Science.gov

Sample records for achieve high precision

  1. The Habitable-zone Planet Finder (HPF): Achieving high precision radial velocities and mitigating stellar activity noise

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Ramsey, Lawrence W.; Terrien, Ryan; Robertson, Paul; Marchwinski, Robert C.; Hearty, Fred; Levi, Eric; Kári Stefánsson, Gudmundur; Bender, Chad F.; Halverson, Samuel; Roy, Arpita; Nelson, Matt; Schwab, Christian

    2015-01-01

    HPF is a stabilized, fiber-fed, near infrared (NIR) spectrograph currently being built at Penn State for the 10m Hobby-Eberly Telescope (HET). HPF will be capable of discovering low mass planets in the Habitable Zones of mid-late M dwarfs via radial velocity (RV). We discuss the development of critical sub-systems like our high-stability temperature control system, vacuum cryostat, and implementation of new wavelength calibration techniques. The design of the HET enables queue-scheduled operation, but its variable pupil requires attention to both near- and far-field fiber scrambling, which we accomplish with double scramblers and octagonal fibers.HPF will provide partial bandwith coverage of the information-rich z, Y and J NIR bands at a spectral resolving power of R˜50,000. While stellar activity induced RV noise is lower in the NIR than at visible wavelengths, we have carefully included NIR activity indicators in our spectral bandpass to help discriminate stellar activity from real planet signals, as has been recently demonstrated for Gliese 581 and Gliese 667C systems.

  2. High precision in Raman frequency achieved using real-time calibration with a neon emission line: application to three-dimensional stress mapping observations.

    PubMed

    Odake, Shoko; Fukura, Satoshi; Kagi, Hiroyuki

    2008-10-01

    A three-dimensional (3D) Raman mapping system with a real-time calibration function was developed for detecting stress distributions in solid materials from subtle frequency shifts in Raman spectra. An atomic emission line of neon at 918.3 cm(-1) when excited at 514.5 nm was used as a wavenumber standard. An emission spectrum of neon and a Raman spectrum from a sample were introduced into a single polychromator using a bifurcated optical fiber. These two spectra were recorded simultaneously on a charge-coupled device (CCD) detector using double-track mode. Energy deviation induced by the fluctuation of laboratory temperature, etc., was removed effectively using the neon emission line. High stability during long measurements was achieved. By applying curve fitting, positions of the Raman line were determined with precision of about 0.05 cm(-1). The present system was applied to measurements of residual pressure around mineral inclusions in a natural diamond: 3D stress mapping was achieved. PMID:18926016

  3. High Precision Astrometry

    NASA Astrophysics Data System (ADS)

    Riess, Adam

    2012-10-01

    This |*|program |*|uses |*|the |*|enhanced |*|astrometric |*|precision |*|enabled |*|by |*|spatial |*|scanning |*|to |*|calibrate |*|remaining |*|obstacles |*|toreaching |*|<<40 |*|microarc|*|second |*|astrometry |*|{<1 |*|millipixel} |*|with |*|WFC3/UVIS |*|by |*|1} |*|improving |*|geometric |*|distor-on |*|2} |*|calibratingthe |*|e|*|ect |*|of |*|breathing |*|on |*|astrometry|*|3} |*|calibrating |*|the |*|e|*|ect |*|of |*|CTE |*|on |*|astrometry, |*|4} |*|characterizing |*|the |*|boundaries |*|andorientations |*|of |*|the |*|WFC3 |*|lithograph |*|cells.

  4. Stellar chemical abundances: in pursuit of the highest achievable precision

    SciTech Connect

    Bedell, Megan; Bean, Jacob L.; Meléndez, Jorge; Leite, Paulo; Asplund, Martin

    2014-11-01

    The achievable level of precision on photospheric abundances of stars is a major limiting factor on investigations of exoplanet host star characteristics, the chemical histories of star clusters, and the evolution of the Milky Way and other galaxies. While model-induced errors can be minimized through the differential analysis of spectrally similar stars, the maximum achievable precision of this technique has been debated. As a test, we derive differential abundances of 19 elements from high-quality asteroid-reflected solar spectra taken using a variety of instruments and conditions. We treat the solar spectra as being from unknown stars and use the resulting differential abundances, which are expected to be zero, as a diagnostic of the error in our measurements. Our results indicate that the relative resolution of the target and reference spectra is a major consideration, with use of different instruments to obtain the two spectra leading to errors up to 0.04 dex. Use of the same instrument at different epochs for the two spectra has a much smaller effect (∼0.007 dex). The asteroid used to obtain the solar standard also has a negligible effect (∼0.006 dex). Assuming that systematic errors from the stellar model atmospheres have been minimized, as in the case of solar twins, we confirm that differential chemical abundances can be obtained at sub-0.01 dex precision with due care in the observations, data reduction, and abundance analysis.

  5. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2016-07-12

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  6. High bandwidth control of precision motion instrumentation

    NASA Astrophysics Data System (ADS)

    Bristow, Douglas A.; Dong, Jingyan; Alleyne, Andrew G.; Ferreira, Placid; Salapaka, Srinivas

    2008-10-01

    This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant bandwidth and precision improvements over the feedback controller, and the ability to achieve precision motion control at frequencies higher than multiple system resonances.

  7. High precision laser forming for microactuation

    NASA Astrophysics Data System (ADS)

    Folkersma, Ger K. G. P.; Römer, G. R. B. E.; Brouwer, D. M.; Huis in't Veld, A. J.

    2014-03-01

    For assembly of micro-devices, such as photonic devices, the precision alignment of components is often critical for their performance. Laser forming, also known as laser-adjusting, can be used to create an integrated microactuator to align the components with sub-micron precision after bonding. In this paper a so-called three-bridge planar manipulator was used to study the laser-material interaction and thermal and mechanical behavior of the laser forming mechanism. A 3-D Finite Element Method (FEM) model and experiments are used to identify the optimal parameter settings for a high precision actuator. The goal in this paper is to investigate how precise the maximum occurring temperature and the resulting displacement are predicted by a 3-D FEM model by comparing with experimental results. A secondary goal is to investigate the resolution of the mechanism and the range of motion. With the experimental setup we measure the displacement and surface temperature in real-time. The time-dependent heat transfer FEM models match closely with experimental results, however the structural model can deviate more than 100% in absolute displacement. Experimentally, a positioning resolution of 0.1μm was achieved, with a total stroke exceeding 20μm. A spread of 10% in the temperature cycles between several experiments was found, which was attributed to a spread in the surface absorptivity. Combined with geometric tolerances, the spread in displacement can be as large as 20%. This implies that feedback control of the laser power, in combination with iterative learning during positioning, is required for high precision alignment. Even though the FEM models deviate substantially from the experiments, the 3-D FEM model predicts the trend in deformation sufficiently accurate to use it for design optimization of high precision 3-D actuators using laser adjusting.

  8. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  9. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  10. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  11. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  12. High precision anatomy for MEG.

    PubMed

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-02-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  13. High precision anatomy for MEG☆

    PubMed Central

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-01-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1 mm. Estimates of relative co-registration error were < 1.5 mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6 month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5 mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  14. Highly Parallel, High-Precision Numerical Integration

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2005-04-22

    This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.

  15. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  16. Poor Results for High Achievers

    ERIC Educational Resources Information Center

    Bui, Sa; Imberman, Scott; Craig, Steven

    2012-01-01

    Three million students in the United States are classified as gifted, yet little is known about the effectiveness of traditional gifted and talented (G&T) programs. In theory, G&T programs might help high-achieving students because they group them with other high achievers and typically offer specially trained teachers and a more advanced…

  17. An apparent contradiction: increasing variability to achieve greater precision?

    PubMed

    Rosenblatt, Noah J; Hurt, Christopher P; Latash, Mark L; Grabiner, Mark D

    2014-02-01

    To understand the relationship between variability of foot placement in the frontal plane and stability of gait patterns, we explored how constraining mediolateral foot placement during walking affects the structure of kinematic variance in the lower-limb configuration space during the swing phase of gait. Ten young subjects walked under three conditions: (1) unconstrained (normal walking), (2) constrained (walking overground with visual guides for foot placement to achieve the measured unconstrained step width) and, (3) beam (walking on elevated beams spaced to achieve the measured unconstrained step width). The uncontrolled manifold analysis of the joint configuration variance was used to quantify two variance components, one that did not affect the mediolateral trajectory of the foot in the frontal plane ("good variance") and one that affected this trajectory ("bad variance"). Based on recent studies, we hypothesized that across conditions (1) the index of the synergy stabilizing the mediolateral trajectory of the foot (the normalized difference between the "good variance" and "bad variance") would systematically increase and (2) the changes in the synergy index would be associated with a disproportionate increase in the "good variance." Both hypotheses were confirmed. We conclude that an increase in the "good variance" component of the joint configuration variance may be an effective method of ensuring high stability of gait patterns during conditions requiring increased control of foot placement, particularly if a postural threat is present. Ultimately, designing interventions that encourage a larger amount of "good variance" may be a promising method of improving stability of gait patterns in populations such as older adults and neurological patients. PMID:24162866

  18. Precision Teaching: Advancing Student Achievement through Daily Drill and Measurement.

    ERIC Educational Resources Information Center

    Rawers, Lois J.

    1983-01-01

    After reviewing the conceptual bases and practical application of precision teaching, this analysis traces its evolution as the Sacajawea Plan, reports on its implementation in central Oregon school districts, and details the costs and procedures of adoption. Developed by Ogden Lindsley from B. F. Skinner's work in operant conditioning and…

  19. High Precision Laser Range Sensor

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)

    2003-01-01

    The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.

  20. Towards High Precision Deuteron Polarimetry

    SciTech Connect

    Silva e Silva, M. da

    2009-08-04

    A finite electric dipole moment (EDM) in any fundamental system would constitute a signal for new physics. The deuteron presents itself as an optimal candidate both experimentally and theoretically. A new storage ring technique is being developed for which a small change in the vertical polarization would be a signal of a non-zero EDM. A novel polarimeter concept is under investigation. Besides being highly efficient, this polarimeter should continuously monitor the beam polarization, guaranteeing optimal sensitivity. Detailed studies on systematic error control, in addition to the measurement of cross sections and analyzing powers, were carried out at KVI-Groningen in The Netherlands. Measurements were conducted at COSY-Juelich in Germany yielding high efficiencies. The (statistics limited) ability to track changes in polarization at the level of a few hundred parts-per-million has been demonstrated. Further studies and developments to meet the final goal of sub-part-per-million sensitivity are in progress.

  1. High precision thermal neutron detectors

    SciTech Connect

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  2. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  3. High-precision arithmetic in mathematical physics

    DOE PAGES

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  4. Cellular signalling effects in high precision radiotherapy

    NASA Astrophysics Data System (ADS)

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; Jain, Suneil; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2015-06-01

    Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell’s survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.

  5. High-Precision Computation and Mathematical Physics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2008-11-03

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  6. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  7. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  8. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  9. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  10. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  11. High precision measurements in crustal dynamic studies

    NASA Technical Reports Server (NTRS)

    Wyatt, F.; Berger, J.

    1984-01-01

    The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.

  12. [Implementation of precision control to achieve the goal of schistosomiasis elimination in China].

    PubMed

    Zhou, Xiao-nong

    2016-02-01

    The integrated strategy for schistosomiasis control with focus on infectious source control, which has been implemented since 2004, accelerated the progress towards schistosomiasis control in China, and achieved transmission control of the disease across the country by the end of 2015, which achieved the overall objective of the Mid- and Long-term National Plan for Prevention and Control of Schistosomiasis (2004-2015) on schedule. Then, the goal of schistosomiasis elimination by 2025 was proposed in China in 2014. To achieve this new goal on schedule, we have to address the key issues, and implement precision control measures with more precise identification of control targets, so that we are able to completely eradicate the potential factors leading to resurgence of schistosomiasis transmission and enable the achievement of schistosomiasis elimination on schedule. Precision schistosomiasis control, a theoretical innovation of precision medicine in schistosomiasis control, will provide new insights into schistosomiasis control based on the conception of precision medicine. This paper describes the definition, interventions and the role of precision schistosomiasis control in the elimination of schistosomiasis in China, and demonstrates that sustainable improvement of professionals and integrated control capability at grass-root level is a prerequisite to the implementation of schistosomiasis control, precision schistosomiasis control is a key to the further implementation of the integrated strategy for schistosomiasis control with focus on infectious source control, and precision schistosomiasis control is a guarantee of curing schistosomiasis patients and implementing schistosomiasis control program and interventions. PMID:27356396

  13. [Implementation of precision control to achieve the goal of schistosomiasis elimination in China].

    PubMed

    Zhou, Xiao-nong

    2016-02-01

    The integrated strategy for schistosomiasis control with focus on infectious source control, which has been implemented since 2004, accelerated the progress towards schistosomiasis control in China, and achieved transmission control of the disease across the country by the end of 2015, which achieved the overall objective of the Mid- and Long-term National Plan for Prevention and Control of Schistosomiasis (2004-2015) on schedule. Then, the goal of schistosomiasis elimination by 2025 was proposed in China in 2014. To achieve this new goal on schedule, we have to address the key issues, and implement precision control measures with more precise identification of control targets, so that we are able to completely eradicate the potential factors leading to resurgence of schistosomiasis transmission and enable the achievement of schistosomiasis elimination on schedule. Precision schistosomiasis control, a theoretical innovation of precision medicine in schistosomiasis control, will provide new insights into schistosomiasis control based on the conception of precision medicine. This paper describes the definition, interventions and the role of precision schistosomiasis control in the elimination of schistosomiasis in China, and demonstrates that sustainable improvement of professionals and integrated control capability at grass-root level is a prerequisite to the implementation of schistosomiasis control, precision schistosomiasis control is a key to the further implementation of the integrated strategy for schistosomiasis control with focus on infectious source control, and precision schistosomiasis control is a guarantee of curing schistosomiasis patients and implementing schistosomiasis control program and interventions.

  14. High precision Woelter optic calibration facility

    SciTech Connect

    Morales, R.I.; Remington, B.A.; Schwinn, T.

    1994-05-02

    We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter Type 1 x-ray optics used at Nova. The primary component of the facility is a high brightness, ``point`` x-ray source consisting of a focussed DC electron beam incident onto a precision manipulated target/pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray CCD camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An in situ laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.

  15. Layered compression for high-precision depth data.

    PubMed

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm. PMID:26415171

  16. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  17. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  18. Calibration of a high precision rotary table

    NASA Astrophysics Data System (ADS)

    Wang, Heyan; Xue, Zi; Shen, Ni; Huang, Yao

    2015-02-01

    In order to calibrate a high precision rotary table, a calibration system was established to measure the position error and repeatability of rotary table. The position error was measured with a polygon, an index table and an autocollimator to separate the angular error of the polygon from the position error of the rotary table, and the position error of rotary table was calculated using least square method. The rotary table was compensated and calibrated with the position error measured. The repeatability of the rotary table established through 10 times full circle rotations was 0.02 arc second. The measurement results indicated that the combination calibration method was suitable for the calibration of a high precision rotary table. It was found through the analysis that the angular measurement uncertainty was 0.08 arc second.

  19. Portable high precision pressure transducer system

    NASA Astrophysics Data System (ADS)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  20. Fiber Scrambling for High Precision Spectrographs

    NASA Astrophysics Data System (ADS)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  1. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    SciTech Connect

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  2. Mathematics Achievement in High- and Low-Achieving Secondary Schools

    ERIC Educational Resources Information Center

    Mohammadpour, Ebrahim; Shekarchizadeh, Ahmadreza

    2015-01-01

    This paper identifies the amount of variance in mathematics achievement in high- and low-achieving schools that can be explained by school-level factors, while controlling for student-level factors. The data were obtained from 2679 Iranian eighth graders who participated in the 2007 Trends in International Mathematics and Science Study. Of the…

  3. High precision radial velocities with GIANO spectra

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.

    2016-06-01

    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.

  4. Note: High precision measurements using high frequency gigahertz signals

    NASA Astrophysics Data System (ADS)

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  5. Note: High precision measurements using high frequency gigahertz signals.

    PubMed

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 10(8) to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  6. Pitch evaluation of high-precision gratings

    NASA Astrophysics Data System (ADS)

    Lu, Yancong; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Xiang, Xiansong; Li, Yanyang; Yu, Junjie; Li, Shubin; Wang, Jin; Liu, Kun; Wei, Shengbin

    2014-11-01

    Optical encoders and laser interferometers are two primary solutions in nanometer metrology. As the precision of encoders depends on the uniformity of grating pitches, it is essential to evaluate pitches accurately. We use a CCD image sensor to acquire grating image for evaluating the pitches with high precision. Digital image correlation technique is applied to filter out the noises. We propose three methods for determining the pitches of grating with peak positions of correlation coefficients. Numerical simulation indicated the average of pitch deviations from the true pitch and the pitch variations are less than 0.02 pixel and 0.1 pixel for these three methods when the ideal grating image is added with salt and pepper noise, speckle noise, and Gaussian noise. Experimental results demonstrated that our method can measure the pitch of the grating accurately, for example, our home-made grating with 20μm period has 475nm peak-to-valley uniformity with 40nm standard deviation during 35mm range. Another measurement illustrated that our home-made grating has 40nm peak-to-valley uniformity with 10nm standard deviation. This work verified that our lab can fabricate high-accuracy gratings which should be interesting for practical application in optical encoders.

  7. New High Precision Linelist of H_3^+

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Perry, Adam J.; Markus, Charles; Jenkins, Paul A., II; Kocheril, G. Stephen; McCall, Benjamin J.

    2014-06-01

    As the simplest polyatomic molecule, H_3^+ serves as an ideal benchmark for theoretical predictions of rovibrational energy levels. By strictly ab initio methods, the current accuracy of theoretical predictions is limited to an impressive one hundredth of a wavenumber, which has been accomplished by consideration of relativistic, adiabatic, and non-adiabatic corrections to the Born-Oppenheimer PES. More accurate predictions rely on a treatment of quantum electrodynamic effects, which have improved the accuracies of vibrational transitions in molecular hydrogen to a few MHz. High precision spectroscopy is of the utmost importance for extending the frontiers of ab initio calculations, as improved precision and accuracy enable more rigorous testing of calculations. Additionally, measuring rovibrational transitions of H_3^+ can be used to predict its forbidden rotational spectrum. Though the existing data can be used to determine rotational transition frequencies, the uncertainties are prohibitively large. Acquisition of rovibrational spectra with smaller experimental uncertainty would enable a spectroscopic search for the rotational transitions. The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS has been previously used to precisely and accurately measure transitions of H_3^+, CH_5^+, and HCO^+ to sub-MHz uncertainty. A second module for our optical parametric oscillator has extended our instrument's frequency coverage from 3.2-3.9 μm to 2.5-3.9 μm. With extended coverage, we have improved our previous linelist by measuring additional transitions. O. L. Polyansky, et al. Phil. Trans. R. Soc. A (2012), 370, 5014--5027. J. Komasa, et al. J. Chem. Theor. Comp. (2011), 7, 3105--3115. C. M. Lindsay, B. J. McCall, J. Mol. Spectrosc. (2001), 210, 66--83. J. N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201.

  8. High Precision Rovibrational Spectroscopy of OH+

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; Müller, Holger S. P.; McCall, Benjamin J.

    2016-02-01

    The molecular ion OH+ has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH+. The ions were produced in a water cooled discharge of O2, H2, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a 3Σ- linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  9. A Double Precision High Speed Convolution Processor

    NASA Astrophysics Data System (ADS)

    Larochelle, F.; Coté, J. F.; Malowany, A. S.

    1989-11-01

    There exist several convolution processors on the market that can process images at video rate. However, none of these processors operates in floating point arithmetic. Unfortunately, many image processing algorithms presently under development are inoperable in integer arithmetic, forcing the researchers to use regular computers. To solve this problem, we designed a specialized convolution processor that operates in double precision floating point arithmetic with a throughput several thousand times faster than the one obtained on regular computer. Its high performance is attributed to a VLSI double precision convolution systolic cell designed in our laboratories. A 9X9 systolic array carries out, in a pipeline manner, every arithmetic operation. The processor is designed to interface directly with the VME Bus. A DMA chip is responsible for bringing the original pixel intensities from the memory of the computer to the systolic array and to return the convolved pixels back to memory. A special use of 8K RAMs allows an inexpensive and efficient way of delaying the pixel intensities in order to supply the right sequence to the systolic array. On board circuitry converts pixel values into floating point representation when the image is originally represented with integer values. An additional systolic cell, used as a pipeline adder at the output of the systolic array, offers the possibility of combining images together which allows a variable convolution window size and color image processing.

  10. High efficiency francium trap for precision spectroscopy

    NASA Astrophysics Data System (ADS)

    Aubin, Seth Andre Morgan

    We cooled and trapped francium in a high efficiency magneto-optical trap. The francium is produced artificially in a nuclear fusion reaction using the Stony Brook superconducting LINAC. We observed an average trap population of 50,000 210Fr, corresponding to a trapping efficiency of 1.2%. The trapped atoms are cooled to a temperature of 75 muK. We used the new trapping apparatus for spectroscopic studies of the 9S 1/2 level of 210Fr to test the precision of atomic theory. We measured the hyperfine splitting of the 9S1/2 level, and with time-correlated single photon counting, we measured its radiative lifetime. We found a lifetime of 107.53 +/- 0.80 ns and a hyperfine splitting of 4045.1 +/- 1.1 MHz. We characterized the optical properties of a dipole trap based on an axicon lens to provide a low perturbation environment for precision spectroscopy. The axicon generates a region of darkness surrounded by light. For blue-detuned light, cold atoms are trapped in the dark region and experience almost no perturbing fields. This work continues the spectroscopic studies of francium for tests of atomic theory and opens the way for nuclear anapole moment measurements.

  11. High precision innovative micropump for artificial pancreas

    NASA Astrophysics Data System (ADS)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  12. Utilizing Precision Teaching To Measure Growth of Reading Comprehension Skills in Low Achieving Students.

    ERIC Educational Resources Information Center

    Nitti, Joanne M.

    A practicum addressed the problem of reading comprehension skills in low achieving students by monitoring their progress utilizing precision teaching. Based on referrals from classroom teachers, guidance counselors, and parents, five students ranging in ability levels from kindergarten through grade 8 were accepted into the program for one or more…

  13. Precision Timing Calorimeter for High Energy Physics

    DOE PAGES

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  14. Highly damped kinematic coupling for precision instruments

    DOEpatents

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  15. High Precision Isotopic Reference Material Program

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.

    2007-12-01

    Recent developments in thermal ionization and inductively coupled plasma multicollector mass spectrometers have lead to "high precision" isotope ratio measurements with uncertainties approaching a few parts in 106. These new measurement capabilities have revolutionized the study of isotopic variations in nature by increasing the number of elements showing natural variations by almost a factor of two, and new research areas are actively opening up in climate change, health, ecology, geology and forensic studies. Because the isotopic applications are impacting very diverse fields, there is at present little effective coordination between research laboratories over reference materials and the values to apply to those materials. NIST had originally developed the techniques for producing accurate isotopic characterizations, culminating in the NIST Isotopic SRM series. The values on existing materials however are insufficiently precise and, in some cases, may be isotopically heterogeneous. A new generation of isotopic standards is urgently needed and will directly affect the quality and scope of emergent applications and ensure that the results being derived from these diverse fields are comparable. A series of new isotopic reference materials similar to the NIST 3100 single element solution series is being designed for this purpose and twelve elements have been selected as having the most pressing need. In conjunction with other expert users and National Metrology Institutes, an isotopic characterization of the respective 12 selected ampoules from the NIST single element solution series is currently underway. In this presentation the preliminary results of this screening will be discussed as well as the suitability of these materials in terms of homogeneity and purity, long term stability and availability, and isotopic relevance. Approaches to value assignment will also be discussed.

  16. Slow Control System for the NIFFTE High Precision TPC

    NASA Astrophysics Data System (ADS)

    Thornton, Remington

    2010-11-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has designed a Time Projection Chamber (TPC) to measure neutron induced fission cross-section measurements of the major actinides to sub-1% precision over a wide incident neutron energy range. These measurements are necessary to design the next generation of nuclear power plants. In order to achieve our high precision goals, an accurate and efficient slow control system must be implemented. Custom software has been created to control the hardware through Maximum Integration Data Acquisition System (MIDAS). This includes reading room and device temperature, setting the high voltage power supplies, and reading voltages. From hardware to software, an efficient design has been implemented and tested. This poster will present the setup and data from this slow control system.

  17. Strategies for high-precision Global Positioning System orbit determination

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  18. High precision beam alignment of electromagnetic wigglers

    SciTech Connect

    Ben-Zvi, I.; Qiu, X.Z.

    1993-01-01

    The performance of Free-Electron Lasers depends critically on the quality of the alignment of the electron beam to the wiggler's magnetic axis and the deviation of this axis from a straight fine. The measurement of the electron beam position requires numerous beam position monitors in the wiggler, where space is at premium. The beam position measurement is used to set beam steerers for an orbit correction in the wiggler. The authors propose an alternative high precision alignment method in which one or two external Beam Position Monitors (BPM) are used. In this technique, the field in the electro-wiggler is modulated section by section and the beam position movement at the external BPM is detected in synchronism with the modulation. A beam offset at the modulated beam section will produce a modulation of the beam position at the detector that is a function of the of the beam offset and the absolute value of the modulation current. The wiggler errors produce a modulation that is a function of the modulation current. It will be shown that this method allows the detection and correction of the beam position at each section in the presence of wiggler errors with a good resolution. Furthermore, it allows one to measure the first and second integrals of the wiggler error over each wiggler section. Lastly, provided that wiggler sections can be degaussed effectively, one can test the deviation of the wiggler's magnetic axis from a straight line.

  19. High Precision Polarimetry of the Epsilon Aurigae Eclipse

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane

    2013-07-01

    Polarimetry of the epsilon Aurigae eclipse has the potential to discern the stellar latitude occulted by the companion's dusty disk, which may directly test interferometric results. In addition, the limb polarization of the primary star may be measured, which is an effect predicted by S. Chandrasekhar and verified by spatially resolved observations of the Sun. I will present B band, polarimetric observations of epsilon Aurigae taken over six nights in September and October 2009 using the POLISH high precision polarimeter at the Lick 3-m telescope. Polarimetric precision achieved during each night is of order 1 part in 10^5. Extensive post-eclipse observations have been taken with the significantly upgraded POLISH2 polarimeter at Lick Observatory. This instrument simultaneously measures all four Stokes parameters (I, Q, U, and V) and achieves precision within 2.0 times the photon shot noise limit over an entire observing run. This work is supported by a NExScI Sagan Fellowship, UC Lab Fees Research Grant, and UCO/Lick Observatory.

  20. High-torque precision stepping drive

    NASA Technical Reports Server (NTRS)

    Kaspareck, W. E.

    1968-01-01

    Stepping drive has been designed for precise incremental angular positioning of scale models of spacecraft about a horizontal axis in order to accurately measure antenna receiving and transmitting characteristics. Positioning is insured by spring-loaded, self-locking plungers.

  1. High-precision photometry for K2 Campaign 1

    NASA Astrophysics Data System (ADS)

    Huang, C. X.; Penev, K.; Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Domsa, I.; de Val-Borro, M.

    2015-12-01

    The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high-precision photometry from the K2 data set, and present public light curves for the K2 Campaign 1 target pixel data set. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high-precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue - this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ˜0.127 arcsec. For bright stars, our best 6.5 h precision for raw light curves is ˜20 parts per million (ppm). For our detrended light curves, the best 6.5 h precision achieved is ˜15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and detrended photometry, at http://k2.hatsurveys.org.

  2. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  3. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  4. Self Regulated Learning of High Achievers

    ERIC Educational Resources Information Center

    Rathod, Ami

    2010-01-01

    The study was conducted on high achievers of Senior Secondary school. Main objectives were to identify the self regulated learners among the high achievers, to find out dominant components and characteristics operative in self regulated learners and to compare self regulated learning of learners with respect to their subject (science and non…

  5. Precision timing calorimeter for high energy physics

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  6. Simulations for the NIFFTE High Precision TPC

    NASA Astrophysics Data System (ADS)

    Thornton, Remington

    2010-10-01

    The Neutron Induced Fission Fragment Tracking Experiment has designed a Time Projection Chamber (TPC) to measure neutron induced fission cross-section measurements of the major actinides to sub-1% precision over a wide incident neutron energy range. These measurements are necessary to design the next generation of nuclear power plants. In order to design a TPC capable of making these measurements, a precise simulation was required to ensure better track reconstruction. Using the Geometry And Tracking (Geant4) simulation platform along with standalone code, a complete simulation package has been written. Asynchronous trigger, 3-D charge diffusion, capacitive charge sharing, digitization, random trigger cells, and noise from the electronics have been modeled inside the detector response simulation, along with code that generates bi-products of fission events for Geant4. This talk will discuss the current status and future planned developments of this work including the efforts to make this code reusable for future TPC projects.

  7. High Precision Noise Measurements at Microwave Frequencies

    SciTech Connect

    Ivanov, Eugene; Tobar, Michael

    2009-04-23

    We describe microwave noise measurement system capable of detecting the phase fluctuations of rms amplitude of 2{center_dot}10{sup -11} rad/{radical}(Hz). Such resolution allows the study of intrinsic fluctuations in various microwave components and materials, as well as precise tests of fundamental physics. Employing this system we discovered a previously unknown phenomenon of down-conversion of pump oscillator phase noise into the low-frequency voltage fluctuations.

  8. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  9. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  10. High precision fabrication of antennas and sensors

    NASA Astrophysics Data System (ADS)

    Balčytis, A.; Seniutinas, G.; Urbonas, D.; Gabalis, M.; Vaškevičius, K.; Petruškevičius, R.; Molis, G.; Valušis, G. `.; Juodkazis, S.

    2015-02-01

    Electron and ion beam lithographies were used to fabricate and/or functionalize large scale - millimetre footprint - micro-optical elements: coupled waveguide-resonator structures on silicon-on-insulator (SOI) and THz antennas on low temperature grown LT-GaAs. Waveguide elements on SOI were made without stitching errors using a fixed beam moving stage approach. THz antennas were created using a three-step litography process. First, gold THz antennas defined by standard mask projection lithography were annealed to make an ohmic contact on LT-GaAs and post-processing with Ga-ion beam was used to define nano-gaps and inter digitised contacts for better charge collection. These approaches show the possibility to fabricate large footprint patterns with nanoscale precision features and overlay accuracy. Emerging 3D nanofabrication trends are discussed.

  11. The Secret Lives of Cepheids: The prototype Classical Cepheid δ Cephei is a Pulsed Variable X-ray and FUV Source - Implications for achieving a high precision Hubble Constant (Ho)

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott G.; Neilson, Hilding; Harper, Graham M.; Remage Evans, Nancy

    2016-06-01

    As part of our “Secret Lives of Cepheids” program, we report that the prototype Classical Cepheid - δ Cep is an X-ray source with pulsation-modulated X-ray & FUV emissions. Recent Chandra X-ray observations, when combined with our previous Chandra & XMM-Newton data, confirm a periodic sharp ~ 5 fold increase in X-ray flux at ~ 0.5φ. The X-ray emission phases with the star's pulsation P = 5.366-d, confirms that the X-ray emissions arise from the Cepheid itself and not from a companion. The X-ray variation is “spike-like” with an Lx (max) ~ 2.1 x1029 erg/s, with plasma temperatures of ~ 2 - 6 MK. The HST-COS FUV fluxes increase ~10-20 times and reach maximum strengths during ~0.88-0.97φ - prior to maximum brightness. The FUV emissions arise from ionized plasmas with T ~10 - 300 x103 K. The FUV emission lines show turbulent broadening near the maximum fluxes. The FUV emissions are best explained by pulsation-induced collisional shocks originating from the star’s pulsating atmosphere. However, the X-ray emissions occur 0.5 - 0.6 φ (~3 days) later than the FUV emission line maxima. Thus, it appears that the X-ray emissions arise further out from the star. We suggests that to produce the observed high temperature X-ray emitting plasmas, that the X-rays most likely arise from pulsation-shock induced turbulent-magnetic heated plasmas. If this behavior is extended to other Cepheids, the presence of pulsation induced X-ray and FUV emissions could play major roles in the dynamics and heating of Cepheid atmospheres and could have consequences affecting the Cepheid Period-Luminosity (P-L) law. For example, the additional energy and shock-heating could produce enhanced mass loss leading to the formation of circumstellar shells. For example, the presence of circumstellar matter could bias the P-L relation if not accounted for. Similar X-ray - UV behavior is indicated by at least one other Cepheid, β Doradus.This research is supported from grants from NASA for

  12. High precision droplet based new form manufacturing

    SciTech Connect

    Aceves,S; Hadjiconstantinou, N; Miller, W O; Orme, M; Sahai, V; Shapiro, A B

    1999-09-16

    In collaboration with the University of California at Irvine (UCI), we are working on a new technology that relies on the precise deposition of nanoliter molten-metal droplets that are targeted onto a substrate by electrostatic charging and deflection. By this way, three-dimensional (3D) structural materials can be manufactured microlayer by microlayer. Because the volume of the droplets are small, they rapidly solidify on impact, bringing forth a material component with fine grain structures which lead to enhanced material properties (e.g., strength). UCI is responsible for an experimental investigation of the manufacturing feasibility of this process. LLNL has unique expertise in the computational modeling of 3D heat transfer and solid mechanics and has the large-scale computer resources necessary to model this large system. Process modeling will help move this technology from the bench-top to an industrial process. Applications at LLNL include rapid prototyping of metal parts and manufacturing new alloys by co-jetting different metals.

  13. High Stakes Testing and Student Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    The effects of high stakes testing may be critical in the lives of public school students and may have many consequences for schools and teachers. There are no easy answers in measuring student achievement and in holding teachers accountable for learner progress. High stakes testing also involves responsibilities on the part of the principal who…

  14. Student Perceptions of High-Achieving Classmates

    ERIC Educational Resources Information Center

    Händel, Marion; Vialle, Wilma; Ziegler, Albert

    2013-01-01

    The reported study investigated students' perceptions of their high-performing classmates in terms of intelligence, social skills, and conscientiousness in different school subjects. The school subjects for study were examined with regard to cognitive, physical, and gender-specific issues. The results show that high academic achievements in…

  15. High-precision digital charge-coupled device TV system

    NASA Astrophysics Data System (ADS)

    Vishnevsky, Grigory I.; Ioffe, S. A.; Berezin, V. Y.; Rybakov, M. I.; Mikhaylov, A. V.; Belyaev, L. V.

    1991-06-01

    In certain test, measurement, and research applications of CCD TV systems, the greater accuracy than usual 8-bit frame-grabbers can provide is demanded without the system being too expensive. The paper presents the concept and features of the high-precision low-cost digital CCD TV system intended for obtaining 12-bit monochrome images of immobile or relatively slow moving objects. The increase in accuracy is achieved by the specific digitization procedure -- one column per frame, which combines the benefits of a slow A/D converter with real-time TV imaging compatibility. To reduce speed restrictions on sample- and-hold circuits, a zoomed pixel read out cycle, corresponding to the pixel to be digitized, is proposed. The system provides great flexibility in choice of integration times and readout rates by means of a programmable readout sequencer, and is easily adaptable to various user demands and CCDs types.

  16. High Achievers: 23rd Annual Survey. Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This report presents data from an annual survey of high school student leaders and high achievers. It is noted that of the nearly 700,000 high achievers featured in this edition, 5,000 students were sent the survey and 2,092 questionnaires were completed. Subjects were high school juniors and seniors selected for recognition by their principals or…

  17. High precision applications of the global positioning system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1991-01-01

    The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.

  18. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  19. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  20. High precision mass measurements for wine metabolomics

    NASA Astrophysics Data System (ADS)

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe

    2014-11-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.

  1. High precision mass measurements for wine metabolomics

    PubMed Central

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis D.; Schmitt-Kopplin, Philippe

    2014-01-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS2. In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy. PMID:25431760

  2. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    PubMed

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal

  3. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  4. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity. PMID:20165203

  5. System and method for high precision isotope ratio destructive analysis

    SciTech Connect

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  6. Early predictors of high school mathematics achievement.

    PubMed

    Siegler, Robert S; Duncan, Greg J; Davis-Kean, Pamela E; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Chen, Meichu

    2012-07-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics achievement. Analyses of large, nationally representative, longitudinal data sets from the United States and the United Kingdom revealed that elementary school students' knowledge of fractions and of division uniquely predicts those students' knowledge of algebra and overall mathematics achievement in high school, 5 or 6 years later, even after statistically controlling for other types of mathematical knowledge, general intellectual ability, working memory, and family income and education. Implications of these findings for understanding and improving mathematics learning are discussed.

  7. High-precision camera distortion measurements with a ``calibration harp''

    NASA Astrophysics Data System (ADS)

    Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel

    2012-10-01

    This paper addresses the high precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern which contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods", we built a "calibration harp" instead of the classic flat patterns to obtain a high precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits to control state-of-the art global camera calibration algorithms: It permits to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision.

  8. Attitudes and Opinions from the Nation's High Achieving Teens. 18th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Educational Communications, Inc., Lake Forest, IL.

    This document contains factsheets and news releases which cite findings from a national survey of 1,985 high achieving high school students. Factsheets describe the Who's Who Among American High School Students recognition and service program for high school students and explain the Who's Who survey. A summary report of this eighteenth annual…

  9. Research on machining error compensation in high-precision surface grinding machine for optical aspheric elements

    NASA Astrophysics Data System (ADS)

    Ke, Xiaolong; Guo, Yinbiao; Zhang, Shihan; Huang, Hao

    2010-10-01

    Using aspheric component in optical system can correct optical aberration, acquire high imaging quality, improve the optical characteristic, simplify system structure, and reduce system volume. Nowadays, high-precision surface grinding machine is an important approach to processing optical aspheric elements. However, because of the characteristics of optical aspheric elements, the processing method makes a higher demand to whole performance of surface grinding machine, and hardly to achieve ideal machining effect. Taking high generality and efficiency into account, this paper presents a compensation method for machining errors of high-precision surface grinding machine, which bases on optical aspheric elements, to achieve high-precision machining for all kinds of optical aspheric elements. After compensation, the machining accuracy of grinding machine could reach 2um/200×200mm. The research bases on NC surface grinding machine which is self developed. First of all, this paper introduces machining principle for optical aspheric elements on the grinding machine. And then error sources which producing errors are analyzed. By contacting and non-contacting measurement sensors, measurement software which is self designed realizes on-position measure for grinded workpiece, then fits surface precision and machining errors. Through compensation software for machining error which is self designed, compensation algorithm is designed and translated compensation data into G-code for the high-precision grinding machine to achieve compensation machining. Finally, by comparison between machining error compensation before and after processing, the experiments for this purpose are done to validate the compensation machining accuracy.

