness. Since this was a long term program created in a real world environment it would be difficult to use experimental or quasi-experimental analysis. However, I was able to develop a plausible argument for the effectiveness of the program by using two measures to create a baseline for student aptitude and three measures to determine student achievement. Together these showed that the school's students, while typical of those in New Jersey, achieved very positive results in mathematic and science. The likelihood that the new program was responsible for this was enhanced by the fact that the verbal and mathematical aptitudes of the students were comparable, but their achievement in areas outside mathematic and science were not exceptional. My second aim was to provide documentation so that the program could be replicated at other schools. This included the scope and sequence of the mathematics and science courses; the curricula of the physics courses; an explanation the pedagogical approach used in the physics courses, and sample chapters of a textbook being written to support the first year physic course. Whiles those documents supply a snapshot of the current state of the program; they are probably insufficient to replicate it. This would also require an understanding of the program's rationale. Towards this

  12. Mathematical and numerical models to achieve high speed with special-purpose parallel processors

    SciTech Connect

    Cheng, H.S.; Wulff, W.; Mallen, A.N.

    1986-07-01

    One simulation facility that has been developed is the BNL Plant Analyzer, currently set up for BWR plant simulations at up to seven times faster than real-time process speeds. The principal hardware components of the BNL Plant Analyzer are two units of special-purpose parallel processors, the AD10 of Applied Dynamics International and a PDP-11/34 host computer. The AD10 is specifically designed for time-critical system simulations, utilizing the modern parallel processing technology with pipeline architecture. The simulator employs advanced modeling techniques and efficient integration techniques in conjunction with the parallel processors to achieve high speed performance.

  13. High School Principal Instructional Leadership Behavior in High and Low Need and High and Low Achievement Schools

    ERIC Educational Resources Information Center

    Fulton, Theodore T.

    2009-01-01

    The purpose of this study was to investigate teacher perceptions of the ten specific principal instructional leadership behaviors of Hallinger's Principal Instructional Management Rating Scale as they relate to school need, school achievement, years of experience as a teacher, and years working with the current principal. This quantitative…

  14. Number Sense-Based Strategies Used by High-Achieving Sixth Grade Students Who Experienced Reform Textbooks

    ERIC Educational Resources Information Center

    Alsawaie, Othman N.

    2012-01-01

    The purpose of this study was to explore strategies used by high-achieving 6th grade students in the United Arab Emirates (UAE) to solve basic arithmetic problems involving number sense. The sample for the study consisted of 15 high-achieving boys and 15 high-achieving girls in grade 6 from 2 schools in the Emirate of Abu Dhabi, UAE. Data for the…

  15. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.

    PubMed

    Bolton, Glen R; Basha, Jonida; Lacasse, Daniel P

    2010-01-01

    Parvovirus retentive filters that assure removal of viruses and virus-like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size-based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass-throughput values of 7.3, 26.4, and 76.2 kg/m(2) were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass-throughput values of 73, 137, and 192 kg/m(2) were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large-scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small-scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large-scale filter capacity.

  16. The Combined Effect of Teacher Effectiveness Characteristics on Value-Added Student Achievement in Junior High School Mathematics

    ERIC Educational Resources Information Center

    Wadleigh, Linda L.

    2013-01-01

    Student academic achievement in junior high mathematics is an ongoing mission for educational leaders. To achieve that undertaking, teacher effectiveness plays an important role. The purpose of this study was to examine the combined effects of teacher effectiveness on student achievement. The study was conducted in a suburban school district in…

  17. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  18. Achieving high-pressure and high-temperature within a TEM: Crystallographic defects as hosts for concentrating and storing carbon deep within Earth

    NASA Astrophysics Data System (ADS)

    Wu, J.; Buseck, P. R.

    2013-12-01

    Transmission electron microscopy in combination with in-situ high-pressure and high-temperature measurements is uniquely able to provide high-resolution data about materials under conditions resembling those in Earth's interior. By using nanocontainers of graphitized carbon, it is possible to achieve pressures and temperatures up to 40 GPa and 1200 °C, respectively. A wide range of relatively simple minerals and mineral analogs have been examined using this approach. By studying alpha-PbO2-type titanium dioxide (TiO2) and perovskite-structured nickel-doped lanthanum chromate (LaCr0.5Ni0.5O3), we show the influence of crystallographic defects in concentrating and storing carbon within these analogs to minerals occurring deep inside Earth. Such in-situ observations are impossible by using existing conventional high-pressure techniques. Figure 1. Temporal compression sequence of an anatase nanocrystal with two visible fault planes inside a multi-walled graphitic cage. (a)-(g) The times indicated in each panel are from the start of irradiation. Pressure was generated by shrinkage of the cage resulting from displacement damage by electrons (30 A/cm2) at 770 C. The disappearance of anatase (101) planes and emergence of alpha-PbO2-type TiO2 (110) planes indicates a phase transition between (e) and (f) (see insets).

  19. Ultra High Energy Electrons Powered by Pulsar Rotation

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-02-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e+/-) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  20. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  1. Ultra High Energy Electrons Powered by Pulsar Rotation

    PubMed Central

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e±) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  2. Achieving High Contrast for Exoplanet Imaging with a Kalman Filter and Stroke Minimization

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Groff, T. D.; Kasdin, N. J.; Carlotti, A.; Vanderbei, R. J.

