Science.gov

Sample records for achieve higher accuracy

  1. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  2. Using Records of Achievement in Higher Education.

    ERIC Educational Resources Information Center

    Assiter, Alison, Ed.; Shaw, Eileen, Ed.

    This collection of 22 essays examines the use of records of achievement (student profiles or portfolios) in higher and vocational education in the United Kingdom. They include: (1) "Records of Achievement: Background, Definitions, and Uses" (Alison Assiter and Eileen Shaw); (2) "Profiling in Higher Education" (Alison Assiter…

  3. [Accuracy of apposition achieved by mandibular osteosyntheses. Stereophotogrammetric study].

    PubMed

    Randzio, J; Ficker, E; Wintges, T; Laser, S

    1989-01-01

    The accuracy of apposition achieved by wire and plate osteosyntheses is measured with the aid of close range stereophotogrammetry in the mandibles of dead bodies. Both osteosynthesis methods are characterized by an increase in the intercondylar distance which, on the average, is about 3.3 mm greater after plate osteosynthesis and about 1.9 mm after wiring. Moreover, osteosyntheses of the base of the mandible may involve a tendency of the condyle to become caudally dislocated.

  4. 3D imaging: how to achieve highest accuracy

    NASA Astrophysics Data System (ADS)

    Luhmann, Thomas

    2011-07-01

    The generation of 3D information from images is a key technology in many different areas, e.g. in 3D modeling and representation of architectural or heritage objects, in human body motion tracking and scanning, in 3D scene analysis of traffic scenes, in industrial applications and many more. The basic concepts rely on mathematical representations of central perspective viewing as they are widely known from photogrammetry or computer vision approaches. The objectives of these methods differ, more or less, from high precision and well-structured measurements in (industrial) photogrammetry to fully-automated non-structured applications in computer vision. Accuracy and precision is a critical issue for the 3D measurement of industrial, engineering or medical objects. As state of the art, photogrammetric multi-view measurements achieve relative precisions in the order of 1:100000 to 1:200000, and relative accuracies with respect to retraceable lengths in the order of 1:50000 to 1:100000 of the largest object diameter. In order to obtain these figures a number of influencing parameters have to be optimized. These are, besides others: physical representation of object surface (targets, texture), illumination and light sources, imaging sensors, cameras and lenses, calibration strategies (camera model), orientation strategies (bundle adjustment), image processing of homologue features (target measurement, stereo and multi-image matching), representation of object or workpiece coordinate systems and object scale. The paper discusses the above mentioned parameters and offers strategies for obtaining highest accuracy in object space. Practical examples of high-quality stereo camera measurements and multi-image applications are used to prove the relevance of high accuracy in different applications, ranging from medical navigation to static and dynamic industrial measurements. In addition, standards for accuracy verifications are presented and demonstrated by practical examples

  5. Higher Education Counts: Achieving Results. 2009 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2009

    2009-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The…

  6. Higher Education Counts: Achieving Results. 2006 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2006

    2006-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The…

  7. Higher Education Counts: Achieving Results. 2008 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2008

    2008-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The…

  8. Higher Education Counts: Achieving Results. 2007 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2007

    2007-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The…

  9. Achieving Quality Learning in Higher Education.

    ERIC Educational Resources Information Center

    Nightingale, Peggy; O'Neil, Mike

    This volume on quality learning in higher education discusses issues of good practice particularly action learning and Total Quality Management (TQM)-type strategies and illustrates them with seven case studies in Australia and the United Kingdom. Chapter 1 discusses issues and problems in defining quality in higher education. Chapter 2 looks at…

  10. Higher Education Counts: Achieving Results, 2011. Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2011

    2011-01-01

    This report, issued by the Connecticut Department of Higher Education, reports on trends in higher education for the year 2011. Six goals are presented, each with at least two indicators. Each indicator is broken down into the following subsections: About This Indicator; Highlights; and In the Future. Most indicators also include statistical…

  11. Do you really understand? Achieving accuracy in interracial relationships.

    PubMed

    Holoien, Deborah Son; Bergsieker, Hilary B; Shelton, J Nicole; Alegre, Jan Marie

    2015-01-01

    Accurately perceiving whether interaction partners feel understood is important for developing intimate relationships and maintaining smooth interpersonal exchanges. During interracial interactions, when are Whites and racial minorities likely to accurately perceive how understood cross-race partners feel? We propose that participant race, desire to affiliate, and racial salience moderate accuracy in interracial interactions. Examination of cross-race roommates (Study 1) and interracial interactions with strangers (Study 2) revealed that when race is salient, Whites higher in desire to affiliate with racial minorities failed to accurately perceive the extent to which racial minority partners felt understood. Thus, although the desire to affiliate may appear beneficial, it may interfere with Whites' ability to accurately perceive how understood racial minorities feel. By contrast, racial minorities higher in desire to affiliate with Whites accurately perceived how understood White partners felt. Furthermore, participants' overestimation of how well they understood partners correlated negatively with partners' reports of relationship quality. Collectively, these findings indicate that racial salience and desire to affiliate moderate accurate perceptions of cross-race partners-even in the context of sustained interracial relationships-yielding divergent outcomes for Whites and racial minorities. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Achieving higher-value obstetrical care.

    PubMed

    Woo, Victoria G; Lundeen, Tifanny; Matula, Sierra; Milstein, Arnold

    2017-03-01

    Obstetrical care in the United States is unnecessarily costly. Birth is 1 of the most common reasons for healthcare use in the United States and 1 of the top expenditures for payers every year. However, compared with other Organization for Economic Cooperation and Development countries, the United States spends substantially more money per birth without better outcomes. Our team at the Clinical Excellence Research Center, a center that is focused on improving value in healthcare, spent a year studying ways in which obstetrical care in the United States can deliver better outcomes at a lower cost. After a thoughtful discovery process, we identified ways that obstetrical care could be delivered with higher value. In this article, we recommend 3 redesign steps that foster the delivery of higher-value maternity care: (1) to provide long-acting reversible contraception immediately after birth, (2) to tailor prenatal care according to women's unique medical and psychosocial needs by offering more efficient models such as fewer in-person visits or group care, and (3) to create hospital-affiliated integrated outpatient birth centers as the planned place of birth for low-risk women. For each step, we discuss the redesign concept, current barriers and implementation solutions, and our estimation of potential cost-savings to the United States at scale. We estimate that, if this model were adopted nationally, annual US healthcare spending on obstetrical care would decline by as much as 28%.

  13. Higher Education Counts: Achieving Results, 2008. Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2008

    2008-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  14. Higher Education Counts: Achieving Results. 2009 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2009

    2009-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  15. Higher Education Counts: Achieving Results. 2006 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2006

    2006-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the principle vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  16. Higher Education Counts: Achieving Results. 2007 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2007

    2007-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  17. Time-resolved spectral imaging: better photon economy, higher accuracy

    NASA Astrophysics Data System (ADS)

    Fereidouni, Farzad; Reitsma, Keimpe; Blab, Gerhard A.; Gerritsen, Hans C.

    2015-03-01

    Lifetime and spectral imaging are complementary techniques that offer a non-invasive solution for monitoring metabolic processes, identifying biochemical compounds, and characterizing their interactions in biological tissues, among other tasks. Newly developed instruments that perform time-resolved spectral imaging can provide even more information and reach higher sensitivity than either modality alone. Here we report a multispectral lifetime imaging system based on a field-programmable gate array (FPGA), capable of operating at high photon count rates (12 MHz) per spectral detection channel, and with time resolution of 200 ps. We performed error analyses to investigate the effect of gate width and spectral-channel width on the accuracy of estimated lifetimes and spectral widths. Temporal and spectral phasors were used for analysis of recorded data, and we demonstrated blind un-mixing of the fluorescent components using information from both modalities. Fractional intensities, spectra, and decay curves of components were extracted without need for prior information. We further tested this approach with fluorescently doubly-labeled DNA, and demonstrated its suitability for accurately estimating FRET efficiency in the presence of either non-interacting or interacting donor molecules.

  18. Improving Student Achievement: A Study of High-Poverty Schools with Higher Student Achievement Outcomes

    ERIC Educational Resources Information Center

    Butz, Stephen D.

    2012-01-01

    This research examined the education system at high-poverty schools that had significantly higher student achievement levels as compared to similar schools with lower student achievement levels. A multischool qualitative case study was conducted of the educational systems where there was a significant difference in the scores achieved on the…

  19. An Integrated MEMS Gyroscope Array with Higher Accuracy Output.

    PubMed

    Chang, Honglong; Xue, Liang; Qin, Wei; Yuan, Guangmin; Yuan, Weizheng

    2008-04-28

    In this paper, an integrated MEMS gyroscope array method composed of two levels of optimal filtering was designed to improve the accuracy of gyroscopes. In the firstlevel filtering, several identical gyroscopes were combined through Kalman filtering into a single effective device, whose performance could surpass that of any individual sensor. The key of the performance improving lies in the optimal estimation of the random noise sources such as rate random walk and angular random walk for compensating the measurement values. Especially, the cross correlation between the noises from different gyroscopes of the same type was used to establish the system noise covariance matrix and the measurement noise covariance matrix for Kalman filtering to improve the performance further. Secondly, an integrated Kalman filter with six states was designed to further improve the accuracy with the aid of external sensors such as magnetometers and accelerometers in attitude determination. Experiments showed that three gyroscopes with a bias drift of 35 degree per hour could be combined into a virtual gyroscope with a drift of 1.07 degree per hour through the first-level filter, and the bias drift was reduced to 0.53 degree per hour after the second-level filtering. It proved that the proposed integrated MEMS gyroscope array is capable of improving the accuracy of the MEMS gyroscopes, which provides the possibility of using these low cost MEMS sensors in high-accuracy application areas.

  20. Achieving Equity in Higher Education: The Unfinished Agenda

    ERIC Educational Resources Information Center

    Astin, Alexander W.; Astin, Helen S.

    2015-01-01

    In this retrospective account of their scholarly work over the past 45 years, Alexander and Helen Astin show how the struggle to achieve greater equity in American higher education is intimately connected to issues of character development, leadership, civic responsibility, and spirituality. While shedding some light on a variety of questions…

  1. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  2. Bounds on achievable accuracy in analog optical linear-algebra processors

    NASA Astrophysics Data System (ADS)

    Batsell, Stephen G.; Walkup, John F.; Krile, Thomas F.

    1990-07-01

    Upper arid lower bounds on the number of bits of accuracy achievable are determined by applying a seconth-ortler statistical model to the linear algebra processor. The use of bounds was found necessary due to the strong signal-dependence of the noise at the output of the optical linear algebra processor (OLAP). 1 1. ACCURACY BOUNDS One of the limiting factors in applying OLAPs to real world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication ard addition operations spatial variations across arrays and crosstalk. We have previously examined these noise sources and determined a general model for the output noise mean and variance. The model demonstrates a strony signaldependency in the noise at the output of the processor which has been confirmed by our experiments. 1 We define accuracy similar to its definition for an analog signal input to an analog-to-digital (ND) converter. The number of bits of accuracy achievable is related to the log (base 2) of the number of separable levels at the P/D converter output. The number of separable levels is fouri by dividing the dynamic range by m times the standard deviation of the signal a. 2 Here m determines the error rate in the P/D conversion. The dynamic range can be expressed as the

  3. a Method to Achieve Large Volume, High Accuracy Photogrammetric Measurements Through the Use of AN Actively Deformable Sensor Mounting Platform

    NASA Astrophysics Data System (ADS)

    Sargeant, B.; Robson, S.; Szigeti, E.; Richardson, P.; El-Nounu, A.; Rafla, M.

    2016-06-01

    When using any optical measurement system one important factor to consider is the placement of the sensors in relation to the workpiece being measured. When making decisions on sensor placement compromises are necessary in selecting the best placement based on the shape and size of the object of interest and the desired resolution and accuracy. One such compromise is in the distance the sensors are placed from the measurement surface, where a smaller distance gives a higher spatial resolution and local accuracy and a greater distance reduces the number of measurements necessary to cover a large area reducing the build-up of errors between measurements and increasing global accuracy. This paper proposes a photogrammetric approach whereby a number of sensors on a continuously flexible mobile platform are used to obtain local measurements while the position of the sensors is determined by a 6DoF tracking solution and the results combined to give a single set of measurement data within a continuous global coordinate system. The ability of this approach to achieve both high accuracy measurement and give results over a large volume is then tested and areas of weakness to be improved upon are identified.

  4. Higher Education Quality Assessment Model: Towards Achieving Educational Quality Standard

    ERIC Educational Resources Information Center

    Noaman, Amin Y.; Ragab, Abdul Hamid M.; Madbouly, Ayman I.; Khedra, Ahmed M.; Fayoumi, Ayman G.

    2017-01-01

    This paper presents a developed higher education quality assessment model (HEQAM) that can be applied for enhancement of university services. This is because there is no universal unified quality standard model that can be used to assess the quality criteria of higher education institutes. The analytical hierarchy process is used to identify the…

  5. Charting the course for nurses' achievement of higher education levels.

    PubMed

    Kovner, Christine T; Brewer, Carol; Katigbak, Carina; Djukic, Maja; Fatehi, Farida

    2012-01-01

    To improve patient outcomes and meet the challenges of the U.S. health care system, the Institute of Medicine recommends higher educational attainment for the nursing workforce. Characteristics of registered nurses (RNs) who pursue additional education are poorly understood, and this information is critical to planning long-term strategies for U.S. nursing education. To identify factors predicting enrollment and completion of an additional degree among those with an associate or bachelor's as their pre-RN licensure degree, we performed logistic regression analysis on data from an ongoing nationally representative panel study following the career trajectories of newly licensed RNs. For associate degree RNs, predictors of obtaining a bachelor's degree are the following: being Black, living in a rural area, nonnursing work experience, higher positive affectivity, higher work motivation, working in the intensive care unit, and working the day shift. For bachelor's RNs, predictors of completing a master's degree are the following: being Black, nonnursing work experience, holding more than one job, working the day shift, working voluntary overtime, lower intent to stay at current employer, and higher work motivation. Mobilizing the nurse workforce toward higher education requires integrated efforts from policy makers, philanthropists, employers, and educators to mitigate the barriers to continuing education.

  6. Strategies for Increasing Academic Achievement in Higher Education

    ERIC Educational Resources Information Center

    Ensign, Julene; Woods, Amelia Mays

    2014-01-01

    Higher education today faces unique challenges. Decreasing student engagement, increasing diversity, and limited resources all contribute to the issues being faced by students, educators, and administrators alike. The unique characteristics and expectations that students bring to their professional programs require new methods of addressing…

  7. A Comparative Investigation of Several Methods of Aiding College Freshmen to Achieve Grammatical Accuracy in Written Composition.

    ERIC Educational Resources Information Center

    Essary, William Howard

    Two problems were investigated in this study: (1) Which (if any) method of teaching freshmen composition is most effective in helping college students achieve grammatical accuracy? (2) Is improvement in grammatical accuracy paralleled or contrasted with improvement in content? Relatively weak students (low C high-school average and a mean SAT…

  8. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  9. Stable Same-Sex Friendships with Higher Achieving Partners Promote Mathematical Reasoning in Lower Achieving Primary School Children

    PubMed Central

    DeLay, Dawn; Laursen, Brett; Kiuru, Noona; Poikkeus, Anna-Maija; Aunola, Kaisa; Nurmi, Jari-Erik

    2015-01-01

    This study is designed to investigate friend influence over mathematical reasoning in a sample of 374 children in 187 same-sex friend dyads (184 girls in 92 friendships; 190 boys in 95 friendships). Participants completed surveys that measured mathematical reasoning in the 3rd grade (approximately 9 years old) and one year later in the 4th grade (approximately 10 years old). Analyses designed for dyadic data (i.e., longitudinal Actor-Partner Interdependence Models) indicated that higher achieving friends influenced the mathematical reasoning of lower achieving friends, but not the reverse. Specifically, greater initial levels of mathematical reasoning among higher achieving partners in the 3rd grade predicted greater increases in mathematical reasoning from 3rd grade to 4th grade among lower achieving partners. These effects held after controlling for peer acceptance and rejection, task avoidance, interest in mathematics, maternal support for homework, parental education, length of the friendship, and friendship group norms on mathematical reasoning. PMID:26402901

  10. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    ERIC Educational Resources Information Center

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  11. Mechanized pivot shift test achieves greater accuracy than manual pivot shift test.

    PubMed

    Musahl, Volker; Voos, James; O'Loughlin, Padhraig F; Stueber, Volker; Kendoff, Daniel; Pearle, Andrew D

    2010-09-01

    The objective of this study was to design a navigated mechanized pivot shift test setup and evaluate its repeatability in the ACL-deficient knee. It was hypothesized that translations and rotations measured with the mechanized pivot shift would be more repeatable when compared to those obtained with a manual pivot shift. Twelve fresh frozen cadaveric hip-to-toe whole lower extremities were used for this study. A manual pivot shift test was performed in the intact knee and in the ACL-deficient knee and was repeated three times. A navigation system simultaneously recorded tibial translation and rotation. The mechanized pivot shift test consists of a modified continuous passive motion (CPM) machine and a custom-made foot holder to allow for the application of internal rotation moments at the knee. Valgus moments were achieved by a 45 degrees tilt of the CPM machine with respect to the supine position and a Velcro strap secured across the proximal tibia. The mechanized pivot shift was repeated three times. Repeated measures ANOVA was used to compare manual and mechanized pivot shift testing. An intra-class correlation coefficient (ICC) was used to determine variability within each knee at each testing condition. In the ACL-deficient knee, translation with manual pivot shift testing (11.7 +/- 2.6 mm) was significantly higher than with mechanized pivot shift testing (7.4 +/- 2.5 mm; p < 0.05). Rotation with the manual pivot shift testing (18.6 +/- 5.4 degrees) was also significantly higher than with mechanized pivot shift testing (11.0 +/- 2.3 degrees; p < 0.05). The intra-class ICC for translations was 0.76 for manual pivot shift and 0.92 for the mechanized pivot shift test. The intra-class ICC for rotations was 0.89 for manual pivot shift and 0.82 for the mechanized pivot shift test. This study introduced a modified CPM for mechanized pivot shift testing. Although recorded translations and rotations with the mechanized pivot shift test were lower than with manual

  12. Accuracy of Teachers' Judgments of Students' Academic Achievement: A Meta-Analysis

    ERIC Educational Resources Information Center

    Sudkamp, Anna; Kaiser, Johanna; Moller, Jens

    2012-01-01

    This meta-analysis summarizes empirical results on the correspondence between teachers' judgments of students' academic achievement and students' actual academic achievement. The article further investigates theoretically and methodologically relevant moderators of the correlation between the two measures. Overall, 75 studies reporting…

  13. Stable same-sex friendships with higher achieving partners promote mathematical reasoning in lower achieving primary school children.

    PubMed

    DeLay, Dawn; Laursen, Brett; Kiuru, Noona; Poikkeus, Anna-Maija; Aunola, Kaisa; Nurmi, Jari-Erik

    2015-11-01

    This study was designed to investigate friend influence over mathematical reasoning in a sample of 374 children in 187 same-sex friend dyads (184 girls in 92 friendships; 190 boys in 95 friendships). Participants completed surveys that measured mathematical reasoning in the 3rd grade (approximately 9 years old) and 1 year later in the 4th grade (approximately 10 years old). Analyses designed for dyadic data (i.e., longitudinal actor-partner interdependence model) indicated that higher achieving friends influenced the mathematical reasoning of lower achieving friends, but not the reverse. Specifically, greater initial levels of mathematical reasoning among higher achieving partners in the 3rd grade predicted greater increases in mathematical reasoning from 3rd grade to 4th grade among lower achieving partners. These effects held after controlling for peer acceptance and rejection, task avoidance, interest in mathematics, maternal support for homework, parental education, length of the friendship, and friendship group norms on mathematical reasoning.

  14. Validity of Assessment and Recognition of Non-Formal and Informal Learning Achievements in Higher Education

    ERIC Educational Resources Information Center

    Kaminskiene, Lina; Stasiunaitiene, Egle

    2013-01-01

    The article identifies the validity of assessment of non-formal and informal learning achievements (NILA) as one of the key factors for encouraging further development of the process of assessing and recognising non-formal and informal learning achievements in higher education. The authors analyse why the recognition of non-formal and informal…

  15. Accurate rotational constants for linear interstellar carbon chains: achieving experimental accuracy

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Arunan, Elangannan

    2017-01-01

    Linear carbon chain molecular species remain the dominant theme in interstellar chemistry. Their continuous astronomical observation depends on the availability of accurate spectroscopic parameters. Accurate rotational constants are reported for hundreds of molecular species of astrophysical, spectroscopy and chemical interests from the different linear carbon chains; C_{{n}}H, C_{{n}}H-, C_{{n}}N, C_{{n}}N-, C_{{n}}O, C_{{n}}S, HC_{{n}}S, C_{{n}}Si, CH3(CC)_{{n}}H, HC_{{n}}N, DC_{2{n}+1}N, HC_{2{n}}NC, and CH3(C≡C)_{{n}}CN using three to four moments of inertia calculated from the experimental rotational constants coupled with those obtained from the optimized geometries at the Hartree Fock level. The calculated rotational constants are obtained from the corrected moments of inertia at the Hartfree Fock geometries. The calculated rotational constants show accuracy of few kHz below irrespective of the chain length and terminating groups. The obtained accuracy of few kHz places these rotational constants as excellent tools for both astronomical and laboratory detection of these molecular species of astrophysical interest. From the numerous unidentified lines from different astronomical surveys, transitions corresponding to known and new linear carbon chains could be found using these rotational constants. The astrophysical, spectroscopic and chemical implications of these results are discussed.

  16. Accuracy evaluation of a lower-cost and four higher-cost laser scanners.

    PubMed

    Campanelli, Valentina; Howell, Stephen M; Hull, Maury L

    2016-01-04

    Knowing the accuracy of laser scanners is imperative to select the best scanner to generate bone models. However, errors stated by manufacturers may not apply to bones. The three objectives of this study were to determine: 1) whether the overall error stated by the manufacturers of five laser scanners was different from the root mean squared error (RMSE) computed by scanning a gage block; 2) the repeatability of 3D models generated by the laser scanners when scanning a complex freeform surface such as a distal femur and whether this differed from the repeatability when scanning a gage block; 3) whether the errors for one lower-cost laser scanner are comparable to those of four higher-cost laser scanners. The RMSEs in scanning the gage block were 2 to 52µm lower than the overall errors stated by the manufacturers. The repeatability in scanning the bovine femur 10 times was significantly worse than that in scanning the gage block 10 times. The precision of the lower-cost laser scanner was comparable to that of the higher-cost laser scanners, but the bias was an order of magnitude greater. The contributions of this study are that 1) the overall errors stated by the manufacturers are an upper bound when simple geometric objects like a gage block are scanned, 2) the repeatability is worse on average three times when scanning a complex freeform surface compared to scanning the gage block, and 3) the main difference between the lower-cost and the higher-cost laser scanners is the bias.

  17. Soy Mujer!: A Case Study for Understanding Latina Achievement in Higher Education

    ERIC Educational Resources Information Center

    Stephens, Elizabeth

    2012-01-01

    Latinas are one of fastest growing segments of the population in the United States, which clearly shows a need to better understand and support education for Latinas within higher education. This study sought to understand the process for and experience of Latinas' academic achievement within higher education. The study focused particularly on the…

  18. Comparing Episodes of Mathematics Teaching for Higher Achievers in England and Germany

    ERIC Educational Resources Information Center

    Kelly, Peter; Kotthoff, Hans-Georg

    2016-01-01

    To illustrate similarities and differences in lower secondary level mathematics teaching with higher achievers and thereby explore privileging processes, we contrast a teaching episode in Baden-Württemberg, Germany with one in South West England. These have been selected from a larger study as typical within each region for higher achieving…

  19. Latina/o Student Achievement: A Collaborative Mission of Professional Associations of Higher Education

    ERIC Educational Resources Information Center

    Arredondo, Patricia; Castillo, Linda G.

