Science.gov

Sample records for achieve high strength

  1. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  2. Achieving High Strength and High Ductility in Friction Stir-Processed Cast Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Panigrahi, Sushanta K.; Mishra, Rajiv S.

    2013-08-01

    Friction stir processing (FSP) is emerging as an effective tool for microstructural modification and property enhancement. As-cast AZ91 magnesium alloy was friction stir processed with one-pass and two-pass to examine the influence of processing conditions on microstructural evolution and corresponding mechanical properties. Grain refinement accompanied with development of strong basal texture was observed for both processing conditions. Ultrafine-grained (UFG) AZ91 was achieved under two-pass FSP with fine precipitates distributed on the grain boundary. The processed UFG AZ91 exhibited a high tensile strength of ~435 MPa (117 pct improvement) and tensile fracture elongation of ~23 pct. The promising combination of strength and ductility is attributed to the elimination of casting porosity, and high density of fine precipitates in an UFG structure with quite low dislocation density. The effects of grain size, precipitate, and texture on deformation behavior have been discussed.

  3. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  4. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    PubMed Central

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30–60 μm, exhibiting a typical basal texture, fine grains of 1–5 μm and ultrafine (sub) grains of 200–500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  5. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    NASA Astrophysics Data System (ADS)

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-11-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  6. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process.

    PubMed

    Wang, Hui-Yuan; Yu, Zhao-Peng; Zhang, Lei; Liu, Chun-Guo; Zha, Min; Wang, Cheng; Jiang, Qi-Chuan

    2015-11-25

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  7. Achieving high strength and high electrical conductivity in Ag/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Wei, M. Z.; Xu, L. J.; Shi, J.; Pan, G. J.; Cao, Z. H.; Meng, X. K.

    2015-01-01

    In this work, we investigated the microstructure evolution of Ag/Cu multilayers and its influences on the hardness and electric resistivity with individual layer thickness (h) ranging from 3 to 50 nm. The hardness increases with the decreasing h in the range of 5-20 nm. The barrier to dislocation transmission by stacking faults, twin boundaries, and interfaces leads to hardness enhancement. Simultaneously, in order to get high conductivity, the strong textures in-layers were induced to form for reducing the amount of grain boundaries. The resistivity keeps low even when h decreases to 10 nm. Furthermore, we developed a facile model to evaluate the comprehensive property of Ag/Cu multilayers—the results indicate that the best combination of strength and conductivity occurs when h = 10 nm.

  8. A Positive Psychological Viewpoint for Success at School--10 Characteristic Strengths of the Finnish High-Achieving Students

    ERIC Educational Resources Information Center

    Salmela, Mari; Uusiautti, Satu

    2015-01-01

    People who exploit their strengths flourish; they are not only engaged with their goals, but also to their well-being and the content of life. In this study, interest focused on the high-achieving students in the Finnish general upper secondary education, in other words, on straight-A graduates' characteristic strengths. This was a narrative study…

  9. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.

    PubMed

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-02

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  10. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    PubMed Central

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-01-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry. PMID:28150692

  11. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    NASA Astrophysics Data System (ADS)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  12. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less

  13. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    NASA Astrophysics Data System (ADS)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-01

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm3 that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  14. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect.

    PubMed

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm(3) that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  15. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    SciTech Connect

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  16. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  17. High Strength and Retained Ductility Achieved in a Nitrided Strip Cast Nb-Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Xie, Kelvin Y.; Shrestha, Sachin L.; Felfer, Peter J.; Cairney, Julie M.; Killmore, Chris R.; Carpenter, Kristin R.; Kaul, Harold R.; Ringer, Simon P.

    2013-02-01

    The current study investigates the strengthening of an Nb-microallyed CASTRIP® steel at 798 K (525 °C) by nitriding in a KNO3 salt bath. Nitriding up to 1 hour dramatically increased the yield strength of the steel by ~35 pct (from 475 to 645 MPa) with no sacrifice of ductility (~16 pct). Further nitriding led to brittle fracture. Hardness profiles of the nitrided steels through the thickness reveal hard surfaces and a relatively softer core. The hardening of the shell in the nitrided steels is thought to be the combined effect of solid solution strengthening from nitrogen and dispersion strengthening from clusters and precipitates. The retained ductility is attributed to the hard-shell-soft-core structure through nitriding.

  18. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  19. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  20. High strength composites evaluation

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  1. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  2. Achieving the ideal strength in annealed molybdenum nanopillars

    SciTech Connect

    Lowry, M. B.; Kiener, D.; LeBlanc, M. M.; Chisholm, Claire; Florando, Jeff; Morris, J. W.; Minor, Andrew

    2010-01-01

    The theoretical strength of a material is the stress required to deform an infinite, defect-free crystal. Achieving the theoretical strength of a material experimentally is hindered by the ability to create and mechanically test an absolutely defect-free material. Here we show that through annealing it is possible to employ the versatility of the focused ion beam (FIB) but recover a mechanically pristine limited volume. Starting with FIB-milled molybdenum pillars, we anneal them in situ in a transmission electron microscope (TEM) producing a molybdenum pillar with a spherical cap. This geometry allows for the maximum stress to occur in the interior of the spherical cap and is ideally suited for experimentally achieving the ideal strength. During in situ compression testing in the TEM the annealed pillars show initial elastic loading followed by catastrophic failure at, or very near, the calculated theoretical strength of molybdenum. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  3. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ping; Zhang, Yi; Xia, Yu; Jiang, Wei-Bing; Liu, Hui; Liu, Wang; Gao, Yun-Xia; Zhang, Tao; Fang, Qian-Feng

    2016-12-01

    A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7-xLa3Zr2-xNbxO12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

  4. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ping; Zhang, Yi; Xia, Yu; Jiang, Wei-Bing; Liu, Hui; Liu, Wang; Gao, Yun-Xia; Zhang, Tao; Fang, Qian-Feng

    2017-03-01

    A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7- x La3Zr2- x Nb x O12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

  5. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  6. High strength and high toughness steel

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  7. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  8. High-Strength, Superelastic Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm; Noebe, Ronald; Dellacorte, Christopher; Bigelow, Glen; Thomas, Fransua

    2013-01-01

    In a previous disclosure, the use of 60- NiTiNOL, an ordered intermetallic compound composed of 60 weight percent nickel and 40 weight percent titanium, was investigated as a material for advanced aerospace bearings due to its unique combination of physical properties. Lessons learned during the development of applications for this material have led to the discovery that, with the addition of a ternary element, the resulting material can be thermally processed at a lower temperature to attain the same desirable hardness level as the original material. Processing at a lower temperature is beneficial, not only because it reduces processing costs from energy consumption, but because it also significantly reduces the possibility of quench cracking and thermal distortion, which have been problematic with the original material. A family of ternary substitutions has been identified, including Hf and Zr in various atomic percentages with varying concentrations of Ni and Ti. In the present innovation, a ternary intermetallic compound consisting of 57.6 weight percent Ni, 39.2 weight percent Ti, and 3.2 weight percent Hf (54Ni-45Ti-1Hf atomic percent) was prepared by casting. In this material, Hf substitutes for some of the Ti atoms in the material. In an alternate embodiment of the innovation, Zr, which is close in chemical behavior to Hf, is used as the substitutional element. With either substitution, the solvus temperature of the material is reduced, and lower temperatures can be used to obtain the necessary hardness values. The advantages of this innovation include the ability to solution-treat the material at a lower temperature and still achieve the required hardness for bearings (at least 50 Rockwell C) and superelastic behavior with recoverable strains greater than 2%. Most structural alloys will not return to their original shape after being deformed as little as 0.2% (a tenth of that possible with superelastic materials like 60 NiTiNOL). Because lower temperatures

  9. High-Hot-Strength Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Matson, Lawrence E.

    1994-01-01

    Continuous fibers consisting of laminae of alumina and yttrium aluminum garnet offer exceptionally high strength, resistance to creep, and chemical stability at high temperatures. These fibers exceed tensile strength of sapphire fibers. Leading candidates for reinforcement of intermetallic-matrix composites in exhaust nozzles of developmental high-speed civil transport aircraft engines. Other applications are in aerospace, automotive, chemical-process, and power-generation industries.

  10. High-strength magnetic materials

    NASA Technical Reports Server (NTRS)

    Detert, K.

    1970-01-01

    Two new precipitation-hardened magnetic alloys are suitable for operation in 800 to 1600 deg F range. One is a martensitic alloy and the other a cobalt-based alloy. They possess improved creep resistance and have application in high temperature inductors and alternators.

  11. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    SciTech Connect

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it

  12. High toughness-high strength iron alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  13. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  14. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  15. The Constraints of Poverty on High Achievement

    ERIC Educational Resources Information Center

    Burney, Virginia H.; Beilke, Jayne R.

    2008-01-01

    Research studies on school success often focus on the impact of discrete elements such as race, culture, ethnicity, gender, language, or school location on high achievement. The condition of poverty, however, may be the most important of all student differences in relation to high achievement; although not all schools have racial diversity, nearly…

  16. Self Regulated Learning of High Achievers

    ERIC Educational Resources Information Center

    Rathod, Ami

    2010-01-01

    The study was conducted on high achievers of Senior Secondary school. Main objectives were to identify the self regulated learners among the high achievers, to find out dominant components and characteristics operative in self regulated learners and to compare self regulated learning of learners with respect to their subject (science and non…

  17. Development of high strength high toughness third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  18. Method for producing high dielectric strength microvalves

    DOEpatents

    Kirby, Brian J.; Reichmuth, David S.; Shepodd, Timothy J.

    2006-04-04

    A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.

  19. Are Strengths the Solution? An Exploration of the Relationships among Teacher-Rated Strengths, Classroom Behaviour, and Academic Achievement of Young Students

    ERIC Educational Resources Information Center

    Whitley, Jessica; Rawana, Edward P.; Pye, Melissa; Brownlee, Keith

    2010-01-01

    Strength-based approaches are being increasingly validated for use in clinical settings with children and youth. However, the role that strengths play in educational settings with typically-achieving students has yet to be examined. The present study explored the relationship among strengths, classroom behaviour, and academic achievement for a…

  20. Mechanical properties of high-strength concrete

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  1. High-strength concrete for Peacekeeper facilities

    NASA Astrophysics Data System (ADS)

    Saucier, K. L.

    1984-03-01

    An investigation is described which was conducted to determine the processes and techniques required to produce portland-cement concrete with a compressive strength of 15,000 psi or greater using conventional concreting methods and equipment, and to develop physical property data on the mixtures. It was permitted that special materials and admixtures be used, but a requirement was set that the aggregates and cements be selected from those available in the Cheyenne, Wyoming, area. Results indicated that it is feasible to achieve the 15,000-psi compressive strengths but that workability may decrease over a 2-hour period, and this latter development should be studied under job conditions. It is recommended that: (1) all materials and procedures to be used on a specific project be tested in the laboratory for basic property information, and (2) selected mixtures be tested in the field under expected environmental conditions prior to actual job use.

  2. High strength composites evaluation. Final report

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  3. Systemic Reform and Minority Student High Achievement.

    ERIC Educational Resources Information Center

    Treisman, Philip Uri; Surles, Stephanie A.

    The under-representation of African American and Hispanic American students among high achievers on standardized tests, honors graduates of most colleges, and practitioners of mathematics and science professions is well-documented. This paper explores the extent to which the current educational reform movement is achieving the goal of…

  4. Conditions to obtain reliable high strength alumina via centrifugal casting

    SciTech Connect

    Huisman, W.; Graule, T.; Gauckler, L.J.

    1995-09-01

    Electrostatically stabilized alumina suspensions with high solids content of up to 58 vol% were consolidated into near-net-shape parts via centrifugal casting. High density green bodies showed excellent sintering kinetics leading to {ge} 99.5% of theoretical density (TD) at lowered temperatures compared to isostatic pressing. Four point bend strengths of 540 MPa with Weibull moduli of up to 24 were achieved using commercial {alpha}-alurnina powders.

  5. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  6. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  7. High-Strength Bolt Corrosion Fatigue Life Model and Application

    PubMed Central

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life. PMID:25152916

  8. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  9. The Bendability of Ultra High strength Steels

    NASA Astrophysics Data System (ADS)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  10. Student Perceptions of High-Achieving Classmates

    ERIC Educational Resources Information Center

    Händel, Marion; Vialle, Wilma; Ziegler, Albert

    2013-01-01

    The reported study investigated students' perceptions of their high-performing classmates in terms of intelligence, social skills, and conscientiousness in different school subjects. The school subjects for study were examined with regard to cognitive, physical, and gender-specific issues. The results show that high academic achievements in…

  11. High Stakes Testing and Student Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    The effects of high stakes testing may be critical in the lives of public school students and may have many consequences for schools and teachers. There are no easy answers in measuring student achievement and in holding teachers accountable for learner progress. High stakes testing also involves responsibilities on the part of the principal who…

  12. Hydrogen trapping in high-strength steels

    SciTech Connect

    Pound, B.G.

    1998-10-09

    Hydrogen trapping in three high-strength steels -- AerMet 100 and AISI 4340 and H11 -- was studied using a potentiostatic pulse technique. Irreversible trapping constants (k) and hydrogen entry fluxes were determined for these alloys in 1 mol/1 acetic acid/1 mol/1 sodium acetate. The order of the k values for the three steels and two 18Ni maraging steels previously studies inversely parallels their threshold stress intensities for stress corrosion cracking (K{sub 1SCC}). Irreversible trapping in AerMet 100 varies with aging temperature and appears to depend on the type of carbide (Fe{sub 3}C or M{sub 2}C) present. For 4340 steel, k can be correlated with K{sub 1SCC} over a range of yield strengths. The change in k is consistent with a change in the principal type of irreversible trap from matrix boundaries to incoherent Fe{sub 3}C. The principal irreversible traps in H11 at high yield strengths are thought to be similar to those in 4340 steel.

  13. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  14. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  15. High Achievers: 23rd Annual Survey. Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This report presents data from an annual survey of high school student leaders and high achievers. It is noted that of the nearly 700,000 high achievers featured in this edition, 5,000 students were sent the survey and 2,092 questionnaires were completed. Subjects were high school juniors and seniors selected for recognition by their principals or…

  16. Pressureless sintered high-strength mullite from commercial powder

    NASA Astrophysics Data System (ADS)

    Lehman, R. L.; Umezu, Y.

    1992-08-01

    High-strength monolithic mullite ceramics were prepared from commercial-grade power by carefully controlled processing of the powder followed by pressureless sintering at 1700 °C. Mullite powder was mechanically and chemically dispersed, ball milled, and screened prior to slip casting. Specimens were sintered to 97% of theoretical density under pressureless conditions. The furnace ramp and soak schedule was an important variable. Four-point flexural strengths of 250 MPa were achieved, exceeding literature values for pressureless sintering of Baikowski mullite powder.[a] Pore sizes were small and were not strength limiting. Griffith calculations suggest a critical flaw size of 20 μm, in good agreement with the maximum observed crystal size in the microstructure.

  17. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  18. High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Wei

    Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100

  19. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  20. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  1. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  2. Early predictors of high school mathematics achievement.

    PubMed

    Siegler, Robert S; Duncan, Greg J; Davis-Kean, Pamela E; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Chen, Meichu

    2012-07-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics achievement. Analyses of large, nationally representative, longitudinal data sets from the United States and the United Kingdom revealed that elementary school students' knowledge of fractions and of division uniquely predicts those students' knowledge of algebra and overall mathematics achievement in high school, 5 or 6 years later, even after statistically controlling for other types of mathematical knowledge, general intellectual ability, working memory, and family income and education. Implications of these findings for understanding and improving mathematics learning are discussed.

  3. Springback Simulation and Compensation for High Strength Parts Using JSTAMP

    NASA Astrophysics Data System (ADS)

    Shindo, Terumasa; Sugitomo, Nobuhiko; Ma, Ninshu

    2011-08-01

    The stamping parts made from high strength steel have a large springback which is difficult to control. With the development of simulation technology, the springback can be accurately predicted using advanced kinematic material models and CAE systems. In this paper, a stamping process for a pillar part made from several classes of high strength steel was simulated using a Yoshida-Uemori kinematic material model and the springback was well predicted. To obtain the desired part shape, CAD surfaces of the stamping tools were compensated by a CAE system JSTAMP. After applying the compensation 2 or 3 times, the dimension accuracy of the simulation for the part shape achieved was about 0.5 mm. The compensated CAD surfaces of the stamping tools were directly exported from JSTAMP to CAM for machining. The effectiveness of the compensation was verified by an experiment using the compensated tools.

  4. Press hardening of alternative high strength aluminium and ultra-high strength steels

    NASA Astrophysics Data System (ADS)

    Mendiguren, Joseba; Ortubay, Rafael; Agirretxe, Xabier; Galdos, Lander; de Argandoña, Eneko Sáenz

    2016-10-01

    The boron steel press hardening process takes more and more importance on the body in white structure in the last decade. In this work, the advantages of using alternative alloys on the press hardening process is analysed. In particular, the press hardening of AA7075 high strength aluminium and CP800 complex phase ultra-high strength steel is analysed. The objective is to analyse the potential decrease on springback while taking into account the strength change associated with the microstructural modification carried out during the press hardening process. The results show a clear improvement of the final springback in both cases. Regarding the final mechanical properties, an important decrease has been measured in the AA7075 due to the process while an important increase has been found in the CP800 material.

  5. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  6. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  7. Attitudes and Opinions from the Nation's High Achieving Teens. 18th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Educational Communications, Inc., Lake Forest, IL.

    This document contains factsheets and news releases which cite findings from a national survey of 1,985 high achieving high school students. Factsheets describe the Who's Who Among American High School Students recognition and service program for high school students and explain the Who's Who survey. A summary report of this eighteenth annual…

  8. 22nd Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This study surveyed high school students (N=1,879) who were student leaders or high achievers in the spring of 1991 for the purpose of determining their attitudes. Students were members of the junior or senior high school class during the 1990-91 academic year and were selected for recognition by their principals or guidance counselors, other…

  9. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  10. High Strength, Weldable Precipitation Aged Steels

    NASA Astrophysics Data System (ADS)

    Wilson, Alexander D.

    1987-03-01

    The family of plate steels represented by ASTM Specification A7101 is finding increasing applications. These low carbon, Cu-Ni-Cr-Mo-Cb, copper precipitation hardened steels have been identified by a number of designations over the years. During early development in the late 1960's and first commercial production in 1970, the steels were known as IN-787 (trademark of International Nickel Company).2 ASTM specifications were subsequently developed for structural (A710) and pressure vessel (A736) applications over ten years ago. More recent interest and application of this family of steels by the U.S. Navy has lead to development of a military specification MIL-S-24645 (SH),3 also initially known as "HSLA-80." Significant tonnage is being produced for the U.S. Navy as a replacement for HY80 (MIL-S-16216) in cruiser deck, bulkhead and hull applications.4 In these applications, the enhanced weldability and requirement of no preheat at this high strength and toughness level has been the main motivation for its use. Over the past 15 years, A710 type steels have also been used in a variety of applications, including off-shore platforms, pressure vessels, arctic linepipe valves and off-highway mining truck frames.

  11. New heat treatment process for advanced high-strength steels

    NASA Astrophysics Data System (ADS)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  12. Attitudes and Opinions from the Nation's High Achieving Teens: 26th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    A national survey of 3,351 high achieving high school students (junior and senior level) was conducted. All students had A or B averages. Topics covered include lifestyles, political beliefs, violence and entertainment, education, cheating, school violence, sexual violence and date rape, peer pressure, popularity, suicide, drugs and alcohol,…

  13. Attitudes and Opinions from the Nation's High Achieving Teens. 24th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey represents information compiled by the largest national survey of adolescent leaders and high achievers. Of the 5,000 students selected demographically from "Who's Who Among American High School Students," 1,957 responded. All students surveyed had "A" or "B" averages, and 98% planned on attending college. Questions were asked about…

  14. High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

    SciTech Connect

    Gilmore, B.; Huebner, W.; Krogh, M.L.; Lundstrom, J.M.; Pate, R.C.; Rinehart, L.F.; Schultz, B.C.; Zhang, S.C.

    1999-07-20

    Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10 6 J/m 3 ) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion (e�100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (�99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO2 multilayer structures with an area of 2cm 2 and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

  15. Structural application of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  16. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    additions to welding consumables to control weld metal hydrogen and thus reduce susceptibility to cold cracking in high strength steel weldments. 14...applying weld metal hydrogen trapping to improve the resistance to hydrogen cracking in welding of high strength steels . Hydrogen cracking in high...requirements which are necessary to prevent hydrogen cracking in high strength steel welding. Common practices to prevent hydrogen cracking in steel

  17. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  18. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility

    PubMed Central

    Khalajhedayati, Amirhossein; Pan, Zhiliang; Rupert, Timothy J.

    2016-01-01

    The control of interfaces in engineered nanostructured materials has met limited success compared with that which has evolved in natural materials, where hierarchical structures with distinct interfacial states are often found. Such interface control could mitigate common limitations of engineering nanomaterials. For example, nanostructured metals exhibit extremely high strength, but this benefit comes at the expense of other important properties like ductility. Here, we report a technique for combining nanostructuring with recent advances capable of tuning interface structure, a complementary materials design strategy that allows for unprecedented property combinations. Copper-based alloys with both grain sizes in the nanometre range and distinct grain boundary structural features are created, using segregating dopants and a processing route that favours the formation of amorphous intergranular films. The mechanical behaviour of these alloys shows that the trade-off between strength and ductility typically observed for metallic materials is successfully avoided here. PMID:26887444

  19. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility.

    PubMed

    Khalajhedayati, Amirhossein; Pan, Zhiliang; Rupert, Timothy J

    2016-02-18

    The control of interfaces in engineered nanostructured materials has met limited success compared with that which has evolved in natural materials, where hierarchical structures with distinct interfacial states are often found. Such interface control could mitigate common limitations of engineering nanomaterials. For example, nanostructured metals exhibit extremely high strength, but this benefit comes at the expense of other important properties like ductility. Here, we report a technique for combining nanostructuring with recent advances capable of tuning interface structure, a complementary materials design strategy that allows for unprecedented property combinations. Copper-based alloys with both grain sizes in the nanometre range and distinct grain boundary structural features are created, using segregating dopants and a processing route that favours the formation of amorphous intergranular films. The mechanical behaviour of these alloys shows that the trade-off between strength and ductility typically observed for metallic materials is successfully avoided here.

  20. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility

    NASA Astrophysics Data System (ADS)

    Khalajhedayati, Amirhossein; Pan, Zhiliang; Rupert, Timothy J.

    2016-02-01

    The control of interfaces in engineered nanostructured materials has met limited success compared with that which has evolved in natural materials, where hierarchical structures with distinct interfacial states are often found. Such interface control could mitigate common limitations of engineering nanomaterials. For example, nanostructured metals exhibit extremely high strength, but this benefit comes at the expense of other important properties like ductility. Here, we report a technique for combining nanostructuring with recent advances capable of tuning interface structure, a complementary materials design strategy that allows for unprecedented property combinations. Copper-based alloys with both grain sizes in the nanometre range and distinct grain boundary structural features are created, using segregating dopants and a processing route that favours the formation of amorphous intergranular films. The mechanical behaviour of these alloys shows that the trade-off between strength and ductility typically observed for metallic materials is successfully avoided here.

  1. Microstructural, mechanical and magnetic properties of high-strength low-alloy steel

    NASA Astrophysics Data System (ADS)

    Narayan, S. Prakash; Rao, V.; Mohanty, O. N.

    1991-06-01

    Studies have been carried out on commercial grade high-strength low-alloy steel, microalloyed with Nb, V and Ti with a view to developing high-strength material with moderate soft magnetic properties. In order to obtain a suitable microstructure necessary for achieving the desired mechanical strength and magnetic properties, spheroidisation annealing (SA) as well as quenching and tempering (QT) treatments have been employed. At longer annealing or tempering time (⩾ 30 h), both the SA and QT samples have shown ample spheroidisation of carbides resulting in considerable improvement in the magnetic properties without much deterioration in mechanical strength.

  2. Solute Enhanced Strain Hardening of Aluminum Alloys to Achieve Improved Combinations of Strength and Toughness

    NASA Astrophysics Data System (ADS)

    Hovanec, Christopher James

    2011-12-01

    The feasibility of achieving improved combinations of strength and toughness in aluminum alloy 2524 through solute enhanced strain hardening (SESH) has been explored in this study and shown to be viable. The effectiveness of SESH is directly dependent on the strain hardening rate (SHR) of the material being processed. Aluminum alloy 2524 naturally ages to the T4-temper after solution heat treating and quenching. The SHR of strain free and post cold rolled material as a function of natural aging time has been measured by means of simple compression. It has been determined that the SHR of AA2524 is more effective with solute in solution rather than clustered into GP zones. It has also been shown that the typical rapid formation of GP zones at room temperature (natural aging) is inhibited by moderate cold rolling strains (□CR ≥ 0.2) through dislocation aided vacancy annihilation. The practical limitations of quenching rate have been determined using hardness and eddy current electrical conductivity measurements. It has been shown that too slow of a quench rate results in solute being lost to both the formation of GP zones and embrittling precipitates during the quench, while too rapid of a quench rate results in mid-plane cracking of the work piece during the SESH processing. The mid-plane cracking was overcome by using an uphill quenching procedure to relieve residual stresses within the work piece. Aluminum alloy 2524 strengthened through SESH to a yield strength 11% greater than that in the T6-Temper exhibits: equivalent toughness, 5% greater UTS, 1% greater elongation, 7% greater R.A., and absorbs 15% more energy during tensile testing. At yield strengths comparable to published data for 2x24 alloys, the SESH 2524 exhibited up to a 60% increase in fracture toughness. The fractured surfaces of the SESH material exhibited transgranular dimpled rupture as opposed to the grain boundary ductile fracture (GBPF) observed in the artificially aged material.

  3. HIGH STRENGTH GLASS FIBERS DEVELOPMENT PROGRAM

    DTIC Science & Technology

    Contents: Status of information relative to commercial fiberglass Intrinsic strength of the glass fiber Degree of surface damage existing in...the fibers after processing into the filament wound structure Failure mechanisms in a filament wound structure Need for understanding in two distinct problem areas

  4. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  5. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  6. High-temperature strength of sapphire

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2000-10-01

    The Sapphire Statistical Characterization and Risk Reduction Program tested approximately 1500 4-point flexure bars with different crystal orientations at different temperatures to establish a mechanical strength database for engineering design. Sapphire coupons were selected to represent surfaces on two different missile windows and a missile dome. Sapphire was obtained from the same suppliers used for the windows or dome and, as much as possible, coupons were fabricated in the same manner as the corresponding part of the window or dome. Perhaps the most interesting result was that sapphire from one fabricator was 50% stronger than sapphire made to the same specifications from the same blanks by another fabricator. In laser heating tests, sapphire performed better than predicted from flexure tests. When a compliant layer of graphite was used as a pad between the test specimens and the load fixture, sapphire in which the principal axis of tension and compression was parallel to the c-axis increased in apparent strength by a factor of 2 - 3. Strengths of other crystal orientations were not significantly affected by the graphite pads, but the incidence of twinning at 883 K was reduced by graphite.

  7. High Involvement Mothers of High Achieving Children: Potential Theoretical Explanations

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.

    2013-01-01

    In American society, parents who have high aspirations for the achievements of their children are often viewed by others in a negative light. Various pejoratives such as "pushy parent," "helicopter parent," "stage mother," and "soccer mom" are used in the common vernacular to describe these parents. Multiple…

  8. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  9. Does High School Homework Increase Academic Achievement?

    ERIC Educational Resources Information Center

    Kalenkoski, Charlene Marie; Pabilonia, Sabrina Wulff

    2017-01-01

    Although previous research has shown that homework improves students' academic achievement, the majority of these studies use data on students' homework time from retrospective questionnaires, which may be less accurate than time-diary data. We use data from the combined Child Development Supplement (CDS) and the Transition to Adulthood Survey…

  10. Factors Implicated in High Mathematics Achievement

    ERIC Educational Resources Information Center

    Forgasz, Helen J.; Hill, Janelle C.

    2013-01-01

    The most recent Program for International Student Assessment (PISA) (2009) mathematical literacy results provide evidence that in Western English-speaking countries, including Australia, the gender gap in achievement appears to be widening in favour of males. In the study reported in this article, the aim was to explore the effects of gender,…

  11. High Ability Readers and the Achievement Gap

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.; Parke, Cynthia J.; Bramble, Joan G.

    2004-01-01

    To close the achievement gap, the "No Child Left Behind" law calls for all students to make appropriate yearly progress. This presumably means that progress is being made by capable readers at the same time progress is being made by struggling readers. However, there appear to be unintended effects of "No Child Left Behind"…

  12. Proceedings: 1986 Workshop on Advanced High-Strength Materials

    SciTech Connect

    1989-05-01

    Stress corrosion cracking (SCC) has contributed to many in-service failures of high-strength LWR components. In 25 workshop presentations, this report addresses the effects of metallurgical factors, manufacturing processes, design improvements, and installation practices on the resistance of high-strength alloys to SCC.

  13. High-strength state of ultrafine-grained martensitic steel produced by high pressure torsion

    NASA Astrophysics Data System (ADS)

    Karavaeva, M. V.; Nikitina, M. A.; Ganeev, A. V.; Islamgaliev, R. K.

    2017-02-01

    The paper presents the study results on the effect of severe plastic deformation (SPD) via high pressure torsion (HPT) on the structure and properties of martensitic steel. The contribution of different strengthening mechanisms in the strength of steel has been analyzed. It is shown that independently of the deformation temperature the main contribution in hardening belongs to grain boundaries (about 50 %), whereas the dislocation and solid solution components achieve 15 and 25 %, respectively.