  10. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  11. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  12. High-precision thermal and electrical characterization of thermoelectric modules

    SciTech Connect

    Kolodner, Paul

    2014-05-15

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0–10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  13. 21st Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted by Who's Who Among American High School Students during the spring of 1990, to determine the attitudes of student leaders in U.S. high schools. A survey of high achievers sent to 5,000 students was completed and returned by approximately 2,000 students. All students were members of the junior or senior class during the…

  14. 22nd Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This study surveyed high school students (N=1,879) who were student leaders or high achievers in the spring of 1991 for the purpose of determining their attitudes. Students were members of the junior or senior high school class during the 1990-91 academic year and were selected for recognition by their principals or guidance counselors, other…

  15. Precision cosmology with time delay lenses: High resolution imaging requirements

    SciTech Connect

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  16. Precision cosmology with time delay lenses: high resolution imaging requirements

    SciTech Connect

    Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Marshall, Philip J. E-mail: tt@astro.ucla.edu E-mail: mauger@ast.cam.ac.uk E-mail: dr.phil.marshall@gmail.com

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  17. HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE

    SciTech Connect

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2012-06-01

    Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.

  18. High-precision spectroscopy of hydrogen molecular ions

    NASA Astrophysics Data System (ADS)

    Zhong, Zhen-Xiang; Tong, Xin; Yan, Zong-Chao; Shi, Ting-Yun

    2015-05-01

    In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions ( and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrodynamic corrections. In combination with high-precision measurements, it is feasible to precisely determine a molecular-based value of the proton-to-electron mass ratio. An experimental scheme is presented for measuring the rovibrational transition frequency (v,L) : (0,0) → (6,1) in HD+, which is currently underway at the Wuhan Institute of Physics and Mathematics. Project supported by the National Natural Science Foundation of China (Grants Nos. 11474316, 11004221, 10974224, and 11274348), the “Hundred Talent Program” of Chinese Academy of Sciences. Yan Zong-Chao was supported by NSERC, SHARCnet, ACEnet of Canada, and the CAS/SAFEA International Partnership Program for Creative Research Teams.

  19. Attitudes and Opinions from the Nation's High Achieving Teens: 26th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    A national survey of 3,351 high achieving high school students (junior and senior level) was conducted. All students had A or B averages. Topics covered include lifestyles, political beliefs, violence and entertainment, education, cheating, school violence, sexual violence and date rape, peer pressure, popularity, suicide, drugs and alcohol,…

  20. Attitudes and Opinions from the Nation's High Achieving Teens. 24th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey represents information compiled by the largest national survey of adolescent leaders and high achievers. Of the 5,000 students selected demographically from "Who's Who Among American High School Students," 1,957 responded. All students surveyed had "A" or "B" averages, and 98% planned on attending college. Questions were asked about…

  1. VIEW OF MICROMACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MICRO-MACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE SMALL PARTS. LUMPS OF CLAY; SHOWN IN THE PHOTOGRAPH, WERE USED TO STABILIZE PARTS BEING MACHINED. (11/1/87) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  2. High precision u/th dating of first Polynesian settlement.

    PubMed

    Burley, David; Weisler, Marshall I; Zhao, Jian-xin

    2012-01-01

    Previous studies document Nukuleka in the Kingdom of Tonga as a founder colony for first settlement of Polynesia by Lapita peoples. A limited number of radiocarbon dates are one line of evidence supporting this claim, but they cannot precisely establish when this event occurred, nor can they afford a detailed chronology for sequent occupation. High precision U/Th dates of Acropora coral files (abraders) from Nukuleka give unprecedented resolution, identifying the founder event by 2838±8 BP and documenting site development over the ensuing 250 years. The potential for dating error due to post depositional diagenetic alteration of ancient corals at Nukuleka also is addressed through sample preparation protocols and paired dates on spatially separated samples for individual specimens. Acropora coral files are widely distributed in Lapita sites across Oceania. U/Th dating of these artifacts provides unparalleled opportunities for greater precision and insight into the speed and timing of this final chapter in human settlement of the globe.

  3. Classification of LIDAR Data for Generating a High-Precision Roadway Map

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Lee, I.

    2016-06-01

    Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  4. Precision glass molding of high-resolution diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  5. Three Decades of Precision Orbit Determination Progress, Achievements, Future Challenges and its Vital Contribution to Oceanography and Climate Research

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott; Rowlands, David; Lemoine, Frank; Zelensky, Nikita; Beckley, Brian; Klosko, Steve; Chinn, Doug

    2006-01-01

    Although satellite altimetry has been around for thirty years, the last fifteen beginning with the launch of TOPEX/Poseidon (TP) have yielded an abundance of significant results including: monitoring of ENS0 events, detection of internal tides, determination of accurate global tides, unambiguous delineation of Rossby waves and their propagation characteristics, accurate determination of geostrophic currents, and a multi-decadal time series of mean sea level trend and dynamic ocean topography variability. While the high level of accuracy being achieved is a result of both instrument maturity and the quality of models and correction algorithms applied to the data, improving the quality of the Climate Data Records produced from altimetry is highly dependent on concurrent progress being made in fields such as orbit determination. The precision orbits form the reference frame from which the radar altimeter observations are made. Therefore, the accuracy of the altimetric mapping is limited to a great extent by the accuracy to which a satellite orbit can be computed. The TP mission represents the first time that the radial component of an altimeter orbit was routinely computed with an accuracy of 2-cm. Recently it has been demonstrated that it is possible to compute the radial component of Jason orbits with an accuracy of better than 1-cm. Additionally, still further improvements in TP orbits are being achieved with new techniques and algorithms largely developed from combined Jason and TP data analysis. While these recent POD achievements are impressive, the new accuracies are now revealing subtle systematic orbit error that manifest as both intra and inter annual ocean topography errors. Additionally the construction of inter-decadal time series of climate data records requires the removal of systematic differences across multiple missions. Current and future efforts must focus on the understanding and reduction of these errors in order to generate a complete and

  6. Gauges for Highly Precise Metrology of a Compound Mirror

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta

    2005-01-01

    Three optical gauges have been developed for guiding the assembly and measuring precisely the reflecting surfaces of a compound mirror that comprises a corner-cube retroreflector glued in a hole on a flat mirror. In the specific application for which the gauges were developed, the compound mirror is part of a siderostat in a stellar interferometer. The flat-mirror portion of the compound mirror is the siderostat mirror; the retroreflector portion of the compound mirror is to be used, during operation of the interferometer, to monitor the location of the siderostat mirror surface relative to other optical surfaces of the interferometer. Nominally, the optical corner of the retroreflector should lie precisely on the siderostat mirror surface, but this precision cannot be achieved in fabrication: in practice, there remains some distance between the optical corner and the siderostat mirror surface. For proper operation of the interferometer, it is required to make this distance as small as possible and to know this distance within 1 nm. The three gauges make it possible to satisfy these requirements.

  7. Radio emission from Supernovae and High Precision Astrometry

    NASA Astrophysics Data System (ADS)

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  8. High-precision temperature control and stabilization using a cryocooler.

    PubMed

    Hasegawa, Yasuhiro; Nakamura, Daiki; Murata, Masayuki; Yamamoto, Hiroya; Komine, Takashi

    2010-09-01

    We describe a method for precisely controlling temperature using a Gifford-McMahon (GM) cryocooler that involves inserting fiber-reinforced-plastic dampers into a conventional cryosystem. Temperature fluctuations in a GM cryocooler without a large heat bath or a stainless-steel damper at 4.2 K are typically of the order of 200 mK. It is particularly difficult to control the temperature of a GM cryocooler at low temperatures. The fiber-reinforced-plastic dampers enabled us to dramatically reduce temperature fluctuations at low temperatures. A standard deviation of the temperature fluctuations of 0.21 mK could be achieved when the temperature was controlled at 4.200 0 K using a feedback temperature control system with two heaters. Adding the dampers increased the minimum achievable temperature from 3.2 to 3.3 K. Precise temperature control between 4.200 0 and 300.000 K was attained using the GM cryocooler, and the standard deviation of the temperature fluctuations was less than 1.2 mK even at 300 K. This technique makes it possible to control and stabilize the temperature using a GM cryocooler.

  9. Highly precise and compact ultrahigh vacuum rotary feedthrough

    NASA Astrophysics Data System (ADS)

    Aiura, Y.; Kitano, K.

    2012-03-01

    The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.

  10. High Involvement Mothers of High Achieving Children: Potential Theoretical Explanations

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.

    2013-01-01

    In American society, parents who have high aspirations for the achievements of their children are often viewed by others in a negative light. Various pejoratives such as "pushy parent," "helicopter parent," "stage mother," and "soccer mom" are used in the common vernacular to describe these parents. Multiple…

  11. High Precision Fe Isotope Analysis in low Concentration Samples by High Resolution MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Chung, C.; Wu, J.; You, C.

    2009-12-01

    Iron availability has been shown to be the main limitation factor for phytoplankton growth in the ocean. However, due to the limitation of analytical technique, the database of dissolved Fe concentrations and isotope ratio distribution in the ocean is still very limited. In particular, the iron sources to the ocean remain uncertain. Aeolian dust from the continental is considered as the primary source, also the digenetic dissolution at the continental margins is proposed to contribute significant portion of iron content of the sea surface water. The field of Fe isotope geochemistry has seen important developments in methodology and scope since the advent of Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). Although increasing the number of replicates in High Resolution MC-ICPMS reduces the uncertainty related to instability in instrumental mass bias and counting statistics, many other parameters include mass fractionation during column separation, matrix effect in ICPMS analysis and the presence of isobaric interferences can affect the precision and accuracy of Fe isotopic analyses. In this study, a high precision analytical method of Fe isotope measurement for low concentration samples was developed using HR-MC-ICPMS. Several parameters that may affect the accuracy and precision of 56Fe/54Fe result such as background, instrumental mass discrimination, isobaric interferences, type of introduction system and acid molarity were identified and evaluated. External precisions better than 0.04‰ for δ56Fe can be achieve using only 10ng of iron sample with APEX and X-cone as introduction system. Significant improvement in terms of sample size was made. This method can be applied on very low concentration samples such as coral and seawater.

  12. High-precision buffer circuit for suppression of regenerative oscillation

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Hare, David A.; Tcheng, Ping

    1995-01-01

    Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.

  13. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  14. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  15. High-precision Velocimetry Reveals δ Cephei's Secret Companion

    NASA Astrophysics Data System (ADS)

    Anderson, Richard I.; Sahlmann, Johannes; Holl, Berry; Eyer, Laurent

    2015-08-01

    The search for extra-solar planets has driven tremendous improvements in the precision of radial velocities measured with high-resolution echelle spectrographs. However, relatively few studies have as of yet exploited the present-day extreme (m/s) instrumental precision to study Cepheid variable stars.We have been observing the prototype of classical Cepheids, δ Cephei, since September 2011 using the HERMES spectrograph mounted to the Mercator telescope located at the Roque de los Muchachos Observatory on the island of La Palma. Being one of the most-studied variable stars, we originally chose δ Cephei as a maximum-precision reference for other Cepheids in our sample. To our great surprise however, we discovered a clear orbital signature in the homogeneous HERMES data. Adding in radial velocity data from the literature, we then determined δ Cephei's orbit (cf. Anderson et al. 2015, arXiv:1503.04116). The high orbital eccentricity (e=0.647) leads to close pericenter passages (rmin ~ 9.5 RδCep) which suggest an intriguing past that requires further study, since Cepheids are well-known magnifying glasses for stellar evolution (Kippenhahn & Weigert 1994). We furthermore determined a new parallax to δ Cephei (using Hipparcos data) that is in tension with previous estimates and shows that the orbit will have to be accounted for when measuring δ Cephei's parallax with Gaia.While some of our HERMES data are as precise as 9 m/s, we found correlated excess residuals when removing the reference pulsation model and orbital motion from the HERMES radial velocity data, leaving an RMS of 47 m/s. These higher-than-expected residuals are reminiscent of the "period-jitter" or "flickering" observed in high-precision photometry of Cepheids obtained with the Kepler and MOST satellites. This reveals a fortuitous synergy between variable stars studies and the field of exoplanet research and opens the window for a better understanding of Cepheid pulsations via high-precision

  16. Location of end-points in high-precision coulometry.

    PubMed

    Koch, W F; Poe, D P; Diehl, H

    1975-07-01

    A computer has been used to fit a cubic equation to experimental data obtained in the region of the end-point in high-precision coulometric titrations of 4-aminopyridine and tris(hydroxy-methyl) aminomethane. For these weak bases, the two end-points (points of inflexion calculated by setting the second derivative equal to zero) obtained by choosing first time, and secondly pH, as the independent variable, are in good agreement.

  17. Some comments on high precision study of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    I discuss here some problems connected with the high precision study of neutrino oscillations. In the general case of n-neutrino mixing I derive a convenient expression for transition probability in which only independent terms (and mass-squared differences) enter. For three-neutrino mixing I discuss a problem of a definition of a large (atmospheric) neutrino mass-squared difference. I comment also possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments.

  18. High precision tide spectroscopy. [using the superconducting gravimeter

    NASA Technical Reports Server (NTRS)

    Goodkind, J. M.

    1978-01-01

    Diurnal and long period earth tides were measured to high accuracy and precision with the superconducting gravimeter. The results provide new evidence on the geophysical questions which have been attacked through earth tide measurements in the past. In addition, they raise new questions of potential interest. Slow fluctuations in gravity of order 10 micron gal over periods of 3 to 5 months were observed and are discussed.

  19. High-Precision Computation: Mathematical Physics and Dynamics

    SciTech Connect

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  20. High precision metrology of domes and aspheric optics

    NASA Astrophysics Data System (ADS)

    Murphy, Paul E.; Fleig, Jon; Forbes, Greg; Tricard, Marc

    2005-05-01

    Many defense systems have a critical need for high-precision, complex optics. However, fabrication of high quality, advanced optics is often seriously hampered by the lack of accurate and affordable metrology. QED's Subaperture Stitching Interferometer (SSI®) provides a breakthrough technology, enabling the automatic capture of precise metrology data for large and/or strongly curved (concave and convex) parts. QED"s SSI complements next-generation finishing technologies, such as Magnetorheological Finishing (MRF®), by extending the effective aperture, accuracy and dynamic range of a phase-shifting interferometer. This workstation performs automated sub-aperture stitching measurements of spheres, flats, and mild aspheres. It combines a six-axis precision stage system, a commercial Fizeau interferometer, and specially developed software that automates measurement design, data acquisition, and the reconstruction of the full-aperture figure error map. Aside from the correction of sub-aperture placement errors (such as tilts, optical power, and registration effects), our software also accounts for reference-wave error, distortion and other aberrations in the interferometer"s imaging optics. The SSI can automatically measure the full aperture of high numerical aperture surfaces (such as domes) to interferometric accuracy. The SSI extends the usability of a phase measuring interferometer and allows users with minimal training to produce full-aperture measurements of otherwise untestable parts. Work continues to extend this technology to measure aspheric shapes without the use of dedicated null optics. This SSI technology will be described, sample measurement results shown, and various manufacturing applications discussed.

  1. High Ability Readers and the Achievement Gap

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.; Parke, Cynthia J.; Bramble, Joan G.

    2004-01-01

    To close the achievement gap, the "No Child Left Behind" law calls for all students to make appropriate yearly progress. This presumably means that progress is being made by capable readers at the same time progress is being made by struggling readers. However, there appear to be unintended effects of "No Child Left Behind" that may impede the…

  2. High precision capacitive beam phase probe for KHIMA project

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter

    2016-11-01

    In the medium energy beam transport (MEBT) line of KHIMA project, a high precision beam phase probe monitor is required for a precise tuning of RF phase and amplitude of Radio Frequency Quadrupole (RFQ) accelerator and IH-DTL linac. It is also used for measuring a kinetic energy of ion beam by time-of-flight (TOF) method using two phase probes. The capacitive beam phase probe has been developed. The electromagnetic design of the high precision phase probe was performed to satisfy the phase resolution of 1° (@200 MHz). It was confirmed by the test result using a wire test bench. The measured phase accuracy of the fabricated phase probe is 1.19 ps. The pre-amplifier electronics with the 0.125 ∼ 1.61 GHz broad-band was designed and fabricated for amplifying the signal strength. The results of RF frequency and beam energy measurement using a proton beam from the cyclotron in KIRAMS is presented.

  3. Photonic systems for high precision radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel

    2016-01-01

    I will discuss new instrumentation and techniques designed to maximize the Doppler radial velocity (RV) measurement precision of next generation exoplanet discovery instruments. These systems include a novel wavelength calibration device based on an all-fiber fabry-perot interferometer, a compact and efficient optical fiber image scrambler based on a single high-index ball lens, and a unique optical fiber mode mixer. These systems have been developed specifically to overcome three technological hurdles that have classically hindered high precision RV measurements in both the optical and near-infrared (NIR), namely: lack of available wavelength calibration sources, inadequate decoupling of the spectrograph from variable telescope illumination, and speckle-induced noise due to mode interference in optical fibers. The instrumentation presented here will be applied to the Habitable-zone Planet Finder, a NIR RV instrument designed to detect rocky planets orbiting in the habitable zones of nearby M-dwarfs, and represents a critical technological step towards the detection of potentially habitable Earth-like planets. While primarily focused in the NIR, many of these systems will be adapted to future optical RV instruments as well, such as NASA's new Extreme Precision Doppler Spectrometer for the WIYN telescope.

  4. BAM: A metrology device for a high precision astrometric mission

    NASA Astrophysics Data System (ADS)

    Riva, A.; Gai, M.; Lattanzi, M. G.; Russo, F.; Buzzi, R.

    2014-12-01

    Gaia is ESA next-generation astrometric space mission, that will be launched in December 2013. The main objective of Gaia is to produce an astrometric census of one billion objects down to the 20th magnitude. The level of astrometric precision will be around the 10 microarcseconds. In order to achieve such demanding performances, the complexity of the satellite is huge, and a proper fully automated operation must be adopted. One of the essential parts of the satellite is the BAM instrument, an interferometric device with the task of monitoring the variation of the Basic Angle between the two telescope that compose the payload. In this paper we describe the main features of this sub-instrument and its performances.

  5. High-Achieving Students in the Era of NCLB

    ERIC Educational Resources Information Center

    Loveless, Tom; Parkas, Steve; Duffett, Ann

    2008-01-01

    This report contains two separate studies examining the status of high-achieving students in the No Child Left Behind (NCLB) era. Part I, An Analysis of NAEP Data, authored by Brookings Institution scholar Tom Loveless, examines achievement trends for high-achieving students (defined, like low-achieving students, by their performance on the…

  6. Improving Student Achievement: A Study of High-Poverty Schools with Higher Student Achievement Outcomes

    ERIC Educational Resources Information Center

    Butz, Stephen D.

    2012-01-01

    This research examined the education system at high-poverty schools that had significantly higher student achievement levels as compared to similar schools with lower student achievement levels. A multischool qualitative case study was conducted of the educational systems where there was a significant difference in the scores achieved on the…

  7. High Resolution, High Precision I-Line Stepper Processing

    NASA Astrophysics Data System (ADS)

    Yanazawa, H.; Hasegawa, N.; Kurosaki, T.; Hashimoto, N.; Nonogaki, S.

    1985-06-01

    Currently, the integrated MOS dynamic RAM has as many as 256 thousand memory cells per chip based on 2 pm photolithography. Figure 1 shows the history and the prospects for progress in microfabrication technology. Feature size versus year, as reported by Bossung in 1978, is shown, as developed from independent analysis by Moore, Noyce and Gnostic concept. Circles numbered 1 and 2 show that 64K- and 256K-bit RAMs were developed in 1981 and 1984, and that their feature sizes were 3μm and 2μm, respectively. It is significant that the predictions and the real developments are so close. Furthermore, since the basic process for 3 M-bit RAMs based on 1.3μm microlithography has already been reported in conference, it is highly likely that they will become commercially available around 1987, as predicted by the circle numbered 3 based on 1.3μm microlithography.

  8. High School Employment and Youths' Academic Achievement

    ERIC Educational Resources Information Center

    Rothstein, Donna S.

    2007-01-01

    This paper asks whether employment during high school impacts youths' grade point average. Unlike much of the prior literature, it allows for the endogeneity of the hours and dropout decisions, uses ASVAB test scores, and tests whether youth employment is dynamic. The results indicate that high school employment and its lag have small, negative…

  9. Distributed high-precision time transfer through passive optical networks

    NASA Astrophysics Data System (ADS)

    Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping

    2014-09-01

    We propose a one-point to multipoint distributed time transfer through passive optical networks using a time division multiple access (TDMA) based two-way time transfer. The clock at each clock user node is, in turn, compared with the high-precision reference clock at a master node by a two-way time transfer during assigned subperiods. The corresponding TDMA control protocol and time transfer units for the proposed scheme are designed and implemented. A 1×8 experimental system with a 20 km single-mode fiber in each subpath is demonstrated. The results show that a standard deviation of <60 ps can be reached in each comparison subperiod.

  10. Globular Cluster Streams as Galactic High-Precision Scales

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David W.; Kroupa, Pavel; Santiago, Basilio X.

    2016-08-01

    Tidal streams of globular clusters are ideal tracers of the Galactic gravitational potential. Compared to the few known, complex and diffuse dwarf-galaxy streams, they are kinematically cold, have thin morphologies and are abundant in the halo of the Milky Way. Their coldness and thinness in combination with potential epicyclic substructure in the vicinity of the stream progenitor turns them into high-precision scales. With the example of Palomar 5, we demonstrate how modeling of a globular cluster stream allows us to simultaneously measure the properties of the disrupting globular cluster, its orbital motion, and the gravitational potential of the Milky Way.

  11. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing

    1993-04-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  12. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  13. High precision photon flux determination for photon tagging experiments

    SciTech Connect

    Teymurazyan, A; Ahmidouch, A; Ambrozewicz, P; Asratyan, A; Baker, K; Benton, L; Burkert, V; Clinton, E; Cole, P; Collins, P; Dale, D; Danagoulian, S; Davidenko, G; Demirchyan, R; Deur, A; Dolgolenko, A; Dzyubenko, G; Ent, R; Evdokimov, A; Feng, J; Gabrielyan, M; Gan, L; Gasparian, A; Glamazdin, A; Goryachev, V; Hardy, K; He, J; Ito, M; Jiang, L; Kashy, D; Khandaker, M; Kolarkar, A; Konchatnyi, M; Korchin, A; Korsch, W; Kosinov, O; Kowalski, S; Kubantsev, M; Kubarovsky, V; Larin, I; Lawrence, D; Li, X; Martel, P; Matveev, V; McNulty, D; Mecking, B; Milbrath, B; Minehart, R; Miskimen, R; Mochalov, V; Nakagawa, I; Overby, S; Pasyuk, E; Payen, M; Pedroni, R; Prok, Y; Ritchie, B; Salgado, C; Shahinyan, A; Sitnikov, A; Sober, D; Stepanyan, S; Stevens, W; Underwood, J; Vasiliev, A; Vishnyakov, V; Wood, M; Zhou, S

    2014-07-01

    The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.

  14. High-Precision Motorcycle Trajectory Measurements Using GPS

    NASA Astrophysics Data System (ADS)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    A method for measuring motorcycle trajectory using GPS is needed for simulating motorcycle dynamics. In GPS measurements of a motorcycle, both the declination of the motorcycle and obstacles near the course can cause problems. Therefore, we propose a new algorithm for GPS measurement of motorcycle trajectory. We interpolate the missing observation data within a few seconds using polynomial curves, and use a Kalman filter to smoothen position calculations. This results in obtaining trajectory with high accuracy and with sufficient continuity. The precision is equal to that of fixed point positioning, given a sufficient number of available satellites.

  15. High-precision micro/nano-scale machining system

    DOEpatents

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  16. High-precision measurements of global stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Plachinda, S. I.

    2014-06-01

    This paper presents a brief history of the development of devices and techniques for high-precision measurements of stellar magnetic fields. Two main approaches for the processing of spectral-polarimetric observations are described: the method of least-squares deconvolution (LSD), which is used to find a mean-weighted average of the normalized polarization profile using a set of spectral lines, and a method in which each individual spectral line is used to determine the magnetic field, viz., the single line method (SL). The advantages and disadvantages of the LSD and SL methods are discussed.

  17. A High Precision Terahertz Wave Image Reconstruction Algorithm

    PubMed Central

    Guo, Qijia; Chang, Tianying; Geng, Guoshuai; Jia, Chengyan; Cui, Hong-Liang

    2016-01-01

    With the development of terahertz (THz) technology, the applications of this spectrum have become increasingly wide-ranging, in areas such as non-destructive testing, security applications and medical scanning, in which one of the most important methods is imaging. Unlike remote sensing applications, THz imaging features sources of array elements that are almost always supposed to be spherical wave radiators, including single antennae. As such, well-developed methodologies such as Range-Doppler Algorithm (RDA) are not directly applicable in such near-range situations. The Back Projection Algorithm (BPA) can provide products of high precision at the the cost of a high computational burden, while the Range Migration Algorithm (RMA) sacrifices the quality of images for efficiency. The Phase-shift Migration Algorithm (PMA) is a good alternative, the features of which combine both of the classical algorithms mentioned above. In this research, it is used for mechanical scanning, and is extended to array imaging for the first time. In addition, the performances of PMA are studied in detail in contrast to BPA and RMA. It is demonstrated in our simulations and experiments described herein that the algorithm can reconstruct images with high precision. PMID:27455269

  18. A High Precision Terahertz Wave Image Reconstruction Algorithm.

    PubMed

    Guo, Qijia; Chang, Tianying; Geng, Guoshuai; Jia, Chengyan; Cui, Hong-Liang

    2016-01-01

    With the development of terahertz (THz) technology, the applications of this spectrum have become increasingly wide-ranging, in areas such as non-destructive testing, security applications and medical scanning, in which one of the most important methods is imaging. Unlike remote sensing applications, THz imaging features sources of array elements that are almost always supposed to be spherical wave radiators, including single antennae. As such, well-developed methodologies such as Range-Doppler Algorithm (RDA) are not directly applicable in such near-range situations. The Back Projection Algorithm (BPA) can provide products of high precision at the the cost of a high computational burden, while the Range Migration Algorithm (RMA) sacrifices the quality of images for efficiency. The Phase-shift Migration Algorithm (PMA) is a good alternative, the features of which combine both of the classical algorithms mentioned above. In this research, it is used for mechanical scanning, and is extended to array imaging for the first time. In addition, the performances of PMA are studied in detail in contrast to BPA and RMA. It is demonstrated in our simulations and experiments described herein that the algorithm can reconstruct images with high precision. PMID:27455269

  19. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  20. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  1. Achieving strategic surety for high consequence software

    SciTech Connect

    Pollock, G.M.

    1996-09-01

    A strategic surety roadmap for high consequence software systems under the High Integrity Software (HIS) Program at Sandia National Laboratories guides research in identifying methodologies to improve software surety. Selected research tracks within this roadmap are identified and described detailing current technology and outlining advancements to be pursued over the coming decade to reach HIS goals. The tracks discussed herein focus on Correctness by Design, and System Immunology{trademark}. Specific projects are discussed with greater detail given on projects involving Correct Specification via Visualization, Synthesis, & Analysis; Visualization of Abstract Objects; and Correct Implementation of Components.

  2. Early Predictors of High School Mathematics Achievement

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Duncan, Greg J.; Davis-Kean, Pamela E.; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Meichu, Chen

    2012-01-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics…

  3. Norview High School: Leadership Fosters Achievment

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    Often little unsaid things demonstrate what is truly important in a school. When teachers have common planning time and all of the department chairs share a single space as they do at Norview High School in Norfolk, VA, the unmistakable message is that instructional collaboration and leadership are expected and valued. Norview, an urban,…

  4. Achieving High-Temperature Ferromagnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat

    Topological insulators (TIs) are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens new opportunities for creating next-generation electronic and spintronic devices, including TI-based quantum computation. Introducing ferromagnetic order into a TI system without compromising its distinctive quantum coherent features could lead to a realization of several predicted novel physical phenomena. In particular, achieving robust long-range magnetic order at the TI surface at specific locations without introducing spin scattering centers could open up new possibilities for devices. Here, we demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (FMI) to a TI (Bi2Se3); this interfacial ferromagnetism persists up to room temperature, even though the FMI (EuS) is known to order ferromagnetically only at low temperatures (<17 K). The induced magnetism at the interface resulting from the large spin-orbit interaction and spin-momentum locking feature of the TI surface is found to greatly enhance the magnetic ordering (Curie) temperature of the TI/FMI bilayer system. Due to the short range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a TI, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered TI could allow for an efficient manipulation of the magnetization dynamics by an electric field, providing an energy efficient topological control mechanism for future spin-based technologies. Work supported by MIT MRSEC through the MRSEC Program of NSF under award number DMR-0819762, NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

  5. High precision position control of voice coil motor based on single neuron PID

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Chen, Qiming; Tan, Guangjun; Zhu, He

    2013-01-01

    Voice coil motor(VCM) is widely used in high-speed and high-precision positioning control system in recent years. However, there are system uncertainty, nonlinear, modeling error, and external disturbances in the high-precision positioning control system, traditional PID control method is difficult to achieve precise positioning control. In this paper, a new position control strategy with a single neuron controller which has the capability of self-studying and self-adapting composed with PID controller is put forward, and the feedforward compensator is added to improve the dynamic response of the system in the position loop. Moreover, the disturbance observer is designed to suppress model parameter uncertainty and external disturbance signal in the current loop. In addition, the problem of high precision position control of VCM under the influence of significant disturbances is addressed, which including the gas-lubricated damping, the spring, the back EMF and ripple forces, on the basis, the mathematical model of VCM is established accurately. The simulation results show that this kind of controller can improve the dynamic characteristic and strengthen the robustness of the system, and the current loop with disturbance observer can also restrain disturbance and high frequency.

  6. High Precision Assembly Line Synthesis for Molecules with Tailored Shapes

    PubMed Central

    Burns, Matthew; Essafi, Stephanie; Bame, Jessica R.; Bull, Stephanie P.; Webster, Matthew P.; Balieu, Sebastien; Dale, James W.; Butts, Craig P.; Harvey, Jeremy N.; Aggarwal, Varinder K.

    2014-01-01

    Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required. PMID:25209797

  7. High-precision analysis of the solar twin HIP 100963

    NASA Astrophysics Data System (ADS)

    Yana Galarza, Jhon; Meléndez, Jorge; Ramírez, Ivan; Yong, David; Karakas, Amanda I.; Asplund, Martin; Liu, Fan

    2016-05-01

    Context. HIP 100963 was one of the first solar twins identified. Although some high-precision analyses are available, a comprehensive high-precision study of chemical elements from different nucleosynthetic sources is still lacking from which to obtain potential new insights on planets, stellar evolution, and Galactic chemical evolution (GCE). Aims: We analyze and investigate the origin of the abundance pattern of HIP 100963 in detail, in particular the pattern of the light element Li, the volatile and refractory elements, and heavy elements from the s- and r-processes. Methods: We used the HIRES spectrograph on the Keck I telescope to acquire high-resolution (R ≈ 70 000) spectra with a high signal-to-noise ratio (S/N ≈ 400-650 per pixel) of HIP 100963 and the Sun for a differential abundance analysis. We measured the equivalent widths (EWs) of iron lines to determine the stellar parameters by employing the differential spectroscopic equilibrium. We determined the composition of volatile, refractory, and neutron-capture elements through a differential abundance analysis with respect to the Sun. Results: The stellar parameters we found are Teff = 5818 ± 4 K, log g = 4.49 ± 0.01 dex, vt = 1.03 ± 0.01km s-1, and [Fe/H] = -0.003 ± 0.004 dex. These low errors allow us to compute a precise mass (1.03+0.02-0.01 M⊙) and age (2.0 ± 0.4 Gyr), obtained using Yonsei-Yale isochrones. Using our [Y/Mg] ratio, we have determined an age of 2.1 ± 0.4 Gyr, in agreement with the age computed using isochrones. Our isochronal age also agrees with the age determined from stellar activity (2.4 ± 0.3 Gyr). We study the abundance pattern with condensation temperature (Tcond) taking corrections by the GCE into account. We show that the enhancements of neutron-capture elements are explained by contributions from both the s- and r-process. The lithium abundance follows the tight Li-age correlation seen in other solar twins. Conclusions: We confirm that HIP 100963 is a solar twin

  8. High precision measurement of electrical resistance across endothelial cell monolayers.

    PubMed

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J

    1995-05-01

    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  9. Self-Concept and Achievement Motivation of High School Students

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Vimala, A.

    2013-01-01

    The present study "Self-concept and Achievement Motivation of High School Students" was investigated to find the relationship between Self-concept and Achievement Motivation of High School Students. Data for the study were collected using Self-concept Questionnaire developed by Raj Kumar Saraswath (1984) and Achievement Motive Test (ACMT)…

  10. Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment

    NASA Astrophysics Data System (ADS)

    Ernstsen, Verner B.; Noormets, Riko; Hebbeln, Dierk; Bartholomä, Alex; Flemming, Burg W.

    2006-09-01

    Over 4 years, repetitive bathymetric measurements of a shipwreck in the Grådyb tidal inlet channel in the Danish Wadden Sea were carried out using a state-of-the-art high-resolution multibeam echosounder (MBES) coupled with a real-time long range kinematic (LRK™) global positioning system. Seven measurements during a single survey in 2003 ( n=7) revealed a horizontal and vertical precision of the MBES system of ±20 and ±2 cm, respectively, at a 95% confidence level. By contrast, four annual surveys from 2002 to 2005 ( n=4) yielded a horizontal and vertical precision (at 95% confidence level) of only ±30 and ±8 cm, respectively. This difference in precision can be explained by three main factors: (1) the dismounting of the system between the annual surveys, (2) rougher sea conditions during the survey in 2004 and (3) the limited number of annual surveys. In general, the precision achieved here did not correspond to the full potential of the MBES system, as this could certainly have been improved by an increase in coverage density (soundings/m2), achievable by reducing the survey speed of the vessel. Nevertheless, precision was higher than that reported to date for earlier offshore test surveys using comparable equipment.

  11. Developing and implementing a high precision setup system

    NASA Astrophysics Data System (ADS)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  12. High Precision Photometry of Bright Transiting Exoplanet Hosts

    NASA Astrophysics Data System (ADS)

    Wilson, Maurice; Eastman, Jason; Johnson, John A.

    2016-01-01

    Within the past two decades, the successful search for exoplanets and the characterization of their physical properties have shown the immense progress that has been made towards finding planets with characteristics similar to Earth. For most exoplanets with a radius about the size of Earth, evaluating their physical properties, such as the mass, radius and equilibrium temperature, cannot be determined with satisfactory precision. The MINiature Exoplanet Radial Velocity Array (MINERVA) was recently built to obtain spectroscopic and photometric measurements to find, confirm, and characterize Earth-like exoplanets. MINERVA's spectroscopic survey targets the brightest, nearby stars which are well-suited to the array's capabilities, while its primary photometric goal is to search for transits around these bright targets. Typically, it is difficult to find satisfactory comparison stars within a telescope's field of view when the primary target is very bright. This issue is resolved by using one of MINERVA's telescopes to observe the primary bright star while the other telescopes observe a distinct field of view that contains satisfactory bright comparison stars. We describe the code used to identify nearby comparison stars, schedule the four telescopes, produce differential photometry from multiple telescopes, and show the first results from this effort.This work has been funded by the Ronald E. McNair Post-Baccalaureate Achievement Program, the ERAU Honors Program, the ERAU Undergraduate Research Spark Fund, and the Banneker Institute at the Harvard-Smithsonian Center for Astrophysics.

  13. Simultaneous Precision Gravimetry and Magnetic Gradiometry with a Bose-Einstein Condensate: A High Precision, Quantum Sensor

    NASA Astrophysics Data System (ADS)

    Hardman, K. S.; Everitt, P. J.; McDonald, G. D.; Manju, P.; Wigley, P. B.; Sooriyabandara, M. A.; Kuhn, C. C. N.; Debs, J. E.; Close, J. D.; Robins, N. P.

    2016-09-01

    A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A 5 ×1 06 atom F =1 spinor condensate of 87Rb is released into free fall for up to 750 ms and probed with a T =130 ms Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states |mf=1 ,0 ,-1 ⟩, facilitating a simultaneous measurement of the acceleration due to gravity with a 1000 run precision of Δ g /g =1.45 ×10-9 and the magnetic field gradient to a precision of 120 pT /m .

  14. A novel approach for pulse width measurements with a high precision (8 ps RMS) TDC in an FPGA

    NASA Astrophysics Data System (ADS)

    Ugur, C.; Linev, S.; Michel, J.; Schweitzer, T.; Traxler, M.

    2016-01-01

    High precision time measurements are a crucial element in particle identification experiments, which likewise require pulse width information for Time-over-Threshold (ToT) measurements and charge measurements (correlated with pulse width). In almost all of the FPGA-based TDC applications, pulse width measurements are implemented using two of the TDC channels for leading and trailing edge time measurements individually. This method however, requires twice the number of resources. In this paper we present the latest precision improvements in the high precision TDC (8 ps RMS) developed before [1], as well as the novel way of measuring ToT using a single TDC channel, while still achieving high precision (as low as 11.7 ps RMS). The effect of voltage, generated by a DC-DC converter, over the precision is also discussed. Finally, the outcome of the temperature change over the pulse width measurement is shown and a correction method is suggested to limit the degradation.

  15. Suppression of radiation damping for high precision quantitative NMR

    NASA Astrophysics Data System (ADS)

    Bayle, Kevin; Julien, Maxime; Remaud, Gérald S.; Akoka, Serge

    2015-10-01

    True quantitative analysis of concentrated samples by 1H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume. Composition of a mixture can as a result be determined with very high accuracy (precision and trueness) at the per mille level whatever the concentrations and without hardware modification.