    2011-01-01

    Latina/o student achievement is a priority for the American Association of Hispanics in Higher Education (AAHHE). To date, AAHHE has worked deliberately on this agenda. However, well-established higher education associations such as the Association of American Universities (AAU) and the Association of Public and Land-grant Universities (APLU) are…

  20. Achieving sub-pixel geolocation accuracy in support of MODIS land science

    USGS Publications Warehouse

    Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands—29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1σ) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1σ) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications.

  1. Variables Associated With Achievement in Higher Education: A Systematic Review of Meta-Analyses.

    PubMed

    Schneider, Michael; Preckel, Franzis

    2017-03-23

    The last 2 decades witnessed a surge in empirical studies on the variables associated with achievement in higher education. A number of meta-analyses synthesized these findings. In our systematic literature review, we included 38 meta-analyses investigating 105 correlates of achievement, based on 3,330 effect sizes from almost 2 million students. We provide a list of the 105 variables, ordered by the effect size, and summary statistics for central research topics. The results highlight the close relation between social interaction in courses and achievement. Achievement is also strongly associated with the stimulation of meaningful learning by presenting information in a clear way, relating it to the students, and using conceptually demanding learning tasks. Instruction and communication technology has comparably weak effect sizes, which did not increase over time. Strong moderator effects are found for almost all instructional methods, indicating that how a method is implemented in detail strongly affects achievement. Teachers with high-achieving students invest time and effort in designing the microstructure of their courses, establish clear learning goals, and employ feedback practices. This emphasizes the importance of teacher training in higher education. Students with high achievement are characterized by high self-efficacy, high prior achievement and intelligence, conscientiousness, and the goal-directed use of learning strategies. Barring the paucity of controlled experiments and the lack of meta-analyses on recent educational innovations, the variables associated with achievement in higher education are generally well investigated and well understood. By using these findings, teachers, university administrators, and policymakers can increase the effectivity of higher education. (PsycINFO Database Record

  2. Storytelling in the digital world: achieving higher-level learning objectives.

    PubMed

    Schwartz, Melissa R

    2012-01-01

    Nursing students are not passive media consumers but instead live in a technology ecosystem where digital is the language they speak. To prepare the next generation of nurses, educators must incorporate multiple technologies to improve higher-order learning. The author discusses the evolution and use of storytelling as part of the digital world and how digital stories can be aligned with Bloom's Taxonomy so that students achieve higher-level learning objectives.

  3. Technology's Effect on Achievement in Higher Education: A Stage I Meta-Analysis of Classroom Applications

    ERIC Educational Resources Information Center

    Schmid, Richard F.; Bernard, Robert M.; Borokhovski, Eugene; Tamim, Rana; Abrami, Philip C.; Wade, C. Anne; Surkes, Michael A.; Lowerison, Gretchen

    2009-01-01

    This paper reports the findings of a Stage I meta-analysis exploring the achievement effects of computer-based technology use in higher education classrooms (non-distance education). An extensive literature search revealed more than 6,000 potentially relevant primary empirical studies. Analysis of a representative sample of 231 studies (k = 310)…

  4. An Analysis of Factors Influencing the Achievement of Higher Education by Chief Fire Officers

    ERIC Educational Resources Information Center

    Ditch, Robert L.

    2012-01-01

    The leadership of the United States Fire Service (FS) believes that higher education increases the professionalism of FS members. The research problem at the research site, which is a multisite fire department located in southeastern United States, was the lack of research-based findings on the factors influencing the achievement of higher…

  5. Predictors of Retention and Achievement of Higher Education Students within a Further Education Context

    ERIC Educational Resources Information Center

    Schofield, Cathy; Dismore, Harriet

    2010-01-01

    Following recent developments within higher education where provision of foundation degree courses at further education colleges has been extended, it seemed appropriate to investigate the extent to which the system is working. This should not necessarily be measured by the number of students enrolling, but rather by how many are achieving their…

  6. Teaching Processes To Improve Both Higher As Well As Lower Mental Process Achievement.

    ERIC Educational Resources Information Center

    Soled, Suzanne Wegener

    A major purpose of this research was to measure the effect of four different teaching processes on lower and higher mental process achievement. Two separate studies, one in science and one in mathematics, involved approximately 100 seventh grade students in four classrooms in a public junior high school in a middle-income neighborhood, and 85…

  7. Achieving "Transparency, Consistency and Fairness" in English Higher Education Admissions: Progress since Schwartz?

    ERIC Educational Resources Information Center

    Adnett, Nick; McCaig, Colin; Slack, Kim; Bowers-Brown, Tamsin

    2011-01-01

    In 2004 the Schwartz Review advised English higher education institutions that their admissions systems should: be transparent; select students who are able to complete their courses based upon achievements and potential; use assessment methods that are reliable and valid; minimise barriers to applicants; be professional; and be underpinned by…

  8. Leveraging Quality Improvement to Achieve Student Learning Assessment Success in Higher Education

    ERIC Educational Resources Information Center

    Glenn, Nancy Gentry

    2009-01-01

    Mounting pressure for transformational change in higher education driven by technology, globalization, competition, funding shortages, and increased emphasis on accountability necessitates that universities implement reforms to demonstrate responsiveness to all stakeholders and to provide evidence of student achievement. In the face of the demand…

  9. The Effects of Learning Strategies on Mathematical Literacy: A Comparison between Lower and Higher Achieving Countries

    ERIC Educational Resources Information Center

    Magen-Nagar, Noga

    2016-01-01

    The purpose of the current study is to explore the effects of learning strategies on Mathematical Literacy (ML) of students in higher and lower achieving countries. To address this issue, the study utilizes PISA2002 data to conduct a multi-level analysis (HLM) of Hong Kong and Israel students. In PISA2002, Israel was rated 31st in Mathematics,…

  10. Students' Commitment, Engagement and Locus of Control as Predictor of Academic Achievement at Higher Education Level

    ERIC Educational Resources Information Center

    Sarwar, Muhammad; Ashrafi, Ghulam Muhammad

    2014-01-01

    The purpose of this study was to analyze Students' Commitment, Engagement and Locus of Control as predictors of Academic Achievement at Higher Education Level. We used analytical model and conclusive research approach to conduct study and survey method for data collection. We selected 369 students using multistage sampling technique from three…

  11. Achieving Higher Levels of Success for A.D.H.D. Students Working in Collaborative Groups

    ERIC Educational Resources Information Center

    Simplicio, Joseph S. C.

    2007-01-01

    This article explores a new and innovative strategy for helping students with Attention Deficit Hyperactivity Disorder (A.D.H.D.) achieve higher levels of academic success when working in collaborative groups. Since the research indicates that students with this disorder often have difficulty in maintaining their concentration this strategy is…

  12. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.

    PubMed

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.

  13. Peaks, plateaus, numerical instabilities, and achievable accuracy in Galerkin and norm minimizing procedures for solving Ax=b

    SciTech Connect

    Cullum, J.

    1994-12-31

    Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.

  14. Proficiency testing linked to the national reference system for the clinical laboratory: a proposal for achieving accuracy.

    PubMed

    Lasky, F D

    1992-07-01

    I propose using proficiency testing (PT) to achieve one of the important goals of CLIA: accurate and reliable clinical testing. Routine methods for the clinical laboratory are traceable to Definitive (DM) or Reference Methods (RM) or to Methodological Principles (MP) through a modification of the National Reference System for the Clinical Laboratory. PT is the link used to monitor consistent field performance. Although PT has been effective as a relative measure of laboratory performance, the technical limitations of PT fluids and of routine methods currently in use make it unlikely that PT alone can be used as a reliable measure of laboratory accuracy. Instead, I recommend calibration of routine systems through correlation to DM, RM, or MP with use of patients' specimens. The manufacturer is in the best position to assume this responsibility because of also being responsible for consistent, reliable product. Analysis of different manufactured batches of reagent would be compared with predetermined goals for precision and accuracy, as illustrated with data from product testing of Kodak Ektachem clinical chemistry slides. Adoption of this proposal would give manufacturers of PT materials, manufacturers of analytical systems, PT providers, and government agencies time to understand and resolve sources of error that limit the utility of PT for the job required by law.

  15. Ewe lambs with higher breeding values for growth achieve higher reproductive performance when mated at age 8 months.

    PubMed

    Nieto, C A Rosales; Ferguson, M B; Macleay, C A; Briegel, J R; Wood, D A; Martin, G B; Thompson, A N

    2013-09-15

    We studied the relationships among growth, body composition and reproductive performance in ewe lambs with known phenotypic values for depth of eye muscle (EMD) and fat (FAT) and Australian Sheep Breeding Values for post-weaning live weight (PWT) and depth of eye muscle (PEMD) and fat (PFAT). To detect estrus, vasectomized rams were placed with 190 Merino ewe lambs when on average they were 157 days old. The vasectomized rams were replaced with entire rams when the ewe lambs were, on average, 226 days old. Lambs were weighed every week and blood was sampled on four occasions for assay of ghrelin, leptin and ß-hydroxybutyrate. Almost 90% of the lambs attained puberty during the experiment, at an average live weight of 41.4 kg and average age of 197 days. Ewe lambs with higher values for EMD (P < 0.001), FAT (P < 0.01), PWT (P < 0.001), PEMD (P < 0.05) and PFAT (P < 0.05) were more likely to achieve puberty by 251 days of age. Thirty-six percent of the lambs conceived and, at the estimated date of conception, the average live weight was 46.9 ± 0.6 kg and average age was 273 days. Fertility, fecundity and reproductive rate were positively related to PWT (P < 0.05) and thus live weight at the start of mating (P < 0.001). Reproductive performance was not correlated with blood concentrations of ghrelin, leptin or ß-hydroxybutyrate. Many ewe lambs attained puberty, as detected by vasectomized rams, but then failed to become pregnant after mating with entire rams. Nevertheless, we can conclude that in ewe lambs mated at 8 months of age, higher breeding values for growth, muscle and fat are positively correlated with reproductive performance, although the effects of breeding values and responses to live weight are highly variable.

  16. Accuracy of rate coding: When shorter time window and higher spontaneous activity help

    NASA Astrophysics Data System (ADS)

    Levakova, Marie; Tamborrino, Massimiliano; Kostal, Lubomir; Lansky, Petr

    2017-02-01

    It is widely accepted that neuronal firing rates contain a significant amount of information about the stimulus intensity. Nevertheless, theoretical studies on the coding accuracy inferred from the exact spike counting distributions are rare. We present an analysis based on the number of observed spikes assuming the stochastic perfect integrate-and-fire model with a change point, representing the stimulus onset, for which we calculate the corresponding Fisher information to investigate the accuracy of rate coding. We analyze the effect of changing the duration of the time window and the influence of several parameters of the model, in particular the level of the presynaptic spontaneous activity and the level of random fluctuation of the membrane potential, which can be interpreted as noise of the system. The results show that the Fisher information is nonmonotonic with respect to the length of the observation period. This counterintuitive result is caused by the discrete nature of the count of spikes. We observe also that the signal can be enhanced by noise, since the Fisher information is nonmonotonic with respect to the level of spontaneous activity and, in some cases, also with respect to the level of fluctuation of the membrane potential.

  17. Discrepancies between academic achievement and intellectual ability in higher-functioning school-aged children with autism spectrum disorder.

    PubMed

    Estes, Annette; Rivera, Vanessa; Bryan, Matthew; Cali, Philip; Dawson, Geraldine

    2011-08-01

    Academic achievement patterns and their relationships with intellectual ability, social abilities, and problem behavior are described in a sample of 30 higher-functioning, 9-year-old children with autism spectrum disorder (ASD). Both social abilities and problem behavior have been found to be predictive of academic achievement in typically developing children but this has not been well studied in children with ASD. Participants were tested for academic achievement and intellectual ability at age 9. Problem behaviors were assessed through parent report and social functioning through teacher report at age 6 and 9. Significant discrepancies between children's actual academic achievement and their expected achievement based on their intellectual ability were found in 27 of 30 (90%) children. Both lower than expected and higher than expected achievement was observed. Children with improved social skills at age 6 demonstrated higher levels of academic achievement, specifically word reading, at age 9. No relationship was found between children's level of problem behavior and level of academic achievement. These results suggest that the large majority of higher-functioning children with ASD show discrepancies between actual achievement levels and levels predicted by their intellectual ability. In some cases, children are achieving higher than expected, whereas in others, they are achieving lower than expected. Improved social abilities may contribute to academic achievement. Future studies should further explore factors that can promote strong academic achievement, including studies that examine whether intervention to improve social functioning can support academic achievement in children with ASD.

  18. Cognitive Processing Profiles of School-Age Children Who Meet Low-Achievement, IQ-Discrepancy, or Dual Criteria for Underachievement in Oral Reading Accuracy

    ERIC Educational Resources Information Center

    Van Santen, Frank W.

    2012-01-01

    The purpose of this study was to compare the cognitive processing profiles of school-age children (ages 7 to 17) who met criteria for underachievement in oral reading accuracy based on three different methods: 1) use of a regression-based IQ-achievement discrepancy only (REGonly), 2) use of a low-achievement cutoff only (LAonly), and 3) use of a…

  19. Leveraging People-Related Maturity Issues for Achieving Higher Maturity and Capability Levels

    NASA Astrophysics Data System (ADS)

    Buglione, Luigi

    During the past 20 years Maturity Models (MM) become a buzzword in the ICT world. Since the initial Crosby's idea in 1979, plenty of models have been created in the Software & Systems Engineering domains, addressing various perspectives. By analyzing the content of the Process Reference Models (PRM) in many of them, it can be noticed that people-related issues have little weight in the appraisals of the capabilities of organizations while in practice they are considered as significant contributors in traditional process and organizational performance appraisals, as stressed instead in well-known Performance Management models such as MBQA, EFQM and BSC. This paper proposes some ways for leveraging people-related maturity issues merging HR practices from several types of maturity models into the organizational Business Process Model (BPM) in order to achieve higher organizational maturity and capability levels.

  20. Strategic administration of enrofloxacin in poultry to achieve higher maximal serum concentrations.

    PubMed

    Sumano, L H; Gutierrez, O L; Zamora, Q M

    2003-03-01

    To achieve a higher maximal serum concentration (Cs(max)) of enrofloxacin after oral administration of 10mg/kg/day of three commercial preparations of enrofloxacin to chickens, two concentrations of the drug were tested (0.1 and 0.2%), under controlled laboratory conditions. A single oral bolus dose was delivered directly into the proventriculus of each of 240 chickens, which were equally divided into six groups: three received the customary concentration (0.1%), and three received the higher concentration. A quantitative/qualitative microbiological analytical method to determine serum concentrations of enrofloxacin and a software program to obtain pharmacokinetic variables, revealed that time vs. concentration relationships best fitted double peak shape curves, Cs(max1) and Cs(max2). Statistically significant (P>0.01) increments were obtained when 0.2% enrofloxacin oral solutions from the three different commercial preparations were administered. The increments ranged from 175% to 338% for Cs(max1) and 69% to 342% for Cs(max2). Optimal bactericidal concentrations of enrofloxacin are usually twice the value of their minimal inhibitory concentration. Although clinical trials are now required, it would appear that increments in the serum concentration of enrofloxacin may reduce to the rate at which bacterial resistance occurs and so increase clinical efficacy without affecting the cost per treatment.

  1. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight.

    PubMed

    Essenberg, Margaret; Bayles, Melanie B; Pierce, Margaret L; Verhalen, Laval M

    2014-10-01

    Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control.

  2. Is Equal Access to Higher Education in South Asia and Sub-Saharan Africa Achievable by 2030?

    ERIC Educational Resources Information Center

    Ilie, Sonia; Rose, Pauline

    2016-01-01

    Higher education is back in the spotlight, with post-2015 sustainable development goals emphasising equality of access. In this paper, we highlight the long distance still to travel to achieve the goal of equal access to higher education for all, with a focus on poorer countries which tend to have lower levels of enrolment in higher education.…

  3. Discrepancies between Academic Achievement and Intellectual Ability in Higher-Functioning School-Aged Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Estes, Annette; Rivera, Vanessa; Bryan, Matthew; Cali, Philip; Dawson, Geraldine

    2011-01-01

    Academic achievement patterns and their relationships with intellectual ability, social abilities, and problem behavior are described in a sample of 30 higher-functioning, 9-year-old children with autism spectrum disorder (ASD). Both social abilities and problem behavior have been found to be predictive of academic achievement in typically…

  4. Does higher quality early child care promote low-income children's math and reading achievement in middle childhood?

    PubMed

    Dearing, Eric; McCartney, Kathleen; Taylor, Beck A

    2009-01-01

    Higher quality child care during infancy and early childhood (6-54 months of age) was examined as a moderator of associations between family economic status and children's (N = 1,364) math and reading achievement in middle childhood (4.5-11 years of age). Low income was less strongly predictive of underachievement for children who had been in higher quality care than for those who had not. Consistent with a cognitive advantage hypothesis, higher quality care appeared to promote achievement indirectly via early school readiness skills. Family characteristics associated with selection into child care also appeared to promote the achievement of low-income children, but the moderating effect of higher quality care per se remained evident when controlling for selection using covariates and propensity scores.

  5. Beyond Virtual Equality: Liberatory Consciousness as a Path to Achieve Trans* Inclusion in Higher Education

    ERIC Educational Resources Information Center

    Catalano, D. Chase J.

    2015-01-01

    Trans* men have not, as yet, received specific research attention in higher education. Based on intensive interviews with 25 trans* men enrolled in colleges or universities in New England, I explore their experiences in higher education. I analyze participants' descriptions of supports and challenges in their collegiate environments, as well as…

  6. Examining the Link between Adult Attachment Style, Employment and Academic Achievement in First Semester Higher Education

    ERIC Educational Resources Information Center

    Beauchamp, Guy; Martineau, Marc; Gagnon, André

    2016-01-01

    Although previous research indicates that both employment and adult attachment style have an influence on academic achievement, the interaction of these two factors has not been clarified. The purpose of this study was to investigate the moderating effect of adult attachment style on the relationship between employment status and first semester…

  7. Success in Higher Education: The Challenge to Achieve Academic Standing and Social Position

    ERIC Educational Resources Information Center

    Life, James

    2015-01-01

    When students look at their classmates in the classroom, consciously or unconsciously, they see competitors both for academic recognition and social success. How do they fit in relation to others and how do they succeed in achieving both? Traditional views on the drive to succeed and the fear of failure are well known as motivators for achieving…

  8. The Relationship between Epistemological Beliefs, Learning Strategies and Achievement in Higher Education

    ERIC Educational Resources Information Center

    Mc Beth, Maureen

    2010-01-01

    This study provides important insights into the relationship between the epistemological beliefs of community college students, the selection of learning strategies, and academic achievement. This study employed a quantitative survey design. Data were collected by surveying students at a community college during the spring semester of 2010. The…

  9. Gender Disparity Analysis in Academic Achievement at Higher Education Preparatory Schools: Case of South Wollo, Ethiopia

    ERIC Educational Resources Information Center

    Eshetu, Amogne Asfaw

    2015-01-01

    Gender is among the determinant factors affecting students' academic achievement. This paper tried to investigate the impact of gender on academic performance of preparatory secondary school students based on 2014 EHEECE result. Ex post facto research design was used. To that end, data were collected from 3243 students from eight purposively…

  10. Aiming Higher: Meeting the Challenges of Education Reform in Texas. Achieve's Benchmarking Initiative.

    ERIC Educational Resources Information Center

    Achieve, Inc., Washington, DC.

    Texas has spent nearly 2 decades in a slow, steady push for educational reform, and it has successfully adjusted its school improvement initiatives when initial attempts proved off the mark. The Texas record in terms of student achievement has been the subject of some scholarly, and much political, debate over the last 2 years, but this evaluation…

  11. Exploring Individual Differences as Determining Factors in Student Academic Achievement in Higher Education

    ERIC Educational Resources Information Center

    Cassidy, Simon

    2012-01-01

    The study investigated the association and relative influence of cognitive/motivational and demographic factors on final degree grade point average (GPA) in a single undergraduate cohort. Although academic self-efficacy, approaches to learning, prior achievement and age all produced significant correlations with GPA, regression analysis identified…

  12. The Little District that Could: Literacy Reform Leads to Higher Achievement in California District

    ERIC Educational Resources Information Center

    Kelly, Patricia R.; Budicin-Senters, Antoinette; King, L. McLean

    2005-01-01

    This article describes educational reform developed over a 10-year period in California's Lemon Grove School District, which resulted in a steady and remarkable upward shift in achievement for the students of this multicultural district just outside San Diego. Six elements of literacy reform emerged as the most significant factors affecting…

  13. Maryland Higher Education Commission Data Book 2016. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2016

    2016-01-01

    This document presents statistics about higher education in Maryland for 2016. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues & Expenditures; (6) Tuition and Fees; (7) Financial Aid, and (8) Private Career Schools. [For…

  14. Maryland Higher Education Commission Data Book 2015. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2015

    2015-01-01

    This document presents statistics about higher education in Maryland for 2015. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues & Expenditures; (6) Tuition and Fees; (7) Financial Aid, (8) Private Career Schools, and (9) Distance…

  15. Research Considerations and Theoretical Application for Best Practices in Higher Education: Latina/os Achieving Success

    ERIC Educational Resources Information Center

    Castellanos, Jeanett; Gloria, Alberta M.

    2007-01-01

    In this work, the authors take a critical look at what general measures of success do and do not disclose about the Latina/o experience in higher education and use that assessment to set forth a reconceptualization of the elements of success within a psychosociocultural (PSC) framework. Using "dichos," or widely used sayings of wisdom…

  16. Achieving Canadian Excellence in and for the World: Leveraging Canada's Higher Education and Research

    ERIC Educational Resources Information Center

    Association of Universities and Colleges of Canada, 2004

    2004-01-01

    As Canada's opportunities to claim international leadership are assessed, the best prospects lie in a combination of our impressive higher education and research commitments, civic and institutional values, and quality of life. This paper concludes that as an exporting country, the benefits will come in economic growth. As citizens of the world,…

  17. Linking Emotional Intelligence to Achieve Technology Enhanced Learning in Higher Education

    ERIC Educational Resources Information Center

    Kruger, Janette; Blignaut, A. Seugnet

    2013-01-01

    Higher education institutions (HEIs) increasingly use technology-enhanced learning (TEL) environments (e.g. blended learning and e-learning) to improve student throughput and retention rates. As the demand for TEL courses increases, expectations rise for faculty to meet the challenge of using TEL effectively. The promises that TEL holds have not…

  18. Maryland Higher Education Commission Data Book 2011. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2011

    2011-01-01

    This document presents statistics about higher education in Maryland for 2011. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues and Expenditures; (6) Tuition and Fees; (7) Financial Aid; (8) Private Career Schools; and (9) Distance…

  19. Maryland Higher Education Commission Data Book 2010. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2010

    2010-01-01

    This document presents statistics about the higher education in Maryland for 2010. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues and Expenditures; (6) Tuition and Fees; (7) Financial Aid; (8) Private Career Schools; and (9)…

  20. Differences in General Cognitive Abilities and Domain-Specific Skills of Higher-and Lower-Achieving Students in Stoichiometry

    ERIC Educational Resources Information Center

    Gulacar, Ozcan; Eilks, Ingo; Bowman, Charles R.

    2014-01-01

    This paper reports a comparison of a group of higher-and lower-achieving undergraduate chemistry students, 17 in total, as separated on their ability in stoichiometry. This exploratory study of 17 students investigated parallels and differences in the students' general and domain-specific cognitive abilities. Performance, strategies, and mistakes…

  1. What Educational Initiatives Contribute to Higher than Expected Achievement in Student Performance for Public Schools in the State of Indiana?

    ERIC Educational Resources Information Center

    Keeley, Thomas Allen

    2010-01-01

    The purpose of this study was to determine whether the areas of teaching methods, teacher-student relationships, school structure, school-community partnerships or school leadership were significantly embedded in practice and acted as a change agent among school systems that achieve higher than expected results on their state standardized testing…

  2. Statistical Summary of Missouri Higher Education 1989-1990 with FY 1989 Missouri Student Achievement Study Supplement.