  14. High-Achieving Students in the Era of NCLB

    ERIC Educational Resources Information Center

    Loveless, Tom; Parkas, Steve; Duffett, Ann

    2008-01-01

    This report contains two separate studies examining the status of high-achieving students in the No Child Left Behind (NCLB) era. Part I, An Analysis of NAEP Data, authored by Brookings Institution scholar Tom Loveless, examines achievement trends for high-achieving students (defined, like low-achieving students, by their performance on the…

  15. Imploding Liner Material Strength Measurements at High-Strain and High Strain Rate

    SciTech Connect

    Bartsch, R.R.; Lee, H.; Holtkamp, D.; Wright, B.; Stokes, J.; Morgan, D.; Anderson, W.; Broste, W.

    1998-10-18

    Imploding, cylindrical liners provide a unique, shockless means of simultaneously accessing high strain and high-strain-rate for measurement of strength of materials in plastic flow. The radial convergence in the liner geometry results in the liner thickening as the circumference becomes smaller. Strains of up to {approximately}1.25 and strain rates of up to {approximately}10{sup 6} sec{sup -1} can be readily achieved in a material sample placed inside of an aluminum driver liner, using the Pegasus II capacitor bank. This provides yield strength data at conditions where none presently exists. The heating from work done against the yield strength is measured with multichannel pyrometry from infrared radiation emitted by the material sample. The temperature data as a function of liner position are unfolded to give the yield strength along the strain, strain-rate trajectory. Proper design of the liner and sample configuration ensures that the current diffused into the sample adds negligible heating. An important issue, in this type of temperature measurement, is shielding of the pickup optics from other sources of radiation. At strains greater than those achievable on Pegasus, e.g. the LANL Atlas facility, some materials may be heated all the way to melt by this process. Recent data on 6061-T6 Aluminum will be compared with an existing model for strain and strain-rate heating. The liner configuration and pyrometry diagnostic will also be discussed.

  16. Ductilization of High-Strength Magnesium Alloys

    DTIC Science & Technology

    2012-09-17

    Wang thermodynamic model previously validated in high-performance steels . The calculations identify the cohesion enhancing potencies of grain boundary...thermodynamic model previously validated in high-performance steels . The calculations identify the cohesion enhancing potencies of grain boundary...boundary cohesion, based on the Rice-Wang thermodynamic model previously validated in high-performance steels . The calculations identify the cohesion

  17. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    PubMed

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age (χ̄= 34.64 years ± 6.91 years), with strength training experience, training age (χ̄= 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  18. Improving Student Achievement: A Study of High-Poverty Schools with Higher Student Achievement Outcomes

    ERIC Educational Resources Information Center

    Butz, Stephen D.

    2012-01-01

    This research examined the education system at high-poverty schools that had significantly higher student achievement levels as compared to similar schools with lower student achievement levels. A multischool qualitative case study was conducted of the educational systems where there was a significant difference in the scores achieved on the…

  19. High-strength silicon carbides by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1989-01-01

    Silicon carbide has strong potential for heat engine hardware and other high-temperature applications because of its low density, good strength, high oxidation resistance, and good high-temperature creep resistance. Hot isostatic pressing (HIP) was used for producing alpha and beta silicon carbide (SiC) bodies with near-theoretical density, ultrafine grain size, and high strength at processing temperatures of 1900 to 2000 C. The HIPed materials exhibited ultrafine grain size. Furthermore, no phase transformation from beta to alpha was observed in HIPed beta-SiC. Both materials exhibited very high average flexural strength. It was also shown that alpha-SiC bodies without any sintering aids, when HIPed to high final density, can exhibit very high strength. Fracture toughness K (sub C) values were determined to be 3.6 to 4.0 MPa m (sup 1/2) for HIPed alpha-SiC and 3.7 to 4.1 MPa m (sup 1/2) for HIPed beta-SiC. In the HIPed specimens strength-controlling flaws were typically surface related. In spite of improvements in material properties such as strength and fracture toughness by elimination of the larger strength-limiting flaws and by grain size refinement, HIPing has no effect on the Weibull modulus.

  20. High-strength silicon carbides by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1988-01-01

    Silicon carbide has strong potential for heat engine hardware and other high-temperature applications because of its low density, good strength, high oxidation resistance, and good high-temperature creep resistance. Hot isostatic pressing (HIP) was used for producing alpha and beta silicon carbide (SiC) bodies with near-theoretical density, ultrafine grain size, and high strength at processing temperatures of 1900 to 2000 C. The HIPed materials exhibited ultrafine grain size. Furthermore, no phase transformation from beta to alpha was observed in HIPed beta-SiC. Both materials exhibited very high average flexural strength. It was also shown that alpha-SiC bodies without any sintering aids, when HIPed to high final density, can exhibit very high strength. Fracture toughness K (sub C) values were determined to be 3.6 to 4.0 MPa m (sup 1/2) for HIPed alpha-SiC and 3.7 to 4.1 MPa m (sup 1/2) for HIPed beta-SiC. In the HIPed specimens strength-controlling flaws were typically surface related. In spite of improvements in material properties such as strength and fracture toughness by elimination of the larger strength-limiting flaws and by grain size refinement, HIPing has no effect on the Weibull modulus.

  1. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  2. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  3. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  4. Comparison of flexural strength between fiber-reinforced polymer and high-impact strength resin.

    PubMed

    Vojvodic, Denis; Matejicek, Franjo; Loncar, Ante; Zabarovic, Domagoj; Komar, Dragutin; Mehulic, Ketij

    2008-10-01

    Fractures of polymer material are one of the most frequent reasons for the repair of removable dental prostheses. Therefore, there is a constant endeavor to strengthen them, and polymer materials with high resistance to fracture are being developed. The aim of this study was to determine the flexural strength of polymer materials and their reinforcements and thus give preference to their clinical use. Specimens with dimensions 18 x 10 x 3 mm were tested after polymerization, immersion in water at a temperature 37 degrees C for 28 days, and thermocycling by using the "short-beam" method to determine the flexural strength. Microscopic examination was performed to determine the quality of bonding between the glass fibers and matrix. Common polymer materials (control group) demonstrated the lowest flexural strength, although, when reinforced with fibers they showed higher flexural strength, matching that of the tested high-impact strength resin. Thermocycled specimens had the highest flexural strength, whereas there was no difference (p > 0.05) between specimens tested after polymerization and immersion in water.

  5. The Effect of Achievement Test Selection on Identification of Learning Disabilities within a Patterns of Strengths and Weaknesses Framework

    PubMed Central

    Miciak, Jeremy; Taylor, Pat; Denton, Carolyn A.; Fletcher, Jack M.

    2014-01-01

    Purpose Few empirical investigations have evaluated learning disabilities (LD) identification methods based on a pattern of cognitive strengths and weaknesses (PSW). This study investigated the reliability of LD classification decisions of the concordance/discordance method (C/DM) across different psychoeducational assessment batteries. Methods C/DM criteria were applied to assessment data from 177 second grade students based on two psychoeducational assessment batteries. The achievement tests were different, but were highly correlated and measured the same latent construct. Resulting LD identifications were then evaluated for agreement across batteries on LD status and the academic domain of eligibility. Results The two batteries identified a similar number of participants as having LD (80 and 74). However, indices of agreement for classification decisions were low (kappa = .29), especially for percent positive agreement (62%). The two batteries demonstrated agreement on the academic domain of eligibility for only 25 participants. Conclusions Cognitive discrepancy frameworks for LD identification are inherently unstable because of imperfect reliability and validity at the observed level. Methods premised on identifying a PSW profile may never achieve high reliability because of these underlying psychometric factors. An alternative is to directly assess academic skills to identify students in need of intervention. PMID:25243467

  6. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  7. Achieving strategic surety for high consequence software

    SciTech Connect

    Pollock, G.M.

    1996-09-01

    A strategic surety roadmap for high consequence software systems under the High Integrity Software (HIS) Program at Sandia National Laboratories guides research in identifying methodologies to improve software surety. Selected research tracks within this roadmap are identified and described detailing current technology and outlining advancements to be pursued over the coming decade to reach HIS goals. The tracks discussed herein focus on Correctness by Design, and System Immunology{trademark}. Specific projects are discussed with greater detail given on projects involving Correct Specification via Visualization, Synthesis, & Analysis; Visualization of Abstract Objects; and Correct Implementation of Components.

  8. Formability Characterization of a New Generation High Strength Steels

    SciTech Connect

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  9. Achieving High-Temperature Ferromagnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat

    Topological insulators (TIs) are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens new opportunities for creating next-generation electronic and spintronic devices, including TI-based quantum computation. Introducing ferromagnetic order into a TI system without compromising its distinctive quantum coherent features could lead to a realization of several predicted novel physical phenomena. In particular, achieving robust long-range magnetic order at the TI surface at specific locations without introducing spin scattering centers could open up new possibilities for devices. Here, we demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (FMI) to a TI (Bi2Se3); this interfacial ferromagnetism persists up to room temperature, even though the FMI (EuS) is known to order ferromagnetically only at low temperatures (<17 K). The induced magnetism at the interface resulting from the large spin-orbit interaction and spin-momentum locking feature of the TI surface is found to greatly enhance the magnetic ordering (Curie) temperature of the TI/FMI bilayer system. Due to the short range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a TI, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered TI could allow for an efficient manipulation of the magnetization dynamics by an electric field, providing an energy efficient topological control mechanism for future spin-based technologies. Work supported by MIT MRSEC through the MRSEC Program of NSF under award number DMR-0819762, NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

  10. Norview High School: Leadership Fosters Achievment

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    Often little unsaid things demonstrate what is truly important in a school. When teachers have common planning time and all of the department chairs share a single space as they do at Norview High School in Norfolk, VA, the unmistakable message is that instructional collaboration and leadership are expected and valued. Norview, an urban,…

  11. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  12. Retention of ductility in high-strength steels

    NASA Technical Reports Server (NTRS)

    Parker, E. R.; Zackay, V. F.

    1969-01-01

    To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.

  13. High-strength braze joints between copper and steel

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  14. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  15. Ultra-high Strength Nanostructured Mg

    DTIC Science & Technology

    2014-03-31

    27709-2211 Nanostructured Mg and Mg alloys, Mg metallic glass, Cryomilling, Powder consolidation, Spark plasma sintering , Deformation mechanisms REPORT...mechanically milled powder and high pressure on spark plasma sintering of Mg-Cu-Gd metallic glasses; (9) microstructure and mechanical behavior of Mg-10Li-3Al...pressure on spark plasma sintering of Mg– Cu–Gd metallic glasses, Acta Materialia , (07 2013): 4414. doi: Baolong Zheng, Ying Li, Weizong Xu

  16. Improved Coating System for High Strength Torsion Bars

    DTIC Science & Technology

    1981-04-23

    SwW IMPROVED COATING SYSTEM FOR HIGH S- TYPE Of REPORT & PEROo CovERED STRENGTH TORSION BAR Final Report Plastisol Coating System Provides a Cost...8217 mumber) Torsion Bar Plastisol Coating Inorganic Coating Protective Coating Polyvinyl Chloride Coating Polyurethane Coating Corrosion Protection Tape...Bars E. Endurance Test Results for One-third Length Torsion E-1 Bar F. Specification for Application of Plastisol to High F-1 Strength Torsion Bar

  17. Environmentally Friendly Anticorrosion Coating for High Strength Fasteners

    DTIC Science & Technology

    2011-01-01

    prevent corrosion of the bare steel and subsequent creep . However, this does not necessarily explain why this would affect the notched area where...303 11. SPONSOR/MONITOR’S REPORT Arlington, VA 22203 NUMBER(Sl 12 . DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT There...alternative replacement coatings would provide high-strength, corrosion resistant fasteners for use in weapon systems. Traditionally, high-strength steels

  18. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    DTIC Science & Technology

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  19. Self-Concept and Achievement Motivation of High School Students

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Vimala, A.

    2013-01-01

    The present study "Self-concept and Achievement Motivation of High School Students" was investigated to find the relationship between Self-concept and Achievement Motivation of High School Students. Data for the study were collected using Self-concept Questionnaire developed by Raj Kumar Saraswath (1984) and Achievement Motive Test (ACMT)…

  20. Gun requirements to achieve high field spheromaks

    SciTech Connect

    Fowler, T K

    1999-03-04

    It is shown that a gun similar to that in the SSPX could demonstrate the high fields required for Pulsed Spheromak reactors merely by prolonging the pulse. Important considerations are choosing the voltage to exceed ohmic losses; designing the gun to avoid wasteful short-circuiting of current within the gun; and the injection efficiency factor, f, determined by the ''sag'' in the profile of {lambda} = {mu}{sub o}j/B. Typically f = 0.75 in experiments, giving an overall efficiency > 50 % if short-circuiting is avoided. Theoretical transport models agree qualitatively with the need for a finite gradient in h to pump in helicity by current-driven tearing modes and suggest that pressure-driven resistive modes would not compete with current-driven modes during a buildup to ohmic ignition.

  1. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    SciTech Connect

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  2. Investigation of Solidification of High Strength Steel.

    DTIC Science & Technology

    apparatus for rheocasting high temperature alloys in a vacuum or inert atmosphere was constructed. Cu10%Sn and Fe-3%C-4%Si alloys were successfully... rheocast . The size and shape of the primary solid particles at .4 to .5 fraction solid after the first 30 minutes of mixing in the mushy zone are not...700 micrometers in size, and spheroidal in shape. The thixotropic nature of the rheocast Cu-10%Sn samples when reheated and sheared suggests the possibility of thixocasting the alloy. (Modified author abstract)

  3. Investigation of ultra violet (UV) resistance for high strength fibers

    NASA Astrophysics Data System (ADS)

    Said, M. A.; Dingwall, Brenda; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T.

    Ultra long duration balloons (ULDB), currently under development by the National Aeronautics and Space Administration (NASA), requires the use of high strength fibers in the selected super-pressure pumpkin design. The pumpkin shape balloon concept allows clear separation of the load transferring functions of the major structural elements of the pneumatic envelope, the tendons and the film. Essentially, the film provides the gas barrier and transfers only local pressure load to the tendons. The tendons, in the mean time, provide the global pressure containing strength. In that manner, the strength requirement for the film only depends on local parameters. The tendon is made of p-phenylene-2,6-benzobisoxazole (PBO) fibers, which is selected due to its high strength to weight ratio when compared to other high performance, commercially available, fibers. High strength fibers, however, are known to degrade upon exposure to light, particularly at short wavelengths. This paper reports the results of an investigation of the resistance of four commercial high strength fibers to ultra violet (UV) exposure. The results indicate that exposing high strength fibers in continuous yarn form to UV led to serious loss in strength of the fibers except for Spectra® fibers. The adverse changes in mechanical behavior occurred over short duration of exposure compared to the 100 day duration targeted for these missions. UV blocking finishes to improve the UV resistance of these fibers are being investigated. The application of these specially formulated coatings is expected to lead to significant improvement of the UV resistance of these high performance fibers. In this publication, we report on the mechanical behavior of the fibers pre- and post-exposure to UV, but without application of the blocking finishes.

  4. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    PubMed Central

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-01-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials. PMID:27264347

  5. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-06-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.

  6. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  7. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  8. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  9. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    PubMed

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  10. Strength coupling in mixed phases under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhi; Dong, Haini; Sun, Guangai; Ren, Xiangting; He, Duanwei; Yang, Wenge

    2016-10-01

    The strength of a material can be altered by temperature, pressure, grain size, and orientation distributions. At the microscale, neighboring grains often play important roles in the elastic and plastic deformation process. By applying high pressure to a mixture of germanium and gold powder in the vicinity of the germanium phase transition pressure, we found that the deformation behavior of gold largely correlates with that of the surrounding germanium. The deviatoric strain and compressibility of Au behaves anomalously when Ge undergoes a diamond to β-tin structure transition, accompanying a large volume and strength drop. The results demonstrate that the intrinsic strength of a mixed phase could be largely controlled by the other surrounding phase, which is fundamentally important in understanding the deformation mechanism of multiphase materials, especially when one phase undergoes dramatic changes in strength under high pressure conditions.

  11. The Axial Compressive Strength of High Performance Polymer Fibers

    DTIC Science & Technology

    1985-03-01

    examined is a high-modulus graphite fiber (Union Carbide P-75) that is spun from mesophase pitch . This fiber is stretched during the graphitization...After approximately 3% axial compressive strain the fibers exhibited surface helical kink bands having a pitch angle of 600. Both left- and right-handed...strength using transmission optical microscopy with the beam bending technique. However, the compressive strengths of similar pitch -based graphite fibers

  12. Scientific Temper among Academically High and Low Achieving Adolescent Girls

    ERIC Educational Resources Information Center

    Kour, Sunmeet

    2015-01-01

    The present study was undertaken to compare the scientific temper of high and low achieving adolescent girl students. Random sampling technique was used to draw the sample from various high schools of District Srinagar. The sample for the present study consisted of 120 school going adolescent girls (60 high and 60 low achievers). Data was…

  13. High-strength rolled sections with structural anisotropy

    NASA Astrophysics Data System (ADS)

    Odesskii, P. D.; Chernenko, V. T.

    1992-08-01

    The article investigates the properties of high-strength sections .for building structures. It examines theinfluence of structural anisotropy on the operational properties of profiles of steel St3ps strengthened fromthe rolling heat on a high-speed mill. It is shown that the use of such rolled sections in industo, is promising.

  14. Microstructural Observations on High Strength Polycrystalline Iron Whiskers.

    DTIC Science & Technology

    1978-08-01

    found that the whiskers consisted of a unique and complex microdispersion of iron oxides, iron carbide, and atomic carbon which bond the very small alpha ... iron crystallites into a non-porous microstructure of high integrity. The mixing of strong covalent bonding with metallic bonding is proposed to explain the exceptionally high tensile strength of the whiskers. (Author)

  15. Properties of formable high strength sheet steels for automotive use

    SciTech Connect

    Satoh, S.; Kato, T.; Nishida, M.; Obara, T.; Shinozaki, M.; Tosaka, A.

    1983-11-01

    Metallurgical factors affecting the press formability of the newly developed high strength sheet steels have been discussed. Dual phase steels, CHLY (cold-rolled sheet steel) and HTP-D (as-hotrolled sheet steel), produced by control of cooling conditions after intercritical annealing or hot-rolling exhibit very low yield to tensile strength ratio and high n-value. Rephosphorized extralow carbon steel, CHRX, produced by continuous annealing with rapid cooling is characterized by its extremely high r-value and low yield strength. CHLY, HTP-D and CHRX have large bake hardenability. Precipitation hardened steel, HTP-F (hot-rolled sheel steel), produced by adjusting carbon equivalent and sulfur content is suitable for manufacturing wheel rims owing to its good formability after flash butt welding.

  16. A universal fracture criterion for high-strength materials

    PubMed Central

    Qu, Rui Tao; Zhang, Zhe Feng

    2013-01-01

    Recently developed advanced high-strength materials like metallic glasses, nanocrystalline metallic materials, and advanced ceramics usually fracture in a catastrophic brittle manner, which makes it quite essential to find a reasonable fracture criterion to predict their brittle failure behaviors. Based on the analysis of substantial experimental observations of fracture behaviors of metallic glasses and other high-strength materials, here we developed a new fracture criterion and proved it effective in predicting the critical fracture conditions under complex stress states. The new criterion is not only a unified one which unifies the three classical failure criteria, i.e., the maximum normal stress criterion, the Tresca criterion and the Mohr-Coulomb criterion, but also a universal criterion which has the ability to describe the fracture mechanisms of a variety of different high-strength materials under various external loading conditions.

  17. The "Renaissance Child": High Achievement and Gender in Late Modernity

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky

    2012-01-01

    This paper draws on the concept of the "Renaissance Child" to illustrate the ways in which gender influences the opportunities and possibilities of high-achieving pupils. Using data from a study of 12-13-year high-achieving boys and girls based in schools in England, the paper considers the ways in which a group of popular boys was able…

  18. High Strength and Good Ductility in Cu-3Ag-0.5Zr Alloy by Cryo-Rolling and Aging

    NASA Astrophysics Data System (ADS)

    Krishna, S. Chenna; Chawake, Niraj; Kottada, Ravi Sankar; Jha, Abhay K.; Pant, Bhanu; Venkitakrishnan, P. V.

    2017-01-01

    A combination of high strength and good ductility was achieved in a precipitation hardenable Cu-3Ag-0.5Zr alloy through cryo-rolling (80% reduction in thickness) and aging in the temperature range (200-500 °C). The high-strength sheets produced by cryo-rolling showed a threefold increase in yield strength compared to that of the solution-treated and aged (220 MPa) sample, while retaining good ductility. An optimum combination of high strength (614 MPa) and ductility (8%) was achieved by 80% cryo-rolling and aging at 320 °C for 1 h. The high strength and good ductility obtained was attributed to various microstructural factors such as deformation twins, ultra-fine grains, high dislocation density and fine nano-sized silver precipitates.

  19. Uncertainties in obtaining high reliability from stress-strength models

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Matthews, William T.; Vangel, Mark G.

    1992-01-01

    There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. The potential consequences are identified of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress-strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress-strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.

  20. The Tensile Behavior of High-Strength Carbon Fibers.

    PubMed

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  1. Advanced Tribological Coatings for High Specific Strength Alloys

    DTIC Science & Technology

    1989-09-29

    Hard Anodised 4 HSSA12 (SHT) Plasma Nitrided 1 HSSA13 (H&G) Plasma Nitrided 2 HSSA14 (SHT) High Temperature Nitrocarburized 1 HSSA15 (H&G) Nitrox 1...HSSA26 ( High Temperature Plasma Nitriding) has recently arrived, and is currently undergoing metallographic examination. The remaining samples are still...Report No 3789/607 Advanced Tribological Coatings For High Specific Strength Alloys, R&D 5876-MS-01 Contract DAJ A45-87-C-0044 5th Interim Report

  2. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  3. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    PubMed

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  4. High-strength porous carbon and its multifunctional applications

    DOEpatents

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  5. A novel technique of unilateral percutaneous kyphoplasty achieves effective biomechanical strength and reduces radiation exposure

    PubMed Central

    Zhuang, Yan; Yang, Lei; Li, Haijun; Ren, Yajun; Cao, Xiaojian

    2016-01-01

    Purpose: To develop a novel technique of percutaneous kyphoplasty (PKP) with effective biomechanical strength and lower radiation exposure. Methods: Thirty fresh lumbar vertebrae isolated from six hogs were decalcified and compressed to induce osteoporotic vertebral compression fractures. Kyphoplasty was performed using three different techniques (ten for each group): conventional unilateral approach (group A), conventional bilateral approach (group B) and novel unilateral approach (group C). Biomechanical indexes including Yield load and stiffness were tested before and after kyphoplasty. The anterior height of each vertebral body (AHVB) was measured before compression, after compression and after kyphoplasty. Frequency of C-arm use and volume of bone cement were also recorded in the process. Results: Compared with group A, our novel technique in group C can significantly improve the recovery of AHVB after compression fractures. However, there was no statistical difference between group B and group C. Values of Yield load in both group B and group C were statistically higher than that in group A, however, no significant difference was found between group B and C. Statistical results of stiffness were similar to Yield load. Regarding volume of bone cement and radiation exposure, the novel technique in group C needed more bone cement and fluoroscopy use than in group A but less than in group B. Conclusions: This novel device makes unilateral kyphoplasty feasible, safe and effective. In the premise of guaranteed biomechanical strength, the new technique significantly reduces risk of radiation exposure in kyphoplasty. PMID:27158403

  6. Low carbon dual phase steels for high strength wire

    SciTech Connect

    Thomas, G.; Ahn, J.H.

    1985-08-01

    This paper shows that dual phase steels can be designed and processed as new, economical low carbon steels for cold drawing into high tensile strength steel wires. Current work indicates wires of tensile strengths up to 400,000 psi can be obtained. Potential applications for dual phase steel wire include bead wire, tire cord, wire rope and prestressed concrete. It should be possible to produce wire rods in existing rod mills by adapting the controlled rolling and quenching procedures outlined in this paper.

  7. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  8. High-strength nanostructured titanium alloy for aerospace industry

    NASA Astrophysics Data System (ADS)

    Naydenkin, E. V.; Mishin, I. P.; Ratochka, I. V.; Vinokurov, V. A.

    2015-10-01

    The technological regimes of receiving of round bars of VT22 titanium alloy with the diameter 22 mm and hierarchically organized ultrafine-grained (nano-) structure by helical rolling and subsequent heat treatment (aging) were developed. It was shown that such structure formation results in a substantial increase (by more than 20%) of strength properties of the alloy as compared to the initial state. The obtained rods with a high specific strength may be used in the aerospace industry in the manufacture of critical structural elements.

  9. High strength graphite and method for preparing same

    DOEpatents

    Overholser, Lyle G.; Masters, David R.; Napier, John M.

    1976-01-01

    High strength graphite is manufactured from a mixture of a particulate filler prepared by treating a particulate carbon precursor at a temperature in the range of about 400.degree. to 1000.degree. C., an organic carbonizable binder, and green carbonizable fibers in a concentration of not more than 2 weight per cent of the filler. The use of the relatively small quantity of green fibers provides a substantial increase in the flexural strength of the graphite with only a relatively negligible increase in the modulus of elasticity.

  10. Test-Taking Strategies of High and Low Mathematics Achievers

    ERIC Educational Resources Information Center

    Hong, Eunsook; Sas, Maggie; Sas, John C.

    2006-01-01

    The authors explored test-preparation and test-taking strategies that high school students used in algebra tests. From a pool of high school students (N = 156), 61 students participated in interviews, and of those interviewed, 26 represented those who were high achieving as well as highly interested in mathematics (n = 15) vs. those who were low…

  11. Middle School Configuration Relationship with Eighth Grade Achievement with Administrator Perceptions of Strengths and Weaknesses

    ERIC Educational Resources Information Center

    Billings, Tawny J.

    2014-01-01

    This mixed-method research study sought to investigate the relationship between middle school configuration and the academic achievement of eighth grade students in English Language Arts (ELA) and Algebra 1. The California Content Standards exam scores of 646 elementary middle schools (K-8) and 1,282 traditional middle schools (6-8, 7-8) in…

  12. Some Correlates of High School Foreign Language Achievement.

    ERIC Educational Resources Information Center

    Beanblossom, Gary F.

    This paper investigates the influences of traditional kinds of verbal and quantitative achievement and aptitude variables on high school foreign language achievement, as measured by Modern Language Association and University of Washington tests of language skills administered to entering college students. The report focuses on: (1) the sample and…

  13. Ultra-high Burst Strength of CVD Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luda; Boutilier, Michael; Kidambi, Piran; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Porous graphene membranes have significant potential in gas separation, water desalination and nanofiltration. Understanding the mechanical strength of porous graphene is crucial because membrane separations can involve high pressures. We studied the burst strength of CVD graphene membrane placed on porous support at applied pressures up to 100 bar by monitoring the gas flow rate across the membrane as a function of pressure. Increase of gas flow rate with pressure allowed for extraction of the burst fraction of graphene as it failed under increasing pressure. We also studied the effect of sub-nanometer pores on the ability of graphene to withstand pressure. The results showed that porous graphene membranes can withstand pressures comparable to or even higher than the >50 bar pressures encountered in water desalination, with non-porous CVD graphene exhibiting even higher mechanical strength. Our study shows that porous polycrystalline CVD graphene has ultra-high burst strength under applied pressure, suggesting the possibility for its use in high-pressure membrane separations. Principal Investigator

  14. Gradient twinned 304 stainless steels for high strength and high ductility

    SciTech Connect

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao; Lu, Jian; Wang, Y. Morris

    2016-04-23

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  15. Gradient twinned 304 stainless steels for high strength and high ductility

    DOE PAGES

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao; ...

    2016-04-23

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility,more » leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.« less

  16. Attitudes and Opinions from the Nation's High Achieving Teens: 29th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report presents the 1998 statistical findings of the annual survey to determine the attitudes of national high school student leaders. Questionnaires were completed by 3,123 high school juniors and seniors, all of whom were selected for recognition in "Who's Who among American High School Students." In addition to demographic…

  17. Development of third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    McGrath, Meghan Colleen

    Lightweight duplex steels with combinations of either bainite, acicular ferrite, and austenite or martensite and austenite were investigated as third generation advanced high strength steels targeted for automotive applications. Large additions of manganese (> 13 wt%) and carbon (<0.2wt%) were employed to stabilize the austenite phase. Silicon additions between 1 and 2 wt% were added to suppress cementite formation. Strength and ductility were increased while density was decreased with aluminum additions between 2.4 and 5.5 wt% to the steel. This research addressed the dependence of alloying on microstructures and mechanical behavior for high manganese and aluminum duplex steels that were cast and subsequently hot rolled. Duplex steels with different volume fractions of primary delta-ferrite were used to study the crystallography of austenite fanned during the peritectic reaction. Solute profiles across the peritectic interface showed aluminum segregated near the interface which promoted bainitic ferrite formation. Thermal treatments were used to manipulate the concentration and type of oxides and the ferrite plate density was found to correlate with inclusions of low misfit in steels with austenite grain size of 16.5 microm. A steel with bainite and acicular ferrite produced an ultimate tensile strength of 970 MPa and elongation of 40%. The mechanical prope1iies depended on the strengths and size of the microstructural constituents. Work hardening behavior was examined in a steel exhibiting multiple martensitic transformation induced plasticity (gamma-austenite→epsilon-smartensite→alpha-martensite). A strain hardening exponent as high as 1.4 was observed with ultimate tensile strength and elongation as high as 1,165 MPa and 34%.

  18. Achievement Motivation Training for Potential High School Dropouts. Achievement Motivation Development Project Working Paper Number 4.