    2014-01-01

    High contrast imaging requires focal plane wavefront control and estimation to correct aberrations in an optical system; non-common path errors prevent the use of conventional estimation with a separate wavefront sensor. The High Contrast Imaging Laboratory (HCIL) at Princeton has led the development of several techniques for focal plane wavefront control and estimation. In recent years, we developed a Kalman filter for optimal wavefront estimation. Our Kalman filter algorithm is an improvement upon DM Diversity, which requires at least two images pairs each iteration and does not utilize any prior knowledge of the system. The Kalman filter is a recursive estimator, meaning that it uses the data from prior estimates along with as few as one new image pairs per iteration to update the electric field estimate. Stroke minimization has proven to be a feasible controller for achieving high contrast. While similar to a variation of Electric Field Conjugation (EFC), stroke minimization achieves the same contrast with less stroke on the DMs. We recently utilized these algorithms to achieve high contrast for the first time in our experiment at the High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory (JPL). Our HCIT experiment was also the first demonstration of symmetric dark hole correction in the image plane using two DMs--this is a major milestone for future space missions. Our ongoing work includes upgrading our optimal estimator to include an estimate of the incoherent light in the system, which allows for simultaneous estimation of the light from a planet along with starlight. The two-DM experiment at the HCIT utilized a shaped pupil coronagraph. Those tests utilized ripple style, free-standing masks etched out of silicon, but our current work is in designing 2-D optimized reflective shaped pupils. In particular, we have created several designs for the AFTA telescope, whose pupil presents major hurdles because of its atypical pupil obstructions. Our

  3. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  4. First test of BNL electron beam ion source with high current density electron beam

    NASA Astrophysics Data System (ADS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  5. High Energy Electron and Gamma - Ray Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.

  6. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  7. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  8. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    DTIC Science & Technology

    2015-03-01

    temperature Photoluminescence (PL) from High Electron Mobility Transistor (HEMT) structures that have been modified by proton irradiation. The samples are...samples and exposed the structures to various levels of proton irradiation. For electronics operating in extreme environments where the parts...valence band, generating photons. This emission could be used to determine the effects of proton irradiation on a 2DEG. Exciting the HEMT samples

  9. Electron Acceleration by High Power Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  10. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    SciTech Connect

    2016-03-01

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. The NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.

  11. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    NASA Astrophysics Data System (ADS)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used

  12. The Pentagon-S process: A systematic approach for achieving high confidence in high-consequence products

    SciTech Connect

    D`Antonio, P.E.; Covan, J.M.; Ekman, M.E.

    1997-10-01

    Sandia National Laboratories has developed a systematic approach for achieving high confidence in major products requiring high reliability for use in high-consequence applications. A high-consequence application is one in which product failure could result in significant loss of life, damage to major systems or to the environment, financial loss, or political repercussions. The application of this process has proven to be of significant benefit in the early identification, verification, and correction of potential product design and manufacturing process failure modes. Early identification and correction of these failures modes and the corresponding controls placed on safety-critical features, ensures product adherence to safety-critical design requirements, and enhances product quality, reliability, and the cost effectiveness of delivered products. Safety-critical features include design features such as materials and dimensions, as well as manufacturing features such as assembly processes, inspections, and testing.

  13. What makes a good program? A case study of a school admitting high academic achievers.

    PubMed

    Lam, Ching Man

    2008-10-10

    This paper reports the results of a qualitative study that explored the administration and implementation of the Tier 1 Program (Secondary 1 Curriculum) of the Project P.A.T.H.S. The case study method was used to explore perceptions of the teachers and the project coordinator of program effectiveness, and to identify various factors for program success. A school admitting high academic achievers was selected, and site visits, as well as individual and focus group interviews, were conducted with the program coordinator, social worker, and course teachers. The results suggested that clear vision and program goals, high quality of curriculum, helpful leadership, positive teacher attitude, and strong administrative support are factors for program success. Analyzing the data enables the researchers to understand the characteristics of a successful program as well as the interplay among factors for producing success.

  14. High Average Current Electron Guns for High-Power FELs

    DTIC Science & Technology

    2009-12-09

    20 A/cm2, while more advanced cathodes (with controlled porosity) can generate up to ~ 100 A/cm2. Single crystal cathodes such as lanthanum ...polycrystalline form of carbon that will operate at high temperatures and has improved strength and uniformity compared to grids made of tungsten or

  15. GaN Electronics For High Power, High Temperature Applications

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHU,S.N.G.

    2000-06-12

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers. GaN/AlGaN heterojunction bipolar transistors and GaN metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  16. Improving production of 11C to achieve high specific labelled radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Savio, E.; García, O.; Trindade, V.; Buccino, P.; Giglio, J.; Balter, H.; Engler, H.

    2012-12-01

    Molecular imaging is usually based on the recognition by the radiopharmaceuticals of specific sites which are present in limited number or density in the cells or biological tissues. Thus is of high importance to label the radiopharmaceuticals with high specific activity to be able to achieve a high target to non target ratio. The presence of carbon dioxide (CO2) from the air containing 98,88% of 12C and 1,12% 13C compete with 11CO2 produced at the cyclotron. In order to minimize the presence of these isotopes along the process of irradiation, transferring and synthesis of radiopharmaceuticals labelled with 11C, we applied this method: previous to the irradiation the target was 3-4 times flushed with He (5.7) as a cold cleaning, followed by a similar conditioning of the line, from the target up to the module, and finally a hot cleaning in order to desorb 12CO2 and 13CO2, this was performed by irradiation during 1 min at 5 uA (3 times). In addition, with the aim of improving quality of gases in the target and in the modules, water traps (Agilent) were incorporated in the inlet lines of the target and modules. Target conditioning process (cold and hot flushings) as well as line cleaning, allowing the desorption of unlabelled CO2, together with the increasing of gas purity in the irradiation and in the synthesis, were critical parameters that enable to achieve 11C-radiopharamaceuticals with high specific activity, mainly in the case of 11C-PIB.

  17. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    PubMed

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications.

  18. Modeling electron cloud dynamics in high-frequency accelerators

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Stoltz, Peter H.

    2017-03-01

    The dynamics of electron cloud buildup, saturation, and dissipation represent a complex interaction between accelerator and beam parameters. In many accelerators bunch charges are large and beam frequencies are small. In this case electrons have a good probability of being accelerated to the opposite side of the beam pipe before the next bunch crossing. If the time for electrons to drift across the beam pipe is less than the time to the next bunch crossing the cloud density can build up rapidly under this scenario. However, in accelerators where buch charges are small and beam frequencies are large, electrons created by secondary electron emission will not be accelerated to the opposite wall before the next bunch crossing. In this case the time for a cloud to build up is larger, but the amount of electron cloud that exists close to the beam may be increased. In this paper, we report simulation results for modeling of electron cloud buildup and dynamics in high-frequency accelerators. We model parameters relevant to the JLab Electron-Ion Collider (JLEIC) that is currently being designed. We consider beam frequencies up to 476 MHz for a variety of different ions, from protons up to Pb (82+), and with bunch charges ranging from 4.2 × 109 (p) to 0.05 × 109 (Pb) ions per bunch, and ion energies from 100 (p) - 40 (Pb) GeV/u. We compare simulations of electron cloud buildup and dynamics for these different cases, and contrast with similar simulations of proton-driven electron cloud buildup in the Fermilab recycler under the PIP-II upgrade scenario, with a frequency of 52.8 MHz, bunch charge of 80 × 109 p/bunch, and energies ranging from 8 - 20 GeV.