    ERIC Educational Resources Information Center

    Missouri Coordinating Board for Higher Education, Jefferson City.

    The statistical summary for 1989-90 higher education in Missouri presents data in the form of 120 tables for 7 categories: (1) the Missouri Student Achievement Study (fiscal year 1989); (2) preparation; (3) enrolled freshmen; (4) access; (5) participation; (6) resources; and (7) completions. Sample tables provide the following information: mean…

  3. Achievement and Expectations of Immigrant, Second Generation, and Non-Immigrant Black Students in U.S. Higher Education

    ERIC Educational Resources Information Center

    Hudley, Cynthia

    2016-01-01

    Research on academic achievement contrasting Black immigrant, second generation, and non-immigrant students as distinct groups is surprisingly sparse in the higher education literature. This study examined Black immigrant and second generation undergraduates from Africa and the Caribbean and non-immigrant Black American undergraduates, using the…

  4. The Effects of Social Identification and Organizational Identification on Student Commitment, Achievement and Satisfaction in Higher Education

    ERIC Educational Resources Information Center

    Wilkins, Stephen; Butt, Muhammad Mohsin; Kratochvil, Daniel; Balakrishnan, Melodena Stephens

    2016-01-01

    The purpose of this research is to investigate the effects of social and organizational identifications on student commitment, achievement and satisfaction in higher education. The sample comprised 437 students enrolled in an undergraduate or postgraduate programme in business or management. A model was developed and tested using structural…

  5. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    PubMed

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    analysis can be repeated from saved sequencing images using the Long Template Protocol to increase accuracy.

  6. Strategies for Achieving High Sequencing Accuracy for Low Diversity Samples and Avoiding Sample Bleeding Using Illumina Platform

    PubMed Central

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    analysis can be repeated from saved sequencing images using the Long Template Protocol to increase accuracy. PMID:25860802

  7. Administration of ciprofloxacin and capsaicin in rats to achieve higher maximal serum concentrations.

    PubMed

    Sumano-López, Héctor; Gutiérrez-Olvera, Lilia; Aguilera-Jiménez, Rita; Gutiérrez-Olvera, Carlos; Jiménez-Gómez, Francisco

    2007-01-01

    To test if capsaicin could improve the bioavailability of ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid, CAS 85721-33-1, Bay q 3939) in rats, 0.01, 0.1, 0.5 and 1% capsaicin ((E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide, trans-8-methyl-N-vanillyl-6-nonenamide, CAS 404-86-4) dissolved in ethanol and mixed with 20 mg/kg of ciprofloxacin were orally administered to groups of 10 rats each. Control groups were dosed with capsaicin-free, ethanol-containing or ethanol-free ciprofloxacin. Reference intravenous pharmacokinetics of ciprofloxacin was also established. The results revealed that capsaicin increased ciprofloxacin bioavailability by approximately 70% in groups receiving preparations containing capsaicin at a rate of 0.01, 0.1 and 0.5%. Higher concentrations failed to further increase bioavailability. However, capsaicin appears to have little or no impact on the rate of absorption or clearance of ciprofloxacin. Considering that 0.01% or 0.1% capsaicin are unlikely to upset the gastrointestinal tract, it may be worth attempting to study if a similar effect occurs in man, and to evaluate if the addition of capsaicin can be used as a method to increase the area under the curve/minimum inhibitory concentration rate, a key variable to improve clinical efficacy of ciprofloxacin.

  8. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  9. Utilizing artificial neural networks in MATLAB to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Williams, D Keith; Kovach, Alexander L; Muddiman, David C; Hanck, Kenneth W

    2009-07-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural network calibration in conjunction with automatic gain control (AGC) is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. In addition, artificial neural network calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level.

  10. WWC Review of the Report "Staying on Track: Testing Higher Achievement's Long-Term Impact on Academic Outcomes and High School Choice." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    This study of 952 fifth and sixth graders in Washington, DC, and Alexandria, Virginia, found that students who were offered the "Higher Achievement" program had higher test scores in mathematical problem solving and were more likely to be admitted to and attend private competitive high schools. "Higher Achievement" is a…

  11. Leadership and culture of data governance for the achievement of higher education goals (Case study: Indonesia University of Education)

    NASA Astrophysics Data System (ADS)

    Putro, Budi Laksono; Surendro, Kridanto; Herbert

    2016-02-01

    Data is a vital asset in a business enterprise in achieving organizational goals. Data and information affect the decision-making process on the various activities of an organization. Data problems include validity, quality, duplication, control over data, and the difficulty of data availability. Data Governance is the way the company / institution manages its data assets. Data Governance covers the rules, policies, procedures, roles and responsibilities, and performance indicators that direct the overall management of data assets. Studies on governance data or information aplenty recommend the importance of cultural factors in the governance of research data. Among the organization's leadership culture has a very close relationship, and there are two concepts turn, namely: Culture created by leaders, leaders created by culture. Based on the above, this study exposure to the theme "Leadership and Culture Of Data Governance For The Achievement Of Higher Education Goals (Case Study: Indonesia University Of Education)". Culture and Leadership Model Development of on Higher Education in Indonesia would be made by comparing several models of data governance, organizational culture, and organizational leadership on previous studies based on the advantages and disadvantages of each model to the existing organizational business. Results of data governance model development is shown in the organizational culture FPMIPA Indonesia University Of Education today is the cultural market and desired culture is a culture of clan. Organizational leadership today is Individualism Index (IDV) (83.72%), and situational leadership on selling position.

  12. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    NASA Astrophysics Data System (ADS)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the

  13. Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.

    PubMed

    Mao, Binchen; Tejero, Roberto; Baker, David; Montelione, Gaetano T

    2014-02-05

    We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement protocols. Using 40 pairs of NMR and X-ray crystal structures determined by the Northeast Structural Genomics Consortium, for proteins ranging in size from 5-22 kDa, restrained Rosetta refined structures fit better to the raw experimental data, are in better agreement with their X-ray counterparts, and have better phasing power compared to conventionally determined NMR structures. For 37 proteins for which NMR ensembles were available and which had similar structures in solution and in the crystal, all of the restrained Rosetta refined NMR structures were sufficiently accurate to be used for solving the corresponding X-ray crystal structures by molecular replacement. The protocol for restrained refinement of protein NMR structures was also compared with restrained CS-Rosetta calculations. For proteins smaller than 10 kDa, restrained CS-Rosetta, starting from extended conformations, provides slightly more accurate structures, while for proteins in the size range of 10-25 kDa the less CPU intensive restrained Rosetta refinement protocols provided equally or more accurate structures. The restrained Rosetta protocols described here can improve the accuracy of protein NMR structures and should find broad and general for studies of protein structure and function.

  14. Sustained availability of trimethoprim in drinking water to achieve higher plasma sulphonamide-trimethoprim antibacterial activity in broilers.

    PubMed

    Sumano, H; Hernandez, L; Gutierrez, L; Bernad-Bernad, M J

    2005-02-01

    (1) In order to make trimethoprim (TMP) available to broilers throughout the day, a sustained release formulation (SRF) of the drug in the form of granules was added to the water tank that supplies drinking water. (2) Broilers were initially dosed with sulphachloropiridazine-TMP (SCP-TMP 5:1) and then further medicated throughout the day, achieving in the end a dose of 30 mg/kg each of SCP and TMP (group A). Group B received a preparation with the same dose of SCP and TMP (1:1) as group A, but administered as a single dose without the SRF of TMP. Group C received the customary SCP-TMP 5:1 preparation (30 and 6 mg/kg, respectively). Water tanks were completely consumed in 3 to 4 h. (3) Broilers were bled at different times and concentration of antibacterial activity in serum determined by correlating the composite antibacterial activity of SCP and TMP with actual concentrations of these drugs by means of a microbiological agar diffusion assay. (4) Time vs serum concentrations of activity were higher in group B; the increments in the maximum serum concentration for group B over groups A and C being 39 and 67%, respectively. (5) However, the sustained concentration of activity over time, measured as the area under the cu)rve, was highest in group A. Group B had higher values for area under the curve than group C. (6) An additional dose of TMP to achieve 30 mg/kg of both SCP and TMP improves the serum concentration of this combination over the customary 5:1 proportion. The best values for sustaining antibacterial activity were obtained using a 1:1 ratio as in group A. The use of a SRF as in group A may translate into better clinical results.

  15. hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests.

    PubMed

    Jang, In Sock; Margolin, Adam; Califano, Andrea

    2013-08-06

    A key goal of systems biology is to elucidate molecular mechanisms associated with physiologic and pathologic phenotypes based on the systematic and genome-wide understanding of cell context-specific molecular interaction models. To this end, reverse engineering approaches have been used to systematically dissect regulatory interactions in a specific tissue, based on the availability of large molecular profile datasets, thus improving our mechanistic understanding of complex diseases, such as cancer. In this paper, we introduce high-order Algorithm for the Reconstruction of Accurate Cellular Network (hARACNe), an extension of the ARACNe algorithm for the dissection of transcriptional regulatory networks. ARACNe uses the data processing inequality (DPI), from information theory, to detect and prune indirect interactions that are unlikely to be mediated by an actual physical interaction. Whereas ARACNe considers only first-order indirect interactions, i.e. those mediated by only one extra regulator, hARACNe considers a generalized form of indirect interactions via two, three or more other regulators. We show that use of higher-order DPI resulted in significantly improved performance, based on transcription factor (TF)-specific ChIP-chip data, as well as on gene expression profile following RNAi-mediated TF silencing.

  16. Achieving higher pathological complete response rates in HER-2-positive patients with induction chemotherapy without trastuzumab in operable breast cancer.

    PubMed

    Penault-Llorca, Frédérique; Abrial, Catherine; Mouret-Reynier, Marie-Ange; Raoelfils, Inès; Durando, Xavier; Leheurteur, Marianne; Gimbergues, Pierre; Tortochaux, Jacques; Curé, Hervé; Chollet, Philippe

    2007-04-01

    Recent trials of induction chemotherapy in bulky operable breast cancer have shown much higher pathological complete response (pCR) rates with trastuzumab-driven combinations. However, it is useful to take into account the specific chemosensitivity of HER-2-positive tumors. The aim of this study was to assess the pCR rate according to HER-2 status in response to chemotherapy, without an anti-HER-2 specific biological agent, in 710 operable breast cancer patients. Since 1982, these patients have been treated with several different neoadjuvant chemotherapy combinations. During this period, HER-2 overexpression was most often not assessed. Subsequently, we assessed HER-2 expression using archival paraffin-embedded tissue. A technically usable specimen was available for 413 of the 710 patients. Before treatment, 51 patients were HER-2 positive, 287 patients were HER-2 negative, and the results were inconclusive for 75 patients. Of these patients, a pCR in breast and nodes was obtained in 94 patients (14.3%), but this event was threefold more frequent for HER-2-positive patients (23.5%) than for HER-2-negative patients (7%). The overall survival (OS) and disease-free survival (DFS) rates at 10 years were 66.6% and 57.4%, respectively. The DFS rate was, as expected, better for HER-2-negative patients, with HER-2 status assessed before as well as after chemotherapy. A significant difference was found for OS in favor of HER-2-negative patients only with postchemotherapy assessment of HER-2, a fact similar to our previous findings. Finally, there was a tendency toward a higher DFS rate for HER-2-positive patients who achieved a pCR compared with HER-2-positive patients who did not.

  17. Effects of the Higher Order Thinking Skills Program on At-Risk Young Adolescents' Self-Concept, Reading Achievement, and Thinking Skills.

    ERIC Educational Resources Information Center

    Eisenman, Gordon; Payne, Beverly D.

    1997-01-01

    Contrasted effects of Higher Order Thinking Skills (HOTS) program to those of Chapter 1 programs on fourth and fifth graders' reading achievement, self-concept, and higher-order thinking skills. Found that HOTS is more effective in raising self-concept and some higher-order thinking skills in fifth grade and after two years of treatment, with…

  18. A Study to Assess the Achievement Motivation of Higher Secondary Students in Relation to Their Noise Sensitivity

    ERIC Educational Resources Information Center

    Latha, Prema

    2014-01-01

    Disturbing sounds are often referred to as noise, and if extreme enough in degree, intensity or frequency, it is referred to as noise pollution. Achievement refers to a change in study behavior in relation to their noise sensitivity and learning in the educational sense by achieving results in changed responses to certain types of stimuli like…

  19. Study of the Relationship between Study Habits and Academic Achievement of Students: A Case of Spicer Higher Secondary School, India

    ERIC Educational Resources Information Center

    Siahi, Evans Atsiaya; Maiyo, Julius K.

    2015-01-01

    The studies on the correlation of academic achievement have paved way for control and manipulation of related variables for quality results in schools. In spite of the facts that schools impart uniform classroom instructions to all students, wide range of difference is observed in their academic achievement. The study sought to determine the…

  20. Aptitude Tests Versus School Exams as Selection Tools for Higher Education and the Case for Assessing Educational Achievement in Context

    ERIC Educational Resources Information Center

    Stringer, Neil

    2008-01-01

    Advocates of using a US-style SAT for university selection claim that it is fairer to applicants from disadvantaged backgrounds than achievement tests because it assesses potential, not achievement, and that it allows finer discrimination between top applicants than GCEs. The pros and cons of aptitude tests in principle are discussed, focusing on…

  1. Minority Student Participation and Achievement in Graduate and First-Professional Degree Programs in Illinois Higher Education. Item #10.

    ERIC Educational Resources Information Center

    Illinois State Board of Higher Education, Springfield.

    In Illinois, as in other states, minorities, Blacks and Hispanics in particular, are under-represented in higher education. The historically low rates of Black and Hispanic participation in higher education raise equity and labor supply issues. This report supplements the annual report of the Illinois Board of Higher Education and provides further…

  2. Preparing for a Global Community. Achieving an International Perspective in Higher Education. ASHE-ERIC Higher Education Report No. 2, 1992.

    ERIC Educational Resources Information Center

    Pickert, Sarah M.

    This report discusses the response of colleges and universities in the United States to the need of graduate students to become equipped to make personal and public policy decisions as citizens of an international society. Curriculum changes are showing a tightening of foreign language standards in schools of higher education and, throughout the…

  3. Boosting K-12 Student Achievement: How Corporate America and Higher Ed Can Help. Forum Focus. Fall 2006

    ERIC Educational Resources Information Center

    Ehrlich, Jenifer, Ed.

    2006-01-01

    "Forum Focus" was a semi-annual magazine of the Business-Higher Education Forum (BHEF) that featured articles on the role of business and higher education on significant issues affecting the P-16 education system. The magazine typically focused on themes featured at the most recently held semi-annual Forum meeting at the time of…

  4. Retrospective Understandings: Individual-Collective Influences on High Achieving Black Students at a Predominantly White Institution of Higher Education

    ERIC Educational Resources Information Center

    Brooks, Candice Elaine

    2012-01-01

    This article discusses the findings of an exploratory qualitative study that examined the influences of individual and collective sociocultural identities on the community involvements and high academic achievement of 10 Black alumni who attended a predominantly White institution between 1985 and 2008. Syntagmatic narrative analysis and…

  5. Ubiquitous Laptop Usage in Higher Education: Effects on Student Achievement, Student Satisfaction, and Constructivist Measures in Honors and Traditional Classrooms

    ERIC Educational Resources Information Center

    Wurst, Christian; Smarkola, Claudia; Gaffney, Mary Anne

    2008-01-01

    Three years of graduating business honors cohorts in a large urban university were sampled to determine whether the introduction of ubiquitous laptop computers into the honors program contributed to student achievement, student satisfaction and constructivist teaching activities. The first year cohort consisted of honors students who did not have…

  6. The Impact of Higher Expectations in Math on the Perception of Achievement of High School Students with Disabilities

    ERIC Educational Resources Information Center

    Przybylinski, Vincent S., Jr.

    2016-01-01

    There exists a dearth of research on strategies that will help students with disabilities gain greater access to standards-based mathematics and close the mathematics achievement gap between general education students and students with disabilities (Browder et al., 2012; Jitendra, 2013; van Garderen, Scheuermann, Jackson, & Hampton, 2009).…

  7. The Effects of School Climate on Student Achievement in Lower and Higher Performing Public and Charter Elementary Schools in Tennessee

    ERIC Educational Resources Information Center

    Brown, Aszure Emond

    2016-01-01

    An increase in the number of charter schools that exist has occurred due, in part, to expectations that are aimed toward producing better results through student achievement, as compared to traditional public schools. An abundance of professional literature has supported the concept that school climate is important in the effort to improve student…

  8. Going Green: A Comparative Case Study of How Three Higher Education Institutions Achieved Progressive Measures of Environmental Sustainability

    ERIC Educational Resources Information Center

    James, Matthew R.

    2009-01-01

    Leal Filho, MacDermot, and Padgam (1996) contended that post-secondary institutions are well suited to take on leadership responsibilities for society's environmental protection. Higher education has the unique academic freedom to engage in critical thinking and bold experimentation in environmental sustainability (Cortese, 2003). Although…

  9. Achievements and Consequences of Two Decades of Quality Assurance in Higher Education: A Personal View from the Edge

    ERIC Educational Resources Information Center

    Houston, Don

    2010-01-01

    While the past two decades have seen significant expansion and harmonisation of quality assurance mechanisms in higher education, there is limited evidence of positive effects on the quality of core processes of teaching and learning. The paradox of the separation of assurance from improvement is explored. A shift in focus from surveillance to…

  10. A Fresh Perspective on Progress Files--A Way of Representing Complex Learning and Achievement in Higher Education

    ERIC Educational Resources Information Center

    Jackson, Norman; Ward, Rob

    2004-01-01

    This article addresses the challenge of developing new conceptual knowledge to help us make better sense of the way that higher education is approaching the "problem" of representing (documenting, certifying and communicating by other means) students' learning for the super-complex world described by Barnett (2000b). The current UK…

  11. Unraveling the sequence information in COI barcode to achieve higher taxon assignment based on Indian freshwater fishes.

    PubMed

    Chakraborty, Mohua; Ghosh, Sankar Kumar

    2015-04-01

    Efficacy of cytochrome c oxidase subunit I (COI) DNA barcode in higher taxon assignment is still under debate in spite of several attempts, using the conventional DNA barcoding methods, to assign higher taxa. Here we try to understand whether nucleotide and amino acid sequence in COI gene carry sufficient information to assign species to their higher taxonomic rank, using 160 species of Indian freshwater fishes. Our results reveal that with increase in the taxonomic rank, sequence conservation decreases for both nucleotides and amino acids. Order level exhibits lowest conservation with 50% of the nucleotides and amino acids being conserved. Among the variable sites, 30-50% were found to carry high information content within an order, while it was 70-80% within a family and 80-99% within a genus. High information content shows sites with almost conserved sequence but varying at one or two locations, which can be due to variations at species or population level. Thus, the potential of COI gene in higher taxon assignment is revealed with validation of ample inherent signals latent in the gene.

  12. Women in Leadership: Factors That Affect the Achievement of Women in Higher Education Administration at Four-Year Public and Private Universities in Texas

    ERIC Educational Resources Information Center

    Ramirez, Dawn Marie

    2012-01-01

    The purpose of this quantitative study was to examine the factors that affect women administrators in higher education at four-year public and private universities in Texas. By comparing private and public universities, the research provided an assessment of similarities and differences of the factors impacting achievement of women in higher…

  13. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    PubMed

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.

  14. Selected factors associated with achievement of biology preparatory students and their follow-up to higher level biology courses

    NASA Astrophysics Data System (ADS)

    Biermann, Carol A.; Sarinsky, Gary B.

    This study was undertaken to determine whether a biology preparatory course given at an urban community college was helping students to develop the proper skills and background necessary for them to successfully complete follow-up courses in biology. A group of students who enrolled in a biology preparatory course, and subsequently, a follow-up anatomy and physiology or general biology course (experimental group) was compared to a group of students who should have registered for the preparatory course, but who enrolled directly into the anatomy and physiology or general biology course (control group). It was shown that there was no significant difference in their anatomy and physiology or general biology grades. Furthermore, only 16% of the initial group of preparatory students enrolled in and passed a follow-up biology course. Examination of the preparatory group using discriminant analysis ascertained that mathematics score was the principle discriminator between pass/fail groups. A stepwise multiple regression analysis of the variables explaining the preparatory grade showed that mathematics score, reading score, and type of high school degree explained 33% of the variance. Of the students who did pass the preparatory course and enrolled in a follow-up biology class, their preparatory grade was a good predictor of their achievement (measured by follow-up course grade), as determined by multiple regression.

  15. [Perception of the teaching-learning process and academic achievement in diverse instructional contexts of Higher Education].

    PubMed

    de la Fuente Arias, Jesús; Martínez Vicente, José Manuel; Peralta Sánchez, Francisco Javier; García Berbén, Ana Belén

    2010-11-01

    In Higher Education, performance and Teaching-Learning (T-L) contexts are highly current concerns. Based on the DEDEPRO model, interdependence can be established between instructional contexts and levels of performance as they relate to the T-L process. Partitipants were 2020 pupils from two Spanish universities. Measurements of both variables were used in a quasi-experimental and correlational design. The univariate and causal analyses showed the effect of context on the T-L process and on performance; thus, the interdependent relationships between the latter and perception of the T-L process. Partial interaction effects also appeared, as well as a causal model of academic performance. Results are discussed and implications for the ECTS (European Credit Transfer System) are analyzed.

  16. Towards Arbitrary Accuracy Inviscid Surface Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Hixon, Ray

    2002-01-01

    Inviscid nonlinear surface boundary conditions are currently limited to third order accuracy in time for non-moving surfaces and actually reduce to first order in time when the surfaces move. For steady-state calculations it may be possible to achieve higher accuracy in space, but high accuracy in time is required for efficient simulation of multiscale unsteady phenomena. A surprisingly simple technique is shown here that can be used to correct the normal pressure derivatives of the flow at a surface on a Cartesian grid so that arbitrarily high order time accuracy is achieved in idealized cases. This work demonstrates that nonlinear high order time accuracy at a solid surface is possible and desirable, but it also shows that the current practice of only correcting the pressure is inadequate.

  17. Effects of tactual and kinesthetic instructional resources on simple recall and higher-level cognitive science achievement and attitudes toward science of third-grade suburban students

    NASA Astrophysics Data System (ADS)

    Searson, Robert Francis

    This researcher investigated the effects of tactual and kinesthetic instructional resources on the simple recall and higher-level cognitive science achievement and attitudes toward science of third-grade suburban students in a northern New Jersey school district. The Learning Style Inventory (LSI) (Dunn, Dunn, & Price, 1996) was administered to ascertain the identity of the learning-style perceptual preferences of all 59 third-graders who completed the three science units. Each of the three classes was presented two science units using learning-style instructional resources; one science unit was taught using traditional methods. All three science units were completed in a six-week period. Students were administered a pretest and posttest for each science unit and the Semantic Differential Scale (Pizzo, 1981) at the conclusion of each science unit. Analysis of variance (ANOVA) assessed the effects of treatments and attitudes toward science. The statistical analysis of this study revealed a significant difference (p < 0.0001) between students' simple recall science achievement posttest scores when taught tactually and/or kinesthetically compared to when they were taught science traditionally. Furthermore, the Contingency Table analysis, using Fisher's Exact Test indicated a significant difference (p = 0.00008) between the higher-level cognitive science achievement posttest scores when students are taught science tactually and/or kinesthetically compared to when they are taught science traditionally. The findings of this study supported the view when tactual and/or kinesthetic methods were employed, higher achievement gains were realized for simple recall and higher-level cognitive science achievement. Further recommendations called for a reexamination of science instructional methods employed in our elementary classroom.