    ERIC Educational Resources Information Center

    McClelland, David C.

    This pilot project sought to determine if instruction in achievement motivation would help potential dropouts to complete their schooling. Subjects were tenth grade students in a suburban Boston high school. A one-week residential course during winter and spring vacations was taken by one group of six boys and a second group of four. Equated…

  19. Recent Observation of Hydrogen-Induced Cracking of High-Strength Steels

    SciTech Connect

    McMahon, Jr, C J; Liu, Xinyu; Kameda, Jun; Morgan, Michael J

    2008-09-14

    The present progress report shows that the ultra-high-strength 4340-type steel, even if ideally pure, cannot safely be used for service in a hydrogen environment. Some of the strength must be given up in favor of more toughness, which can be achieved by reducing the carbon content and increasing the nickel content. The 5%NiCrMoV steel with about 0.1% carbon shows promise in this regard, especially in an aqueous environment and in hydrogen at around atmospheric pressure. However, we have not yet achieved a purity level high enough to establish the baseline behavior of an ideally pure version of this steel in high-pressure hydrogen.

  20. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  1. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  2. Hydrogen Embrittlement of Automotive Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Lovicu, Gianfranco; Bottazzi, Mauro; D'Aiuto, Fabio; De Sanctis, Massimo; Dimatteo, Antonella; Santus, Ciro; Valentini, Renzo

    2012-11-01

    Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.

  3. Attitudes and Opinions from the Nation's High Achieving Teens: 28th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 28th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,210 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1997 edition of "Who's Who Among American High School Students." The report presents demographic information on the…

  4. Attitudes and Opinions from the Nation's High Achieving Teens: 27th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 27th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,370 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1996 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  5. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    SciTech Connect

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  6. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  7. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  8. Attitudes and Opinions from the Nation's High Achieving Teens. 25th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted during the spring of 1994 for the purpose of determining the attitudes of student leaders in the nation's high schools. Eight thousand surveys were sent out to students, of which 3177 were returned. All students surveyed were members of the junior or senior class during the 1993-94 academic year. They were selected for…

  9. Corrosion Behavior of Friction Stir Welded High Strength Aluminum Alloys

    DTIC Science & Technology

    2002-01-18

    Angelo Guinasso, " Stress Corrosion Susceptibility in 7050 -T751 Aluminum Following Friction Stir Welding", Proc. First Friction Stir Welding Symposium...potential of the nugget. Susceptibility to stress corrosion cracking (SCC) was evaluated using the slow strain rate (SSR) method described in ASTM Standards...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP015941 TITLE: Corrosion Behavior of Friction Stir Welded High Strength

  10. Reduced hydrogen embrittlement susceptibility in platinum implanted high strength steel

    NASA Astrophysics Data System (ADS)

    Cowie, J. G.; Lowder, L. J.; Culbertson, R. J.; Kosik, W. E.; Brown, R.

    1991-07-01

    High strength steels suffer from a high susceptibility to hydrogen embrittlement in a corrosive atmosphere, a factor which limits their usefulness. A good catalyst, such as platinum, present on the surface of the steel may lead to a low value of hydrogen overvoltage, thereby reducing the accumulation and subsequent diffusion of atomic hydrogen into the metal. In the present study, platinum was implanted into high strength electroslag remelted (ESR) 4340 steel specimens to a dose of 10 16 atoms/cm 2. Both Pt-implanted and unimplanted specimens were rate charged with hydrogen. The relative concentration of diffusible hydrogen was determined using an electrochemical measurement device known as a Barnacle Electrode. The specimens implanted with platinum exhibited less diffusible hydrogen than the unimplanted steel. Slow strain rate notched-tensile tests, in an aqueous solution of 3.5 wt.% NaCI, were performed in order to evaluate the effect of hydrogen on strength and ductility. The Pt-implanted specimens were able to sustain significantly higher loads before fracture than their unimplanted counterparts. Scanning electron microscopy (SEM) verified the presence of brittle cracking typical of hydrogen embrittlement type failures. Degradation of mechanical properties due to hydrogen embrittlement was thus significantly reduced. This suggested that both the electrochemical and catalytic properties of the Pt-implanted surface were responsible for the improvement in properties.

  11. Development of ductile high-strength chromium alloys, phase 2

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1973-01-01

    Strength and ductility were evaluated for chromium alloys dispersion hardened with the putative TaC, TaB, CbC, and CbB compounds. TaC and TaB proved to be the most potent strengtheners, but when combined, their effect far outweighed that produced individually. Tests at 1422 K (2100 F) on an alloy containing these two compounds at the combined level of 0.5 m/o revealed a 495 MN/sq m (70 ksi) tensile strength for wrought material, and a 100 hour rupture strength of 208 MN/sq m (30 ksi) when solution annealed and aged to maximize creep resistance. These levels of high temperature strength greatly exceed that reported for any other chromium-base alloy. The ductile-to-brittle transition temperature (DBTT) of the two phase strengthened alloy occurred at approximately 588 K (600 F) when heat treated to optimize creep strength and was not improved by fabrication to produce a wrought and recovered microstructure. The lowest DBTT measured on any of the alloys investigated was 422 K (300 F). Strengthening phases actually formed in Cr-Ta-B and Cr-Cb-B compositions are probable M2CrB2 (M=Ta or Cb) compounds of tetragonal crystal structure. The likely habit relationship between these compounds and chromium is postulated. Cube habit coherency was identified for TaC precipitation in chromium by electron microscopy. In another study, the maximum solubility of carbon in chromium was indicated to lie between 3/4 and 1 a/o and that of boron to be 1/2 a/o.

  12. What Does Quality Programming Mean for High Achieving Students?

    ERIC Educational Resources Information Center

    Samudzi, Cleo

    2008-01-01

    The Missouri Academy of Science, Mathematics and Computing (Missouri Academy) is a two-year accelerated, early-entrance-to-college, residential school that matches the level, complexity and pace of the curriculum with the readiness and motivation of high achieving high school students. The school is a part of Northwest Missouri State University…

  13. High School Employment and Academic Achievement: A Note for Educators

    ERIC Educational Resources Information Center

    Keister, Mary; Hall, Joshua

    2010-01-01

    Educators are often in a position to affect student decisions to work during the school term. This study reviews and summarizes the literature on the effect that employment during high school has on academic achievement. The available evidence suggests that part-time jobs for high school students are beneficial as long as the number of hours…

  14. High-Stakes Testing: Does It Increase Achievement?

    ERIC Educational Resources Information Center

    Nichols, Sharon L.

    2007-01-01

    I review the literature on the impact on student achievement of high-stakes testing. Its popularity as a mechanism for holding educators accountable has triggered studies to examine whether its promise to increase student learning has been fulfilled. The review concludes there is no consistent evidence to suggest high-stakes testing leads to…

  15. Brain Hemisphericity and Mathematics Achievement of High School Students

    ERIC Educational Resources Information Center

    Fernandez, Sanny F.

    2011-01-01

    This study aimed to find out the brain hemisphericity and mathematics achievement of high school students. The respondents of the study were the 168 first year high school students of Colegio de San Jose, during school year 2010-2011 who were chosen through stratified random sampling. The descriptive and interview methods of research were used in…

  16. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  17. A Novel Method for Electroplating Ultra-High-Strength Glassy Metals

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.

  18. Dynamic Strength of Metals at High Pressure and Strain Rate

    NASA Astrophysics Data System (ADS)

    Lorenz, Thomas

    2006-03-01

    A new approach to materials science at very high pressures and strain rates has been developed on the Omega laser, using a ramped plasma piston drive. A laser drives an ablative shock through a solid plastic reservoir where it unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation.^1 This has been demonstrated at OMEGA at pressures to 200 GPa in Al foils. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. RT instability measurements of solid of Al-6061-T6 ^2 and vanadium, at pressures of 20-100 GPa, and strain rates of 10^6 to 10^8 s-1, show clear material strength effects. Modelling results for two constitutive strength models -- Steinberg-Guinan and Preston-Tonks-Wallace, show enhanced dynamic strength that may be correlated with a high-strain-rate, phono-drag mechanism. Data, modeling details and future prospects for this project using the National Ignition Facility laser, will be presented. [1] J. Edwards et al., Phys. Rev. Lett., 92, 075002 (2004). [2] K. T. Lorenz et al., Phys. Plasmas 12, 056309 (2005). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  19. High strength E-glass/CNF fibers nanocomposite

    NASA Astrophysics Data System (ADS)

    Abu-Zahra, Esam H.

    Glass fibers are among the most versatile industrial materials known today, where 4 billion pounds of glass are used every year. They are readily produced from raw materials, which are available in virtually unlimited supply. Reinforced glass composites still suffer from different weaknesses; such as: poor dispersion, poor alignment and orientation of reinforcing materials, in addition to the difficulties associated with handling randomly oriented nanofibers and nanotubes in an industrial setting. The aim of this work is to study the feasibility of a manufacturing methodology to align the imbedded CNFs in the glass fibers and to quantify the potential gains in the mechanical strength of the nanocomposite glass fibers. The method makes use of the high aspect ratio of the CNFs along with the glass filament drawing process to imbed, disperse and align the CNFs in glass fibers. E-glass frit was prepared and mixed with 5% vol. CNFs. The mix was fed to the glass fibers drawing machine using a special feeding mechanism. Hybrid glass fibers were drawn on 12 runs and tested for their tensile strength properties. A 300% increase on the tensile strength of the E-glass/CNFs fibers was successfully demonstrated. Structural analysis using SEM testing revealed that the CNFs survived the high temperature in the premelter (2400°F), in addition to that for being well dispersed and aligned.

  20. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  1. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy.

  2. Achieving the College Dream? Examining Disparities in Access to College Information among High Achieving and Non-High Achieving Latina Students

    ERIC Educational Resources Information Center

    Kimura-Walsh, Erin; Yamamura, Erica K.; Griffin, Kimberly A.; Allen, Walter R.

    2009-01-01

    Using an Opportunity to Learn (OTL) framework, this study examines the college preparatory experiences of Latina high and non-high achievers at an urban Latina/o majority high school. Findings indicate that students relied almost exclusively on school resources to navigate their college preparation process. However, the school provided…

  3. Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Ferreira, L. E. T.

    2007-09-01

    This paper addresses the use of R-curves to study the fracture behavior of high-strength concrete and steel-fiber-reinforced concrete subjected to crack ing in a three-point bending configuration. The R-curves are modeled through an effective approach based on the equations of linear-elastic fracture mechanics (LEFM), which relates the applied load to the fundamental displacements of notched-through beams loaded monotonically. It is initially shown that, for quasi-brittle materials, the R-curves responses can be evaluated in a quasi-analytical way, using the load-crack mouth opening, the load-load line displacement, or exclusively the displacement responses obtained experimentally. Afterward, the methodology is used to obtain the fracture responses of high-strength and fiber-reinforced concretes, up to the final stages of rupture.

  4. Phase transformation and stabilization of a high strength austenite

    NASA Technical Reports Server (NTRS)

    Jin, S.; Huang, D.

    1976-01-01

    An investigation of the phase transformation and the austenite stabilization in a high strength austenite has been made. An Fe-29Ni-4.3Ti austenite age-hardened by gamma-prime (Ni3Ti) precipitates showed a further increase of strength after martensitic and reverse martensitic phase transformations. The stability of ausaged austenite as well as ausaged and transformation-strengthened austenite was improved significantly through an isothermal treatment at 500 C. The Ms temperature of the strengthened austenite was restored to nearly that of annealed austenite while the austenite was hardened to R(C) 41 through precipitation and phase transformations. The observed austenite stabilization is attributed to the formation of GP zones or short-range order of less than about 10A in size.

  5. New high-strength neodymium phosphate laser glass

    SciTech Connect

    Galagan, B I; Glushchenko, I N; Denker, B I; Kalachev, Yu L; Mikhailov, Viktor A; Sverchkov, S E; Shcherbakov, Ivan A; Kuleshov, N V

    2009-12-31

    A high-strength neodymium laser glass (SNLG) based on an alumoborophosphate composition is developed and synthesised; its physicochemical, spectral, luminescent, and lasing characteristics are studied. It is found that the chemical stability and thermal resistance of the new glass are considerably higher than the corresponding characteristics of known neodymium-doped phosphate laser glasses. Investigations of lasing upon longitudinal diode pumping showed that, due to the higher thermal resistance, the new glass allows one to obtain output powers twice as high as those of industrial GLS22 glass. (active media)

  6. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces.

    PubMed

    Zheng, Shijian; Beyerlein, Irene J; Carpenter, John S; Kang, Keonwook; Wang, Jian; Han, Weizhong; Mara, Nathan A

    2013-01-01

    Bulk nanostructured metals can attribute both exceptional strength and poor thermal stability to high interfacial content, making it a challenge to utilize them in high-temperature environments. Here we report that a bulk two-phase bimetal nanocomposite synthesised via severe plastic deformation uniquely possesses simultaneous high-strength and high thermal stability. For a bimetal spacing of 10 nm, this composite achieves an order of magnitude increase in hardness of 4.13 GPa over its constituents and maintains it (4.07 GPa), even after annealing at 500 °C for 1 h. It owes this extraordinary property to an atomically well-ordered bimaterial interface that results from twin-induced crystal reorientation, persists after extreme strains and prevails over the entire bulk. This discovery proves that interfaces can be designed within bulk nanostructured composites to radically outperform previously prepared bulk nanocrystalline materials, with respect to both mechanical and thermal stability.

  7. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  8. Production of high melt strength polypropylene by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Lugão, A. B.; Artel, B. W. H.; Yoshiga, A.; Lima, L. F. C. P.; Parra, D. F.; Bueno, J. R.; Liberman, S.; Farrah, M.; Terçariol, W. R.; Otaguro, H.

    2007-11-01

    High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international producers of polypropylene. Therefore, BRASKEM, the leading Brazilian PP producer, together with EMBRARAD, the leading Brazilian gamma irradiator, and the IPEN (Institute of Nuclear Energy and Research) worked to develop a national technology for the production of HMS-PP. One of the effective approaches to improve melt strength and extensibility is to add chain branches onto polypropylene backbone using gamma radiation. Branching and grafting result from the radical combinations during irradiation process. Crosslinking and main chain scission in the polymer structure are also obtained during this process. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene with two different monomers, Tri-allyl-isocyanurate (TAIC) and Tri-methylolpropane-trimethacrylate (TMPTMA), with concentration ranging from 1.5 to 5.0 mmol/100 g of polypropylene. These samples were irradiated with a 60Co source at dose of 20 kGy. It used two different methods of HMS-PP processing. The crosslinking of modified polymers was studied by measuring gel content melt flow rate and rheological properties like melt strength and drawability. It was observed that the reaction method and the monomer type have influenced the properties. However, the concentration variation of monomer has no effect.

  9. Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale

    PubMed Central

    Yu, Qian; Qi, Liang; Mishra, Raja K.; Li, Ju; Minor, Andrew M.

    2013-01-01

    In mechanical deformation of crystalline materials, the critical resolved shear stress (CRSS; τCRSS) is the stress required to initiate movement of dislocations on a specific plane. In plastically anisotropic materials, such as Mg, τCRSS for different slip systems differs greatly, leading to relatively poor ductility and formability. However, τCRSS for all slip systems increases as the physical dimension of the sample decreases to approach eventually the ideal shear stresses of a material, which are much less anisotropic. Therefore, as the size of a sample gets smaller, the yield stress increases and τCRSS anisotropy decreases. Here, we use in situ transmission electron microscopy mechanical testing and atomistic simulations to demonstrate that τCRSS anisotropy can be significantly reduced in nanoscale Mg single crystals, where extremely high stresses (∼2 GPa) activate multiple deformation modes, resulting in a change from basal slip-dominated plasticity to a more homogeneous plasticity. Consequently, an abrupt and dramatic size-induced “brittle-to-ductile” transition occurs around 100 nm. This nanoscale change in the CRSS anisotropy demonstrates the powerful effect of size-related deformation mechanisms and should be a general feature in plastically anisotropic materials. PMID:23904487

  10. Microstructure and mechanical properties of high strength Al—Mg—Si—Cu profiles for safety parts

    NASA Astrophysics Data System (ADS)

    Österreicher, J. A.; Schiffl, A.; Falkinger, G.; Bourret, G. R.

    2016-03-01

    Aluminium extrudate used for safety parts in cars need to exhibit high yield strength and ductility, a combination that is not easily achieved. In this work, the mechanical properties and microstructure of profiles with a yield strength greater than 280MPa achieved by two different artificial ageing treatments were studied. Profiles from one of the heat treatments performed well in quasi-static compression testing while those from the other heat treatment clearly failed. The batch of profiles that failed showed higher uniform elongation in tensile testing but a lower reduction in area. However, the difference in bending angles in the three-point-bending test were not as pronounced. Microscopic investigation of polished sections and fracture surfaces revealed that failure is dominated by the fracture of intermetallic phases resulting in voids. The growth and coalescence of these voids is facilitated by another population of smaller voids within the matrix, presumably nucleating at secondary phases.

  11. Self-Esteem and Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Moradi Sheykhjan, Tohid; Jabari, Kamran; Rajeswari, K.

    2014-01-01

    The primary purpose of this study was to determine the influence of self-esteem on academic achievement among high school students in Miandoab City of Iran. The methodology of the research is descriptive and correlation that descriptive and inferential statistics were used to analyze the data. Statistical Society includes male and female high…

  12. Comparison of Achievement of Students in High School Courses

    ERIC Educational Resources Information Center

    Troxel, Verne A.

    1970-01-01

    Compares student achievements on common objectives of CHEMS, CBA, and "Modern Chemistry high school chemistry courses. Results indicate the three couses are not equally effective in meeting their objectives. CHEMS and CBA develop a better understanding of chemistry and science, as well as develop greater ability for critical thinking. CBA…

  13. Relationship between High School Leadership Team Practices and Student Achievement

    ERIC Educational Resources Information Center

    McInnis, Timothy M.

    2009-01-01

    This study investigated if a relationship existed between student achievement in 10th grade Missouri Assessment Program mathematics and 11th grade communication arts scores in 2007 and high school leadership team perceptions of the extent to which they demonstrated leadership practices. The secondary purpose was to compare perceptional…

  14. Early College High School: Closing the Latino Achievement Gap

    ERIC Educational Resources Information Center

    Beall, Kristen Ann

    2016-01-01

    The population of United States Latino students is growing at a rapid rate but their academic achievement lags behind white and Asian students. This issue has significant consequences for the nation's economy, as the job market continues to demand more education and better skills. Early College High School programs have the potential to improve…

  15. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    SciTech Connect

    Xu, Tianfu

    2008-09-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO{sub 2} geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation.

  16. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    PubMed

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-09

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  17. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  18. Development of a Lightweight, High Strength, Collapsible Hose

    DTIC Science & Technology

    1989-02-01

    and their properties reported under the generic name "Aramid". 1.4. Chemical Properties Aramids are, in general, highly resistant to most chemicals. Due...acids and alkalies or to materials releasing them gives rise to strength losses. Figures 1.4.1., 1.4.2. and 1.4.3. give details of Aramid resistance to...that Aramid fibre exhibits good resistance to salt spray, sea water, solvents and grease, but that U.V. degradation can be extensive. J.R. Brown et al

  19. A new high strength alloy for hydrogen fueled propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcpherson, W. B.

    1986-01-01

    This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.

  20. Further observations on high impact strength denture-base materials.

    PubMed

    Rodford, R A; Braden, M

    1992-01-01

    Previous studies have shown that high impact strength can be conferred on denture-base poly(methyl methacrylate) polymers by modification with acrylic-terminated butadiene-styrene block copolymers, and that the acrylic end-group was necessary for effective reinforcement. It is now shown that, by solvent extraction studies, grafting of the copolymer occurs both with acrylic-terminated and non-terminated block copolymers. It is therefore concluded that the mode of grafting is different, and some possible mechanisms are discussed.

  1. Method for providing a low density high strength polyurethane foam

    DOEpatents

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  2. Thermophysical property measurements on low alloy high strength carbon steels

    SciTech Connect

    Li, M.; Brooks, J.A.; Atteridge, D.G.; Porter, W.D.

    1997-06-15

    The alloys of interest in this study were AISI Type 4230 and Type 4320 low alloy high strength carbon steels. They are heat-treatable steels and are usually used in the quenched and tempered condition. The Type 4130 has about 0.3% (wt.)C, 0.95%Cr, and 0.2% Mo. The Type 4320 has about 0.2%C, 1.7%Ni, 0.7%Cr, and 0.3% Mo. They are among the most popular alloy steels because of their excellent combination of mechanical properties and are used in both cast and wrought forms for many applications requiring high strength and toughness. However, during the casting operation, carbon segregation to the part surface forms a high carbon content surface layer in the part, which will induce surface cracking in the subsequent quenching process. And, during the welding operation, the critical cooling rate in the heat-affected zone (HAZ) will determine if the weldment is crack-free or not. Thus, the numerical effort to study the thermal history, microstructure evolution and residual stress development during welding and casting is critical to the application of these steels. This modeling effect requires the accurate knowledge of thermophysical properties, such as thermal expansion, solidus and liquidus temperatures, specific heat capacity, and heat of fusion. Unfortunately, these thermophysical properties are unavailable for temperatures over 1,000 C (1,2), thus the need for this study.

  3. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  4. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  5. Parent Involvement Practices of High-Achieving Elementary Science Students

    NASA Astrophysics Data System (ADS)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  6. High strength fused silica flexures manufactured by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  7. Microstructural effects on the springback of advanced high-strength steel

    NASA Astrophysics Data System (ADS)

    Gan, Wei; Babu, S. S.; Kapustka, Nick; Wagoner, Robert H.

    2006-11-01

    The application of advanced high-strength steels (AHSS) has been growing rapidly in the automotive industry. Because of their high-strength, thinner sheet metals can be used for body components to achieve both weight savings and increased safety. However, this will lead to greater springback deviation from design after the forming operation. Fundamental understanding and prediction of springback are required for springback compensation and tooling design. While various types of continuum mechanics based models have been proposed to simulate the mechanical behavior of advanced high-strength steels, few of them consider microstructural effects such as material heterogeneity. In this study, through sheet thickness strength variation has been observed in DP 780 and TRIP 780 steels. Finite-element simulation indicates that the through thickness effect (TTE) can have a significant impact on the springback behavior of these sheet metals. This is verified through our experimental work using draw-bend testing. The results suggest that microstructural effects should be considered to accurately simulate springback of AHSS. Based on these results, implications of different microstructural designs will be discussed.

  8. The Construction of Black High-Achiever Identities in a Predominantly White High School

    ERIC Educational Resources Information Center

    Andrews, Dorinda J. Carter

    2009-01-01

    In this article, I examine how black students construct their racial and achievement self-concepts in a predominantly white high school to enact a black achiever identity. By listening to these students talk about the importance of race and achievement to their lives, I came to understand how racialized the task of achieving was for them even…

  9. Improving science achievement at high-poverty urban middle schools

    NASA Astrophysics Data System (ADS)

    Ruby, Allen

    2006-11-01

    A large percentage of U.S. students attending high-poverty urban middle schools achieve low levels of science proficiency, posing significant challenges to their success in high school science and to national and local efforts to reform science education. Through its work in Philadelphia schools, the Center for Social Organization of Schools at Johns Hopkins University developed a teacher-support model to address variation in science curricula, lack of materials, and underprepared teachers that combined with initial low levels of proficiency block improvements in science achievement. The model includes a common science curriculum based on NSF-supported materials commercially available, ongoing teacher professional development built around day-to-day lessons, and regular in-class support of teachers by expert peer coaches. One cohort of students at three Philadelphia middle schools using the model was followed from the end of fourth grade through seventh grade. Their gains in science achievement and achievement levels were substantially greater than students at 3 matched control schools and the 23 district middle schools serving a similar student population. Under school-by-school comparisons, these results held for the two schools with adequate implementation. Using widely available materials and techniques, the model can be adopted and modified by school partners and districts.

  10. The Will to Achieve: A Phenomenological Study of the Experiences of African American High Achieving Students and Their Parents

    ERIC Educational Resources Information Center

    Spencer, Natalie Faye

    2012-01-01

    The purpose of this research study was to understand the experiences of high achieving African American students and their parents. The experiences of high achieving African American students and their parents have been missing from literature on the academic achievement of African American students. Much of the literature that has been published…

  11. Experimental investigation of bond strength under high loading rates

    NASA Astrophysics Data System (ADS)

    Michal, Mathias; Keuser, Manfred; Solomos, George; Peroni, Marco; Larcher, Martin; Esteban, Beatriz

    2015-09-01

    The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw) and the Joint Research Centre (JRC) in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  12. Guidelines for Stretch Flanging Advanced High Strength Steels

    SciTech Connect

    Sriram, S.; Chintamani, J.

    2005-08-05

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  13. Prediction of Microstructure in High-Strength Ductile Forging Parts

    SciTech Connect

    Urban, M.; Back, A.; Hirt, G.; Keul, C.; Bleck, W.

    2010-06-15

    Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.

  14. Guidelines for Stretch Flanging Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sriram, S.; Chintamani, J.

    2005-08-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  15. Analysis of particle size and interface effects on the strength and ductility of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Ettehad, Mahmood

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the automotive industry due the unique properties such as high strength and ductility with low finished cost. Many experimental and numerical studies have been done to achieve the optimized behavior of DP steels by controlling their microstructure. Experiments are costly and time consuming so in recent years numerical tools are utilized to help the metallurgist before doing experiments. Most of the numerical studies are based on classical (local) constitutive models where no material length scale parameters are incorporated in the model. Although these models are proved to be very effective in modeling the material behavior in the large scales but they fail to address some critical phenomena which are important for our goals. First, they fail to address the size effect phenomena which materials show at microstructural scale. This means that materials show stronger behavior at small scales compared to large scales. Another issue with classical models is the mesh size dependency in modeling the softening behavior of materials. This means that in the finite element context (FEM) the results will be mesh size dependent and no converged solution exist upon mesh refinement. Thereby by applying the classical (local) models one my loose the accuracy on measuring the strength and ductility of DP steels. Among the non-classical (nonlocal) models, gradient-enhanced plasticity models which consider the effect of neighboring point on the behavior of one specific point are proved to be numerically effective and versatile tools to accomplish the two concerns mentioned above. So in this thesis a gradient-enhanced plasticity model which incorporates both the energetic and dissipative material length scales is derived based on the laws of thermodynamics. This model also has a consistent yield-like function for the

  16. Achieving High Performance on the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1998-01-01

    The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.

  17. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  18. Study on technology of high-frequency pulsed magnetic field strength measurement.

    PubMed

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  19. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  20. Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.

    2014-01-01

    High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.

  1. Method of making high strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  2. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  3. Advanced Gear Alloys for Ultra High Strength Applications

    NASA Technical Reports Server (NTRS)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  4. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  5. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    PubMed Central

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti–1Al–8V–5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. PMID:27034109

  6. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    SciTech Connect

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Furthermore hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  7. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    DOE PAGES

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; ...

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation ofmore » α resulting in high tensile strength, greater than any current commercial titanium alloy. Furthermore hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.« less

  8. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-01

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite.

  9. A high-specific-strength and corrosion-resistant magnesium alloy.

    PubMed

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  10. A high-specific-strength and corrosion-resistant magnesium alloy

    NASA Astrophysics Data System (ADS)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  11. A promising structure for fabricating high strength and high electrical conductivity copper alloys

    PubMed Central

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-01-01

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application. PMID:26856764

  12. A promising structure for fabricating high strength and high electrical conductivity copper alloys.

    PubMed

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-02-09

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application.

  13. Anomalous softening of yield strength in tantalum at high pressures

    SciTech Connect

    Jing, Qiumin Wu, Qiang; Xu, Ji-an; Bi, Yan; Liu, Lei; Liu, Shenggang; Zhang, Yi; Geng, Huayun

    2015-02-07

    The pressure dependence of the yield strength of tantalum was investigated experimentally up to 101 GPa at room temperature using a diamond anvil cell. A yield strength softening is observed between 52 and 84 GPa, whereas a normal trend is observed below 52 GPa and above 84 GPa. The onset pressure of the softening is in agreement with previous results obtained by the pressure gradient method and shock wave experiments. This unusual strength softening in tantalum is not related with structural transformation, preferred orientation, or material damage. Our measurements indicate that microscopic deviatoric strain is the major reason for the observed strength softening in tantalum.