  16. Superconducting Tunnel Junctions for High-Precision EUV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ponce, F.; Carpenter, M. H.; Cantor, R.; Friedrich, S.

    2016-08-01

    We have characterized the photon response of superconducting tunnel junctions in the extreme ultraviolet energy range below 100 eV with a pulsed 355 nm laser. The detectors are operated at rates up to 5000 counts/s, are very linear in energy and have an energy resolution between 0.9 and 2 eV. We observe multiple peaks that correspond to an integer number of photons with a Poissonian probability distribution and that can be used for high-accuracy energy calibration. The uncertainty of the centroid depends on the detector resolution and the counting statistics and can be as low as 1 meV for well-separated peaks with >10^5 counts. We discuss the precision of the peak centroid as a function of detector resolution and total number of counts and the accuracy of the energy calibration.

  17. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Kandylakis, Z.; Karantzalos, K.

    2016-06-01

    In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

  18. Ultra High Precision Laser Monitor for Oxygen Eddy Flux Measurements

    NASA Astrophysics Data System (ADS)

    Nelson, David; Herndon, Scott; McManus, Barry; Roscioli, Rob; Jervis, Dylan; Zahniser, Mark

    2016-04-01

    Atmospheric oxygen provides one of the most powerful tracers to study the carbon cycle through its close interaction with carbon dioxide. Keeling and co-workers demonstrated this at the global scale by using small variations in atmospheric oxygen content to disentangle oceanic and terrestrial carbon sinks. It would be very exciting to apply similar ideas at the ecosystem level to improve our understanding of biosphere-atmosphere exchange and our ability to predict the response of the biosphere and atmosphere to climate change. The eddy covariance technique is perhaps the most effective approach available to quantify the exchange of gases between these spheres. Therefore, eddy covariance flux measurements of oxygen would be extremely valuable. However, this requires a fast response (0.1 seconds), high relative precision (0.001% or 10 per meg) oxygen sensor. We report recent progress in developing such a sensor using a high resolution visible laser to probe the oxygen A-band electronic transition. We have demonstrated precision of 1 ppmv or 5 per meg for a 100 second measurement duration. This sensor will enable oxygen flux measurements using eddy covariance. In addition, we will incorporate a second laser in this instrument to simultaneously determine the fluxes of oxygen, carbon dioxide and water vapor within the same sampling cell. This will provide a direct, real time measurement of the ratio of the flux of oxygen to that of carbon dioxide. This ratio is expected to vary on short time scales and small spatial scales due to the differing stoichiometry of processes producing and consuming carbon dioxide. Thus measuring the variations in the ratio of oxygen and carbon dioxide fluxes will provide mechanistic information to improve our understanding of the crucial exchange of carbon between the atmosphere and biosphere.

  19. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  20. Development of high precision laser measurement to Space Debris and Applications in SHAO

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongping; Chen, Juping; Xiong, Yaoheng; Han, Xingwei

    2016-07-01

    Artificial space debris has become the focus during the space exploration because of producing the damage for the future active spacecrafts and high precision measurement for space debris are required for debris surveillance and collision avoidance. Laser ranging technology is inherently high accurate and will play an important role in precise orbit determination, accurate catalog of space debris. Shanghai Astronomical Observatory (SHAO) of CAS, has been developing the technology of laser measurement to space debris for several years. According to characteristics of laser echoes from space debris and the experiences of relevant activities, high repetition rate, high power laser system and low dark noise APD detector with high quantum efficiency and high transmissivity of narrow bandwidth spectral filter are applied to laser measurement to space debris in SHAO. With these configurations, great achievements of laser measurement to space debris are made with hundreds of passes of laser data from space debris in the distance between 500km and 2500km with Radar Cross Section (RCS) of more than 10 m^{2} to less than 0.5m^{2} at the measuring precision of less than 1m (RMS). For better application of laser ranging technology, Chinese Space Debris Observation network, consisting of Shanghai, Changchun and Kunming station, has been preliminary developed and the coordinated observation has been performed to increase the measuring efficiency for space debris. It is referred from data that laser ranging technology can be as the essential high accuracy measurement technology in the study of space debris.

  1. Capability study for ozone high-precision retrieval with JEM/SMILES

    NASA Astrophysics Data System (ADS)

    Takahashi, Chikako; Suzuki, Makoto; Ochiai, Satoshi; Takayanagi, Masahiro

    One of the most unique characteristics of JEM/SMILES observation is its high sensitivity (500K system noise by employing 4K cooled SIS mixer) in detecting atmospheric limb emission in the submillimeter wave range, which are band A (624.3-625.5 GHz), band B (625.1-626.3 GHz), and band C (649.1-650.3 GHz). It observes limb emission from atmospheric minor constituents in the stratosphere, such as O3 , ClO, HCl, HNO3 , HOCl, CH3 CN, HO2 , BrO, O3 isotopes etc. The JEM/SMILES mission is mainly devoted to studying precise halogen chemistry related to ozone destruction. Spatial coverage is near global, that is the nominal latitude coverage is 38S - 65N owing to tilting the antenna beam to 45 degree left from the direction of orbital motion. It is highly expected that SMILES observation path encounters the atmosphere in the elongated polar voltex toward lower latitude in the northern hemisphere. The sensitivity of SMILES can be utilized for its unique observations, one is the detection of trace species which has never been observed in acceptable precision, and the other is high precision observation of major species such as O3 and HCl. This paper discusses how the ozone high-precision retrieval with the JEM/SMILES can be achieved based on the operational retrieval algorithm. The JEM/SMILES observes ozone absorption line at 625.37GHz in lower observation bands, band A and band B. As the JEM/SMILES is a high sensitive sensor, the high-precision retrieval is expected, the minimum precision of retrieved ozone height profile is 0.5% at about 30km under ideal condition, which is better than existing similar sensors, such as Aura/MLS and Odin/SMR. It is also discussed height resolutions (3.5-4.1 km nominally determined by the instrument) as trade off with precision. Thus these two factors should be decided by a kind of trade-off considering scientific requirements. The information content is used to optimize these factors and we clarify the precision, the height resolution, and

  2. High-precision baseband timing of 15 millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Hotan, A. W.; Bailes, M.; Ord, S. M.

    2006-07-01

    We describe extremely precise timing experiments performed on five solitary and 10 binary millisecond pulsars during the past 3 yr, with the Caltech Parkes Swinburne Recorder (CPSR2) coherent dedispersion system at the Parkes 64-m radio telescope. 12 of our sources have rms timing residuals below 1.5μs and four are below 200ns. The quality of our data allows us to measure eight parallaxes and nine proper motions, from which we conclude that models of galactic electron density still have limited predictive power for individual objects. We derive a mean transverse velocity of 87+31/-14kms-1 for these pulsars, in good agreement with previous authors. We demonstrate that unless multifrequency observations are made, typical variations in dispersion measure (DM) could introduce an additional drift in arrival times of ~1μs per year at 20-cm wavelengths. Our high timing precision means that Shapiro delay can be used to constrain the inclination angles and component masses of all but two of the selected binary systems. The signature of annual orbital parallax is detected in the timing of PSR J0437-4715 and PSR J1713+0747, providing additional geometric constraints. The timing of PSR J1909-3744 is used to demonstrate that the DE405 ephemeris is a better model of the Solar system than the earlier DE200. In addition, we show that pulsar astrometric parameters measured using DE200 and DE405 often differ significantly. In order to use pulsars to search for a cosmological gravitational wave background, it is desirable to time them against each other to eliminate Earth-based time standards. We demonstrate that PSR J1909-3744 can be used as a reference against which we obtain a very small rms residual of 133ns for PSR J1713+0747. Although the gain of the Parkes antenna is small compared to other telescopes involved in precision timing, we obtain some of the lowest rms residuals ever measured, highlighting the importance of good instrumentation such as CPSR2 and good analysis

  3. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  4. Evaluation of High-Precision Sensors in Structural Monitoring

    PubMed Central

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  5. Highly precise and robust packaging of optical components

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Winzen, Matthias; Liermann, Erik; Faidel, Heinrich; Westphalen, Thomas; Miesner, Jörn; Luttmann, Jörg; Hoffmann, Dieter

    2012-03-01

    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements.

  6. Evaluation of high-precision sensors in structural monitoring.

    PubMed

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  7. Evaluation of high-precision sensors in structural monitoring.

    PubMed

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.

  8. Determination of the half-life of 213Fr with high precision

    NASA Astrophysics Data System (ADS)

    Fisichella, M.; Musumarra, A.; Farinon, F.; Nociforo, C.; Del Zoppo, A.; Figuera, P.; La Cognata, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Strano, E.

    2013-07-01

    High-precision measurement of half-life and Qα value of neutral and highly charged α emitters is a major subject of investigation currently. In this framework, we recently pushed half-life measurements of neutral emitters to a precision of a few per mil. This result was achieved by using different techniques and apparatuses at Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) and GSI Darmstadt. Here we report on 213Fr half-life determination [T1/2(213Fr) = 34.14±0.06 s] at INFN-LNS, detailing the measurement protocol used. Direct comparison with the accepted value in the literature shows a discrepancy of more than three sigma. We propose this new value as a reference, discussing previous experiments.

  9. High-precision measurement of pixel positions in a charge-coupled device.

    PubMed

    Shaklan, S; Sharman, M C; Pravdo, S H

    1995-10-10

    The high level of spatial uniformity in modern CCD's makes them excellent devices for astrometric instruments. However, at the level of accuracy envisioned by the more ambitious projects such as the Astrometric Imaging Telescope, current technology produces CCD's with significant pixel registration errors. We describe a technique for making high-precision measurements of relative pixel positions. We measured CCD's manufactured for the Wide Field Planetary Camera II installed in the Hubble Space Telescope. These CCD's are shown to have significant step-and-repeat errors of 0.033 pixel along every 34th row, as well as a 0.003-pixel curvature along 34-pixel stripes. The source of these errors is described. Our experiments achieved a per-pixel accuracy of 0.011 pixel. The ultimate shot-noise limited precision of the method is less than 0.001 pixel.

  10. Pointing Control System for a High Precision Flight Telescope

    SciTech Connect

    BENTLEY,ANTHONY E.; WILCOXEN,JEFFREY LEE

    2000-12-01

    A pointing control system is developed and tested for a flying gimbaled telescope. The two-axis pointing system is capable of sub-microradian pointing stability and high accuracy in the presence of large host vehicle jitter. The telescope also has high agility--it is capable of a 50-degree retarget (in both axes simultaneously) in less than 2 seconds. To achieve the design specifications, high-accuracy, high-resolution, two-speed resolvers were used, resulting in gimbal-angle measurements stable to 1.5 microradians. In addition, on-axis inertial angle displacement sensors were mounted on the telescope to provide host-vehicle jitter cancellation. The inertial angle sensors are accurate to about 100 nanoradians, but do not measure low frequency displacements below 2 Hz. The gimbal command signal includes host-vehicle attitude information, which is band-limited. This provides jitter data below 20 Hz, but includes a variable latency between 15 and 25 milliseconds. One of the most challenging aspects of this design was to combine the inertial-angle-sensor data with the less perfect information in the command signal to achieve maximum jitter reduction. The optimum blending of these two signals, along with the feedback compensation were designed using Quantitative Feedback Theory.

  11. A simple high-precision Jacob's staff design for the high-resolution stratigrapher

    USGS Publications Warehouse

    Elder, W.P.

    1989-01-01

    The new generation of high-resolution stratigraphic research depends upon detailed bed-by-bed analysis to enhance regional correlation potential. The standard Jacob's staff is not an efficient and precise tool for measuring thin-bedded strata. The high-precision Jacob's staff design presented and illustrated in this paper meets the qualifications required of such an instrument. The prototype of this simple design consists of a sliding bracket that holds a Brunton-type compass at right angles to a ruled-off staff. This instrument provides rapid and accurate measurement of both thick- or thin-bedded sequences, thus decreasing field time and increasing stratigraphic precision. -Author

  12. Scientific Temper among Academically High and Low Achieving Adolescent Girls

    ERIC Educational Resources Information Center

    Kour, Sunmeet

    2015-01-01

    The present study was undertaken to compare the scientific temper of high and low achieving adolescent girl students. Random sampling technique was used to draw the sample from various high schools of District Srinagar. The sample for the present study consisted of 120 school going adolescent girls (60 high and 60 low achievers). Data was…

  13. High-precision heliostat for long-path light tracking

    NASA Astrophysics Data System (ADS)

    Hawat, Tom; Stephen, Thomas M.; DeMaziere, Martine M.; Neefs, Eddy

    2003-08-01

    A heliostat has been designed and built for use in optical remote sensing of the atmosphere. The heliostat uses two flat mirrors to track the sun and direct the sunlight to optical instruments. A stepper motor driven horizontal turntable is used to track the sun in azimuth and support an elevation assembly and a mechanical tower. The stepper motor driven elevation assembly drives an acquisition mirror that tracks the sun in elevation. This mirror directs the solar beam to a secondary mirror fixed on the mechanical tower. The secondary mirror then directs the solar beam along the axis of the tracker for use in measurements. A sensitive, high resolution CCD camera, receives a small part of the solar beam to analyze for fine servo-control. Ground based tests have demonstrated this instrument"s tracking capability for the sun, the moon, stars and for long pathlength sources. Presently, this system is coupled with a high-resolution Brucker 120M spectrometer used to obtain solar absorption spectra. The heliostat directs the solar radiation along the spectrometer optical axis. The pointing precision was measured to be better than 0.5 arcsec. A description of the heliostat is presented, as well as the results of ground tests.

  14. A high-precision synchronization circuit for clock distribution

    NASA Astrophysics Data System (ADS)

    Chong, Lu; Hongzhou, Tan; Zhikui, Duan; Yi, Ding

    2015-10-01

    In this paper, a novel structure of a high-precision synchronization circuit, HPSC, using interleaved delay units and a dynamic compensation circuit is proposed. HPSCs are designed for synchronization of clock distribution networks in large-scale integrated circuits, where high-quality clocks are required. The application of a hybrid structure of a coarse delay line and dynamic compensation circuit performs roughly the alignment of the clock signal in two clock cycles, and finishes the fine tuning in the next three clock cycles with the phase error suppressed under 3.8 ps. The proposed circuit is implemented and fabricated using a SMIC 0.13 μm 1P6M process with a supply voltage at 1.2 V. The allowed operation frequency ranges from 200 to 800 MHz, and the duty cycle ranges between [20%, 80%]. The active area of the core circuits is 245 × 134 μm2, and the power consumption is 1.64 mW at 500 MHz.

  15. High precision Wind measurements in the upper Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Schmuelling, F.; Goldstein, J.; Kostiuk, T.; Hewagama, T.; Zipoy, D.

    2000-10-01

    We will present high accuracy measurements of line-of-sight wind velocities in the upper Venus atmosphere and models of the implied global circulation. The measurements were performed using the NASA/GSFC Infrared Heterodyne Spectrometer at the NASA IRTF. Thermospheric altitudes between 100 and 120 km were probed using 12C16O2 solar-pumped, non-thermal emission. The observed signal-to-noise allowed determination of line center frequencies to a precision of 0.1 MHz (1 m/s at 10 μ m). Absolute frequency calibration was possible to better than 0.1 MHz due to the extremely high frequency stability of the Lamb-dip stabilized heterodyne system. The quality of the data together with the instrument stability allowed measurement of line-of-sight wind velocities across the illuminated crescent to 1 m/s. Data were acquired just before and after inferior conjunction in 1990 and 1991. In combination, these two data sets allowed modeling of the global wind field. Modeled horizontal wind velocities will be presented for a sub-solar to anti-solar flow and a zonal retrograde super-rotation.

  16. Silicon avalanche pixel sensor for high precision tracking

    NASA Astrophysics Data System (ADS)

    D'Ascenzo, N.; Marrocchesi, P. S.; Moon, C. S.; Morsani, F.; Ratti, L.; Saveliev, V.; Savoy Navarro, A.; Xie, Q.

    2014-03-01

    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of the large track occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS processes and integration of processing electronics.

  17. High-precision method for submicron-aperture fiber point-diffraction wavefront measurement.

    PubMed

    Wang, Daodang; Xu, Yangbo; Liang, Rongguang; Kong, Ming; Zhao, Jun; Zhang, Baowu; Li, Wei

    2016-04-01

    It is a key issue to measure the point-diffraction wavefront error, which determines the achievable accuracy of point-diffraction interferometer (PDI). A high-precision method based on shearing interferometry is proposed to measure submicron-aperture fiber point-diffraction wavefront with high numerical aperture (NA). To obtain the true shearing point-diffraction wavefront, a double-step calibration method based on three-dimensional coordinate reconstruction and symmetric lateral displacement compensation is proposed to calibrate the geometric aberration in the case of high NA and large lateral wavefront displacement. The calibration can be carried out without any prior knowledge about the system configuration parameters. With the true shearing wavefront, the differential Zernike polynomials fitting method is applied to reconstruct the point-diffraction wavefront. Numerical simulation and experiments have been carried out to demonstrate the accuracy and feasibility of the proposed measurement method, and a good measurement accuracy is achieved. PMID:27137002

  18. High-Precision Distribution of Highly Stable Optical Pulse Trains with 8.8 × 10−19 instability

    PubMed Central

    Ning, B.; Zhang, S. Y.; Hou, D.; Wu, J. T.; Li, Z. B.; Zhao, J. Y.

    2014-01-01

    The high-precision distribution of optical pulse trains via fibre links has had a considerable impact in many fields. In most published work, the accuracy is still fundamentally limited by unavoidable noise sources, such as thermal and shot noise from conventional photodiodes and thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system that uses a highly precise phase detector to obviously reduce the effect of these limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors (OM-PDs) to achieve optical-electrical conversion and phase measurements, thereby suppressing the sources of noise and achieving ultra-high accuracy. The results of a distribution experiment using a 10-km fibre link indicate that our system exhibits a residual instability of 2.0 × 10−15 at1 s and8.8 × 10−19 at 40,000 s and an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 kHz. This low instability and timing jitter make it possible for our system to be used in the distribution of optical-clock signals or in applications that require extremely accurate frequency/time synchronisation. PMID:24870442

  19. Smart and Bored: Are We Failing Our High Achievers?

    ERIC Educational Resources Information Center

    Cleaver, Samantha

    2008-01-01

    Some high achievers are not as easy to engage. Sometimes motivating high achievers is "a matter of being more sensitive to what they are interested in," says Don Ambrose, a professor of education at Rider University in New Jersey. But too often classrooms are not set up for that kind of sensitivity. Research shows that schools are consistently…

  20. Perspectives of High-Achieving Women on Teaching

    ERIC Educational Resources Information Center

    Snodgrass, Helen

    2010-01-01

    High-achieving women are significantly less likely to enter the teaching profession than they were just 40 years ago. Why? While the social and economic reasons for this decline have been well documented in the literature, what is lacking is a discussion with high-achieving women, as they make their first career decisions, about their perceptions…

  1. High precision predictions for exclusive VH production at the LHC

    DOE PAGES

    Li, Ye; Liu, Xiaohui

    2014-06-04

    We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms αnslogm(pvetoT/Q) for Q ~ mV + mH which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading ordermore » calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.« less

  2. Two-dimensional, high flow, precisely controlled monodisperse drop source

    NASA Astrophysics Data System (ADS)

    Dressler, John L.

    1993-03-01

    A versatile acoustically-driven fluid atomizer was designed and operated that creates precise monodisperse sprays by Rayleigh breakup or polydisperse sprays by the acoustic driving of amplitude dependent instabilities. The atomizer forms a cylindrical, conical, or flat (sheet) liquid jet by means of a photofabricated nozzle. The spray pattern and spray volume are altered by changing the nozzle. A piezoelectric driver, constructed to efficiently couple energy to the liquid, modulates the fluid velocity. When operated at low power, the drop generator can produce arrays of monodisperse drops as small as 15 microns in diameter. Operating the piezoelectric driver at high power produces perturbations with sufficient energy to break the liquid jets into drops, with a net increase in surface energy. The resulting drop sizes are influenced by the frequency and amplitude of the driving signal and nozzle size. The spatial distribution of the spray is controlled by the spacing and geometry of the holes in the nozzle plate, the amplitude of the acoustic signal, and the swirl in the fluid manifold. This device is more robust than the typical acoustic drop generator because small drops can be made from large holes, reducing the plugging problem. No air flow is used.

  3. High precision relocation of earthquakes at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Statz-Boyer, P.; Thurber, C.; Pesicek, J.; Prejean, S.

    2009-01-01

    In August 1996, a period of elevated seismicity commenced beneath Iliamna Volcano, Alaska. This activity lasted until early 1997, consisted of over 3000 earthquakes, and was accompanied by elevated emissions of volcanic gases. No eruption occurred and seismicity returned to background levels where it has remained since. We use waveform alignment with bispectrum-verified cross-correlation and double-difference methods to relocate over 2000 earthquakes from 1996 to 2005 with high precision (~ 100??m). The results of this analysis greatly clarify the distribution of seismic activity, revealing distinct features previously hidden by location scatter. A set of linear earthquake clusters diverges upward and southward from the main group of earthquakes. The events in these linear clusters show a clear southward migration with time. We suggest that these earthquakes represent either a response to degassing of the magma body, circulation of fluids due to exsolution from magma or heating of ground water, or possibly the intrusion of new dikes beneath Iliamna's southern flank. In addition, we speculate that the deeper, somewhat diffuse cluster of seismicity near and south of Iliamna's summit indicates the presence of an underlying magma body between about 2 and 4??km depth below sea level, based on similar features found previously at several other Alaskan volcanoes. ?? 2009 Elsevier B.V.

  4. Interferometric apparatus for ultra-high precision displacement measurement

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2004-01-01

    A high-precision heterodyne interferometer measures relative displacement by creating a thermally-insensitive system generally not subject to polarization leakage. By using first and second light beams separated by a small frequency difference (.DELTA.f), beams of light at the first frequency (f.sub.0) are reflected by co-axial mirrors, the first mirror of which has a central aperture through which the light is transmitted to and reflected by the second mirror. Prior to detection, the light beams from the two mirrors are combined with light of the second and slightly different frequency. The combined light beams are separated according to the light from the mirrors. The change in phase (.DELTA..phi.) with respect to the two signals is proportional to the change in distance of Fiducial B by a factor of wavelength (.lambda.) divided by 4.pi. (.DELTA.L=.lambda..DELTA..phi.1/(4.pi.)). In a second embodiment, a polarizing beam splitting system can be used.

  5. Report on APMP supplementary comparison: high precision roundness measurement

    NASA Astrophysics Data System (ADS)

    Buajarern, J.; Naoi, K.; Baker, A.; Zi, X.; Tsai, C.-L.; Eom, T. B.; Leng, T. S.; Kruger, O.

    2016-01-01

    A regional supplementary comparison, APMP.L-S4, was held in 2012 to demonstrate the equivalence of routine calibration services offered by NMIs to clients. Participants in this APMP.L-S4 comparison agreed to apply multi-step method for spidle error separation in order to yield the high precision roundness measurement. Eight laboratories from NMIs participated in this supplementary comparison; NIMT, NMIJ, NMIA, NIM, CMS/ITRI, KRISS, NMC/A*STAR and NMISA. This report describes the measurement results of 2 glass hemispheres and 2 softgauges. The calibrations of this comparison were carried out by participants during the period from March 2012 to May 2013. The results show that there is a degree of equivalence within 0.8 for all measurands. Hence, there is a close agreement between the measurements. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. High-precision impedance spectroscopy: a strategy demonstrated on PZT.

    PubMed

    Boukamp, Bernard A; Blank, Dave H A

    2011-12-01

    Electrochemical impedance spectroscopy (EIS) has been recognized as a very powerful tool for studying charge and mass transport and transfer in a wide variety of electrically or electrochemically active systems. Sophisticated modeling programs make it possible to extract parameters from the impedance data, thus contributing to a better understanding of the system or material properties. For an accurate analysis, a correct modeling function is needed; this is often in the form of an equivalent circuit. It is not always possible to define the modeling function from visual inspection of the impedance dispersion. Small contributions to the overall dispersion can be masked, and hence overlooked. In this publication, a strategy is presented for high-precision impedance data analysis. A Kramers-Kronig test is used for the essential data validation. An iterative process of partial analysis and subtraction assists in deconvoluting the impedance spectrum, yielding both a vi- able model function and a set of necessary starting values for the full complex nonlinear least squares (CNLS) modeling. The advantage and possibilities of this strategy are demonstrated with an analysis of the ionic and electronic conductivity of lead zirconate titanate (PZT) as functions of temperature and oxygen partial pressure. PMID:23443688

  7. High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer

    SciTech Connect

    Kellerbauer, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; Herlert, A.; Schweikhard, L.

    2007-10-15

    The atomic masses of the neutron-deficient radioactive rubidium isotopes {sup 74-77,79,80,83}Rb have been measured with the Penning trap mass spectrometer ISOLTRAP. Using the time-of-flight cyclotron resonance technique, relative mass uncertainties ranging from 1.6x10{sup -8} to 5.6x10{sup -8} were achieved. In all cases, the mass precision was significantly improved as compared with the prior Atomic-Mass Evaluation; no significant deviations from the literature values were observed. The exotic nuclide {sup 74}Rb, with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. The significance of these measurements for a check of the conserved-vector-current hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa matrix is discussed.

  8. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  9. Ultra High Precision Laser Monitor for Oxygen Eddy Flux Measurements

    NASA Astrophysics Data System (ADS)

    Zahniser, M. S.; Nelson, D. D.; Roscioli, J. R.; Herndon, S. C.; McManus, J. B.; Jervis, D.

    2015-12-01

    Atmospheric oxygen provides one of the most powerful tracers to study the carbon cycle through its close interaction with carbon dioxide. Keeling and co-workers demonstrated this at the global scale by using small variations in atmospheric oxygen content to disentangle oceanic and terrestrial carbon sinks. It would be very exciting to apply similar ideas at the ecosystem level to improve our understanding of biosphere-atmosphere exchange and our ability to predict the response of the biosphere and atmosphere to climate change. The eddy covariance technique is perhaps the most effective approach available to quantify the exchange of gases between these spheres. Therefore, eddy covariance flux measurements of oxygen would be extremely valuable. However, this requires a fast response (0.1 seconds), high relative precision (0.001% or 10 per meg) oxygen sensor. We report recent progress in developing such a sensor using a high resolution visible laser to probe the oxygen A-band electronic transition. This sensor will enable oxygen flux measurements using eddy covariance. In addition, we will incorporate a second laser in this instrument to simultaneously determine the fluxes of oxygen, carbon dioxide and water vapor within the same sampling cell. This will provide a direct, real time measurement of the ratio of the flux of oxygen to that of carbon dioxide. This ratio is expected to vary on short time scales and small spatial scales due to the differing stoichiometry of processes producing and consuming carbon dioxide. Thus measuring the variations in the ratio of oxygen and carbon dioxide fluxes will provide mechanistic information to improve our understanding of the crucial exchange of carbon between the atmosphere and biosphere.

  10. Highly precise digital image stabilization scheme for a hybrid stabilizing system

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyung; Byun, Keun-Yung; Ko, Sung-Jea

    2010-07-01

    We propose a highly precise digital image stabilization (DIS) scheme for a hybrid stabilizing system. The stabilizing system adopts a hybrid method of using both optical image stabilization (OIS) and DIS. In the stabilizing system, OIS prestabilizes the original unstable image using gyro-sensors, and the resultant image obtained from OIS is post-stabilized using DIS to remove the residual jitters less than one pixel. The proposed DIS, which is newly designed using control-grid interpolation, can remove not only translational jitters but also rotational ones simultaneously. Experimental results show that the proposed hybrid image stabilizer achieves considerable performance improvement against conventional stabilization techniques.

  11. High-precision reflectometry of multilayer coatings for extreme ultraviolet lithography

    SciTech Connect

    Wedowski, M; Underwood, J H; Gullikson, E M; Bajt, S; Folta, J A; Kearney, P A; Montcalm, C; Spiller, E

    1999-12-29

    Synchrotron-based reflectometry is an important technique for the precise determination of optical properties of reflective multilayer coatings for Extreme Ultraviolet Lithography (EUVL). Multilayer coatings enable normal incidence reflectances of more than 65% in the wavelength range between 11 and 15 nm. In order to achieve high resolution and throughput of EUVL systems, stringent requirements not only apply to their mechanical and optical layout, but also apply to the optical properties of the multilayer coatings. Therefore, multilayer deposition on near-normal incidence optical surfaces of projection optics, condenser optics and reflective masks requires suitable high-precision metrology. Most important, due to their small bandpass on the order of only 0.5 nm, all reflective multilayer coatings in EUVL systems must be wavelength-matched to within {+-}0.05 nm. In some cases, a gradient of the coating thickness is necessary for wavelength matching at variable average angle of incidence in different locations on the optical surfaces. Furthermore, in order to preserve the geometrical figure of the optical substrates, reflective multilayer coatings need to be uniform to within 0.01 nm in their center wavelength. This requirement can only be fulfilled with suitable metrology, which provides a precision of a fraction of this value. In addition, for the detailed understanding and the further development of reflective multilayer coatings a precision in the determination of peak reflectances is desirable on the order of 0.1%. Substrates up to 200 mm in diameter and 15 kg in mass need to be accommodated. Above requirements are fulfilled at beamline 6.3.2 of the Advanced Light Source (ALS) in Berkeley. This beamline proved to be precise within 0.2% (ms) for reflectance and 0.002 nm (rms) for wavelength.

  12. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  13. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  14. Test-Taking Strategies of High and Low Mathematics Achievers

    ERIC Educational Resources Information Center

    Hong, Eunsook; Sas, Maggie; Sas, John C.

    2006-01-01

    The authors explored test-preparation and test-taking strategies that high school students used in algebra tests. From a pool of high school students (N = 156), 61 students participated in interviews, and of those interviewed, 26 represented those who were high achieving as well as highly interested in mathematics (n = 15) vs. those who were low…

  15. High-precision measurement of chlorine stable isotope ratios

    USGS Publications Warehouse

    Long, A.; Eastoe, C.J.; Kaufmann, R.S.; Martin, J.G.; Wirt, L.; Finley, J.B.

    1993-01-01

    We present an analysis procedure that allows stable isotopes of chlorine to be analyzed with precision sufficient for geological and hydrological studies. The total analytical precision is ?????0.09%., and the present known range of chloride in the surface and near-surface environment is 3.5???. As Cl- is essentially nonreactive in natural aquatic environments, it is a conservative tracer and its ??37Cl is also conservative. Thus, the ??37Cl parameter is valuable for quantitative evaluation of mixing of different sources of chloride in brines and aquifers. ?? 1993.

  16. A Comparison of three high-precision quadrature schemes

    SciTech Connect

    Bailey, David H.; Li, Xiaoye S.

    2003-07-01

    The authors have implemented three numerical quadrature schemes, using the new Arbitrary Precision (ARPREC) software package, with the objective of seeking a completely ''automatic'' arbitrary precision quadrature facility, namely one that does not rely on a priori information of the function to be integrated. Such a facility is required, for example, to permit the experimental identification of definite integrals based on their numerical values. The performance and accuracy of these three quadrature schemes are compared using a suite of 15 integrals, ranging from continuous, well-behaved functions on finite intervals to functions with vertical derivatives and integrable singularities at endpoints, as well as several integrals on an infinite interval.

  17. High precision, high sensitivity distributed displacement and temperature measurements using OFDR-based phase tracking

    NASA Astrophysics Data System (ADS)

    Gifford, Dawn K.; Froggatt, Mark E.; Kreger, Stephen T.

    2011-05-01

    Optical Frequency Domain Reflectometry is used to measure distributed displacement and temperature change with very high sensitivity and precision by measuring the phase change of an optical fiber sensor as a function of distance with high spatial resolution and accuracy. A fiber containing semi-continuous Bragg gratings was used as the sensor. The effective length change, or displacement, in the fiber caused by small temperature changes was measured as a function of distance with a precision of 2.4 nm and a spatial resolution of 1.5 mm. The temperature changes calculated from this displacement were measured with precision of 0.001 C with an effective sensor gauge length of 12 cm. These results demonstrate that the method employed of continuously tracking the phase change along the length of the fiber sensor enables high resolution distributed measurements that can be used to detect very small displacements, temperature changes, or strains.

  18. Effectiveness of High Schools in Australia: Holding Power and Achievement.

    ERIC Educational Resources Information Center

    Ainley, John; Sheret, Michael

    High schools in Australia are increasingly expected to be effective in holding students at school to year 12 as well as in promoting achievement. Analysis of quantitative data gathered as part of a longitudinal study of 22 New South Wales (Australia) schools shows that schools differ in their holding power as well as in the achievement levels of…

  19. Tracking and Detracking: High Achievers in Massachusetts Middle Schools

    ERIC Educational Resources Information Center

    Loveless, Tom

    2009-01-01

    This study examines tracking--the practice of grouping students into separate classes or courses based on their prior academic achievement--at the middle-school level, and the percentage of high-achieving students in tracked and untracked schools. It focuses on Massachusetts, a leader in "reforming" tracking, and the changes that have…

  20. Some Correlates of High School Foreign Language Achievement.

    ERIC Educational Resources Information Center

    Beanblossom, Gary F.

    This paper investigates the influences of traditional kinds of verbal and quantitative achievement and aptitude variables on high school foreign language achievement, as measured by Modern Language Association and University of Washington tests of language skills administered to entering college students. The report focuses on: (1) the sample and…

  1. Biculturalism and Academic Achievement of African American High School Students

    ERIC Educational Resources Information Center

    Rust, Jonathan P.; Jackson, Margo A.; Ponterotto, Joseph G.; Blumberg, Fran C.

    2011-01-01

    Biculturalism was examined as a factor that may positively affect the academic achievement of African American high school students, beyond cultural identity and self-esteem. Hierarchical regression analyses determined that cultural identity and academic self-esteem were important factors for academic achievement, but not biculturalism.…

  2. Mobility and Student Achievement in High Poverty Schools

    ERIC Educational Resources Information Center

    Dalton, Janet Denise

    2013-01-01

    Student mobility is an issue for high poverty schools in the shadow of increased rigor and accountability for student performance. Whereas mobility is not a sole cause for poor achievement, it is a contributing factor for students in poverty who are already considered to be at risk of low achievement. Student mobility creates a hardship for…

  3. High Precision Assembly of Thin Mirror X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Schattenburg, Mark

    Lightweight high resolution x-ray telescope optics are one of the key technologies under development for next-generation x-ray telescopes. The ultimate goal of this effort is to realize optics with spatial resolution rivaling Chandra (<1 arc-sec) but with collecting areas that are larger by orders of magnitude. In the USA several institutions, including GSFC, MSFC, Harvard-SAO, MIT and Northwest University are working on a variety of approaches to this problem. An excellent example is the NuSTAR x-ray telescope, which teamed Cal Tech, GSFC, Columbia University and LLNL to produce a superb set of hard x-ray optics. The telescope was composed of thousands of 0.2 mm-thick glass mirrors which were epoxied into place around a spindle structure. While very light weight, this process resulted in ~1 arc min resolution. We want to achieve ~100 times better with similar mass. A group at NASA GSFC has recently demonstrated an alternative thin-glass assembly procedure that has achieved ~7 arc sec resolution with x-ray tests. Further progress towards 1 arc-sec will require mirrors with improved figure, lower stress coatings, improved alignment, better metrology, and low stress bonding. Many of the difficulties with current mirror assembly practice stem from the use of epoxy as a bonding agent. Epoxy has many disadvantages, including high shrinkage, large CTE and creep, resin aging effects, water absorption, outgassing, low tensile strength, exothermicity, and requiring large amounts of time and/or heat to cure. These effects can cause errors that become â€oefrozen in― to the bond with no possibility of correction. We propose to investigate replacing epoxy with low temperature, low shrinkage solder alloys. We use these solders in conjunction with high power, millisec-long pulses from a fiber IR laser to deliver controlled amounts of heat into the bond area. We have demonstrated that laser pulses can be used to actuate carefully designed bonds by permanently compressing

  4. Development and Validation of High Precision Thermal, Mechanical, and Optical Models for the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles

    2006-01-01

    SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.

  5. Attitudes and Opinions from the Nation's High Achieving Teens: 29th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report presents the 1998 statistical findings of the annual survey to determine the attitudes of national high school student leaders. Questionnaires were completed by 3,123 high school juniors and seniors, all of whom were selected for recognition in "Who's Who among American High School Students." In addition to demographic information, the…

  6. Design and realization of high precision FBG rain gauge based on triangle cantilever beam and its performance research

    NASA Astrophysics Data System (ADS)

    Lan, Ruo-ming; Cao, Yu-qiang

    2015-05-01

    A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system construct this novel FBG rain gauge. Sensing principle of this FBG rain gauge is explained in detail, and its theoretical calculation model is also established, which shows that the relationship between center wavelength of sensitive FBG and external rainfall has very good linearity. To verify its detection performance, the calibration experiment on one prototype of this FBG rain gauge is carried out. After experiment data analysis, the detection precision of this FBG rain gauge is 15.4 μm which is almost two orders of magnitude higher than that of the existing rainfall measurement device. The experimental data confirm that this FBG rain gauge can achieve rainfall measurement with high precision.

  7. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Hanfeng, Lv; Dingjie, Wang; Yanqing, Hou; Jie, Wu

    2015-07-01

    Low-latency high-rate (1 Hz) precise real-time kinematic (RTK) can be applied in high-speed scenarios such as aircraft automatic landing, precise agriculture and intelligent vehicle. The classic synchronous RTK (SRTK) precise differential GNSS (DGNSS) positioning technology, however, is not able to obtain a low-latency high-rate output for the rover receiver because of long data link transmission time delays (DLTTD) from the reference receiver. To overcome the long DLTTD, this paper proposes an asynchronous real-time kinematic (ARTK) method using asynchronous observations from two receivers. The asynchronous observation model (AOM) is developed based on undifferenced carrier phase observation equations of the two receivers at different epochs with short baseline. The ephemeris error and atmosphere delay are the possible main error sources on positioning accuracy in this model, and they are analyzed theoretically. In a short DLTTD and during a period of quiet ionosphere activity, the main error sources decreasing positioning accuracy are satellite orbital errors: the "inverted ephemeris error" and the integration of satellite velocity error which increase linearly along with DLTTD. The cycle slip of asynchronous double-differencing carrier phase is detected by TurboEdit method and repaired by the additional ambiguity parameter method. The AOM can deal with synchronous observation model (SOM) and achieve precise positioning solution with synchronous observations as well, since the SOM is only a specific case of AOM. The proposed method not only can reduce the cost of data collection and transmission, but can also support the mobile phone network data link transfer mode for the data of the reference receiver. This method can avoid data synchronizing process besides ambiguity initialization step, which is very convenient for real-time navigation of vehicles. The static and kinematic experiment results show that this method achieves 20 Hz or even higher rate output in

  8. Precision Teaching in the High School Classroom: A Commentary

    ERIC Educational Resources Information Center

    Brophy, Jere E.