  18. The effects of higher-order questioning strategies on nonscience majors' achievement in an introductory environmental science course and their attitudes toward the environment

    NASA Astrophysics Data System (ADS)

    Eason, Grace Teresa

    The purpose of this quasi-experimental study was to determine the effect a higher-order questioning strategy (Bloom, 1956) had on undergraduate non-science majors' attitudes toward the environment and their achievement in an introductory environmental science course, EDS 1032, "Survey of Science 2: Life Science," which was offered during the Spring 2000 term. Students from both treatment and control groups (N = 63), which were determined using intact classes, participated in eight cooperative group activities based on the Biological Sciences Curriculum Studies (BSCS) 5E model (Bybee, 1993). The treatment group received a higher-order questioning method combined with the BSCS 5E model. The control group received a lower-order questioning method, combined with the BSCS 5E model. Two instruments were used to measure students' attitude and achievement changes. The Ecology Issue Attitude (EIA) survey (Schindler, 1995) and a comprehensive environmental science final exam. Kolb's Learning Style Inventory (KLSI, 1985) was used to measure students' learning style type. After a 15-week treatment period, results were analyzed using MANCOVA. The overall MANCOVA model used to test the statistical difference between the collective influences of the independent variables on the three dependent variables simultaneously was found to be not significant at alpha = .05. This differs from findings of previous studies in which higher-order questioning techniques had a significant effect on student achievement (King 1989 & 1992; Blosser, 1991; Redfield and Rousseau, 1981; Gall 1970). At the risk of inflated Type I and Type II error rates, separate univariate analyses were performed. However, none of the research factors, when examined collectively or separately, made any significant contribution to explaining the variability in EIA attitude, EIA achievement, and comprehensive environmental science final examination scores. Nevertheless, anecdotal evidence from student's self

  19. Acute Response of Well-Trained Sprinters to a 100-m Race: Higher Sprinting Velocity Achieved With Increased Step Rate Compared With Speed Training.

    PubMed

    Otsuka, Mitsuo; Kawahara, Taisuke; Isaka, Tadao

    2016-03-01

    This study aimed to clarify the contribution of differences in step length and step rate to sprinting velocity in an athletic race compared with speed training. Nineteen well-trained male and female sprinters volunteered to participate in this study. Sprinting motions were recorded for each sprinter during both 100-m races and speed training (60-, 80-, and 100-m dash from a block start) for 14 days before the race. Repeated-measures analysis of covariance was used to compare the step characteristics and sprinting velocity between race and speed training, adjusted for covariates including race-training differences in the coefficients of restitution of the all-weather track, wind speed, air temperature, and sex. The average sprinting velocity to the 50-m mark was significantly greater in the race than in speed training (8.26 ± 0.22 m·s vs. 8.00 ± 0.70 m·s, p < 0.01). Although no significant difference was seen in the average step length to the 50-m mark between the race and speed training (1.81 ± 0.09 m vs. 1.80 ± 0.09 m, p = 0.065), the average step rate was significantly greater in the race than in speed training (4.56 ± 0.17 Hz vs. 4.46 ± 0.13 Hz, p < 0.01). These findings suggest that sprinters achieve higher sprinting velocity and can run with higher exercise intensity and more rapid motion during a race than during speed training, even if speed training was performed at perceived high intensity.

  20. Variations in Mathematics Problem-Solving Support for Lower and Higher Achieving Elementary Students: A Study of the One-on-One Instructional Practices of Teachers Who Use a Reform-Based Curriculum

    ERIC Educational Resources Information Center

    Giles, Nancy D.

    2009-01-01

    This study was designed to investigate whether and how upper elementary grade teachers who use a reform-based mathematics curriculum adjust instruction for their lower achieving (LA) compared to higher achieving (HA) students during a one-on-one mathematics problem-solving lesson. Little is known about the individualized support teachers provide…

  1. Increasing Accuracy in Computed Inviscid Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Roger

    2004-01-01

    A technique has been devised to increase the accuracy of computational simulations of flows of inviscid fluids by increasing the accuracy with which surface boundary conditions are represented. This technique is expected to be especially beneficial for computational aeroacoustics, wherein it enables proper accounting, not only for acoustic waves, but also for vorticity and entropy waves, at surfaces. Heretofore, inviscid nonlinear surface boundary conditions have been limited to third-order accuracy in time for stationary surfaces and to first-order accuracy in time for moving surfaces. For steady-state calculations, it may be possible to achieve higher accuracy in space, but high accuracy in time is needed for efficient simulation of multiscale unsteady flow phenomena. The present technique is the first surface treatment that provides the needed high accuracy through proper accounting of higher-order time derivatives. The present technique is founded on a method known in art as the Hermitian modified solution approximation (MESA) scheme. This is because high time accuracy at a surface depends upon, among other things, correction of the spatial cross-derivatives of flow variables, and many of these cross-derivatives are included explicitly on the computational grid in the MESA scheme. (Alternatively, a related method other than the MESA scheme could be used, as long as the method involves consistent application of the effects of the cross-derivatives.) While the mathematical derivation of the present technique is too lengthy and complex to fit within the space available for this article, the technique itself can be characterized in relatively simple terms: The technique involves correction of surface-normal spatial pressure derivatives at a boundary surface to satisfy the governing equations and the boundary conditions and thereby achieve arbitrarily high orders of time accuracy in special cases. The boundary conditions can now include a potentially infinite number

  2. The Agony and the Ecstasy: Current Status of Hispanic Individuals' Achievement in Higher Education and Earnings - With a Glimpse to the Future

    ERIC Educational Resources Information Center

    De Los Santos, Gilberto; Asgary, Nader; Nazemzadeh, Asghar; DeShields, Jr., Oscar W.

    2005-01-01

    Some projections about Hispanic individuals point to a rosy picture regarding gains in higher educational enrollment. Other studies lament that these gains are, at best, minimal. Although the so-called higher education pie is undoubtedly expanding, this article concludes that Hispanic adults are losing, rather than gaining, educational attainment…

  3. Think about It: Volume III, Part I. A Collection of Articles on Higher Order Thinking Skills. REACH: Realistic Educational Achievement Can Happen.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Twenty-three papers on the use of higher order thinking approaches to improve basic skills education are presented. The key note article is (1) "A Case for Higher Order Thinking" (G. Garcia, Jr.). Under the heading "English Language Arts" are: (2) "Developing an Elementary Writing Program" (K. Contreras); (3)…

  4. A Stronger Nation through Higher Education: How and Why Americans Must Achieve a Big Goal for College Attainment. A Special Report from Lumina Foundation

    ERIC Educational Resources Information Center

    Matthews, Dewayne

    2012-01-01

    In 2009, Lumina Foundation officially adopted its Big Goal that 60 percent of Americans obtain a high-quality postsecondary degree or credential by 2025. That same year, Lumina began reporting on progress toward the Big Goal in a series of reports titled "A Stronger Nation through Higher Education". The core of the reports is Census data…

  5. Missing in Action: Writing Process-Based Instructional Practices and Measures of Higher-Order Literacy Achievement in Predominantly Urban Elementary Schools

    ERIC Educational Resources Information Center

    Briddell, Andrew

    2013-01-01

    This study of 1,974 fifth grade students investigated potential relationships between writing process-based instruction practices and higher-order thinking measured by a standardized literacy assessment. Writing process is defined as a highly complex, socio-cognitive process that includes: planning, text production, review, metacognition, writing…

  6. Think about It, Too: Volume III, Part II. A Collection of Articles on Higher Order Thinking Skills. REACH: Realistic Educational Achievement Can Happen.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    This volume presents 22 papers that discuss thinking in the context of subjects taught in general education, special and vocational education, educational technology, and special programs. The key note article is: (1) "A Case for Higher Order Thinking" (G. Garcia Jr.). Under the heading "Educational Technology" are: (2)…

  7. Energy savings and higher volumetric loading rate achieved in the conventional anoxic-oxic process for sewage treatment by enhancing biomass retention in the secondary clarifier.

    PubMed

    Zhang, Xueyu; Liu, Fengyuan; Zheng, Shaokui

    2017-06-01

    This is the first study to achieve a short HRT (∼2h for the A/O reactor), high MLSS (∼10gL(-1)), and high volumetric loading (∼3.7kg CODm(-3)d(-1) and ∼0.6kg NH4-Nm(-3)d(-1)) in the A/O process for sewage treatment by enhancing biomass retention in the secondary clarifier (∼4h settling time), which we refer to as the high-performance A/O process (HP-A/O) in this paper. Over 258days of continuous operation, with a decrease in HRT from 12 to 2h, remarkable COD (95±3%), NH4(+)-N (98±2%), TN (79±5%), and TP (74±10%) removals were stably achieved, while the air requirement significantly decreased by 22%. The HP-A/O process offers advantages over the conventional A/O process (6-8h for A/O reactor, 3-5gL(-1)MLSS, and ∼1.0kg CODm(-3)d(-1)) for sewage treatment in terms of its lower energy consumption, smaller footprint and reactor requirements.

  8. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency

    NASA Astrophysics Data System (ADS)

    Takano, Takayoshi; Mino, Takuya; Sakai, Jun; Noguchi, Norimichi; Tsubaki, Kenji; Hirayama, Hideki

    2017-03-01

    Enhancing the light-extraction efficiency is the key issue for realizing highly efficient AlGaN-based ultraviolet light-emitting diodes (UV-LEDs). We introduced several features to improve the light extraction: a transparent AlGaN:Mg contact layer, a Rh mirror electrode, an AlN template on a patterned sapphire substrate, and encapsulation resin. The combination of the AlGaN:Mg contact layer and the Rh mirror electrode significantly improved the output power and the external quantum efficiency (EQE) of UV-LEDs. By introducing the aforementioned features, a maximum EQE of >20% at an emission wavelength of 275 nm and a 20-mA direct current was achieved.

  9. Accuracy of emergency medical dispatchers' subjective ability to identify when higher dispatch levels are warranted over a Medical Priority Dispatch System automated protocol's recommended coding based on paramedic outcome data

    PubMed Central

    Clawson, Jeff; Olola, Christopher H O; Heward, Andy; Scott, Greg; Patterson, Brett

    2007-01-01

    Objectives To establish the accuracy of the emergency medical dispatcher's (EMD's) decisions to override the automated Medical Priority Dispatch System (MPDS) logic‐based response code recommendations based on at‐scene paramedic‐applied transport acuity determinations (blue‐in) and cardiac arrest (CA) findings. Methods A retrospective study of a 1 year dataset from the London Ambulance Service (LAS) National Health Service (NHS) Trust was undertaken. We compared all LAS “bluing in” frequency (BIQ) and cardiac arrest quotient (CAQ) outcomes of the incidents automatically recommended and accepted as CHARLIE‐level codes, to those receiving EMD DELTA‐overrides from the auto‐recommended CHARLIE‐level. We also compared the recommended DELTA‐level outcomes to those in the higher ECHO‐override cases. Results There was no significant association between outcome (CA/Blue‐in) and the determinant codes (DELTA‐override and CHARLIE‐level) for both CA (odds ratio (OR) 0, 95% confidence interval (CI) 0 to 41.14; p = 1.000) and Blue‐in categories (OR 0.89, 95% CI 0.34 to 2.33; p = 1.000). Similar patterns were observed between outcome and all DELTA‐level and ECHO‐override codes for both CA (OR 0, 95% CI 0 to 70.05; p = 1.000) and Blue‐in categories (OR 1.17, 95% CI 0 to 7.12; p = 0.597). Conclusion This study contradicts the belief that EMDs can accurately perceive when a patient or situation requires more resources than the MPDS's structured interrogation process logically indicates. This further strengthens the concept that automated, protocol‐based call taking is more accurate and consistent than the subjective, anecdotal or experience‐based determinations made by individual EMDs. PMID:17652678

  10. Improving Speaking Accuracy through Awareness

    ERIC Educational Resources Information Center

    Dormer, Jan Edwards

    2013-01-01

    Increased English learner accuracy can be achieved by leading students through six stages of awareness. The first three awareness stages build up students' motivation to improve, and the second three provide learners with crucial input for change. The final result is "sustained language awareness," resulting in ongoing…

  11. Transverse Mercator with an accuracy of a few nanometers

    NASA Astrophysics Data System (ADS)

    Karney, Charles F. F.

    2011-08-01

    Implementations of two algorithms for the transverse Mercator projection are described; these achieve accuracies close to machine precision. One is based on the exact equations of Thompson and Lee and the other uses an extension of Krüger's series for the mapping to higher order. The exact method provides an accuracy of 9 nm over the entire ellipsoid, while the errors in the series method are less than 5 nm within 3900 km of the central meridian. In each case, the meridian convergence and scale are also computed with similar accuracy. The speed of the series method is competitive with other less accurate algorithms and the exact method is about five times slower.

  12. Martial arts striking hand peak acceleration, accuracy and consistency.

    PubMed

    Neto, Osmar Pinto; Marzullo, Ana Carolina De Miranda; Bolander, Richard P; Bir, Cynthia A

    2013-01-01

    The goal of this paper was to investigate the possible trade-off between peak hand acceleration and accuracy and consistency of hand strikes performed by martial artists of different training experiences. Ten male martial artists with training experience ranging from one to nine years volunteered to participate in the experiment. Each participant performed 12 maximum effort goal-directed strikes. Hand acceleration during the strikes was obtained using a tri-axial accelerometer block. A pressure sensor matrix was used to determine the accuracy and consistency of the strikes. Accuracy was estimated by the radial distance between the centroid of each subject's 12 strikes and the target, whereas consistency was estimated by the square root of the 12 strikes mean squared distance from their centroid. We found that training experience was significantly correlated to hand peak acceleration prior to impact (r(2)=0.456, p =0.032) and accuracy (r(2)=0. 621, p=0.012). These correlations suggest that more experienced participants exhibited higher hand peak accelerations and at the same time were more accurate. Training experience, however, was not correlated to consistency (r(2)=0.085, p=0.413). Overall, our results suggest that martial arts training may lead practitioners to achieve higher striking hand accelerations with better accuracy and no change in striking consistency.

  13. Achieving Salary Equity

    ERIC Educational Resources Information Center

    Nevill, Dorothy D.

    1975-01-01

    Three techniques are outlined for use by higher education institutions to achieve salary equity: salary prediction (using various statistical procedures), counterparting (comparing salaries of persons of similar rank), and grievance procedures. (JT)

  14. Student Metacognitive Monitoring: Predicting Test Achievement from Judgment Accuracy

    ERIC Educational Resources Information Center

    Valdez, Alfred

    2013-01-01

    Metacognitive monitoring processes have been shown to be critical determinants of human learning. Metacognitive monitoring consist of various knowledge estimates that enable learners to engage in self-regulatory processes important for both the acquisition of knowledge and the monitoring of one's knowledge when engaged in assessment. This study…

  15. A new adaptive GMRES algorithm for achieving high accuracy

    SciTech Connect

    Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.

    1996-12-31

    GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.

  16. Calibration of Reading Self-Concept and Reading Achievement among 15-Year-Olds: Cultural Differences in 34 Countries

    ERIC Educational Resources Information Center

    Chiu, Ming Ming; Klassen, Robert M.

    2009-01-01

    Self-concept is linked to student achievement in many domains. In this study, we examined reading self-concept's (RSC) and RSC calibration accuracy's links to reading achievement across different contexts via multi-level analyses of 34 countries' 158,848 fifteen-year-olds' reading tests and questionnaire responses. Students with higher RSC, higher…

  17. Climate Change Accuracy: Requirements and Economic Value

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R.; Mlynczak, M. G.; Lukashin, C.; Thome, K. J.; Baize, R. R.

    2014-12-01

    Higher than normal accuracy is required to rigorously observe decadal climate change. But what level is needed? How can this be quantified? This presentation will summarize a new more rigorous and quantitative approach to determining the required accuracy for climate change observations (Wielicki et al., 2013, BAMS). Most current global satellite observations cannot meet this accuracy level. A proposed new satellite mission to resolve this challenge is CLARREO (Climate Absolute Radiance and Refractivity Observatory). CLARREO is designed to achieve advances of a factor of 10 for reflected solar spectra and a factor of 3 to 5 for thermal infrared spectra (Wielicki et al., Oct. 2013 BAMS). The CLARREO spectrometers are designed to serve as SI traceable benchmarks for the Global Satellite Intercalibration System (GSICS) and to greatly improve the utility of a wide range of LEO and GEO infrared and reflected solar passive satellite sensors for climate change observations (e.g. CERES, MODIS, VIIIRS, CrIS, IASI, Landsat, SPOT, etc). Providing more accurate decadal change trends can in turn lead to more rapid narrowing of key climate science uncertainties such as cloud feedback and climate sensitivity. A study has been carried out to quantify the economic benefits of such an advance as part of a rigorous and complete climate observing system. The study concludes that the economic value is $12 Trillion U.S. dollars in Net Present Value for a nominal discount rate of 3% (Cooke et al. 2013, J. Env. Sys. Dec.). A brief summary of these two studies and their implications for the future of climate science will be presented.

  18. How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy.

    PubMed

    Weaver, Steven A; Ucar, Zennure; Bettinger, Pete; Merry, Krista

    2015-01-01

    The static horizontal position accuracy of a mapping-grade GNSS receiver was tested in two forest types over two seasons, and subsequently was tested in one forest type against open sky conditions in the winter season. The main objective was to determine whether the holding position during data collection would result in significantly different static horizontal position accuracy. Additionally, we wanted to determine whether the time of year (season), forest type, or environmental variables had an influence on accuracy. In general, the F4Devices Flint GNSS receiver was found to have mean static horizontal position accuracy levels within the ranges typically expected for this general type of receiver (3 to 5 m) when differential correction was not employed. When used under forest cover, in some cases the GNSS receiver provided a higher level of static horizontal position accuracy when held vertically, as opposed to held at an angle or horizontally (the more natural positions), perhaps due to the orientation of the antenna within the receiver, or in part due to multipath or the inability to use certain satellite signals. Therefore, due to the fact that numerous variables may affect static horizontal position accuracy, we only conclude that there is weak to moderate evidence that the results of holding position are significant. Statistical test results also suggest that the season of data collection had no significant effect on static horizontal position accuracy, and results suggest that atmospheric variables had weak correlation with horizontal position accuracy. Forest type was found to have a significant effect on static horizontal position accuracy in one aspect of one test, yet otherwise there was little evidence that forest type affected horizontal position accuracy. Since the holding position was found in some cases to be significant with regard to the static horizontal position accuracy of positions collected in forests, it may be beneficial to have an

  19. GEOSPATIAL DATA ACCURACY ASSESSMENT

    EPA Science Inventory

    The development of robust accuracy assessment methods for the validation of spatial data represent's a difficult scientific challenge for the geospatial science community. The importance and timeliness of this issue is related directly to the dramatic escalation in the developmen...

  20. Landsat wildland mapping accuracy

    USGS Publications Warehouse

    Todd, William J.; Gehring, Dale G.; Haman, J. F.

    1980-01-01

    A Landsat-aided classification of ten wildland resource classes was developed for the Shivwits Plateau region of the Lake Mead National Recreation Area. Single stage cluster sampling (without replacement) was used to verify the accuracy of each class.

  1. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  2. Achievement Motivation of Women: Effects of Achievement and Affiliation Arousal.

    ERIC Educational Resources Information Center

    Gama, Elizabeth Maria Pinheiro

    1985-01-01

    Assigned 139 Brazilian women to neutral, affiliation arousal, and achievement arousal conditions based on their levels of achievement (Ach) and affiliative (Aff) needs. Results of story analyses revealed that achievement arousal increased scores of high Ach subjects and that high Aff subjects obtained higher scores than low Aff subjects. (BL)

  3. Achieving All Our Ambitions

    ERIC Educational Resources Information Center

    Hartley, Tricia

    2009-01-01

    National learning and skills policy aims both to build economic prosperity and to achieve social justice. Participation in higher education (HE) has the potential to contribute substantially to both aims. That is why the Campaign for Learning has supported the ambition to increase the proportion of the working-age population with a Level 4…

  4. Advancing Student Achievement

    ERIC Educational Resources Information Center

    Walberg, Herbert J.

    2010-01-01

    For the last half century, higher spending and many modern reforms have failed to raise the achievement of students in the United States to the levels of other economically advanced countries. A possible explanation, says Herbert Walberg, is that much current education theory is ill informed about scientific psychology, often drawing on fads and…

  5. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  6. Development of a Class of Smoothness-Increasing-Accuracy-Conserving (SIAC) Methods for Post-Processing Discontinuous Galerkin Solutions

    DTIC Science & Technology

    2013-07-01

    the theoretical extensions, pointwise error estimates demonstrating that higher-order accuracy of order 2k+2 –[d/2] is indeed achieved in the L∞-norm...estimates to the entire domain were also done. This was a significant extension as pointwise error estimates will be more useful for quantifying

  7. Numerical accuracy assessment

    NASA Astrophysics Data System (ADS)

    Boerstoel, J. W.

    1988-12-01

    A framework is provided for numerical accuracy assessment. The purpose of numerical flow simulations is formulated. This formulation concerns the classes of aeronautical configurations (boundaries), the desired flow physics (flow equations and their properties), the classes of flow conditions on flow boundaries (boundary conditions), and the initial flow conditions. Next, accuracy and economical performance requirements are defined; the final numerical flow simulation results of interest should have a guaranteed accuracy, and be produced for an acceptable FLOP-price. Within this context, the validation of numerical processes with respect to the well known topics of consistency, stability, and convergence when the mesh is refined must be done by numerical experimentation because theory gives only partial answers. This requires careful design of text cases for numerical experimentation. Finally, the results of a few recent evaluation exercises of numerical experiments with a large number of codes on a few test cases are summarized.

  8. Geographic stacking: Decision fusion to increase global land cover map accuracy

    NASA Astrophysics Data System (ADS)

    Clinton, Nicholas; Yu, Le; Gong, Peng

    2015-05-01

    Techniques to combine multiple classifier outputs is an established sub-discipline in data mining, referred to as "stacking," "ensemble classification," or "meta-learning." Here we describe how stacking of geographically allocated classifications can create a map composite of higher accuracy than any of the individual classifiers. We used both voting algorithms and trainable classifiers with a set of validation data to combine individual land cover maps. We describe the generality of this setup in terms of existing algorithms and accuracy assessment procedures. This method has the advantage of not requiring posterior probabilities or level of support for predicted class labels. We demonstrate the technique using Landsat based, 30-meter land cover maps, the highest resolution, globally available product of this kind. We used globally distributed validation samples to composite the maps and compute accuracy. We show that geographic stacking can improve individual map accuracy by up to 6.6%. The voting methods can also achieve higher accuracy than the best of the input classifications. Accuracies from different classifiers, input data, and output type are compared. The results are illustrated on a Landsat scene in California, USA. The compositing technique described here has broad applicability in remote sensing based map production and geographic classification.

  9. Critical thinking and accuracy of nurses' diagnoses.

    PubMed

    Lunney, Margaret

    2003-01-01

    Interpretations of patient data are complex and diverse, contributing to a risk of low accuracy nursing diagnoses. This risk is confirmed in research findings that accuracy of nurses' diagnoses varied widely from high to low. Highly accurate diagnoses are essential, however, to guide nursing interventions for the achievement of positive health outcomes. Development of critical thinking abilities is likely to improve accuracy of nurses' diagnoses. New views of critical thinking serve as a basis for critical thinking in nursing. Seven cognitive skills and ten habits of mind are identified as dimensions of critical thinking for use in the diagnostic process. Application of the cognitive skills of critical thinking illustrates the importance of using critical thinking for accuracy of nurses' diagnoses. Ten strategies are proposed for self-development of critical thinking abilities.

  10. Accuracy of Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Guille, M.; Sullivan, J. P.

    2001-01-01

    Uncertainty in pressure sensitive paint (PSP) measurement is investigated from a standpoint of system modeling. A functional relation between the imaging system output and luminescent emission from PSP is obtained based on studies of radiative energy transports in PSP and photodetector response to luminescence. This relation provides insights into physical origins of various elemental error sources and allows estimate of the total PSP measurement uncertainty contributed by the elemental errors. The elemental errors and their sensitivity coefficients in the error propagation equation are evaluated. Useful formulas are given for the minimum pressure uncertainty that PSP can possibly achieve and the upper bounds of the elemental errors to meet required pressure accuracy. An instructive example of a Joukowsky airfoil in subsonic flows is given to illustrate uncertainty estimates in PSP measurements.