  14. Thin boron nitride nanotubes with exceptionally high strength and toughness

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Lin, Jing; Zou, Jin; Wang, Ming-Sheng; Faerstein, Konstantin; Tang, Chengchun; Bando, Yoshio; Golberg, Dmitri

    2013-05-01

    Bending manipulation and direct force measurements of ultrathin boron nitride nanotubes (BNNTs) were performed inside a transmission electron microscope. Our results demonstrate an obvious transition in mechanics of BNNTs when the external diameters of nanotubes are in the range of 10 nm or less. During in situ transmission electron microscopy bending tests, characteristic ``hollow'' ripple-like structures formed in the bent ultrathin BNNTs with diameters of sub-10 nm. This peculiar buckling/bending mode makes the ultrathin BNNTs hold very high post-buckling loads which significantly exceed their initial buckling forces. Exceptional compressive/bending strength as high as ~1210 MPa was observed. Moreover, the analysis of reversible bending force curves of such ultrathin nanotubes indicates that they may store/adsorb strain energy at a density of ~400 × 106 J m-3. Such nanotubes are thus very promising for strengthening and toughening of structural ceramics and may find potential applications as effective energy-absorbing materials like armor.Bending manipulation and direct force measurements of ultrathin boron nitride nanotubes (BNNTs) were performed inside a transmission electron microscope. Our results demonstrate an obvious transition in mechanics of BNNTs when the external diameters of nanotubes are in the range of 10 nm or less. During in situ transmission electron microscopy bending tests, characteristic ``hollow'' ripple-like structures formed in the bent ultrathin BNNTs with diameters of sub-10 nm. This peculiar buckling/bending mode makes the ultrathin BNNTs hold very high post-buckling loads which significantly exceed their initial buckling forces. Exceptional compressive/bending strength as high as ~1210 MPa was observed. Moreover, the analysis of reversible bending force curves of such ultrathin nanotubes indicates that they may store/adsorb strain energy at a density of ~400 × 106 J m-3. Such nanotubes are thus very promising for strengthening and

  15. Damage characterization of high-strength multiphase steels

    NASA Astrophysics Data System (ADS)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2016-11-01

    High-strength steels show an entirely different material behavior than conventional deep-drawing steels. This fact is caused among others by the multiphase nature of their structure. The Forming Limit Diagram as the classic failure criterion in forming simulation is only partially suitable for this class of steels. An improvement of the failure prediction can be obtained by using damage mechanics. Therefore, an exact knowledge of the material-specific damage is essential for the application of various damage models. In this paper the results of microstructure analysis of a dual-phase steel and a complex-phase steel with a tensile strength of 1000 MPa are shown comparatively at various stress conditions. The objective is to characterize the basic damage mechanisms and based on this to assess the crack sensitivity of both steels. First a structural analysis with regard to non-metallic inclusions, the microstructural morphology, phase identification and the difference in microhardness between the structural phases is carried out. Subsequently, the development of the microstructure at different stress states between uniaxial and biaxial tension is examined. The damage behavior is characterized and quantified by the increase in void density, void size and the quantity of voids. The dominant damage mechanism of the dual-phase steel is the void initiation at phase boundaries, within harder structural phases and at inclusions. In contrast the complex-phase steel shows a significant growth of a smaller amount of voids which initiate only at inclusions. To quantify the damage tolerance and the susceptibility of cracking the criterion of the fracture forming limit line (FFL) is used. The respective statements are supported by results of investigations regarding the edge-crack sensitivity.

  16. Extracting strength from high pressure ramp-release experiments

    SciTech Connect

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-14

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  17. Extracting strength from high pressure ramp-release experiments

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-01

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  18. Improvement of Transverse Strength in Graphite-Aluminum Composites by High-Strength Surface Foils.

    DTIC Science & Technology

    1982-02-01

    purchased from Material Concepts Incorporated. The precursor wire had Union Carbide’s VSB-32 or VS0054 pitch mesophase graphite fibers in a matrix of...probably valid. The reason for the low strength of these plates, particularly G4407, is not known. Pitch fiber graphite-aluminum composites usually have

  19. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  20. Unlocking Emergent Talent: Supporting High Achievement of Low-Income, High Ability Students

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Clarenbach, Jane

    2012-01-01

    This report takes a comprehensive look at achievement for low-income promising learners--past, present, and future. At its core, it challenges the nation to move beyond its near-singular focus of achieving minimum performance for all students, to identifying and developing the talent of all students who are capable of high achievement, including…

  1. Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss

    NASA Astrophysics Data System (ADS)

    Thakur, Yash; Lin, Minren; Wu, Shan; Cheng, Zhaoxi; Jeong, D.-Y.; Zhang, Q. M.

    2015-03-01

    High energy density polymer materials are desirable for a broad range of modern power electronic systems. Here, we report the development of a new class of polymer dielectrics based on polyurea and polythiourea, which possess high thermal stability. By increasing the dipole density, the dielectric constant of meta-phenylene polyurea and methylene polythiourea can be increased to 5.7, compared with aromatic polyurea and aromatic polythiourea, which have a dielectric constant in the range of 4.1-4.3. The random dipoles with high dipolar moment and amorphous structure of these polyurea and polythiourea based polymers provide strong scattering to the charge carriers, resulting in low losses even at high electric fields. Consequently, this new class of polymers exhibit a linear dielectric response to the highest field measured (>700 MV/m) with a high breakdown strength, achieving high energy density (>13 J/cm3) with high efficiency (>90%).

  2. High strength glass-ceramic to metal seals

    SciTech Connect

    Haws, L D; Kramer, D P; Moddeman, W E; Wooten, G W

    1986-12-01

    In many applications, ceramics are joined to other materials, especially metals. In such cases, interfacial strength is as important as the strength of each constituent material. Examples are presented for tailoring materials and processes to optimize the glass-ceramic-to-metal seal. Means for detecting defects, nondestructively, are also identified.

  3. Concurrent solution-like decoloration rate and high mechanical strength from polymer-dispersed photochromic organogel.

    PubMed

    Long, Shijun; Bi, Shuguang; Liao, Yonggui; Xue, Zhigang; Xie, Xiaolin

    2014-04-01

    To achieve a fast photochromic response in solid matrix, photochromic molecules/segments have been either dispersed into elastomers via physical doping or linked to glassy polymers by soft units through covalent bonding. However, the former is lack of high mechanical strength and the latter owes the drawback of time-consumption of synthesis. Here, we propose a facile strategy of co-solvent evaporation to prepare polymer-dispersed photochromic organogel where both high mechanical strength of the glassy polymer matrix and solution-like fast photochromism of the photochromic molecule within organogel can be retained concurrently. Glassy PVA matrix and dispersed organogel of 1,3:2,4-di-O-benzylidene-d-sorbitol/poly(propylene glycol) (DBS/PPG) provide high mechanical strength and sufficient free volume for intramolecular rotation of photochromic spiropyran (SP), respectively. Interestingly, these thin films behave a solution-like decoloration the decay rate of which is 65-70 fold faster than that in the SP-directly doped PVA film and only slightly slower than those in their corresponding PPG solutions.

  4. High Strength Lightweight Nanocomposite from Domestic Solid Waste

    NASA Astrophysics Data System (ADS)

    Masturi, Swardhani, Anggi Puspita; Sustini, Euis; Bukit, Minsyahril; Mora, Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    The issue of waste problems needs innovative efforts to solve. One of them is solid waste utilization as nanocomposite using polyurethane (PU) polymer as matrix. Beside using solid waste as filler, nanosilica is also added to improve the material strength of composite-produced. These materials were mixed by simple mixing with variative compositions, and then hot-pressed at 30 MPa and 100° C for 30 minutes. From compressive strength test, it was found that composite with composition 2:8 of PU and solid waste has optimum compressive strength, i.e. 160 MPa. Into this optimum composition, nanosilica then is added to improve the compressive strength and found that at composition 1:40:160 of nanosilica, PU and solid waste, the composite has optimum compressive strength 200 MPa, or increases 25% of that without nanosilica. The composite-produced is also lightweight material with the density is 0.69 g/cm.

  5. High-strength and high-ductility nanostructured and amorphous metallic materials.

    PubMed

    Kou, Hongning; Lu, Jian; Li, Ying

    2014-08-20

    The development of materials with dual properties of high strength and high ductility has been a constant challenge since the foundation of the materials science discipline. The rapid progress of nanotechnology in recent decades has further brought this challenge to a new era. This Research News highlights a few newly developed strategies to optimize advanced nanomaterials and metallic glasses with exceptional dual mechanical properties of high strength and high ductility. A general concept of strain non-localization is presented to describe the role of multiscale (i.e., macroscale, microscale, nanoscale, and atomic scale) heterogeneities in the ductility enhancement of materials reputed to be intrinsically brittle, such as nanostructured metallic materials and bulk metallic glasses. These nanomaterials clearly form a new group of materials that display an extraordinary relationship between yield strength and the uniform elongation with the same chemical composition. Several other examples of nanomaterials such as those reinforced by nanoprecipitates will also be described.

  6. Strength Recovery in a High-Strength Steel During Multiple Weld Thermal Simulations

    NASA Astrophysics Data System (ADS)

    Yu, Xinghua; Caron, Jeremy L.; Babu, S. S.; Lippold, John C.; Isheim, Dieter; Seidman, David N.

    2011-12-01

    BlastAlloy 160 (BA160) is a low-carbon martensitic steel strengthened by copper and M2C precipitates. Heat-affected zone (HAZ) microstructure evaluation of BA160 exhibited softening in samples subjected to the coarse-grained HAZ thermal simulations of this steel. This softening is partially attributed to dissolution of copper precipitates and metal carbides. After subjecting these coarse-grained HAZs to a second weld thermal cycle below the A c1 temperature (at which austenite begins to form on heating), recovery of strength was observed. Atom-probe tomography and microhardness analyses correlated this strength recovery to re-precipitation of copper precipitates and metal carbides. A continuum model is proposed to rationalize strengthening and softening in the HAZ regions of BlastAlloy 160.

  7. Achieving unusual oxidation state of matter under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Lin, Haiqing; Ma, Yanming; Miao, Maosheng

    2013-03-01

    Pressure has many effects to matter including the reduction of the volume, the increase of the coordination number and the broadening of the band-widths. In the past, most of the high-pressure studies focused on structural and electronic state phase transitions. Using first principles calculations and a bias-free structural search method, we will demonstrate that high pressure can lead to high oxidation state of elements that can never be achieved under ambient condition, making high pressure technique a nice tool to explore many traditional topics in solid state and molecular chemistry. As an example, we will show that Hg can transfer the electrons in its outmost d shell to F atoms and form HgF4 molecular crystals under pressure, thereby acting as a true transition metal. Group IIB elements, including Zn, Cd, and Hg are usually defined as post-transition metals because they are commonly oxidized only to the +2 state. Their d shells are completely filled and do not participate in the formation of chemical bonds. Although the synthesis of HgF4 molecules in gas phase was reported before, the molecules show strong instabilities and dissociate. Therefore, the transition metal propensity of Hg remains an open question.

  8. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  9. Thermal Desorption Analysis of Hydrogen in High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Enomoto, M.; Hirakami, D.; Tarui, T.

    2012-02-01

    Thermal desorption analyses (TDA) were conducted in high strength martensitic steels containing carbon from 0.33 to 1.0 mass pct, which were charged with hydrogen at 1223 K (950 °C) under hydrogen of one atmospheric pressure and quenched to room temperature. In 0.33C steel, which had the highest M s temperature, only one desorption peak was observed around 373 K (100 °C), whereas two peaks, one at a similar temperature and the other around and above 573 K (300 °C), were observed in the other steels, the height of the second peak increasing with carbon content. In 0.82C steel, both peaks disappeared during exposure at room temperature in 1 week, whereas the peak heights decreased gradually over 2 weeks in specimens electrolytically charged with hydrogen and aged for varying times at room temperature. From computer simulation, by means of the McNabb-Foster theory coupled with theories of carbon segregation, these peaks are likely to be due to trapping of hydrogen in the strain fields and cores of dislocations, and presumably to a lesser extent in prior austenite grain boundaries. The results also indicate that carbon atoms prevent and even expel hydrogen from trapping sites during quenching and aging in these steels.

  10. Dynamic ductile tearing in high strength pipeline steels

    SciTech Connect

    Rivalin, F.; Iung, T.; Di Fant, M.; Pineau, A.

    1996-12-31

    The study of rapid ductile crack propagation and crack arrest is a central point if one wants to reach a higher safety level in pipelines. Correlations between Charpy tests and full scale burst tests proved to be unsuccessful in predicting pipe burst for recent high strength steels. This paper presents an experiment which allows to test large SENT specimens under dynamic loading, and to characterize steel resistance against rapid ductile crack propagation by a classical energetic parameter, called the crack propagation energy, R, proposed by Turner. The R parameter proved to be characteristic of the rapid crack propagation in the material, for a given specimen and loading configuration. Failure of the specimen under dynamic conditions occurs by shearing fracture which is the same as in a full scale burst test. An example is given for an X65 ferritic-pearlitic steel loaded under static and dynamic conditions. A fracture mode transition is shown following the loading rate. From a metallurgical point of view, shearing fracture occurs by nucleation, growth and coalescence of voids, as for classical ductile fracture.

  11. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    SciTech Connect

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G.; Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  12. A lightweight, high strength dexterous manipulator for commercial applications

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Schena, Bruce M.; Cohan, Steve M.

    1991-01-01

    The concept, design, and features are described of a lightweight, high strength, modular robot manipulator being developed for space and commercial applications. The manipulator has seven fully active degrees of freedom and is fully operational in 1 G. Each of the seven joints incorporates a unique drivetrain design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. Feedback sensors provide position, velocity, torque, and motor winding temperature information at each joint. This sensing system is also designed to be single fault tolerant. The manipulator consists of five modules (not including gripper). These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly and/or disassembly for reconfiguration, transport, or servicing. The manipulator is a completely enclosed assembly, with no exposed components or wires. Although the initial prototype will not be space qualified, the design is well suited to meeting space requirements. The control system provides dexterous motion by controlling the endpoint location and arm pose simultaneously. Potential applications are discussed.

  13. Numerical Design of Drawbeads for Advanced High Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Kim, D. J.; Kim, G. S.

    2010-06-01

    The map for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is numerically investigated and its application is introduced. The bending limit of AHSS sheet is determined from the extreme R/t's obtained simulating numerically the plane-strain process formed by the cylindrical punches and dies with various radii. In addition, the forming allowance defined by the difference between FLC0 and the strain after passing the drawbead, which is observed by the numerical simulation of drawbead pulling test, is computed. Based on the bending limit and forming allowance, the design map for determining the height, width, and shoulder radius of the drawbead which are key parameters in the drawbead design and depend on the restraining force is constructed by aid of the equivalent drawbead model. A drawbead of the stamping die for forming a channel-typed panel is designed by using the design map, and the formability and springback of the panel to be formed are numerically evaluated, from which the availability of the design map is demonstrated.

  14. Polyimide films from vapor deposition: toward high strength, NIF capsules

    SciTech Connect

    Cook, R C; Hsieh, E J; Letts, S A; Roberts, C C; Saculla, M

    1998-10-16

    The focus of recent efforts at LLNL has been to demonstrate that vapor deposition processing is a suitable technique to form polyimide fnms with sufficient strength for current national ignition facility target specifications. Production of polyimide films with controlled stoichiometry was acccomplished by: 1) depositing a novel co-functional monomer and 2) matching the vapor pressure of each monomer in PMDA/ODA co-depositions. The sublimation and deposition rate for the monomers was determined over a range of temperatures. Polyimide films with thicknesses up to 30 p.m were fabricated. Composition, structure and strength were assessed using FTIR, SEM and biaxial burst testing. The best films had a tensile strength of approximately 100 MPa. A qualitative relationship between the stoichiometry and tensile strength of the film was demonstrated. Thin films ({approximately}3.5 {micro}m) were typically smooth with an rms of 1.5 nm.

  15. Silphenylene elastomers have high thermal stability and tensile strength

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two polymeric silphenylene ethers, when cured by reactions with ethyl silicates and metal salts at room temperature, form elastomers having excellent thermal stability and tensile properties. The highest tensile strength obtained in a reinforced elastomer was 2800 psi.

  16. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  17. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD).

    PubMed

    Ji, Jiantao; Peng, Yongzhen; Wang, Bo; Wang, Shuying

    2017-01-01

    This study proposed a novel strategy for achievement of partial denitrification driven by endogenous carbon sources in an anaerobic/anoxic/aerobic activated sludge system. Results showed that in the steady-stage, the nitrate-to-nitrite transformation ratio (NTR) was kept at around 87% without nitrate in the effluent. During the anaerobic period, exogenous carbon sources was completely taken up, accompanied by the consumption of glycogen and production of polyhydroxyalkanoates (PHAs). During the anoxic period, nitrate was reduced to nitrite by using PHAs as carbon sources, followed by the replenishment of glycogen. Thus, the phenotype of denitrifying GAOs was clearly observed and endogenous partial denitrification (EPD) occurred. Furthermore, results showed the nitrate reduction was prior to the nitrite reduction in the presence of nitrate, which led to the high nitrite accumulation.

  18. High-strength cellular ceramic composites with 3D microarchitecture

    PubMed Central

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-01-01

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m3; only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina–polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m3. PMID:24550268

  19. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  20. Copper Deposits with High Tensile Strength and Elongation Electroformed in an Ultra-Low-Concentration Sulfate Bath without Additives

    NASA Astrophysics Data System (ADS)

    Shen, Chunjian; Zhu, Zengwei; Zhu, Di; Ren, Jianhua

    2017-02-01

    Superior mechanical properties of copper are needed in industries to meet high application requirement. In this study, an electroformed copper with superior mechanical properties is achieved by using a simple ultra-low-concentration copper sulfate bath containing neither chloride nor organic additives. Copper deposits obtained in the copper sulfate concentrations ranging from 30 to 60 g/L exhibit high tensile strength and elongation simultaneously. A maximum tensile strength of 256 MPa is achieved, with an elongation ratio of 31%, at a copper sulfate concentration of 30 g/L, while a maximum elongation ratio of 43% is achieved, with a tensile strength of 216 MPa, at a concentration of 50 g/L. It has been found that the copper sulfate concentration affected the hydrogen content, grain arrangement and orientation index of copper deposits which determine their mechanical properties. When the copper sulfate concentration is less than 30 g/L, the excessive hydrogen content of the deposits thus produced leads to poor compactness and inferior mechanical properties. At concentrations over 50 g/L, a disordered arrangement of grains and a significant increase in the peak of (111) lead to an increase in the tensile strength but a decrease in the elongation ratio. This approach provides an effective and economical method for the copper deposits achieving superior mechanical properties.

  1. How to achieve high-level expression of microbial enzymes

    PubMed Central

    Liu, Long; Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field. PMID:23686280

  2. Effects of Partner's Ability on the Achievement and Conceptual Organization of High-Achieving Fifth-Grade Students.

    ERIC Educational Resources Information Center

    Carter, Glenda; Jones, M. Gail; Rua, Melissa

    2003-01-01

    Investigates high-achieving fifth-grade students' achievement gains and conceptual reorganization on convection. Features an instructional sequence of three dyadic inquiry investigations related to convection currents as well as pre- and post-assessment consisting of a multiple-choice test, a card sorting task, construction of a concept map, and…

  3. Comparison of the Level of Using Metacognitive Strategies during Study between High Achieving and Low Achieving Prospective Teachers

    ERIC Educational Resources Information Center

    Doganay, Ahmet; Demir, Ozden

    2011-01-01

    The main purpose of this study is to compare the level of using metacognitive strategies during study between high achieving and low achieving prospective classroom teachers. This study was designed as a mixed method study. Metacognitive Learning Strategies Scale developed by Namlu (2004) was used to measure the use of metacognitive strategies…

  4. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    PubMed Central

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days. PMID:24982946

  5. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete.

    PubMed

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.

  6. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  7. Large-deformation and high-strength amorphous porous carbon nanospheres

    PubMed Central

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-01-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation. PMID:27072412

  8. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  9. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  10. High Strength P/M Gears for Vehicle Transmissions

    DTIC Science & Technology

    2007-03-30

    temperature to the austenitic phase, and then quenched to below the martensite start (MS) temperature to produce martensite . In contrast, for... austenitic condition. The deformed austenite is then cooled to martensite . Figure 5 shows a schematic time-temperature- transformation diagram that... austenite possess substantially higher strength as compared to conventional martensite transformed from undeformed austenite . Up to 50% increase in

  11. Static Dielectric Breakdown Strength of Condensed Heterogeneous High Explosives

    DTIC Science & Technology

    1987-06-01

    3-1 TRIPLE JUNCTION . . .. . . . . . . . . . . . . . . . * * * .3-2 SURFACE FLASHOVER ...enhancement at dielectric interfaces, surface flashover , humidity, surrounding atmosphere, temperature, pressure, and excitation time), which are...discussed in Chapter 3. To obtain meaningful critical field strengths, it is necessary to suppress surface flashover around the insulator sides and

  12. Laser Measurements of Transient High-Strength Electric Fields

    DTIC Science & Technology

    1987-07-15

    Measurements of Electric Field Strength," Poster Session of Applied Spectroscopy (Miami Valley Section), University of Dayton, January 11, 1985. 2...Buswell, A. T., "Quantum Perturbation Theory of Stark- Induced Polarizability," Poster Session of Applied Spectroscopy (Miami Valley Section), University...34Theoretical Calculations of Stark- Induced Polarizabilities," Poster Session of Applied Spectroscopy (Miami Valley Section), The Ohio State University

  13. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  14. Does Recreational Computer Use Affect High School Achievement?

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Berland, Matthew

    2013-01-01

    Historically, the relationship between student academic achievement and use of computers for fun and video gaming has been described from a multitude of perspectives, from positive, to negative, to neutral. However, recent research has indicated that computer use and video gaming may be positively associated with achievement, yet these studies…

  15. Student Perception of Academic Achievement Factors at High School

    ERIC Educational Resources Information Center

    Bahar, Mustafa

    2016-01-01

    Measuring the quality of the "product" is elemental in education, and most studies depend on observational data about student achievement factors, focusing overwhelmingly on quantitative data namely achievement scores, school data like attendance, facilities, expenditure class size, etc. But there is little evidence of learner…

  16. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  17. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  18. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  19. Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy

    DTIC Science & Technology

    2013-06-01

    CRACK INITIATION AND GROWTH BEHAVIOR AT CORROSION PIT IN 7075-T6 HIGH STRENGTH ALUMINUM ALLOY THESIS Eric M. Hunt, Second Lieutenant, USAF AFIT-ENY...7075-T6 HIGH STRENGTH ALUMINUM ALLOY THESIS Presented to the Faculty Department of Aerospace and Astronautical Engineering Graduate School of Engineering...RELEASE; DISTRIBUTION UNLIMITED AFIT-ENY-13-J-01 CRACK INITIATION AND GROWTH BEHAVIOR AT CORROSION PIT IN 7075-T6 HIGH STRENGTH ALUMINUM ALLOY Eric M

  20. Approaches for springback reduction when forming ultra high-strength sheet metals

    NASA Astrophysics Data System (ADS)

    Radonjic, R.; Liewald, M.

    2016-11-01

    Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.

  1. Chrome-Free Paint Primer for Zn/Ni Plated High-Strength Steel (Briefing Charts)

    DTIC Science & Technology

    2014-11-19

    Chrome-Free Paint Primer for Zn/Ni Plated High- Strength Steel 11-19-14 Presentation at ASETSDefense 2014 George Zafiris Team: Mark Jaworowski, Mike...AND SUBTITLE Chrome-Free Paint Primer for Zn/Ni Plated High-Strength Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...by ANSI Std Z39-18 Background High-Strength Steel (Substrate) LHE Cd layer Cr(VI) Primer CCC High-Strength Steel (Substrate) LHE Zn/Ni layer

  2. A 3rd Generation Advanced High-Strength Steel (AHSS) Produced by Dual Stabilization Heat Treatment (DSHT)

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Michal, Gary M.; Heuer, Arthur H.

    2013-10-01

    A 3rd generation advanced high-strength steel containing, in wt pct, 0.3 C, 4.0 Mn, 1.5 Al, 2.1 Si, and 0.5 Cr has been produced using a dual stabilization heat treatment—a five stage thermal processing schedule compatible with continuous galvanized steel production. In excess of 30 vol pct retained austenite containing at least 0.80 wt pct C was achieved with this alloy, which had tensile strengths up to 1650 MPa and tensile elongations around 20 pct.

  3. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    NASA Astrophysics Data System (ADS)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  4. Threatened and Placed at Risk: High Achieving African American Males in Urban High Schools

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    This study investigated the risk and protective factors of 11 high-achieving African American males attending 4 urban charter high schools in a Midwestern city to determine what factors account for their resilience and success in mathematics courses, and in high school more generally. This research was guided by a Phenomenological Variant of…

  5. The Effect of Music Participation on Mathematical Achievement and Overall Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Cox, H. A.; Stephens, L. J.

    2006-01-01

    A study was conducted on high school students, comparing those with some music credits to those with none. No statistically significant difference was found in their mean math grade point averages (GPA) or their mean cumulative GPAs. Students were then separated into two groups based on the number of music credits. Students who had earned at least…

  6. Confined Tension and Triaxial Extension Tests on Eglin High-Strength Concrete

    DTIC Science & Technology

    2014-10-17

    AFRL-RW-EG-TR-2014-120 Confined Tension and Triaxial Extension Tests on Eglin High-Strength Concrete Lance...EXTENSION TESTS ON EGLIN HIGH-STRENGTH CONCRETE FA8651-12-D-0309, Task 005 N/A 2502 9210 W0DT (1) Lance Besaw, Applied Research Associates, Inc. (2...models. All concretes exhibit higher strength in compression than in tension, therefore it is critical to understand the tensile properties of such

  7. Understanding Depth Variation of Deep Seismicity from in situ Measurements of Mineral Strengths at High Pressures

    SciTech Connect

    Chen, J.

    2010-01-01

    Strengths of major minerals of Earth's mantle have been measured using in situ synchrotron X-ray diffraction at high pressures. Analysis of the diffraction peak widths is used to derive the yield strengths. Systematic analysis of the experimental result for olivine, wadsleyite, ringwoodite and perovskite indicates that minerals in the upper mantle, the transition zone and the lower mantle have very distinct strength character. Increasing temperature weakens the upper mantle mineral, olivine, significantly. At high temperature and high pressure, the transition zone minerals, wadsleyite and ringwoodite, have higher strengths than the upper mantle mineral. Among all the minerals studied, the lower mantle mineral, perovskite, has the highest strength. While both the upper mantle and the transition zone minerals show a notable strength drop, the strength of the lower mantle mineral shows just an increase of relaxation rate (no strength drop) when the temperature is increased stepwise by 200 K. The strength characteristics of these major mantle minerals at high pressures and temperatures indicate that yield strength may play a crucial role in defining the profile of deep earthquake occurrence with depth.

  8. Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2016-03-01

    Ultra-high strength and ductile powder metallurgy (PM) binary Ti-20at.%Ta alloy has been fabricated via sintering from elemental Ti and Ta powders and subsequent hot swaging and annealing. The microstructural evolution and mechanical properties in each stage were evaluated. Results show that inhomogeneous microstructures with Ti-rich and Ta-rich areas formed in the as-sintered Ti-Ta alloys due to limited diffusion of Ta. In addition, Kirkendall porosity was observed as a result of the insufficient diffusion of Ta. Annealing at 1000°C for up to 24 h failed to eliminate the pores. Hot swaging eliminated the residual sintering porosity and created a lamellar microstructure, consisting of aligned Ta-enriched and Ti-enriched phases. The hot-swaged and annealed PM Ti-20Ta alloy achieved an ultimate tensile strength of 1600 MPa and tensile elongation of more than 25%, due to its unique lamellar microstructure including the high toughness of Ta-enriched phases, the formation of α phase in the β matrix and the refined lamellae.

  9. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.

    PubMed

    Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie

    2017-02-02

    While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted.

  10. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  11. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  12. Local heat treatment of high strength steels with zoom-optics and 10kW-diode laser

    NASA Astrophysics Data System (ADS)

    Baumann, Markus; Krause, Volker; Bergweiler, Georg; Flaischerowitz, Martin; Banik, Janko

    2012-03-01

    High strength steels enable new solutions for weight optimized car bodies without sacrificing crash safety. However, cold forming of these steels is limited due to the need of high press capacity, increased tool wear, and limitations in possible geometries. One can compensate for these drawbacks by local heat treatment of the blanks. In high-deformation areas the strength of the material is reduced and the plasticity is increased by diode laser irradiation. Local heat treatment with diode laser radiation could also yield key benefits for the applicability of press hardened parts. High strength is not desired all over the part. Joint areas or deformation zones for requested crash properties require locally reduced strength. In the research project "LOKWAB" funded by the German Federal Ministry of Education and Research (BMBF), heat treatment of high strength steels was investigated in cooperation with Audi, BMW, Daimler, ThyssenKrupp, Fraunhofer- ILT, -IWU and others. A diode laser with an output power of 10 kW was set up to achieve acceptable process speed. Furthermore a homogenizing zoom-optics was developed, providing a rectangular focus with homogeneous power density. The spot size in x- and y-direction can be changed independently during operation. With pyrometer controlled laser power the surface temperature is kept constant, thus the laser treated zone can be flexibly adapted to the needs. Deep-drawing experiments show significant improvement in formability. With this technique, parts can be manufactured, which can conventionally only be made of steel with lower strength. Locally reduced strength of press hardened serial parts was demonstrated.

  13. High Strength and Impact Damage Tolerant Syntactic Foam for High Performance Sandwich Structures

    DTIC Science & Technology

    2006-07-25

    it needs additional curing sources, its uniformity is not as good as other curing methods, and its shrinkage is usually high. Summary...Fast Repair of Laminated Beams Using UV Curing Composites ,” Composite Structures, 60(1), pp. 73-81, (2003). 3. S.S. Pang, G. Li, J.E. Helms, and...strength and higher impact tolerant syntactic foam for composite sandwich structures. A unique microstructure was designed and realized through a

  14. Longitudinal differences of the PMSE strength at high Arctic latitudes

    NASA Astrophysics Data System (ADS)

    Latteck, Ralph; Singer, Werner; Swarnalingam, Nimalan; Maik Wissing, Jan; Meek, Chris; Manson, Allan H.; Drummond, James; Hocking, Wayne K.