  19. Applications of Silicon Carbide for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.

    1995-01-01

    Silicon carbide (SiC) is a wide bandgap material that shows great promise in high-power and high temperature electronics applications because of its high thermal conductivity and high breakdown electrical field. The excellent physical and electronic properties of SiC allows the fabrication of devices that can operate at higher temperatures and power levels than devices produced from either silicon or GaAs. Although modern electronics depends primarily upon silicon based devices, this material is not capable of handling may special requirements. Devices which operate at high speeds, at high power levels and are to be used in extreme environments at high temperatures and high radiation levels need other materials with wider bandgaps than that of silicon. Many space and terrestrial applications also have a requirement for wide bandgap materials. SiC also has great potential for high power and frequency operation due to a high saturated drift velocity. The wide bandgap allows for unique optoelectronic applications, that include blue light emitting diodes and ultraviolet photodetectors. New areas involving gas sensing and telecommunications offer significant promise. Overall, the properties of SiC make it one of the best prospects for extending the capabilities and operational regimes of the current semiconductor device technology.

  20. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    PubMed Central

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-01-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays. PMID:27157804

  1. High sensitivity to variation in the proton-to-electron mass ratio in O2+

    NASA Astrophysics Data System (ADS)

    Hanneke, D.; Carollo, R. A.; Lane, D. A.

    2016-11-01

    Molecular vibrational transitions are prime candidates for model-independent searches for variation of the proton-to-electron mass ratio. Searches for present-day variation achieve the highest sensitivity with deep molecular potentials. We identify several high-sensitivity transitions in the deeply bound O2+ molecular ion. These transitions are electric-dipole forbidden and have narrow linewidths. The most sensitive transitions take advantage of an accidental degeneracy between vibrational states in different electronic potentials. We suggest experimentally feasible routes to a measurement with uncertainty below current limits on present-day variation in mp/me .

  2. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  3. DE-1 observations of counterstreaming electrons at high altitudes

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Burch, J. L.; Winningham, J. D.; Menietti, J. D.; Hoffman, R. A.

    1982-09-01

    Observations of plasma at altitudes of 2-3 earth radii with the High Altitude Plasma Instrument (HAPI) on DE-1 indicate two distinct types of counterstreaming electron events. The type 1 event is characterized by two Maxwellian distribution functions, an isotropic high-temperature component and a field-aligned low temperature component. The type 2 event is distinguished by beams parallel and antiparallel to the magnetic field direction. The observations suggest two distinct mechanisms for accelerating counterstreaming electrons. Type 1 events appear to involve wave-particle interactions while type 2 events imply direct acceleration by oppositely-directed electric fields pointing toward the satellite along magnetic field lines.

  4. DE-1 observations of counterstreaming electrons at high altitudes

    SciTech Connect

    Lin, C.S.; Burch, J.L.; Winningham, J.D.; Menietti, J.D.; Hoffman, R.A.

    1982-09-01

    Observations of plasma at altitudes of 2-3 R/sub E/ with the High Altitude Plasma Instrument (HAPI) on DE-1 indicate two distinct types of counterstreaming electron events. The type 1 event is characterized by two Maxwellian distribution functions, an isotropic high-temperature component and a field-aligned low temperature component. The type 2 event is distinguished by beams parallel and antiparallel to the magnetic field direction. The observations suggest two distinct mechanisms for accelerating counterstreaming electrons. Type 1 events appear to involve wave-particle interactions while type 2 events imply direct acceleration by oppositely-directed electric fields pointing toward the satellite along magnetic field lines.

  5. Electron gyroharmonic effects in ionization and electron acceleration during high-frequency pumping in the ionosphere.

    PubMed

    Gustavsson, B; Leyser, T B; Kosch, M; Rietveld, M T; Steen, A; Brändström, B U E; Aso, T

    2006-11-10

    Optical emissions and incoherent scatter radar data obtained during high-frequency electromagnetic pumping of the ionospheric plasma from the ground give data on electron energization in an energy range from 2 to 100 eV. Optical emissions at 4278 A from N2+ that require electrons with energies above the 18 eV ionization energy give the first images ever of pump-induced ionization of the thermosphere. The intensity at 4278 A is asymmetric around the ionospheric electron gyroharmonic, being stronger above the gyroresonance. This contrasts with emissions at 6300 A from O(1D) and of electron temperature enhancements, which have minima at the gyroharmonic but have no apparent asymmetry. This direct evidence of pump-induced ionization contradicts previous indirect evidence, which indicated that ionization is most efficiently produced when the pump frequency was below the gyroharmonic.

  6. Electronic Structure of Crystalline 4He at High Pressures

    SciTech Connect

    Mao, Ho Kwang; Shirley, Eric L.; Ding, Yang; Eng, Peter; Cai, Yong Q.; Chow, Paul; Xiao, Yuming; Jinfu Shu, A=Kao, Chi-Chang; Hemley, Russell J.; Kao, Chichang; Mao, Wendy L.; /Stanford U., Geo. Environ. Sci. /SLAC

    2011-01-10

    Using inelastic X-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium crystal at 300 K which has the widest known electronic energy bandgap of all materials, that was previously inaccessible to measurements due to the extreme energy and pressure range. We observed rich electron excitation spectrum, including a cut-off edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  7. Radiation damage in zircon by high-energy electron beams

    SciTech Connect

    Jiang Nan; Spence, John C. H.