    1978-01-01

    In a review of Breuning's study of conventional vs. precision teaching (TM 503 458), Brophy praises the research design used. However, the interpretation and reporting of Breuning's data are questioned. The effects of instructional method have been confused with the effects of incentive manipulation. The practicality and ethical justification are…

  9. The "Renaissance Child": High Achievement and Gender in Late Modernity

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky

    2012-01-01

    This paper draws on the concept of the "Renaissance Child" to illustrate the ways in which gender influences the opportunities and possibilities of high-achieving pupils. Using data from a study of 12-13-year high-achieving boys and girls based in schools in England, the paper considers the ways in which a group of popular boys was able to show an…

  10. Diode Laser-based Sensor for High Precision Measurements of Ambient CO2

    NASA Astrophysics Data System (ADS)

    Sonnenfroh, D. M.; Parameswaran, K.; Varner, R.

    2008-12-01

    We report on the development of a new, high precision sensor for monitoring ambient CO2. This economical, robust, autonomous CO2 sensor is intended for widespread deployment in networks. We have developed a tunable diode laser-based absorption spectrometer, operating at a wavelength of 2 "Ým, which utilizes Integrated Cavity Output Spectroscopy (ICOS) to create an optical pathlength of 60 m in a physical pathlength of 20 cm. The sensor also uses Wavelength Modulation Spectroscopy for high sensitivity detection. We have achieved a precision of better than 1 part in 3000 for the dry air mixing ratio of CO2 for a 1 minute averaging period. The sensor design ensures a measurement cell having a small sample volume, which decreases the consumption of calibration gases. We also use an integrated dedicated microprocessor-based controller and signal processing electronics to achieve a small footprint. The sensor measures 20 x 43 x 56 cm and weighs 15 kg. The prototype was demonstrated at the University of New Hampshire's Atmospheric Observatory at Thompson Farm, in Durham, NH during June and July 2008. It was successfully intercompared with an NDIR sensor and operated automatically around the clock for 6 weeks. It was also intercompared with the NOAA NDIR sensor at the Boulder Atmospheric Observatory in Erie, CO in September 2008.

  11. Attitudes and Opinions from the Nation's High Achieving Teens: 27th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 27th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,370 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1996 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  12. Attitudes and Opinions from the Nation's High Achieving Teens: 28th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 28th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,210 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1997 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  13. Preliminary design approach for large high precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  14. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  15. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  16. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  17. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems

    NASA Astrophysics Data System (ADS)

    Aßmann, S.; Frank, C.; Körtzinger, A.

    2011-10-01

    Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH - a key variable of the seawater carbon system - is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox) since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a~new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunity and is applicable to the open ocean as well as to coastal waters with a complex matrix and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C) using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min-1 with a precision of ±0.0007 pH units, an average offset of +0.0005 pH units to a reference system, and an offset of +0.0081 pH units to a certified standard buffer. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding of the marine carbon system.

  18. Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision.

    PubMed

    Ranganathan, Gayathri N; Koester, Helmut J

    2010-09-01

    Activity in populations of neurons is essential for cortical function including signaling of information and signal transport. Previous methods have made advances in recording activity from many neurons but have both technical and analytical limitations. Here we present an optical method, dithered random-access functional calcium imaging, to record somatic calcium signals from up to 100 neurons, in vitro and in vivo. We further developed a maximum-likelihood deconvolution algorithm to detect spikes and precise spike timings from the recorded calcium fluorescence signals. Spike detection efficiency and spike timing detection was determined in acute slices of juvenile mice. The results indicate that the combination of the two methods detected precise spiking activity from unbiased and spatially distributed populations of neurons in acute slices with high efficiency of spike detection (>97%), low rate of false positives (0.0023 spikes/s), and high temporal precision. The results further indicate that there is only a small window of excitation intensities where high spike detection can be achieved consistently.

  19. Attitudes and Opinions from the Nation's High Achieving Teens. 25th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted during the spring of 1994 for the purpose of determining the attitudes of student leaders in the nation's high schools. Eight thousand surveys were sent out to students, of which 3177 were returned. All students surveyed were members of the junior or senior class during the 1993-94 academic year. They were selected for…

  20. Highly precise stabilization of intracavity prism-based Er:fiber frequency comb using optical-microwave phase detector.

    PubMed

    Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye

    2014-11-15

    In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.

  1. Student Achievement for Whom? High-Performing and Still "Playing the Game," the Meaning of School Achievement among High Achieving African American Students

    ERIC Educational Resources Information Center

    Wiggan, Greg

    2014-01-01

    The preponderance of the research on African American students has generally focused on issues of school failure and underperformance. While the literature on high achieving Black students is sparse, very little is known about these students' school experiences and the meanings that they assign to achievement. Using student-based inquiry…

  2. High School Employment and Academic Achievement: A Note for Educators

    ERIC Educational Resources Information Center

    Keister, Mary; Hall, Joshua

    2010-01-01

    Educators are often in a position to affect student decisions to work during the school term. This study reviews and summarizes the literature on the effect that employment during high school has on academic achievement. The available evidence suggests that part-time jobs for high school students are beneficial as long as the number of hours…

  3. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  4. Brain Hemisphericity and Mathematics Achievement of High School Students

    ERIC Educational Resources Information Center

    Fernandez, Sanny F.

    2011-01-01

    This study aimed to find out the brain hemisphericity and mathematics achievement of high school students. The respondents of the study were the 168 first year high school students of Colegio de San Jose, during school year 2010-2011 who were chosen through stratified random sampling. The descriptive and interview methods of research were used in…

  5. A new approach to high precision phase measurement interferometry

    NASA Astrophysics Data System (ADS)

    Balasubramanian, N.; Debell, G. W.

    1980-01-01

    A description is presented of a phase measuring interferometer system which represents a unique approach to the extraction and analysis of wavefront data from the interferometer output. In contrast to fringe pattern analysis systems, the digitally based instrument described is a direct phase measuring interferometer system which is capable of providing a graphical representation of both the sign and magnitude of the phase distribution across the test wavefront. Attention is given to basic theory, the instrument measurement head, the 8080-based computer used as a processor, system performance specifications, measurement precision and accuracy, and measurement capabilities.

  6. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    SciTech Connect

    d'Enterria, David; Skands, Peter Z.

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  7. A High Precision Method for Quantitative Measurements of Reactive Oxygen Species in Frozen Biopsies

    PubMed Central

    Lindgren, Mikael; Gustafsson, Håkan

    2014-01-01

    Objective An electron paramagnetic resonance (EPR) technique using the spin probe cyclic hydroxylamine 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) was introduced as a versatile method for high precision quantification of reactive oxygen species, including the superoxide radical in frozen biological samples such as cell suspensions, blood or biopsies. Materials and Methods Loss of measurement precision and accuracy due to variations in sample size and shape were minimized by assembling the sample in a well-defined volume. Measurement was carried out at low temperature (150 K) using a nitrogen flow Dewar. The signal intensity was measured from the EPR 1st derivative amplitude, and related to a sample, 3-carboxy-proxyl (CP•) with known spin concentration. Results The absolute spin concentration could be quantified with a precision and accuracy better than ±10 µM (k = 1). The spin concentration of samples stored at −80°C could be reproduced after 6 months of storage well within the same error estimate. Conclusion The absolute spin concentration in wet biological samples such as biopsies, water solutions and cell cultures could be quantified with higher precision and accuracy than normally achievable using common techniques such as flat cells, tissue cells and various capillary tubes. In addition; biological samples could be collected and stored for future incubation with spin probe, and also further stored up to at least six months before EPR analysis, without loss of signal intensity. This opens for the possibility to store and transport incubated biological samples with known accuracy of the spin concentration over time. PMID:24603936

  8. High-precision analysis of SF6 at ambient level

    NASA Astrophysics Data System (ADS)

    Lim, J. S.; Moon, D. M.; Kim, J. S.; Yun, W.-T.; Lee, J.

    2013-09-01

    This work reports on the development of a technique for the precise analysis of ambient SF6. This technique, which involves a gas chromatograph/electron capture detector (GC-ECD) coupled with an Activated Alumina-F1 (AA-F1) column, performed well in the measurements, particularly in terms of accuracy, which complies with the World Meteorological Organization (WMO)-recommended compatibility of 0.02 ppt. Compared to the Porapak Q technique, we observed a sharper peak shape for the SF6 stream, which substantiates the improvement in the analytical precision. The traceability to the WMO scale was tested by calibrating the GC-ECD/AA-F1 analyser using five SF6 standards provided by the WMO/Global Atmosphere Watch (GAW) Central Calibration Laboratory (CCL) for SF6 (NOAA, United States of America). After calibration by various methods, the GC-ECD/AA-F1 accurately estimated the mole fraction of SF6 in the working standard prepared by the World Calibration Centre for SF6 operated by the Korea Meteorological Administration (KMA)/Korea Research Institute of Standards and Science (KRISS). Among the calibration methods, the two-point calibration method emerged to be the most economical procedure in terms of the data quality and measurement time. It was found that the KRISS scale of SF6/N2 was biased by 0.13 ppt when compared to the WMO scale of SF6/air; this bias is probably due to a different matrix.

  9. Note: high precision angle generator using multiple ultrasonic motors and a self-calibratable encoder.

    PubMed

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong

    2011-11-01

    We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error.

  10. High precision mapping of kidney stones using μ-IR spectroscopy to determine urinary lithogenesis.

    PubMed

    Blanco, Francisco; Ortiz-Alías, Pilar; López-Mesas, Montserrat; Valiente, Manuel

    2015-06-01

    Evolution of urinary lithiasis is determined by the metabolism and life-style of the related patient. The appropriate classification of the stone is mandatory for the identification of the lithogenic process. In this study, cros-sections from a single stone of each of the most frequent urolithiasis types (calcium oxalate mono and dihydrate and carbonate apatite) have been selected and imaged using IR microspectroscopy. Moreover, the use of high definition sFTIR (synchrotron source) has revealed hidden information to the conventional FTIR. This work has demonstrated that minor components become key factors on the description of the stages of stone formation. Intensity map for COM (1630 cm(-1) peak). The high spatial definition achieved is key for the precise description of the kidney stone history.

  11. Precision high-value resistance scaling with a two-terminal cryogenic current comparator

    NASA Astrophysics Data System (ADS)

    Hernandez-Marquez, F. L.; Bierzychudek, M. E.; Jones, G. R.; Elmquist, R. E.

    2014-04-01

    We describe a cryogenic two-terminal high-resistance bridge and its application in precision resistance scaling from the quantized Hall resistance (QHR) at RH = RK/2 = 12 906.4035 Ω to decade resistance standards with values between 1 MΩ and 1 GΩ. The design minimizes lead resistance errors with multiterminal connections to the QHR device. A single variable voltage source and resistive ratio windings are utilized to achieve excellent dynamic stability, which is not readily obtained in low-current measurements with conventional cryogenic current comparators (CCCs). Prototypes of this bridge have been verified by a successful international comparison of high-resistance scaling using two-terminal CCCs in the national metrology institutes of Argentina, Mexico, and the United States.

  12. An Online Gravity Modeling Method Applied for High Precision Free-INS.

    PubMed

    Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao

    2016-01-01

    For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS. PMID:27669261

  13. Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges

    NASA Astrophysics Data System (ADS)

    Shan, Guanqiao; Li, Yingzi; Zhang, Liwen; Wang, Zhenyu; Zhang, Yingxu; Qian, Jianqiang

    2015-10-01

    Recent interest in high-precision positioning stages with large travel ranges has sparked renewed attention to the development of voice coil motors (VCMs). Due to their large output force, VCMs can actuate more complicated flexure structures, eliminate rail friction, and improve positioning speed. The VCM structure is both compact and flexible; hence, it is convenient to design VCMs for a variety of stage structures. Furthermore, VCMs combined with other actuators are able to achieve large travel ranges with high precision. In this paper, we summarize the principles and control methods of a typical VCM, and we analyze its properties, including thrust force, acceleration, and response time. We then present recent research on high-precision VCM positioning stages with large travel ranges.

  14. Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges.

    PubMed

    Shan, Guanqiao; Li, Yingzi; Zhang, Liwen; Wang, Zhenyu; Zhang, Yingxu; Qian, Jianqiang

    2015-10-01

    Recent interest in high-precision positioning stages with large travel ranges has sparked renewed attention to the development of voice coil motors (VCMs). Due to their large output force, VCMs can actuate more complicated flexure structures, eliminate rail friction, and improve positioning speed. The VCM structure is both compact and flexible; hence, it is convenient to design VCMs for a variety of stage structures. Furthermore, VCMs combined with other actuators are able to achieve large travel ranges with high precision. In this paper, we summarize the principles and control methods of a typical VCM, and we analyze its properties, including thrust force, acceleration, and response time. We then present recent research on high-precision VCM positioning stages with large travel ranges.

  15. Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges.

    PubMed

    Shan, Guanqiao; Li, Yingzi; Zhang, Liwen; Wang, Zhenyu; Zhang, Yingxu; Qian, Jianqiang

    2015-10-01

    Recent interest in high-precision positioning stages with large travel ranges has sparked renewed attention to the development of voice coil motors (VCMs). Due to their large output force, VCMs can actuate more complicated flexure structures, eliminate rail friction, and improve positioning speed. The VCM structure is both compact and flexible; hence, it is convenient to design VCMs for a variety of stage structures. Furthermore, VCMs combined with other actuators are able to achieve large travel ranges with high precision. In this paper, we summarize the principles and control methods of a typical VCM, and we analyze its properties, including thrust force, acceleration, and response time. We then present recent research on high-precision VCM positioning stages with large travel ranges. PMID:26520932

  16. High Precision Cosmology with the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Farhang, Marzieh

    In this thesis we investigate the two cosmic epochs of inflation and recombination, through their imprints on the temperature and polarization anisotropies of the cosmic microwave background radiation. To probe the early universe we develop a map-based maximum-likelihood estimator to measure the amplitude of inflation-induced gravity waves, parametrized by r, from the cosmic microwave background (CMB) polarization maps. Being optimal by construction, the estimator avoids E-B mixing, a possible source of contamination in the tiny B-mode detection, the target of many current and near future CMB experiments. We explore the leakage from the E- to the B-mode of polarization by using this estimator to study the linear response of the B-mode signal at different scales to variations in the E- mode power. Similarly, for various observational cases, we probe the dependence of r measurement on the signal from different scales of E and B polarization. The estimator is used to make forecasts for Spider-like and Planck-like experimental specifications and to investigate the sky-coverage optimization of the Spider-like case. We compare the forecast errors on r to the results from a similar multipole-based estimator which, by ignoring the mode-mixing, sets a lower limit on the achievable error on r. We find that an experiment with Spider-like specifications with fsky ˜ 0:02--0:2 could place a 2sigma r ≈ 0:014 bound (˜ 95% CL), which rises to 0:02 with an ℓ-dependent foreground residual left over from an assumed efficient component separation. For the Planck-like survey, a Galaxy-masked ( fsky = 0:75) sky would give 2sigmar ≈ 0:015, rising to ≈ 0:05 with the foreground residuals. We also use a novel information-based framework to compare how different generations of CMB experiments reveal information about the early universe, through their measurements of r. We also probe the epoch of recombination by investigating possible fluctuations in the free electron fraction Xe

  17. An Analysis of High School Mathematics Achievement and English Language Arts Achievement as Predictors of Science Achievement

    ERIC Educational Resources Information Center

    Edwards, Anthony C.

    2012-01-01

    Science assessments require students to read and comprehend questions and to solve mathematical problems. The purpose of this study is to determine whether the following variables can be used to predict science achievement: English language arts achievement, mathematics achievement, socioeconomic status (SES), limited English proficiency (LEP)…

  18. High-Precision Dispensing of Nanoliter Biofluids on Glass Pedestal Arrays for Ultrasensitive Biomolecule Detection.

    PubMed

    Chen, Xiaoxiao; Liu, Yang; Xu, QianFeng; Zhu, Jing; Poget, Sébastien F; Lyons, Alan M

    2016-05-01

    Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 μL) on isolated hydrophilic glass pedestals (500 μm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence

  19. A high precision, compact electromechanical ground rotation sensor.

    PubMed

    Dergachev, V; DeSalvo, R; Asadoor, M; Bhawal, A; Gong, P; Kim, C; Lottarini, A; Minenkov, Y; Murphy, C; O'Toole, A; Peña Arellano, F E; Rodionov, A V; Shaner, M; Sobacchi, E

    2014-05-01

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10⁻¹¹ m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10⁻⁹ rad/√Hz at 10 mHz and 6.4 × 10⁻¹⁰ rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality. PMID:24880388

  20. Decade-Spanning High-Precision Terahertz Frequency Comb

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Good, Jacob T.; Holland, Daniel B.; Carroll, P. Brandon; Allodi, Marco A.; Blake, Geoffrey A.

    2015-04-01

    The generation and detection of a decade-spanning terahertz (THz) frequency comb is reported using two Ti:sapphire femtosecond laser oscillators and asynchronous optical sampling THz time-domain spectroscopy. The comb extends from 0.15 to 2.4 THz, with a tooth spacing of 80 MHz, a linewidth of 3.7 kHz, and a fractional precision of 1.8 ×10-9 . With time-domain detection of the comb, we measure three transitions of water vapor at 10 mTorr between 1-2 THz with an average Doppler-limited fractional accuracy of 6.1 ×10-8 . Significant improvements in bandwidth, resolution, and sensitivity are possible with existing technologies.

  1. A high precision, compact electromechanical ground rotation sensor

    SciTech Connect

    Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; and others

    2014-05-15

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10{sup −11}m/√( Hz ). We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10{sup −9} rad /√( Hz ) at 10 mHz and 6.4 × 10{sup −10} rad /√( Hz ) at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  2. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  3. HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES

    SciTech Connect

    Konopacky, Q. M.; Ghez, A. M.; McLean, I. S.; Barman, T. S.; Rice, E. L.; Bailey, J. I.; White, R. J.; Duchene, G. E-mail: ghez@astro.ucla.ed E-mail: barman@lowell.ed E-mail: white@chara.gsu.ed

    2010-03-10

    We present the results of a three year monitoring program of a sample of very low mass (VLM) field binaries using both astrometric and spectroscopic data obtained in conjunction with the laser guide star adaptive optics system on the W. M. Keck II 10 m telescope. Among the 24 systems studied, 15 have undergone sufficient orbital motion, allowing us to derive their relative orbital parameters and hence their total system mass. These measurements more than double the number of mass measurements for VLM objects, and include the most precise mass measurement to date (<2%). Among the 11 systems with both astrometric and spectroscopic measurements, six have sufficient radial velocity variations to allow us to obtain individual component masses. This is the first derivation of the component masses for five of these systems. Altogether, the orbital solutions of these low mass systems show a correlation between eccentricity and orbital period, consistent with their higher mass counterparts. In our primary analysis, we find that there are systematic discrepancies between our dynamical mass measurements and the predictions of theoretical evolutionary models (TUCSON and LYON) with both models either underpredicting or overpredicting the most precisely determined dynamical masses. These discrepancies are a function of spectral type, with late-M through mid-L systems tending to have their masses underpredicted, while one T-type system has its mass overpredicted. These discrepancies imply that either the temperatures predicted by evolutionary and atmosphere models are inconsistent for an object of a given mass, or the mass-radius relationship or cooling timescales predicted by the evolutionary models are incorrect. If these spectral-type trends are correct and hold into the planetary mass regime, the implication is that the masses of directly imaged extrasolar planets are overpredicted by the evolutionary models.

  4. High-precision determination of iron oxidation state in silicate glasses using XANES

    SciTech Connect

    Cottrell, Elizabeth; Kelley, Katherine A.; Lanzirotti, Antonio; Fischer, Rebecca A.

    2009-11-04

    Fe K-edge X-ray absorption near-edge structure (XANES) and Moessbauer spectra were collected on natural basaltic glasses equilibrated over a range of oxygen fugacity (QFM - 3.5 to QFM + 4.5). The basalt compositions and fO{sub 2} conditions were chosen to bracket the natural range of redox conditions expected for basalts from mid-ocean ridge, ocean island, back-arc basin, and arc settings, in order to develop a high-precision calibration for the determination of Fe{sup 3+}/{Sigma}Fe in natural basalts. The pre-edge centroid energy, corresponding to the 1s {yields} 3d transition, was determined to be the most robust proxy for Fe oxidation state, affording significant advantages compared to the use of other spectral features. A second-order polynomial models the correlation between the centroid and Fe{sup 3+}/{Sigma}Fe, yielding a precision of {+-} 0.0045 in Fe{sup 3+}/{Sigma}Fe for glasses with Fe{sup 3+}/{Sigma}Fe > 8%, which is comparable to the precision of wet chemistry. This high precision relies on a Si (311) monochromator to better define the Fe{sup 2+} and Fe{sup 3+} transitions, accurate and robust modeling of the pre-edge feature, dense fO{sub 2}-coverage and compositional appropriateness of reference glasses, and application of a non-linear drift correction. Through re-analysis of the reference glasses across three synchrotron beam sessions, we show that the quoted precision can be achieved (i.e., analyses are reproducible) across multiple synchrotron beam sessions, even when spectral collection conditions (detector parameters or sample geometry) change. Rhyolitic glasses were also analyzed and yield a higher centroid energy at a given Fe{sup 3+}/{Sigma}Fe than basalts, implying that major variations in melt structure affect the relationship between centroid position and Fe{sup 3+}/{Sigma}Fe, and that separate calibrations are needed for the determination of oxidation state in basalts and rhyolites.

  5. HIGH-PRECISION ASTROMETRIC MILLIMETER VERY LONG BASELINE INTERFEROMETRY USING A NEW METHOD FOR ATMOSPHERIC CALIBRATION

    SciTech Connect

    Rioja, M.; Dodson, R.

    2011-04-15

    We describe a new method which achieves high-precision very long baseline interferometry (VLBI) astrometry in observations at millimeter (mm) wavelengths. It combines fast frequency-switching observations, to correct for the dominant non-dispersive tropospheric fluctuations, with slow source-switching observations, for the remaining ionospheric dispersive terms. We call this method source-frequency phase referencing. Provided that the switching cycles match the properties of the propagation media, one can recover the source astrometry. We present an analytic description of the two-step calibration strategy, along with an error analysis to characterize its performance. Also, we provide observational demonstrations of a successful application with observations using the Very Long Baseline Array at 86 GHz of the pairs of sources 3C274 and 3C273 and 1308+326 and 1308+328 under various conditions. We conclude that this method is widely applicable to mm-VLBI observations of many target sources, and unique in providing bona fide astrometrically registered images and high-precision relative astrometric measurements in mm-VLBI using existing and newly built instruments, including space VLBI.

  6. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications.

    PubMed

    Subramaniam, E T; Jain, Mamta; Bhowmik, R K; Tripon, Michel

    2008-10-01

    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2(")x0.51(")) and exhibiting excellent integral nonlinearity (< or = +/-2 mV or +/-0.02% full scale reading) and differential nonlinearity (< or = +/-1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance. PMID:19044710

  7. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Subramaniam, E. T.; Jain, Mamta; Bhowmik, R. K.; Tripon, Michel

    2008-10-01

    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2″×0.51″) and exhibiting excellent integral nonlinearity (≤±2 mV or ±0.02% full scale reading) and differential nonlinearity (≤±1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.

  8. Behind the High Achievement of East Asian Students.

    ERIC Educational Resources Information Center

    Leung, Frederick K. S.

    2002-01-01

    Studied reasons for the high achievement students from Hong Kong, Japan, South Korea, and Singapore on the Third International Mathematics and Science Study (TIMSS). Questionnaire data provided by students participating show that the superior results of these students may have come at the expense of other aspects of student development. Results…

  9. Progress Lags in High School, Especially for Advanced Achievers

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2012

    2012-01-01

    This report by the Center on Education Policy (CEP), an independent nonprofit organization, examines trends in the achievement of high school students on the state reading/English language arts (ELA) and mathematics tests used for accountability under the No Child Left Behind Act (NCLB). This study confirms that there is reason for concern about…

  10. Learning Environment, Motivation, and Achievement in High School Science.

    ERIC Educational Resources Information Center

    Nolen, Susan Bobbitt

    2003-01-01

    Examines the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement. Discusses the focus of shared perceptions and instruction and indicates that shared perceptions focused on understanding and independent thinking positively predicted students'…

  11. High Achieving Girls in Mathematics: What's Wrong with Working Hard?

    ERIC Educational Resources Information Center

    Howe, Ann C.; Berenson, Sarah B.

    2003-01-01

    The participation of women in graduate studies and mathematics-related careers remains a social and economic problem in the United States. Part of a larger study to understand this lack of participation, here we present preliminary findings of girls who are high achievers in middle grades mathematics. This interpretive study documents girls'…

  12. Relationship between High School Leadership Team Practices and Student Achievement

    ERIC Educational Resources Information Center

    McInnis, Timothy M.

    2009-01-01

    This study investigated if a relationship existed between student achievement in 10th grade Missouri Assessment Program mathematics and 11th grade communication arts scores in 2007 and high school leadership team perceptions of the extent to which they demonstrated leadership practices. The secondary purpose was to compare perceptional…

  13. Improving Student Achievement in Today's High Schools: What Works.

    ERIC Educational Resources Information Center

    Shields, Marie S.

    This paper is based on a study of two high schools in Maine that achieved outstanding and consistent gains in English, math, and science over a 5-year period. Three strands of inquiry were used for the study: surveys, interviews, and observations. A multiple-perspective approach was used to integrate the information so as to evaluate the…

  14. Mercer Middle School Case Study: High Science and Math Achievement

    ERIC Educational Resources Information Center

    Washington State Board of Education, 2010

    2010-01-01

    To spotlight effective practices, the Washington State Board of Education (SBE) is highlighting schools that are closing achievement gaps and performing at high levels. In 2009, the SBE partnered with the Office of Superintendent of Public Instruction (OSPI) to create the Washington Accountability Index. The Index is a new way to measure schools'…

  15. Supplementary Education: The Hidden Curriculum of High Academic Achievement

    ERIC Educational Resources Information Center

    Gordon, Edmund W., Ed.; Bridglall, Beatrice L., Ed.; Meroe, Aundra Saa, Ed.

    2004-01-01

    In this book, the editors argue that while access to schools that enable and expect academic achievement is a necessary ingredient for the education of students, schools alone may not be sufficient to ensure universally high levels of academic development. Supplemental educational experiences may also be needed. The idea of supplementary education…

  16. Analysis of Three High-Achieving Young Adolescent Girls

    ERIC Educational Resources Information Center

    Lim, Jae Hoon; Chae, Jeong-Lim; Schinck-Mikel, Amelie G.; Watson, Jimmy

    2013-01-01

    This paper presents an in-depth cross-case analysis of three high-achieving young adolescent girls who had contrasting mathematics learning experiences during the first year of middle school. In particular, this study examines the foundation for their motivation, as well as the dominant mode of learning and academic engagement in relation to three…

  17. Test Score Decline Among High Achievers: Policy Implications.

    ERIC Educational Resources Information Center

    Goldman, Jerrold; Hsia, Jayjia

    Since 1967, the mean Scholastic Aptitude Test (SAT) score has declined. Likewise, the numbers of candidates receiving high SAT scores have been decreasing steadily. The same downward trend in student achievement can be seen among student groups from grade 4 through post graduate studies. In recent years, policy has been directed towards making…

  18. Student Achievement through the Development of Complete High School Culture

    ERIC Educational Resources Information Center

    Lamphere, Michael Frederick, Jr.

    2012-01-01

    This dissertation undertook an investigation of school culture and achievement in the high school setting. The national data set ELS:2002 was used as the pool of variables because it allows for a complete picture of school culture comprising students, parents, administrators, and teachers. The data were selected based on current literature and…

  19. The High Trust Classroom: Raising Achievement from the Inside Out

    ERIC Educational Resources Information Center

    Moore, Lonnie

    2009-01-01

    This book provides a roadmap to developing a high-trust classroom, a classroom: (1) With increased student achievement; (2) With few discipline problems; (3) Where students are intrinsically motivated; and (4) Where the teacher can confidently use creative lesson planning. The author presents a simple step by step approach to earning the trust of…

  20. Self-Esteem and Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Moradi Sheykhjan, Tohid; Jabari, Kamran; Rajeswari, K.

    2014-01-01

    The primary purpose of this study was to determine the influence of self-esteem on academic achievement among high school students in Miandoab City of Iran. The methodology of the research is descriptive and correlation that descriptive and inferential statistics were used to analyze the data. Statistical Society includes male and female high…

  1. The research of the high precision universal stable reconnaissance platform in near space

    NASA Astrophysics Data System (ADS)

    Yang, Hong-tao; Cao, Jian-zhong; Fan, Zhe-yuan; Chen, Wei-ning

    2011-08-01

    The appliance of military was recognized more and more ,It is important that pod can bear the weight of the availability payload achieve the observation to the earth in 20km-100km area and work in the all-weather. The stable platform can load high imaging spectrometer, the thermal infrared imager, the infrared radiometer, the millimeter waves radar, the laser weapon and so on,in order to realize reconnaissance and attacking integrative and warning the long-distant missile. The stabilization accuracy of platform is prior to 20μrad and burden heavy load to the best of one's abilities. It used high precision velocity and acceleration gyroscope to fulfill the stabilization of the platform. Light-weight design by using new composite material and optimizing design. It was adapt to the near space environment better by structure design and simulation analysis.Enhance its basic frequency and sure the rigid of the frame platform .In addition, the structure of platform apply the two-axis and four-frame and use the method of FEA to fulfill the optimum design in order to attain the object of light-weight.In consider to the precision of the platform I establish the math model and make use of the monte carlo method to appraise and analysis the error that affect the precision of the platform. After emulating by the software of the Matlab to verify the results. It is apply the method that link the platform and aerocraft by mounting the no angular displacement shock absorbers on the elevator mechanism. This kind of design insulate the angular vibration and minish the linear vibration to ensure the image quality.

  2. New approach to high-precision Fourier transform spectrometer design

    NASA Astrophysics Data System (ADS)

    Brault, James W.

    1996-06-01

    Laser fringes have long been used to establish the x axis in interferometric spectrometry, but solutions for the intensity axis have been less satisfactory. Now we are seeing the rapid commercial development of low-cost, medium-speed, sigma-delta analog-to-digital converters developed for stereo audio applications. A single chip provides two channels of 20-bit precision at 50 kHz, a significant improvement over many current systems of much greater cost and complexity. But while the laser works in the spatial domain, this converter operates strictly in the time domain; it cannot be triggered. I have developed a bridge between these two domains, the adaptive digital filter, which not only permits us to use this converter to obtain measurements at arbitrary times but as a bonus shows us how to move much of the complexity of an interferometric-control and data-acquisition system from hardware to software. For example, flexible fringe subdivision (to increase the free spectral range) is easily obtained with a simple and efficient algorithm, completely free of laser ghosts. Compensation for drive velocity variation is also possible, requiring only a modest increase in computer memory.

  3. High-speed precision weighing of pharmaceutical capsules

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2009-11-01

    In this paper, we present a cost-effective method for fast and accurate in-line weighing of hard gelatin capsules based on the optimized capacitance sensor and real-time processing of the capsule capacitance profile resulting from 5000 capacitance measurements per second. First, the effect of the shape and size of the capacitive sensor on the sensitivity and stability of the measurements was investigated in order to optimize the performance of the system. The method was tested on two types of hard gelatin capsules weighing from 50 mg to 650 mg. The results showed that the capacitance profile was exceptionally well correlated with the capsule weight with the correlation coefficient exceeding 0.999. The mean precision of the measurements was in the range from 1 mg to 3 mg, depending on the size of the capsule and was significantly lower than the 5% weight tolerances usually used by the pharmaceutical industry. Therefore, the method was found feasible for weighing pharmaceutical hard gelatin capsules as long as certain conditions are met regarding the capsule fill properties and environment stability. The proposed measurement system can be calibrated by using only two or three sets of capsules with known weight. However, for most applications it is sufficient to use only empty and nominally filled capsules for calibration. Finally, a practical application of the proposed method showed that a single system is capable of weighing around 75 000 capsules per hour, while using multiple systems could easily increase the inspection rate to meet almost any requirements.

  4. High precision Hugoniot measurements of D2 near maximum compression

    NASA Astrophysics Data System (ADS)

    Benage, John; Knudson, Marcus; Desjarlais, Michael

    2015-11-01

    The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. High-precision timeline for Earth's most severe extinction.

    PubMed

    Burgess, Seth D; Bowring, Samuel; Shen, Shu-zhong

    2014-03-01

    The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms. PMID:24516148

  6. Composite-light-pulse technique for high-precision atom interferometry.

    PubMed

    Berg, P; Abend, S; Tackmann, G; Schubert, C; Giese, E; Schleich, W P; Narducci, F A; Ertmer, W; Rasel, E M

    2015-02-13

    We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120  nrad s(-1) Hz(-1/2) and determine the Earth's rotation rate with a relative uncertainty of 1.2%. PMID:25723216

  7. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    SciTech Connect

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  8. High-precision calculation of the strange nucleon electromagnetic form factors

    SciTech Connect

    Green, Jeremy; Meinel, Stefan; Engelhardt, Michael G.; Krieg, Stefan; Laeuchli, Jesse; Negele, John W.; Orginos, Kostas; Pochinsky, Andrew; Syritsyn, Sergey

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  9. High-precision follow-up observations of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Ramanjooloo, Yudish; Tholen, David J.; Fohring, Dora; Hung, Denise

    2016-10-01

    We present the latest results of ongoing high-precision astrometric follow-up observations of Near-Earth Objects (NEOs) using the University of Hawaii 2.24 metre telescope (currently 7.5 arcmin FOV), the Canada-France-Hawaii Telescope (CFHT; 1 degree FOV) with MegaPrime, and the Subaru Hyper Suprime-Cam (1.5 degree FOV). The combination of excellent observing conditions at Maunakea, and the use of no filter to maximise our throughput efficiency, allows us to recover targets having V < 24, and sometimes V < 25 under ideal conditions. We frequently achieve astrometric accuracy limited by the reference catalog and plan to improve on this capability with the implementation of the GAIA catalog. This work is funded by NASA grant NXX13AI64G.

  10. Miniaturized high-precision piezo driven two axes stepper goniometer.

    PubMed

    Zhong, H; Schwarz, A; Wiesendanger, R

    2014-04-01

    A miniaturized inertial stepper goniometer with two orthogonal axes (θ and φ axes) has been realized using four shear piezo based actuators arranged in a tetrahedral configuration tangent with a polished sapphire spherical rotor. The measured sensitivity is about 11.5 microdegree (μ°) per Volt. The smallest angular step size, achieved with a minimal peak-to-peak voltage Upp of 200 V is about 0.6 millidegree (m°). The crosstalk between both axes is below 10%. Our specific design is used to accurately position a glass fiber, but the concept can be utilized for many different applications as well.

  11. High precision titanium isotope measurements on geological samples by high resolution MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Leya, Ingo; Schönbächler, Maria; Wiechert, Uwe; Krähenbühl, Urs; Halliday, Alex N.

    2007-05-01

    A method has been developed for the precise and reproducible measurement of Ti isotopes in natural materials using high resolution MC-ICPMS. Instrumental mass fractionation is internally corrected using 49Ti/47Ti. Replicate measurements of synthetic standard solutions, terrestrial rocks, and the carbonaceous chondrite Allende yield a long-term reproducibility (2[sigma]) of 0.28[var epsilon], 0.34[var epsilon], and 0.28[var epsilon] for 50Ti/47Ti, 48Ti/47Ti, and 46Ti/47Ti, respectively. Isobaric interferences from 46,48Ca+, 50V+, 50Cr+, and doubly charged Zr can be corrected for reliably in separated Ti solutions with Ca/Ti < 5, V/Ti < 0.3, Cr/Ti < 0.2, and Zr/Ti < 1, respectively. Such elemental ratios are achieved easily in most samples using the anion-exchange procedure presented. Single and double charged polyatomic ions can either be resolved, e.g., 14N36Ar+, or do not compromise the measurements. The method has been successfully applied to terrestrial rocks, meteorites, and various mineral separates. Terrestrial samples and standards agree within analytical uncertainties but are consistently different from the recommended values of Niederer et al. [F.R. Niederer, D.A. Papanastassiou, G.J. Wasserburg, Geochim. Cosmochim. Acta 45 (1981) 1017] with the largest effect on 50Ti/47Ti. The new results provide evidence that the recommended terrestrial 50Ti/47Ti is not well constrained; our data are higher by ~13[var epsilon] than the recommended value. Better agreement is found with the values recommended by Heydegger et al. [H.R. Heydegger, J.J. Foster, W. Compston, Earth Planet. Sci. Lett. 58 (1982) 406]. Our best estimate for the isotopic composition of terrestrial Ti (relative to 49Ti/47Ti = 0.749766) is: 50Ti/47Ti = 0.73010, 48Ti/47Ti = 10.06884, and 46Ti/47Ti = 1.09325. This corresponds to an atomic weight of 47.877, significantly different from the value of 47.867 recommended by IUPAC. A 50Ti/47Ti anomaly for bulk Allende of 3.37 ± 0.51[var epsilon] is found

  12. Learning environment, motivation, and achievement in high school science

    NASA Astrophysics Data System (ADS)

    Bobbitt Nolen, Susan

    2003-04-01

    In a study of the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement, 377 students in 22 introductory science classrooms completed surveys in the fall and spring of their ninth-grade year. Hierarchical linear regression was used to model the effects of variables at both the classroom and individual level simultaneously. High intraclass agreement (indicated by high parameter reliability) on all classroom environment measures indicated that students shared perceptions of the classroom learning environment. Controlling for other factors, shared perceptions that only the most able could succeed in science classrooms and that instruction was fast-paced and focused on correct answers negatively predicted science achievement, as measured on a districtwide curriculum-linked test. Shared perceptions that classrooms focused on understanding and independent thinking positively predicted students' self-reported satisfaction with learning. Implications of these results for both teaching and research into classroom environments are discussed.