    2010-05-01

    Observations of Polar Mesosphere Summer Echoes (PMSE) obtained by the ALWIN VHF radar, located in Andenes, Norway (69°N, 16°E) and by the Resolute Bay VHF radar, located in Nunavut, Canada (75°N, 95°W), are characterized by differences in occurrence rate and PMSE strengths, with generally lower levels at Resolute Bay. Even though both radars are well calibrated, the effect of the different radar hardware, especially the antenna systems, on the observations still causes concerns if comparisons of results from both sites are presented. Now, PMSE observations with identical radar hardware and identical analysis software are possible using the recently installed SKiYMET meteor radar at Eureka (80°N, 86°W) and the SKiYMET meteor radar at Andenes. Eureka is located in the same longitudinal sector as Resolute Bay, but 5 degrees north of the site, the Andenes SKiYMET radar is co-located with the ALWIN VHF radar. Both SKiYMET radars are calibrated using cosmic sky noise variations. A 4-week measurement campaign was performed during July in 2008, with both the Andenes and Eureka meteor radars running in a special mode designed for PMSE studies. Lower levels of PMSE strength were found at Eureka, confirming the earlier observations at Resolute Bay obtained by VHF radar. The observations are discussed in relation to dynamics, thermal conditions, and ionization. Strong indications exist that the observed differences of PMSE strength are related to the different levels of ionisation due to precipitating particles in the auroral oval and inside the polar cap. Global maps of precipitating energetic electrons (energy band: 6.5 keV-9.46 keV) and energetic protons (energy band 80 keV-240 keV) derived from POES satellites clearly indicate that Eureka and Resolute Bay are always inside the polar cap where, under geomagnetically quiet conditions, ionisation due to particle precipitation is missing.

  15. Stress corrosion in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  16. STRESS CORROSION OF HIGH STRENGTH STEELS AND ALLOYS; ARTIFICIAL ENVIRONMENT

    DTIC Science & Technology

    Ladish D6Ac, 300M, Vascojet 100, AM355 , PH15-7Mo, B120VCA, 4137Co, Rocoly 270, and Ardeform 301. U-bend stress corrosion tests are progressing on 4137...Co, AM355 115-8Mo. B120VCA, and Ardeform 301. Bent specimens of 4137 Co and AM 355 are still under test. No failures were observed on bent beam...specimens of AM355 (secondary direction) cold-rolled to 250, 261, 302 Kpsi strength levels. Little change was noted in the bent beam specimens of 4137 Co

  17. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  18. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  19. A Proposed Uniaxial Compression Test for High Strength Ceramics

    DTIC Science & Technology

    1989-09-01

    is lost and catastrophic collapse ensues. The origin of the microcracks may be microplasticity in the form of twinning, 2 or existing flaws such as...Uniaxial compressive strength tElastic modulus sonic method (strain gage method ) sPoisson’s ratio sonic method MIL-STD-1942(MR) size B, mean flexure...SEA-O5MB, LCDR W. M. Elger Commander, U.S. Armament, Munitions and Chemical 1 SEA-05R 25, C. Zanis Command, Dover, NJ 07801 2 ATTN: Technical Library

  20. Development of high toughness, high strength aluminide-bonded carbide ceramics

    SciTech Connect

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N.

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  1. Academic attainment and the high school science experiences among high-achieving African American males

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  2. Potential Water Reuse for High Strength Fruit and Vegetable Processor Wastewater with an MBR.

    PubMed

    Moore, Adam W; Zytner, Richard G; Chang, Sheng

    High strength food processing wastewater from two processing plants was studied to determine the effectiveness of an aerobic membrane bioreactor (MBR) to reduce BOD, TSS and nutrients below municipal sewer discharge limits. The MBR comprised a 20 L lab-scale reactor combined with a flat sheet, ultrafiltration membrane module. The parameters studied included the operational flux, solids and hydraulic retention times and recirculation ratio with regards to nitrification/denitrification. The MBR system provided excellent removal efficiency at 97% COD, 99% BOD, 99.9% TSS, 90% TKN, and 60% TP for both processing plants, which eliminated the surcharges, allowing the firms to stay competitive. Effluent reuse tests showed that activated carbon proved effective in removing color from the MBR permeate, while UV treatment was able to achieve a 5 log reduction in bacteriophage. Overall, these treatment successes show the potential for water reuse in the agrifood sector.

  3. Struvite pellet crystallization in a high-strength nitrogen and phosphorus stream.

    PubMed

    Li, Yongmei; Liu, Mingyan; Yuan, Zhiwen; Zou, Jinte

    2013-01-01

    Struvite crystallization is a reliable method to recover nutrients from wastewater. Laboratory-scale experiments were conducted to investigate nutrient recovery from synthetic wastewater with high-strength orthophosphate and ammonia-nitrogen by the formation of struvite pellets. Without adjusting pH, struvite crystal growth environment was achieved in ammonia-nitrogen and orthophosphate concentration ranges of 100-1,000 and 221-2,214 mg/L, respectively. The mean size of the harvested struvite pellets was in the range of 3-4 mm. pH is an important factor indicating the process supersaturation. A range of pH 6.2-9.0 was tested in order to enhance nutrient removal efficiency. The results showed although higher N, P and Mg removals were achieved at higher pH values, over 95% N, P and Mg removals were still achieved at pH of 7.6. Recycling ratio of the clarifier supernatant to influent had no significant promotion of N or P removal.

  4. Dominant Achievement Goals across Tracks in High School

    ERIC Educational Resources Information Center

    Scheltinga, Peter A. M.; Kuyper, Hans; Timmermans, Anneke C.; van der Werf, Greetje P. C.

    2016-01-01

    The dominant achievement goals (DAGs) of 7,008 students in the third grade of Dutch secondary education (US grade 9) were investigated, based on Elliot & McGregors' 2 × 2 framework (2001), in relation to track-level and motivational variables. We found the mastery-approach goal and the performance-approach goal, generally considered adaptive,…

  5. Charter High Schools: Closing the Achievement Gap. Innovations in Education

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    The eight schools profiled in this document are serving different populations, but all of them are closing the achievement gap between low-income, minority, and special needs students and their peers. By trying out innovative new strategies, these schools are blazing a trail for others to follow. They are dispelling the myth that some students can…

  6. "Brains before "Beauty"?" High Achieving Girls, School and Gender Identities

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky; Read, Barbara

    2010-01-01

    In recent years educational policy on gender and achievement has concentrated on boys' underachievement, frequently comparing it with the academic success of girls. This has encouraged a perception of girls as the "winners" of the educational stakes and assumes that they no longer experience the kinds of gender inequalities identified in…

  7. Parenting Style, Perfectionism, and Creativity in High-Ability and High-Achieving Young Adults

    ERIC Educational Resources Information Center

    Miller, Angie L.; Lambert, Amber D.; Speirs Neumeister, Kristie L.

    2012-01-01

    The current study explores the potential relationships among perceived parenting style, perfectionism, and creativity in a high-ability and high-achieving young adult population. Using data from 323 honors college students at a Midwestern university, bivariate correlations suggested positive relationships between (a) permissive parenting style and…

  8. Success Despite Socioeconomics: A Case Study of a High-Achieving, High-Poverty School

    ERIC Educational Resources Information Center

    Tilley, Thomas Brent; Smith, Samuel J.; Claxton, Russell L.

    2012-01-01

    This case study of a high-achieving, high-poverty school describes the school's leadership, culture, and programs that contributed to its success. Data were collected from two surveys (the School Culture Survey and the Vanderbilt Assessment of Leadership in Education), observations at the school site, and interviews with school personnel. The…

  9. Microleakage of high-strength glass ionomer: resin composite restorations in minimally invasive treatment.

    PubMed

    Platt, J A; Rhodes, B

    Atraumatic Restorative Treatment (ART) has been investigated as an alternative caries treatment. The technique involves removal of loose tooth structure with a spoon excavator, followed by placement of an adhesive restorative material, often a high-strength glass ionomer. This study compares the microleakage of a high-strength glass ionomer/resin composite and two occlusal resin composite restoration techniques.

  10. High-strength cast irons used for manufacturing parts of vaz passenger cars

    NASA Astrophysics Data System (ADS)

    Kitaigora, N. I.

    1996-10-01

    Methods for solving problems arising in the production of high-strength cast iron with stable properties and structure are considered. Results of introduction of new grades of high-strength cast iron instead of malleable cast iron and camshaft cast iron in the Volzhskii Automobile Plant are described.

  11. ETV Program Report: Big Fish Septage and High Strength Waste Water Treatment System

    EPA Science Inventory

    Verification testing of the Big Fish Environmental Septage and High Strength Wastewater Processing System for treatment of high-strength wastewater was conducted at the Big Fish facility in Charlevoix, Michigan. Testing was conducted over a 13-month period to address different c...

  12. Optimization of High-Strength Concrete Mixture Proportions for the ANMCC Improvement Project.

    DTIC Science & Technology

    1982-08-01

    and tested in order to achieve compressive strengths in excess of 9,000 psi at 1 year of age and 11,000 psi at 2 years of age . These mixtures were...heat generation, especially that occurring at early ages , serves to minimize thermal strains occurring in the concrete cavity liners. (Cont inued) O...indicated that all mixtures containing pozzolan failed to gain appre- ciable strength after 28 days age when cured at 122 F. This was the appropriate curing

  13. Computational design and analysis of high strength austenitic TRIP steels for blast protection applications

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Padmanava

    Recent assessment of material property requirements for blast resistant applications, especially for the naval ship hulls, has defined the need to design steels with high stretch ductility and fragment penetration resistance, along with high strength and adequate toughness. Using a system based computational materials design approach, two series of austenitic (gamma) steels have been designed -- BA120 to exhibit high uniform ductility in tension (>20%) and SA120 to exhibit high tensile (>20%) and shear strains (>50%), with both alloys maintaining high levels of yield strength (120 ksi/827 MPa) at room temperature under Tensile and Shear stress states. BA120 is low chromium (4 wt %) high nickel (23.5 wt %) alloy while the SA120 is a high chromium design (10 wt %), both designed for non-magnetic behavior. The Thermo-Calc computational thermodynamics software in conjunction with a Ni-DATA 7 thermodynamic database has been used to model precipitation strengthening of the alloy, by quantifying the dependence of yield stress of austenitic steels on the mole fraction of the precipitated gamma' (Gamma Prime) Ni3(Ti, Al) phase. The required high strength has been achieved by the precipitation of spheroidal intermetallic gamma' -- phase of optimum diameter (15 nm) in equilibrium with the matrix at the standard aging temperature. Adequate Al and Ti with respect 5 to the Ni in the matrix ensure enough gamma' phase fraction and number density of precipitates to provide the necessary strength. The predicted gamma' precipitation strengthening to 120-130 ksi for both BA120 and SA120 has been validated through both microhardness as well as static and dynamic tensile and shear tests conducted at room temperature. 3-D LEAP analysis of the aged specimens has shown the expected size and distribution of gamma' -- precipitates with good compositional accuracy of predicted values from the thermodynamic models, for both matrix austenite and gamma'. Metastable austenitic steels have been

  14. Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1974-01-01

    Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.

  15. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  16. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  17. Method for Assessing Grain Boundary Density in High-Strength, High-Toughness Ferritic Weld Metal

    NASA Astrophysics Data System (ADS)

    Lei, Xuanwei; Huang, Jihua; Chen, Shuhai; Zhao, Xingke

    2017-01-01

    A method for measuring peak values on the maxlength-area fraction curve and the perimeter-area fraction curve with morphological photos using Image Pro Plus 6.0 Soft for assessing grain boundary density in high-strength, high-toughness ferritic weld metals is developed. Results show the sizes of the peak values have a tough relationship with grain boundary densities in that a larger peak value stands for a larger grain boundary density. As ferrite transforms into a certain orientation relationship, this semi-empirical method provides handy references for judging the sizes of effective grain boundary densities.

  18. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.

    1993-01-01

    Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  19. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  20. Advances in Low Carbon, High Strength Ferrous Alloys

    DTIC Science & Technology

    1993-04-01

    TMCP, "controlled rolling" (CR) is con- ducted and relies on microalloying ; small amounts (0.001 to 0.5%) of elements such as niobium , vanadium ...28] where the system was enhanced by microalloying with boron and titanium . The addition of a small amount of titanium (0.012 to 0.016%) increased the...sections, while vanadium provided resistance to softening at the temperatures required to achieve optimum toughness. Also, low sulphur and phosphorus

  1. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature

    PubMed Central

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Wang, X. P.; Fang, Q. F.; Liu, C. S.; Luo, G. N.; Lian, Y. Y.; Liu, X.

    2015-01-01

    The refractory tungsten alloys with high ductility/strength/plasticity are highly desirable for a wide range of critical applications. Here we report an interface design strategy that achieves 8.5 mm thick W-0.5 wt. %ZrC alloy plates with a flexural strength of 2.5 GPa and a strain of 3% at room temperature (RT) and ductile-to-brittle transition temperature of about 100 °C. The tensile strength is about 991 MPa at RT and 582 MPa at 500 °C, as well as total elongation is about 1.1% at RT and as large as 41% at 500 °C, respectively. In addition, the W-ZrC alloy plate can sustain 3.3 MJ/m2 thermal load without any cracks. This processing route offers the special coherent interfaces of grain/phase boundaries (GB/PBs) and the diminishing O impurity at GBs, which significantly strengthens GB/PBs and thereby enhances the ductility/strength/plasticity of W alloy. The design thought can be used in the future to prepare new alloys with higher ductility/strength. PMID:26531172

  2. The Relationship between Self-Esteem and Academic Achievement in a Group of High, Medium, and Low Secondary Public High School Achievers.

    ERIC Educational Resources Information Center

    Thomas-Brantley, Betty J.

    This study investigated the relationship between self-esteem and academic achievement in a group of 150 high, medium, and low achievers at a large midwestern public high school. Correlating data from the Coopersmith Inventory of self-esteem with grades, cumulative grade point averages, and class rank, the study disclosed a positive correlation…

  3. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-07-22

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions.

  4. Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture

    PubMed Central

    Kashyap, Kunal; Kumar, Amarendra; Huang, Chuan-Torng; Lin, Yu-Yun; Hou, Max T.; Andrew Yeh, J.

    2015-01-01

    The unavoidable occurrence of microdefects in silicon wafers increase the probability of catastrophic fracture of silicon-based devices, thus highlighting the need for a strengthening mechanism to minimize fractures resulting from defects. In this study, a novel mechanism for manufacturing silicon wafers was engineered based on nanoscale reinforcement through surface nanotexturing. Because of nanotexturing, different defect depths synthetically emulated as V-notches, demonstrated a bending strength enhancement by factors of 2.5, 3.2, and 6 for 2-, 7-, and 14-μm-deep V-notches, respectively. A very large increase in the number of fragments observed during silicon fracturing was also indicative of the strengthening effect. Nanotextures surrounding the V-notch reduced the stress concentration factor at the notch tip and saturated as the nanotexture depth approached 1.5 times the V-notch depth. The stress reduction at the V-notch tip measured by micro-Raman spectroscopy revealed that nanotextures reduced the effective depth of the defect. Therefore, the nanotextured samples were able to sustain a larger fracture force. The enhancement in Weibull modulus, along with an increase in bending strength in the nanotextured samples compared to polished single-crystal silicon samples, demonstrated the reliability of the strengthening method. These results suggest that this method may be suitable for industrial implementation. PMID:26040924

  5. Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture

    NASA Astrophysics Data System (ADS)

    Kashyap, Kunal; Kumar, Amarendra; Huang, Chuan-Torng; Lin, Yu-Yun; Hou, Max T.; Andrew Yeh, J.

    2015-06-01

    The unavoidable occurrence of microdefects in silicon wafers increase the probability of catastrophic fracture of silicon-based devices, thus highlighting the need for a strengthening mechanism to minimize fractures resulting from defects. In this study, a novel mechanism for manufacturing silicon wafers was engineered based on nanoscale reinforcement through surface nanotexturing. Because of nanotexturing, different defect depths synthetically emulated as V-notches, demonstrated a bending strength enhancement by factors of 2.5, 3.2, and 6 for 2-, 7-, and 14-μm-deep V-notches, respectively. A very large increase in the number of fragments observed during silicon fracturing was also indicative of the strengthening effect. Nanotextures surrounding the V-notch reduced the stress concentration factor at the notch tip and saturated as the nanotexture depth approached 1.5 times the V-notch depth. The stress reduction at the V-notch tip measured by micro-Raman spectroscopy revealed that nanotextures reduced the effective depth of the defect. Therefore, the nanotextured samples were able to sustain a larger fracture force. The enhancement in Weibull modulus, along with an increase in bending strength in the nanotextured samples compared to polished single-crystal silicon samples, demonstrated the reliability of the strengthening method. These results suggest that this method may be suitable for industrial implementation.

  6. Study on modification of the high-strength slag cement material

    SciTech Connect

    Wang Fusheng . E-mail: fusheng429@163.com; Sun Ruilian; Cui Yingjing

    2005-07-01

    The influence of the slag powder's fineness, the amounts of activator, type and contents of modification addition on the dry-shrinkage and strength of the high-strength slag cement material was investigated. The experimental data showed that adding 9% Na{sub 2}SiO{sub 3} activator and 10% Portland cement (PC) made the ratios of drying-shrinkage of high-strength slag cement material similar to the ratios of Portland cement and the compressive strengths as higher. The main hydration products are calcium alumina-silicate gels and a little CH; the gel ratio of CaO/SiO{sub 2} is close to 1 and includes a little Na{sub 2}O and MgO for high-strength slag cement material, as shown by means of scanning electron microscope (SEM) and energy-dispersive X-ray analyzer (EDXA)

  7. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  8. Relationships among Stress, Coping, and Mental Health in High-Achieving High School Students

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Shaunessy, Elizabeth; Hardesty, Robin

    2008-01-01

    This study investigates the relationships among stress, coping, and mental health in 139 students participating in an International Baccalaureate (IB) high school diploma program. Mental health was assessed using both positive indicators (life satisfaction, academic achievement, academic self-efficacy) and negative indicators (psychopathology) of…

  9. Examining Organizational Practices That Predict Persistence among High-Achieving Black Males in High School

    ERIC Educational Resources Information Center

    Anderson, Kenneth Alonzo

    2016-01-01

    Background/Context: This article summarizes an increasing trend of antideficit Black male research in mathematics and highlights opportunities to add to the research. A review of the literature shows that antideficit researchers often examine relationships between individual traits and persistence of high-achieving Black males in mathematics.…

  10. Production of small diameter high-temperature-strength refractory metal wires

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  11. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  12. Relationship between High School Mathematical Achievement and Quantitative GPA

    ERIC Educational Resources Information Center

    Brown, Jennifer L.; Halpin, Glennelle; Halpin, Gerald

    2015-01-01

    The demand for STEM graduates has increased, but the number of incoming freshmen who declare a STEM major has remained stagnant. High school courses, such as calculus, can open or close the gate for students interested in careers in STEM. The purpose of this study was to determine if high school mathematics preparation was a significant…

  13. Double Sided Irradiation for Laser-assisted Shearing of Ultra High Strength Steels with Process Integrated Hardening

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus; Weinbach, Matthias

    Most small or medium sized parts produced in mass production are made by shearing and forming of sheet metal. This technology is cost effective, but the achievable quality and geometrical complexity are limited when working high and highest strength steel. Based on the requirements for widening the process limits of conventional sheet metal working the Fraunhofer IPT has developed the laser-assisted sheet metal working technology. With this enhancement it is possible to produce parts made of high and highest strength steel with outstanding quality, high complexity and low tool wear. Additionally laser hardening has been implemented to adjust the mechanical properties of metal parts within the process. Currently the process is limited to lower sheet thicknesses (<2 mm) to maintain short cycle times. To enable this process for larger geometries and higher sheet thicknesses the Fraunhofer IPT developed a system for double sided laser-assisted sheet metal working within progressive dies.

  14. Enhanced long-term strength and durability of shotcrete with high-strength C{sub 12}A{sub 7} mineral-based accelerator

    SciTech Connect

    Won, Jong-Pil Hwang, Un-Jong; Lee, Su-Jin

    2015-10-15

    This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyze long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.

  15. Practically Perfect in Every Way: Can Reframing Perfectionism for High-Achieving Undergraduates Impact Academic Resilience?

    ERIC Educational Resources Information Center

    Dickinson, Mary J.; Dickinson, David A. G.

    2015-01-01

    This study focuses on a pan-disciplinary scheme that targeted high-achieving undergraduate students. Earlier research from the scheme argued that high achievers have discernibly different learning and personal development support needs. One of the most frequent self-reported challenges within this high-achieving group is perfectionism. This…

  16. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    NASA Astrophysics Data System (ADS)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress–strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  17. High Achiever: A School Modernization Uncovers Hidden Potential.

    ERIC Educational Resources Information Center

    Babcock, Regina Raiford

    2003-01-01

    Describes the renovation of Lisle Senior High School in Lisle, Illinois, including the educational context and design goals. Includes information on the architects, suppliers, and construction team. Also includes the floor plan and photographs. (EV)

  18. Membrane bioreactor application within the treatment of high-strength textile effluent.

    PubMed

    De Jager, D; Sheldon, M S; Edwards, W

    2012-01-01

    A pilot-scale dual-stage membrane bioreactor (dsMBR) incorporating two ultra-filtration (UF) side-stream membrane modules was designed, constructed, operated and evaluated on-site for treating high-strength textile effluent. The effluent stream was characterised by a COD range of between 45 to 2,820 mg/L and an average BOD of 192.5 mg/L. The dsMBR achieved an average COD reduction of 75% with a maximum of 97% over the 9 month test period. The COD concentration obtained after dsMBR treatment averaged at 190 mg/L, which was well within the discharge standard. The average reduction in turbidity and TSS were 94% and 19.6%, respectively, during the UF-MBR stage of the system. Subsequent treatment of the UF-permeate with nanofiltration (NF) and reverse osmosis (RO) removed both the residual colour and remaining salt. A consistent reduction in the color of the incoming effluent was evident. The ADMI was reduced from an average of 659 to ∼20, a lower ADMI and colour compared to the potable water. An average conductivity rejection of 91% was achieved with conductivity being reduced from an average of 7,700 to 693 μS/cm and the TDS reduced from an average of 5,700 to 473 mg/L, which facilitated an average TDS rejection of 92%.

  19. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    SciTech Connect

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-15

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  20. Unravel the key genes potentially related to high strength of cotton fiber by comparative phenotypic and genomic analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand of high strength of cotton fibers has been increased dramatically with the advent of modern high speed spinning technology for producing yarn. Bundle fiber strength is affected by fiber-to-fiber interactions in addition to the individual fiber strength. The bundle fiber strength is not al...

  1. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

    SciTech Connect

    Zinkle, Steven J

    2014-06-01

    The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive

  2. Development of a high strength hot isostatically pressed /HIP/ disk alloy, MERL 76

    NASA Technical Reports Server (NTRS)

    Evans, D. J.; Eng, R. D.

    1980-01-01

    A nickel-based powder metal disk alloy developed for use in advanced commercial gas turbines is described. Consideration is given to final alloy chemistry modifications made to achieve a desirable balance between tensile strength and stress rupture life and ductility. The effects of post-consolidation heat treatment are discussed, the preliminary mechanical properties obtained from full-scale turbine disks are presented.

  3. Gender, Student Motivation and Academic Achievement in a Midsized Wisconsin High School

    ERIC Educational Resources Information Center

    Lutzke, Steven Ronald

    2013-01-01

    This mixed-methods study investigated relationships among gender, academic motivation and achievement in a mid-sized Wisconsin high school. A questionnaire was developed that focused on perceived ability, achievement motives and achievement goals. Interviews with teachers focused on relationships among academic motivation and gender achievement.…

  4. Student Achievement Data Systems in High and Low Performing Schools

    ERIC Educational Resources Information Center

    Stachowiak, Jeannie E.

    2013-01-01

    The purpose of this study was to determine if there was a difference in how high and low performing elementary school districts use and analyze data to differentiate instruction, make changes to district/grade level curriculum, determine professional development needs, determine teacher effectiveness, and determine the use of school district…

  5. Behaviour and achievement disorders in children with high intelligence.

    PubMed

    Barchmann, H; Kinze, W

    1990-01-01

    With 6% of the patients of a childpsychiatric population using treatment a high intelligence with an IQ of over 120 was the result. This is in agreement with the results by Reinhard (1981), but is below the results by Schmidt (1977) and justifies neither the association to a higher talent as risk factor nor as protective factor in view of a potential psychic illness. 341 child-neuropsychiatric patients with hyperkinetic syndrome (55%), Enuresis (28%), reactions of adaptation (5%), specific emotional disturbances in childhood (4%), Encopresis (3%), Psychalgy (3%) and tics (2%) were studied; thereby 22 highly intelligent patients were compared with average intelligent patients. With high intelligence better performances of concentration, more reflexive style of study, better school notes and more favourable motor capabilities, less pronounced signs of anxiety and neuroticism are found, but also a poorer social adaptation and less favourable effects of treatment. Concerning the poorer chances of treatment with high intelligence however the behaviour-therapeutic concentration of our therapy has to be pointed out, which might not offer an optimal chance for development.

  6. Organizational Citizenship of Faculty and Achievement of High School Students

    ERIC Educational Resources Information Center

    DiPaola, Michael F.; Hoy, Wayne K.

    2005-01-01

    All successful organizations, including successful high schools, have employees who go beyond their formal job responsibilities and freely give of their time and energy to succeed. Organ was the first to use the phrase "organizational citizenship behavior" (OCB) to denote organizationally beneficial behavior of workers that was not prescribed but…

  7. Common Core and America's High-Achieving Students

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.

    2015-01-01

    While the merit and politics of the Common Core State Standards (CCSS) have been much debated and discussed, one topic has been virtually ignored: What do the standards portend for America's high-ability students? This brief addresses that question and provides guidance for CCSS-implementing districts and schools as they seek to help these…

  8. Syllabication Skills and Reading Achievement of High School Students.

    ERIC Educational Resources Information Center

    Curry, Robert L.; Geis, Lynna

    A sample of 175 students, constituting grades 10, 11, and 12 of two high schools, was used in the validation of a new Syllabication Skills Test. On the first day, the students completed four forms of the syllabication test; on the second, they completed Survey F of the Gates-MacGinitie Reading Tests. Means and standard deviations were similar for…

  9. Technology's Achilles Heel: Achieving High-Quality Implementation

    ERIC Educational Resources Information Center

    Hall, Gene E.

    2010-01-01

    An inherent characteristic of technology education is the continual development of new technologies and creating innovative applications of already existing technologies. As exciting as these innovations can be, technology educators and school staffs are frequently challenged to accomplish high levels of implementation. The metaphor of the…

  10. Alternative High School Scheduling. Student Achievement and Behavior. Research Report.

    ERIC Educational Resources Information Center

    Pisapia, John; Westfall, Amy Lynn

    In 1995 the Metropolitan Educational Research Consortium (MERC), Richmond (Virginia) commissioned a study of alternative high school scheduling modules to determine the effects of different schedules on teaching strategies, teacher and student satisfaction, and student and school performance. This report presents results of an analysis of student…

  11. High-Achieving Schools Put Equity Front and Center

    ERIC Educational Resources Information Center

    Gleason, Sonia Caus; Gerzon, Nancy

    2014-01-01

    How does professional learning look and feel in high-poverty schools where every student makes at least one year's worth of progress every year? How do schools and leaders put all the varied components of professional learning together so that they support all students learning every day? What professional learning grounds and sustains educators…

  12. More High-Achieving Students Are Choosing Community Colleges First

    ERIC Educational Resources Information Center

    Pluviose, David

    2008-01-01

    Certainly, "Tonight Show" host Jay Leno has nurtured the perception that community colleges are a punishment for underperforming high school students by joking that community colleges aren't "real colleges." This article shows that this perception belies the reality that contemporary community colleges serve students seeking trade skills but also…

  13. The strain-rate sensitivity of high-strength high-toughness steels.

    SciTech Connect

    Dilmore, M.F.; Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  14. Impact of learning orientation on African American children's attitudes toward high-achieving peers.

    PubMed

    Marryshow, Derrick; Hurley, Eric A; Allen, Brenda A; Tyler, Kenneth M; Boykin, A Wade

    2005-01-01

    This study examined Ogbu's widely accepted thesis that African American students reject high academic achievement because they perceive its limited utility in a world where their upward mobility is constrained by racial discrimination. Boykin's psychosocial integrity model contends that Black students value high achievement but that discrepancies between their formative cultural experiences and those imposed in school lead them to reject the modes of achievement available in classrooms. Ninety Black children completed a measure of attitudes toward students who achieve via mainstream or African American cultural values. Participants rejected the mainstream achievers and embraced the African American cultural achievers. Moreover, they expected their teachers to embrace the mainstream achievers and reject those who achieved through high-verve behavior. Results suggest that Boykin's thesis is a needed refinement to Ogbu's ideas. They indicate that Black children may reject not high achievement but some of the mainstream cultural values and behaviors on which success in mainstream classrooms is made contingent.

  15. Palm tree mulch as substrate for primary treatment wetlands processing high strength urban wastewater.

    PubMed

    Herrera-Melián, J A; González-Bordón, A; Martín-González, M A; García-Jiménez, P; Carrasco, M; Araña, J

    2014-06-15

    The life span of subsurface flow treatment wetlands is determined by the clogging of the substrate. Thus, the influent should undergo primary treatment to reduce loadings of suspended solids and dissolved organic matter. An-organic based substrate should be less prone to clogging because of its remarkably higher porosity and plasticity. Mulch obtained from branches of the Canarian palm tree (Phoenix canariensis) has been tested as substrate for mixed flow, intermittently fed treatment wetland mesocosms processing high strength urban wastewater. The effect of the presence of plants (Phragmites and Cyperus), influent pressure and hydraulic loading rate was studied. The best removals (SS: 89%, COD: 77%, turbidity: 82%) have been obtained with planted reactors treating highly concentrated influents at the lower hydraulic loading rates tested. The palm tree mulch units achieved similar removals of SS, COD and turbidity to one having gravel as substrate and planted with common reed. Mulch obtained from stems of giant reed (Arundo donax) provided similar removals of SS and turbidity but that of COD was lower. The combination of organic-based TWs with gravel-based ones provided high removals (SS: 95%, COD: 78%, turbidity: 95%) while the risk of clogging was strongly reduced.