    2009-06-15

    Radiation damage induced by high-energy (200 keV) electron irradiation in zircon has been studied thoroughly using imaging, diffraction, and electron energy-loss spectroscopy techniques in transmission electron microscopy. Both structural and compositional changes during the damage were measured using the above techniques in real time. It was found that the damage was mainly caused by the preferential sputtering of O. The loss of O occurred initially within small sporadic regions with dimension of several nanometers, resulting in the direct transformation of zircon into Zr{sub x}Si{sub y}. These isolated patches gradually connect each other and eventually cover the whole area of the electron beam. These differ from the previous observations either in the self-irradiated natural and synthetic zircon or in ion-beam irradiated thin zircon specimen.

  8. Electron beam irradiated silver nanowires for a highly transparent heater.

    PubMed

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-07

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  9. High school students' perceptions of EFL teacher control orientations and their English academic achievement.

    PubMed

    Kiany, Gholam Reza; Shayestefar, Parvaneh

    2011-09-01

    BACKGROUND. Theories distinguish between student-initiated and teacher-initiated regulation of students' learning activities, or between strong, shared, or loose teacher control during the completion of learning tasks. Empirical validations for such distinctions are scarce, however. AIM. The present study aimed at (a) investigating students' perceptions of control behaviours exhibited by their English teachers; and (b) exploring the contribution of different types of teacher control behaviours to students' cognitive outcomes (English Achievement). SAMPLE. The sample comprised 732 English as a Foreign Language (EFL) students studying in three major fields of high school (Mathematics, Natural Science, and Humanities). The participants (16-17 years of age) were selected from third-grade classes of 27 EFL teachers working in 25 high schools of 6 main different geographical regions in the Isfahan province, Iran. METHOD. To obtain a comprehensive picture of different control types exhibited by Iranian EFL teachers, the control subscales of the two existing questionnaires, i.e., the Questionnaire on Instructional Behaviours (QIB), adapted by Den Brok et al. (2004) and the Questionnaire on Lesson Activities (QLA) used by Den Brok (2001) were merged to form the Questionnaire of Teacher Control (QTC). The development of this Persian instrument involved several steps: translation and back translation by the researchers, one expert translator, and two EFL teachers; piloting; and a final administration of the questionnaire to the student sample. With respect to the second aim of the study, data regarding students' performances on the Standardized National English Achievement Tests were gathered from local educational offices and schools. RESULTS AND CONCLUSION. Statistical analyses supported acceptable reliability and validity of the instrument. A main factor structure with three types of teacher control (strong/high, shared/mid, and loose/low) was found to underlie students

  10. Not choosing nursing: work experience and career choice of high academic achieving school leavers.

    PubMed

    Neilson, Gavin R; McNally, James G

    2010-01-01

    Work experience has been a feature of the secondary school curriculum in the United Kingdom for a number of years. Usually requested by the pupil, it aims to provide opportunities for school pupils to enhance their knowledge and understanding of an occupation. The main benefits are claimed to be that it can help pupils develop an insight into the skills and attitudes required for an occupation and an awareness of career opportunities. However the quality and choice of placements are considered to be of great importance in this process and in influencing career choice [Department for Education and Skills (DfES), 2002a. Work Experience: A Guide for Employers. Department for Education and Skills, London]. As university departments of nursing experience a decline in the number of school pupils entering student nurse education programmes, and with the competition for school leavers becoming even greater, it is important to consider whether school pupils have access to appropriate work placements in nursing and what influence their experience has on pursuing nursing as a career choice. This paper is based on interview data from 20 high academic achieving fifth and sixth year school pupils in Scotland, paradigmatic cases from a larger survey sample (n=1062), who had considered nursing as a possible career choice within their career preference cluster, but then later disregarded nursing and decided to pursue medicine or another health care profession. This was partly reported by Neilson and Lauder [Neilson, G.R., Lauder, W., 2008. What do high academic achieving school pupils really think about a career in nursing: analysis of the narrative from paradigmatic case interviews. Nurse Education Today 28(6), 680-690] which examined what high academic achieving school pupils really thought about a career in nursing. However, the data was particularly striking in revealing the poor quality of nursing work experience for the pupils, and also their proposal that there was a need

  11. High and Low Reading Comprehension Achievers' Strategic Behaviors and Their Relation to Performance in a Reading Comprehension Situation

    ERIC Educational Resources Information Center

    Dermitzaki, Irini; Andreou, Georgia; Paraskeva, Violetta

    2008-01-01

    This study aimed at investigating the actual strategic behaviors of high and low achievers in reading comprehension and their relation with respective performance. The participants were 45 individually examined third graders, 20 high and 25 low reading comprehension achievers. Cognitive, metacognitive, and motivational aspects of the participants'…

  12. A Comparison of Strategic Development for Multiplication Problem Solving in Low-, Average-, and High-Achieving Students

    ERIC Educational Resources Information Center

    Zhang, Dake; Ding, Yi; Barrett, Dave E.; Xin, Yan Ping; Liu, Ru-de

    2014-01-01

    The present study investigated the differences of strategy use between low-, average-, and high-achieving students when solving different multiplication problems. Nineteen high-, 48 average-, and 17 low-achieving students participated in this study. All participants were asked to complete three different multiplication tests and to explain how…

  13. Is Early Ability Grouping Good for High-Achieving Students' Psychosocial Development? Effects of the Transition into Academically Selective Schools

    ERIC Educational Resources Information Center

    Becker, Michael; Neumann, Marko; Tetzner, Julia; Böse, Susanne; Knoppick, Henrike; Maaz, Kai; Baumert, Jürgen; Lehmann, Rainer

    2014-01-01

    The present study investigates school context effects on psychosocial characteristics (academic self-concept, peer relations, school satisfaction, and school anxiety) of high-achieving and gifted students. Students who did or did not make an early transition from elementary to secondary schools for high-achieving and gifted students in 5th grade…

  14. The Difference in the Academic Achievement of Hispanic High School Students Based on the Theme of the Small Learning Community

    ERIC Educational Resources Information Center

    Martinez, Beate M. Winter

    2010-01-01

    The purpose of this study is to describe the difference in the academic achievement of urban Hispanic high school students based on the small learning community theme. The study used a quantitative method of ex post facto research to examine how the academic achievement of Hispanic high school students differs across the themes of small…

  15. Trajectories of Chinese Students' Sense of School Belonging and Academic Achievement over the High School Transition Period