  13. Non-contact profiling for high precision fast asphere topology measurement

    NASA Astrophysics Data System (ADS)

    Petter, Jürgen; Berger, Gernot

    2013-04-01

    Quality control in the fabrication of high precision optics these days needs nanometer accuracy. However, the fast growing number of optics with complex aspheric shapes demands an adapted measurement method as existing metrology systems more and more reach their limits. In this contribution the authors present a unique and highly flexible approach for measuring spheric and aspheric optics with diameters from 2mm up to 420mm and with almost unlimited spheric departures. Based on a scanning point interferometer the system combines the high precision and the speed of an optical interferometer with the high form flexibility of a classical tactile scanning system. This enables the measurement of objects with steep or strongly changing slopes such as "pancake" or "gull wing" objects. The high accuracy of ±50nm over the whole surface is achieved by using a full reference concept ensuring the position control even over long scanning paths. The core of the technology is a multiwavelength interferometer (MWLI); by use of several wavelengths this sensor system allows for the measurement of objects with polished as well as with ground surfaces. Furthermore, a large absolute measurement range facilitates measuring surfaces with steps or discontinuities like diffractive structures or even segmented objects. As all the measurements can be done using one and the same system, a direct comparison is possible during production and after finishing an object. The contribution gives an insight into the functionality of the MWLI-sensor as well as into the concept of the reference system of the scanning metrology system. Furthermore, samples of application are discussed.

  14. High precision pulsed selective laser sintering of metallic powders

    NASA Astrophysics Data System (ADS)

    Fischer, Pascal; Romano, Valerio; Blatter, Andreas; Weber, Heinz P.

    2005-06-01

    The generative process of selective laser sintering of powders such as Titanium, Platinum alloys and steel can in comparison to cw radiation significantly be improved by using pulsed radiation. With an appropriate energy deposition in the metallic powder layer, the material properties of the selective laser sintered parts can locally be tailored to the requirements of the finished work piece. By adapting the laser parameters of a Q-switched Nd:YAG laser, notably pulse duration and local intensity, the degree of porosity, density and even the crystalline microstructure can be controlled. Pulsed interaction allows minimizing the average power needed for consolidation of the metallic powder, and leads to less residual thermal stresses. With laser post processing, the surface can achieve bulk-like density. Furthermore, we present the possibility of forming metallic glass components by sintering amorphous metallic powders.

  15. High-Precision Diagnosis of Malfunctioning Apparatus allowed by Serendipity

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2010-02-01

    ``An electric brake has a resistance of 376 ohms and operates at 90 volts. If the only supply available is 115 volts, show how the brake can still be made to work.'' The preceding exercise is the theoretical counterpart of a practical problem involving a platform elevator for the physically-challenged. The elevator brake had been inoperable for a considerable period due to an intractable ambiguity, even after two independent technicians working together had established that some components might have been installed improperly. It so happened that the author was on handfootnotetextnote: during a visit to the educational institution concerned. and he suggested an experimental approach for a remedy that could be checked if some standard equipment were provided. Once this item was located, his testing confirmed the viability of the proposed remedy, resulting in a prompt repair and a much-needed return to service. This good outcome was achieved by integrating theory and practice to produce maximum synergy. )

  16. High channel count and high precision channel spacing multi-wavelength laser array for future PICs

    NASA Astrophysics Data System (ADS)

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H.; Qiu, Bocang

    2014-12-01

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of +/-0.20 nm, corresponding to a tolerance of +/-0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%.

  17. First high-precision differential abundance analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Yong, David; Ramírez, Ivan; Asplund, Martin

    2016-02-01

    Context. Studies of extremely metal-poor stars indicate that chemical abundance ratios [X/Fe] have a root mean square scatter as low as 0.05 dex (12%). It remains unclear whether this reflects observational uncertainties or intrinsic astrophysical scatter arising from physical conditions in the interstellar medium at early times. Aims: We measure differential chemical abundance ratios in extremely metal-poor stars to investigate the limits of precision and to understand whether cosmic scatter or observational errors are dominant. Methods: We used high-resolution (R ~ 95 000) and high signal-to-noise (S/N = 700 at 5000 Å) HIRES/Keck spectra to determine high-precision differential abundances between two extremely metal-poor stars through a line-by-line differential approach. We determined stellar parameters for the star G64-37 with respect to the standard star G64-12. We performed EW measurements for the two stars for the lines recognized in both stars and performed spectral synthesis to study the carbon abundances. Results: The differential approach allowed us to obtain errors of σ(Teff) = 27 K, σ(log g) = 0.06 dex, σ( [Fe/H] ) = 0.02 dex and σ(vt) = 0.06 km s-1. We estimated relative chemical abundances with a precision as low as σ([X/Fe]) ≈ 0.01 dex. The small uncertainties demonstrate that there are genuine abundance differences larger than the measurement errors. The observed Li difference cannot be explained by the difference in mass because the less massive star has more Li. Conclusions: It is possible to achieve an abundance precision around ≈ 0.01-0.05 dex for extremely metal-poor stars, which opens new windows on the study of the early chemical evolution of the Galaxy. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A67

  18. Parent Involvement Practices of High-Achieving Elementary Science Students

    NASA Astrophysics Data System (ADS)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  19. A novel power source for high-precision, highly efficient micro w-EDM

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-07-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance-capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts.

  20. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Reiners, Ansgar

    2012-09-01

    The most frequently used standard light sources for spectroscopic high precision wavelength calibration are hollow cathode lamps. These lamps, however, do not provide homogeneous line distribution and intensities. Particularly in the infrared, the number of useful lines is severely limited and the spectrum is contaminated by lines of the filler gas. With the goal of achieving sub m/s stability in the infrared, as required for detecting earthlike extra-solar planets, we are developing two passively stabilized Fabry-Perot interferometers for the red visible (600-1050nm) and near infrared wavelength regions (900-1350nm). Each of the two interferometers can produce ~15,000 lines of nearly constant brightness. The Fabry-Perot interferometers aim at a RV calibration precision of 10cm/s and are optimized in line shape and spacing for the infrared planet hunting CARMENES spectrograph that is currently being built for the Calar Alto 3.5m telescope. Here we present the first results of our work.

  1. High precision optical cavity length and width measurements using double modulation.

    PubMed

    Staley, A; Hoak, D; Effler, A; Izumi, K; Dwyer, S; Kawabe, K; King, E J; Rakhmanov, M; Savage, R L; Sigg, D

    2015-07-27

    We use doubly phase modulated light to measure both the length and the linewidth of an optical resonator with high precision. The first modulation is at RF frequencies and is set near a multiple of the free spectral range, whereas the second modulation is at audio frequencies to eliminate offset errors at DC. The light in transmission or in reflection of the optical resonator is demodulated while sweeping the RF frequency over the optical resonance. We derive expressions for the demodulated power in transmission, and show that the zero crossings of the demodulated signal in transmission serve as a precise measure of the cavity linewidth at half maximum intensity. We demonstrate the technique on two resonant cavities, with lengths 16 m and a 4 km, and achieve an absolute length accuracy as low as 70 ppb. The cavity width for the 16 m cavity was determined with an accuracy of approximately 6000 ppm. Through an analysis of the systematic errors we show that this result could be substantially improved with the reduction of technical sources of uncertainty. PMID:26367601

  2. Models for High Precision Spacecraft and Planetary and Lunar Ephemerides

    NASA Astrophysics Data System (ADS)

    Standish, E. M.; Williams, J. G.

    2006-08-01

    The accuracies of the observational data fit by ephemerides are expected to increase by a full order of magnitude in the near future. Spacecraft ranging should improve from the present 1-meter level to perhaps 10 cm; directional measurements (VLBI, VLBA, etc.) will be accurate to 0.1 milliarcseconds or less; and Lunar Laser Ranging measurements will be taken near the 1 mm level. For such measurements to be fit by the ephemerides, a number of modeling improvements will be required for the ephemeris creation process. For the planetary ephemerides, it will be necessary to consider that many planets have distinct satellites (as opposed to being modeled with their barycenter); the perturbations of more than the just the present 300 asteroids must be considered, as well as some of the largest Kuiper belt objects; and the effect of the media through which the electromagnetic signals travel must be more accurately calibrated, possibly using dual or even triple frequency ranging. For the lunar ephemeris, many physical and observational features must be considered and further refined: thermal expansion of the retroreflectors, a possible lunar inner core, decrease of the solar mass, refined movements of the telescopes and retroreflectors. These are in addition to the presently accounted-for features: computation of the lunar librations; nonspherical gravitational fields of the moon, earth, and sun; earth and moon tidal effects; separate modeling of the rotating lunar mantle and fluid core; atmospheric time-delays depending on pressure, temperature, and humidity at the telescope; and relativistic effects upon each station's clock, position, and light-time. The lunar and planetary integration program is necessarily done now in quadruple precision. Relativity for the point-mass motions is complete through order 1/c**2; the need for the next order must be studied. Once the modeling does justice to the accuracies of the upcoming observations, a number of interesting tests will be

  3. A demonstration of high precision GPS orbit determination for geodetic applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Border, J. S.

    1987-01-01

    High precision orbit determination of Global Positioning System (GPS) satellites is a key requirement for GPS-based precise geodetic measurements and precise low-earth orbiter tracking, currently under study at JPL. Different strategies for orbit determination have been explored at JPL with data from a 1985 GPS field experiment. The most successful strategy uses multi-day arcs for orbit determination and includes fine tuning of spacecraft solar pressure coefficients and station zenith tropospheric delays using the GPS data. Average rms orbit repeatability values for 5 of the GPS satellites are 1.0, 1.2, and 1.7 m in altitude, cross-track, and down-track componenets when two independent 5-day fits are compared. Orbit predictions up to 24 hours outside the multi-day arcs agree within 4 m of independent solutions obtained with well tracked satellites in the prediction interval. Baseline repeatability improves with multi-day as compared to single-day arc orbit solutions. When tropospheric delay fluctuations are modeled with process noise, significant additional improvement in baseline repeatability is achieved. For a 246-km baseline, with 6-day arc solutions for GPS orbits, baseline repeatability is 2 parts in 100 million (0.4-0.6 cm) for east, north, and length components and 8 parts in 100 million for the vertical component. For 1314 and 1509 km baselines with the same orbits, baseline repeatability is 2 parts in 100 million for the north components (2-3 cm) and 4 parts in 100 million or better for east, length, and vertical components.

  4. [Research on a novel high-precision methane concentration detection system].

    PubMed

    Song, Lin-li; Zhou, Han-chang; Zhang, Zhi-jie

    2014-12-01

    In the gas concentration detection process using the characteristic spectrum absorption method, in order to improve the detection accuracy of the gas concentration, it often has to use the high-quality narrowband modulated laser and modulate wavelength to align with the characteristic absorption peaks of measured gas. But by this way, the cost of the laser and system requirements will be greatly increased. To use the existing portable, low-cost semiconductor laser conditions, at the same time it can obtain higher precision, conversion window differential absorption optical structure and the algorithm of differential characteristic absorption ratio was designed. Selection reason of position of the wavelength characteristic was analyzed, and steps to implement the processing algorithm were given. Systematically utilizing the combination method of conversion window and absorption gas chamber, by the method for calculating the ratio of the light intensity response, the light intensity from non-characteristic absorption peak position was divided out. So it achieved a similar detecting effect was achieved that used a narrow-band laser aligned to the feature absorption peak position. Experiments adopted MW-IR-1650 infrared laser, type SSM17-2 stepper motor control module, C30659 infrared detectors, and other devices. In the experiments, different concentrations of methane gas were tested, and experimental results show that the relative error of measurement was less than 2.0% within the range from 200 to 5000 ppm. In summary, it's proved that the system has high accuracy and stability.

  5. The Will to Achieve: A Phenomenological Study of the Experiences of African American High Achieving Students and Their Parents

    ERIC Educational Resources Information Center

    Spencer, Natalie Faye

    2012-01-01

    The purpose of this research study was to understand the experiences of high achieving African American students and their parents. The experiences of high achieving African American students and their parents have been missing from literature on the academic achievement of African American students. Much of the literature that has been published…

  6. High precision global positioning system for mining applications

    SciTech Connect

    O`Grady, M.

    1997-12-01

    The author discusses today`s satellite technology that has lead to the development of a system that will increase safety and production in surface mining. The Department of Defense is maintaining a satellite system made up of 24 NavStar satellites that allow the use of their frequencies to position equipment anywhere on Earth. The previous satellite system was called the Transit system or Sat-Nav. It consisted of low-orbit satellites (not many up there) that ground-based receivers needed three days of logged data to process sub-meter accuracy positions. With the NavStar network of satellites, centimeter accuracy can be achieved within just a few minutes. Changes to the way one used to survey in the mining industry are being replaced with the Global Positioning System. It has proven to be a system that is more accurate and after the typical learning curve that is required by any new system, will lead to higher productivity; hence, financial rewards are in the immediate future.

  7. A miniaturized, high flux BEC source for precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Herr, Waldemar; Rudolph, Jan; Popp, Manuel; Rasel, Ernst; Quantus Collaboration

    2013-05-01

    Atom chips have proven to be excellent sources for the fast production of ultra-cold gases due to their outstanding performance in evaporative cooling. However, the total number of atoms has previously been limited by the small volume of their magnetic traps. To overcome this restriction, we have developed a novel loading scheme that allows us to produce Bose-Einstein condensates of a few 105 87Rb atoms every two seconds. The apparatus is designed to be operated in microgravity at the drop tower in Bremen, where even higher numbers of atoms can be achieved in the absence of any gravitational sag. Using the drop tower's catapult mode, our setup will perform atom interferometry during nine seconds in free fall. Thus, the fast loading scheme allows for interferometer sequences of up to seven seconds - interrogation times which are inaccessible for ground based devices. The QUANTUS project is supported by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number DLR 50WM1131. Leibniz Universitaet Hannover, Universitaet Bremen, HU Berlin, Universitaet Hamburg, Universitaet Ulm, TU Darmstadt, MPQ-Garching.

  8. Achieving High Performance on the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1998-01-01

    The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.

  9. X-Lase CoreScriber, Picosecond Fiber Laser Tool for High-Precision Scribing and Cutting of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Kivistö, S.; Amberla, T.; Konnunaho, T.; Kangastupa, J.; Sillanpää, J.

    We have developed various industrial transparent material scribing processes and a laser tool, picosecond MHz-range all- fiber laser X-Lase CoreScriber. The remarkably high peak power, exceptionally good beam quality, and integrability of the X-Lase CoreScriber combined with high achievable material processing speeds provide tempting solutions for high- precision glass processing. Here presented sapphire and Gorilla glass dicing processes are based on transparent material internal modification with short and intense high repetition rate ps-laser pulses. Increased processing speeds and cutting qualities in comparison to other conventional processing methods are presented.

  10. High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers.

    PubMed

    Wong, Ten It; Han, Shan; Wu, Lin; Wang, Yi; Deng, Jie; Tan, Christina Yuan Ling; Bai, Ping; Loke, Yee Chong; Yang, Xin Da; Tse, Man Siu; Ng, Sum Huan; Zhou, Xiaodong

    2013-06-21

    Fluorescence excitation enhancement by plasmonic nanostructures such as gold nanohole arrays has been a hot topic in biosensing and bioimaging in recent years. However, the high throughput and high yield fabrication of precisely designed metal nanostructures for optimized fluorescence excitation remains a challenge. Our work is the first report combining nanopattern nickel mould fabrication and UV imprinting for gold nanostructure mass fabrication in high yield. We report our successful gold nanohole array mass fabrication on a 4'' glass wafer, by first fabricating a high fidelity nickel mould, then using the mould for UV nanoimprinting on a polymer coated on the glass, evaporating the gold film on the glass wafer, and lifting off the polymer to obtain a gold nanohole array on the glass. Our optimized process for wafer fabrication can achieve almost 100% yield from nanoimprinting to gold lift-off, while the fabricated nickel mould has >70% defect-free area with the rest having a few scattered defects. In our work, the size and pitch of the gold nanohole array are designed to enhance the fluorescent dye Alexa 647. When the fabricated gold nanohole array is used for prostate specific antigen (PSA) detection by establishing a sandwiched fluorescence assay on the gold surface, a detection limit of 100 pg ml(-1) is achieved, while with a same thickness of gold film, only 1 ng ml(-1) is detected. PMID:23645079

  11. Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics.

    PubMed

    Lee, You-Jin; Schade, Nicholas B; Sun, Li; Fan, Jonathan A; Bae, Doo Ri; Mariscal, Marcelo M; Lee, Gaehang; Capasso, Federico; Sacanna, Stefano; Manoharan, Vinothan N; Yi, Gi-Ra

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes.

  12. Development of a High Precision Body Surface Electrocardiogram

    NASA Astrophysics Data System (ADS)

    Inui, Shigeru; Toyosu, Yasushi; Akutagawa, Masatake; Kinouchi, Yosuke

    In the 12-lead electrocardiograph currently being used general medical practice, electrodes are positioned at 6 locations in the chest region and the cardiac potential is measured. This research increases the number of electrode to 124 at evenly-spaced intervals over the body surface of the chest, side and back. The commonly used band elimination filter is not used as a countermeasure for exclusion of the noise from such electrodes, and a body surface electrocardiograph has been developed that makes it possible to perform high-speed sampling of the cardiac potential at 80-100 times the conventional rate. From the sampling data obtained with high spatial resolution, maps and animations of the body surface potential distribution are created and displayed from the 1dimension waveform as well as from the 2dimensions/3dimensions waveforms.

  13. Spectral band passes for a high precision satellite sounder.

    PubMed

    Kaplan, L D; Chahine, M T; Susskind, J; Searl, J E

    1977-02-01

    Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-microm band of CO(2) by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-microm region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.

  14. A high-precision pulse-width modulator source.

    SciTech Connect

    Lenkszus, F.; Laird, R.

    1999-09-30

    A novel high-resolution pulse-width modulator (PWM) is being developed for a new digital regulator for the Advanced Photon Source power converters. The circuit features 82-ps setability over an 80-{micro}s range. Our application requires a 50-{micro}s fill-scale range; therefore the 82-ps setability is equivalent to better than 19 bits. The circuit is presently implemented as a VME module and is an integral part of the digital regulator prototype. The design concept and performance results will be presented.

  15. Combination spindle-drive system for high precision machining

    DOEpatents

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  16. High speed precision motion strategies for lightweight structures

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1987-01-01

    Work during the recording period proceeded along the lines of the proposal, i.e., three aspects of high speed motion planning and control of flexible structures were explored: fine motion control, gross motion planning and control, and automation using light weight arms. In addition, modeling the large manipulator arm to be used in experiments and theory has lead to some contributions in that area. These aspects are reported below. Conference, workshop and journal submissions, and presentations related to this work were seven in number, and are listed. Copies of written papers and abstracts are included.

  17. A high-precision mechanical absolute-rotation sensor.

    PubMed

    Venkateswara, Krishna; Hagedorn, Charles A; Turner, Matthew D; Arp, Trevor; Gundlach, Jens H

    2014-01-01

    We have developed a mechanical absolute-rotation sensor capable of resolving ground rotation angle of less than 1 nrad/√Hz above 30 mHz and 0.2 nrad/√Hz above 100 mHz about a single horizontal axis. The device consists of a meter-scale beam balance, suspended by a pair of flexures, with a resonance frequency of 10.8 mHz. The center of mass is located 3 μm above the pivot, giving an excellent horizontal displacement rejection of better than 3 × 10(-5) rad/m. The angle of the beam is read out optically using a high-sensitivity autocollimator. We have also built a tiltmeter with better than 1 nrad/√Hz sensitivity above 30 mHz. Co-located measurements using the two instruments allowed us to distinguish between background rotation signal at low frequencies and intrinsic instrument noise. The rotation sensor is useful for rotational seismology and for rejecting background rotation signal from seismometers in experiments demanding high levels of seismic isolation, such as Advanced Laser Interferometer Gravitational-wave Observatory. PMID:24517804

  18. A high precision radiation-tolerant LVDT conditioning module

    NASA Astrophysics Data System (ADS)

    Masi, A.; Danzeca, S.; Losito, R.; Peronnard, P.; Secondo, R.; Spiezia, G.

    2014-05-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. The algorithm validation and board architecture are described. A full metrological characterization of the module is reported and radiation tests results are discussed.

  19. High precision moving magnet chopper for variable operation conditions

    NASA Astrophysics Data System (ADS)

    Aicher, Winfried; Schmid, Manfred

    1994-05-01

    In the context of an ESTEC technology contract, a Chopping Mechanism was developed and built with the Far Infrared and Submillimeter Telescope (FIRST) astronomy mission as a reference. The task of the mechanism is to tilt the subreflector of the telescope with an assumed mass of 2.5 kg about one chopping axis at nominal frequencies of up to 5 Hz and chopping angles of up to +/- 11.25 mrad with high efficiency (minimum time for position change). The chopping axis is required to run through the subreflector vertex. After performing a concept trade-off also considering the low operational temperatures in the 130 K range, a design using moving magnet actuators was found to be the favorite one. In addition, a bearing concept using flexible pivots was chosen to meet the high chopping accuracy required. With this approach, a very reliable design could be realized, since the actuators work without any mechanical contact between its moving and fixed parts, and the only bearings used are two flexible pivots supporting the subreflector mounting interface. The mechanism was completely built in titanium in a lightweight and stiff design. The moving magnet actuators were designed to meet the stringent requirements for minimum risetime (time necessary to move from one angular position to a new one) in the 20 msec range. The angular position and the corresponding chopping frequency as well can be arbitrarily selected by the user.

  20. A high-precision mechanical absolute-rotation sensor.

    PubMed

    Venkateswara, Krishna; Hagedorn, Charles A; Turner, Matthew D; Arp, Trevor; Gundlach, Jens H

    2014-01-01

    We have developed a mechanical absolute-rotation sensor capable of resolving ground rotation angle of less than 1 nrad/√Hz above 30 mHz and 0.2 nrad/√Hz above 100 mHz about a single horizontal axis. The device consists of a meter-scale beam balance, suspended by a pair of flexures, with a resonance frequency of 10.8 mHz. The center of mass is located 3 μm above the pivot, giving an excellent horizontal displacement rejection of better than 3 × 10(-5) rad/m. The angle of the beam is read out optically using a high-sensitivity autocollimator. We have also built a tiltmeter with better than 1 nrad/√Hz sensitivity above 30 mHz. Co-located measurements using the two instruments allowed us to distinguish between background rotation signal at low frequencies and intrinsic instrument noise. The rotation sensor is useful for rotational seismology and for rejecting background rotation signal from seismometers in experiments demanding high levels of seismic isolation, such as Advanced Laser Interferometer Gravitational-wave Observatory.

  1. A high-precision mechanical absolute-rotation sensor

    NASA Astrophysics Data System (ADS)

    Venkateswara, Krishna; Hagedorn, Charles A.; Turner, Matthew D.; Arp, Trevor; Gundlach, Jens H.

    2014-01-01

    We have developed a mechanical absolute-rotation sensor capable of resolving ground rotation angle of less than 1 nrad/sqrt{Hz} above 30 mHz and 0.2 nrad/sqrt{Hz} above 100 mHz about a single horizontal axis. The device consists of a meter-scale beam balance, suspended by a pair of flexures, with a resonance frequency of 10.8 mHz. The center of mass is located 3 μm above the pivot, giving an excellent horizontal displacement rejection of better than 3 × 10-5 rad/m. The angle of the beam is read out optically using a high-sensitivity autocollimator. We have also built a tiltmeter with better than 1 nrad/sqrt{Hz} sensitivity above 30 mHz. Co-located measurements using the two instruments allowed us to distinguish between background rotation signal at low frequencies and intrinsic instrument noise. The rotation sensor is useful for rotational seismology and for rejecting background rotation signal from seismometers in experiments demanding high levels of seismic isolation, such as Advanced Laser Interferometer Gravitational-wave Observatory.

  2. High precision moving magnet chopper for variable operation conditions

    NASA Technical Reports Server (NTRS)

    Aicher, Winfried; Schmid, Manfred

    1994-01-01

    In the context of an ESTEC technology contract, a Chopping Mechanism was developed and built with the Far Infrared and Submillimeter Telescope (FIRST) astronomy mission as a reference. The task of the mechanism is to tilt the subreflector of the telescope with an assumed mass of 2.5 kg about one chopping axis at nominal frequencies of up to 5 Hz and chopping angles of up to +/- 11.25 mrad with high efficiency (minimum time for position change). The chopping axis is required to run through the subreflector vertex. After performing a concept trade-off also considering the low operational temperatures in the 130 K range, a design using moving magnet actuators was found to be the favorite one. In addition, a bearing concept using flexible pivots was chosen to meet the high chopping accuracy required. With this approach, a very reliable design could be realized, since the actuators work without any mechanical contact between its moving and fixed parts, and the only bearings used are two flexible pivots supporting the subreflector mounting interface. The mechanism was completely built in titanium in a lightweight and stiff design. The moving magnet actuators were designed to meet the stringent requirements for minimum risetime (time necessary to move from one angular position to a new one) in the 20 msec range. The angular position and the corresponding chopping frequency as well can be arbitrarily selected by the user.

  3. Creating high-stability high-precision bipolar trim power supply

    SciTech Connect

    Chen, Zhe; Merz, William A.

    2012-07-01

    Thomas Jefferson National Accelerator Facility (TJNAF) is founded by the US Department of Energy (DOE) office of science for the technology advancement and physics research in electron beam accelerator. This facility has the state of the art technology to carry out world-class cutting-edge experiments for the nucleus composition and atomic characteristics identification and exploration for the nature of the matter in the universe. A continuous wave electron beam is featured for such experiments, thus precise and stable trim power supply is required to meet such purpose. This paper demonstrates the challenges and solutions to design, assemble, fabrication and test such high-precision high-stability power supplies. This paper presents the novel design and first article test of the ±20A ±75V bipolar, 100ppm stability level current-regulated high-power trim power supplies for the beam manipulation. This special design can provide valuable documentation and reference values for future designs and special applications in particle accelerator power supply creation.

  4. High precision pointing with a multiline spectrometer at the VTT

    NASA Astrophysics Data System (ADS)

    Staiger, J.

    2012-12-01

    We are investigating the pointing quality of the VTT, Tenerife under the aspect of suitability for long-term heliosesimological observations. Tests have shown that thermal and mechanical loads within the telescope may create spurious image drifts with shift rates of up to 5 arcsec per hour. During daylong recordings this will reduce significantly the effective size of the field-of-view and may infer artificial lateral movements into the data. The underlying problem that not all image position offsets developing during a measurement may be compensated for is common to most high-resolution solar telescopes independently of the type of pointing system used. We are developing new approaches to address this problem which are to be tested in the near future at the VTT. The simulations established so far show that the problem may be reduced by more than 90 %.

  5. Precision high energy liner implosion experiments PHELIX [1

    SciTech Connect

    Reass, William A; Baca, David M; Griego, Jeffrey R; Reinovsky, Robert E; Rousculp, Christopher L; Turchi, Peter J

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  6. A high precision calorimeter for the SOX experiment

    NASA Astrophysics Data System (ADS)

    Papp, L.; Agostini, M.; Altenmüller, K.; Appel, S.; Caminata, A.; Cereseto, R.; Di Noto, L.; Farinon, S.; Musenich, R.; Neumair, B.; Oberauer, L.; Pallavicini, M.; Schönert, S.; Testera, G.; Zavatarelli, S.

    2016-07-01

    The SOX (Short distance neutrino Oscillations with BoreXino) experiment is being built to discover or reject eV-scale sterile neutrinos by observing short baseline oscillations of active-to-sterile neutrinos [1]. For this purpose, a 100 kCi 144Ce-144Pr antineutrino generator (CeSOX) will be placed under the BOREXINO detector at the Laboratori Nazionali del Gran Sasso. Thanks to its large size and very low background, BOREXINO is an ideal detector to discover or reject eV-scale sterile neutrinos. To reach the maximal sensitivity, we aim at determining the neutrino flux emitted by the antineutrino generator with a < 1 % accuracy. With this goal, TU München and INFN Genova are developing a vacuum calorimeter, which is designed to measure the source-generated heat with high accuracy.

  7. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  8. High Precision Ti stable Isotope Measurement of Terrestrial Rocks

    NASA Astrophysics Data System (ADS)

    Millet, M. A.; Dauphas, N.; Williams, H. M.; Burton, K. W.; Nowell, G. M.

    2014-12-01

    Advances in multi-collection plasma source mass spectrometry have allowed the determination of stable isotope composition of transition metals to address questions relevant to both high and low temperature geochemistry. However, titanium has received only very limited attention. Here we present a new technique allowing the determination of the stable isotope composition of titanium in geological samples (d49Ti or deviation of the 49Ti/47Ti ratio from the OL-Ti in-house standard of reference) using double-spike methodology and high-resolution MC-ICP-MS. We have carried out a range analytical tests for a wide spectrum of samples matrices to demonstrate a external reproducibility of ±0.02‰ on the d49Ti while using as little as 150ng of natural Ti for a single analysis. We have analysed a comprehensive selection of mantle-derived samples covering a range of geodynamic contexts (MORB, IAB, OIB, adakites, eclogites, serpentines) and geographical distribution (MORB: Mid-Atlantic Ridge, Southwest Indian Ridge and Eastern Pacific Ridge; IAB: New Britain reference suite and Marianas Arc). The samples show a very limited range from -0.06‰ to +0.04‰ with a main mode at +0.004‰ relative to the OL-Ti standard. Average values for MORB, IAB and eclogites are similar within uncertainty and thus argue for limited mobility of Ti during subduction zone processes and homogeneity of the Ti stable isotope composition of the upper mantle. However, preliminary data for more evolved igneous rocks suggest that they display heavier Ti stable isotope compositions, which may reflect the removal of isotopically light Ti as a function of Fe-Ti oxide crystallisation. This is in good agreement with Ti being present in 5-fold and 6-fold coordination in basaltic melts and preferential uptake of 6-folded Ti by Ti-bearing oxides [1]. This dataset will be complemented by analysis of abyssal peridotites to confirm the homogeneity of the mantle as well as data for a range of ferromanganese crusts

  9. High-Precision Measurements of the Brightness Variation of Nereid

    NASA Astrophysics Data System (ADS)

    Terai, Tsuyoshi; Itoh, Yoichi

    2013-04-01

    Nereid, the outer satellite of Neptune, has a highly eccentric prograde orbit with a semimajor axis of larger than 200 in units of Neptune's radius, and is classified as an irregular satellite. Although the capture origin of irregular satellites has been widely accepted, several previous studies suggest that Nereid was formed in the circumplanetary disk of Neptune and ejected outward to the present location by Triton. A series of our photometric observations confirm that Nereid's rotation period, 11.5 hr, is stable and nonchaotic, as indicated by Grav, Holman, and Kavelaars (2003, ApJ, 591, L71). The optical colors of Nereid are indistinguishable from those of trans-Neptunian objects and Centaurs, especially from these objects with neutral colors. We also found the consistency of Nereid's rotation period based on the size-rotation distribution of small outer bodies. It is likely that Nereid originated as an immigrant body captured from the heliocentric orbit that was 4-5 AU away from Neptune's orbit.

  10. A research of a high precision multichannel data acquisition system

    NASA Astrophysics Data System (ADS)

    Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei

    2013-08-01

    The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.

  11. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  12. High Precision Pulsar Timing: Effects of ISM Correction Schemes

    NASA Astrophysics Data System (ADS)

    Kunert, Willie; Verbiest, J. P. W.; Shannon, R.; Stinebring, D.

    2012-01-01

    Pulsar timing arrays are one of the leading methods in the search for gravitational waves (GWs). However a significant issue facing this method is the effect of the interstellar medium (ISM). There are multiple methodologies being used to correct for these effects but their efficacy has not been carefully studied. We conducted an initial study of biases induced by correcting for the interstellar medium. We simulated times of arrival (TOAs) with white noise and added ISM delays. We measure the ISM effects as is done with normal data, and created a model of these effects using polynomial fitting. This modeling method is most commonly used in the European Pulsar Timing Array. We then remove these measured ISM effects and compare final and initial TOAs. Ideally they should be the same; however, the differences between the 'corrected' TOAs and original TOAs reveal the weaknesses of this method. In preliminary results we concluded that the higher order polynomials do a better job, yet there is a limit as to how high an order one can use. We also found no significant systematic parameter bias induced by using this method. However, it is clear that certain parameters are more affected by this process of correction. The parameters most affected were the frequency and frequency derivative of the pulsar, but biases in these parameters are not important because the power due to them gets removed in the standard timing analysis. We are continuing this research by comparing and contrasting ISM correction schemes, as well as studying the actual behavior of the ISM in more detail. This research is supported by an NSF-PIRE and an NSF-AST grant.

  13. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    PubMed

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed.

  14. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm.

    PubMed

    McNulty, Jason D; Klann, Tyler; Sha, Jin; Salick, Max; Knight, Gavin T; Turng, Lih-Sheng; Ashton, Randolph S

    2014-06-01

    Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over large surface areas. However, challenges associated with precisely aligning and superimposing multiple μCP steps severely limits the extent of substrate modification that can be achieved using this method. Thus, we investigated the feasibility of using a vision guided selectively compliant articulated robotic arm (SCARA) for μCP applications. SCARAs are routinely used to perform high precision, repetitive tasks in manufacturing, and even low-end models are capable of achieving microscale precision. Here, we present customization of a SCARA to execute robotic-μCP (R-μCP) onto gold-coated microscope coverslips. The system not only possesses the ability to align multiple polydimethylsiloxane (PDMS) stamps but also has the capability to do so even after the substrates have been removed, reacted to graft polymer brushes, and replaced back into the system. Plus, non-biased computerized analysis shows that the system performs such sequential patterning with <10 μm precision and accuracy, which is equivalent to the repeatability specifications of the employed SCARA model. R-μCP should facilitate the engineering of complex in vivo-like complexities onto culture substrates and their integration with microfluidic devices. PMID:24759945

  15. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm.

    PubMed

    McNulty, Jason D; Klann, Tyler; Sha, Jin; Salick, Max; Knight, Gavin T; Turng, Lih-Sheng; Ashton, Randolph S

    2014-06-01

    Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over large surface areas. However, challenges associated with precisely aligning and superimposing multiple μCP steps severely limits the extent of substrate modification that can be achieved using this method. Thus, we investigated the feasibility of using a vision guided selectively compliant articulated robotic arm (SCARA) for μCP applications. SCARAs are routinely used to perform high precision, repetitive tasks in manufacturing, and even low-end models are capable of achieving microscale precision. Here, we present customization of a SCARA to execute robotic-μCP (R-μCP) onto gold-coated microscope coverslips. The system not only possesses the ability to align multiple polydimethylsiloxane (PDMS) stamps but also has the capability to do so even after the substrates have been removed, reacted to graft polymer brushes, and replaced back into the system. Plus, non-biased computerized analysis shows that the system performs such sequential patterning with <10 μm precision and accuracy, which is equivalent to the repeatability specifications of the employed SCARA model. R-μCP should facilitate the engineering of complex in vivo-like complexities onto culture substrates and their integration with microfluidic devices.

  16. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.

  17. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    NASA Astrophysics Data System (ADS)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  18. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock. PMID:26669148

  19. A fast high-precision six-degree-of-freedom relative position sensor

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan

    2016-03-01

    Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.

  20. CT guidance is needed to achieve reproducible positioning of the mouse head for repeat precision cranial irradiation.

    PubMed

    Armour, M; Ford, E; Iordachita, I; Wong, J

    2010-01-01

    To study the effects of cranial irradiation, we have constructed an all-plastic mouse bed equipped with an immobilizing head holder. The bed integrates with our in-house Small Animal Radiation Research Platform (SARRP) for precision focal irradiation experiments and cone-beam CT. We assessed the reproducibility of our head holder to determine the need for CT-based targeting in cranial irradiation studies. To measure the holder's reproducibility, a C57BL/6 mouse was positioned and CT-scanned nine times. Image sets were loaded into the Pinnacle(3) radiation treatment planning system and were registered to one another by one investigator using rigid body alignment of the cranial regions. Rotational and translational offsets were measured. The average vector shift between scans was 0.80 +/- 0.49 mm. Such a shift is too large to selectively treat subregions of the mouse brain. In response, we use onboard imaging to guide cranial irradiation applications that require sub-millimeter precision.

  1. THE APPLICATION OF MULTIVIEW METHODS FOR HIGH-PRECISION ASTROMETRIC SPACE VLBI AT LOW FREQUENCIES

    SciTech Connect

    Dodson, R.; Rioja, M.; Imai, H.; Asaki, Y.; Hong, X.-Y.; Shen, Z.

    2013-06-15

    High-precision astrometric space very long baseline interferometry (S-VLBI) at the low end of the conventional frequency range, i.e., 20 cm, is a requirement for a number of high-priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in pulsar-black hole pairs and OH masers anywhere in the Milky Way and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8 m in size and with ionospheric atmospheres consistent with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high-quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.

  2. Atomic Hydrogen as High-Precision Field Standard for High-Field EPR

    PubMed Central

    Stoll, Stefan; Ozarowski, Andrew; Britt, R. David; Angerhofer, Alexander

    2010-01-01

    We introduce atomic hydrogen trapped in an octaisobutylsilsesquioxane nanocage (H@iBuT8) as a new molecular high-precision magnetic field standard for high-field EPR spectroscopy of organic radicals and other systems with signals around g = 2. Its solid-state EPR spectrum consists of two narrow lines separated by about 51 mT and centered at g ≈ 2. The isotropic g factor is 2.00294(3) and essentially temperature independent. The isotopic 1H hyperfine coupling constant is 1416.8(2) MHz below 70 K and decreases slightly with increasing temperature to 1413.7(1) MHz at room temperature. The spectrum of the standard does not overlap with those of most organic radicals, and it can be easily prepared and is stable at room temperature. PMID:20813570

  3. Unlocking Emergent Talent: Supporting High Achievement of Low-Income, High Ability Students

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Clarenbach, Jane

    2012-01-01

    This report takes a comprehensive look at achievement for low-income promising learners--past, present, and future. At its core, it challenges the nation to move beyond its near-singular focus of achieving minimum performance for all students, to identifying and developing the talent of all students who are capable of high achievement, including…

  4. Research on high-precision hole measurement based on robot vision method

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Da-peng; Qin, Ming-cui; Li, Zong-yan; Chang, Yu-lan; Xi, Jiang-tao

    2014-09-01

    A high-precision vision detection and measurement system using mobile robot is established for the industry field detection of motorcycle frame hole and its diameter measurement. The robot path planning method is researched, and the non-contact measurement method with high precision based on visual digital image edge extraction and hole spatial circle fitting is presented. The Canny operator is used to extract the edge of captured image, the Lagrange interpolation algorithm is utilized to determine the missing image edge points and calculate the centroid, and the least squares fitting method is adopted to fit the image edge points. Experimental results show that the system can be used for the high-precision real-time measurement of hole on motorcycle frame. The absolute standard deviation of the proposed method is 0.026 7 mm. The proposed method can not only improve the measurement speed and precision, but also reduce the measurement error.