  16. The plane strain shear fracture of the advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Sun, Li

    2013-12-01

    The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.

  17. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  18. Achieving High Reliability Operations Through Multi-Program Integration

    SciTech Connect

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  19. From Dropout to High Achiever: An Understanding of Academic Excellence through the Ethnography of High and Low Achieving Secondary School Students.

    ERIC Educational Resources Information Center

    Cuellar, Alfredo

    This paper, a follow-up to a previous review of literature on academic excellence that synthesized information from the United States and Mexico, describes an ethnographic study of high-achieving and low-achieving Hispanic secondary school students from Calexico, California and Mexicali, Baja California Mexico. Five students for each group were…

  20. TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR

    EPA Science Inventory

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...

  1. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  2. Application technologies for effective utilization of advanced high strength steel sheets

    SciTech Connect

    Suehiro, Masayoshi

    2013-12-16

    Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same time application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.

  3. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  4. Numerical modelling of the strength of highly porous aerated autoclaved concrete

    SciTech Connect

    Schenider, T.; Greil, P.; Schober, G.

    1998-12-31

    Highly porous building materials like aerated autoclaved concrete are characterized by low thermal conductivity and high mechanical strength, which both strongly depend on porosity. The influence of porosity distribution on the compressive strength of aerated autoclaved concrete was investigated by using finite element analysis and multiaxial Weibull theory. Calculations of failure probability of microstructures with ordered as well as random pore configurations show a dependence of compressive strength on the Weibull modulus of the matrix material and the size and arrangement of pores. The results of the calculations are compared to experimental data of aerated autoclaved concrete.

  5. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  6. Achieving high data reduction with integral cubic B-splines

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.

    1993-01-01

    During geometry processing, tangent directions at the data points are frequently readily available from the computation process that generates the points. It is desirable to utilize this information to improve the accuracy of curve fitting and to improve data reduction. This paper presents a curve fitting method which utilizes both position and tangent direction data. This method produces G(exp 1) non-rational B-spline curves. From the examples, the method demonstrates very good data reduction rates while maintaining high accuracy in both position and tangent direction.

  7. Development of Improved High Strength Alumiunum Powder Metallurgy Products

    DTIC Science & Technology

    1978-12-31

    can significantly increase the applied stress required for crack nucleation. The reduced scatter in the P/M product’s response, and therefore a...exhaustion of cyclic ductility and therefore crack initiation at a lower number of cycles, or equivalently, at a lower applied stress for a given number of...nucleate at particle matrix interfaces from a high stress intensity overload, divide the stress intensity over many secondary crack sites and decrease

  8. Biotreatment of high strength nitrate waste using immobilized preadapted sludge.

    PubMed

    Nair, Rashmi R; Dhamole, Pradip B; Lele, S S; D'Souza, Stanislaus F

    2008-12-01

    One of the major wastes generated by fertilizer, explosive, and nuclear industries are nitrate (as high as 1,000 ppm NO(3)N) whose removal before disposal has become a growing concern. In this study, an active denitrifying sludge was immobilized onto support materials like cloth and polyurethane foam and their denitrification efficiency on high nitrate wastes [1,000 ppm NO(3) (225 ppm NO(3)N), 5,000 ppm NO(3) (1,129 ppm NO(3)N), 7,500 ppm NO(3) (1,693 ppm NO(3) N)] was studied. Results showed complete degradation of the nitrate wastes (225 ppm NO(3)N, 1,129 ppm NO(3)N, and 1,693 ppm NO(3)N) without any accumulation of nitrite in a period of only 1, 4, and 10 h, respectively. Based on adhering and entrapment principle, an immobilization unit was developed using a combination of cloth and foam as well as both individually. This system used for treating such high nitrate wastes was found to be quite effective in waste water treatment, particularly in problems associated with solid-liquid separation. The batch column reactor was run in about 45 batches without any loss in activity or reactor stability.

  9. Hydrogen Environment Assisted Cracking of Ultra-High Strength AetMet(Trademark) 100 Steel

    DTIC Science & Technology

    2006-01-01

    F- A Approved for Public Release Abstract Distribution Unlimited Precipitation hardened martensitic AetMetTM 100 is a high purity ultra-high strength...electron fractography revealed predominantly transgranular cracking at martensite lath and/or packet interfaces for all applied potentials, caused by...resistant steels and coatings. 20060710056 2 I. Introduction Ultrahigh-strength steels (UIISS) with tempered martensitic microstructures are susceptible to

  10. The Effect of Nitrogen and Titanium on the Toughness of High Strength Saw Weld Deposits

    DTIC Science & Technology

    1989-05-12

    for joining high strength steels . In this endeavor, ten butt-welded HY-100 sample plates were produced using the submerged arc welding process. With...was shown to degrade toughness. In this case, the DBTT increased at a rate of +11C for every 0.01 weight percent increase in titanium. Examination of...to degrade toughness through precipitation and dispersion hardening effects. It is concluded that for the welding of high strength steels , nitrogen

  11. Effect of Cleanliness on Hydrogen Tolerance in High-Strength Steel

    DTIC Science & Technology

    2014-04-01

    Effect of Cleanliness on Hydrogen Tolerance in High-Strength Steel by Scott M. Grendahl, Franklyn Kellogg, and Hoang Nguyen ARL-TR...Directorate, ARL Franklyn Kellogg and Hoang Nguyen Bowhead Technical Services Approved for public...in High-Strength Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Scott M. Grendahl, Franklyn Kellogg,* and

  12. High Achievement in Mathematics Education in India: A Report from Mumbai

    ERIC Educational Resources Information Center

    Raman, Manya

    2010-01-01

    This paper reports a study aimed at characterizing the conditions that lead to high achievement in mathematics in India. The study involved eight schools in the greater Mumbai region. The main result of the study is that the notion of high achievement itself is problematic, as reflected in the reports about mathematics achievement within and…

  13. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  14. Surface characteristics and mechanical properties of high-strength steel wires in corrosive conditions

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Li, Shunlong; Li, Hui; Yan, Weiming

    2013-04-01

    Cables are always a critical and vulnerable type of structural components in a long-span cable-stayed bridge in normal operation conditions. This paper presents the surface characteristics and mechanical performance of high-strength steel wires in simulated corrosive conditions. Four stress level (0MPa, 300MPa, 400MPa and 500MPa) steel wires were placed under nine different corrosive exposure periods based on the Salt Spray Test Standards ISO 9227:1990. The geometric feathers of the corroded steel wire surface were illustrated by using fractal dimension analysis. The mechanical performance index including yielding strength, ultimate strength and elastic modulus at different periods and stress levels were tested. The uniform and pitting corrosion depth prediction model, strength degradation prediction model as well as the relationship between strength degradation probability distribution and corrosion crack depth would be established in this study.

  15. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  16. High-temperature strength stability of three forms of chemically vapor deposited tungsten

    NASA Technical Reports Server (NTRS)

    Bryant, W. A.

    1974-01-01

    Three types of CVD tungsten (fluoride-produced, chloride-produced, and a layered composite of the two-termed duplex) were evaluated to determine their high-temperature strength and microstructural stability following 5000-hr exposure to temperatures of 1540 and 1700 C. At the highest temperatures investigated (1540 and 1700 C), the tensile strengths of the two basic materials were essentially equal. At lower temperatures, chloride tungsten possessed lower yield strength but higher ultimate strength than fluoride tungsten while the behavior of the duplex material was generally intermediate. Apparent anomalies in high-temperature elongation behavior are explained on the basis of grain boundary cavity formation and recrystallization. The grain size of fluoride tungsten changed only slightly following 5000-h treatment at 1700 C. In contrast, chloride tungsten possessed both poor resistance to grain growth and an accompanying relatively high ductile-brittle transition temperature.

  17. Rectangular Dielectric-loaded Structures for Achieving High Acceleration Gradients

    NASA Astrophysics Data System (ADS)

    Wang, Changbiao; Yakovlev, V. P.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    2006-11-01

    Rectangular dielectric-loaded structures are described that may sustain higher acceleration gradients than conventional all-metal structures with similar apertures. One structure is a test cavity designed to ascertain the breakdown limits of dielectrics, while a second structure could be the basis for a two-beam accelerator. CVD diamond is an attractive dielectric for a high-gradient structure, since the published DC breakdown limit for CVD diamond is ˜ 2 GV/m, although the limit has never been determined for RF fields. Here we present a design of a diamond-lined test cavity to measure the breakdown limit. The designed cavity operates at 34 GHz, where with 10-MW input power it is expected to produce an ˜800 MV/m field on the diamond surface—provided breakdown is avoided. The two channel rectangular dielectric-loaded waveguide could be a two-beam accelerator structure, in which a drive beam is in one channel and an accelerated beam is in the other. The RF power produced by drive bunches in the drive channel is continuously coupled to the acceleration channel. The ratio of fields in the channels (transformer ratio) for the operating mode can be designed by adjusting the dimensions of the structure. An example of the two-channel structure is described, in which a train of five 3-nC drive bunches excites wake fields in the accelerator channel of up to 1.3 GV/m with a transformer ratio of 10 for the design mode.

  18. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites.

    PubMed

    Zhang, Xudong; Zong, Hongxiang; Cui, Lishan; Fan, Xueling; Ding, Xiangdong; Sun, Jun

    2017-04-12

    An open question is the underlying mechanisms for a recent discovered nanocomposite, which composed of shape memory alloy (SMA) matrix with embedded metallic nanowires (NWs), demonstrating novel mechanical properties, such as large quasi-linear elastic strain, low Young's modulus and high yield strength. We use finite element simulations to investigate the interplay between the superelasticity of SMA matrix and the elastic-plastic deformation of embedded NWs. Our results show that stress transfer plays a dominated role in determining the quasi-linear behavior of the nanocomposite. The corresponding microstructure evolution indicate that the transfer is due to the coupling between plastic deformation within the NWs and martensitic transformation in the matrix, i.e., the martensitic transformation of the SMA matrix promotes local plastic deformation nearby, and the high plastic strain region of NWs retains considerable martensite in the surrounding SMA matrix, thus facilitating continues martensitic transformation in subsequent loading. Based on these findings, we propose a general criterion for achieving quasi-linear elasticity.

  19. NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength.

    PubMed

    Huang, Jiahe; Zhao, Lei; Wang, Tao; Sun, Weixiang; Tong, Zhen

    2016-05-18

    Shape memory hydrogels containing over 76 wt % of water were synthesized in a one-pot method, and interpenetrating double network was formed by physically cross-linked gelatin network and chemically cross-linked polyacrylamide (PAM) network with graphene oxide (GO). The temporary shape was quickly fixed by cooling in ice water for 30 s after deformation at 80 °C for 10 s. Shape recovery started in 10 s under near-infrared (NIR) irradiation and almost completed within 60 s depending on the curling angle. A small amount of GO in the hydrogels (≤1.5 mg/mL) played a key role in NIR energy absorption and transformation into thermal energy. The hydrogel without GO showed no response to the NIR irradiation and cannot recover to its permanent shape by NIR irradiation. Temperature sweep was conducted in the cycle of 20 °C → 80 °C → 20 °C, and the structure change in the hydrogels with temperature was investigated according to the storage modulus G' and tangent of the loss angle tan δ as a function of the hydrogel composition. The shape-memory capability was confirmed as the contribution from the triple-helix cross-linking network of gelatin. High mechanical toughness (strength > 400 kPa and broken strain > 500%) was achieved by the double-network with the sacrificial gelatin network and GO bridging to dissipate deformation energy. The optimized composition of the hydrogel was found to be a key point to realize stable temporary shape and rapid recovery to the permanent shape controlled by NIR irradiation with reasonable strength. The facile preparation and noncontact gentle stimulus of the present hydrogel hold great potential to be used in soft actuator materials.

  20. Grain-refining heat treatments to improve cryogenic toughness of high-strength steels

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1984-01-01

    The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.

  1. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors

    SciTech Connect

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; Yager, Kevin G.; Yuan, Guangcui; Satija, Sushil K.; Durstock, Michael F.; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  2. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors

    DOE PAGES

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayeredmore » films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less

  3. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    PubMed

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  4. Structural strength analysis and fatigue life prediction of traction converter box in high-speed EMU

    NASA Astrophysics Data System (ADS)

    Tan, Qin; Li, Qiang

    2017-01-01

    The method of building the FEA model of traction converter box in high-speed EMU and analyzing the static strength and fatigue strength of traction converter box based on IEC 61373-2010 and EN 12663 standards is presented in this paper. The load-stress correlation coefficients of weak points is obtained by FEA model, applied to transfer the load history of traction converter box to stress history of each point. The fatigue damage is calculated based on Miner's rule and the fatigue life of traction converter box is predicted. According to study, the structural strength of traction converter box meets design requirements.

  5. Effect of cyclic high loading rates on the fatigue strength of aluminum-based composites

    NASA Astrophysics Data System (ADS)

    Calderon Arteaga, Hermes Eskander

    The study of fatigue under high loading rates is of great interest in the complete characterization of a new series of composites with Al-Cu-Mg matrix reinforced with AlB2 dispersoids. Homogeneous and functionally graded composites were prepared via gravity and centrifugal casting, respectively. Through centrifugal casting a gradual variation of the volume fraction of reinforcing particles along the cross section was obtained. In specific fabrication conditions, even complete segregation of the reinforcement particles was achieved. Charpy impact tests as well as hardness tests were conducted to assess the composite strength as a function of the weight percent of boron. The tensile properties of gravity cast samples were obtained. Then for both casting conditions, simple edge-notched bend SE(B) specimens were tested under fatigue conditions (three-point bending). The results from impact and hardness tests allowed identifying an interaction between the Mg dissolved in the matrix and the diborides. This interaction, which has never been reported before, was responsible for the strength reduction observed. It was assumed that a substitutional diffusion of Al by Mg atoms in the hp3 structure of diboride was causing the strength reduction, and three approaches were developed to estimate the amount of Mg depleted from the matrix by the diborides during the composite processing. Gravity cast samples were more sensitive to monotonic damage due to fatigue loads where compared with functionally-graded composites. Contrary to the centrifugal cast samples, gravity samples were also affected by the loading rate. The Mg-AlB2 interaction was also responsible for the reduction in the fatigue resistance as the weight percent of boron increased in both types of composites; regression models were obtained to predict the crack growth curve slope change as function of the boron level. The particle distribution showed to affect the crack growth behavior of the FGMs, decreasing the

  6. The resistance of selected high strength alloys to embrittlement by a hydrogen environment

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.

    1974-01-01

    Selected high strength iron base and cobalt base alloys with yield strengths in the range from 1233 to 2129 MN per sq m (179 to 309 KSI) were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced epsilon prime-hcp martensite and fcc mechanical twins in an fcc matrix. Heat treatment of the cobalt base alloy after cold working produced carbide precipitates with retention of an hcp epsilon phase which increased the yield strength level to a maximum of 2129 MN per sq m (309 KSI). High-strength alloys can be produced which have some resistance to degradation of mechanical properties by a hydrogen environment under certain conditions.

  7. Process study of polycyanate resin for wet-filament wound high-strength composites

    SciTech Connect

    Frame, B.J.

    1997-12-31

    Polycyanate (or cyanate ester) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14 polycyanate resin as the constituent materials. T1000G/RS-14 composite cylinders were wet-wound and cured using different process schedules and then evaluated for hoop tensile strength and modulus, transverse flexural strength and short beam shear strength. The results of material characterization tests performed on the T1000G carbon fiber and RS-14 resin constituents used in this study are also presented.

  8. Experimental Comparison of Tantalum Material Strength between Single Crystal [100] and [111] Samples at High Pressure and Strain Rates

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Park, Hye-Sook; Cavallo, Rob; Prisbrey, Shon; Rudd, Robert; Wehrenberg, Christopher; Huntington, Channing; Maddox, Brian; May, Mark; Remington, Bruce

    2013-10-01

    Experiments were performed using the OMEGA laser to investigate Ta material strength at high pressure (1 Mbar), and high strain rates (106-108 s-1) . To achieve these pressures and strain rates in experiment without melting the sample, a quasi-isentropic drive was employed to drive the growth of pre-imposed sinusoidal perturbations embedded on the surface of the Ta sample, via the Rayleigh-Taylor (RT) instability. By measuring the ripple amplitude using face-on high energy (~ 22 KeV) radiography, the strength of the Ta sample was inferred from the amount of RT growth observed. Under these experimental conditions, the Ta material strength can be modeled by the Multiscale (MS) model, developed at LLNL. In this study, we performed a side-by-side comparison of the ripple growth on [100] and [111] orientated single-crystal Ta samples for the same shot and drive conditions. The objective was to determine if a difference in the growth predicted by the MS model could be observed at the high pressure and strain rates present in our experiments, and within the error bars of the experimental technique. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Role of interfaces i nthe design of ultra-high strength, radiation damage tolerant nanocomposites

    SciTech Connect

    Misra, Amit; Wang, Yongqiang; Nastasi, Michael A; Baldwin, Jon K; Wei, Qiangmin; Li, Nan; Mara, Nathan; Zhang, Xinghang; Fu, Engang; Anderoglu, Osman; Li, Hongqi; Bhattacharyya, Dhriti

    2010-12-09

    The combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and contain special interfaces that act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities and strength and ductility of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Magnetron sputtered metallic multilayers such as Cu-Nb and V-Ag with a range of individual layer thickness from approximately 2 nm to 50 nm and the corresponding 1000 nm thick single layer films were implanted with helium ions at room temperature. Cross-sectional Transmission Electron Microscopy (TEM) was used to measure the distribution of helium bubbles and correlated with the helium concentration profile measured vis ion beam analysis techniques to obtain the helium concentration at which bubbles are detected in TEM. It was found that in multilayers the minimum helium concentration to form bubbles (approximately I nm in size) that are easily resolved in through-focus TEM imaging was several atomic %, orders of magnitude higher than that in single layer metal films. This observation is consistent with an increased solubility of helium at interfaces that is predicted by atomistic modeling of the atomic structures of fcc-bcc interfaces. At helium concentrations as high as 7 at.%, a uniform distribution of I nm diameter bubbles results in negligible irradiation hardening and loss of deformability in multi layers with layer thicknesses of a few nanometers. The control of atomic structures of interfaces to produce high helium solubility at interfaces is crucial in the design of nano-composite materials that are radiation damage tolerant. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 run

  10. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    DTIC Science & Technology

    2014-01-13

    strength nanocrystalline Mg-alloys via cryomilling and spark - plasma - sintering , 2) demonstrate the unveil evidence of nanotwins in nanocrystalline...Christopher Melnyk, Wei H. Kao, Jenn-Ming Yang. Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy, Journal of Materials...accomplished several important milestones: 1) manufacture of high strength nanocrystalline Mg-alloys via cryomilling and spark plasma sintering (SPS

  11. Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High-Strength Alloys.

    DTIC Science & Technology

    1987-05-14

    to apply a diffusion/trapping model for hydrogen ingress in three high-strength alloys, AISI 4340 steel , Monel K500, and MP35N. The model is coupled to...rate of H ingress into the metal is determined by the flux across the metal surface. The 4340 steel was tested at yield strengths of approximately 175...5 AISI 4340 Steel ....................................................... 5 Monel K(500

  12. New insulating materials and their use to achieve high operating stresses in electrostatic machines

    NASA Astrophysics Data System (ADS)

    Cooke, Chathan M.

    1986-02-01

    Compressed gas insulation has provided the main insulation for sustaining terminal voltages of electrostatic accelerators. Essentially coaxial geometry is used with mechanical support of the terminal achieved by long columns which also support the acceleration tubes. Because of the vacuum insulation in the acceleration tubes, the electric gradient along the columns is typically 10-20 kV/cm, whereas the radial gas gap can operate at stresses about ten times larger. Until now, the terminal support has always been located in the low stress axial direction along the column and not in the radial high stress region. This paper is concerned with support insulation to be used in the radial direction. Advantages of radial supports include: simpler, more compact column structures, higher total voltages, and support of discrete stress redistribution electrodes such as vivitron. Important factors to the design of radial support insulators include the insulation constraints imposed by the gas gap, mechanical contact to the solid insulator, and basic limits of gas-solid dielectric interfaces. The gas gap insulation strength is shown to be limited by surface microirregularities and this accounts for electrode area and pressure effects. Based on the gas gap requirements, a design strategy for the insulators is developed. Epoxy is employed as the dielectric to allow the use of cast-in metal inserts at the ends. The inserts provide mechanical contact, shielding of the triple junction, and redistribution of the interface electric stresses. By careful design, the electric stress on the interface is made lower than that in the plain coaxial electrode gap. Practical experience shows that voltage increases linearly with insulator length and that designs achieve more than 10 MV/m into the multimegavolt region.

  13. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area

    PubMed Central

    Tong, Hui; Tanaka, Carina B.; Kaizer, Marina R.; Zhang, Yu

    2015-01-01

    Developing yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with high strength and translucency could significantly widen the clinical indications of monolithic zirconia restorations. This study investigates the mechanical and optical properties of three Y-TZP ceramics: High-Translucency, High-Strength and High-Surface Area. The four-point bending strengths (mean ± standard error) for the three Y-TZP ceramics (n = 10) were 990 ± 39, 1416 ± 33 and 1076 ± 32 MPa for High-Translucency, High-Strength and High-Surface Area, respectively. The fracture toughness values (mean ± standard error) for the three zirconias (n = 10) were 3.24 ± 0.10, 3.63 ± 0.12 and 3.21 ± 0.14 MPa m1/2 for High-Translucency, High-Strength and High-Surface Area, respectively. Both strength and toughness values of High-Strength zirconia were significantly higher than High-Surface Area and High-Translucency zirconias. Translucency parameter values of High-Translucency zirconia were considerably higher than High-Strength and High-Surface Area zirconias. However, all three zirconias became essentially opaque when their thickness reached 1 mm or greater. Our findings suggest that there exists a delicate balance between mechanical and optical properties of the current commercial Y-TZP ceramics. PMID:26664123

  14. Study of polypropylene/polybutene blends modified by gamma irradiation and (high melt strength polypropylene)/polybutene blends

    NASA Astrophysics Data System (ADS)

    Yoshiga, Adriana; Otaguro, Harumi; Lima, Luís Filipe C. P.; Artel, Beatriz W. H.; Parra, Duclerc F.; Rodrigues Bueno, Jeferson; Shinzato, Rodrigo; Farrah, Marcelo; Lugão, Ademar B.

    2007-12-01

    It is well-known that polypropylene (PP) is difficult to process as a consequence of its linear structure. It is also known that grafting of long-chain branches on PP backbone using ionizing radiation is an effective approach to achieve high melt strength polypropylene (HMS PP). Chain-scission and, in minor extend, crosslinking and grafting are the predominant reaction in order to branch PP backbone. However, if multifunctional monomers are used to promote the grafting reaction, crosslinking can surpass chain scission and grafting, reducing drawability. Therefore, in an effort to enhance the processability and so the drawability, it has been found helpful to add a small amount of polybutene-1. Gamma irradiation technique was used to induce chemical changes in blends of PP and polybutene in acetylene atmosphere (crosslinker promoter) and in HMSPP/polybutene blends. The samples were irradiated with a 60Co source with doses of 12.5 and 20 kGy in the presence of acetylene. In this work, two different methods of blends processing were compared regarding rheological and mechanical properties. Effects on the strength and elongation at the yield point and at rupture were observed by mechanical tests and showed decrease of tensile strength and increase of elongation at rupture for samples obtained by irradiation of blends. The results from rheology demonstrated an increase in melt strength and drawability of blends.

  15. Can Community and School-Based Supports Improve the Achievement of First-Generation Immigrant Children Attending High-Poverty Schools?

    ERIC Educational Resources Information Center

    Dearing, Eric; Walsh, Mary E.; Sibley, Erin; Lee-St.John, Terry; Foley, Claire; Raczek, Anastacia E.

    2016-01-01

    Using a quasi-experimental design, the effects of a student support intervention were estimated for the math and reading achievement of first-generation immigrant children (n = 667, M = 11.05 years of age) attending high-poverty, urban elementary schools. The intervention was designed to help schools identify developmental strengths and barriers…

  16. Formal Operational Precocity and Achievement in Biology among Some Nigerian High School Students.

    ERIC Educational Resources Information Center

    Ehindero, Olusola Joseph

    1979-01-01

    Compares the performances on a battery of six Piagetian tasks of 80 Nigerian high school students classified as high and low achievers in biology. The relationship between performance of very bright biology students (high achievers) and intellectual precocity is also investigated. (HM)

  17. The Chinese High School Student's Stress in the School and Academic Achievement

    ERIC Educational Resources Information Center

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  18. Beyond Academic Reputation: Factors that Influence the College of First Choice for High Achieving Students

    ERIC Educational Resources Information Center

    Schoenherr, Holly J.

    2009-01-01

    Studies that have investigated college choice factors for high-achieving students repeatedly cite academic reputation as one of the top indicators of choice but have not indicated why some high-achieving students choose to attend universities with a less prestigious reputation than the more highly prestigious options available to them. The purpose…

  19. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture.

    PubMed

    Zhang, Mingliang; Magagnosc, Daniel J; Liberal, Iñigo; Yu, Yao; Yun, Hongseok; Yang, Haoran; Wu, Yaoting; Guo, Jiacen; Chen, Wenxiang; Shin, Young Jae; Stein, Aaron; Kikkawa, James M; Engheta, Nader; Gianola, Daniel S; Murray, Christopher B; Kagan, Cherie R

    2017-03-01

    Next-generation 'smart' nanoparticle systems should be precisely engineered in size, shape and composition to introduce multiple functionalities, unattainable from a single material. Bottom-up chemical methods are prized for the synthesis of crystalline nanoparticles, that is, nanocrystals, with size- and shape-dependent physical properties, but they are less successful in achieving multifunctionality. Top-down lithographic methods can produce multifunctional nanoparticles with precise size and shape control, yet this becomes increasingly difficult at sizes of ∼10 nm. Here, we report the fabrication of multifunctional, smart nanoparticle systems by combining top-down fabrication and bottom-up self-assembly methods. Particularly, we template nanorods from a mixture of superparamagnetic Zn0.2Fe2.8O4 and plasmonic Au nanocrystals. The superparamagnetism of Zn0.2Fe2.8O4 prevents these nanorods from spontaneous magnetic-dipole-induced aggregation, while their magnetic anisotropy makes them responsive to an external field. Ligand exchange drives Au nanocrystal fusion and forms a porous network, imparting the nanorods with high mechanical strength and polarization-dependent infrared surface plasmon resonances. The combined superparamagnetic and plasmonic functions enable switching of the infrared transmission of a hybrid nanorod suspension using an external magnetic field.

  20. Effects of Microstructure on CVN Impact Toughness in Thermomechanically Processed High Strength Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Zhou, Yanlei; Jia, Xiaoxiao; Wang, Zhaodong

    2017-02-01

    Investigation on the correlation between microstructure and CVN impact toughness is of practical importance for the microstructure design of high strength microalloyed steels. In this work, three steels with characteristic microstructures were produced by cooling path control, i.e., steel A with granular bainite (GB), steel B with polygonal ferrite (PF) and martensite-austenite (M-A) constituent, and steel C with the mixture of bainitic ferrite (BF), acicular ferrite (AF), and M-A constituent. Under the same alloy composition and controlled rolling, similar ductile-to-brittle transition temperatures were obtained for the three steels. Steel A achieved the highest upper shelf energy (USE), while large variation of impact absorbed energy has been observed in the ductile-to-brittle transition region. With apparently large-sized PF and M-A constituent, steel B shows the lowest USE and delamination phenomenon in the ductile-to-brittle transition region. Steel C exhibits an extended upper shelf region, intermediate USE, and the fastest decrease of impact absorbed energy in the ductile-to-brittle transition region. The detailed CVN impact behavior is studied and then linked to the microstructural features.

  1. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Magagnosc, Daniel J.; Liberal, Iñigo; Yu, Yao; Yun, Hongseok; Yang, Haoran; Wu, Yaoting; Guo, Jiacen; Chen, Wenxiang; Shin, Young Jae; Stein, Aaron; Kikkawa, James M.; Engheta, Nader; Gianola, Daniel S.; Murray, Christopher B.; Kagan, Cherie R.

    2016-11-01

    Next-generation 'smart' nanoparticle systems should be precisely engineered in size, shape and composition to introduce multiple functionalities, unattainable from a single material. Bottom-up chemical methods are prized for the synthesis of crystalline nanoparticles, that is, nanocrystals, with size- and shape-dependent physical properties, but they are less successful in achieving multifunctionality. Top-down lithographic methods can produce multifunctional nanoparticles with precise size and shape control, yet this becomes increasingly difficult at sizes of ∼10 nm. Here, we report the fabrication of multifunctional, smart nanoparticle systems by combining top-down fabrication and bottom-up self-assembly methods. Particularly, we template nanorods from a mixture of superparamagnetic Zn0.2Fe2.8O4 and plasmonic Au nanocrystals. The superparamagnetism of Zn0.2Fe2.8O4 prevents these nanorods from spontaneous magnetic-dipole-induced aggregation, while their magnetic anisotropy makes them responsive to an external field. Ligand exchange drives Au nanocrystal fusion and forms a porous network, imparting the nanorods with high mechanical strength and polarization-dependent infrared surface plasmon resonances. The combined superparamagnetic and plasmonic functions enable switching of the infrared transmission of a hybrid nanorod suspension using an external magnetic field.

  2. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  3. Hollow fiber vs. flat sheet MBR for the treatment of high strength stabilized landfill leachate.