    ERIC Educational Resources Information Center

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    The present study identified the different patterns of Chinese students' academic achievement trajectories over the high school transition period and examined the relationships between students' sense of school belonging trajectories and the different patterns of academic achievement trajectories. In a sample of 567 Chinese high school students, a…

  16. Robust and Fragile Mathematical Identities: A Framework for Exploring Racialized Experiences and High Achievement among Black College Students

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2015-01-01

    I introduce the construct of fragile and robust identities for the purpose of exploring the experiences that influenced the mathematical and racial identities of high-achieving Black college students in mathematics and engineering. These students maintained high levels of academic achievement in these fields while enduring marginalization,…

  17. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    PubMed

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  18. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity

    PubMed Central

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-01-01

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO2) waveguide–based, 36 degree–rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO3) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO2 layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection. PMID:28327504

  19. Science literacy in high school students: A comparison of achievement in two curriculum approaches

    NASA Astrophysics Data System (ADS)

    McAlister, Diane C.

    2009-12-01

    Academic achievement as measured by the Florida Comprehensive Assessment Test (FCAT) in science for 367 students in two science curriculum options, integrated science and the traditional subject-specific courses, in one central Florida high school were compared. A multivariate analysis of covariance (MANCOVA) of science curriculum choice was analyzed for three variables, total FCAT score, earth science subscore, and scientific thinking subscore. Covariate of academic ability as defined by grade point average (GPA) and academic focus as defined by post secondary plans were considered for use. Analysis of statistically significant results was completed through analysis of covariance (ANCOVA). While statistically significant results were found in favor of the traditional curriculum group, additional statistical analysis of the curriculum groups for differences in socioeconomic status (SES), gender, and instructional level led to a logistic regression to explore the ability of these variables, GPA, and total FCAT score to predict curriculum group membership. GPA, level of instruction and FCAT score were found to be statistically significant predictors. Final conclusions to the study indicated a significant difference in scientific literacy for the two groups in favor of the traditional curriculum. However, logistic regression results indicated that due to significant differences in SES, gender, GPA, and level of instruction for the groups, the differences in academic achievement were probably due to factors other than curriculum design. Limitations of the study and suggestions for further research were presented.

  20. Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures

    NASA Astrophysics Data System (ADS)

    Nord, Gordon L., Jr.

    This book is a well-written English translation of the original 1981 Russian edition, Strukturnoye issledovaniye mineralov metodami mikrodifraktsii i elechtronnoi mikroskopii vysokogo razresheniya. The 1987 English version has been extensively updated and includes references up to 1986. The book is essentially a text on the theoretical and experimental aspects of transmission electron microscopy and has chapters on the reciprocal lattice, electron diffraction (both kinematic and dynamic), and high-resolution electron microscopy.Electron diffraction is emphasized, especially its use for structure analysis of poorly crystalline and fine-grained phases not readily determined by the more exact X ray diffraction method. Two methods of electron diffraction are discussed: selected area electron diffraction (SAED) and oblique-texture electron diffraction (OTED); the latter technique is rarely used in the west and is never discussed in western electron microscopy texts. A SAED pattern is formed by isolating a small micrometer-size area with an aperture and obtaining single-crystal patterns from the diffracted beams. By tilting the sample and obtaining many patterns, a complete picture of the reciprocal lattice can be taken. An OTED pattern is formed when the incident electron beam passes through an inclined preparation consisting of a great number of thin platy crystals lying normal to the texture axis (axis normal to the support grid). To form an OTED pattern, the plates must all lie on a common face, such as a basal plane in phyllosilicates. Upon tilting the plates, an elliptical powder diffraction pattern is formed. Intensities measured from these patterns are used for a structural analysis of the platy minerals.

  1. High electron mobility ZnO film for high-performance inverted polymer solar cells

    SciTech Connect

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng Ding, Kai

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  2. High electron mobility ZnO film for high-performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng; Ding, Kai

    2015-04-01

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V.s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  3. Achieving behavioral control with millisecond resolution in a high-level programming environment.

    PubMed

    Asaad, Wael F; Eskandar, Emad N

    2008-08-30

    The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.

  4. Strategies for achieving high-level expression of genes in Escherichia coli.

    PubMed Central

    Makrides, S C

    1996-01-01

    Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli. PMID:8840785

  5. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.

    PubMed

    Hu, S X; Starace, Anthony F

    2006-06-01

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.

  6. Electronic Structure of Crystalline 4He at High Pressure

    SciTech Connect

    Mao, H.K.; Cai, Y.; Shirley, E.L.; Ding, Y.; Eng, P.; Chow, P.; Xiao, Y.; Shu, J.; Hemley, R.J.; Kao, C.C.; Mao, W.L.

    2010-10-29

    Using inelastic x-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium at 300 K. Helium has the widest known valence-conduction band gap of all materials a property whose high-pressure response has been inaccessible to direct measurements. We observed a rich electron excitation spectrum, including a cutoff edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined the electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  7. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  8. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors

    NASA Astrophysics Data System (ADS)

    Chen, Robert J.; Bangsaruntip, Sarunya; Drouvalakis, Katerina A.; Wong Shi Kam, Nadine; Shim, Moonsub; Li, Yiming; Kim, Woong; Utz, Paul J.; Dai, Hongjie

    2003-04-01

    Novel nanomaterials for bioassay applications represent a rapidly progressing field of nanotechnology and nanobiotechnology. Here, we present an exploration of single-walled carbon nanotubes as a platform for investigating surface-protein and protein-protein binding and developing highly specific electronic biomolecule detectors. Nonspecific binding on nanotubes, a phenomenon found with a wide range of proteins, is overcome by immobilization of polyethylene oxide chains. A general approach is then advanced to enable the selective recognition and binding of target proteins by conjugation of their specific receptors to polyethylene oxide-functionalized nanotubes. This scheme, combined with the sensitivity of nanotube electronic devices, enables highly specific electronic sensors for detecting clinically important biomolecules such as antibodies associated with human autoimmune diseases.

  9. Electronic effects in high-energy radiation damage in tungsten

    DOE PAGES

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; ...