  5. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Esplin, T. L.; Luhman, K. L.

    2016-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  6. High-Precision Temperature Control of a Crystal Growth Furnace at 1,500 C

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.; Hess, A.; Croell, A.; Breuer, D.; Sauermann, H.

    2012-01-01

    For crystal growth of semiconductor materials a short-term temperature stability of 0.1 C at 1500 C is one of the essential parameters to be addressed for achieving high-quality crystals. Hence, for temperature monitoring and control with high precision in a floating zone furnace two sets of thermo-sensors, type B thermocouples and optical fibre thermometers, have been implemented and successfully operated in the furnace for more than 2000 h. The optical fibre thermometers consist of an optical system made of sapphire (two fibres plus a prism in between for deflection) and transmit the infra-red radiation of the heater to the outside of the hot core of the furnace for pyrometric temperature measurement. A dedicated control algorithm has been set up which controlled the power settings to the individual heaters. Both sensor types showed no degradation after this period and yielded a short-term stability at 1200 C of 0.05 C (optical fibre thermometers), respectively 0.08 C (thermocouples).

  7. High-precision onboard orbit determination for small satellites - the GPS-based XNSon X-SAT

    NASA Astrophysics Data System (ADS)

    Gill, E.; Montenbruck, O.; Arichandran, K.; Tan, S.H.; Bretschneider

    2004-11-01

    X-SAT is a mini-satellite developed by the Satellite Engineering Centre of the Nanyang Technological University at Singapore. The focus of the technology- driven mission is the high-resolution remote sensing of the Southeast Asian region for environmental monitoring. To achieve the ambitious mission objectives, the GPS-based X-SAT Navigation System (XNS) will provide high-precision onboard orbit determination solutions as well as orbit forecasts. With a targeted real-time position accuracy of about 1-2 m 3D r.m.s., the XNS provides an unprecedented accuracy performance and thus enables the support of any satellite mission which requires precise onboard position knowledge.

  8. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    NASA Astrophysics Data System (ADS)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-02-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  9. Research on high precision equal-angle scanning method in rotary kiln temperature measurement system

    NASA Astrophysics Data System (ADS)

    Dai, Shaosheng; Guo, Zhongyuan; You, Changhui; Liu, Jinsong; Cheng, Yang; Tang, Huaming

    2016-05-01

    Aiming at traditional horizontal equal-angle scanning method's disadvantage of measurement error, a high precision equal-angle scanning method is proposed, the proposed method establishes a tilt scanning model by the following steps: introducing height variable, precisely calculating the viewing angle, building scanning model. The model is used to calculate scanning position on rotary kiln's surface, which helps to locate and track temperature variation. The experiment shows that the proposed method can effectively improve the precision of temperature spots' location on the rotary kiln surface.

  10. Precision laboratory apparatus for high temperature compression molding of glass lenses

    NASA Astrophysics Data System (ADS)

    Firestone, Gregory C.; Jain, Anurag; Yi, Allen Y.

    2005-06-01

    Recently, compression molding of glass aspherical lenses has become a viable manufacturing process for precision optical devices. In this research, an apparatus designed for precision compression molding of glass optics was constructed. The apparatus design was governed by two primary goals: molding process control and property measurement of common optical glasses such as BK 7, SK5, and soda lime glass. Equipped with high precision components, a closed loop feedback control and a unique force adaptive scheme, the apparatus was successfully used for glass property measurement tests. Moreover, the performance of the apparatus was also validated using selected microlens molding experiments.

  11. High-precision three-dimensional coordinate measurement with subwavelength-aperture-fiber point diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Daodang; Xu, Yangbo; Chen, Xixi; Wang, Fumin; Kong, Ming; Zhao, Jun

    2014-11-01

    To overcome the accuracy limitation due to the machining error of standard parts in measurement system, a threedimensional coordinate measurement method with subwavelength-aperture-fiber point diffraction interferometer (PDI) is proposed, in which the high-precision measurement standard is obtained from the ideal point-diffracted spherical wavefront instead of standard components. On the basis of the phase distribution demodulated from point-diffraction interference field, high-precision three-dimensional coordinate measurement is realized with numerical iteration optimization algorithm. The subwavelength-aperture fiber is used as point-diffraction source to get precise and highenergy spherical wavefront within high aperture angle range, by which the conflict between diffraction wave angle and energy in traditional PDI can be avoided. Besides, a double-iterative method based on Levenbery-Marquardt algorithm is proposed to realize precise reconstruct three-dimensional coordinate. The analysis shows that the proposed method can reach the measurement precision better than microns within a 200×200×300 (in unit of mm) working volume. This measurement method does not rely on the initial iteration value in numerical coordinate reconstruction, and also has high measurement precision, large measuring range, fast processing speed and preferable anti-noise ability. It is of great practicality for measurement of three-dimensional coordinate and calibration of measurement system.

  12. Large bearings with incorporated gears, high stiffness, and precision for the Swedish Solar Telescope (SST) on La Palma

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Scharmer, Göran B.

    2006-06-01

    The 1-meter Swedish Solar Telescope (SST) obtains images of the solar surface with an unprecedented resolution of 0.1 arcsec. It consists of a relatively slender tower with on top only the vacuum turret for reflecting downward the solar beam and no protective dome. This is a favourable situation to get good local seeing. Just in the case of some wind, seeing is best for daytime observations, therefore the precision bearings and drives of the elevation- and azimuth axis of the turret have to be stiff against wind. This requires line contact between the meshing teeth of the large gear wheel and the pinion. High preload forces to achieve line contact are not allowed because of appearing stick-slip effects. To reduce the risk on stick-slip a special design of the teeth for high stiffness combined with low friction and smooth transition from one tooth to the next was made. Furthermore, extreme precision in the fabrication was pursued such that relatively small contact forces give already line contact. This required a special order of the successive fabrication steps of the combination of bearing and gear teeth. An additional problem was the relatively thin section of the bearings required for a compact turret construction, needed for best local seeing and minimum wind load. Solutions for all these problems will be discussed. For the large gears the exceptional good DIN quality class 4 for the pitch precision and straightness plus direction of the teeth faces was achieved.

  13. Achieving high energy absorption capacity in cellular bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-05-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed.

  14. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  15. Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla

    2016-04-01

    An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (< 0.1 ‰) measurements in ambient air, QCLAS may be combined with a fully automated preconcentration unit yielding an up to 500 times concentration increase and the capability to separate the target gas from spectral interferants by se-quential desorption 3. Here, we review our recent developments on high precision isotope ratio analysis of greenhouse gases, with special focus on the isotopic species of N2O and CH4. Furthermore, we show environ-mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B

  16. Improved strain precision with high spatial resolution using nanobeam precession electron diffraction

    SciTech Connect

    Rouviere, Jean-Luc Martin, Yannick; Denneulin, Thibaud; Cooper, David

    2013-12-09

    NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10{sup −4} is obtained with a probe size approaching 1 nm in diameter.

  17. Machine vision for high-precision volume measurement applied to levitated containerless material processing

    SciTech Connect

    Bradshaw, R.C.; Schmidt, D.P.; Rogers, J.R.; Kelton, K.F.; Hyers, R.W.

    2005-12-15

    By combining the best practices in optical dilatometry with numerical methods, a high-speed and high-precision technique has been developed to measure the volume of levitated, containerlessly processed samples with subpixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermophysical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the subpixel locations of sample edges and, in turn, produce high-precision measurements.

  18. Machine Vision for High Precision Volume Measurement Applied to Levitated Containerless Materials Processing

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. C.; Schmidt, D. P.; Rogers, J. R.; Kelton, K. F.; Hyers, R. W.

    2005-01-01

    By combining the best practices in optical dilatometry with new numerical methods, a high-speed and high precision technique has been developed to measure volume of levitated, containerlessly processed samples with sub- pixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermo-physical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermo-ophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the sub-pixel locations of sample edges and, in turn produce high precision measurements.

  19. Use of terrestrial laser scanning technology for long term high precision deformation monitoring.

    PubMed

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable.

  20. Design considerations for achieving high vacuum integrity in fusion devices

    SciTech Connect

    Fuller, G.M.; Haines, J.R.

    1983-01-01

    Achieving high vacuum integrity in fusion devices requires close attention to both the overall system configuration and the design details of joints and seals. This paper describes the factors in selecting the system configuration, from a vacuum standpoint, for the Princeton Plasma Physics Laboratory (PPPL) DCT-8 Tokamak device. The DCT-8 (driven current tokamak) is the eighth design in a series of tokamak concepts defined to cover the magnetic confinement and development gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor (ETR). Leak detection concept development is considered a vital activity, as well as the definition of a configuration that minimizes the consequences of leaks. A major part of the vacuum boundaries of the magnet system and the plasma system is common. For the major penetrations, primary and secondary seals are provided with vacuum control over the region between seals. The intent is to instrument these cavities and provide automated recordings of these measurements for leak maintenance.

  1. High-precision thickness setting models for titanium alloy plate cold rolling without tension

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochen; Yang, Quan; He, Fei; Sun, Youzhao; Xiao, Huifang

    2015-03-01

    Due to its highly favorable physical and chemical properties, titanium and titanium alloy are widely used in a variety of industries. Because of the low output of a single batch, plate cold rolling without tension is the most common rolling production method for titanium alloy. This method is lack of on-line thickness closed-loop control, with carefully thickness setting models for precision. A set of high-precision thickness setting models are proposed to suit the production method. Because of frequent variations in rolling specification, a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method. The deformation resistance and friction factor, the primary factors which affect model precision, are considered as the objectives of statistical modeling. Firstly, the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted. Additionally, a support vector machine(SVM) is applied to the modeling of the deformation resistance and friction factor. The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling, and then thickness precision is found consistently to be within 3%, exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data. Excellent application performance is obtained. The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.

  2. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  3. Development of a micro-CMM with scanning touch probe and high-precision coplanar platform

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Liang; Lu, Chin-Tu; Chen, Hung-Chi; Ke, Jhih-Sian; Chang, Chao-Ming

    2013-10-01

    This study develops a micro-CMM incorporating a scanning touch probe and a high-precision coplanar platform. The measurement performance of the proposed system was enhanced through the use of a rigid aluminum double-arch-bridge structure to support the scanning touch probe. For the working stage, a linear motor was used for long-stroke positioning and a piezoelectric actuator was then employed to fine-tune the positioning so as to achieve a requirement of highprecision. The platform has two characteristics: (i) the driving and measuring axes are designed along the same line so that Abbe error of the stage can be eliminated; (ii) the coplanar design makes the X and Y axes reach a goal of two-axis concurrent. The aforementioned two designs can reduce the error of the platform so that the micro-CMM reaches a positioning accuracy of ±0.1μm for a working volume of 80×80×40 mm3. Furthermore, the reliability of the probe mechanism of three degrees of freedom was analyzed and validated. The sensor coordinates a laser diode with Position Sensor Detectors (PSD) working with an optical path to measure placement of Z-axis and angle placement of XY-axis. By validation through an experiment, the three dimensional scanning touch probe developed by this study has a measuring range of ±1mm × ±1mm × 1mm with a unidirectional repeatability of 0.6μm.

  4. Study of fringe tracking for high-precision space-based interferometers

    NASA Astrophysics Data System (ADS)

    Padilla, Carlos E.; Karlov, Valeri I.; Li, Jun; Chun, Hon M.; Tsitsiklis, John N.; Reasenberg, Robert D.

    1995-06-01

    The purpose of the fringe tracking algorithms is to maintain lock on the target star after acquisition and to obtain the most accurate estimate possible of the scientific quantity (or quantities) of interest in the presence of dynamic disturbances to the spacecraft/interferometer ensemble. This study carries out an analysis of the performance and robustness achievable by four candidate estimation techniques when applied to an ultra-high-precision fringe tracking task (5 micro-arcsecond ultimate accuracy). The first class of fringe trackers studied include the Extended Kalman Filter. This class is followed by extensions to second and third order nonlinear filters developed by the authors. The higher order filters have expanded regions of convergence. Third, we consider the use of an invariant filter (IF) to estimate the angle between two target stars (using POINTS as a test case). The IF offers the advantage of improved robustness in the dynamical case, being in effect `invariant' to dynamics. Finally Discrete Bayes Algorithms make use of Bayes' decision rule to propagate the a posteriori distribution of the true parameter and take into account the discrete character of the Poisson photon arrival events. Variations of these algorithms, known as multiple hypotheses trackers, offer great promise for dim star tracking. An exploration of filter performance with respect to several parameters is carried out analytically and selected Monte Carlo simulations are carried out both to verify analytical predictions and to study performance.

  5. High-precision measurement of satellite range and velocity using the EISCAT radar

    NASA Astrophysics Data System (ADS)

    Markkanen, J.; Nygrén, T.; Markkanen, M.; Voiculescu, M.; Aikio, A.

    2013-05-01

    This paper is a continuation of an earlier work by Nygrén et al. (2012), where the velocity of a hard target was determined from a set of echo pulses reflected by the target flying through the radar beam. Here the method is extended to include the determination of range at a high accuracy. The method is as follows. First, the flight time of the pulse from the transmitter to the target is determined at an accuracy essentially better than the accuracy given by the sampling interval. This method makes use of the fact that the receiver filtering creates slopes at the phase flips of the phase modulated echo pulse. A precise flight time is found by investigating the echo amplitude within this slope. A value of velocity is calculated from each echo pulse as explained in the earlier paper. Next, the ranges together with velocities from a single beam pass are combined to a measurement vector for a linear inversion problem. The solution of the inversion problem gives the time-dependent range and velocity from the time interval of satellite flight through the radar beam. The method is demonstrated using the EISCAT (European Incoherent Scatter) UHF radar and radio pulses reflected by a satellite. The achieved standard deviations of range are about 5-50 cm and those of velocity are about 3-25 mm s-1.

  6. Research on the polishing technology of high-precision aspherical cylindrical lens

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Wang, Zhe; Jia, Zong-he; Dong, Huan; Liu, Dan; Zhang, Chuan-xin

    2014-08-01

    Aspherical cylindrical lens compared with the cylindrical lens, they improved image quality and optical properties, simplified the system architecture. They applied in many fields, such as high power laser system, fax machines and typographical scan imaging system, as well as bar code scanning, lighting and other aspects of holography. Aspherical cylindrical lens are centrosymmetric. It is difficult to process. Parallel with the side line and bus bar line is difficult to ensure. Machining accuracy is low. It is usually about 15 μm, that not sufficient to meet the needs of modern highprecision laser systems. These have become a major problem restricting its development. Combining traditional and modern polishing techniques, a new technique for polishing aspherical cylindrical lens is proposed-- longitudinal feedback compensation technology. With dimensions of 15 × 5 × 5 mm quartz aspherical cylindrical lens as an example, the surface profilometer results of detection of the workpiece usually, modify the shape of the polishing surface of the mold, to control the size of the area of the polishing, the surface of the workpiece to achieve the effect of the type of compensation. After repeated testing and feedback compensation, gradually improve the accuracy of the workpiece surface type. The results show that this technique can effectively improve the precision aspherical cylindrical lens. After detection the workpiece surface accuracy is 0.8μm, the surface finish is Class II. It has the actual production of a certain application value.

  7. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  8. Methods for high precision 14C AMS measurement of atmospheric CO2 at LLNL

    SciTech Connect

    Graven, H D; Guilderson, T P; Keeling, R F

    2006-10-18

    Development of {sup 14}C analysis with precision better than 2{per_thousand} has the potential to expand the utility of {sup 14}CO{sub 2} measurements for carbon cycle investigations as atmospheric gradients currently approach traditional measurement precision of 2-5{per_thousand}. The AMS facility at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, produces high and stable beam currents that enable efficient acquisition times for large numbers of {sup 14}C counts. One million {sup 14}C atoms can be detected in approximately 25 minutes, suggesting that near 1{per_thousand} counting precision is economically feasible at LLNL. The overall uncertainty in measured values is ultimately determined by the variation between measured ratios in several sputtering periods of the same sample and by the reproducibility of replicate samples. Experiments on the collection of one million counts on replicate samples of CO{sub 2} extracted from a whole air cylinder show a standard deviation of 1.7{per_thousand} in 36 samples measured over several wheels. This precision may be limited by the reproducibility of Oxalic Acid I standard samples, which is considerably poorer. We outline the procedures for high-precision sample handling and analysis that have enabled reproducibility in the cylinder extraction samples at the <2{per_thousand} level and describe future directions to continue increasing measurement precision at LLNL.

  9. How to achieve high-level expression of microbial enzymes

    PubMed Central

    Liu, Long; Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field. PMID:23686280

  10. High-Precision Half-Life Measurements for the Superallowed β^{+} Emitter ^{10}C: Implications for Weak Scalar Currents.

    PubMed

    Dunlop, M R; Svensson, C E; Ball, G C; Grinyer, G F; Leslie, J R; Andreoiu, C; Austin, R A E; Ballast, T; Bender, P C; Bildstein, V; Diaz Varela, A; Dunlop, R; Garnsworthy, A B; Garrett, P E; Hackman, G; Hadinia, B; Jamieson, D S; Laffoley, A T; MacLean, A D; Miller, D M; Mills, W J; Park, J; Radich, A J; Rajabali, M M; Rand, E T; Unsworth, C; Valencik, A; Wang, Z M; Zganjar, E F

    2016-04-29

    Precision measurements of superallowed Fermi β-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and β counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074  s and T_{1/2}=19.3009±0.0017  s, respectively. The latter is the most precise superallowed β-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed β-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos. PMID:27176517

  11. High-Precision Half-Life Measurements for the Superallowed β+ Emitter 10C: Implications for Weak Scalar Currents

    NASA Astrophysics Data System (ADS)

    Dunlop, M. R.; Svensson, C. E.; Ball, G. C.; Grinyer, G. F.; Leslie, J. R.; Andreoiu, C.; Austin, R. A. E.; Ballast, T.; Bender, P. C.; Bildstein, V.; Diaz Varela, A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Laffoley, A. T.; MacLean, A. D.; Miller, D. M.; Mills, W. J.; Park, J.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Unsworth, C.; Valencik, A.; Wang, Z. M.; Zganjar, E. F.

    2016-04-01

    Precision measurements of superallowed Fermi β -decay transitions, particularly for the lightest superallowed emitters 10C and 14O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the 10C half-life is addressed through two high-precision half-life measurements, via γ -ray photopeak and β counting, that yield consistent results for the 10C half-life of T1 /2=19.2969 ±0.0074 s and T1 /2=19.3009 ±0.0017 s , respectively. The latter is the most precise superallowed β -decay half-life measurement reported to date and the first to achieve a relative precision below 10-4 . A fit to the world superallowed β -decay data including the 10C half-life measurements reported here yields bF=-0.0018 ±0.0021 (68% C.L.) for the Fierz interference term and CS/CV=+0.0009 ±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.

  12. Comparison of the Level of Using Metacognitive Strategies during Study between High Achieving and Low Achieving Prospective Teachers

    ERIC Educational Resources Information Center

    Doganay, Ahmet; Demir, Ozden

    2011-01-01

    The main purpose of this study is to compare the level of using metacognitive strategies during study between high achieving and low achieving prospective classroom teachers. This study was designed as a mixed method study. Metacognitive Learning Strategies Scale developed by Namlu (2004) was used to measure the use of metacognitive strategies…

  13. Effects of Partner's Ability on the Achievement and Conceptual Organization of High-Achieving Fifth-Grade Students.

    ERIC Educational Resources Information Center

    Carter, Glenda; Jones, M. Gail; Rua, Melissa

    2003-01-01

    Investigates high-achieving fifth-grade students' achievement gains and conceptual reorganization on convection. Features an instructional sequence of three dyadic inquiry investigations related to convection currents as well as pre- and post-assessment consisting of a multiple-choice test, a card sorting task, construction of a concept map, and…

  14. Gender Differences in Attitudes toward Mathematics between Low-Achieving and High-Achieving Fifth Grade Elementary Students.

    ERIC Educational Resources Information Center

    Rathbone, A. Sue

    Possible gender differences in attitudes toward mathematics were studied between low-achieving and high-achieving fifth-grade students in selected elementary schools within a large, metropolitan area. The attitudes of pre-adolescent children at an intermediate grade level were assessed to determine the effects of rapidly emerging gender-related…

  15. Precise reconstruction of fast moving cardiac valve in high frame rate synthetic transmit aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Suzuki, Mayumi; Ikeda, Teiichiro; Ishihara, Chizue; Takano, Shinta; Masuzawa, Hiroshi

    2016-04-01

    To diagnose heart valve incompetence, i.e., one of the most serious cardiac dysfunctions, it is essential to obtain images of fast-moving valves at high spatial and temporal resolution. Ultrasound synthetic transmit aperture (STA) imaging has the potential to achieve high spatial resolution by synthesizing multiple pre-beamformed images obtained with corresponding multiple transmissions. However, applying STA to fast-moving targets is difficult due to serious target deformation. We propose a high-frame-rate STA (fast STA) imaging method that uses a reduced number of transmission events needed for each image. Fast STA is expected to suppress deformation of moving targets; however, it may result in deteriorated spatial resolution. In this study, we conducted a simulation study to evaluate fast STA. We quantitatively evaluated the reduction in deformation and deterioration of spatial resolution with a model involving a radially moving valve at the maximum speed of 0.5 m/s. The simulated raw channel data of the valve phantom was processed with offline beamforming programs. We compared B-mode images obtained through single received-line in a transmission (SRT) method, STA, and fast STA. The results show that fast STA with four-times-reduced events is superior in reconstructing the original shape of the moving valve to other methods. The accuracy of valve location is 97 and 100% better than those with SRT and STA, respectively. The resolution deterioration was found to be below the annoyance threshold considering the improved performance of the shape reconstruction. The obtained results are promising for providing more precise diagnostic information on cardiovascular diseases.

  16. High-precision covariant one-boson-exchange potentials for np scattering below 350 MeV

    SciTech Connect

    Franz Gross; Alfred Stadler

    2007-12-01

    All realistic potential models for the two-nucleon interaction are to some extent based on boson exchange. However, in order to achieve an essentially perfect fit to the scattering data, characterized by a chi2/Ndata~ 1, previous potentials have abandoned a pure one boson-exchange mechanism (OBE). Using a covariant theory, we have found a true OBE potential that fits the 2006 world np data below 350 MeV with a chi2/Ndata = 1.00 for 3612 data. Our potential has fewer adjustable parameters than previous high precision potentials, and also reproduces the experimental triton binding energy without introducing additional irreducible three-nucleon forces.

  17. Standard high-precision calibration system for magnetic fields of 20,000 to 100,000 nT

    NASA Astrophysics Data System (ADS)

    Averkiev, V. V.; Ginsburg, B. I.; Turchak, A. A.; Yarotsky, V. A.

    1993-11-01

    This report is devoted to the achievements of the consortium called Leninetz in terms of magnetometers and the development of these kinds of devices. The report is in two parts, the first one is devoted to the highly precise calibration system for magnetometers. The second part is devoted to a description of various types of magnetometers developed and manufactured by our company. The technical principles which are presented in this report are embedded in the development of this calibration system, which has been tested. There is technical documentation for this system and it is ready for mass production.

  18. Research on high precision centering assembly method of roll edge optical elements

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Liu, Xiaomei

    2015-08-01

    In order to improve the imaging quality of target imaging optical system, in the special environment of large temperature difference, the centering assembly precision of roll edge optical elements was studied. According to the hole-axis coordinate error theory of mechanics, by analyzing the factors affected the precision of mechanical heating surface, combining with the existing method to eliminate error and centering assembly process, a new kind of high precision centering assembly method was put forward. Using additional grinding device to grinding roll edge of optical element, eliminate the machining error on the surface of the mechanical hot working, thus improve the centering assembly precision between the roll edge optical element and lens tube. The result of experiment shows that the centering precision can reach less than 3μm when assembled optical element after roll edge using new centering assembly method, and improved by 25% compared to the traditional method of roll edge optical elements are assembled directly after hot working. New assembly method with additional grinding device can improve the centering assembly precision of roll edge optical elements, and greatly reduce the difficulty of optical design of such optical imaging system using in large temperature difference environment, when meet the same image quality.

  19. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  20. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi; Collaboration: PRad Collaboration

    2013-11-07

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 ± 0.0007 fm was extracted which is 7σ smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these 'electronic' determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup −4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  1. Towards high precision measurements of nuclear g-factors for the Be isotopes

    NASA Astrophysics Data System (ADS)

    Takamine, A.; Wada, M.; Okada, K.; Ito, Y.; Schury, P.; Arai, F.; Katayama, I.; Imamura, K.; Ichikawa, Y.; Ueno, H.; Wollnik, H.; Schuessler, H. A.

    2016-06-01

    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of 11Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  2. Diamond turning of high-precision roll-to-roll imprinting molds for fabricating subwavelength gratings

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Wei; Yan, Jiwang; Lin, Shih-Chieh

    2016-06-01

    Diamond turning of high-precision molds is a vital process for the roll-to-roll-based ultraviolet resin imprinting process in fabricating subwavelength gratings. The effects of the grating shape and grating period on diffraction efficiencies and diffraction angles were simulated. Experiments were then conducted to examine the effects of shape design, grating period, and cutting speed on machinability of the mold. According to the optical measurement results, the performance of the subwavelength gratings matched the design well at various incident angles. The results confirm that diamond turning of high-precision molds is a feasible approach for ensuring the continual mass production of subwavelength gratings.

  3. High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser

    NASA Astrophysics Data System (ADS)

    Füser, Heiko; Judaschke, Rolf; Bieler, Mark

    2011-09-01

    We perform high-precision frequency measurements in the THz frequency range using an unstabilized femtosecond laser. A simple and flexible algorithm is used to correct the beating signal resulting from the THz source and one comb line of the rectified optical comb for fluctuations of the laser repetition rate. Using this technique, we demonstrate an accuracy of our measurement device as high as (9 ± 3) . 10-14 for the measurement of a 100 GHz source. This is two orders of magnitude better than previous precision measurements in this frequency range employing femtosecond lasers.

  4. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  5. Student Perception of Academic Achievement Factors at High School

    ERIC Educational Resources Information Center

    Bahar, Mustafa

    2016-01-01

    Measuring the quality of the "product" is elemental in education, and most studies depend on observational data about student achievement factors, focusing overwhelmingly on quantitative data namely achievement scores, school data like attendance, facilities, expenditure class size, etc. But there is little evidence of learner…

  6. Learning Styles and High School Students' Chemistry Achievement

    ERIC Educational Resources Information Center

    Uzuntiryaki, Esen

    2007-01-01

    The aim of the present study was to investigate the effects of students' learning styles on their chemistry achievement, and whether matching between teaching and learning styles also affects students' chemistry achievement. Two hundred and sixty-five tenth-grade students enrolled in a chemistry course and seven chemistry teachers participated in…

  7. Does Recreational Computer Use Affect High School Achievement?

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Berland, Matthew

    2013-01-01

    Historically, the relationship between student academic achievement and use of computers for fun and video gaming has been described from a multitude of perspectives, from positive, to negative, to neutral. However, recent research has indicated that computer use and video gaming may be positively associated with achievement, yet these studies…

  8. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  9. Achievement of Hispanic Students in American High Schools: Background Characteristics and Achievement. Contractor Report.

    ERIC Educational Resources Information Center

    Nielsen, Francois; Fernandez, Roberto M.

    Presenting data and analyses from the first wave of the study "High School and Beyond" (HS&B), a longitudinal study of United States high school sophomores and seniors, the report focuses on the composition of the Hispanic tenth and twelfth grade student population with respect to various characteristics; i.e., language use and proficiency, length…

  10. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    NASA Astrophysics Data System (ADS)

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.; Gordon, Iouli E.

    2015-10-01

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional "abnormal" intensities are found at n = 14 and 23. Criteria for the appearance of such "anomalies" are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  11. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    SciTech Connect

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.

    2015-10-21

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional “abnormal” intensities are found at n = 14 and 23. Criteria for the appearance of such “anomalies” are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  12. Preferences of High Achieving High School Students in Their Career Development

    ERIC Educational Resources Information Center

    Kim, Mihyeon

    2010-01-01

    The intent of this study was to identify the needs and preference of high-achieving high school students. In terms of career related programs in high school, students listed AP courses and mentoring as their preferred career-related programs. Also, students stated that career guidance by counselors, workshops or sessions, and tech prep were the…

  13. Threatened and Placed at Risk: High Achieving African American Males in Urban High Schools

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    This study investigated the risk and protective factors of 11 high-achieving African American males attending 4 urban charter high schools in a Midwestern city to determine what factors account for their resilience and success in mathematics courses, and in high school more generally. This research was guided by a Phenomenological Variant of…

  14. Proton-proton bremsstrahlung calculation: Comparison with recent high-precision experimental results

    SciTech Connect

    Li Yi; Liou, M.K.; Schreiber, W.M.

    2005-08-01

    Proton-proton bremsstrahlung cross sections and analyzing powers have been calculated at 190 MeV by using a one-boson-exchange model. The results are compared with the recently published high-precision Kernfysisch-Versneller-Instituut (KVI) data. Satisfactory agreement between theory and experiment has been found.

  15. High precision semiautomated computed tomography measurement of lumbar disk and vertebral heights

    PubMed Central

    Tan, Sovira; Yao, Jianhua; Yao, Lawrence; Ward, Michael M.

    2013-01-01

    Purpose: Evaluation of treatments of many spine disorders requires precise measurement of the heights of vertebral bodies and disk spaces. The authors present a semiautomated computer algorithm measuring those heights from spine computed tomography (CT) scans and evaluate its precision. Methods: Eight patients underwent two spine CT scans in the same day. In each scan, five thoracolumbar vertebral heights and four disk heights were estimated using the algorithm. To assess precision, the authors computed the differences between the height measurements in the two scans, coefficients of variation (CV), and 95% limits of agreement. Intraoperator and interoperator precisions were evaluated. For local vertebral and disk height measurement (anterior, middle, posterior) the algorithm was compared to a manual mid-sagittal plane method. Results: The mean (standard deviation) interscan difference was as low as 0.043 (0.031) mm for disk heights and 0.044 (0.043) mm for vertebral heights. The corresponding 95% limits of agreement were [−0.085, 0.11] and [−0.10, 0.12] mm, respectively. Intraoperator and interoperator precision was high, with a maximal CV of 0.30%. For local vertebral and disk heights, the algorithm improved upon the precision of the manual mid-sagittal plane measurement by as much as a factor of 6 and 4, respectively. Conclusions: The authors evaluated the precision of a novel computer algorithm for measuring vertebral body heights and disk heights using short term repeat CT scans of patients. The 95% limits of agreement indicate that the algorithm can detect small height changes of the order of 0.1 mm. PMID:23298096

  16. The Effect of Music Participation on Mathematical Achievement and Overall Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Cox, H. A.; Stephens, L. J.

    2006-01-01

    A study was conducted on high school students, comparing those with some music credits to those with none. No statistically significant difference was found in their mean math grade point averages (GPA) or their mean cumulative GPAs. Students were then separated into two groups based on the number of music credits. Students who had earned at least…

  17. High-precision micromilling for low-cost fabrication of metal mold masters

    NASA Astrophysics Data System (ADS)

    Hupert, Mateusz L.; Guy, W. J.; Llopis, Shawn D.; Situma, Catherine; Rani, Sudheer; Nikitopoulos, Dimitris E.; Soper, Steven A.

    2006-01-01

    High-precision micromilling was employed as a cost-efficient method preparation of metal masters useful in fabrication of polymer microfluidic devices through replication techniques. In first application, a brass mold master was used for hot embossing of microchip electrophoresis devices in poly(methyl methacrylate) (PMMA). The sidewalls of the milled microstructures were characterized by a maximum average roughness (R a) of 110 nm and mean peak height (R pm) of 320 nm. SEM imaging showed a transfer of the sidewall roughness from the molding tool to the polymer microdevice. The electroosmotic flow (EOF) values for micromilled-based microchannels were comparable to ones in the LiGA-prepared devices (sidewall R a = 20 nm) with values of ca. 3.7 x 10 -4 cm2V -1s -1 (20 mM TBE buffer, pH 8.2), indicating insignificant effects of wall roughness on the bulk EOF. Numerical simulations showed that the additional volumes present in an injection cross due to curvature of the corners produced by micromilling lead to elongated sample plugs. PMMA microchip electrophoresis devices were used for a separation of pUC19 Sau3AI double-stranded DNA. The plate numbers achieved exceeded 1 million m -1 and were comparable to the plate numbers for the LiGA-based devices of similar geometry. In second application brass master was used as tool for preparation of poly(dimethylsiloxane) PDMS stencils for patterning of DNA microarrays onto a PMMA substrate. Four zip code probes immobilized onto the PMMA surface directed allele-specic ligation products containing mutations in the KRAS2 gene (12.2D, 12.2A, 12.2V, and 13.4D) to the appropriate address of a universal array with minimal amounts of crosshybridization or misligation.

  18. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population

    PubMed Central

    Logan, R W; Robledo, R F; Recla, J M; Philip, V M; Bubier, J A; Jay, J J; Harwood, C; Wilcox, T; Gatti, D M; Bult, C J; Churchill, G A; Chesler, E J

    2013-01-01

    Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics PMID:23433259

  19. High precision methods for locating the celestial intermediate pole and origin

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Wallace, P. T.

    2006-05-01

    Context: .The precession-nutation transformation describes the changing directions on the celestial sphere of the Earth's pole and an adopted origin of right ascension. The coordinate system for the celestial sphere is the geocentric celestial reference system, and the two directions are the celestial intermediate pole (CIP) and the celestial intermediate origin (CIO), the latter having supplanted the equinox for this purpose following IAU resolutions in 2000. The celestial coordinate triad based on the CIP and CIO is called the celestial intermediate reference system; the prediction of topocentric directions additionally requires the Earth rotation angle (ERA), the counterpart of Greenwich sidereal time (GST) in the former equinox based system. Aims: .The purpose of this paper is to review the different ways of calculating the CIP and CIO directions to precisions of a few microarcseconds over a time span of several centuries, meeting the requirements of high-accuracy applications. Methods: .Various implementations are described, their theoretical bases compared and the relationships between the expressions for the relevant parameters are provided. Semi-analytical and numerical comparisons have been made, based on the P03 precession and the IAU 2000A nutation, with slight modifications to the latter to make it consistent with P03. Results: .We have identified which transformations between celestial and terrestrial coordinates involve a minimum number of variables and coefficients for given accuracy objectives. The various methods are consistent at the level of a few microarcseconds over several centuries, and equal accuracy is achievable using both the equinox/GST paradigm and the CIO/ERA paradigm. Given existing nutation models, the most concise expressions for locating the CIP are based on the Fukushima-Williams bias-precession-nutation angles. The CIO can be located to a few microarcseconds using the CIO locator s. The equation of the origins (EO) is sensitive

  20. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  1. High precision measurements of the diamond Hugoniot in and above the melt region

    SciTech Connect

    Hicks, D; Boehly, T; Celliers, P; Bradley, D; Eggert, J; McWilliams, R S; Collins, G

    2008-08-05

    High precision laser-driven shock wave measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3-1.1% precision using a velocity interferometer. Impedance matching analysis, incorporating systematic errors in the equation-of-state of the quartz standard, was used to determine the Hugoniot with 1.2-2.7% precision in density. The results are in good agreement with published ab initio calculations which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar these measurements indicate that the mixed phase may be slightly more dense than would be expected from a simple interpolation between liquid and solid Hugoniots.

  2. Design of a phase-shifting interferometer in the extreme ultraviolet for high-precision metrology.

    PubMed

    Capeluto, María Gabriela; Marconi, Mario Carlos; Iemmi, Claudio Cesar

    2014-03-01

    The design of a phase-shift interferometer in the extreme ultraviolet (EUV) is described. The interferometer is expected to achieve a significantly higher precision as compared with similar instruments that utilize lasers in the visible range. The interferometer's design is specifically adapted for its utilization with a table top pulsed capillary discharge EUV laser. The numerical model evaluates the errors in the interferograms and in the retrieved wavefront induced by the shot-to-shot fluctuations and pointing instabilities of the laser. PMID:24663354

  3. "Brains before "Beauty"?" High Achieving Girls, School and Gender Identities

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky; Read, Barbara

    2010-01-01

    In recent years educational policy on gender and achievement has concentrated on boys' underachievement, frequently comparing it with the academic success of girls. This has encouraged a perception of girls as the "winners" of the educational stakes and assumes that they no longer experience the kinds of gender inequalities identified in earlier…

  4. High-Achieving Middle Schools for Latino Students in Poverty

    ERIC Educational Resources Information Center

    Jesse, Dan; Davis, Alan; Pokorny, Nancy

    2004-01-01

    This study was conducted to examine the characteristics of middle schools in which Latino students from low-income families made substantial achievement gains. Nine schools in Texas were selected where Latino students had shown strong gains in the Texas Assessment of Academic Skills. Data from onsite interviews, focus groups, and documents were…

  5. Dominant Achievement Goals across Tracks in High School

    ERIC Educational Resources Information Center

    Scheltinga, Peter A. M.; Kuyper, Hans; Timmermans, Anneke C.; van der Werf, Greetje P. C.

    2016-01-01

    The dominant achievement goals (DAGs) of 7,008 students in the third grade of Dutch secondary education (US grade 9) were investigated, based on Elliot & McGregors' 2 × 2 framework (2001), in relation to track-level and motivational variables. We found the mastery-approach goal and the performance-approach goal, generally considered adaptive,…

  6. Success Despite Socioeconomics: A Case Study of a High-Achieving, High-Poverty School

    ERIC Educational Resources Information Center

    Tilley, Thomas Brent; Smith, Samuel J.; Claxton, Russell L.