    PubMed

    Hashisho, J; El-Fadel, M; Al-Hindi, M; Salam, D; Alameddine, I

    2016-09-01

    The Membrane Bioreactor (MBR) technology is increasingly becoming a prominent process in the treatment of high-strength wastewater such as leachate resulting from the decomposition of waste in landfills. This study presents a performance comparative assessment of flat sheet and hollow fiber membranes in bioreactors for the treatment of relatively stable landfill leachate with the objective of defining guidelines for pilot/full scale plants. For this purpose, a laboratory scale MBR system was constructed and operated to treat a leachate with Chemical Oxygen Demand (COD) (3900-7800mg/L), Biochemical Oxygen Demand (BOD5) (∼440-1537mg/L), Total Phosphorus (TP) (∼10-59mg/L), Phosphate (PO4(3)(-)) (5-58mg/L), Total Nitrogen (TN) (1500-5200mg/L), and ammonium (NH4(+)) (1770-4410mg/L). Both membranes achieved comparable BOD (92.2% vs. 93.2%) and TP (79.4% vs. 78.5%) removals. Higher PO4(3)(-) removal efficiency or percentage (87.3% vs. 81.3%) and slightly higher, but not statistically significant, COD removal efficiency were obtained with the hollow fiber membrane (71.4% vs. 68.5%). On the other hand, the flat sheet membrane achieved significantly higher TN and NH4(+) removal efficiencies (61.2% vs. 49.4% and 63.4% vs. 47.8%, respectively), which may be attributed to the less frequent addition of NaOCl compared to the hollow fiber system.

  4. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  5. The Effects of Web-Based/Non-Web-Based Problem-Solving Instruction and High/Low Achievement on Students' Problem-Solving Ability and Biology Achievement

    ERIC Educational Resources Information Center

    Yu, Wen-Feng; She, Hsiao-Ching; Lee, Yu-Mei

    2010-01-01

    This study investigates the effects of two factors: the mode of problem-solving instruction (i.e. Web-based versus non-Web-based) and the level of academic achievement (i.e. high achievers versus low achievers) on students' problem-solving ability and biology achievement. A quasi-experimental design was used, in which the experimental group…

  6. Bond strength to high-crystalline content zirconia after different surface treatments.

    PubMed

    de Souza, Grace M Dias; Silva, Nelson R F A; Paulillo, Luis A M S; De Goes, Mario F; Rekow, E Dianne; Thompson, Van P

    2010-05-01

    The aim of this study was to evaluate the effect of primers, luting systems and aging on bond strength to zirconium oxide substrates. Eighteen zirconia discs (19.5 x 4 mm) were polished and treated (n = 3) either with a MDP primer (Md) or with a MDP and VBATDT primer (MV). In the control group (n = 3) no surface chemical treatment was performed. Zirconia specimens were cemented to prepolymerized composite discs utilizing resin cements - RelyX Unicem or Panavia 21 (RU and Pa, respectively). After 24 h, samples were sectioned for microtensile testing and returned to water at 37 degrees C for two different periods before being tested: 72 h or 60 days + thermocycling (5-55 degrees C/5000 cycles). Bond strength testing was performed at 1 mm/min. Values in MPa were analyzed through ANOVA and Tukey's Studentized Range (HSD) (p > 0.05). The application of MV primer resulted in the highest bond strength (22.77 MPa), statistically superior to Md primer (12.78 MPa), and control groups presented the lowest values (9.17 MPa). When luting systems were compared, RU promoted the highest bond strength (16.07 MPa) in comparison with Pa (13.75 MPa). The average bond strength decrease after aging (9.35 MPa) when compared with initial values (20.46 MPa). The results presented by this in vitro study suggest that a chemical surface treatment based on the MDP and VBATDT combination may improve bond strength between zirconia and luting system, without any previous mechanical treatment, depending on the luting system used. This chemical treatment may result in a reliable alternative to achieve adequate and durable bond strength.

  7. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    SciTech Connect

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  8. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  9. High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties

    SciTech Connect

    Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y. Gotman, Irena

    2015-10-27

    High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.

  10. Experimental Comparison of Tantalum Material Strength between Single Crystal [100] and [111] Samples at High Pressure and Strain Rates

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Park, Hye-Sook; Cavallo, Rob; Rudd, Robert; Prisbrey, Shon; Maddox, Brian; Wehrenberg, Christopher; May, Mark; Remington, Bruce

    2013-06-01

    Experiments were performed using the OMEGA laser to investigate the strength difference between single crystal [100] and [111] Ta samples at high pressure (1 Mbar), and high strain rates (106- 108 s-1) . To achieve these pressures and strain rates in experiment without melting the sample, a quasi-isentropic drive was employed to drive the growth of pre-imposed sinusoidal perturbations on the surface of the Ta samples, via the Rayleigh-Taylor (RT) instability. By measuring the ripple amplitude using face-on high energy (~22 KeV) radiography, the strength of the Ta sample is inferred from the amount of RT growth observed. Under these experimental conditions, the Ta material strength can be modeled by the Multiscale (MS) model, developed at LLNL. The value of the ``Taylor Factor'' (a MS model parameter), is thought to vary for [100] and [111] crystal orientations. To investigate this difference under these conditions, a comparison of the ripple growth was performed on the two samples for the same shot and drive conditions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  12. High-capacity, high-strength trailer designs for the GA-4/GA-9 Casks

    SciTech Connect

    Kissinger, J.A.; Rickard, N.D.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. We are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight is expected to be very close to this target weight. 3 refs., 3 figs.

  13. STRENGTH PROPERTIES OF POLED PZT SUBJECTED TO BIAXIAL FLEXURAL LOADING IN HIGH ELECTRIC FIELD

    SciTech Connect

    Wang, Hong; Lin, Hua-Tay; Wereszczak, Andrew A

    2010-01-01

    Failure of poled PZT has been experimentally studied using ball-on-ring (BoR) biaxial flexure strength tests with an electric field concurrently applied. The as-received and aged PZTs were tested in high electric fields of -3 to 4 times the coercive field. Both the sign and the magnitude of electric field had a significant effect on the strength of poled PZT. A surface flaw type with a depth of around 18 m was identified as the strength limiter and responsible for the failure of the tested PZT. With a value of 0.76 MPa m1/2 in the open circle condition, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.

  14. Low temperature fabrication of high strength porous calcium phosphate and the evaluation of the osteoconductivity.

    PubMed

    Yu, Xianzhu; Cai, Shu; Xu, Guohua; Zhou, Wei; Wang, Dongmei

    2009-10-01

    Porous NaO(2)-MgO-CaO-P(2)O(5) bioglass doped beta-tri-calcium phosphate (beta-TCP) bioceramic possessing high mechanical properties and well pore structure with high porosity and high pore connectivity has been prepared through dipping method with the porous polyurethane as the pore forming template. The sintering mechanism and the mechanical properties of the bioglass doped beta-TCP scaffold have been investigated by the X-ray diffraction (XRD) analysis, Scanning electron microscope (SEM) and thermal differential analysis (DTA). The scaffold's in vivo osteoconductivity has been evaluated by implantation of scaffolds into the femurs of New Zealand rabbits. The results show that the porous structure can achieve the densification process at a low temperature about 950 degrees C by a solid solution sintering mechanism and hence dense macropore scaffold with a compressive strength of 4.32 MPa when the porosity is 75% has been obtained. The in vivo test shows that the Na(2)O-MgO-CaO-P(2)O(5) bioglass doped porous beta-TCP bioceramic has a relatively fast bone formation after implantation; after 1 month implantation new deposited bone tissue has been detected on the strut of the porous scaffold and degraded particles also has been found on the surface of the new formed bone. After 6 months implantation the porous scaffold has been thoroughly covered with new formed bone. Results show that the Na(2)O-MgO-CaO-P(2)O(5) bioglass doped porous beta-TCP bioceramic is potential bone tissue engineering scaffold for orthopedic use.

  15. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    ERIC Educational Resources Information Center

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  16. Improvement of formability of high strength steel sheets in shrink flanging

    NASA Astrophysics Data System (ADS)

    Hamedon, Z.; Abe, Y.; Mori, K.

    2016-02-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging.

  17. FE Simulation Models for Hot Stamping an Automobile Component with Tailor-Welded High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun

    2016-05-01

    Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.

  18. The Effect of the Time Management Art on Academic Achievement among High School Students in Jordan

    ERIC Educational Resources Information Center

    Al-Zoubi, Maysoon

    2016-01-01

    This study aimed at recognizing the effect of the Time Management Art on academic achievement among high school students in the Hashemite Kingdom of Jordan. The researcher employed the descriptive-analytic research to achieve the purpose of the study where he chose a sample of (2000) high school female and male students as respondents to the…

  19. Effects of a Collaborative Science Intervention on High Achieving Students' Learning Anxiety and Attitudes toward Science

    ERIC Educational Resources Information Center

    Hong, Zuway-R.

    2010-01-01

    This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized…

  20. Individual and Longitudinal Differences among High and Low-Achieving, LD, and ADHD L2 Learners

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Humbach, Nancy; Javorsky, James

    2008-01-01

    High-achieving (HA) and low-achieving (LA), learning disabled (LD), and attention deficit hyperactivity disorder (ADHD) high school students were followed over two years of L2 study and compared on measures of L1 literacy (reading and writing) in elementary school, L1 cognitive ability, L2 aptitude, oral and written L2 proficiency, and L2 word…

  1. International Note: Between-Domain Relations of Chinese High School Students' Academic Achievements

    ERIC Educational Resources Information Center

    Yangyang, Liu

    2012-01-01

    The present study examined the between-domain relations of Chinese high school students' academic achievements. In a sample of 1870 Chinese 10th grade students, the results indicated that Chinese high school students' academic achievements were correlated across nine subjects. In line with the previous Western findings, the findings suggested that…

  2. A Longitudinal Investigation of Project-Based Instruction and Student Achievement in High School Social Studies

    ERIC Educational Resources Information Center

    Summers, Emily J.; Dickinson, Gail

    2012-01-01

    This longitudinal study focused on how project-based instruction (PBI) influenced secondary social studies students' academic achievement and promoted College and Career Readiness (CCR). We explored and compared student achievement in a PBI high school versus a traditional instruction high school within the same rural school district. While…

  3. Parent-Child Relations and Psychological Adjustment among High-Achieving Chinese and European American Adolescents

    ERIC Educational Resources Information Center

    Qin, Desiree Baolian; Rak, Eniko; Rana, Meenal; Donnellan, M. Brent

    2012-01-01

    Chinese American students are often perceived as problem-free high achievers. Recent research, however, suggests that high-achieving Chinese American students can experience elevated levels of stress, especially comparing to their peers from other ethnic groups. In this paper, we examine how family dynamics may influence psychological adjustment…

  4. High-Achieving and Average Students' Reading Growth: Contrasting School and Summer Trajectories

    ERIC Educational Resources Information Center

    Rambo-Hernandez, Karen E.; McCoach, D. Betsy

    2015-01-01

    Much is unknown about how initially high-achieving students grow academically, especially given the measurement issues inherent in assessing growth for the highest performing students. This study compared initially high-achieving and average students' growth in reading (in a cohort of third-grade students from 2,000 schools) over 3 years.…

  5. Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Ultralow Young's Modulus and High Strength

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Guo, Shun; Meng, Qingkun; Zhao, Xinqing

    2014-02-01

    The effect of thermo-mechanical treatment on the mechanical properties of a novel metastable β-type Ti-30Nb-1Mo-4Sn (wt pct) alloy has been investigated. The solution-treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa). After cold rolling at a reduction of 87.5 pct and subsequent annealing treat at 623 K (350 °C) for 30 minutes, a fine microstructure with nano-sized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 954 MPa and an ultimate tensile strength of 999 MPa. With low stability of β phase and small volume fraction of α precipitates, the annealed specimen exhibits a low Young's modulus of 45 GPa. Such an excellent combination of the low elastic modulus and high strength in mechanical properties indicates a great potential candidate for biomedical applications.

  6. Low-Temperature Toughening Mechanism in Thermomechanically Processed High-Strength Low-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Lee, Chang Gil; Kim, Sung-Joon

    2011-03-01

    High-strength low-alloy (HSLA) steels were fabricated by varying thermomechanical processing conditions such as rolling and cooling conditions in the intercritical region, and the low-temperature toughening mechanism was investigated in terms of microstructure and the associated grain boundary characteristics. The steels acceleratedly cooled to relatively higher temperature had lower tensile strength than those acceleratedly cooled to room temperature due to the increased volume fraction of granular bainite or polygonal ferrite (PF) irrespective of rolling in the intercritical region, while the yield strength was dependent on intercritical rolling, and start and finish cooling temperatures, which affected the formation of PF and low-temperature transformation phases. The steel rolled in the intercritical region and cooled to 673 K (400 °C) provided the best combination of high yield strength and excellent low-temperature toughness because of the presence of fine PF and appropriate mixture of various low-temperature transformation phases such as granular bainite, degenerate upper bainite (DUB), lower bainite (LB), and lath martensite (LM). Despite the high yield strength, the improvement of low-temperature toughness could be explained by the reduction of overall effective grain size based on the electron backscattered diffraction (EBSD) analysis data, leading to the decrease in ductile-to-brittle transition temperature (DBTT).

  7. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOEpatents

    Thomas, Gareth; Nakagawa, Alvin H.

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  8. The effect of surface layer properties on bendability of ultra-high strength steel

    NASA Astrophysics Data System (ADS)

    Arola, Anna-Maija; Kaijalainen, Antti; Kesti, Vili

    2016-10-01

    Bendability is an important property for ultra-high strength steel because air-bending is the most common forming process for the material. In this paper the bendability of two ultra-high strength steels with similar mechanical properties but different bendability was investigated using tensile testing with optical strain measurements. The tensile tests were conducted also for specimens cut from the surface layer and the middle layer of the sheet. It was discovered that the mechanical properties of the surface of the sheet affect the bendability in great manner.

  9. Biaxial Flexural Strength of Poled Lead Zirconate Titanate under High Electric Field with Extended Field Range

    SciTech Connect

    Zhang, Kewei; Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    In the present work, as-received poled lead zirconate titanate, or PZT 5A, was examined using ball-on-ring (BoR) mechanical testing coupled with an electric field. Electric fields in the range of 4Ec (Ec, coercive field) with controlled loading paths were applied, and mechanical tests at a substantial number of characteristic electric field levels were conducted. Commercial electronic liquid FC-40 was used to prevent the setup from dielectric breakdown under a high electric field. Weibull strength distribution was used to interpret the mechanical strength data. The data showed that the strength levels of the PZT-5A tested under OC (open circuit) in air and in FC-40 were almost the same. It was further revealed that , for the studied cases, the effect of loading history on the biaxial flexural strength of the PZT was significant in -Ec, but not in OC or zero field as well as 4Ec . An asymmetry V curve was observed for the characteristic strength-electric field graph, and the bottom of V curve was located near the negative coercive field. Microscopy analysis showed that surface-located volume-distributed flaws were the strength limiter and responsible for the failure of the tested PZT under electromechanical loadings.

  10. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  11. The Meaning High-Achieving African-American Males in an Urban High School Ascribe to Mathematics

    ERIC Educational Resources Information Center

    Thompson, LaTasha; Davis, Julius

    2013-01-01

    Many researchers, educators, administrators, policymakers and members of the general public doubt the prevalence of high-achieving African-American males in urban high schools capable of excelling in mathematics. As part of a larger study, the current study explored the educational experiences of four high-achieving African-American males…

  12. Nanoscale Analyses of High-Nickel Concentration Martensitic High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Isheim, Dieter; Hunter, Allen H.; Zhang, Xian J.; Seidman, David N.

    2013-07-01

    Austenite reversion in martensitic steels is known to improve fracture toughness. This research focuses on characterizing mechanical properties and the microstructure of low-carbon, high-nickel steels containing 4.5 and 10 wt pct Ni after a QLT-type austenite reversion heat treatment: first, martensite is formed by quenching ( Q) from a temperature in the single-phase austenite field, then austenite is precipitated by annealing in the upper part of the intercritical region in a lamellarization step ( L), followed by a tempering ( T) step at lower temperatures. For the 10 wt pct Ni steel, the tensile strength after the QLT heat treatment is 910 MPa (132 ksi) at 293 K (20 °C), and the Charpy V-notch impact toughness is 144 J (106 ft-lb) at 188.8 K (-84.4 °C, -120 °F). For the 4.5 wt pct Ni steel, the tensile strength is 731 MPa (106 ksi) at 293 K (20 °C) and the impact toughness is 209 J (154 ft-lb) at 188.8 K (-84.4 °C, -120 °F). Light optical microscopy, scanning electron and transmission electron microscopies, synchrotron X-ray diffraction, and local-electrode atom-probe tomography (APT) are utilized to determine the morphologies, volume fractions, and local chemical compositions of the precipitated phases with sub-nanometer spatial resolution. The austenite lamellae are up to 200 nm in thickness, and up to several micrometers in length. In addition to the expected partitioning of Ni to austenite, APT reveals a substantial segregation of Ni at the austenite/martensite interface with concentration maxima of 10 and 23 wt pct Ni for the austenite lamellae in the 4.5 and 10 wt pct Ni steels, respectively. Copper-rich and M2C-type metal carbide precipitates were detected both at the austenite/martensite interface and within the bulk of the austenite lamellae. Thermodynamic phase stability, equilibrium compositions, and volume fractions are discussed in the context of Thermo-Calc calculations.

  13. Qualitative research study of high-achieving females' life experiences impacting success

    NASA Astrophysics Data System (ADS)

    Butcher, Ann Patrice

    2003-07-01

    This qualitative study investigated the life experiences of five academically gifted female students in math and science in reflection of their elementary learning prior to enrollment at a prestigious science and mathematics high school. The elite high school limits admission to the state of Illinois' top students. The purpose of this study is to unfold the story of five academically gifted females in attendance at the elite high school reflecting on their life experiences in elementary school that contributed to their current academic success. Twelve female students, who at the time of this study were currently in their senior year (12th grade) of high school, were solicited from the top academic groups who are regarded by their teachers as highly successful in class. Students were selected as part of the study based on academic status, survey completion and interest in study, Caucasian and Asian ethnicity, locale of elementary school with preference given to the variety of school demographics---urban, suburban, and rural---further defined the group to the core group of five. All female participants were personally interviewed and communicated via Internet with the researcher. Parents and teachers completing surveys as well met the methodological requirements of triangulation. An emergent theme of paternal influence came from the research. Implications supported in the research drawn from this study to increase achievement of academically gifted females include: (a) proper early identification of learner strengths plays a role; (b) learning with appropriate intellectual peers is more important than learning with their age group; (c) teachers are the greatest force for excellent instruction; (d) effective teaching strategies include cooperative learning, multi-sensory learning, problem-based learning, and hands-on science; (e) rigor in math is important; (f) gender and stereotypes need not be barriers; (g) outside interests and activities are important for self

  14. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players.

    PubMed

    Wong, Pui-lam; Chaouachi, Anis; Chamari, Karim; Dellal, Alexandre; Wisloff, Ulrik

    2010-03-01

    This study examined the effect of concurrent muscular strength and high-intensity running interval training on professional soccer players' explosive performances and aerobic endurance. Thirty-nine players participated in the study, where both the experimental group (EG, n = 20) and control group (CG, n = 19) participated in 8 weeks of regular soccer training, with the EG receiving additional muscular strength and high-intensity interval training twice per week throughout. Muscular strength training consisted of 4 sets of 6RM (repetition maximum) of high-pull, jump squat, bench press, back half squat, and chin-up exercises. The high-intensity interval training consisted of 16 intervals each of 15-second sprints at 120% of individual maximal aerobic speed interspersed with 15 seconds of rest. EG significantly increased (p < or = 0.05) 1RM back half squat and bench press but showed no changes in body mass. Within-subject improvement was significantly higher (p < or = 0.01) in the EG compared with the CG for vertical jump height, 10-m and 30-m sprint times, distances covered in the Yo-Yo Intermittent Recovery Test and maximal aerobic speed test, and maximal aerobic speed. High-intensity interval running can be concurrently performed with high load muscular strength training to enhance soccer players' explosive performances and aerobic endurance.

  15. Neck strength: a protective factor reducing risk for concussion in high school sports.

    PubMed

    Collins, Christy L; Fletcher, Erica N; Fields, Sarah K; Kluchurosky, Lisa; Rohrkemper, Mary Kay; Comstock, R Dawn; Cantu, Robert C

    2014-10-01

    As the number of high school students participating in athletics continues to increase, so will the number of sports-related concussions unless effective concussion prevention programs are developed. We sought to develop and validate a cost-effective tool to measure neck strength in a high school setting, conduct a feasibility study to determine if the developed tool could be reliably applied by certified athletic trainers (ATs) in a high school setting, and conduct a pilot study to determine if anthropometric measurements captured by ATs can predict concussion risk. In the study's first phase, 16 adult subjects underwent repeated neck strength testing by a group of five ATs to validate the developed hand-held tension scale, a cost effective alternative to a hand-held dynamometer. In the second phase, during the 2010 and 2011 academic years, ATs from 51 high schools in 25 states captured pre-season anthropometric measurements for 6,704 high school athletes in boys' and girls' soccer, basketball, and lacrosse, as well as reported concussion incidence and athletic exposure data. We found high correlations between neck strength measurements taken with the developed tool and a hand-held dynamometer and the measurements taken by five ATs. Smaller mean neck circumference, smaller mean neck to head circumference ratio, and weaker mean overall neck strength were significantly associated with concussion. Overall neck strength (p < 0.001), gender (p < 0.001), and sport (p = 0.007) were significant predictors of concussions in unadjusted models. After adjusting for gender and sport, overall neck strength remained a significant predictor of concussion (p = 0.004). For every one pound increase in neck strength, odds of concussion decreased by 5 % (OR = 0.95, 95 % CI 0.92-0.98). We conclude that identifying differences in overall neck strength may be useful in developing a screening tool to determine which high school athletes are at higher risk of concussion. Once identified

  16. Influence of powder properties on the sintering of polyaromatic mesophases to high-strength isotropic graphite

    SciTech Connect

    Braun, M.; Gschwindt, A.; Hoffmann, W.R.

    1995-09-01

    The paper reviews the state of the art in sintering of polyaromatic mesophase powders to high-strength isotropic carbons and graphites. Synthesis of mesophase pitches from different precursor materials (petroleum- and coal tar pitch) using a net thermal or a catalyzed process, the preparation of mesophase powders from mesophase pitches and the influence of the powder properties on the sintering are discussed. Special attention is given to the role of thermoplasticity and the particle size of the mesophase powder as key properties for the production of high-strength carbons and graphites. After a graphitization treatment, isotropic graphites with a flexural strength of 160 MPa can be obtained, a value which probably represents an upper limit.

  17. Performance optimization and computational design of ultra-high strength gear steels

    NASA Astrophysics Data System (ADS)

    Tiemens, Benjamin Lee

    Rising power density requirements in transmission gear applications are swiftly outpacing gear redesign alone and will ultimately depend on better materials. Ni-Co secondary hardening steels show great promise for these applications due to their optimized combination of strength and toughness. The commercially available secondary hardening alloys GearMet RTM C61 and C67 have already demonstrated promising contact fatigue resistance, however bending fatigue is anticipated to be the primary failure mode limiting high power density gear applications. Single tooth bending fatigue testing was therefore completed on C61 and C67 spur gears to both assess the optimized performance of these alloys as well as identify defect populations currently limiting further advances. The resultant best-practice C61 spur gears in a shot peened and isotropic superfinished condition outperformed the top-ranking premium gear steel, demonstrating an approximate 15% improvement in bending fatigue endurance limit. Fatigue failures limiting further bending fatigue performance were identified to primarily initiate at three defect classes: shot peening-induced surface damage, subsurface inter-granular cleavage facets and Al2O3 and La2O2S inclusions. C67 spur gears did not show increased performance despite elevated surface hardness levels due to the inability of current shot peening practices to achieve maximum compressive stress in ultra-high hardness materials. In an effort to reduce the material cost of these alloys through minimization/elimination of cobalt alloying additions, BCC Cu precipitation was incorporated to offset ensuing losses in temper resistance by providing additional heterogeneous nucleation sites for the M2C strengthening dispersion. Fifty-pound experimental heats were made of four designed compositions. Peak hardness levels achieved during tempering fell on average 200 VHN short of the 900 VHN designed surface hardness. 3-dimensional local electrode atom probe (LEAP

  18. A Study on Forming Characteristics of Roll Forming Process with High Strength Steel

    NASA Astrophysics Data System (ADS)

    Joo, ByeongDon; Lee, HyunJong; Kim, DongKyu; Moon, YoungHoon

    2011-08-01

    Roll forming is a kind of sheet metal forming process used to manufacture long sheet metal products with constant cross section. Recently, roll forming technology draws attentions of automotive industries due to its various advantages, such as high production speed, reduced tooling cost and improved quality. In automotive industries, roll formed automotive parts used as structural components in vehicle body frame or sub frame and high strength steel becomes more common to improve safety and fuel efficiency. However, when roll forming process is performed with high strength steel, rolling forming defects, such as spring back, buckling and scratch should be considered more carefully. In this study, efforts to avoid roll forming defects and to optimize forming parameters were performed. FE analysis was performed with high strength steels using commercially available simulation software, COPRA-RF™ and SHAPE-RF™. Forming characteristics were analyzed and roll flower model and proper roll-pass sequences were suggested by analyzing longitudinal strain and deformation behavior. This study provided considerable experience about roll forming process design that using high strength steel.

  19. Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction

    NASA Astrophysics Data System (ADS)

    Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon

    2017-01-01

    Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.

  20. A Study of Organizational Justice, Organizational Citizenship Behavior, and Student Achievement in High Schools

    ERIC Educational Resources Information Center

    Burns, W. R. Travis; DiPaola, Michael F.

    2013-01-01

    Emerging research suggests that teachers' perceptions of fairness with respect to interactions with school administrators, decision-making processes, and decision outcomes can contribute greatly to understanding effective schools. This study of Virginia public high schools used correlational analysis to measure the strength of the relationships…

  1. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    SciTech Connect

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E.

    1997-12-31

    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  2. High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers.

    PubMed

    Burguera, Elena F; Xu, Hockin H K; Takagi, Shozo; Chow, Laurence C

    2005-12-15

    Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite with chemical and crystallographic similarity to the apatite in human bones, hence it is highly promising for clinical applications. The objective of the present study was to develop a CPC that is fast setting and has high strength in the early stages of implantation. Two approaches were combined to impart high early strength to the cement: the use of dicalcium phosphate dihydrate with a high solubility (which formed the cement CPC(D)) instead of anhydrous dicalcium phosphate (which formed the conventional cement CPC(A)), and the incorporation of absorbable fibers. A 2 x 8 design was tested with two materials (CPC(A) and CPC(D)) and eight levels of cement reaction time: 15 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 8 h, and 24 h. An absorbable suture fiber was incorporated into cements at 25% volume fraction. The Gilmore needle method measured a hardening time of 15.8 min for CPC(D), five-fold faster than 81.5 min for CPC(A), at a powder:liquid ratio of 3:1. Scanning electron microscopy revealed the formation of nanosized rod-like hydroxyapatite crystals and platelet crystals in the cements. At 30 min, the flexural strength (mean +/- standard deviation; n = 5) was 0 MPa for CPC(A) (the paste did not set), (4.2 +/- 0.3) MPa for CPC(D), and (10.7 +/- 2.4) MPa for CPC(D)-fiber specimens, significantly different from each other (Tukey's at 0.95). The work of fracture (toughness) was increased by two orders of magnitude for the CPC(D)-fiber cement. The high early strength matched the reported strength for cancellous bone and sintered porous hydroxyapatite implants. The composite strength S(c) was correlated to the matrix strength S(m): S(c) = 2.16S(m). In summary, substantial early strength was imparted to a moldable, self-hardening and resorbable hydroxyapatite via two synergistic approaches: dicalcium phosphate dihydrate, and absorbable fibers. The new fast-setting and strong cement may help prevent

  3. Kic size effect study on two high-strength steels using notched bend specimens

    NASA Technical Reports Server (NTRS)

    Stonesifer, F. R.

    1974-01-01

    Five methods are used to calculate plane strain fracture toughness (K sub Q) values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid stress intensity factor (K sub IC) values from specimens of sizes well below that required by E399 standard tests.

  4. The Effect of Weight Reduction on Body Composition and Strength in High School Wrestlers.

    ERIC Educational Resources Information Center

    Hejna, William F.; And Others

    A study assessed the relationship of weight reduction to the strength of various muscle groups in conjunction with a pre-season and in-season training and conditioning program. Twenty-nine high school wrestlers, with an average age of 16 years 4 months, significantly reduced their body weight. In the process, there were losses in lean body weight.…

  5. Relationship of Muscular Strength on Work Performance in High School Students with Mental Retardation

    ERIC Educational Resources Information Center

    Smail, Karen M.; Horvat, Michael

    2006-01-01

    The relationship of muscular strength on work performance measures in high school students with mild mental retardation was investigated. Ten students from a self contained Special Education class were matched according to age, gender, height, and weight then randomly assigned to either the treatment group or control group. The treatment group…

  6. An investigation of the plastic fracture of high strength steels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1973-01-01

    Three generally recognized stages of plastic fracture in high strength steels are considered in detail. These stages consist of void initiation, void growth, and void coalescence. A brief review of the existing literature on plastic fracture is included along with an outline of the experimental approach used in the investigation.

  7. NEW APPROACHES: Magnetic and electric field strengths of high voltage power lines and household appliances

    NASA Astrophysics Data System (ADS)

    Austin, Lydia

    1997-03-01

    A readily obtainable meter can be used to measure the magnetic and electric field strengths of high voltage power lines and household appliances. Simple calculations show that all likely exposures are below, mostly well below, the maximum exposures recommended by the World Health Organisation.