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  10. Electronic effects in high-energy radiation damage in tungsten

    SciTech Connect

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; Seaton, M. A.; Todorov, I. T.; Weber, William J.; Trachenko, Kostya

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in the molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.

  11. Schools and Districts Use Resources Wisely to Increase Achievement and Graduate More Students. High Schools That Work

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2011

    2011-01-01

    In a time of reduced funding, schools are meeting the challenge to continue improving classroom practices, student achievement and graduation rates. Many schools and teachers are forming networks to exchange information via the Internet as they tap into free electronic resources. Career/technical (CT) instructors are teaching students about…

  12. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.

    PubMed

    Park, Yiseul; Kang, Donghyeon; Choi, Kyoung-Shin

    2014-01-21

    Mo-doped BiVO4 electrodes were prepared by an electrochemical route for use as photoanodes in a photoelectrochemical cell. The purpose of Mo-doping was to improve the electron transport properties, which in turn can increase the electron-hole separation yield. The poor electron-hole separation yield was known to be one of the main limiting factors for BiVO4-based photoanodes. The electrochemical route provided an effective way of doping BiVO4, and the optimally doped sample, BiV(0.97)Mo(0.03)O4, increased the electron-hole separation yield from 0.23 to 0.57 at 0.6 V vs. RHE, which is a record high separation yield achieved for BiVO4-based photoanodes. As a result, BiV(0.97)Mo(0.03)O4 generated impressive photocurrents, for example, 2 mA cm(-2) at a potential as low as 0.4 V vs. RHE for sulfite oxidation, which has fast oxidation kinetics and, therefore, the loss of holes by surface recombination is negligible. For photooxidation of water, BiV(0.97)Mo(0.03)O4 was paired with FeOOH as an oxygen evolution catalyst (OEC) to improve the poor catalytic ability of BiV(0.97)Mo(0.03)O4 for water oxidation. The resulting BiV(0.97)Mo(0.03)O4/FeOOH photoanodes generated a significantly improved photocurrent for water oxidation compared to previous reported results, but the photocurrent of BiV(0.97)Mo(0.03)O4/FeOOH for water oxidation could not reach the photocurrent of BiV(0.97)Mo(0.03)O4 for sulfite oxidation. In order to examine the cause, the effects of Mo-doping on the interaction between BiVO4 and FeOOH and the effects of FeOOH on the electron-hole separation yield of BiV(0.97)Mo(0.03)O4 were investigated in detail, which provided new insights into semiconductor-OEC interactions.

  13. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  14. High-performance electronics for time-of-flight PET systems

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  15. The Effects of School Bonding on High School Seniors' Academic Achievement

    ERIC Educational Resources Information Center

    Bryan, Julia; Moore-Thomas, Cheryl; Gaenzle, Stacey; Kim, Jungnam; Lin, Chia-Huei; Na, Goeun

    2012-01-01

    The authors examine the effects of school bonding on academic achievement (measured by math achievement scores) in a sample of 12th graders from the Educational Longitudinal Study of 2002 (Ingels, Pratt, Rogers, Siegel, & Stutts, 2005). Components of school bonding have proximal and distal effects on academic achievement. Attachment to school and…

  16. Superintendent Leadership and Student Achievement in Suburban High Schools: A Sequential Explanatory Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Kellner, Steven Reese

    2012-01-01

    This research study explored the critical nature of the connection between student achievement and superintendent leadership. A great deal of scholarship has addressed either student achievement or leadership and previous evidence has suggested the impact of both parental education and racioethnicity on student achievement, but few studies have…

  17. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  18. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    SciTech Connect

    OCONNOR,P.; GRATCHEV,V.; KANDASAMY,A.; POLYCHRONAKOS,V.; TCHERNIATINE,V.; PARSONS,J.; SIPPACH,W.

    1999-09-25

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm{sup 2}/s.

  19. Nonthermal Electrons at High Mach Number Shocks: Electron Shock Surfing Acceleration

    NASA Astrophysics Data System (ADS)

    Hoshino, M.; Shimada, N.

    2002-06-01

    We study the suprathermal electron acceleration mechanism in a perpendicular magnetosonic shock wave in a high Mach number regime by using a particle-in-cell simulation. We find that shock surfing/surfatron acceleration producing suprathermal electrons occurs in the shock transition region, where a series of large-amplitude electrostatic solitary waves (ESWs) are excited by Buneman instability under the interaction between the reflected ions and the incoming electrons. It is shown that the electrons are likely to be trapped by ESWs, and during the trapping phase they can be effectively accelerated by the shock motional/convection electric field. We discuss that suprathermal electrons can be accelerated up to mic2(v0/c), where mic2 is the ion rest mass energy and v0 is the shock upstream flow velocity. Furthermore, some of these suprathermal electrons may be effectively trapped for an infinitely long time when the Alfvén Mach number MA exceeds several tens, and they are accelerated up to the shock potential energy determined by the global shock size.

  20. High time resolution electron measurement by Fast Electron energy Spectrum Analyzer (FESA)

    SciTech Connect

    Saito, Yoshifumi; Fujimoto, Masaki; Maezawa, Kiyoshi; Shinohara, Iku; Tsuda, Yuichi; Sasaki, Shintaro; Kojima, Hirotsugu

    2009-06-16

    We have newly developed an electron energy analyzer FESA (Fast Electron energy Spectrum Analyzer) for a future magnetospheric satellite mission SCOPE. The SCOPE mission is designed in order that observational studies from the cross-scale coupling viewpoint are enabled. One of the key observations necessary for the SCOPE mission is high-time resolution electron measurement. Eight FESAs on a spinning spacecraft are capable of measuring three dimensional electron distribution function with time resolution of 8 msec. FESA consists of two electrostatic analyzers that are composed of three nested hemispherical deflectors. Single FESA functions as four top-hat type electrostatic analyzers that can measure electrons with four different energies simultaneously. By measuring the characteristics of the test model FESA, we proved the validity of the design concept of FESA. Based on the measured characteristics, we designed FESA optimized for the SCOPE mission. This optimized analyzer has good enough performance to measure three dimensional electron distribution functions around the magnetic reconnection region in the Earth's magnetotail.