    2012-01-01

    This case study of a high-achieving, high-poverty school describes the school's leadership, culture, and programs that contributed to its success. Data were collected from two surveys (the School Culture Survey and the Vanderbilt Assessment of Leadership in Education), observations at the school site, and interviews with school personnel. The…

  7. Parenting Style, Perfectionism, and Creativity in High-Ability and High-Achieving Young Adults

    ERIC Educational Resources Information Center

    Miller, Angie L.; Lambert, Amber D.; Speirs Neumeister, Kristie L.

    2012-01-01

    The current study explores the potential relationships among perceived parenting style, perfectionism, and creativity in a high-ability and high-achieving young adult population. Using data from 323 honors college students at a Midwestern university, bivariate correlations suggested positive relationships between (a) permissive parenting style and…

  8. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  9. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    PubMed

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals.

  10. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    NASA Astrophysics Data System (ADS)

    Shipulya, N. D.; Konakov, S. A.; VKrzhizhanovskaya, V.

    2016-08-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.

  11. Geological effect of high-precise gravimetric and magnetic surveys in Yangqiao prospect in Biyang depression

    SciTech Connect

    Rongyuan, W.; Zhaoling, Y.; Zhangmin, G.; Xiaoliu, W. )

    1991-01-01

    This paper reports on Yangqiao prospect in Biyang depression which is an area where very high-degree exploration has been done. The complicated seismic and geological conditions in the border area of the depression cause very poor seismic data, so that exact structural configuration can not be known. Thus, high-precise gravimetric-magnetic surveys were done. The interpretations of gravimetric and magnetic data are mainly based on the properties of gravitational and magnetic fields. Local gravimetric and magnetic anomalies at Wangzhuang were discovered by performing forward fitting of observed gravimetric and magnetic data. The repeated seismic interpretation by reference to the gravimetric-magnetic interpretation result confirms the existence of an anticline structure in the local gravimetric and magnetic anomaly area. The effect of direct hydrocarbon prediction using high- precise gravimetric and magnetic data were checked in known Anpeng and Xiaermen oil fields. The check shows good effect.

  12. Process influences and correction possibilities for high precision injection molded freeform optics

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  13. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-04-01

    Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

  14. Highly Accurate and Precise Infrared Transition Frequencies of the H_3^+ Cation

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Markus, Charles R.; Hodges, James N.; Kocheril, G. Stephen; McCall, Benjamin J.

    2016-06-01

    Calculation of ab initio potential energy surfaces for molecules to high accuracy is only manageable for a handful of molecular systems. Among them is the simplest polyatomic molecule, the H_3^+ cation. In order to achieve a high degree of accuracy (<1 wn) corrections must be made to the to the traditional Born-Oppenheimer approximation that take into account not only adiabatic and non-adiabatic couplings, but quantum electrodynamic corrections as well. For the lowest rovibrational levels the agreement between theory and experiment is approaching 0.001 wn, whereas the agreement is on the order of 0.01 - 0.1 wn for higher levels which are closely rivaling the uncertainties on the experimental data. As method development for calculating these various corrections progresses it becomes necessary for the uncertainties on the experimental data to be improved in order to properly benchmark the calculations. Previously we have measured 20 rovibrational transitions of H_3^+ with MHz-level precision, all of which have arisen from low lying rotational levels. Here we present new measurements of rovibrational transitions arising from higher rotational and vibrational levels. These transitions not only allow for probing higher energies on the potential energy surface, but through the use of combination differences, will ultimately lead to prediction of the "forbidden" rotational transitions with MHz-level accuracy. L.G. Diniz, J.R. Mohallem, A. Alijah, M. Pavanello, L. Adamowicz, O.L. Polyansky, J. Tennyson Phys. Rev. A (2013), 88, 032506 O.L. Polyansky, A. Alijah, N.F. Zobov, I.I. Mizus, R.I. Ovsyannikov, J. Tennyson, L. Lodi, T. Szidarovszky, A.G. Császár Phil. Trans. R. Soc. A (2012), 370, 5014 J.N. Hodges, A.J. Perry, P.A. Jenkins II, B.M. Siller, B.J. McCall J. Chem. Phys. (2013), 139, 164201 A.J. Perry, J.N. Hodges, C.R. Markus, G.S. Kocheril, B.J. McCall J. Molec. Spectrosc. (2015), 317, 71-73.

  15. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Chen, H.; Yu, T.; Li, B.

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  16. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.

    PubMed

    Yang, Z; Chen, H; Yu, T; Li, B

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage. PMID:27587158

  17. High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC

    PubMed Central

    Scheuermann, Thomas H.; Brautigam, Chad A.

    2014-01-01

    Isothermal titration calorimetry (ITC) has become a standard and widely available tool to measure the thermodynamic parameters of macromolecular associations. Modern applications of the method, including global analysis and drug screening, require the acquisition of multiple sets of data; sometimes these data sets number in the hundreds. Therefore, there is a need for quick, precise, and automated means to process the data, particularly at the first step of data analysis, which is commonly the integration of the raw data to yield an interpretable isotherm. Herein, we describe enhancements to an algorithm that previously has been shown to provide an automated, unbiased, and high-precision means to integrate ITC data. These improvements allow for the speedy and precise serial integration of an unlimited number of ITC data sets, and they have been implemented in the freeware program NITPIC, version 1.1.0. We present a comprehensive comparison of the performance of this software against an older version of NITPIC and a current version of Origin, which is commonly used for integration. The new methods recapitulate the excellent performance of the previous versions of NITPIC while speeding it up substantially, and their precision is significantly better than that of Origin. This new version of NITPIC is therefore well suited to the serial integration of many ITC data sets. PMID:25524420

  18. Direct high-precision measurement of the magnetic moment of the proton.

    PubMed

    Mooser, A; Ulmer, S; Blaum, K; Franke, K; Kracke, H; Leiteritz, C; Quint, W; Rodegheri, C C; Smorra, C; Walz, J

    2014-05-29

    One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.

  19. High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC.

    PubMed

    Scheuermann, Thomas H; Brautigam, Chad A

    2015-04-01

    Isothermal titration calorimetry (ITC) has become a standard and widely available tool to measure the thermodynamic parameters of macromolecular associations. Modern applications of the method, including global analysis and drug screening, require the acquisition of multiple sets of data; sometimes these data sets number in the hundreds. Therefore, there is a need for quick, precise, and automated means to process the data, particularly at the first step of data analysis, which is commonly the integration of the raw data to yield an interpretable isotherm. Herein, we describe enhancements to an algorithm that previously has been shown to provide an automated, unbiased, and high-precision means to integrate ITC data. These improvements allow for the speedy and precise serial integration of an unlimited number of ITC data sets, and they have been implemented in the freeware program NITPIC, version 1.1.0. We present a comprehensive comparison of the performance of this software against an older version of NITPIC and a current version of Origin, which is commonly used for integration. The new methods recapitulate the excellent performance of the previous versions of NITPIC while speeding it up substantially, and their precision is significantly better than that of Origin. This new version of NITPIC is therefore well suited to the serial integration of many ITC data sets. PMID:25524420

  20. Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W.; Hill, Gerald F.; Wade, Larry O.; Perry, Murray G.

    1987-01-01

    A tunable diode laser instrument, denoted as DACOM (Differential Absorption CO Measurement), has been developed to meet the fast-response, high-precision CO measurement needs of the GTE (Global Tropospheric Experiment) program. Under the GTE program, DACOM participated in the three field missions of CITE 1 (Chemical Instrumentation Test and Evaluation 1), a project involving the intercomparison of trace gas measurement techniques. DACOM performance, including analyses of measurement error sources, is discussed for the ground-based mission at Wallops Island, VA (summer 1983), and two missions on the NASA CV-990 (fall 1983 and spring 1984). Examples of fast-response (about 1 s), high-precision (+ or - 1 part per billion by volume, + or - 1.5 percent of reading) airborne data are included to illustrate the capability of this instrument.

  1. High resolution, high precision, simultaneous measurements of δD and δ18O using a CRDS analyzer with an ultrasonic nebulizer sample preparation module.

    NASA Astrophysics Data System (ADS)

    Gkinis, Vasileios; Morrie, Valerie; Jones, Tyler; Vaughn, Bruce; White, James

    2013-04-01

    The recent advent of commercial Cavity Ring Down Spectroscopy (CRDS) has initiated the development of numerous new Continuous Flow Analysis (CFA) methods for high resolution, high precision measurements of greenhouse gas concentrations and isotopic ratios of water from ice cores. Depending on the sample preparation method and the calibration schemes applied, these new systems have proved to be precise, accurate and extremely versatile, allowing for high quality measurements performed in the field. However there are still challenges to be addressed. Measurements need to be accurately calibrated with respect to international standards (SMOW - SLAP in the case of water). A proper characterization of the precision and the accuracy of a system is another task that needs to be performed. Apparent sample diffusion affects the produced signals in ways that are unique not only to different systems but also to different implementations of the same system, reducing the resolution that can be obtained. Parameters such as melt rate, sample flow, cavity volume and the method of sample preparation can significantly alter the performance of the analytical method. These effects can be accurately characterized with a series of experiments and consequently corrected for using spectral filtering techniques. Last but not least, proper monitoring of the melting process is necessary in order to assign an ice core depth scale on the data produced. In this work we present an integrated system for high resolution, high precision water isotopic analysis from a continuously melted ice core sample, using a commercial CRDS analyzer (Picarro L2130 -i) . The system utilizes an ultrasonic concentric nebulizer in order to achieve complete fractionation free vaporization of the continuous flow water sample. An adjacent home made calibration module allows for the injection of local standards accurately characterized with respect to the SMOW - SLAP scale. The system has been used for the high

  2. VizieR Online Data Catalog: High-precision abundances for stars with planets (Ramirez+, 2014)

    NASA Astrophysics Data System (ADS)

    Ramirez, I.; Melendez, J.; Asplund, M.

    2013-11-01

    High-precision stellar parameters and chemical abundances are presented for 111 stars; 52 of them are late-F type dwarfs and 59 are metal-rich solar analogs. The atomic linelist employed in the derivation of chemical abundances is also given. This linelist includes hyperfine structure parameters for some species. The stars' isochrone masses and ages are also reported, along with estimates of chromospheric activity. (5 data files).

  3. High-precision gravity network to monitor temporal variations in gravity across Yucca Mountain, Nevada

    SciTech Connect

    Harris, R.N.; Ponce, D.A.

    1988-12-31

    Repeatable high-precision gravity surveys provide a method of monitoring temporal variations in the gravity field. Fluctuations in the gravity field may indicate water table changes, crustal deformation, or precursors to volcanism and earthquakes. This report describes a high-precision gravity loop which has been established across Yucca Mountain, Nevada in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) program. The purpose of this gravity loop is to monitor temporal variations in gravity across Yucca Mountain in an effort to interpret and predict the stability of the tectonic framework and changes in the subsurface density field. Studies of the tectonic framework which include volcanic hazard seismicity, and faulting studies are in progress. Repeat high-precision gravity surveys are less expensive and can be made more rapidly than a corresponding leveling survey. High-precision gravity surveys are capable of detecting elevation changes of 3 to 5 cm, and thus can be employed as an efficient tool for monitoring vertical crustal movements while supplementing or partially replacing leveling data. The Yucca Mountain gravity network has been tied to absolute gravity measurements established in southern Nevada. These ties provide an absolute datum for comparing repeat occupations of the gravity network, and provide a method of monitoring broad-scale changes in gravity. Absolute gravity measurements were also made at the bottom and top of the Charleston Peak calibration loop in southern Nevada. These absolute gravity measurements provide local control of calibrating gravity meters over the gravity ranges observed at Yucca Mountain. 13 refs., 7 figs., 3 tabs.

  4. Ultrashort pulse Cr4+:YAG laser for high precision infrared frequency interval measurements

    PubMed Central

    Alcock, A. J.; Ma, P.; Poole, P. J.; Chepurov, S.; Czajkowski, A.; Bernard, J. E.; Madej, A. A.; Fraser, J. M.; Mitchell, I. V.; Sorokina, I. T.; Sorokin, E.

    2010-01-01

    A cavity stabilized, SESAM mode-locked Cr4+:YAG laser capable of generating sub-100 fs pulses has been developed. Locking the 130-MHz pulse repetition frequency to that of a hydrogen maser-referenced frequency synthesizer provides a 30-nm wide frequency comb for the 1530-nm wavelength region. In conjunction with a pair of acetylene stabilized, external cavity diode lasers, this laser provides a high precision measurement tool for the determination of acetylene transition frequencies. PMID:19498916

  5. Selection and use of TLDS for high precision NERVA shielding measurements

    NASA Technical Reports Server (NTRS)

    Woodsum, H. C.

    1972-01-01

    An experimental evaluation of thermoluminescent dosimeters was performed in order to select high precision dosimeters for a study whose purpose is to measure gamma streaming through the coolant passages of a simulated flight type internal NERVA reactor shield. Based on this study, the CaF2 chip TLDs are the most reproducible dosimeters with reproducibility generally within a few percent, but none of the TLDs tested met the reproducibility criterion of plus or minus 2%.

  6. A highly efficient, compact Yb:KYW laser for mobile precision systems

    SciTech Connect

    Kuznetsov, S A; Pivtsov, V S

    2014-05-30

    We have developed a promising scheme of a multimodediode-pumped ytterbium laser. The Yb:KYW laser in the cw regime demonstrates record-high differential (40%) and total optical (35%) efficiencies. Mode locking is realised, which allows the scheme to be used for the development of compact laser systems, such as mobile femtosecond precision synthesisers. The peculiarities of the laser operation and ways of further improving its efficiency are discussed. (lasers)

  7. A high precision gamma-ray spectrometer for the Mars-94 mission

    SciTech Connect

    Mitrofanov, I.G.; Anfimov, D.S.; Chernenko, A.M.

    1994-06-01

    The high precision gamma-ray spectrometer (PGS) is scheduled to be launched on the Mars-94 mission in October 1994, and to go into an elliptical polar orbit around Mars. The PGS consists of two high-purity germanium (Ge) detectors, associated electronics, and a passive cooler and will be mounted on one of the solar panels. The PGS will measure nuclear gamma-ray emissions from the martian surface, cosmic gamma-ray bursts, and the high-energy component of solar flares in the broad energy range from 50 KeV to 8 MeV using 4096 energy channels.

  8. The high precision control of the satellites formation for diffraction imaging

    NASA Astrophysics Data System (ADS)

    Yang, Guang; He, Liang; Song, Ting; Sun, Binglei; Hao, Tianwei

    2016-01-01

    To satisfy need of high resolution observation from space. This article elaborates a method of high precision spacecraft formation control based on file diffraction theory. Improving the spacecraft control accuracy to millimeter is a challenge. With the method in this article this challenge can be solved. The algorithm in this article concerning the vibration of spacecraft and based on dynamic modeling of even relative quaternion theory deduced a method of attitude and orbit integrated control. Using this control algorithm to simulation can get the result that it can make the spacecraft integrate formation control as the technical basis of space high resolution observation.

  9. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  10. High-precision x-ray spectroscopy in few-electron ions

    NASA Astrophysics Data System (ADS)

    LeBigot, E. O.; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A.; Hirtl, A.; Fuhrmann, H.; Indelicato, P.; dos Santos, J. M. F.; Schlesser, S.; Simons, L. M.; Stingelin, L.; Trassinelli, M.; Veloso, J. F. C. A.; Wasser, A.; Zmeskal, J.

    2009-05-01

    The experimental and spectrum analysis procedures that led to about 15 new, high-precision, relative x-ray line energy measurements are presented. The measured lines may be used as x-ray reference lines in the 2.4-3.1 keV range. Applications also include tests of the atomic theory, and in particular of quantum electrodynamics and of relativistic many-body theory calculations. The lines originate from 2- to 4-electron ions of sulfur (Z=16), chlorine (Z=17) and argon (Z=18). The precision reached for their energy ranges from a few parts per million (ppm) to about 50 ppm. This places the new measurements among the most precise performed in mid-Z highly charged ions (Z is the nuclear charge number). The elements of the experimental setup are described: the ion source (an electron cyclotron resonance ion trap), the spectrometer (a single, spherically bent crystal spectrometer), as well as the spectrum acquisition camera (low-noise, high-efficiency CCD). The spectrum analysis procedure, which is based on a full simulation of the spectrometer response function, is also presented.

  11. High precision U-PB geochronology and implications for the tectonic evolution of the Superior Province

    NASA Technical Reports Server (NTRS)

    Davis, D. W.; Corfu, F.; Krogh, T. E.

    1986-01-01

    The underlying mechanisms of Archean tectonics and the degree to which modern plate tectonic models are applicable early in Earth's history continue to be a subject of considerable debate. A precise knowledge of the timing of geological events is of the utmost importance in studying this problem. The high precision U-Pb method has been applied in recent years to rock units in many areas of the Superior Province. Most of these data have precisions of about + or - 2-3 Ma. The resulting detailed chronologies of local igneous development and the regional age relationships furnish tight constraints on any Archean tectonic model. Superior province terrains can be classified into 3 types: (1) low grade areas dominated by meta-volcanic rocks (greenstone belts); (2) high grade, largely metaplutonic areas with abundant orthogneiss and foliated to massive I-type granitoid bodies; and (3) high grade areas with abundant metasediments, paragneiss and S-type plutons. Most of the U-Pb age determinations have been done on type 1 terrains with very few having been done in type 3 terrains. A compilation of over 120 ages indicates that the major part of igneous activity took place in the period 2760-2670 Ma, known as the Kenoran event. This event was ubiquitous throughout the Superior Province.

  12. High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis.

    PubMed

    Zheng, Xianlin; Lu, Yiqing; Zhao, Jiangbo; Zhang, Yuhai; Ren, Wei; Liu, Deming; Lu, Jie; Piper, James A; Leif, Robert C; Liu, Xiaogang; Jin, Dayong

    2016-01-19

    Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 μm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 μm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles. PMID:26669618

  13. Relationship between High School Mathematical Achievement and Quantitative GPA

    ERIC Educational Resources Information Center

    Brown, Jennifer L.; Halpin, Glennelle; Halpin, Gerald

    2015-01-01

    The demand for STEM graduates has increased, but the number of incoming freshmen who declare a STEM major has remained stagnant. High school courses, such as calculus, can open or close the gate for students interested in careers in STEM. The purpose of this study was to determine if high school mathematics preparation was a significant…

  14. Relationships among Stress, Coping, and Mental Health in High-Achieving High School Students

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Shaunessy, Elizabeth; Hardesty, Robin

    2008-01-01

    This study investigates the relationships among stress, coping, and mental health in 139 students participating in an International Baccalaureate (IB) high school diploma program. Mental health was assessed using both positive indicators (life satisfaction, academic achievement, academic self-efficacy) and negative indicators (psychopathology) of…

  15. The Information Search Process of High-, Middle-, and Low-Achieving High School Seniors.

    ERIC Educational Resources Information Center

    Kuhlthau, Carol C.

    1989-01-01

    Presents a model of the information search process as a complex series of stages involving thoughts and feelings as well as actions. A study that sought to verify the model using high school seniors from three different achievement levels is described, and the implications for library instruction are discussed. (five references) (CLB)

  16. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  17. Examining Organizational Practices That Predict Persistence among High-Achieving Black Males in High School

    ERIC Educational Resources Information Center

    Anderson, Kenneth Alonzo

    2016-01-01

    Background/Context: This article summarizes an increasing trend of antideficit Black male research in mathematics and highlights opportunities to add to the research. A review of the literature shows that antideficit researchers often examine relationships between individual traits and persistence of high-achieving Black males in mathematics.…

  18. Progress Towards a High-Precision Infrared Spectroscopic Survey of the H_3^+ Ion

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.

    2015-06-01

    The trihydrogen cation, H_3^+, represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods. By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision (˜ 1 MHz). Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels. O. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014. M. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303. L. Diniz, et al., Phys. Rev. A (2013), 88, 032506. L. Lodi, et al., Phys. Rev. A (2014), 89, 032505. J. Hodges, et al., J. Chem. Phys (2013), 139, 164201.

  19. Japanese High School Entrance Examinations and Scholastic Achievement.

    ERIC Educational Resources Information Center

    Togashi, Yutaka

    1985-01-01

    The Japanese high school entrance examinations were examined in detail for social studies, mathematics, and science test items. Most items measured knowledge and comprehension rather than synthesis, analysis, or scientific thinking. Implications for middle school instruction were discussed. (GDC)

  20. Practically Perfect in Every Way: Can Reframing Perfectionism for High-Achieving Undergraduates Impact Academic Resilience?

    ERIC Educational Resources Information Center

    Dickinson, Mary J.; Dickinson, David A. G.

    2015-01-01

    This study focuses on a pan-disciplinary scheme that targeted high-achieving undergraduate students. Earlier research from the scheme argued that high achievers have discernibly different learning and personal development support needs. One of the most frequent self-reported challenges within this high-achieving group is perfectionism. This…

  1. High-precision iron isotope measurements of terrestrial and lunar materials

    NASA Astrophysics Data System (ADS)

    Beard, Brian L.; Johnson, Clark M.

    1999-06-01

    We present the analytical methods that have been developed for the first high-precision Fe isotope analyses that clearly identify naturally-occurring, mass-dependent isotope fractionation. A double-spike approach is used, which allows rigorous correction of instrumental mass fractionation. Based on 21 analyses of an ultra pure Fe standard, the external precision (1-SD) for measuring the isotopic composition of Fe is ±0.14 ‰/mass; for demonstrated reproducibility on samples, this precision exceeds by at least an order of magnitude that of previous attempts to empirically control instrumentally-produced mass fractionation (Dixon et al., 1993). Using the double-spike method, 15 terrestrial igneous rocks that range in composition from peridotite to rhyolite, 5 high-Ti lunar basalts, 5 Fe-Mn nodules, and a banded iron formation have been analyzed for their iron isotopic composition. The terrestrial and lunar igneous rocks have the same isotopic compositions as the ultra pure Fe standard, providing a reference Fe isotope composition for the Earth and Moon. In contrast, Fe-Mn nodules and a sample of a banded iron formation have iron isotope compositions that vary over a relatively wide range, from δ 56Fe = +0.9 to -1.2 ‰; this range is 15 times the analytical errors of our technique. These natural isotopic fractionations are interpreted to reflect biological ("vital") effects, and illustrate the great potential Fe isotope studies have for studying modern and ancient biological processes.

  2. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  3. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; Yoshimura, E. M.; Lindstrom, T. D.; Ahmad, S.; Taylor, K. K.; Mardirossian, G.

    2005-12-01

    The potential of using the optically stimulated luminescence (OSL) technique with aluminium oxide (Al2O3:C) dosimeters for a precise and accurate estimation of absorbed doses delivered by high-energy photon beams was investigated. This study demonstrates the high reproducibility of the OSL measurements and presents a preliminary determination of the depth-dose curve in water for a 6 MV photon beam from a linear accelerator. The uncertainty of a single OSL measurement, estimated from the variance of a large sample of dosimeters irradiated with the same dose, was 0.7%. In the depth-dose curve obtained using the OSL technique, the difference between the measured and expected doses was <=0.7% for depths between 1.5 and 10 cm, and 1.1% for a depth of 15 cm. The readout procedure includes a normalization of the response of the dosimeter with respect to a reference dose in order to eliminate variations in the dosimeter mass, dosimeter sensitivity, and the reader's sensitivity. This may be relevant for quality assurance programmes, since it simplifies the requirements in terms of personnel training to achieve the precision and accuracy necessary for radiotherapy applications. We concluded that the OSL technique has the potential to be reliably incorporated in quality assurance programmes and dose verification.

  4. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses

    NASA Astrophysics Data System (ADS)

    Das, Jayajit

    2016-03-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early time T cell signaling. I show using exact analytical calculations and numerical simulations that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and, ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in interpreting single cell kinetics from cell population level results.

  5. High precision Multifrequency Electrical Impedance Tomography System and Preliminary imaging results on saline tank.

    PubMed

    Xuetao, Shi; Fusheng, You; Feng, Fu; Ruigang, Liu; Xiuzhen, Dong

    2005-01-01

    To establish a high precision data acquisition system for multi-frequency electrical impedance tomography (EIT), a series of methods were introduced. Those methods include building a driving signal with up to four frequency components to diminish the effect of the dynamic change of tissues resistivity, extracting the impedance information by a digital demodulator that can improve the SNR by 8 times. The system that established can work at a wide range from 1.6kHz to 380kHz. Its CMRR is 74dB at 100kHz. The output impedance of current source is 2MΩ at that frequency. And measurement precision on a 100ohm resistor is better than -80dB in full bandwidth. Both the quasi-static and the dynamic imaging results based on a saline tank can reflect the resistivity changes inside the phantom clearly. Therefore, the system was competent in multifrequency EIT research work.

  6. Communication: High precision sub-Doppler infrared spectroscopy of the HeH{sup +} ion

    SciTech Connect

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    2014-09-14

    The hydrohelium cation, HeH{sup +}, serves as an important benchmark for ab initio calculations that take into account non-adiabatic, relativistic, and quantum electrodynamic effects. Such calculations are capable of predicting molecular transitions to an accuracy of ∼300 MHz or less. However, in order to continue to push the boundaries on these calculations, new measurements of these transitions are required. Here we measure seven rovibrational transitions in the fundamental vibrational band to a precision of ∼1 MHz using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These newly measured transitions are included in a fit to the rotation-vibration term values to derive refined spectroscopic constants in the v = 0 and v = 1 vibrational states, as well as to calculate rotation-vibration energy levels with high precision.

  7. A high precision optical angle measuring instrument for large optical axis offsets

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Tan, Zuojun

    2014-09-01

    In many industrial activities such as manufacturing and inspection, optical axis offsets measurement is an essential process for keeping and improving the quality of products. The laser autocollimation method is improved to detect the large angular displacement with high precision by using a re-imaging technology. A large optical screen made of frosted glass is located at the focal position of the objective lens instead of the detector. A precision CCD imaging system was employed to measure the displacement of the light spot on the optical screen. The sub-pixel position of center of the light spot can be obtained accurately through the centroid and Gaussian fit methods. The actual test results show that the total systematic error of the optical angle measuring instrument in the mode of measuring the range 8°×8° does not exceed 0.16'.

  8. Achieving high-value cardiac imaging: challenges and opportunities.

    PubMed

    Wiener, David H

    2014-01-01

    Cardiac imaging is under intense scrutiny as a contributor to health care costs, with multiple initiatives under way to reduce and eliminate inappropriate testing. Appropriate use criteria are valuable guides to selecting imaging studies but until recently have focused on the test rather than the patient. Patient-centered means are needed to define the true value of imaging for patients in specific clinical situations. This article provides a definition of high-value cardiac imaging. A paradigm to judge the efficacy of echocardiography in the absence of randomized controlled trials is presented. Candidate clinical scenarios are proposed in which echocardiography constitutes high-value imaging, as well as stratagems to increase the likelihood that high-value cardiac imaging takes place in those circumstances.

  9. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    PubMed Central

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  10. Computational Calorimetry: High-Precision Calculation of Host-Guest Binding Thermodynamics.

    PubMed

    Henriksen, Niel M; Fenley, Andrew T; Gilson, Michael K

    2015-09-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van't Hoff equation. Excellent agreement between the direct and van't Hoff methods is demonstrated for both host-guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design.

  11. High-precision lattice calculation of the decay constants fB and fBs

    NASA Astrophysics Data System (ADS)

    Detar, Carleton; Bazavov, Alexei; Bernard, Claude; Bouchard, Christopher; Brown, Nathan; Du, Daping; El Khadra, Aida; Freeland, Elizabeth; Gamiz, Elvira; Gottlieb, Steven; Na, Heechang; Heller, Urs; Komijani, Javad; Kronfeld, Andreas; Laiho, John; MacKenzie, Paul; Neil, Ethan; Simone, James; Sugar, Robert; Toussaint, Douglas; van de Water, Ruth; Zhou, Ran; Fermilab Lattice Collaboration; MILC Collaboration

    2016-03-01

    We present preliminary, high-precision results for the hadronic decay constants of the B and the Bs mesons from lattice QCD simulations using a highly improved quark formulation for both heavy and light valence quarks. Calculations are carried out with several heavy valence-quark masses on lattice ensembles with 2+1+1 flavors of HISQ sea quarks at five lattice spacings and three light sea quark mass ratios mud /ms , including approximately physical sea quark masses. This range of parameters provides excellent control of the continuum limit and of heavy-quark discretization errors. Present affiliation: Ohio Supercomputer Center.

  12. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors

    NASA Technical Reports Server (NTRS)

    Vudler, Vladimir

    2012-01-01

    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  13. Precision blood-leak detector with high long-time stability

    NASA Astrophysics Data System (ADS)

    Georgiadis, Christos; Kleuver, Wolfram

    1999-11-01

    With this publication a precision blood-leak-detector is presented. The blood-leak-detector is used for recognition of fractures in the dialyzer of a kidney-machine. It has to detect safely a blood flow of ml/min to exclude any risk for the patient. A lot of systems exist for blood-leak-detection. All of them use the same principle. They detect the light absorption in the dialyze fluid. The actual used detectors are inferior to the new developed sensor in resolution and long-time stability. Regular test of the existing systems and high failure rates are responsible for the high maintenance.

  14. Achieving high CRI from warm to super white

    NASA Astrophysics Data System (ADS)

    Bailey, Edward; Tormey, Ellen S.

    2007-09-01

    Light sources which produce a high color rendering index (CRI) have many applications in the lighting industry today. High color rendering accents the rich color which abounds in nature, interior design, theatrical costumes and props, clothing and fabric, jewelry, and machine vision applications. Multi-wavelength LED sources can pump phosphors at multiple stokes shift emission regimes and when combined with selected direct emission sources can allow for greater flexibility in the production of warm-white and cool white light of specialty interest. Unique solutions to R8 and R14 CRI >95 at 2850K, 4750K, 5250K, and 6750K presented.

  15. High precision spatial and temporal control of neural circuitry using a semi-automated multi-wavelength nanopatterning system

    NASA Astrophysics Data System (ADS)

    Mitnala, Sandhya; Huebshman, Michael; Herold, Christian; Herz, Joachim; Garner, Harold

    2009-02-01

    It has been one of the most discussed and intriguing topics -the quest to control neural circuitry as a precursor to decoding the operations of the human brain and manipulating its diseased state. Electrophysiology has created a gateway to control this circuitry with high precision. However, it is not practical to apply these techniques to living systems because these techniques are invasive and lack the spatial resolution necessary to properly address various neural cell components, cell assemblies or even tissues. Here we describe a new instrument that has the potential to replace the conventional patch clamping technique, the workhorse of neural physiology. A Digital Light Processing system from Texas Instruments and an Olympus IX71 inverted microscope were combined to achieve neuronal control at a subcellular spatial resolution. Accompanying these two technologies can be almost any light source, and for these experiments a pair of pulsed light sources that produced two pulse trains at different wavelengths tuned to activate or inactivate selectively the ChR2 and NpHR channels that were cloned to express light sensitive versions in neurons. Fura- 2 ratiometric fluorescent dye would be used to read-out calcium activity. The Pulsed light sources and a filter wheel are under computer control using a National Instruments digital control board and a CCD camera used to acquire real time cellular responses to the spatially controlled pulsed light channel activation would be controlled and synchronized using NI LabVIEW software. This will provide for a millisecond precision temporal control of neural circuitry. Thus this technology could provide researchers with an optical tool to control the neural circuitry both spatially and temporally with high precision.

  16. A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability

    NASA Astrophysics Data System (ADS)

    Patacci, Marco

    2016-04-01

    A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.

  17. Community Schools Seek to Improve High School Achievement, College Readiness

    ERIC Educational Resources Information Center

    Gilroy, Marilyn

    2011-01-01

    The Coalition for Community Schools, an alliance of more than 150 national, state, and local organizations, is bringing public schools in partnership with community resources to improve student success. While that might seem like an abstract idea, it has very concrete goals, such as boosting high school graduation rates and college readiness.…

  18. High-Achieving Schools Put Equity Front and Center

    ERIC Educational Resources Information Center

    Gleason, Sonia Caus; Gerzon, Nancy

    2014-01-01

    How does professional learning look and feel in high-poverty schools where every student makes at least one year's worth of progress every year? How do schools and leaders put all the varied components of professional learning together so that they support all students learning every day? What professional learning grounds and sustains…

  19. Organizational Citizenship of Faculty and Achievement of High School Students

    ERIC Educational Resources Information Center

    DiPaola, Michael F.; Hoy, Wayne K.

    2005-01-01

    All successful organizations, including successful high schools, have employees who go beyond their formal job responsibilities and freely give of their time and energy to succeed. Organ was the first to use the phrase "organizational citizenship behavior" (OCB) to denote organizationally beneficial behavior of workers that was not prescribed but…

  20. Academic Dishonesty among Gifted and High-Achieving Students

    ERIC Educational Resources Information Center

    Geddes, Kimberly A.

    2011-01-01

    Gifted high school students are essentially absent in the research concerning academic integrity; however, over the past few years, educators of gifted students have noticed an increase in the occurrences of academic dishonesty among students in gifted classrooms (Abilock, 2009). This research may be analyzed to provide some insight into the…

  1. Vocational Interests of Intellectually Gifted and Highly Achieving Young Adults

    ERIC Educational Resources Information Center

    Vock, Miriam; Koller, Olaf; Nagy, Gabriel

    2013-01-01

    Background: Vocational interests play a central role in the vocational decision-making process and are decisive for the later job satisfaction and vocational success. Based on Ackerman's (1996) notion of "trait complexes," specific interest profiles of gifted high-school graduates can be expected. Aims: Vocational interests of gifted and highly…

  2. Common Core and America's High-Achieving Students

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.

    2015-01-01

    While the merit and politics of the Common Core State Standards (CCSS) have been much debated and discussed, one topic has been virtually ignored: What do the standards portend for America's high-ability students? This brief addresses that question and provides guidance for CCSS-implementing districts and schools as they seek to help these…

  3. The Relationship between Highly Qualified Teachers and Student Academic Achievement

    ERIC Educational Resources Information Center

    Macken, Sherry Lou

    2013-01-01

    This study examined the relationship between the percentage of highly qualified teachers and standardized measures of student proficiency in the core academic subjects of mathematics, reading, science, social studies, and writing. Signed into law in January of 2002 by President George W. Bush, the No Child Left Behind (NCLB) Act requires teachers…

  4. More High-Achieving Students Are Choosing Community Colleges First

    ERIC Educational Resources Information Center

    Pluviose, David

    2008-01-01

    Certainly, "Tonight Show" host Jay Leno has nurtured the perception that community colleges are a punishment for underperforming high school students by joking that community colleges aren't "real colleges." This article shows that this perception belies the reality that contemporary community colleges serve students seeking trade skills but also…

  5. Park View High School: A World of Achievement

    ERIC Educational Resources Information Center

    Principal Leadership, 2010

    2010-01-01

    Entering the lobby of Park View High School in Sterling, VA, is like entering another world. The diversity in the student body is reflected in flags from 63 of the 80 countries that are represented in the student population, and in a special project for Hispanic Heritage Month, which covers the walls of an entire hallway. The school walls,…

  6. Testing Theories of Learning: Effects on High School Achievement.

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Cool, Valerie A.

    Theories of school learning consistently point to variables such as ability, time (e.g., homework), quality of instruction, motivation, and academic coursework as important influences on learning. In this study, path analysis was used to test the direct and indirect effects of these variables on high school learning, with learning measured by both…

  7. Gender, Student Motivation and Academic Achievement in a Midsized Wisconsin High School

    ERIC Educational Resources Information Center

    Lutzke, Steven Ronald

    2013-01-01

    This mixed-methods study investigated relationships among gender, academic motivation and achievement in a mid-sized Wisconsin high school. A questionnaire was developed that focused on perceived ability, achievement motives and achievement goals. Interviews with teachers focused on relationships among academic motivation and gender achievement.…

  8. High-precision calibration of a Scanning-Probe Microscope (SPM) for manufacturing applications

    SciTech Connect

    Chernoff, D.A.; Lohr, J.D.; Hansen, D.; Lines, M.

    1996-12-31

    For ordinary SPM (Scanning Probe Microscope) work, accuracy of XYZ length measurements of about 5% is acceptable. This is accomplished by periodic calibration checks (and adjustments, if required). Measurement of critical dimensions such as feature width and spacing on integrated circuits of compact discs requires much higher accuracy. For example, the new DVD (digital video disc) standard calls for a mean track pitch of 740 nm with a maximum allowable jitter (range) of 30 nm. To achieve a range of 30 nm, the standard deviation should be 10 nm or less. According to the gage-maker`s rule, the measurement tool should be 4x more precise than the object being measured, so we need a standard deviation of 2.5 nm. This report describes the combined use of a new type of calibration standard and new software to meet these requirements.

  9. Impact of learning orientation on African American children's attitudes toward high-achieving peers.

    PubMed

    Marryshow, Derrick; Hurley, Eric A; Allen, Brenda A; Tyler, Kenneth M; Boykin, A Wade

    2005-01-01

    This study examined Ogbu's widely accepted thesis that African American students reject high academic achievement because they perceive its limited utility in a world where their upward mobility is constrained by racial discrimination. Boykin's psychosocial integrity model contends that Black students value high achievement but that discrepancies between their formative cultural experiences and those imposed in school lead them to reject the modes of achievement available in classrooms. Ninety Black children completed a measure of attitudes toward students who achieve via mainstream or African American cultural values. Participants rejected the mainstream achievers and embraced the African American cultural achievers. Moreover, they expected their teachers to embrace the mainstream achievers and reject those who achieved through high-verve behavior. Results suggest that Boykin's thesis is a needed refinement to Ogbu's ideas. They indicate that Black children may reject not high achievement but some of the mainstream cultural values and behaviors on which success in mainstream classrooms is made contingent.

  10. Principals’ Perception of Influence on Factors Affecting Student Achievement in Low- and High-Achieving Urban High Schools

    ERIC Educational Resources Information Center

    Bloom, Collette M.; Owens, Emiel W.