  11. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  12. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  13. Integrating conventional classifiers with a GIS expert system to increase the accuracy of invasive species mapping

    NASA Astrophysics Data System (ADS)

    Masocha, Mhosisi; Skidmore, Andrew K.

    2011-06-01

    Mapping the cover of invasive species using remotely sensed data alone is challenging, because many invaders occur as mid-level canopy species or as subtle understorey species and therefore contribute little to the spectral signatures captured by passive remote sensing devices. In this study, two common non-parametric classifiers namely, the neural network and support vector machine were used to map four cover classes of the invasive shrub Lantana camara in a protected game reserve and the adjacent area under communal land management in Zimbabwe. These classifiers were each combined with a geographic information system (GIS) expert system, in order to test whether the new hybrid classifiers yielded significantly more accurate invasive species cover maps than the single classifiers. The neural network, when used on its own, mapped the cover of L. camara with an overall accuracy of 71% and a Kappa index of agreement of 0.61. When the neural network was combined with an expert system, the overall accuracy and Kappa index of agreement significantly increased to 83% and 0.77, respectively. Similarly, the support vector machine achieved an overall accuracy of 64% with a Kappa index of agreement of 0.52, whereas the hybrid support vector machine and expert system classifier achieved a significantly higher overall accuracy of 76% and a Kappa index of agreement of 0.67. These results suggest that integrating conventional image classifiers with an expert system increases the accuracy of invasive species mapping.

  14. Towards Experimental Accuracy from the First Principles

    NASA Astrophysics Data System (ADS)

    Polyansky, O. L.; Lodi, L.; Tennyson, J.; Zobov, N. F.

    2013-06-01

    Producing ab initio ro-vibrational energy levels of small, gas-phase molecules with an accuracy of 0.10 cm^{-1} would constitute a significant step forward in theoretical spectroscopy and would place calculated line positions considerably closer to typical experimental accuracy. Such an accuracy has been recently achieved for the H_3^+ molecular ion for line positions up to 17 000 cm ^{-1}. However, since H_3^+ is a two-electron system, the electronic structure methods used in this study are not applicable to larger molecules. A major breakthrough was reported in ref., where an accuracy of 0.10 cm^{-1} was achieved ab initio for seven water isotopologues. Calculated vibrational and rotational energy levels up to 15 000 cm^{-1} and J=25 resulted in a standard deviation of 0.08 cm^{-1} with respect to accurate reference data. As far as line intensities are concerned, we have already achieved for water a typical accuracy of 1% which supersedes average experimental accuracy. Our results are being actively extended along two major directions. First, there are clear indications that our results for water can be improved to an accuracy of the order of 0.01 cm^{-1} by further, detailed ab initio studies. Such level of accuracy would already be competitive with experimental results in some situations. A second, major, direction of study is the extension of such a 0.1 cm^{-1} accuracy to molecules containg more electrons or more than one non-hydrogen atom, or both. As examples of such developments we will present new results for CO, HCN and H_2S, as well as preliminary results for NH_3 and CH_4. O.L. Polyansky, A. Alijah, N.F. Zobov, I.I. Mizus, R. Ovsyannikov, J. Tennyson, L. Lodi, T. Szidarovszky and A.G. Csaszar, Phil. Trans. Royal Soc. London A, {370}, 5014-5027 (2012). O.L. Polyansky, R.I. Ovsyannikov, A.A. Kyuberis, L. Lodi, J. Tennyson and N.F. Zobov, J. Phys. Chem. A, (in press). L. Lodi, J. Tennyson and O.L. Polyansky, J. Chem. Phys. {135}, 034113 (2011).

  15. Parental Involvement and Academic Achievement

    ERIC Educational Resources Information Center

    Goodwin, Sarah Christine

    2015-01-01

    This research study examined the correlation between student achievement and parent's perceptions of their involvement in their child's schooling. Parent participants completed the Parent Involvement Project Parent Questionnaire. Results slightly indicated parents of students with higher level of achievement perceived less demand or invitations…

  16. Motor Inhibition Affects the Speed But Not Accuracy of Aimed Limb Movements in an Insect

    PubMed Central

    Calas-List, Delphine; Clare, Anthony J.; Komissarova, Alexandra; Nielsen, Thomas A.

    2014-01-01

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition. PMID:24872556

  17. Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.

    PubMed

    Calas-List, Delphine; Clare, Anthony J; Komissarova, Alexandra; Nielsen, Thomas A; Matheson, Thomas

    2014-05-28

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition.

  18. Faculty achievement tracking tool.

    PubMed

    Pettus, Sarah; Reifschneider, Ellen; Burruss, Nancy

    2009-03-01

    Faculty development and scholarship is an expectation of nurse educators. Accrediting institutions, such as the Commission on Collegiate Nursing Education, the National League for Nursing Accrediting Commission, and the Higher Learning Commission, all have criteria regarding faculty achievement. A faculty achievement tracking tool (FATT) was developed to facilitate documentation of accreditation criteria attainment. Based on criteria from accrediting organizations, the roles that are addressed include scholarship, service, and practice. Definitions and benchmarks for the faculty as an aggregate are included. Undergoing reviews from different accrediting organizations, the FATT has been used once for accreditation of the undergraduate program and once for accreditation of the graduate program. The FATT is easy to use and has become an excellent adjunct for the preparation for accreditation reports. In addition, the FATT may be used for yearly evaluations, advancement, and merit.

  19. Radiocarbon dating accuracy improved

    NASA Astrophysics Data System (ADS)

    Scientists have extended the accuracy of carbon-14 (14C) dating by correlating dates older than 8,000 years with uranium-thorium dates that span from 8,000 to 30,000 years before present (ybp, present = 1950). Edouard Bard, Bruno Hamelin, Richard Fairbanks and Alan Zindler, working at Columbia University's Lamont-Doherty Geological Observatory, dated corals from reefs off Barbados using both 14C and uranium-234/thorium-230 by thermal ionization mass spectrometry techniques. They found that the two age data sets deviated in a regular way, allowing the scientists to correlate the two sets of ages. The 14C dates were consistently younger than those determined by uranium-thorium, and the discrepancy increased to about 3,500 years at 20,000 ybp.

  20. Prospective memory mediated by interoceptive accuracy: a psychophysiological approach

    PubMed Central

    Tochizawa, Saiko; Shibata, Midori; Terasawa, Yuri

    2016-01-01

    Previous studies on prospective memory (PM), defined as memory for future intentions, suggest that psychological stress enhances successful PM retrieval. However, the mechanisms underlying this notion remain poorly understood. We hypothesized that PM retrieval is achieved through interaction with autonomic nervous activity, which is mediated by the individual accuracy of interoceptive awareness, as measured by the heartbeat detection task. In this study, the relationship between cardiac reactivity and retrieval of delayed intentions was evaluated using the event-based PM task. Participants were required to detect PM target letters while engaged in an ongoing 2-back working memory task. The results demonstrated that individuals with higher PM task performance had a greater increase in heart rate on PM target presentation. Also, higher interoceptive perceivers showed better PM task performance. This pattern was not observed for working memory task performance. These findings suggest that cardiac afferent signals enhance PM retrieval, which is mediated by individual levels of interoceptive accuracy. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’. PMID:28080964

  1. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources.

  2. Reticence, Accuracy and Efficacy

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2015-12-01

    James Hansen has cautioned the scientific community against "reticence," by which he means a reluctance to speak in public about the threat of climate change. This may contribute to social inaction, with the result that society fails to respond appropriately to threats that are well understood scientifically. Against this, others have warned against the dangers of "crying wolf," suggesting that reticence protects scientific credibility. We argue that both these positions are missing an important point: that reticence is not only a matter of style but also of substance. In previous work, Bysse et al. (2013) showed that scientific projections of key indicators of climate change have been skewed towards the low end of actual events, suggesting a bias in scientific work. More recently, we have shown that scientific efforts to be responsive to contrarian challenges have led scientists to adopt the terminology of a "pause" or "hiatus" in climate warming, despite the lack of evidence to support such a conclusion (Lewandowsky et al., 2015a. 2015b). In the former case, scientific conservatism has led to under-estimation of climate related changes. In the latter case, the use of misleading terminology has perpetuated scientific misunderstanding and hindered effective communication. Scientific communication should embody two equally important goals: 1) accuracy in communicating scientific information and 2) efficacy in expressing what that information means. Scientists should strive to be neither conservative nor adventurous but to be accurate, and to communicate that accurate information effectively.

  3. Groves model accuracy study

    NASA Astrophysics Data System (ADS)

    Peterson, Matthew C.

    1991-08-01

    The United States Air Force Environmental Technical Applications Center (USAFETAC) was tasked to review the scientific literature for studies of the Groves Neutral Density Climatology Model and compare the Groves Model with others in the 30-60 km range. The tasking included a request to investigate the merits of comparing accuracy of the Groves Model to rocketsonde data. USAFETAC analysts found the Groves Model to be state of the art for middle-atmospheric climatological models. In reviewing previous comparisons with other models and with space shuttle-derived atmospheric densities, good density vs altitude agreement was found in almost all cases. A simple technique involving comparison of the model with range reference atmospheres was found to be the most economical way to compare the Groves Model with rocketsonde data; an example of this type is provided. The Groves 85 Model is used routinely in USAFETAC's Improved Point Analysis Model (IPAM). To create this model, Dr. Gerald Vann Groves produced tabulations of atmospheric density based on data derived from satellite observations and modified by rocketsonde observations. Neutral Density as presented here refers to the monthly mean density in 10-degree latitude bands as a function of altitude. The Groves 85 Model zonal mean density tabulations are given in their entirety.

  4. A higher-order Robert-Asselin type time filter

    NASA Astrophysics Data System (ADS)

    Li, Yong; Trenchea, Catalin

    2014-02-01

    The Robert-Asselin (RA) time filter combined with leapfrog scheme is widely used in numerical models of weather and climate. It successfully suppresses the spurious computational mode associated with the leapfrog method, but it also weakly dampens the physical mode and degrades the numerical accuracy. The Robert-Asselin-Williams (RAW) time filter is a modification of the RA filter that reduces the undesired numerical damping of RA filter and increases the accuracy. We propose a higher-order Robert-Asselin (hoRA) type time filter which effectively suppresses the computational modes and achieves third-order accuracy with the same storage requirement as RAW filter. Like RA and RAW filters, the hoRA filter is non-intrusive, and so it would be easily implementable. The leapfrog scheme with hoRA filter is almost as accurate, stable and efficient as the intrusive third-order Adams-Bashforth (AB3) method.

  5. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  6. Final Technical Report: Increasing Prediction Accuracy.

    SciTech Connect

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua

    2015-12-01

    PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

  7. The effect of atmospheric and topographic correction methods on land cover classification accuracy

    NASA Astrophysics Data System (ADS)

    Vanonckelen, Steven; Lhermitte, Stefaan; Van Rompaey, Anton

    2013-10-01

    Mapping of vegetation in mountain areas based on remote sensing is obstructed by atmospheric and topographic distortions. A variety of atmospheric and topographic correction methods has been proposed to minimize atmospheric and topographic effects and should in principle lead to a better land cover classification. Only a limited number of atmospheric and topographic combinations has been tested and the effect on class accuracy and on different illumination conditions is not yet researched extensively. The purpose of this study was to evaluate the effect of coupled correction methods on land cover classification accuracy. Therefore, all combinations of three atmospheric (no atmospheric correction, dark object subtraction and correction based on transmittance functions) and five topographic corrections (no topographic correction, band ratioing, cosine correction, pixel-based Minnaert and pixel-based C-correction) were applied on two acquisitions (2009 and 2010) of a Landsat image in the Romanian Carpathian mountains. The accuracies of the fifteen resulting land cover maps were evaluated statistically based on two validation sets: a random validation set and a validation subset containing pixels present in the difference area between the uncorrected classification and one of the fourteen corrected classifications. New insights into the differences in classification accuracy were obtained. First, results showed that all corrected images resulted in higher overall classification accuracies than the uncorrected images. The highest accuracy for the full validation set was achieved after combination of an atmospheric correction based on transmittance functions and a pixel-based Minnaert topographic correction. Secondly, class accuracies of especially the coniferous and mixed forest classes were enhanced after correction. There was only a minor improvement for the other land cover classes (broadleaved forest, bare soil, grass and water). This was explained by the position

  8. Field Accuracy Test of Rpas Photogrammetry

    NASA Astrophysics Data System (ADS)

    Barry, P.; Coakley, R.

    2013-08-01

    Baseline Surveys Ltd is a company which specialises in the supply of accurate geospatial data, such as cadastral, topographic and engineering survey data to commercial and government bodies. Baseline Surveys Ltd invested in aerial drone photogrammetric technology and had a requirement to establish the spatial accuracy of the geographic data derived from our unmanned aerial vehicle (UAV) photogrammetry before marketing our new aerial mapping service. Having supplied the construction industry with survey data for over 20 years, we felt that is was crucial for our clients to clearly understand the accuracy of our photogrammetry so they can safely make informed spatial decisions, within the known accuracy limitations of our data. This information would also inform us on how and where UAV photogrammetry can be utilised. What we wanted to find out was the actual accuracy that can be reliably achieved using a UAV to collect data under field conditions throughout a 2 Ha site. We flew a UAV over the test area in a "lawnmower track" pattern with an 80% front and 80% side overlap; we placed 45 ground markers as check points and surveyed them in using network Real Time Kinematic Global Positioning System (RTK GPS). We specifically designed the ground markers to meet our accuracy needs. We established 10 separate ground markers as control points and inputted these into our photo modelling software, Agisoft PhotoScan. The remaining GPS coordinated check point data were added later in ArcMap to the completed orthomosaic and digital elevation model so we could accurately compare the UAV photogrammetry XYZ data with the RTK GPS XYZ data at highly reliable common points. The accuracy we achieved throughout the 45 check points was 95% reliably within 41 mm horizontally and 68 mm vertically and with an 11.7 mm ground sample distance taken from a flight altitude above ground level of 90 m.The area covered by one image was 70.2 m × 46.4 m, which equals 0.325 Ha. This finding has shown

  9. Sharing Leadership Responsibilities Results in Achievement Gains

    ERIC Educational Resources Information Center

    Armistead, Lew

    2010-01-01

    Collective, not individual, leadership in schools has a greater impact on student achievement; when principals and teachers share leadership responsibilities, student achievement is higher; and schools having high student achievement also display a vision for student achievement and teacher growth. Those are just a few of the insights into school…

  10. Why do delayed summaries improve metacomprehension accuracy?

    PubMed

    Anderson, Mary C M; Thiede, Keith W

    2008-05-01

    We showed that metacomprehension accuracy improved when participants (N=87 college students) wrote summaries of texts prior to judging their comprehension; however, accuracy only improved when summaries were written after a delay, not when written immediately after reading. We evaluated two hypotheses proposed to account for this delayed-summarization effect (the accessibility hypothesis and the situation model hypothesis). The data suggest that participants based metacomprehension judgments more on the gist of texts when they generated summaries after a delay; whereas, they based judgments more on details when they generated summaries immediately after reading. Focusing on information relevant to the situation model of a text (the gist of a text) produced higher levels of metacomprehension accuracy, which is consistent with situation model hypothesis.

  11. Time Management and Academic Achievement of Higher Secondary Students

    ERIC Educational Resources Information Center

    Cyril, A. Vences

    2015-01-01

    The only thing, which can't be changed by man, is time. One cannot get back time lost or gone Nothing can be substituted for time. Time management is actually self management. The skills that people need to manage others are the same skills that are required to manage themselves. The purpose of the present study was to explore the relation between…

  12. Applications for high-accuracy digital ionosonde data

    SciTech Connect

    Paul, A.K.

    1990-05-03

    The new technology used in modern digital ionosondes permits the measurement of traditional (virtual heights and amplitude of echoes) and new (radio phase of echoes) ionospheric data with very high precision. Consequently, higher accuracy for standard ionospheric parameters can be achieved and new types of parameters can be obtained using new processing methods. Details of such data analysis programs may depend on the type of digital ionosonde used; however, the basic physical principles involved are the same. For example, there is no doubt that the change of the radio phase with time is proportional to the Doppler frequency of the echo. In recent years much effort has gone into modeling of the ionosphere. Unfortunately the spatial and the temporal resolution of the most basic parameters of the data base for testing such models is inadequate. For example, it appears that in some areas (e.g., Europe) the spatial resolution of the F-layer maximum electron density may be sufficient, but this is not true for the height of the maximum and the half-thickness of the F-layer, since very few station computed electron density profiles from the recorded ionograms. In the following we will outline a new procedure for computing F-layer profile parameters. The process is simple and its routine application could significantly improve the data base. The accuracy limits of the resulting parameters will be discussed together with some other important ionospheric quantities observable with digital ionosondes.

  13. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    NASA Astrophysics Data System (ADS)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  14. Accuracy of genotype imputation in sheep breeds.

    PubMed

    Hayes, B J; Bowman, P J; Daetwyler, H D; Kijas, J W; van der Werf, J H J

    2012-02-01

    Although genomic selection offers the prospect of improving the rate of genetic gain in meat, wool and dairy sheep breeding programs, the key constraint is likely to be the cost of genotyping. Potentially, this constraint can be overcome by genotyping selection candidates for a low density (low cost) panel of SNPs with sparse genotype coverage, imputing a much higher density of SNP genotypes using a densely genotyped reference population. These imputed genotypes would then be used with a prediction equation to produce genomic estimated breeding values. In the future, it may also be desirable to impute very dense marker genotypes or even whole genome re-sequence data from moderate density SNP panels. Such a strategy could lead to an accurate prediction of genomic estimated breeding values across breeds, for example. We used genotypes from 48 640 (50K) SNPs genotyped in four sheep breeds to investigate both the accuracy of imputation of the 50K SNPs from low density SNP panels, as well as prospects for imputing very dense or whole genome re-sequence data from the 50K SNPs (by leaving out a small number of the 50K SNPs at random). Accuracy of imputation was low if the sparse panel had less than 5000 (5K) markers. Across breeds, it was clear that the accuracy of imputing from sparse marker panels to 50K was higher if the genetic diversity within a breed was lower, such that relationships among animals in that breed were higher. The accuracy of imputation from sparse genotypes to 50K genotypes was higher when the imputation was performed within breed rather than when pooling all the data, despite the fact that the pooled reference set was much larger. For Border Leicesters, Poll Dorsets and White Suffolks, 5K sparse genotypes were sufficient to impute 50K with 80% accuracy. For Merinos, the accuracy of imputing 50K from 5K was lower at 71%, despite a large number of animals with full genotypes (2215) being used as a reference. For all breeds, the relationship of

  15. Accuracy assessment of single and double difference models for the single epoch GPS compass

    NASA Astrophysics Data System (ADS)

    Chen, Wantong; Qin, Honglei; Zhang, Yanzhong; Jin, Tian

    2012-02-01

    The single epoch GPS compass is an important field of study, since it is a valuable technique for the orientation estimation of vehicles and it can guarantee a total independence from carrier phase slips in practical applications. To achieve highly accurate angular estimates, the unknown integer ambiguities of the carrier phase observables need to be resolved. Past researches focus on the ambiguity resolution for single epoch; however, accuracy is another significant problem for many challenging applications. In this contribution, the accuracy is evaluated for the non-common clock scheme of the receivers and the common clock scheme of the receivers, respectively. We focus on three scenarios for either scheme: single difference model vs. double difference model, single frequency model vs. multiple frequency model and optimal linear combinations vs. traditional triple-frequency least squares. We deduce the short baseline precision for a number of different available models and analyze the difference in accuracy for those models. Compared with the single or double difference model of the non-common clock scheme, the single difference model of the common clock scheme can greatly reduce the vertical component error of baseline vector, which results in higher elevation accuracy. The least squares estimator can also reduce the error of fixed baseline vector with the aid of the multi-frequency observation, thereby improving the attitude accuracy. In essence, the "accuracy improvement" is attributed to the difference in accuracy for different models, not a real improvement for any specific model. If all noise levels of GPS triple frequency carrier phase are assumed the same in unit of cycles, it can be proved that the optimal linear combination approach is equivalent to the traditional triple-frequency least squares, no matter which scheme is utilized. Both simulations and actual experiments have been performed to verify the correctness of theoretical analysis.

  16. Errors in spectral fingerprints and their effects on climate fingerprinting accuracy in the solar spectrum

    NASA Astrophysics Data System (ADS)

    Jin, Zhonghai; Sun, Moguo

    2017-02-01

    Using the Earth's reflected solar spectrum for climate change fingerprinting is an emerging research area. The spectral fingerprinting approach directly retrieves the changes in climate variables from the mean spectral data averaged across large space and time scales. To investigate this fingerprinting concept, we use ten years of satellite data to simulate the monthly and annual mean reflected solar spectra and the associated spectral fingerprints for different regions over the ocean. The interannual variations in the spectral data are derived and attributed to the interannual variations in the relevant climate variables. The fingerprinting retrieved changes in climate variables are then compared with the actual underlying variable changes from the observational data to evaluate the fingerprinting retrieval accuracy. Two important errors related to the fingerprinting approach, the nonlinearity error and the averaging error in the mean fingerprints, and their impact on the retrieval accuracy, are investigated. It is found that the averaging error increases but the nonlinearity error decreases as the region size increases. The averaging error has minimal effect on the fingerprinting retrieval accuracy in small regions but has more of an impact in large regions. In comparison, the effect of nonlinearity error on the retrieval accuracy decreases as the region size increases. It is also found that the fingerprinting retrieval accuracy is more sensitive to the nonlinearity error than to the averaging error. In addition, we compare the fingerprinting accuracy between using the monthly mean data and the annual mean data. The results show that on average higher retrieval accuracy is achieved when the annual mean data are used for the fingerprinting retrieval.

  17. Test Expectancy Affects Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  18. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.; Gregory, Dennis E.

    Decisions made by federal and state courts during 1983 concerning higher education are reported in this chapter. Issues of employment and the treatment of students underlay the bulk of the litigation. Specific topics addressed in these and other cases included federal authority to enforce regulations against age discrimination and to revoke an…

  19. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.

    Litigation in 1987 was very brisk with an increase in the number of higher education cases reviewed. Cases discussed in this chapter are organized under four major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining and denial of employee benefits; (3)…

  20. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.; Finnegan, Dorothy E.

    The higher education case law in 1988 is extensive. Cases discussed in this chapter are organized under five major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining, and denial of employee benefits; (3) students, involving admissions, financial aid, First…

  1. Higher Education.

    ERIC Educational Resources Information Center

    Knowles, Laurence W.; Wedlock, Eldon D., Jr.

    Courts have been consistently reluctant to interfere with governing boards' powers to control the administration of institutions of higher education. This deference seems to be based on the belief that board expertise makes it significantly more qualified than are the courts to make the necessary administrative decisions. Uncritical deference by…

  2. Accuracy of distance measurements in biplane angiography

    NASA Astrophysics Data System (ADS)

    Toennies, Klaus D.; Oishi, Satoru; Koster, David; Schroth, Gerhard

    1997-05-01

    Distance measurements of the vascular system of the brain can be derived from biplanar digital subtraction angiography (2p-DSA). The measurements are used for planning of minimal invasive surgical procedures. Our 90 degree-fixed-angle G- ring angiography system has the potential of acquiring pairs of such images with high geometric accuracy. The sizes of vessels and aneurysms are estimated applying a fast and accurate extraction method in order to select an appropriate surgical strategy. Distance computation from 2p-DSA is carried out in three steps. First, the boundary of the structure to be measured is detected based on zero-crossings and closeness to user-specified end points. Subsequently, the 3D location of the center of the structure is computed from the centers of gravity of its two projections. This location is used to reverse the magnification factor caused by the cone-shaped projection of the x-rays. Since exact measurements of possibly very small structures are crucial to the usefulness in surgical planning, we identified mechanical and computational influences on the geometry which may have an impact on the measurement accuracy. A study with phantoms is presented distinguishing between the different effects and enabling the computation of an optimal overall exactness. Comparing this optimum with results of distance measurements on phantoms whose exact size and shape is known, we found, that the measurement error for structures of size of 20 mm was less than 0.05 mm on average and 0.50 mm at maximum. The maximum achievable accuracy of 0.15 mm was in most cases exceeded by less than 0.15 mm. This accuracy surpasses by far the requirements for the above mentioned surgery application. The mechanic accuracy of the fixed-angle biplanar system meets the requirements for computing a 3D reconstruction of the small vessels of the brain. It also indicates, that simple measurements will be possible on systems being less accurate.