  8. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    DTIC Science & Technology

    following types of tests: tensile, precracked charpy impact , plane strain fracture toughness, stress corrosion, hydrogen embrittlement susceptibility...heats of 300M were evaluated to provide high strength steel alloy selection data for heavy section aircraft components. The evaluation included the

  9. Environmentally assisted crack growth rates of high-strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Connolly, Brain J.; Deffenbaugh, Kristen L.; Moran, Angela L.; Koul, Michelle G.

    2003-01-01

    The scope of this project is to evaluate the environmentally assisted long crack growth behavior of candidate high-strength aluminum alloys/tempers, specifically AA7150-T7751 and AA7040-T7651, for consideration as viable replacements/refurbishment for stress-corrosion cracking in susceptible AA7075-T6 aircraft components found in aging aircraft systems.

  10. Stress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys

    DTIC Science & Technology

    1972-01-01

    importance that the newcomer might wonder why the question is not settled almost as the first order of business . The reason is that to prove the... Agricola and J. T. Snyder, "Stress Corrosion of Explosively Deformed High-Strength Alloys," Metals Eng. Quart. 7 (No. 3), 59 (1967). 138. P. N. Orava

  11. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    SciTech Connect

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  12. High strength, light weight Ti-Y composites and method of making same

    DOEpatents

    Verhoeven, J.D.; Ellis, T.W.; Russell, A.M.; Jones, L.L.

    1993-04-06

    A high strength, light weight in-situ'' Ti-Y composite is produced by deformation processing a cast body having Ti and Y phase components distributed therein. The composite comprises elongated, ribbon-shaped Ti and Y phase components aligned along an axis of the deformed body.

  13. Preparation of high-strength nanometer scale twinned coating and foil

    DOEpatents

    Zhang, Xinghang; Misra, Amit; Nastasi, Michael A.; Hoagland, Richard G.

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  14. High strength, light weight Ti-Y composites and method of making same

    DOEpatents

    Verhoeven, John D.; Ellis, Timothy W.; Russell, Alan M.; Jones, Lawrence L.

    1993-04-06

    A high strength, light weight "in-situ" Ti-Y composite is produced by deformation processing a cast body having Ti and Y phase components distributed therein. The composite comprises elongated, ribbon-shaped Ti and Y phase components aligned along an axis of the deformed body.

  15. The impact of collective teacher efficacy on student achievement in high school science

    NASA Astrophysics Data System (ADS)

    Burcham, Mark W.

    This dissertation was designed to examine the impact of collective teacher efficacy on high school science achievement by looking at relationships among collective teacher efficacy, its two constructs, group competence and group task analysis, and high school science achievement scores at four rural high schools in Northwestern North Carolina. The researcher gathered historical test data from the testing coordinator from the school system and then administered the Collective Teacher Efficacy Instrument, developed by Goddard, Hoy, and Woolfolk Hoy (2000), to 24 science teachers from the four high schools. Using this information, the researcher conducted statistical analyses to determine the relationships among collective teacher efficacy, group competence, and group task analysis as compared with the tested science curriculum (physical science, biology, chemistry, and physics). The researcher also examined which construct was the most contributing factor and examined differences in efficacy levels and student achievement levels at each high school. Analysis of the data from this study indicated collective teacher efficacy, as well as its two constructs, group competence and group task analysis, does have a positive impact on student achievement in high school science. Analysis of the data revealed group competence is the major contributing factor for student achievement in biology and group task analysis is the major contributing factor for student achievement in physical science, chemistry, and physics. Further analysis of the data in this study, also revealed that the two high schools with the highest levels of collective teacher efficacy had the highest levels of student achievement.

  16. Achieving High Rates and High Uniformity in Copper Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Nolan, Lucy Marjorie

    The chemical mechanical polishing of Copper (Cu-CMP) is a complex and poorly understood process. Despite this, it is widely used throughout the semiconductor and microelectronics industries, and makes up a significant portion of wafer processing costs. In these contexts, desirable polishing outcomes such as a high rate of removal from the copper surface, and high removal rate uniformity, are achieved largely by trial-and-error. In this study, the same outcomes are pursued through a systematic investigation of polishing lubrication characteristics and abrasive and oxidiser concentrations in the polishing slurry. A strong link between lubrication characteristics, quantified by the dimensionless Sommerfield number, and the uniformity of polishing is demonstrated. A mechanism for the observed relationship is proposed, based on an adaptation of hydrodynamic lubrication theory. The overall rate of removal is maximized by polishing in a slurry containing oxidiser and abrasives in a synergistic ratio. Polishing away from this ratio has additional effects on the overall quality of the surface produced. Transport of slurry across the polishing pad is investigated by using tracers; the results demonstrate that slurry usage can be reduced in many circumstances with no impact on overall polishing outcomes, reducing overall processing costs. These findings are combined to design a polishing process, with good results.

  17. New York State Superintendents and Board Presidents Attitudes on Superintendent Responsibilities in High-Achieving and Low-Achieving School Districts

    ERIC Educational Resources Information Center

    Murphy, Matthew J.

    2009-01-01

    The purpose of this study is to determine the perceptions of New York State superintendents and board presidents in high-achieving and low-achieving school districts on the six superintendent leadership responsibilities identified by Waters and Marzano (2006) and their relationship to improving student achievement: (1) creating research-relevant…

  18. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  19. Neptunium(V) adsorption to bacteria at low and high ionic strength

    SciTech Connect

    Ams, David A; Swanson, Juliet S; Reed, Donald T; Fein, Jeremy B

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  20. Behavior of a High Strength Concrete Model Subjected to Biaxial Compression.

    DTIC Science & Technology

    1982-12-01

    research project reported herein was to determine the stress-strain behavior, ultimate strength, and failure mechanism of high-strength concrete subjected to...Triaxial Stress," U.S. Bureau of Reclamation, Structural Research Lab. Report SP-23, October 1949, pp. 1-26. 7. Akroyd, T.N.W., " Concrete Under Triaxial...MODEL SUBJECTED TO BIAXIAL COMPRESSION 1-,4 BY [ JON C. HERRIN 𔃻 RAMON L. CARRASQUILLO 1DAVID W. FOWLER Ii RESEARCH REPORT AF- FOR UNITED STATES AIR

  1. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  2. Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training.

    PubMed

    Ellefsen, Stian; Hammarström, Daniel; Strand, Tor A; Zacharoff, Erika; Whist, Jon E; Rauk, Irene; Nygaard, Håvard; Vegge, Geir; Hanestadhaugen, Marita; Wernbom, Mathias; Cumming, Kristoffer T; Rønning, Roar; Raastad, Truls; Rønnestad, Bent R

    2015-10-01

    Limited data exist on the efficacy of low-load blood flow-restricted strength training (BFR), as compared directly to heavy-load strength training (HST). Here, we show that 12 wk of twice-a-week unilateral BFR [30% of one repetition maximum (1RM) to exhaustion] and HST (6-10RM) of knee extensors provide similar increases in 1RM knee extension and cross-sectional area of distal parts of musculus quadriceps femoris in nine untrained women (age 22 ± 1 yr). The two protocols resulted in similar acute increases in serum levels of human growth hormone. On the cellular level, 12 wk of BFR and HST resulted in similar shifts in muscle fiber composition in musculus vastus lateralis, evident as increased MyHC2A proportions and decreased MyHC2X proportions. They also resulted in similar changes of the expression of 29 genes involved in skeletal muscle function, measured both in a rested state following 12 wk of training and subsequent to singular training sessions. Training had no effect on myonuclei proportions. Of particular interest, 1) gross adaptations to BFR and HST were greater in individuals with higher proportions of type 2 fibers, 2) both BFR and HST resulted in approximately four-fold increases in the expression of the novel exercise-responsive gene Syndecan-4, and 3) BFR provided lesser hypertrophy than HST in the proximal half of musculus quadriceps femoris and also in CSApeak, potentially being a consequence of pressure from the tourniquet utilized to achieve blood flow restriction. In conclusion, BFR and HST of knee extensors resulted in similar adaptations in functional, physiological, and cell biological parameters in untrained women.

  3. Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training

    PubMed Central

    Hammarström, Daniel; Strand, Tor A.; Zacharoff, Erika; Whist, Jon E.; Rauk, Irene; Nygaard, Håvard; Vegge, Geir; Hanestadhaugen, Marita; Wernbom, Mathias; Cumming, Kristoffer T.; Rønning, Roar; Raastad, Truls; Rønnestad, Bent R.

    2015-01-01

    Limited data exist on the efficacy of low-load blood flow-restricted strength training (BFR), as compared directly to heavy-load strength training (HST). Here, we show that 12 wk of twice-a-week unilateral BFR [30% of one repetition maximum (1RM) to exhaustion] and HST (6-10RM) of knee extensors provide similar increases in 1RM knee extension and cross-sectional area of distal parts of musculus quadriceps femoris in nine untrained women (age 22 ± 1 yr). The two protocols resulted in similar acute increases in serum levels of human growth hormone. On the cellular level, 12 wk of BFR and HST resulted in similar shifts in muscle fiber composition in musculus vastus lateralis, evident as increased MyHC2A proportions and decreased MyHC2X proportions. They also resulted in similar changes of the expression of 29 genes involved in skeletal muscle function, measured both in a rested state following 12 wk of training and subsequent to singular training sessions. Training had no effect on myonuclei proportions. Of particular interest, 1) gross adaptations to BFR and HST were greater in individuals with higher proportions of type 2 fibers, 2) both BFR and HST resulted in approximately four-fold increases in the expression of the novel exercise-responsive gene Syndecan-4, and 3) BFR provided lesser hypertrophy than HST in the proximal half of musculus quadriceps femoris and also in CSApeak, potentially being a consequence of pressure from the tourniquet utilized to achieve blood flow restriction. In conclusion, BFR and HST of knee extensors resulted in similar adaptations in functional, physiological, and cell biological parameters in untrained women. PMID:26202071

  4. High Tensile Strength Amalgams for In-Space Repair and Fabrication

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2005-01-01

    Amalgams are defined as an alloy of mercury with one or more other metals. These, along with those based on gallium (also liquid at near room temperature), are widely used in dental practice as a tooth filling material. Amalgams have a number of useful attributes that indude room temperature compounding. corrosion resistance, dimensional stability, and good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits their applications. The work presented here demonstrates how, by modifying particle geometry, the tensile strength of amalgams can be increased and thus extending the range of potential applications. This is relevant to, for example, the freeform fabrication of replacement parts that might be necessary during an extended space mission. Advantages, i.e. Figures-of-Merit. include the ability to produce complex parts, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption.

  5. High Tensile Strength Amalgams for In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.

  6. A new approach to predict the strength of high energy materials.

    PubMed

    Keshavarz, Mohammad Hossein; Ghorbanifaraz, Mohammad; Rahimi, Hadi; Rahmani, Mehdi

    2011-02-15

    This paper presents a new approach to predict the strength of energetic compounds in which there are important classes of high explosives including nitroaromatics, acyclic and cyclic nitramines, nitrate esters and nitroaliphatics. For C(a)H(b)N(c)O(d) compounds, the ratio of carbon to oxygen atoms and the predicted heat of detonation on the basis of the H(2)O-CO(2) arbitrary have been used to calculate the strength of an explosive. The new model can give good predictions for mentioned energetic compounds as determined by the Trauzl test. The novel correlation will be useful in predicting the strength or power of a new energetic compound that has significant potential in the field of explosives and propellants.

  7. Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.

    PubMed

    Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun

    2013-12-01

    The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index.

  8. Structural optimization of 3D-printed synthetic spider webs for high strength

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  9. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.

    PubMed

    Liu, Kai; Sun, Yinghui; Zhou, Ruifeng; Zhu, Hanyu; Wang, Jiaping; Liu, Liang; Fan, Shoushan; Jiang, Kaili

    2010-01-29

    We report a simple and continuous spinning method that combines twisting and shrinking processes to produce carbon nanotube yarns. In this method, a yarn freshly spun from a super-aligned carbon nanotube array is first twisted and then passes through a volatile solvent for shrinking. The as-produced yarn consists of densely packed carbon nanotubes, and thus has a tensile strength up to about 1 GPa. The tensile strength depends on the diameter and the twisting angle of the yarn. Different kinds of solvents, such as water, ethanol, and acetone, are used to shrink the twisted yarns, and acetone shows the best shrinking effect. The origin of the solvent shrinking effect is investigated. Our method is favorable for continuous mass production of high strength carbon nanotube yarns with a wide range of diameters, especially ultra-thin yarns.

  10. Structural optimization of 3D-printed synthetic spider webs for high strength.

    PubMed

    Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J

    2015-05-15

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  11. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  12. Strength and Conditioning Practices of University and High School Level Cricket Coaches: A South African Context.

    PubMed

    Pote, Lee; Christie, Candice J

    2016-12-01

    Pote, L and Christie, CJ. Strength and conditioning practices of University and high school level cricket coaches: a South African context. J Strength Cond Res 30(12): 3464-3470, 2016-Although the sport of cricket is well established, the strength and conditioning practices of cricket players are not well known. Therefore, the purpose of this study was to examine the current strength and conditioning practices that coaches implement for South African schoolboy and University level cricket players. An online survey, adapted from previous strength and conditioning questionnaires, was sent to 38 schoolboy and 12 University teams that participated in the top competitions in the country (n = 50). Of these, 24 replied indicating a response rate of 48%. Results indicated that although some forms of conditioning, workload monitoring and injury prevention were being implemented, the correct practices were not being administered. Furthermore, it was identified that most coaches had insufficient qualifications and experience to administer the correct training techniques. It was concluded that coaches require further education so that scientifically based training programs can be implemented. This was deemed particularly necessary for adolescent bowlers who are at an increased risk of injury, specifically in the lower back region.

  13. Metallurgical and mechanical properties of laser welded high strength low alloy steel

    PubMed Central

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-01-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  14. Microstructure control for high strength 9Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Tan, L.; Hoelzer, D. T.; Busby, J. T.; Sokolov, M. A.; Klueh, R. L.

    2012-03-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literature data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 °C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.

  15. Microstructure and Mechanical Properties of Microalloyed High-Strength Transformation-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Huang, B. X.; Wang, L.; Rong, Y. H.

    2008-01-01

    The high strength of transformation induced plasticity (TRIP) steels with tensile strength from 800 to 1000 MPa were designed based on grain refinement and precipitation strengthening through microalloying with Nb, Nb/V, and Nb/Mo in a Fe-0.2C-1.5Si-1.5Mn cold-rolled TRIP steel. The origins of alloying strengthening for three grades of 860, 950, and 1010 MPa TRIP steels obtained in this work were revealed by the combination of Thermo-Calc and transmission electron microscopy (TEM). The addition of Nb in Nb, Nb/V, and Nb/Mo TRIP steels can effectively refine the austenite grain in the hot-rolled process by the NbC carbides retarding austenite recrystallization and, in turn, refine final microstructure after intercritical annealing. The addition of Nb/V can precipitate partially fine and dispersive (Nb,V)C carbides in ferrite grains instead of coarse NbC carbides; therefore, the precipitation strengthening plays an important role in the increase of TRIP steel strength. The addition of Nb/Mo cannot only precipitate fully fine and dispersive (Nb,Mo)C carbides in ferrite grains but also increase the volume fraction of bainite accompanying the decrease of volume fraction of ferrite, leading to the drastic increase of both the yield strength and tensile strength.

  16. Integrated anaerobic ammonium oxidization with partial denitrification process for advanced nitrogen removal from high-strength wastewater.

    PubMed

    Cao, Shenbin; Du, Rui; Niu, Meng; Li, Baikun; Ren, Nanqi; Peng, Yongzhen

    2016-12-01

    In this study, a novel integrated anaerobic ammonium oxidization with partial denitrification process (termed as ANAMMOX-PD) was developed for advanced nitrogen removal from high-strength wastewater, which excess NO3(-)-N produced by ANAMMOX was fed into PD reactor for NO2(-)-N production and then refluxing to ANAMMOX reactor for further removal. Results showed that total nitrogen (TN) removal efficiency as high as 97.8% was achieved and effluent TN-N was below 20mg/L at influent TN-N of 820mg/L. Furthermore, the feasibility of simultaneously treating domestic wastewater was demonstrated in ANAMMOX-PD process, and NH4(+)-N removal efficiency of 96.7% was obtained. The nitrogen removal was mainly carried out through ANAMMOX pathway, and high-throughput sequencing revealed that Candidatus_Brocadia was the major ANAMMOX species. The presented process could effectively solve the problem of excess nitrate residual in ANAMMOX effluent, which hold a great potential in application of currently ANAMMOX treating high-strength wastewater (e.g. sludge digestion supernatant).

  17. Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Nagulin, Konstantin Yu.; Schmidt, Michael

    The proposed paper illustrates fabrication and characterization of high strength Aluminium Copper alloys processed using Laser Beam Melting process. Al-Cu alloys EN AW-2219 and EN AW-2618 are classified as wrought alloys and 2618 is typically considered difficult to weld. Laser Beam Melting (LBM) process from the family of Additive Manufacturing processes, has the unique ability to form fully dense complex 3D geometries using micro sized metallic powder in a layer by layer fabrication methodology. LBM process can most closely be associated to the conventional laser welding process, but has significant differences in terms of the typical laser intensities and scan speeds used. Due to the use of high intensities and fast scan speeds, the process induces extremely high heating and cooling rates. This property gives it a unique physical attribute and therefore its ability to process high strength Al-Cu alloys needs to be investigated. Experiments conducted during the investigations associate the induced energy density controlled by varying process parameters to the achieved relative densities of the fabricated 3D structures.

  18. High-strength stainless steels for corrosion mitigation in prestressed concrete: Development and evaluation

    NASA Astrophysics Data System (ADS)

    Moser, Robert D.

    Corrosion of prestressing reinforcement in concrete structures exposed to marine environments and/or deicing chemicals is a problem of critical concern. While many corrosion mitigation technologies are available for reinforced concrete (RC), those available for use in prestressed concrete (PSC) are limited and in many cases cannot provide the 100+ year service life needed in new construction, particularly when exposed to severe marine environments. The use of stainless steel alloys in RC structures has shown great success in mitigating corrosion in even the most severe of exposures. However, the use of high-strength stainless steels (HSSSs) for corrosion mitigation in PSC structures has received limited attention. To address these deficiencies in knowledge, an experimental study was conducted to investigate the feasibility of using HSSSs for corrosion mitigation in PSC. The study examined mechanical behavior, corrosion resistance, and techniques for the production of HSSS prestressing strands. Stainless steel grades 304, 316, 2101, 2205, 2304, and 17-7 were produced as cold drawn wires with diameters of approximately 4 mm (0.16 in). A 1080 prestressing steel was also included to serve as a control. Tensile strengths of 1250 to 1550 MPa (181 to 225 ksi) were achieved in the cold-drawn candidate HSSSs. Non-ductile failure modes with no post-yield strain hardening were observed in all candidate HSSSs. 1000 hr stress relaxation of all candidate HSSSs was predicted to be between 6 and 8 % based on the results of 200 hr tests conducted at 70 % of the ultimate tensile strength. Residual stresses due to the cold drawing had a significant influence on stress vs. strain behavior and stress relaxation. Electrochemical corrosion testing found that in solutions simulating alkaline concrete, all candidate HSSSs showed exceptional corrosion resistance at chloride (Cl-) concentrations from zero to 0.25 M. However, when exposed to solutions simulating carbonated concrete, corrosion

  19. Understanding and Reversing Underachievement, Low Achievement, and Achievement Gaps among High-Ability African American Males in Urban School Contexts

    ERIC Educational Resources Information Center

    Ford, Donna Y.; Moore, James L., III

    2013-01-01

    This article focuses on the achievement gap, with attention devoted to underachievement and low achievement among African American males in urban school contexts. More specifically, the article explains problems and issues facing or confronting these Black male students in urban education settings. A central part of this discussion is grounded in…

  20. Gender and High School Chemistry: Student Perceptions on Achievement in a Selective Setting

    ERIC Educational Resources Information Center

    Cousins, Andrew; Mills, Martin

    2015-01-01

    This paper reports on research undertaken in a middle-class Australian school. The focus of the research was on the relationship between gender and students' engagement with high school chemistry. Achievement data from many OECD [Organisation for Economic Co-operation and Development] countries suggest that middle-class girls are achieving equally…

  1. Achievement Motivation in High School: Contrasting Theoretical Models in the Classroom.

    ERIC Educational Resources Information Center

    Garcia-Celay, I. Montero; Tapia, J. Alonso

    1992-01-01

    Three models of achievement motivation in the classroom are contrasted. Results with 155 high school students suggest that the model of C. S. Dweck and E. S. Elliott offers a better explanation of the relationships among achievement motivation, attributions, emotional reactions, expectancies, and performance than do the other models. (SLD)

  2. Predicting Early Academic Failure in High School from Prior Academic Achievement, Psychosocial Characteristics, and Behavior

    ERIC Educational Resources Information Center

    Casillas, Alex; Robbins, Steve; Allen, Jeff; Kuo, Yi-Lung; Hanson, Mary Ann; Schmeiser, Cynthia

    2012-01-01

    The authors examined the differential effects of prior academic achievement, psychosocial, behavioral, demographic, and school context factors on early high school grade point average (GPA) using a prospective study of 4,660 middle-school students from 24 schools. The findings suggest that (a) prior grades and standardized achievement are the…

  3. Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four

    ERIC Educational Resources Information Center

    Stanley, Ashley M.

    2011-01-01

    The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…

  4. An Analysis of Mathematics Course Sequences for Low Achieving Students at a Comprehensive Technical High School

    ERIC Educational Resources Information Center

    Edge, D. Michael

    2011-01-01

    This non-experimental study attempted to determine how the different prescribed mathematic tracks offered at a comprehensive technical high school influenced the mathematics performance of low-achieving students on standardized assessments of mathematics achievement. The goal was to provide an analysis of any statistically significant differences…

  5. The Impact of Charter Schools on Promoting High Levels of Mathematics Achievement

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.; Makel, Matthew C.; Rapp, Kelly E.

    2007-01-01

    This study compares achievement levels for high ability students attending charter schools and students in traditional public schools in Georgia. Researchers examined student achievement (as assessed by the state's Criterion-Referenced Competency Tests) using three comparison groups: students in the closest traditional schools with similar grade…

  6. A Quantitative Comparison of Pennsylvania High School Student Achievement by Middle States Association's Accreditation Status

    ERIC Educational Resources Information Center

    Johnson, Christopher A.

    2012-01-01

    As public school accountability for student achievement has continued to increase, prior to and as a result of the No Child Left Behind Act of 2001, schools have sought ways of bringing new instructional services to their students to raise their levels of achievement. Some Pennsylvania public high schools have attempted to improve student…

  7. Unforgiving Confucian Culture: A Breeding Ground for High Academic Achievement, Test Anxiety and Self-Doubt?

    ERIC Educational Resources Information Center

    Stankov, Lazar

    2010-01-01

    This paper reviews findings from several studies that contribute to our understanding of cross-cultural differences in academic achievement, anxiety and self-doubt. The focus is on comparisons between Confucian Asian and European regions. Recent studies indicate that high academic achievement of students from Confucian Asian countries is…

  8. Instructional, Transformational, and Managerial Leadership and Student Achievement: High School Principals Make a Difference

    ERIC Educational Resources Information Center

    Valentine, Jerry W.; Prater, Mike

    2011-01-01

    This statewide study examined the relationships between principal managerial, instructional, and transformational leadership and student achievement in public high schools. Differences in student achievement were found when schools were grouped according to principal leadership factors. Principal leadership behaviors promoting instructional and…

  9. Cohort versus Non-Cohort High School Students' Math Performance: Achievement Test Scores and Coursework

    ERIC Educational Resources Information Center

    Parke, Carol S.; Keener, Dana

    2011-01-01

    The purpose of this study is to compare multiple measures of mathematics achievement for 1,378 cohort students who attended the same high school in a district from 9th to 12th grade with non-cohort students in each grade level. Results show that mobility had an impact on math achievement. After accounting for gender, ethnicity, and SES, adjusted…

  10. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, Kohtaro; Inoue, Tomoya; Ishiwata, Junya

    2016-03-01

    High-velocity frictional strength is one of the primary factors controlling earthquake faulting. The Japan Trench Fast Drilling Project drilled through the shallow plate boundary fault, where displacement was ~50 m during the 2011 Tohoku-Oki earthquake. To determine downhole frictional strength, we analyzed the surface drilling torque data acquired at rotation rates equivalent to seismic slip rates (0.8-1.3 m/s). The results show a clear contrast in high-velocity frictional strength across the plate boundary fault: the apparent friction coefficient of frontal prism sediments (hemipelagic mudstones) in the hanging wall is 0.1-0.3, while that of the underthrust sediments (mudstone, laminar pelagic claystone, and chert) in the footwall increases to 0.2-0.4. The apparent friction coefficient of the smectite-rich pelagic clay in the plate boundary fault is 0.08-0.19, which is consistent with that determined from high-velocity (1.1-1.3 m/s) friction experiments. This suggests that surface drilling torque is useful in obtaining downhole frictional strength.

  11. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800°C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800°C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  12. Notch fatigue behavior: Metallic glass versus ultra-high strength steel

    PubMed Central

    Wang, X. D.; Qu, R. T.; Wu, S. J.; Duan, Q. Q.; Liu, Z. Q.; Zhu, Z. W.; Zhang, H. F.; Zhang, Z. F.

    2016-01-01

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities. PMID:27752136

  13. Notch fatigue behavior: Metallic glass versus ultra-high strength steel.

    PubMed

    Wang, X D; Qu, R T; Wu, S J; Duan, Q Q; Liu, Z Q; Zhu, Z W; Zhang, H F; Zhang, Z F

    2016-10-18

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities.

  14. Notch fatigue behavior: Metallic glass versus ultra-high strength steel

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Qu, R. T.; Wu, S. J.; Duan, Q. Q.; Liu, Z. Q.; Zhu, Z. W.; Zhang, H. F.; Zhang, Z. F.

    2016-10-01

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities.

  15. High strength bonding of titanium to stainless steel using an Ag interlayer

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Hong, S. J.; Lee, M. K.; Rhee, C. K.

    2009-12-01

    Strong bonding between titanium (Ti) and stainless steel (STS) was achieved by employing a commercially available Ag-28Cu (wt.%) filler, and more importantly with a help of an Ag interlayer. A mass transport of the Ti elements from the substrate into the molten filler was completely prevented through the use of the Ag interlayer, so the resultant brazed joint was free from any brittle Ti-based intermetallic compounds. Notably, this Ti-STS dissimilar joint displayed a remarkable improvement in its bonding strength, demonstrating the potential application of an Ag interlayer for joining Ti and its alloys to various structural steels.

  16. Temperature Dependence of Sound Velocity in High-Strength Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Nomura, Ryuji; Yoneyama, Keiichi; Ogasawara, Futoshi; Ueno, Masashi; Okuda, Yuichi; Yamanaka, Atsuhiko

    2003-08-01

    Longitudinal sound velocity in unidirectional hybrid composites or high-strength fiber-reinforced plastics (FRPs) was measured along the fiber axis over a wide temperature range (from 77 K to 420 K). We investigated two kinds of high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which are known to have negative thermal expansion coefficients and high thermal conductivities along the fiber axis. Both FRPs had very high sound velocities of about 9000 m/s at low temperatures and their temperature dependences were very strong. Sound velocity monotonically decreased with increasing temperature. The temperature dependence of sound velocity was much stronger in Dyneema-FRP than in Zylon-FRP.

  17. SITE demonstration of the Zenogem{trademark} technology to treat high strength wastewaters

    SciTech Connect

    Sullivan, D.; Merdinger, M.; Kosco, W.

    1995-10-01

    High strength organic wastewaters are encountered at hazardous waste sites in the form of leachate and in some cases groundwater. The ZenoGem{trademark} Process is designed to remove biodegradable materials, including most organic contaminants, from wastewater to produce a high quality effluent. This technology was accepted into EPA`s Superfund Innovative Technology Evaluation (SITE) program in summer 1992; this paper summarizes the technology demonstration performed at a Superfund site in 1994.

  18. Stress corrosion cracking of several high strength ferrous and nickel alloys

    NASA Technical Reports Server (NTRS)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  19. Improving UV Resistance of High Strength Fibers Used In Large Scientific Balloons

    NASA Technical Reports Server (NTRS)

    Said, M.; Gupta, A.; Seyam, A.; Mock, G.; Theyson, T.

    2004-01-01

    For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran (trademark), Spectra (trademark), Kevlar (trademark) and, PBO (Zylon (trademark)). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strength, breaking elongation

  20. Impacts of comprehensive reading instruction on diverse outcomes of low- and high-achieving readers.

    PubMed

    Guthrie, John T; McRae, Angela; Coddington, Cassandra S; Lutz Klauda, Susan; Wigfield, Allan; Barbosa, Pedro

    2009-01-01

    Low-achieving readers in Grade 5 often lack comprehension strategies, domain knowledge, word recognition skills, fluency, and motivation to read. Students with such multiple reading needs seem likely to benefit from instruction that supports each of these reading processes. The authors tested this expectation experimentally by comparing the effects of Concept-Oriented Reading Instruction (CORI) with traditional instruction (TI) on several outcomes in a 12-week intervention for low achievers and high achievers. Low achievers in the CORI group were afforded explicit instruction, leveled texts, and motivation support. Compared with TI students, CORI students scored higher on posttest measures of word recognition speed, reading comprehension on the Gates-MacGinitie Reading Test, and ecological knowledge. CORI was equally effective for lower achievers and higher achievers. Explicitly supporting multiple aspects of reading simultaneously appeared to benefit diverse learners on a range of reading outcomes.