  1. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  2. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  3. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  4. Very high Power THz radiation from Relativistic Electrons

    SciTech Connect

    G.L. Carr; Michael C. Martin; Wayne R. McKinney; Kevin Jordan; George R. Neil; Gwyn P. Williams

    2002-08-01

    We report the production of high power (20 watts average, {approx}1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques.

  5. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, G.H.; Smith, J.L.; Sim, J.W.

    1983-11-10

    This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  6. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, Gene H.; Smith, James L.; Sim, James W.

    1986-01-01

    A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  7. Proceedings of the Conference on High-temperature Electronics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of electronic devices for use in high temperature environments is addressed. The instrumentational needs of planetary exploration, fossil and nuclear power reactors, turbine engine monitoring, and well logging are defined. Emphasis is place on the fabrication and performance of materials and semiconductor devices, circuits and systems and packaging.

  8. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  9. Topics in recent studies with high-voltage electron microscopes.

    PubMed

    Mori, Hirotaro

    2011-01-01

    In this article, topics in recent studies with high-voltage electron microscopes (HVEMs) are reviewed. High-voltage electron microscopy possesses a number of advantages that cannot be afforded by conventional electron microscopy, thus providing a unique microscopy technique in both materials science and biological science. One of these advantages is the capability of continuously observing phenomena using a variety of electron microscopy techniques simultaneously with the introduction of the displacement of atoms from lattice points. This has enabled in-depth studies on such fundamental subjects as the crystalline-to-amorphous-to-crystalline transition, the motion properties of point defects and the one-dimensional diffusion of dislocation loops. Electron tomography studies using HVEMs take advantage of the large observable thickness of a specimen. In addition, by combining different advantages, a number of advanced applications in materials science have been carried out, including analyses of the atomic structure of a reduction-induced reconstructed surface and the atomic mechanism behind the self-catalytic vapor-liquid-solid growth of an oxide nanowire. As long as excellent and invaluable studies that cannot be carried out without HVEMs appear in succession, it is necessary to make the utmost efforts to improve these microscopes.

  10. Weak Coupling Electron-Phonon for High Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Labbe, J.

    1989-01-01

    Our opinion is that, in the high Tc copper oxides, the electronic correlations are not large enough to allow the localization of the electrons of the half-filled d-p sub-band. Thus, we treat them as itinerant electrons, in a bidimensional structure. And we show that, contrary to a widely held opinion, the electron-phonon interaction can induce high Tc superconductivity in these compounds, even in the weak coupling limit. This is due to the fact that, because of the bidimensionality, the electronic density of states is sharply peaked in the neighbourhood of the Fermi energy. A small coupling between nearest neighbouring CuO2 planes is sufficient to prevent a very large reduction of Tc by the critical fluctuations. The calculated isotope effect is much smaller than usually in the BCS theory. And, in our weak coupling theory, the antiferromagnetic (AF) phase is much more rapidly destabilized by dopping or internal charge transfer than the superconducting phase, which takes place when the AF phase has vanished.

  11. High electronic couplings of single mesitylene molecular junctions.

    PubMed

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  12. High mobility, printable, and solution-processed graphene electronics.

    PubMed

    Wang, Shuai; Ang, Priscilla Kailian; Wang, Ziqian; Tang, Ai Ling Lena; Thong, John T L; Loh, Kian Ping

    2010-01-01

    The ability to print graphene sheets onto large scale, flexible substrates holds promise for large scale, transparent electronics on flexible substrates. Solution processable graphene sheets derived from graphite can form stable dispersions in solutions and are amenable to bulk scale processing and ink jet printing. However, the electrical conductivity and carrier mobilities of this material are usually reported to be orders of magnitude poorer than that of the mechanically cleaved counterpart due to its higher density of defects, which restricts its use in electronics. Here, we show that by optimizing several key factors in processing, we are able to fabricate high mobility graphene films derived from large sized graphene oxide sheets, which paves the way for all-carbon post-CMOS electronics. All-carbon source-drain channel electronics fabricated from such films exhibit significantly improved transport characteristics, with carrier mobilities of 365 cm(2)/(V.s) for hole and 281 cm(2)/(V.s) for electron, measured in air at room temperature. In particular, intrinsic mobility as high as 5000 cm(2)/(V.s) can be obtained from such solution-processed graphene films when ionic screening is applied to nullify the Coulombic scattering by charged impurities.

  13. Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors.

    PubMed

    Liu, Bingchuan; Williams, Isaiah; Li, Yan; Wang, Lei; Bagtzoglou, Amvrossios; McCutcheon, Jeffrey; Li, Baikun

    2016-05-15

    This study aimed at achieving high power output of benthic microbial fuel cells (BMFCs) with novel geometric anode setups (inverted tube granular activated charcoal (IT-GAC) and carbon cloth roll (CCR)) and multiple anodes/electron collectors. The lab-scale tests showed the power density of IT-GAC and CCR anodes achieved at 2.92 and 2.55 W m(-2), the highest value ever reported in BMFCs. The power density of BMFCs substantially increased with electron collector number (titanium rods) in anodes. The connection of multiple electron collectors with multiple cathodes had much higher total voltage/current output than that with single cathode. The possibility of maintaining high power density at scaled-up BMFCs was explored by arranging multiple anodes in sediment. The compact configuration of multiple CCR anodes contacting each other did not deteriorate the performance of individual anodes, showing the feasibility of maximizing anode numbers per sediment footprint and achieving high power output. Multiple IT-GAC and CCR anodes with multiple collectors effectively utilized sediment at both horizontal and vertical directions and enhanced electron collection efficiency. This study demonstrated that bacterial adhesion and electron collection should be optimized on small anodes in order to maintain high power density and achieve high power output in the scaled-up BMFCs.

  14. Plasmon dispersions in high electron mobility terahertz detectors

    SciTech Connect

    Białek, M. Łusakowski, J.; Czapkiewicz, M.; Umansky, V.

    2014-06-30

    Low temperature, high magnetic field experiments were carried out with monochromatic terahertz (THz) sources to reveal multimode spectra of magnetoplasmons excited in gated and ungated samples processed on a high electron mobility GaAs/AlGaAs heterostructure. We show that playing with the geometry and thickness of the gate one can control both the plasmon dispersion relation and selection rules for plasmon excitation, giving a tool to a better control of plasmon resonances in THz detectors.