  3. Accuracy Test of Microsoft Kinect for Human Morphologic Measurements

    NASA Astrophysics Data System (ADS)

    Molnár, B.; Toth, C. K.; Detrekői, A.

    2012-08-01

    The Microsoft Kinect sensor, a popular gaming console, is widely used in a large number of applications, including close-range 3D measurements. This low-end device is rather inexpensive compared to similar active imaging systems. The Kinect sensors include an RGB camera, an IR projector, an IR camera and an audio unit. The human morphologic measurements require high accuracy with fast data acquisition rate. To achieve the highest accuracy, the depth sensor and the RGB camera should be calibrated and co-registered to achieve high-quality 3D point cloud as well as optical imagery. Since this is a low-end sensor, developed for different purpose, the accuracy could be critical for 3D measurement-based applications. Therefore, two types of accuracy test are performed: (1) for describing the absolute accuracy, the ranging accuracy of the device in the range of 0.4 to 15 m should be estimated, and (2) the relative accuracy of points depending on the range should be characterized. For the accuracy investigation, a test field was created with two spheres, while the relative accuracy is described by sphere fitting performance and the distance estimation between the sphere center points. Some other factors can be also considered, such as the angle of incidence or the material used in these tests. The non-ambiguity range of the sensor is from 0.3 to 4 m, but, based on our experiences, it can be extended up to 20 m. Obviously, this methodology raises some accuracy issues which make accuracy testing really important.

  4. Leader as achiever.

    PubMed

    Dienemann, Jacqueline

    2002-01-01

    This article examines one outcome of leadership: productive achievement. Without achievement one is judged to not truly be a leader. Thus, the ideal leader must be a visionary, a critical thinker, an expert, a communicator, a mentor, and an achiever of organizational goals. This article explores the organizational context that supports achievement, measures of quality nursing care, fiscal accountability, leadership development, rewards and punishments, and the educational content and teaching strategies to prepare graduates to be achievers.

  5. Institutional Climate and Minority Achievement.

    ERIC Educational Resources Information Center

    Richardson, Richard C.

    This paper discusses ways that institutions can change the higher education system and environment to accommodate more minority students. The first section, "Institutional Climate and Minority Achievement," presents an overview of the problems facing colleges and universities with respect to recruiting and retaining minority students. In the…

  6. Teacher Dispositions and Student Achievement

    ERIC Educational Resources Information Center

    Vaughn, Kathleen Adams

    2012-01-01

    In an effort to close the achievement gap between students of minority and majority populations and between students in higher and lower economic circumstances, the National Council for the Accreditation of Teacher Education (NCATE) added instruction and evaluation of teacher dispositions to its requirements for credentialing prospective teachers.…

  7. High Accuracy Transistor Compact Model Calibrations

    SciTech Connect

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  8. 100% Classification Accuracy Considered Harmful: The Normalized Information Transfer Factor Explains the Accuracy Paradox

    PubMed Central

    Valverde-Albacete, Francisco J.; Peláez-Moreno, Carmen

    2014-01-01

    The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA), a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT), a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to “cheat” using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers. PMID:24427282

  9. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    PubMed

    Valverde-Albacete, Francisco J; Peláez-Moreno, Carmen

    2014-01-01

    The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA), a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT), a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.

  10. Assessment of the Thematic Accuracy of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2015-08-01

    Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.

  11. Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark

    1998-01-01

    A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.

  12. ACCURACY LIMITATIONS IN LONG TRACE PROFILOMETRY.

    SciTech Connect

    TAKACS,P.Z.; QIAN,S.

    2003-08-25

    As requirements for surface slope error quality of grazing incidence optics approach the 100 nanoradian level, it is necessary to improve the performance of the measuring instruments to achieve accurate and repeatable results at this level. We have identified a number of internal error sources in the Long Trace Profiler (LTP) that affect measurement quality at this level. The LTP is sensitive to phase shifts produced within the millimeter diameter of the pencil beam probe by optical path irregularities with scale lengths of a fraction of a millimeter. We examine the effects of mirror surface ''macroroughness'' and internal glass homogeneity on the accuracy of the LTP through experiment and theoretical modeling. We will place limits on the allowable surface ''macroroughness'' and glass homogeneity required to achieve accurate measurements in the nanoradian range.

  13. When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments?

    PubMed Central

    Ramnarine, Shelina; Zhang, Juan; Chen, Li-Shiun; Culverhouse, Robert; Duan, Weimin; Hancock, Dana B.; Hartz, Sarah M.; Johnson, Eric O.; Olfson, Emily; Schwantes-An, Tae-Hwi; Saccone, Nancy L.

    2015-01-01

    Imputation, the process of inferring genotypes for untyped variants, is used to identify and refine genetic association findings. Inaccuracies in imputed data can distort the observed association between variants and a disease. Many statistics are used to assess accuracy; some compare imputed to genotyped data and others are calculated without reference to true genotypes. Prior work has shown that the Imputation Quality Score (IQS), which is based on Cohen’s kappa statistic and compares imputed genotype probabilities to true genotypes, appropriately adjusts for chance agreement; however, it is not commonly used. To identify differences in accuracy assessment, we compared IQS with concordance rate, squared correlation, and accuracy measures built into imputation programs. Genotypes from the 1000 Genomes reference populations (AFR N = 246 and EUR N = 379) were masked to match the typed single nucleotide polymorphism (SNP) coverage of several SNP arrays and were imputed with BEAGLE 3.3.2 and IMPUTE2 in regions associated with smoking behaviors. Additional masking and imputation was conducted for sequenced subjects from the Collaborative Genetic Study of Nicotine Dependence and the Genetic Study of Nicotine Dependence in African Americans (N = 1,481 African Americans and N = 1,480 European Americans). Our results offer further evidence that concordance rate inflates accuracy estimates, particularly for rare and low frequency variants. For common variants, squared correlation, BEAGLE R2, IMPUTE2 INFO, and IQS produce similar assessments of imputation accuracy. However, for rare and low frequency variants, compared to IQS, the other statistics tend to be more liberal in their assessment of accuracy. IQS is important to consider when evaluating imputation accuracy, particularly for rare and low frequency variants. PMID:26458263

  14. Higher-order phase shift reconstruction approach

    SciTech Connect

    Cong Wenxiang; Wang Ge

    2010-10-15

    Purpose: Biological soft tissues encountered in clinical and preclinical imaging mainly consists of atoms of light elements with low atomic numbers and their elemental composition is nearly uniform with little density variation. Hence, x-ray attenuation contrast is relatively poor and cannot achieve satisfactory sensitivity and specificity. In contrast, x-ray phase-contrast provides a new mechanism for soft tissue imaging. The x-ray phase shift of soft tissues is about a thousand times greater than the x-ray absorption over the diagnostic x-ray energy range, yielding a higher signal-to-noise ratio than the attenuation contrast counterpart. Thus, phase-contrast imaging is a promising technique to reveal detailed structural variation in soft tissues, offering a high contrast resolution between healthy and malignant tissues. Here the authors develop a novel phase retrieval method to reconstruct the phase image on the object plane from the intensity measurements. The reconstructed phase image is a projection of the phase shift induced by an object and serves as input to reconstruct the 3D refractive index distribution inside the object using a tomographic reconstruction algorithm. Such x-ray refractive index images can reveal structural features in soft tissues, with excellent resolution differentiating healthy and malignant tissues. Methods: A novel phase retrieval approach is proposed to reconstruct an x-ray phase image of an object based on the paraxial Fresnel-Kirchhoff diffraction theory. A primary advantage of the authors' approach is higher-order accuracy over that with the conventional linear approximation models, relaxing the current restriction of slow phase variation. The nonlinear terms in the autocorrelation equation of the Fresnel diffraction pattern are eliminated using intensity images measured at different distances in the Fresnel diffraction region, simplifying the phase reconstruction to a linear inverse problem. Numerical experiments are performed

  15. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Kronenwetter, Jeffrey; Carter, Delano R.; Todirita, Monica; Chu, Donald

    2016-01-01

    The GOES-R magnetometer accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. To achieve this, the sensor itself has better than 1 nT accuracy. Because zero offset and scale factor drift over time, it is also necessary to perform annual calibration maneuvers. To predict performance, we used covariance analysis and attempted to corroborate it with simulations. Although not perfect, the two generally agree and show the expected behaviors. With the annual calibration regimen, these predictions suggest that the magnetometers will meet their accuracy requirements.

  16. High Accuracy Time Transfer Synchronization

    DTIC Science & Technology

    1994-12-01

    HIGH ACCURACY TIME TRANSFER SYNCHRONIZATION Paul Wheeler, Paul Koppang, David Chalmers, Angela Davis, Anthony Kubik and William Powell U.S. Naval...Observatory Washington, DC 20392 Abstract In July 1994, the US Naval Observatory (USNO) Time Service System Engineering Division conducted a...field test to establish a baseline accuracy for two-way satellite time transfer synchro- nization. Three Hewlett-Packard model 5071 high performance

  17. Process Analysis Via Accuracy Control

    DTIC Science & Technology

    1982-02-01

    0 1 4 3 NDARDS THE NATIONAL February 1982 Process Analysis Via Accuracy Control RESEARCH PROG RAM U.S. DEPARTMENT OF TRANSPORTATION Maritime...SUBTITLE Process Analysis Via Accuracy Control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...examples are contained in Appendix C. Included, are examples of how “A/C” process - analysis leads to design improvement and how a change in sequence can

  18. Limits on the Accuracy of Linking. Research Report. ETS RR-10-22

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2010-01-01

    Sampling errors limit the accuracy with which forms can be linked. Limitations on accuracy are especially important in testing programs in which a very large number of forms are employed. Standard inequalities in mathematical statistics may be used to establish lower bounds on the achievable inking accuracy. To illustrate results, a variety of…

  19. TRASYS: Checkout of accuracy of direct irradiation calculations for discs, trapezoids, cones, and circular paraboloids

    NASA Technical Reports Server (NTRS)

    Mackeen, R. C.

    1977-01-01

    Results of the direct irradiation link of the TRASYS program are evaluated. Several surface configurations were investigated. The accuracy of the results was examined for simple cases where the answers were analytically known. By varying an accuracy factor in the program, the amount of computer time needed to achieve different degress of accuracy was determined.

  20. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  1. Comparing Science Achievement Constructs: Targeted and Achieved

    ERIC Educational Resources Information Center

    Ferrara, Steve; Duncan, Teresa

    2011-01-01

    This article illustrates how test specifications based solely on academic content standards, without attention to other cognitive skills and item response demands, can fall short of their targeted constructs. First, the authors inductively describe the science achievement construct represented by a statewide sixth-grade science proficiency test.…

  2. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  3. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  4. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various…

  5. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    NASA Astrophysics Data System (ADS)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  6. A fast RCS accuracy assessment method for passive radar calibrators

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI

    2016-10-01

    In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.

  7. Accuracy assessment of NLCD 2006 land cover and impervious surface

    USGS Publications Warehouse

    Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.

    2013-01-01

    Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.

  8. Thematic Accuracy Assessment of the 2011 National Land ...

    EPA Pesticide Factsheets

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment of agreement between map and reference labels for the three, single-date NLCD land cover products at Level II and Level I of the classification hierarchy, and agreement for 17 land cover change reporting themes based on Level I classes (e.g., forest loss; forest gain; forest, no change) for three change periods (2001–2006, 2006–2011, and 2001–2011). The single-date overall accuracies were 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011, 2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover components of NLCD 2011 were approximately 4% higher (at Level II and Level I) than the overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-specific user's and producer's accuracies for many of the 17 change reporting themes. User's accuracies were high for the no change reporting themes, commonly exceeding 85%, but were typically much lower for the reporting themes that represented change. Only forest l

  9. Teachers' Judgements of Students' Foreign-Language Achievement

    ERIC Educational Resources Information Center

    Zhu, Mingjing; Urhahne, Detlef

    2015-01-01

    Numerous studies have been conducted on the accuracy of teacher judgement in different educational areas such as mathematics, language arts and reading. Teacher judgement of students' foreign-language achievement, however, has been rarely investigated. The study aimed to examine the accuracy of teacher judgement of students' foreign-language…

  10. Accuracy and Precision of an IGRT Solution

    SciTech Connect

    Webster, Gareth J. Rowbottom, Carl G.; Mackay, Ranald I.

    2009-07-01

    Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within {+-} 3% in dose over the range of sample points. For some points in high-dose gradients

  11. Astronomic Position Accuracy Capability Study.

    DTIC Science & Technology

    1979-10-01

    portion of F. E. Warren AFB, Wyoming. The three points were called THEODORE ECC , TRACY, and JIM and consisted of metal tribrachs plastered to cinder...sets were computed as a deviation from the standard. Accuracy figures were determined from these residuals. Homo - geneity of variances was tested using

  12. The hidden KPI registration accuracy.

    PubMed

    Shorrosh, Paul

    2011-09-01

    Determining the registration accuracy rate is fundamental to improving revenue cycle key performance indicators. A registration quality assurance (QA) process allows errors to be corrected before bills are sent and helps registrars learn from their mistakes. Tools are available to help patient access staff who perform registration QA manually.

  13. Inventory accuracy in 60 days!

    PubMed

    Miller, G J

    1997-08-01

    Despite great advances in manufacturing technology and management science, thousands of organizations still don't have a handle on basic inventory accuracy. Many companies don't even measure it properly, or at all, and lack corrective action programs to improve it. This article offers an approach that has proven successful a number of times, when companies were quite serious about making improvements. Not only can it be implemented, but also it can likely be implemented within 60 days per area, if properly managed. The hardest part is selling people on the need to improve and then keeping them motivated. The net cost of such a program? Probably less than nothing, since the benefits gained usually far exceed the costs. Improved inventory accuracy can aid in enhancing customer service, determining purchasing and manufacturing priorities, reducing operating costs, and increasing the accuracy of financial records. This article also addresses the gap in contemporary literature regarding accuracy program features for repetitive, JIT, cellular, and process- and project-oriented environments.

  14. Improved accuracies for satellite tracking

    NASA Technical Reports Server (NTRS)

    Kammeyer, P. C.; Fiala, A. D.; Seidelmann, P. K.

    1991-01-01

    A charge coupled device (CCD) camera on an optical telescope which follows the stars can be used to provide high accuracy comparisons between the line of sight to a satellite, over a large range of satellite altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion of the satellite is down columns of the CCD chip, and charge can be moved from row to row of the chip at a rate which matches the motion of the optical image of the satellite across the chip. Measurement of satellite and star images, together with accurate timing of charge motion, provides accurate comparisons of lines of sight. Given lines of sight to stars near the satellite, the satellite line of sight may be determined. Initial experiments with this technique, using an 18 cm telescope, have produced TDRS-4 observations which have an rms error of 0.5 arc second, 100 m at synchronous altitude. Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal place of a telescope would allow point images of a geosynchronous satellite and of stars to be formed simultaneously in the same telescope. The line of sight of such a satellite could be measured relative to nearby star lines of sight with an accuracy of approximately 0.03 arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps ten stars per square degree would allow determination of satellite lines of sight with 0.05 arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude. Multiple station time transfers through a communications satellite can provide accurate distances from the satellite to the ground stations. Such observations can, if calibrated for delays, determine satellite orbits to an accuracy approaching 10 m rms.

  15. MAPPING SPATIAL THEMATIC ACCURACY WITH FUZZY SETS

    EPA Science Inventory

    Thematic map accuracy is not spatially homogenous but variable across a landscape. Properly analyzing and representing spatial pattern and degree of thematic map accuracy would provide valuable information for using thematic maps. However, current thematic map accuracy measures (...

  16. 'No delays achiever'.

    PubMed

    2007-05-01

    The latest version of the NHS Institute for Innovation and Improvement's 'no delays achiever', a web based tool created to help NHS organisations achieve the 18-week target for GP referrals to first treatment, is available at www.nodelaysachiever.nhs.uk.

  17. Vicarious Achievement Orientation.

    ERIC Educational Resources Information Center

    Leavitt, Harold J.; And Others

    This study tests hypotheses about achievement orientation, particularly vicarious achievement. Undergraduate students (N=437) completed multiple-choice questionnaires, indicating likely responses of one person to the success of another. The sex of succeeder and observer, closeness of relationship, and setting (medical school or graduate school of…

  18. Heritability of Creative Achievement

    ERIC Educational Resources Information Center

    Piffer, Davide; Hur, Yoon-Mi

    2014-01-01

    Although creative achievement is a subject of much attention to lay people, the origin of individual differences in creative accomplishments remain poorly understood. This study examined genetic and environmental influences on creative achievement in an adult sample of 338 twins (mean age = 26.3 years; SD = 6.6 years). Twins completed the Creative…

  19. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  20. Achievement-Based Resourcing.

    ERIC Educational Resources Information Center

    Fletcher, Mike; And Others

    1992-01-01

    This collection of seven articles examines achievement-based resourcing (ABR), the concept that the funding of educational institutions should be linked to their success in promoting student achievement, with a focus on the application of ABR to postsecondary education in the United Kingdom. The articles include: (1) "Introduction" (Mick…

  1. States Address Achievement Gaps.

    ERIC Educational Resources Information Center

    Christie, Kathy

    2002-01-01

    Summarizes 2 state initiatives to address the achievement gap: North Carolina's report by the Advisory Commission on Raising Achievement and Closing Gaps, containing an 11-point strategy, and Kentucky's legislation putting in place 10 specific processes. The North Carolina report is available at www.dpi.state.nc.us.closingthegap; Kentucky's…

  2. A study of laseruler accuracy and precision (1986-1987)

    SciTech Connect

    Ramachandran, R.S.; Armstrong, K.P.

    1989-06-22

    A study was conducted to investigate Laserruler accuracy and precision. Tests were performed on 0.050 in., 0.100 in., and 0.120 in. gauge block standards. Results showed and accuracy of 3.7 {mu}in. for the 0.12 in. standard, with higher accuracies for the two thinner blocks. The Laserruler precision was 4.83 {mu}in. for the 0.120 in. standard, 3.83 {mu}in. for the 0.100 in. standard, and 4.2 {mu}in. for the 0.050 in. standard.

  3. Improving classification accuracy and causal knowledge for better credit decisions.

    PubMed

    Wu, Wei-Wen

    2011-08-01

    Numerous studies have contributed to efforts to boost the accuracy of the credit scoring model. Especially interesting are recent studies which have successfully developed the hybrid approach, which advances classification accuracy by combining different machine learning techniques. However, to achieve better credit decisions, it is not enough merely to increase the accuracy of the credit scoring model. It is necessary to conduct meaningful supplementary analyses in order to obtain knowledge of causal relations, particularly in terms of significant conceptual patterns or structures involving attributes used in the credit scoring model. This paper proposes a solution of integrating data preprocessing strategies and the Bayesian network classifier with the tree augmented Na"ıve Bayes search algorithm, in order to improve classification accuracy and to obtain improved knowledge of causal patterns, thus enhancing the validity of credit decisions.

  4. Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations

    PubMed Central

    2014-01-01

    Background Accuracy of genomic prediction depends on number of records in the training population, heritability, effective population size, genetic architecture, and relatedness of training and validation populations. Many traits have ordered categories including reproductive performance and susceptibility or resistance to disease. Categorical scores are often recorded because they are easier to obtain than continuous observations. Bayesian linear regression has been extended to the threshold model for genomic prediction. The objective of this study was to quantify reductions in accuracy for ordinal categorical traits relative to continuous traits. Methods Efficiency of genomic prediction was evaluated for heritabilities of 0.10, 0.25 or 0.50. Phenotypes were simulated for 2250 purebred animals using 50 QTL selected from actual 50k SNP (single nucleotide polymorphism) genotypes giving a proportion of causal to total loci of.0001. A Bayes C π threshold model simultaneously fitted all 50k markers except those that represented QTL. Estimated SNP effects were utilized to predict genomic breeding values in purebred (n = 239) or multibreed (n = 924) validation populations. Correlations between true and predicted genomic merit in validation populations were used to assess predictive ability. Results Accuracies of genomic estimated breeding values ranged from 0.12 to 0.66 for purebred and from 0.04 to 0.53 for multibreed validation populations based on Bayes C π linear model analysis of the simulated underlying variable. Accuracies for ordinal categorical scores analyzed by the Bayes C π threshold model were 20% to 50% lower and ranged from 0.04 to 0.55 for purebred and from 0.01 to 0.44 for multibreed validation populations. Analysis of ordinal categorical scores using a linear model resulted in further reductions in accuracy. Conclusions Threshold traits result in markedly lower accuracy than a linear model on the underlying variable. To achieve an accuracy equal or

  5. Achievability for telerobotic systems

    NASA Astrophysics Data System (ADS)

    Kress, Reid L.; Draper, John V.; Hamel, William R.

    2001-02-01

    Methods are needed to improve the capabilities of autonomous robots to perform tasks that are difficult for contemporary robots, and to identify those tasks that robots cannot perform. Additionally, in the realm of remote handling, methods are needed to assess which tasks and/or subtasks are candidates for automation. We are developing a new approach to understanding the capability of autonomous robotic systems. This approach uses formalized methods for determining the achievability of tasks for robots, that is, the likelihood that an autonomous robot or telerobot can successfully complete a particular task. Any autonomous system may be represented in achievability space by the volume describing that system's capabilities within the 3-axis space delineated by perception, cognition, and action. This volume may be thought of as a probability density with achievability decreasing as the distance from the centroid of the volume increases. Similarly, any task may be represented within achievability space. However, as tasks have more finite requirements for perception, cognition, and action, each may be represented as a point (or, more accurately, as a small sphere) within achievability space. Analysis of achievability can serve to identify, a priori, the survivability of robotic systems and the likelihood of mission success; it can be used to plan a mission or portions of a mission; it can be used to modify a mission plan to accommodate unpredicted occurrences; it can also serve to identify needs for modifications to robotic systems or tasks to improve achievability. .

  6. Accuracy of implant impression techniques.

    PubMed

    Assif, D; Marshak, B; Schmidt, A

    1996-01-01

    Three impression techniques were assessed for accuracy in a laboratory cast that simulated clinical practice. The first technique used autopolymerizing acrylic resin to splint the transfer copings. The second involved splinting of the transfer copings directly to an acrylic resin custom tray. In the third, only impression material was used to orient the transfer copings. The accuracy of stone casts with implant analogs was measured against a master framework. The fit of the framework on the casts was tested using strain gauges. The technique using acrylic resin to splint transfer copings in the impression material was significantly more accurate than the two other techniques. Stresses observed in the framework are described and discussed with suggestions to improve clinical and laboratory techniques.

  7. Knowing right from wrong in mental arithmetic judgments: calibration of confidence predicts the development of accuracy.