    2013-01-01

    The purpose of the study was to compare and contrast influences principals have on staffing, curriculum issues, and discipline policies in high- and low-performing urban high schools. The data for the present study were drawn from the first year follow up of the Educational Longitudinal Survey of 2002-2004 (ELS: 02), administered by the National…

  11. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  12. Flux Leakage Measurements for Defect Characterization Using a High Precision 3-AXIAL Gmr Magnetic Sensor

    NASA Astrophysics Data System (ADS)

    Pelkner, M.; Blome, M.; Reimund, V.; Thomas, H.-M.; Kreutzbruck, M.

    2011-06-01

    High-precision magnetic field sensors are of increasing interest in non destructive testing (NDT). In particular GMR-sensors (giant magneto resistance) are qualified because of their high sensitivity, high signal-to-noise ratio and high spatial resolution. With a GMR-gradiometer and a 3D-GMR-magnetometer we performed magnetic flux leakage measurements of artificial cracks and cracks of a depth of ≤50 μm still could be dissolved with a sufficient high signal-to-noise ratio. A semi-analytic magnetic dipole model that allows realistic GMR sensor characteristics to be incorporated is used for swiftly predicting magnetic stray fields. The reliable reconstruction based on measurements of artificial rectangular-shaped defects is demonstrated.

  13. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  14. Efforts toward achieving an unmanned, high-altitude LTA platform

    SciTech Connect

    Onda, Masahiko; Ford, M.L.

    1996-10-01

    The modern demands for an unmanned aerospace platform, capable of long-duration stationkeeping at high-altitudes, are well-known. Satellites, balloons, and aircraft have traditionally served in the role of platform, facilitating tasks ranging from telecommunications to deep-space astronomy. However, limitations on the performance and flexibility of these systems, as well as the intrinsically high-cost of satellite construction, operation, and repair, warrants development of a supplemental technology for the platform. Much has been written in the literature on the possible advantages of a lighter-than-air (LTA) platform, if such an LTA could be constructed. Potential applications include remote sensing, environmental monitoring, mobile communications, space and polar observations, cargo delivery, military reconnaissance, and others. At present, conventional LTA`s are not capable of serving in the manner specified. Within this context, a research program known as HALROP (High Altitude Long Range Observational Platform) is currently underway. The goal is to create a stratospheric platform, possibly in the form of a next generation LTA vehicle. The authors present a qualitative review of their efforts, focusing on milestones in the HALROP Program. 12 refs., 6 figs., 2 tabs.

  15. Achieving High Reliability Operations Through Multi-Program Integration

    SciTech Connect

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  16. ACT3: A High-speed, High-Precision Electrical Impedance Tomograph

    PubMed Central

    Cook, Raymond D.; Saulnier, Gary J.; Gisser, David G.; Goble, John C.; Newell, JC.; Isaacson, David

    2016-01-01

    This paper presents the design, implementation, and performance of Rensselaer’s third-generation Adaptive Current Tomograph, ACT3. This system uses 32 current sources and 32 phase-sensitive voltmeters to make a 32-electrode system that is capable of applying arbitrary spatial patterns of current. The instrumentation provides 16 b precision on both the current values and the real and reactive voltage readings and can collect the data for a single image in 133 ms. Additionally, the instrument is able to automatically calibrate its voltmeters and current sources and adjust the current source output impedance under computer control. The major system components are discussed in detail and performance results are given. Images obtained using stationary agar targets and a moving pendulum in a phantom as well as in vivo resistivity profiles showing human respiration are shown. PMID:7927393

  17. High-precision mass measurements of 25Al and 30P at JYFLTRAP

    NASA Astrophysics Data System (ADS)

    Canete, L.; Kankainen, A.; Eronen, T.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kolhinen, V. S.; Koponen, J.; Moore, I. D.; Reinikainen, J.; Rinta-Antila, S.

    2016-05-01

    The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( Δ = -8915.962(63) keV) and 30P ( Δ = -20200.854(64) keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but ≈ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al ( p, γ)26Si and 30P( p, γ)31S . In this work, Q_{(p,γ)} = 5513.99(13) keV and Q_{(p,γ)} = 6130.64(24) keV were obtained for 25Al and 30P , respectively. The effect of the more precise values on the resonant proton-capture rates has been studied. In addition to nuclear astrophysics, the measured QEC value of 25Al , 4276.805(45) keV, is relevant for studies of T = 1/2 mirror beta decays which have a potential to be used to test the Conserved Vector Current hypothesis.

  18. A micro-computer based system for high precision temperature measurement using Platinum RTD's

    NASA Astrophysics Data System (ADS)

    Matthew, W. T.

    1982-07-01

    A micro-computer controlled system for 10 channel high precision temperature data acquisition has been developed. The temperature sensing elements are Platinum Resistance Thermometer Devices (RTD's). Probe construction, using standard, commercially available RTD elements is described and wiring and switching requirements for the 4-wire resistance measurements are noted. The system consists of a Digital Equipment Corp. MINC-11 Computer linked, via IEEE-488 interface bus cables, to a HP (Hewlett-Packard) 34555A Digital Volt/Ohm Meter, an HP-3495A Scanner/Multiplexer, and, during calibration, a HP 2804A Quartz Thermometer. Two programs are employed: one for probe calibration and the other for the temperature measurement application. In the calibration program, the ten probes are individually calibrated against the Quartz Thermometer which has an absolute accuracy specification of + or 0.04 C. A proportional control water bath having a thermal stability specification of + or - 0.004 C provided the common thermal medium during calibration. Currently a three point calibration spanning 6 C (37 to 43 C) is employed. The individual probe constants are computed and recorded on a computer file for access via the temperature measurement program. An initial evaluation of the precision of the calibrated RTD system against the Quartz Thermometer reading yielded an overall precision of + or - 0.0004 C and worst case error of less than + or - 0.01 C.

  19. Advancing Minority High Achievement: National Trends and Promising Programs and Practices. A Report Prepared for the National Task Force on Minority High Achievement, the College Board.

    ERIC Educational Resources Information Center

    Borman, Geoffrey D.; Stringfield, Sam; Rachuba, Laura

    This report documents recent national progress in advancing the achievements of elementary-aged minority children, the potential for replicable whole-school reform designs to contribute to this advancement, and the individual, classroom, and school characteristics that distinguish those minority students who attain high levels of achievement. The…

  20. The Shear Testing Programme 2: Factors affecting high-precision weak-lensing analyses

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Heymans, Catherine; Bergé, Joel; Bernstein, Gary; Bridle, Sarah; Clowe, Douglas; Dahle, Håkon; Ellis, Richard; Erben, Thomas; Hetterscheidt, Marco; High, F. William; Hirata, Christopher; Hoekstra, Henk; Hudelot, Patrick; Jarvis, Mike; Johnston, David; Kuijken, Konrad; Margoniner, Vera; Mandelbaum, Rachel; Mellier, Yannick; Nakajima, Reiko; Paulin-Henriksson, Stephane; Peeples, Molly; Roat, Chris; Refregier, Alexandre; Rhodes, Jason; Schrabback, Tim; Schirmer, Mischa; Seljak, Uroš; Semboloni, Elisabetta; van Waerbeke, Ludovic

    2007-03-01

    The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak-lensing measurement, in preparation for the next generation of wide-field surveys. We review 16 current and emerging shear-measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. A desirable goal would be the combination of their best elements into one ultimate shear-measurement method. In this analysis, we achieve previously unattained discriminatory precision via a combination of more extensive simulations and pairs of galaxy images that have been rotated with respect to each other. That removes the otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our simulation approach is confirmed by testing the relative calibration of methods on real data. Weak-lensing measurements have improved since the first STEP paper. Several methods now consistently achieve better than 2 per cent precision, and are still being developed. However, we can now distinguish all methods from perfect performance. Our main concern continues to be the potential for a multiplicative shear calibration bias: not least because this cannot be internally calibrated with real data. We determine which galaxy populations are responsible for bias and, by adjusting the simulated observing conditions, we also investigate the effects of instrumental and atmospheric parameters. The simulated point spread functions are not allowed to vary spatially, to avoid additional confusion from interpolation errors. We have isolated several previously unrecognized aspects of galaxy shape measurement, in which focused development could provide further progress towards the sub-per cent level of precision desired for future surveys. These areas include the suitable treatment of

  1. Indirect Terahertz Spectroscopy of Molecular Ions Using Highly Accurate and Precise Mid-Ir Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mills, Andrew A.; Ford, Kyle B.; Kreckel, Holger; Perera, Manori; Crabtree, Kyle N.; McCall, Benjamin J.

    2009-06-01

    With the advent of Herschel and SOFIA, laboratory methods capable of providing molecular rest frequencies in the terahertz and sub-millimeter regime are increasingly important. As of yet, it has been difficult to perform spectroscopy in this wavelength region due to the limited availability of radiation sources, optics, and detectors. Our goal is to provide accurate THz rest frequencies for molecular ions by combining previously recorded microwave transitions with combination differences obtained from high precision mid-IR spectroscopy. We are constructing a Sensitive Resolved Ion Beam Spectroscopy setup which will harness the benefits of kinematic compression in a molecular ion beam to enable very high resolution spectroscopy. This ion beam is interrogated by continuous-wave cavity ringdown spectroscopy using a home-made widely tunable difference frequency laser that utilizes two near-IR lasers and a periodically-poled lithium niobate crystal. Here, we report our efforts to optimize our ion beam spectrometer and to perform high-precision and high-accuracy frequency measurements using an optical frequency comb. footnote

  2. Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation.

    PubMed

    Zhu, Yuzhang; Gao, Shoujian; Hu, Liang; Jin, Jian

    2016-06-01

    With the growing demand for small- and large-scale bioprocesses, advanced membranes with high energy efficiency are highly required. However, conventional polymer-based membranes often have to sacrifice selectivity for permeability. In this work, we report the fabrication of a thermoresponsive composite ultrathin membrane with precisely controlled nanopores for high-throughput separation. The composite membrane is made by grafting a PEG analogue thermoresponsive copolymer onto an ultrathin single-wall carbon nanotubes (SWCNTs) membrane via π-π interaction with no use of the common "grafting from" synthesis approach. The composite membrane exhibits ultrahigh water permeation flux as high as 6430 L m(-2) h(-1) at 40 °C, and more importantly, the pore size of the membrane could be finely adjusted by utilizing the thermoresponsive property of the grafted copolymer. With the temperature changing below and above the lower critical solution temperature (LCST) of the copolymer, the effective pore size of the membrane can be tuned precisely between approximately 12 and 14 nm, which could be applied to effectively separate materials with very small size differences through size sieving. PMID:27177239

  3. The Relationship between Parental Involvement and Student Achievement in a Rural Florida High School

    ERIC Educational Resources Information Center

    Jackson, Willie A.

    2011-01-01

    Parental involvement is viewed as critical to the development of effective schools and student achievement. The relationship between parental involvement and achievement test scores at a rural high school in Florida was not known. This high school has not met the state standards as determined by the Florida Comprehensive Achievement Test (FCAT)…

  4. High Achievement in Mathematics Education in India: A Report from Mumbai

    ERIC Educational Resources Information Center

    Raman, Manya

    2010-01-01

    This paper reports a study aimed at characterizing the conditions that lead to high achievement in mathematics in India. The study involved eight schools in the greater Mumbai region. The main result of the study is that the notion of high achievement itself is problematic, as reflected in the reports about mathematics achievement within and…

  5. Precision control of lesions by high-intensity focused ultrasound cavitation-based histotripsy through varying pulse duration.

    PubMed

    Xu, Jin; Bigelow, Timothy A; Nagaraju, Ravindra

    2013-07-01

    The goal of this experimental study was to explore the feasibility of acquiring controllable precision through varying pulse duration for lesions generated by cavitation-based histotripsy. Histotripsy uses high-intensity focused ultrasound (HIFU) at low duty factor to create energetic bubble clouds inside tissue to liquefy a region. It uses cavitation-mediated mechanical effects while minimizing heating, and has the advantages of real-time monitoring and lesion fidelity to treatment planning. In our study, histotripsy was applied to three groups of tissue-mimicking agar samples of different stiffnesses (29.4 ± 5.3, 44.8 ± 5.9, and 66.4 ± 7.1 kPa). B-mode imaging was used first to quantify bubble cluster dimensions in both water and agar. Then, a 4.5-mm-wide square (lateral to the focal plane) was scanned in a raster pattern with a step size of 0.75 mm in agar histotripsy experiments to estimate equivalent bubble cluster dimensions based on the histotripsyinduced damage. The 15-s exposure at each treatment location comprised 5000 sine-wave tone bursts at a spatial-peak pulseaverage intensity of 41.1 kW/cm2, with peak compressional and rarefactional pressures of 102 and 17 MPa, respectively. The results showed that bubble cluster width and length increased with pulse duration and decreased with agar stiffness. Therefore, a significant improvement in histotripsy precision could be achieved by reducing the pulse duration.

  6. Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Markovic, Bojan; Di Sieno, Laura; Contini, Davide; Bassi, Andrea; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2013-12-01

    We present a compact time-resolved spectrometer suitable for optical spectroscopy from 400 nm to 1 μm wavelengths. The detector consists of a monolithic array of 16 high-precision Time-to-Digital Converters (TDC) and Single-Photon Avalanche Diodes (SPAD). The instrument has 10 ps resolution and reaches 70 ps (FWHM) timing precision over a 160 ns full-scale range with a Differential Non-Linearity (DNL) better than 1.5 % LSB. The core of the spectrometer is the application-specific integrated chip composed of 16 pixels with 250 μm pitch, containing a 20 μm diameter SPAD and an independent TDC each, fabricated in a 0.35 μm CMOS technology. In front of this array a monochromator is used to focus different wavelengths into different pixels. The spectrometer has been used for fluorescence lifetime spectroscopy: 5 nm spectral resolution over an 80 nm bandwidth is achieved. Lifetime spectroscopy of Nile blue is demonstrated.

  7. Precision equation of state measurements on hydrocarbons in the high energy density regime

    NASA Astrophysics Data System (ADS)

    Barrios Garcia, Maria Alejandra

    The equation of state (EOS) of materials at extreme temperatures and pressures is of interest to astrophysics, high-energy-density physics, and inertial confinement fusion (ICF). The behavior of hydrocarbon materials at high-pressures (>1 Mbar) is essential to the understanding of ablator materials for ICF ignition targets. The EOS measurements on CHX presented here provide benchmark behavior of hydrocarbons under extreme conditions and the effect of stoichiometry (i.e. C:H ratio) on that behavior. Advances in diagnostics and analysis have made it possible to perform highly accurate measurements of shock velocity to ˜1% precision in transparent materials. This refines the impedance-match (IM) technique for laser-driven shock experiments producing precise EOS data at extreme pressures using a transparent standard such as alpha-quartz. The OMEGA laser was used to produce principal (single-shock) Hugoniot EOS measurements on polystyrene (CH), polypropylene (CH2), Glow-Discharge-Polymer (GDP) (C43H56O), and Germanium-doped GDP at shock pressures of 1--10 Mbar, with an alpha-quartz standard. This precision data tightly constrains the Hugoniot behavior of these hydrocarbons, even with the inclusion of systematic uncertainties inherent in the IM technique. A novel target design providing double-shock (re-shock) measurements along with principal Hugoniot data is presented. Results of the single-and double-shock experiments on these hydrocarbons are presented and compared to various EOS models. Temperature measurements are presented for CH and CH2; measuring both the thermal and kinematic behavior of these materials provides their complete shock EOS. Reflectance measurements on CH and CH2 show that both hydrocarbons transition from transparent insulators to reflecting conductors at pressures of 1 to 2 Mbar.

  8. A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.

    PubMed

    Sahoo, P; Malathi, N; Ananthanarayanan, R; Praveen, K; Murali, N

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ~2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO(3) in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.

  9. Predicting delay in reading achievement in a highly transparent language.

    PubMed

    Holopainen, L; Ahonen, T; Lyytinen, H

    2001-01-01

    A random sample of 91 preschool children was assessed prior to receiving formal reading instruction. Verbal and nonverbal measures were used as predictors for the time of instruction required to accurately decode pseudowords in the highly orthographically regular Finnish language. After 2 years, participants were divided into four groups depending on the duration of instruction they had required to reach 90 % accuracy in their reading of pseudowords. Participants were classified as precocious decoders (PD), who could read at school entry; early decoders (ED), who learned to read within the first 4 months of Grade 1; ordinary decoders (OD), who learned to read within 9 months; and late decoders (LD), who failed to reach the criterion after 18 months of reading instruction at Grade 2. Phonological awareness played a significant role only in differentiating PD from ED and OD. However, phonological awareness failed to predict the delayed learning process of LD. LD differed from all other groups in visual analogical reasoning in an analysis not containing phonological awareness measures. Letter knowledge and visual analogical reasoning explained above 90% of the PD-LD difference. Preschool composite (objects, colors, and digits) naming speed measures best predicted reading fluency at the end of Grade 2. The supportive role of orthographic knowledge in phonological awareness, the role of visual analogical reasoning, and the inability of phonological measures to discriminate late decoders are discussed.

  10. Routine hydrogen isotope measurement of cellulose nitrate by high-temperature pyrolysis--reference materials and precision.

    PubMed

    Knöller, Kay; Boettger, Tatjana; Haupt, Marika; Weise, Stephan M

    2007-01-01

    The determination of isotope ratios of non-exchangeable hydrogen in tree-ring cellulose is commonly based on the nitration of wood cellulose followed by online high-temperature pyrolysis and isotope ratio mass spectrometry measurement of cellulose nitrate samples. The application of this method requires a proper calibration using appropriate reference materials whose delta(2)H values have been reliably normalized to the V-SMOW/SLAP scale. In our study, we achieve this normalization by a direct alternating measurement of reference waters (V-SMOW and SLAP) and three cellulose nitrates chosen as reference materials. For that purpose, both water and solid organic samples are introduced into the pyrolysis reactor by silver capsule injection. The analytical precision of the water measurement using the capsule method is +/-1.5 per thousand. The hydrogen isotopic composition of three cellulose nitrate standards measured ranges from -106.7 to -53.9 per thousand. The standard deviation of the calculated means from five measurement periods of those standards is better than 1 per thousand. Twenty-four different measurements of the hydrogen isotope composition of cellulose nitrate were evaluated in order to assess the precision of the described method. We obtained an analytical precision of +/-3.0 per thousand as representative for the 95% confidence interval applicable for routine measurements of cellulose nitrate samples. Evidence was found for significant differences in the behavior of cellulose nitrate and PE foil during the pyrolitic conversion that emphasizes the need for a proper calibration of the routine measurements. This calibration can only be successful if the reference materials used have a very similar chemical composition and undergo the same preparation procedure as the samples.

  11. A Fission Time Projection Chamber for High Precision Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Snyder, Lucas; Greife, Uwe

    2010-11-01

    The design of next generation nuclear reactors and other nuclear applications are increasingly dependent on advanced simulations. Sensitivity studies have shown a need for high precision nuclear data to improve the predictive capabilities of these simulations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has constructed and is currently testing a prototype Time Projection Chamber (TPC) designed to measure fission cross sections to a higher accuracy than is capable with existing technology. In this talk, I will discuss the status of the fission TPC and progress on collecting the first set of data from ^252Cf spontaneous fission.

  12. On the recovery of gravity anomalies from high precision altimeter data

    NASA Technical Reports Server (NTRS)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  13. High precision measurements of the neutron spin structure in Hall A at Jlab

    SciTech Connect

    Annand, R M; Cates, G; Cisbani, E; Franklin, G B; Liyanage, N; Puckett, A; Rosner, G; Wojtsekhowski, B; Zheng, X

    2012-04-01

    Conclusions of this presentation are: (1) JLab energy upgrade will offer new exciting opportunities to study the nucleon (spin) structure such as high precision, unexplored phase space, flavor decomposition; (2) Large technological efforts is in progress to optimally exploit these opportunities; (3) HallA will be the first hall to get the new beam, first experiment expected to run in 2014; (4) A1n likely one of the first experiments to take data in the new 12 GeV era; and (5) SIDIS exp. will follow in couple of years.

  14. Achieving High-Frequency Optical Control of Synaptic Transmission

    PubMed Central

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  15. Research on high precision timing system based on FPGA non scanning imaging laser radar

    NASA Astrophysics Data System (ADS)

    Fu, Yanbo; Han, Shaokun; Wang, Liang; Ma, Yayun

    2015-08-01

    The article introduced the system structure and imaging principle of no three-dimensional imaging laser radar. This paper used the XC7K325T XILINX chip of KINTEX 7 series and used temporal interpolation method to measure distance. Rough side used PLL multiplier 400MHZ, which reached 2.5ns time accuracy. This method used a thin chip delay chains carry resources to reach 50ps accuracy and greatly improved the accuracy of the timing of imaging. Application technique used a delay line in APD array imaging system, such that each channel distance accuracy greatly improved. Echo signal by photoelectric conversion is completed by APD array detector, and designed by the impedance amplifier and other analog signal processing circuit. FPGA signal processing circuit is to complete the back-end processing, which is the timing function. FPGA array timer clock is to achieve coarse portion through timing, and delay line technique for measuring the length of time a non-integer multiple of the period of the laser pulse emission and the moment of reception, each stage of the delay units delay accuracy of sub ns magnitude, so as to achieve precision measuring part timers. With the above device was close imaging experiments, obtaining the 5 × 5 pixel imaging test results, presented to further improve system accuracy improved method.

  16. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    NASA Astrophysics Data System (ADS)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  17. Prediction of the applicability of active damping elements in high-precision machines

    NASA Astrophysics Data System (ADS)

    Holterman, Jan; de Vries, Theo J. A.

    2004-07-01

    The Smart Disc project at the Drebbel Institute of the University of Twente is aimed at the development of active structural elements for high-precision machines. The active elements consist of a piezoelectric position actuator and a collocated piezoelectric force sensor. As the actuators and sensors are collocated, the elements are especially suited for implementing robust active damping. The decision whether or not to incorporate active damping elements in a high-precision machine should ideally be made in an early design stage, i.e., at a time at which only limited knowledge of the vibration problem is available. Despite the uncertainties that may exist at that stage, one would like to be able to roughly predict the amount of damping that could possibly be obtained. For that reason, the present paper is concerned with the development of an analysis tool that may help in predicting the applicability of active damping elements in a mechanical structure of which only a rough model is available. Based on extensive simulations, several practical rules of thumb are given for the requirements for the mechanical structure and the active elements, in order to enable the realisation of relative damping values as high as 10%.

  18. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  19. Design of a fast and high-precision polygonal scanner for HDTV

    NASA Astrophysics Data System (ADS)

    Risse, Stefan; Guyenot, Volker

    1997-07-01

    With the continuing development of laser-display-technology, a new possibility for the production high level image projection is forwarded and with it the beginning of a new era in television: TV picture formats previously thought impossible, the sharpness, color intensity and unsurpassed resolution of which make the dream of home cinema a reality. The key to this experience is visible laser light in red, green and blue, projected on a screen with the aid of horizontal and vertical deflection units. In this paper, a primarily horizontal deflection system in the form of a rotating polygonal scanner is described. The design of this scanner assembly combines a double spherical air bearing with an integrated polygonal mirror for deflection and a high torque inside drive for quickly reaching high rotation. The Fraunhofer Institute of Applied Optics and Precision Engineering (IOF Jena) develops, from conception to assembled prototype, new self-acting precision bearing systems. This new scanner solution developed out of IOF's previous developments resulting in the first ever sealed, minimal-maintenance, self- acting bearing.

  20. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    PubMed

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7). PMID:26268189

  1. A low noise and high precision linear power supply with thermal foldback protection

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50 nV / √{ Hz } at 1 Hz and 20 nV / √{ Hz } white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/∘C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.

  2. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  3. A numerical method for determining highly precise electron energy distribution functions from Langmuir probe characteristics

    SciTech Connect

    Bang, Jin-Young; Chung, Chin-Wook

    2010-12-15

    Electron energy distribution functions (EEDFs) were determined from probe characteristics using a numerical ac superimposed method with a distortion correction of high derivative terms by varying amplitude of a sinusoidal perturbation voltage superimposed onto the dc sweep voltage, depending on the related electron energy. Low amplitude perturbation applied around the plasma potential represented the low energy peak of the EEDF exactly, and high amplitude perturbation applied around the floating potential was effective to suppress noise or distortion of the probe characteristic, which is fatal to the tail electron distribution. When a small random noise was imposed over the stabilized prove characteristic, the numerical differentiation method was not suitable to determine the EEDF, while the numerical ac superimposed method was able to obtain a highly precise EEDF.

  4. A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train

    PubMed Central

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run. PMID:22778582

  5. A high-precision sampling scheme to assess persistence and transport characteristics of micropollutants in rivers.

    PubMed

    Schwientek, Marc; Guillet, Gaëlle; Rügner, Hermann; Kuch, Bertram; Grathwohl, Peter

    2016-01-01

    Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties.

  6. A high-precision sampling scheme to assess persistence and transport characteristics of micropollutants in rivers.

    PubMed

    Schwientek, Marc; Guillet, Gaëlle; Rügner, Hermann; Kuch, Bertram; Grathwohl, Peter

    2016-01-01

    Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties. PMID:26283620

  7. Opportunities for High Precision Photometric Measurements of Variable Stars: Kepler Guest Investigator Program

    NASA Astrophysics Data System (ADS)

    Borucki, W. J.; Koch, D. G.; Basri, G. S.; Latham, D. W.; Howell, S. B.

    2004-12-01

    The Kepler Mission is designed to detect terrestrial planets by monitoring the flux of more than 100,000 dwarf stars for a period of four years at a cadence of 4/hour. During the early portion of the mission when the telemetry rate is high, approximately 170,000 stars will be monitored. The photometric precision for 6.5-hour integration periods will be 20 ppm to 89 ppm for 12th to 15th magnitude stars, respectively. Prior to the launch, multiband photometry of all target stars will be made to estimate spectral type, brightness temperature, and luminosity class. To the extent possible, the initial target list will exclude evolved stars and those known to be variable. Sometime after the first year, the target list will be trimmed by removing those stars found to be too variable to detect planets unless requests for continued observations are received from the stellar astrophysics community. A Guest Observer program is being developed to accommodate those wishing to observe targets in the 140 square degree Kepler field of view centered at RA 19h 22m 40s, Dec +44° 30'. A webtool is available to assess whether your favorite object is on the Kepler detectors. This program represents an unprecedented opportunity to obtain extremely high precision photometry over very long (typically 3 month) intervals with almost continuous coverage. At any given time there will be 2000-3000 Guest Observer targets (a few of which can be observed with a one-minute cadence).

  8. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  9. A high precision position sensor design and its signal processing algorithm for a maglev train.

    PubMed

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  10. Study of highly precise outdoor characterization technique for photovoltaic modules in terms of reproducibility

    NASA Astrophysics Data System (ADS)

    Fukabori, Akihiro; Takenouchi, Takakazu; Matsuda, Youji; Tsuno, Yuki; Hishikawa, Yoshihiro

    2015-08-01

    In this study, novel outdoor measurements were conducted for highly precise characterization of photovoltaic (PV) modules by measuring current-voltage (I-V) curves with fast sweep speeds and module’s temperature, and with a PV sensor for reference. Fast sweep speeds suppressed the irradiance variation. As a result, smooth I-V curves were obtained and the PV parameter deviation was suppressed. The module’s temperature was measured by attaching resistive temperature detector sensors on the module’s backsheet. The PV sensor was measured synchronously with the PV module. The PV parameters including Isc, Pmax, Voc, and FF were estimated after correcting the I-V curves using the IEC standards. The reproducibility of Isc, Pmax, Voc, and FF relative to the outdoor fits was evaluated as 0.43, 0.58, 0.24, and 0.23%, respectively. The results demonstrate that highly precise measurements are possible using a PV measurement system with the three above-mentioned features.

  11. A novel light tracing system with high-precision and high-sensitivity sensors setup

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Wu, Pin Yi; Tsai, Jen Min; Tseng, Yu Hung; Chen, Hsin-Hung; Hwang, Jiann-Lih

    2013-11-01

    This paper presents a novel light source tracing system, which is comprised of a light-tracing board, with four photo-sensors of different incline angles, correspondingly disposed on its four edges, which are adjustable according to the movement range of the light source in order to achieve light-tracing purposes. This system introduces the algorithm of four-edge-sensors with servo motors in each site to improve sensor's sensitivity. The measurement values of light perception can be feedback to the programmable logic controller by wireless transceiver module. After proportional-integral-derivative operation, the system can obtain the situation of light source. In a normal mode, the light source movement range is large, the range of the incline angle of the light sensors are also set to large to obtain wide detection angle. But in a locking mode, the incline angle of the light sensing plane decreases, thus, the measurement range reduces, and the sensitivity is higher.

  12. High-precision temporal constraints on intrusive magmatism of the Siberian Traps

    NASA Astrophysics Data System (ADS)

    Burgess, Seth; Bowring, Sam; Pavlov, Volodia E.; Veselovsky, Roman V.

    2014-05-01

    The broad temporal coincidence between large igneous province magmatism and some of the most severe biotic/environmental crises in Earth history has led many to infer a causal connection between the two. Notable examples include the end-Permian mass extinction and eruption/emplacement of the Siberian Traps large igneous province (LIP) and the end-Triassic mass extinction and the Central Atlantic Magmatic Province. In models proposing a causal connection between LIP magmatism and the environmental changes that lead to mass extinction, gases and particulates injected into the atmosphere are thought to cause abrupt changes in climate and ocean chemistry sufficient to drive mass extinction of marine and terrestrial biota. Magmatism has been proposed to cause voluminous volatile release via contact metamorphism of the sedimentary rocks. In the case of the Siberian Traps LIP, the compositions of sedimentary rocks (carbonates, evaporates, organic-rich shales) that host sills and dikes are ideal for greenhouse gas generation. When coupled with the enormous volume of Siberian LIP intrusive rocks, there is the potential for volatile generation on a scale necessary to drive environmental changes and mass extinction. This model must be tested by comparing the timing of intrusive magmatism with that of the mass extinction. Coupled high-precision geochronology and astrochronology have constrained the timing of biotic crisis and associated environmental perturbations from the deca-millennial to sub-millennial timescale, suggesting that the biotic crisis was abrupt, occurring over < 100 ka. Published geochronology on sills and dikes from the LIP are sparse and lack the necessary precision to resolve the relative timing of the two events outside of age uncertainty. We present new high-precision U-Pb zircon geochronology on seventeen gabbroic sills from throughout the magmatic province. This includes samples from the mineralized and differentiated intrusions in the Noril'sk region

  13. High-precise DEM Generation Using Envisat/ERS-2 Cross-interferometry

    NASA Astrophysics Data System (ADS)

    Lee, W.; Jung, H.; Lu, Z.; Zhang, L.

    2010-12-01

    Cross-interferometric synthetic aperture radar (CInSAR) technique from ERS-2 and Envisat images is capable of generating submeter-accuracy digital elevation model (DEM). However, it is very difficult to produce high-quality CInSAR-derived DEM due to the difference in the azimuth and range pixel size between ERS-2 and Envisat images as well as the small height ambiguity of CInSAR interferogram. In this study, we have proposed an efficient method to overcome the problems, produced a high-quality DEM over northern Alaska, and assessed the accuracy of the CInSAR-derived DEM with an airborne InSAR-derived DEM, which has the spatial resolution of 5 meters, from U.S. Geological Survey. In the proposed method, azimuth common band filtering in the radar raw data processing and DEM-assisted SAR coregistration are applied to mitigate the mis-registration due to the difference in the azimuth and range pixel size and large baseline, and differential SAR interferogram (DInSAR) created by using the low-quality DEM is used for reducing the unwrapping error occurred by the high fringe rate of CInSAR interferogram. From accuracy assessment, in flat area, the precision of CInSAR-derived DEM was approximately 4.2 m and 70cm in the horizontal and vertical directions, respectively, and the ground resolution estimated by the wave number analysis was about 15m. However, most errors occurred in around water area (like lake). And generating time is different between Airborne DEM (July, 2002) and CInSAR DEM(January, 2008). Focus on land area (not around water), vertical accuracy is highly improved about submeter unit. Our results indicate that high-precise DEM of submeter-accuracy can be generated by the proposed method.

  14. An Improved Method for TIMS High Precision Nd Isotopic Analysis of Very Small Aliquots (1- 10ng) With Example Application in Garnet Sm/Nd Geochronology

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Harvey, J.; Mehl, L. Y.; Peterman, E. M.

    2007-12-01

    Technological and scientific developments have demonstrated both the attainability and the utility of very high precision (i.e. 5-20ppm 2 σ) Nd isotopic measurements with TIMS. However such high precision has been limited to relatively large aliquots of Nd, on the order of several hundred nanograms. Several potential applications of precise Nd isotopic measurements, including garnet Sm/Nd geochronology, do not always permit such large samples, instead yielding only a few nanograms of Nd. We have explored and tested an improved method for Nd isotopic analysis of such small (1-10ng) aliquots of Nd using the NdO+ method with a Triton TIMS at Boston University. Analyzing Nd isotopes as the oxide is a well known technique, frequently involving an oxygen bleed valve. Instead, we forego the bleed valve and load samples with a TaO slurry which provides the oxygen source. Using an in-house Nd isotopic standard solution, 4ng loads easily yield stable 2.0-2.5 volt beams resulting in internal precisions of 10ppm 2 σ RSE. Within barrel external precision of 4ng loads of the Nd standard is 13ppm 2 σ RSD (n=20). Long term (6 months, six analysts) external precision of 4ng loads of the standard is currently 23ppm 2 σ RSD (n=55) suggesting that further improvements are possible. As a further test of this method, we dissolved a natural rock sample (a metapelite), separated the Nd using TRU- spec and MLA column chemistry, and loaded nineteen 4ng loads in one barrel. Within barrel external precision was 21ppm 2 σ RSD (n=18). This precision represents a significant advance over previous NdO+ analyses of small samples using an oxygen bleed valve. The TaO loading method for small Nd aliquots is useful in Sm/Nd garnet geochronology as exemplified by two case studies. Garnets from eclogite facies gneisses from Norway ran very well with 2.4-18ng loads and yielded age precision as good as 0.8 million years 2 σ. Conversely, garnets from blueschist facies rocks from Sifnos, Greece, ran

  15. Development of a High Precision and Stability Ambient N2O and CO Analyzer

    NASA Astrophysics Data System (ADS)

    Zhou, Jingang; Hoffnagle, John; Tan, Sze; Dong, Feng; Fleck, Derek; Yiu, John; Huang, Kuan; Leggett, Graham; He, Yonggang

    2016-04-01

    With a global warming potential of nearly 300, N2O is a critically important greenhouse gas, contributing about 5 % of the US total GHG emissions. Agriculture soil management practices are the dominant source of anthropogenic N2O emissions, contributing nearly 75 % of US N2O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N2O. We report here a new mid-infrared laser-based cavity ring-down spectrometer (Picarro G5310) that was recently developed to simultaneously measure sub-ppb ambient concentrations of two key greenhouse gas species, N2O and CO, while measuring H2O as well. It combines a quantum cascade laser with a proprietary 3-mirror optical cavity. The ambient N2O and CO measurement precisions are 0.1ppb (10sec), 0.014ppb (600sec), and 0.006ppb (3000sec); and the measurements could even be averaged down over 3 hours, giving measurement precisions of 0.003ppb. The measurable N2O and CO ranges have been tested up to 2.5ppm. With the high precision and unparalleled stability, G5310 is believed a promising tool for long-term monitoring in atmospheric sciences. The new optical analyzer was set up to monitor N2O and CO (G5310), along with CO2 and CH4(G4301), in ambient air obtained from a 10 meter tower in Santa Clara, California. Evidence of contributions from traffic and a nearby sewage treatment facility were expected in the measurement data.

  16. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    PubMed

    Kapusta, Aurélie; Matsuda, Atsushi; Marmignon, Antoine; Ku, Michael; Silve, Aude; Meyer, Eric; Forney, James D; Malinsky, Sophie; Bétermier, Mireille

    2011-04-01

    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms

  17. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers

    PubMed Central

    Huang, YongAn; Duan, Yongqing; Ding, Yajiang; Bu, Ningbin; Pan, Yanqiao; Lu, Nanshu; Yin, Zhouping

    2014-01-01

    Direct writing of hierarchical micro/nanofibers have recently gained popularity in flexible/stretchable electronics due to its low cost, simple process and high throughput. A kinetically controlled mechanoelectrospinning (MES) is developed to directly write diversified hierarchical micro/nanofibers in a continuous and programmable manner. Unlike conventional near-field electrospinning, our MES method introduces a mechanical drawing force, to simultaneously enhance the positioning accuracy and morphology controllability. The MES is predominantly controlled by the substrate speed, the nozzle-to-substrate distance, and the applied voltage. As a demonstration, smooth straight, serpentine, self-similar, and bead-on-string structures are direct-written on silicon/elastomer substrates with a resolution of 200 nm. It is believed that MES can promote the low-cost, high precision fabrication of flexible/stretchable electronics or enable the direct writing of the sacrificial structures for nanoscale lithography. PMID:25091829

  18. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    PubMed Central

    Hartwell, Supaporn Kradtap; Grudpan, Kate

    2012-01-01

    Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications. PMID:22577614

  19. High precision tune and coupling measurements and tune/coupling feedback in RHIC

    SciTech Connect

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schulthiess, C.; Wilinski, M.

    2010-08-01

    Precision measurement and control of the betatron tunes and betatron coupling in RHIC are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  20. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers.

    PubMed

    Huang, YongAn; Duan, Yongqing; Ding, Yajiang; Bu, Ningbin; Pan, Yanqiao; Lu, Nanshu; Yin, Zhouping

    2014-08-05

    Direct writing of hierarchical micro/nanofibers have recently gained popularity in flexible/stretchable electronics due to its low cost, simple process and high throughput. A kinetically controlled mechanoelectrospinning (MES) is developed to directly write diversified hierarchical micro/nanofibers in a continuous and programmable manner. Unlike conventional near-field electrospinning, our MES method introduces a mechanical drawing force, to simultaneously enhance the positioning accuracy and morphology controllability. The MES is predominantly controlled by the substrate speed, the nozzle-to-substrate distance, and the applied voltage. As a demonstration, smooth straight, serpentine, self-similar, and bead-on-string structures are direct-written on silicon/elastomer substrates with a resolution of 200 nm. It is believed that MES can promote the low-cost, high precision fabrication of flexible/stretchable electronics or enable the direct writing of the sacrificial structures for nanoscale lithography.