  15. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    PubMed

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  16. Devices using ballistic transport of two dimensional electron gas in delta doped gallium arsenide high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Kang, Sungmu

    In this thesis, devices using the ballistic transport of two dimensional electron gas (2DEG) in GaAs High Electron Mobility Transistor(HEMT) structure is fabricated and their dc and ac properties are characterized. This study gives insight on operation and applications of modern submicron devices with ever reduced gate length comparable to electron mean free path. The ballistic transport is achieved using both temporal and spatial limits in this thesis. In temporal limit, when frequency is higher than the scattering frequency (1/(2pitau)), ballistic transport can be achieved. At room temperature, generally the scattering frequency is around 500 GHz but at cryogenic temperature (≤4K) with high mobility GaAs HEMT structure, the frequency is much lower than 2 GHz. On this temporal ballistic transport regime, effect of contact impedance and different dc mobility on device operation is characterized with the ungated 2DEG of HEMT structure. In this ballistic regime, impedance and responsivity of plasma wave detector are investigated using the gated 2DEG of HEMT at different ac boundary conditions. Plasma wave is generated at asymmetric ac boundary conditions of HEMTs, where source is short to ground and drain is open while rf power is applied to gate. The wave velocity can be tuned by gate bias voltage and induced drain to source voltage(Vds ) shows the resonant peak at odd number of fundamental frequency. Quantitative power coupling to plasma wave detector leads to experimental characterization of resonant response of plasma wave detector as a function of frequency. Because plasma wave resonance is not limited by transit time, the physics learned in this study can be directly converted to room temperature terahertz detection by simply reducing gate length(Lgate) to submicron for the terahertz application such as non destructive test, bio medical analysis, homeland security, defense and space. In same HEMT structure, the dc and rf characterization on device is also

  17. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al

  18. A COMPARATIVE ANALYSIS OF ELECTRONIC CONTENT IN PUBLIC POST-HIGH SCHOOL TECHNICAL INSTITUTES AND ELECTRONICS TECHNOLOGY REQUIREMENTS OF INDUSTRY.

    ERIC Educational Resources Information Center

    VASEK, RICHARD J.

    THE PURPOSE OF THIS STUDY WAS TO ASCERTAIN THE EXTENT TO WHICH POST-HIGH SCHOOL TECHNICAL EDUCATION PROGRAMS, THROUGH ELECTRONICS CONTENT OFFERING, WERE MEETING INDUSTRY'S NEEDS IN ELECTRONICS TECHNOLOGY. A CHECKLIST OF 435 INSTRUCTIONAL UNITS OR ITEMS, PREPARED FROM AN ANALYSIS OF 31 ELECTRONICS BOOKS AND 13 MANUALS USED BY ELECTRONICS TEACHERS,…

  19. New insulating materials and their use to achieve high operating stresses in electrostatic machines

    NASA Astrophysics Data System (ADS)

    Cooke, Chathan M.

    1986-02-01

    Compressed gas insulation has provided the main insulation for sustaining terminal voltages of electrostatic accelerators. Essentially coaxial geometry is used with mechanical support of the terminal achieved by long columns which also support the acceleration tubes. Because of the vacuum insulation in the acceleration tubes, the electric gradient along the columns is typically 10-20 kV/cm, whereas the radial gas gap can operate at stresses about ten times larger. Until now, the terminal support has always been located in the low stress axial direction along the column and not in the radial high stress region. This paper is concerned with support insulation to be used in the radial direction. Advantages of radial supports include: simpler, more compact column structures, higher total voltages, and support of discrete stress redistribution electrodes such as vivitron. Important factors to the design of radial support insulators include the insulation constraints imposed by the gas gap, mechanical contact to the solid insulator, and basic limits of gas-solid dielectric interfaces. The gas gap insulation strength is shown to be limited by surface microirregularities and this accounts for electrode area and pressure effects. Based on the gas gap requirements, a design strategy for the insulators is developed. Epoxy is employed as the dielectric to allow the use of cast-in metal inserts at the ends. The inserts provide mechanical contact, shielding of the triple junction, and redistribution of the interface electric stresses. By careful design, the electric stress on the interface is made lower than that in the plain coaxial electrode gap. Practical experience shows that voltage increases linearly with insulator length and that designs achieve more than 10 MV/m into the multimegavolt region.

  20. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance.

    PubMed

    Hirano, Ayaka; Yamamoto, Ken-ichiro; Matsuda, Masato; Ogawa, Takehito; Yakushiji, Taiji; Miyasaka, Takehiro; Sakai, Kiyotaka

    2011-02-01

    The objective of this study was to determine the optimum dialyzer jacket structure and hollow-fiber dialysis membrane, both of which are indispensable factors for achieving high dialysis performance, by clarifying the relationship between the dialysis performance and the flow of dialysate and blood in a hollow-fiber dialyzer. We evaluated the clearance, dialysate, and blood flow for four commercially available hollow-fiber dialyzers, namely, the APS-15S, APS-15SA, TS-1.6UL, and CX-1.6U. To evaluate dialysate and blood flow, we measured the residence-time distribution of dialysate and blood flow of these dialyzers by the pulse-response method. We also determined the clearances of urea, creatinine, vitamin B(12), and lysozyme to evaluate the dialysis performance of these dialyzers. While the baffle and taper structures allow effective supply of dialysate into the dialyzer jacket, the hollow-fiber shape, inner diameter, and packing density significantly influence the dialysate flow. In dialyzers with long taper-holding slits, the slit area is a key design parameter for achieving optimum dialysate flow. Similarly, the blood flow is significantly influenced by the structure of the inflowing and outflowing blood ports at the header of a dialyzer, and the shape and inner diameter of the hollow fibers. Hollow fibers with smaller inner diameters cause an increase in blood pressure, which causes blood to enter the hollow fibers more easily. The hollow-fiber shape hardly affects the blood flow. While improved dialysate and blood flow cause higher clearance of low molecular-weight substances, higher membrane area and pure-water permeability accelerate internal filtration, thereby causing an increase in the clearance of large molecular-weight substances.