    PubMed

    Rinne, Luke F; Mazzocco, Michèle M M

    2014-01-01

    Does knowing when mental arithmetic judgments are right--and when they are wrong--lead to more accurate judgments over time? We hypothesize that the successful detection of errors (and avoidance of false alarms) may contribute to the development of mental arithmetic performance. Insight into error detection abilities can be gained by examining the "calibration" of mental arithmetic judgments-that is, the alignment between confidence in judgments and the accuracy of those judgments. Calibration may be viewed as a measure of metacognitive monitoring ability. We conducted a developmental longitudinal investigation of the relationship between the calibration of children's mental arithmetic judgments and their performance on a mental arithmetic task. Annually between Grades 5 and 8, children completed a problem verification task in which they rapidly judged the accuracy of arithmetic expressions (e.g., 25 + 50 = 75) and rated their confidence in each judgment. Results showed that calibration was strongly related to concurrent mental arithmetic performance, that calibration continued to develop even as mental arithmetic accuracy approached ceiling, that poor calibration distinguished children with mathematics learning disability from both low and typically achieving children, and that better calibration in Grade 5 predicted larger gains in mental arithmetic accuracy between Grades 5 and 8. We propose that good calibration supports the implementation of cognitive control, leading to long-term improvement in mental arithmetic accuracy. Because mental arithmetic "fluency" is critical for higher-level mathematics competence, calibration of confidence in mental arithmetic judgments may represent a novel and important developmental predictor of future mathematics performance.

  8. Knowing Right From Wrong In Mental Arithmetic Judgments: Calibration Of Confidence Predicts The Development Of Accuracy

    PubMed Central

    Rinne, Luke F.; Mazzocco, Michèle M. M.

    2014-01-01

    Does knowing when mental arithmetic judgments are right—and when they are wrong—lead to more accurate judgments over time? We hypothesize that the successful detection of errors (and avoidance of false alarms) may contribute to the development of mental arithmetic performance. Insight into error detection abilities can be gained by examining the “calibration” of mental arithmetic judgments—that is, the alignment between confidence in judgments and the accuracy of those judgments. Calibration may be viewed as a measure of metacognitive monitoring ability. We conducted a developmental longitudinal investigation of the relationship between the calibration of children's mental arithmetic judgments and their performance on a mental arithmetic task. Annually between Grades 5 and 8, children completed a problem verification task in which they rapidly judged the accuracy of arithmetic expressions (e.g., 25+50 = 75) and rated their confidence in each judgment. Results showed that calibration was strongly related to concurrent mental arithmetic performance, that calibration continued to develop even as mental arithmetic accuracy approached ceiling, that poor calibration distinguished children with mathematics learning disability from both low and typically achieving children, and that better calibration in Grade 5 predicted larger gains in mental arithmetic accuracy between Grades 5 and 8. We propose that good calibration supports the implementation of cognitive control, leading to long-term improvement in mental arithmetic accuracy. Because mental arithmetic “fluency” is critical for higher-level mathematics competence, calibration of confidence in mental arithmetic judgments may represent a novel and important developmental predictor of future mathematics performance. PMID:24988539

  9. A high accuracy sun sensor

    NASA Astrophysics Data System (ADS)

    Bokhove, H.

    The High Accuracy Sun Sensor (HASS) is described, concentrating on measurement principle, the CCD detector used, the construction of the sensorhead and the operation of the sensor electronics. Tests on a development model show that the main aim of a 0.01-arcsec rms stability over a 10-minute period is closely approached. Remaining problem areas are associated with the sensor sensitivity to illumination level variations, the shielding of the detector, and the test and calibration equipment.

  10. Enhancing and evaluating diagnostic accuracy.

    PubMed

    Swets, J A; Getty, D J; Pickett, R M; D'Orsi, C J; Seltzer, S E; McNeil, B J

    1991-01-01

    Techniques that may enhance diagnostic accuracy in clinical settings were tested in the context of mammography. Statistical information about the relevant features among those visible in a mammogram and about their relative importances in the diagnosis of breast cancer was the basis of two decision aids for radiologists: a checklist that guides the radiologist in assigning a scale value to each significant feature of the images of a particular case, and a computer program that merges those scale values optimally to estimate a probability of malignancy. A test set of approximately 150 proven cases (including normals and benign and malignant lesions) was interpreted by six radiologists, first in their usual manner and later with the decision aids. The enhancing effect of these feature-analytic techniques was analyzed across subsets of cases that were restricted progressively to more and more difficult cases, where difficulty was defined in terms of the radiologists' judgements in the standard reading condition. Accuracy in both standard and enhanced conditions decreased regularly and substantially as case difficulty increased, but differentially, such that the enhancement effect grew regularly and substantially. For the most difficult case sets, the observed increases in accuracy translated into an increase of about 0.15 in sensitivity (true-positive proportion) for a selected specificity (true-negative proportion) of 0.85 or a similar increase in specificity for a selected sensitivity of 0.85. That measured accuracy can depend on case-set difficulty to different degrees for two diagnostic approaches has general implications for evaluation in clinical medicine. Comparative, as well as absolute, assessments of diagnostic performances--for example, of alternative imaging techniques--may be distorted by inadequate treatments of this experimental variable. Subset analysis, as defined and illustrated here, can be useful in alleviating the problem.

  11. The effect of individual or group guidelines on the calibration accuracy of high school biology students

    NASA Astrophysics Data System (ADS)

    Walck, Camilla C.

    The effect of individual or group guidelines on the calibration accuracy of high school biology students was investigated. The study was conducted with 102 International Baccalaureate Middle Years Program biology students in a public school setting. The study was carried out over three testing occasions. Students worked in group or individual settings with and without calibration guidelines. Four intact classes were randomly assigned to one of four conditions: groups calibrating without guidelines; groups calibrating with guidelines; individuals calibrating without guidelines; individuals calibrating with guidelines. The students participated in the calibration activities one block before they actually took each of the three tests. On the day of each test, immediately before taking the test, each student made predictions as to what they thought they would score on the test. Immediately after taking the test each student made postdictions on what they thought they scored on the test. Calibration accuracy was determined by calculating the difference between prediction and postdiction scores and the actual test score achieved. The results indicated that students who calibrated in groups showed trends of more accurate calibration predictions. Although one testing intervention showed significant results for postdiction accuracy, the other two testing interventions showed varied results. Students who calibrated in groups achieved higher scores on tests than did students who calibrated individually. In addition, guidelines were shown to be a significant factor in increasing achievement for students who calibrated individually. For students calibrating in groups guidelines had little impact. The results support the need for more research in metacognition and calibration techniques in order to improve student academic success.

  12. Strategic Planning for Higher Education.

    ERIC Educational Resources Information Center

    Kotler, Philip; Murphy, Patrick E.

    1981-01-01

    The framework necessary for achieving a strategic planning posture in higher education is outlined. The most important benefit of strategic planning for higher education decision makers is that it forces them to undertake a more market-oriented and systematic approach to long- range planning. (Author/MLW)

  13. Municipal water consumption forecast accuracy

    NASA Astrophysics Data System (ADS)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  14. Neuroanatomical Correlates of the Income Achievement Gap

    PubMed Central

    Mackey, Allyson P.; Finn, Amy S.; Leonard, Julia A.; Jacoby Senghor, Drew S.; West, Martin R.; Gabrieli, Christopher F.O.; Gabrieli, John D. E.

    2015-01-01

    In the United States, the difference in academic achievement between higher- and lower-income students (i.e., the income achievement gap) is substantial and growing. Here, we investigated neuroanatomical correlates of this gap in adolescents (n = 58) in whom academic achievement was measured by statewide standardized testing. Cortical gray matter volume was significantly greater in students from higher-income backgrounds (n = 35) compared to students from lower-income backgrounds (n = 23), but cortical white matter volume and total cortical surface area did not differ between groups. Cortical thickness in all lobes of the brain was greater in students from higher-income than lower-income backgrounds. Thicker cortex, particularly in temporal and occipital lobes, was associated with better test performance. These results represent the first evidence that cortical thickness differs across broad swaths of the brain between higher- and lower-income students, and that cortical thickness is related to academic achievement test scores. PMID:25896418

  15. Culture and Achievement Motivation

    ERIC Educational Resources Information Center

    Maehr, Martin L.

    1974-01-01

    A framework is suggested for the cross-cultural study of motivation that stresses the importance of contextual conditions in eliciting achievement motivation and emphasizes cultural relativity in the definition of the concept. (EH)

  16. Mathematics Coursework Regulates Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, Xin; Wilkins, Jesse L. M.

    2007-01-01

    Using data from the Longitudinal Study of American Youth (LSAY), we examined the extent to which students' mathematics coursework regulates (influences) the rate of growth in mathematics achievement during middle and high school. Graphical analysis showed that students who started middle school with higher achievement took individual mathematics…

  17. Maryland's Achievements in Public Education, 2011

    ERIC Educational Resources Information Center

    Maryland State Department of Education, 2011

    2011-01-01

    This report presents Maryland's achievements in public education for 2011. Maryland's achievements include: (1) Maryland's public schools again ranked #1 in the nation in Education Week's 2011 Quality Counts annual report; (2) Maryland ranked 1st nationwide for a 3rd year in a row in the percentage of public school students scoring 3 or higher on…

  18. The incongruous achiever in adolescence.

    PubMed

    Kline, S A; Golombek, H

    1974-06-01

    The authors wished to study some of the internal psychological dynamics of achievement in a nonpatient identified high school population. Questionnaires were administered to the Grade 13 students and their parents in a large high school. A number of students whose achievement and educational plans were not congruous with their general background were selected for interview. The findings suggest that a wide variety of ages and developmental stages can be discerned as critical points in the development of a student's attitude toward higher education. These students have many values in common, and their values appear related to a positive or negative identification with parental values. The students themselves show a wide range of personality integration. They relate in a special way to a wide variety of teachers' personalities.

  19. Efficiency and Accuracy Verification of the Explicit Numerical Manifold Method for Dynamic Problems

    NASA Astrophysics Data System (ADS)

    Qu, X. L.; Wang, Y.; Fu, G. Y.; Ma, G. W.

    2015-05-01

    The original numerical manifold method (NMM) employs an implicit time integration scheme to achieve higher computational accuracy, but its efficiency is relatively low, especially when the open-close iterations of contact are involved. To improve its computational efficiency, a modified version of the NMM based on an explicit time integration algorithm is proposed in this study. The lumped mass matrix, internal force and damping vectors are derived for the proposed explicit scheme. A calibration study on P-wave propagation along a rock bar is conducted to investigate the efficiency and accuracy of the developed explicit numerical manifold method (ENMM) for wave propagation problems. Various considerations in the numerical simulations are discussed, and parametric studies are carried out to obtain an insight into the influencing factors on the efficiency and accuracy of wave propagation. To further verify the capability of the proposed ENMM, dynamic stability assessment for a fractured rock slope under seismic effect is analysed. It is shown that, compared to the original NMM, the computational efficiency of the proposed ENMM can be significantly improved.

  20. Evaluating the accuracy of diffusion MRI models in white matter.

    PubMed

    Rokem, Ariel; Yeatman, Jason D; Pestilli, Franco; Kay, Kendrick N; Mezer, Aviv; van der Walt, Stefan; Wandell, Brian A

    2015-01-01

    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of commonly used models have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM model-accuracy, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking.

  1. Measuring Diagnoses: ICD Code Accuracy

    PubMed Central

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-01-01

    Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999

  2. 3D Higher Order Modeling in the BEM/FEM Hybrid Formulation

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.

    2000-01-01

    Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number

  3. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy

    USGS Publications Warehouse

    Fulford, Janice M.; Clayton, Christopher S.

    2015-10-09

    The calibration device and proposed method were used to calibrate a sample of in-service USGS steel and electric groundwater tapes. The sample of in-service groundwater steel tapes were in relatively good condition. All steel tapes, except one, were accurate to ±0.01 ft per 100 ft over their entire length. One steel tape, which had obvious damage in the first hundred feet, was marginally outside the accuracy of ±0.01 ft per 100 ft by 0.001 ft. The sample of in-service groundwater-level electric tapes were in a range of conditions—from like new, with cosmetic damage, to nonfunctional. The in-service electric tapes did not meet the USGS accuracy recommendation of ±0.01 ft. In-service electric tapes, except for the nonfunctional tape, were accurate to about ±0.03 ft per 100 ft. A comparison of new with in-service electric tapes found that steel-core electric tapes maintained their length and accuracy better than electric tapes without a steel core. The in-service steel tapes could be used as is and achieve USGS accuracy recommendations for groundwater-level measurements. The in-service electric tapes require tape corrections to achieve USGS accuracy recommendations for groundwater-level measurement.

  4. Accuracy of analyses of microelectronics nanostructures in atom probe tomography

    NASA Astrophysics Data System (ADS)

    Vurpillot, F.; Rolland, N.; Estivill, R.; Duguay, S.; Blavette, D.

    2016-07-01

    The routine use of atom probe tomography (APT) as a nano-analysis microscope in the semiconductor industry requires the precise evaluation of the metrological parameters of this instrument (spatial accuracy, spatial precision, composition accuracy or composition precision). The spatial accuracy of this microscope is evaluated in this paper in the analysis of planar structures such as high-k metal gate stacks. It is shown both experimentally and theoretically that the in-depth accuracy of reconstructed APT images is perturbed when analyzing this structure composed of an oxide layer of high electrical permittivity (higher-k dielectric constant) that separates the metal gate and the semiconductor channel of a field emitter transistor. Large differences in the evaporation field between these layers (resulting from large differences in material properties) are the main sources of image distortions. An analytic model is used to interpret inaccuracy in the depth reconstruction of these devices in APT.

  5. Numerical accuracy of mean-field calculations in coordinate space

    NASA Astrophysics Data System (ADS)

    Ryssens, W.; Heenen, P.-H.; Bender, M.

    2015-12-01

    Background: Mean-field methods based on an energy density functional (EDF) are powerful tools used to describe many properties of nuclei in the entirety of the nuclear chart. The accuracy required of energies for nuclear physics and astrophysics applications is of the order of 500 keV and much effort is undertaken to build EDFs that meet this requirement. Purpose: Mean-field calculations have to be accurate enough to preserve the accuracy of the EDF. We study this numerical accuracy in detail for a specific numerical choice of representation for mean-field equations that can accommodate any kind of symmetry breaking. Method: The method that we use is a particular implementation of three-dimensional mesh calculations. Its numerical accuracy is governed by three main factors: the size of the box in which the nucleus is confined, the way numerical derivatives are calculated, and the distance between the points on the mesh. Results: We examine the dependence of the results on these three factors for spherical doubly magic nuclei, neutron-rich 34Ne , the fission barrier of 240Pu , and isotopic chains around Z =50 . Conclusions: Mesh calculations offer the user extensive control over the numerical accuracy of the solution scheme. When appropriate choices for the numerical scheme are made the achievable accuracy is well below the model uncertainties of mean-field methods.

  6. Testosterone and Occupational Achievement.

    ERIC Educational Resources Information Center

    Dabbs, James M., Jr.

    1992-01-01

    Archival data on 4,462 military veterans linked higher levels of serum testosterone to lower-status occupations. A structural equation model was supported in which higher testosterone, mediated through lower intellectual ability, greater antisocial behavior, and lower education, leads away from white-collar occupations. Contains 49 references.…

  7. Millimeter accuracy satellites for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.

  8. Knowledge discovery by accuracy maximization

    PubMed Central

    Cacciatore, Stefano; Luchinat, Claudio; Tenori, Leonardo

    2014-01-01

    Here we describe KODAMA (knowledge discovery by accuracy maximization), an unsupervised and semisupervised learning algorithm that performs feature extraction from noisy and high-dimensional data. Unlike other data mining methods, the peculiarity of KODAMA is that it is driven by an integrated procedure of cross-validation of the results. The discovery of a local manifold’s topology is led by a classifier through a Monte Carlo procedure of maximization of cross-validated predictive accuracy. Briefly, our approach differs from previous methods in that it has an integrated procedure of validation of the results. In this way, the method ensures the highest robustness of the obtained solution. This robustness is demonstrated on experimental datasets of gene expression and metabolomics, where KODAMA compares favorably with other existing feature extraction methods. KODAMA is then applied to an astronomical dataset, revealing unexpected features. Interesting and not easily predictable features are also found in the analysis of the State of the Union speeches by American presidents: KODAMA reveals an abrupt linguistic transition sharply separating all post-Reagan from all pre-Reagan speeches. The transition occurs during Reagan’s presidency and not from its beginning. PMID:24706821

  9. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  10. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  11. Iowa Women of Achievement.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This issue of the Goldfinch highlights some of Iowa's 20th century women of achievement. These women have devoted their lives to working for human rights, education, equality, and individual rights. They come from the worlds of politics, art, music, education, sports, business, entertainment, and social work. They represent Native Americans,…

  12. Schools Achieving Gender Equity.

    ERIC Educational Resources Information Center

    Revis, Emma

    This guide is designed to assist teachers presenting the Schools Achieving Gender Equity (SAGE) curriculum for vocational education students, which was developed to align gender equity concepts with the Kentucky Education Reform Act (KERA). Included in the guide are lesson plans for classes on the following topics: legal issues of gender equity,…

  13. Achieving Peace through Education.

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    While it is generally agreed that peace is desirable, there are barriers to achieving a peaceful world. These barriers are classified into three major areas: (1) an erroneous view of human nature; (2) injustice; and (3) fear of world unity. In a discussion of these barriers, it is noted that although the consciousness and conscience of the world…

  14. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.

  15. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  16. Appraising Reading Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    To determine quality sequence in pupil progress, evaluation approaches need to be used which guide the teacher to assist learners to attain optimally. Teachers must use a variety of procedures to appraise student achievement in reading, because no one approach is adequate. Appraisal approaches might include: (1) observation and subsequent…

  17. Cognitive Processes and Achievement.

    ERIC Educational Resources Information Center

    Hunt, Dennis; Randhawa, Bikkar S.

    For a group of 165 fourth- and fifth-grade students, four achievement test scores were correlated with success on nine tests designed to measure three cognitive functions: sustained attention, successive processing, and simultaneous processing. This experiment was designed in accordance with Luria's model of the three functional units of the…

  18. Graders' Mathematics Achievement

    ERIC Educational Resources Information Center

    Bond, John B.; Ellis, Arthur K.

    2013-01-01

    The purpose of this experimental study was to investigate the effects of metacognitive reflective assessment instruction on student achievement in mathematics. The study compared the performance of 141 students who practiced reflective assessment strategies with students who did not. A posttest-only control group design was employed, and results…

  19. Improving Educational Achievement.

    ERIC Educational Resources Information Center

    New York University Education Quarterly, 1979

    1979-01-01

    This is a slightly abridged version of the report of the National Academy of Education panel, convened at the request of HEW Secretary Joseph Califano and Assistant Secretary for Education Mary F. Berry, to study recent declines in student achievement and methods of educational improvement. (SJL)

  20. The Achievement Club

    ERIC Educational Resources Information Center

    Rogers, Ibram

    2009-01-01

    When Gabrielle Carpenter became a guidance counselor in Northern Virginia nine years ago, she focused on the academic achievement gap and furiously tried to close it. At first, she was compelled by tremendous professional interest. However, after seeing her son lose his zeal for school, Carpenter joined forces with other parents to form an…

  1. Achievement in Problem Solving

    ERIC Educational Resources Information Center

    Friebele, David

    2010-01-01

    This Action Research Project is meant to investigate the effects of incorporating research-based instructional strategies into instruction and their subsequent effect on student achievement in the area of problem-solving. The two specific strategies utilized are the integration of manipulatives and increased social interaction on a regular basis.…

  2. Essays on Educational Achievement

    ERIC Educational Resources Information Center

    Ampaabeng, Samuel Kofi

    2013-01-01

    This dissertation examines the determinants of student outcomes--achievement, attainment, occupational choices and earnings--in three different contexts. The first two chapters focus on Ghana while the final chapter focuses on the US state of Massachusetts. In the first chapter, I exploit the incidence of famine and malnutrition that resulted to…

  3. NCLB: Achievement Robin Hood?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2008-01-01

    In his "Wall Street Journal" op-ed on the 25th of anniversary of "A Nation At Risk", former assistant secretary of education Chester E. Finn Jr. applauded the report for turning U.S. education away from equality and toward achievement. It was not surprising, then, that in mid-2008, Finn arranged a conference to examine the…

  4. Stereotype accuracy of ballet and modern dancers.

    PubMed

    Clabaugh, Alison; Morling, Beth

    2004-02-01

    The authors recorded preprofessional ballet and modern dancers' perceptions of the personality traits of each type of dancer and self-reports of their own standing, to test the accuracy of the group stereotypes. Participants accurately stereotyped ballet dancers as scoring higher than modern dancers on Fear of Negative Evaluation and Personal Need for Structure and accurately viewed the groups as equal on Fitness Esteem. Participants inaccurately stereotyped ballet dancers as lower on Body Esteem; the groups actually scored the same. Sensitivity correlations across traits indicated that dancers were accurate about the relative magnitudes of trait differences in the two types of dancers. A group of nondancers reported stereotypes that were usually in the right direction although of inaccurate magnitude, and nondancers were sensitive to the relative sizes of group differences across traits.

  5. The cost of forming more accurate impressions: accuracy-motivated perceivers see the personality of others more distinctively but less normatively than perceivers without an explicit goal.

    PubMed

    Biesanz, Jeremy C; Human, Lauren J

    2010-04-01

    Does the motivation to form accurate impressions actually improve accuracy? The present work extended Kenny's (1991, 1994) weighted-average model (WAM)--a theoretical model of the factors that influence agreement among personality judgments--to examine two components of interpersonal perception: distinctive and normative accuracy. WAM predicts that an accuracy motivation should enhance distinctive accuracy but decrease normative accuracy. In other words, the impressions of a perceiver with an accuracy motivation will correspond more with the target person's unique characteristics and less with the characteristics of the average person. Perceivers randomly assigned to receive the social goal of forming accurate impressions, which was communicated through a single-sentence instruction, achieved higher levels of distinctive self-other agreement but lower levels of normative agreement compared with perceivers not given an explicit impression-formation goal. The results suggest that people motivated to form accurate impressions do indeed become more accurate, but at the cost of seeing others less normatively and, in particular, less positively.

  6. Accuracy of perturbative master equations.

    PubMed

    Fleming, C H; Cummings, N I

    2011-03-01

    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

  7. Increasing Accuracy in Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Jacksier, Tracey; Fernandes, Adelino; Matthew, Matt; Lehmann, Horst

    2016-04-01

    Human activity is increasing the concentrations of green house gases (GHG) in the atmosphere which results in temperature increases. High precision is a key requirement of atmospheric measurements to study the global carbon cycle and its effect on climate change. Natural air containing stable isotopes are used in GHG monitoring to calibrate analytical equipment. This presentation will examine the natural air and isotopic mixture preparation process, for both molecular and isotopic concentrations, for a range of components and delta values. The role of precisely characterized source material will be presented. Analysis of individual cylinders within multiple batches will be presented to demonstrate the ability to dynamically fill multiple cylinders containing identical compositions without isotopic fractionation. Additional emphasis will focus on the ability to adjust isotope ratios to more closely bracket sample types without the reliance on combusting naturally occurring materials, thereby improving analytical accuracy.

  8. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    SciTech Connect

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  9. Some aspects of achieving an ultimate accuracy during insertion device magnetic measurements by a Hall probe.

    PubMed

    Vasserman, I B; Strelnikov, N O; Xu, J Z

    2013-02-01

    An extensive test of a new Senis 2-axis Hall probe was done at the Advanced Photon Source using the Undulator A device and calibration system. This new probe has clear advantages compared with previously used Bell and Sentron Hall probes: very stable zero offset (less than the noise of 0.026 G) and compensated planar Hall effect. It can be used with proper calibration even for first and second field integral measurements. A comparison with reference measurements by long stretched coil shows that the difference in the first field integral measurement results for a 2.4-m-long Undulator A device is between 17 G cm for the best of four Hall probes used for the test and 51 G cm for the worst of them for all gap ranges from 10.5 mm to 150 mm.

  10. Use of model calibration to achieve high accuracy in analysis of computer networks

    DOEpatents

    Frogner, Bjorn; Guarro, Sergio; Scharf, Guy

    2004-05-11

    A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.

  11. Project ACHIEVE final report

    SciTech Connect

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  12. Modeling the spectrum of the 2ν2 and ν4 states of ammonia to experimental accuracy

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Yu, Shanshan; Pirali, Olivier

    2016-09-01

    The vibrational spectrum of ammonia has received an enormous amount of attention due to its potential prevalence in hot exo-planet atmospheres and persistent challenges in assigning and modeling highly excited and often highly perturbed states. Effective Hamiltonian models face challenges due to strong coupling between the large amplitude inversion and the other small amplitude vibrations. To date, only the ground and ν2 positions could be modeled to experimental accuracy using effective Hamiltonians. Several previous attempts to analyze the 2ν2 and ν4 energy levels failed to model both the microwave and infrared transitions to experimental accuracy. In this work, we performed extensive experimental measurements and data analysis for the 2ν2 and ν4 inversion-rotation and vibrational transitions. We measured 159 new transition frequencies with microwave precision and assigned 1680 new ones from existing Fourier transform spectra recorded in Synchrotron SOLEIL. The newly assigned data significantly expand the range of assigned quantum numbers; combined with all the previously published high-resolution data, the 2ν2 and ν4 states are reproduced to experimental accuracy using a global model described here. Achieving experimental accuracy required inclusion of a number of terms in the effective Hamiltonian that were neglected in previous work. These terms have also been neglected in the analysis of states higher than 2ν2 and ν4 suggesting that the inversion-rotation-vibration spectrum of ammonia may be far more tractable to effective Hamiltonians than previously believed.

  13. Impact of CCD camera SNR on polarimetric accuracy.

    PubMed

    Chen, Zhenyue; Wang, Xia; Pacheco, Shaun; Liang, Rongguang

    2014-11-10

    A comprehensive charge-coupled device (CCD) camera noise model is employed to study the impact of CCD camera signal-to-noise ratio (SNR) on polarimetric accuracy. The study shows that the standard deviations of the measured degree of linear polarization (DoLP) and angle of linear polarization (AoLP) are mainly dependent on the camera SNR. With increase in the camera SNR, both the measurement errors and the standard deviations caused by the CCD camera noise decrease. When the DoLP of the incident light is smaller than 0.1, the camera SNR should be at least 75 to achieve a measurement error of less than 0.01. When the input DoLP is larger than 0.5, a SNR of 15 is sufficient to achieve the same measurement accuracy. An experiment is carried out to verify the simulation results.

  14. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information

    PubMed Central

    Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki

    2016-01-01

    Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492

  15. Acquisition of decision making criteria: Reward rate ultimately beats accuracy

    PubMed Central

    Balci, Fuat; Simen, Patrick; Niyogi, Ritwik; Saxe, Andrew; Hughes, Jessica A.; Holmes, Philip; Cohen, Jonathan D.

    2012-01-01

    Speed-accuracy tradeoffs strongly influence the rate of reward that can be earned in many decision-making tasks. Previous reports suggest that human participants often adopt suboptimal speed-accuracy tradeoffs in single session, two-alternative forced-choice tasks. We investigated whether humans acquired optimal speed-accuracy tradeoffs when extensively trained with multiple signal qualities. When performance was characterized in terms of decision time and accuracy, our participants eventually performed nearly optimally in the case of higher signal qualities. Rather than adopting decision criteria that were individually optimal for each signal quality, participants adopted a single threshold that was nearly optimal for most signal qualities. However, setting a single threshold for different coherence conditions resulted in only negligible decrements in the maximum possible reward rate. Finally, we tested two hypotheses regarding the possible sources of suboptimal performance: a) favoring accuracy over reward rate and b) misestimating the reward rate due to timing uncertainty. Our findings provide support for both hypotheses, but also for the hypothesis that participants can learn to approach optimality. We find specifically that an accuracy bias dominates early performance, but diminishes greatly with practice. The residual discrepancy between optimal and observed performance can be explained by an adaptive response to uncertainty in time estimation. PMID:21264716

  16. Haptic perception accuracy depending on self-produced movement.

    PubMed

    Park, Chulwook; Kim, Seonjin

    2014-01-01

    This study measured whether self-produced movement influences haptic perception ability (experiment 1) as well as the factors associated with levels of influence (experiment 2) in racket sports. For experiment 1, the haptic perception accuracy levels of five male table tennis experts and five male novices were examined under two different conditions (no movement vs. movement). For experiment 2, the haptic afferent subsystems of five male table tennis experts and five male novices were investigated in only the self-produced movement-coupled condition. Inferential statistics (ANOVA, t-test) and custom-made devices (shock & vibration sensor, Qualisys Track Manager) of the data were used to determine the haptic perception accuracy (experiment 1, experiment 2) and its association with expertise. The results of this research show that expert-level players acquire higher accuracy with less variability (racket vibration and angle) than novice-level players, especially in their self-produced movement coupled performances. The important finding from this result is that, in terms of accuracy, the skill-associated differences were enlarged during self-produced movement. To explain the origin of this difference between experts and novices, the functional variability of haptic afferent subsystems can serve as a reference. These two factors (self-produced accuracy and the variability of haptic features) as investigated in this study would be useful criteria for educators in racket sports and suggest a broader hypothesis for further research into the effects of the haptic accuracy related to variability.

  17. Accuracy potentials for large space antenna reflectors with passive structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1982-01-01

    Analytical results indicate that a careful selection of materials and truss design, combined with accurate manufacturing techniques, can result in very accurate surfaces for large space antennas. The purpose of this paper is to examine these relationships for various types of structural configurations. Comparisons are made of the accuracy achievable by truss- and dome-type structures for a wide range of diameter and focal length of the antenna and wavelength of the radiated signal.

  18. Determination of elemental composition of volatile organic compounds from Chinese rose oil by spectral accuracy and mass accuracy.

    PubMed

    Zhou, Wei; Zhang, Yaheng; Xu, Hongliang; Gu, Ming

    2011-10-30

    Elemental composition determination of volatile organic compounds through high mass accuracy and isotope pattern matching could not be routinely achieved with a unit-mass resolution mass spectrometer until the recent development of the comprehensive instrument line-shape calibration technology. Through this unique technology, both m/z values and mass spectral peak shapes are calibrated simultaneously. Of fundamental importance is that calibrated mass spectra have symmetric and mathematically known peak shapes, which makes it possible to deconvolute overlapped monoisotopes and their (13)C-isotope peaks and achieve accurate mass measurements. The key experimental requirements for the measurements are to acquire true raw data in a profile or continuum mode with the acquisition threshold set to zero. A total of 13 ions from Chinese rose oil were analyzed with internal calibration. Most of the ions produced high mass accuracy of better than 5 mDa and high spectral accuracy of better than 99%. These results allow five tested ions to be identified with unique elemental compositions and the other eight ions to be determined as a top match from multiple candidates based on spectral accuracy. One of them, a coeluted component (Nerol) with m/z 154, could not be identified by conventional GC/MS (gas chromatography/mass spectrometry) and library search. Such effective determination for elemental compositions of the volatile organic compounds with a unit-mass resolution quadrupole system is obviously attributed to the significant improvement of mass accuracy. More importantly, high spectral accuracy available through the instrument line-shape calibration enables highly accurate isotope pattern recognition for unknown identification.

  19. [Accuracy of a pulse oximeter during hypoxia].

    PubMed

    Tachibana, C; Fukada, T; Hasegawa, R; Satoh, K; Furuya, Y; Ohe, Y

    1996-04-01

    The accuracy of the pulse oximeter was examined in hypoxic patients. We studied 11 cyanotic congenital heart disease patients during surgery, and compared the arterial oxygen saturation determined by both the simultaneous blood gas analysis (CIBA-CORNING 288 BLOOD GAS SYSTEM, SaO2) and by the pulse oximeter (DATEX SATELITE, with finger probe, SpO2). Ninty sets of data on SpO2 and SaO2 were obtained. The bias (SpO2-SaO2) was 1.7 +/- 6.9 (mean +/- SD) %. In cyanotic congenital heart disease patients, SpO2 values were significantly higher than SaO2. Although the reason is unknown, in constantly hypoxic patients, SpO2 values are possibly over-estimated. In particular, pulse oximetry at low levels of saturation (SaO2 below 80%) was not as accurate as at a higher saturation level (SaO2 over 80%). There was a positive correlation between SpO2 and SaO2 (linear regression analysis yields the equation y = 0.68x + 26.0, r = 0.93). In conclusion, the pulse oximeter is useful to monitor oxygen saturation in constantly hypoxic patients, but the values thus obtained should be compared with the values measured directly when hypoxemia is severe.

  20. Thematic accuracy of the NLCD 2001 land cover for the conterminous United States

    USGS Publications Warehouse

    Wickham, J.D.; Stehman, S.V.; Fry, J.A.; Smith, J.H.; Homer, C.G.

    2010-01-01

    The land-cover thematic accuracy of NLCD 2001 was assessed from a probability-sample of 15,000 pixels. Nationwide, NLCD 2001 overall Anderson Level II and Level I accuracies were 78.7% and 85.3%, respectively. By comparison, overall accuracies at Level II and Level I for the NLCD 1992 were 58% and 80%. Forest and cropland were two classes showing substantial improvements in accuracy in NLCD 2001 relative to NLCD 1992. NLCD 2001 forest and cropland user's accuracies were 87% and 82%, respectively, compared to 80% and 43% for NLCD 1992. Accuracy results are reported for 10 geographic regions of the United States, with regional overall accuracies ranging from 68% to 86% for Level II and from 79% to 91% at Level I. Geographic variation in class-specific accuracy was strongly associated with the phenomenon that regionally more abundant land-cover classes had higher accuracy. Accuracy estimates based on several definitions of agreement are reported to provide an indication of the potential impact of reference data error on accuracy. Drawing on our experience from two NLCD national accuracy assessments, we discuss the use of designs incorporating auxiliary data to more seamlessly quantify reference data quality as a means to further advance thematic map accuracy assessment.

  1. Accuracy evaluation of 3D lidar data from small UAV

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  2. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  3. High accuracy broadband infrared spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan

    Mueller matrix spectroscopy or Spectropolarimetry combines conventional spectroscopy with polarimetry, providing more information than can be gleaned from spectroscopy alone. Experimental studies on infrared polarization properties of materials covering a broad spectral range have been scarce due to the lack of available instrumentation. This dissertation aims to fill the gap by the design, development, calibration and testing of a broadband Fourier Transform Infra-Red (FT-IR) spectropolarimeter. The instrument operates over the 3-12 mum waveband and offers better overall accuracy compared to the previous generation instruments. Accurate calibration of a broadband spectropolarimeter is a non-trivial task due to the inherent complexity of the measurement process. An improved calibration technique is proposed for the spectropolarimeter and numerical simulations are conducted to study the effectiveness of the proposed technique. Insights into the geometrical structure of the polarimetric measurement matrix is provided to aid further research towards global optimization of Mueller matrix polarimeters. A high performance infrared wire-grid polarizer is characterized using the spectropolarimeter. Mueller matrix spectrum measurements on Penicillin and pine pollen are also presented.

  4. ACCURACY OF CO2 SENSORS

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  5. Astrophysics with Microarcsecond Accuracy Astrometry

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  6. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  7. Improving the accuracy of a Shack-Hartmann wavefront sensor on extended scenes

    NASA Astrophysics Data System (ADS)

    Rais, M.; Morel, J.-M.; Thiebaut, C.; Delvit, J.-M.; Facciolo, G.

    2016-10-01

    In order to achieve higher resolutions, current earth-observation satellites use larger lightweight main mirrors which are usually deformed over time, impacting on image quality. In the context of active optics, we studied the problem of correcting this main mirror by performing wavefront estimation in a closed loop environment. To this end, a Shack-Hartman wavefront sensor (SHWFS) used on extended scenes could measure the incoming wavefront. The performance of the SHWFS on extended scenes depends entirely on the accuracy of the shift estimation algorithm employed, which should be fast enough to be executed on-board. In this paper we specifically deal with the problem of fast accurate shift estimation in this context. We propose a new algorithm, based on the global optical flow method, that estimates the shifts in linear time. In our experiments, our method proved to be more accurate and stable, as well as less sensitive to noise than all current state-of-the-art methods.

  8. Improved accuracy of measurements of complex permittivity and permeability using transmission lines

    NASA Astrophysics Data System (ADS)

    Shemelin, V.; Valles, N.

    2014-12-01

    Strong damping of Higher-Order-Modes (HOMs) excited by the beam in accelerating cavities is a necessary condition for achievement of high currents and low emittances in storage rings, electron-positron colliders, and high average power Energy Recovery Linacs (ERLs). Characterization of the electromagnetic properties of lossy ceramics and ferrites used in HOM loads is therefore an essential part of constructing these accelerators. Here we show how to improve these measurements beyond the state of the art. In the past, significant discrepancies have been typical between measured properties for different batches of the same material. Here we show that these can be explained not only by technological deviations in the material production but also by errors in the dimensions of the measured samples. We identify the main source of errors and show how to improve the accuracy of measuring the electromagnetic parameters of absorbing materials.

  9. Ground Truth Sampling and LANDSAT Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Gunther, F. J.; Campbell, W. J.

    1982-01-01

    It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types.

  10. Time and position accuracy using codeless GPS

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Jefferson, D. C.; Lichten, S. M.; Thomas, J. B.; Vigue, Y.; Young, L. E.

    1994-01-01

    The Global Positioning System has allowed scientists and engineers to make measurements having accuracy far beyond the original 15 meter goal of the system. Using global networks of P-Code capable receivers and extensive post-processing, geodesists have achieved baseline precision of a few parts per billion, and clock offsets have been measured at the nanosecond level over intercontinental distances. A cloud hangs over this picture, however. The Department of Defense plans to encrypt the P-Code (called Anti-Spoofing, or AS) in the fall of 1993. After this event, geodetic and time measurements will have to be made using codeless GPS receivers. However, there appears to be a silver lining to the cloud. In response to the anticipated encryption of the P-Code, the geodetic and GPS receiver community has developed some remarkably effective means of coping with AS without classified information. We will discuss various codeless techniques currently available and the data noise resulting from each. We will review some geodetic results obtained using only codeless data, and discuss the implications for time measurements. Finally, we will present the status of GPS research at JPL in relation to codeless clock measurements.

  11. 2011 Higher Education Sustainability Review

    ERIC Educational Resources Information Center

    Wagner, Margo, Ed.

    2012-01-01

    Looking through the lens of AASHE Bulletin stories in 2011, this year's review reveals an increased focus on higher education access, affordability, and success; more green building efforts than ever before; and growing campus-community engagement on food security, among many other achievements. Contributors include James Applegate (Lumina…

  12. Social Justice and Higher Education

    ERIC Educational Resources Information Center

    Craven, Anne

    2012-01-01

    Massification of higher education has not been able to solve societal issues in the UK to the extent originally envisaged. Whilst universities have achieved increased student numbers and widened participation from various societal groups, those coming from socially disadvantaged groups can still often have a very different experience of university…

  13. Parallel higher-order boundary integral electrostatics computation on molecular surfaces with curved triangulation

    NASA Astrophysics Data System (ADS)

    Geng, Weihua

    2013-05-01

    In this paper, we present a parallel higher-order boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace linear solver such as GMRES. The molecular surfaces are first discretized with flat triangles and then converted to curved triangles with the assistance of normal information at vertices. To maintain the desired accuracy, four-point Gauss-Radau quadratures are used on regular triangles and sixteen-point Gauss-Legendre quadratures together with regularization transformations are applied on singular triangles. To speed up our method, we take advantage of the embarrassingly parallel feature of boundary integral formulation, and parallelize the schemes with the message passing interface (MPI) implementation. Numerical tests show significantly improved accuracy and convergence of the proposed higher-order boundary integral Poisson-Boltzmann (HOBI-PB) solver compared with boundary integral PB solver using often-seen centroid collocation on flat triangles. The higher-order accuracy results achieved by present method are important to sensitive solvation analysis of biomolecules, particularly when accurate electrostatic surface potentials are critical in the molecular simulation. In addition, the higher-order boundary integral schemes presented here and their associated parallelization potentially can be applied to solving boundary integral equations in a general sense.

  14. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  15. Leadership, self-efficacy, and student achievement

    NASA Astrophysics Data System (ADS)

    Grayson, Kristin

    This study examined the relationships between teacher leadership, science teacher self-efficacy, and fifth-grade science student achievement in diverse schools in a San Antonio, Texas, metropolitan school district. Teachers completed a modified version of the Leadership Behavior Description Question (LBDQ) Form XII by Stogdill (1969), the Science Efficacy and Belief Expectations for Science Teaching (SEBEST) by Ritter, Boone, and Rubba (2001, January). Students' scores on the Texas Assessment of Knowledge and Skills (TAKS) measured fifth-grade science achievement. At the teacher level of analysis multiple regressions showed the following relationships between teachers' science self-efficacy and teacher classroom leadership behaviors and the various teacher and school demographic variables. Predictors of teacher self efficacy beliefs included teacher's level of education, gender, and leadership initiating structure. The only significant predictor of teacher self-efficacy outcome expectancy was gender. Higher teacher self-efficacy beliefs predicted higher leadership initiating structure. At the school level of analysis, higher school levels of percentage of students from low socio-economic backgrounds and higher percentage of limited English proficient students predicted lower school student mean science achievement. These findings suggest a need for continued research to clarify relationships between teacher classroom leadership, science teacher self-efficacy, and student achievement especially at the teacher level of analysis. Findings also indicate the importance of developing instructional methods to address student demographics and their needs so that all students, despite their backgrounds, will achieve in science.

  16. What Happens to the Fish's Achievement in a Little Pond? A Simultaneous Analysis of Class-Average Achievement Effects on Achievement and Academic Self-Concept

    ERIC Educational Resources Information Center

    Stäbler, Franziska; Dumont, Hanna; Becker, Michael; Baumert, Jürgen

    2017-01-01

    Empirical studies have demonstrated that students who are taught in a group of students with higher average achievement benefit in terms of their achievement. However, there is also evidence showing that being surrounded by high-achieving students has a negative effect on students' academic self-concept, also known as the big-fish--little-pond…

  17. On the accuracy assessment of Laplacian models in MPS

    NASA Astrophysics Data System (ADS)

    Ng, K. C.; Hwang, Y. H.; Sheu, T. W. H.

    2014-10-01

    From the basis of the Gauss divergence theorem applied on a circular control volume that was put forward by Isshiki (2011) in deriving the MPS-based differential operators, a more general Laplacian model is further deduced from the current work which involves the proposal of an altered kernel function. The Laplacians of several functions are evaluated and the accuracies of various MPS Laplacian models in solving the Poisson equation that is subjected to both Dirichlet and Neumann boundary conditions are assessed. For regular grids, the Laplacian model with smaller N is generally more accurate, owing to the reduction of leading errors due to those higher-order derivatives appearing in the modified equation. For irregular grids, an optimal N value does exist in ensuring better global accuracy, in which this optimal value of N will increase when cases employing highly irregular grids are computed. Finally, the accuracies of these MPS Laplacian models are assessed in an incompressible flow problem.

  18. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  19. Achievement Goals and Achievement Emotions: A Meta-Analysis

    ERIC Educational Resources Information Center

    Huang, Chiungjung

    2011-01-01

    This meta-analysis synthesized 93 independent samples (N = 30,003) in 77 studies that reported in 78 articles examining correlations between achievement goals and achievement emotions. Achievement goals were meaningfully associated with different achievement emotions. The correlations of mastery and mastery approach goals with positive achievement…

  20. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    PubMed

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  1. Evidence for Enhanced Interoceptive Accuracy in Professional Musicians

    PubMed Central

    Schirmer-Mokwa, Katharina L.; Fard, Pouyan R.; Zamorano, Anna M.; Finkel, Sebastian; Birbaumer, Niels; Kleber, Boris A.

    2015-01-01

    Interoception is defined as the perceptual activity involved in the processing of internal bodily signals. While the ability of internal perception is considered a relatively stable trait, recent data suggest that learning to integrate multisensory information can modulate it. Making music is a uniquely rich multisensory experience that has shown to alter motor, sensory, and multimodal representations in the brain of musicians. We hypothesize that musical training also heightens interoceptive accuracy comparable to other perceptual modalities. Thirteen professional singers, twelve string players, and thirteen matched non-musicians were examined using a well-established heartbeat discrimination paradigm complemented by self-reported dispositional traits. Results revealed that both groups of musicians displayed higher interoceptive accuracy than non-musicians, whereas no differences were found between singers and string-players. Regression analyses showed that accumulated musical practice explained about 49% variation in heartbeat perception accuracy in singers but not in string-players. Psychometric data yielded a number of psychologically plausible inter-correlations in musicians related to performance anxiety. However, dispositional traits were not a confounding factor on heartbeat discrimination accuracy. Together, these data provide first evidence indicating that professional musicians show enhanced interoceptive accuracy compared to non-musicians. We argue that musical training largely accounted for this effect. PMID:26733836

  2. Spacecraft attitude determination accuracy from mission experience

    NASA Astrophysics Data System (ADS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-10-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  3. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-01-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  4. Interoception and symptom reporting: disentangling accuracy and bias

    PubMed Central

    Petersen, Sibylle; Van Staeyen, Ken; Vögele, Claus; von Leupoldt, Andreas; Van den Bergh, Omer

    2015-01-01

    Anxiety and anxiety sensitivity are positively related to accuracy in the perception of bodily sensations. At the same time, research consistently reports that these traits are positively related to bias, resulting in the report of more and more intense symptoms that poorly correspond with physiological dysfunction. The aim of this study was to test the relationship of accuracy and bias in interoception. Furthermore, we tested the impact of individual differences in negative affect and symptom report in daily life on interoceptive accuracy and bias. Individuals higher in symptom report in daily life and negative affect were marginally more accurate in an interoceptive classification task in which participants were asked to identify different respiratory stimuli (inducing breathing effort) as belonging to a high or low intensity category. At the same time, bias in overestimating intensity of stimuli was significantly increased in participants higher in symptom report and negative affect, but only for more ambiguous stimuli. Results illustrate that interoceptive accuracy and bias need to be considered independently to understand their interaction with psychological factors and to disentangle (mis)perception of bodily sensations from liberal or conservative perceptual decision strategies. PMID:26089810

  5. "Battleship Numberline": A Digital Game for Improving Estimation Accuracy on Fraction Number Lines

    ERIC Educational Resources Information Center

    Lomas, Derek; Ching, Dixie; Stampfer, Eliane; Sandoval, Melanie; Koedinger, Ken

    2011-01-01

    Given the strong relationship between number line estimation accuracy and math achievement, might a computer-based number line game help improve math achievement? In one study by Rittle-Johnson, Siegler and Alibali (2001), a simple digital game called "Catch the Monster" provided practice in estimating the location of decimals on a…

  6. Firing temperature accuracy of four dental furnaces.

    PubMed

    Haag, Per; Ciber, Edina; Dérand, Tore

    2011-01-01

    In spite of using recommended firing and displayed temperatures, low-fired dental porcelain more often demonstrates unsatisfactory results after firing than porcelain fired at higher temperatures. It could therefore be anticipated that temperatures shown on the display are incorrect, implying that the furnace does not render correct firing programs for low-fired porcelain. The purpose of this study is to investigate deviations from the real temperature during the firing process and also to illustrate the service and maintenance discipline of furnaces at dental laboratories. Totally 20 units of four different types of dental furnaces were selected for testing of temperature accuracy with usage of a digital temperature measurement apparatus, Therma 1. In addition,the staffs at 68 dental laboratories in Sweden were contacted for a telephone interview on furnace brand and on service and maintenance program performed at their laboratories. None of the 20 different dental furnaces in the study could generate the firing temperatures shown on the display, indicating that the hypothesis was correct. Multimat MCII had the least deviation of temperature compared with displayfigures. 62 out of 68 invited dental laboratories chose to participate in the interviews and the result was that very few laboratories had a service and maintenance program living up to quality standards. There is room for improving the precision of dental porcelain furnaces as there are deviations between displayed and read temperatures during the different steps of the firing process.

  7. Intracranial aneurysms: Diagnostics accuracy of three-dimensional, fourier transform, time-of-flight MR angiography

    SciTech Connect

    Korogi, Yukunori; Takahashi, Mutsumasa; Mabuchi, Nobuhisa; Miki, Hitoshi; Fujiwara, Satoru; Horikawa, Yoshiharu; Nakagawa, Toshio; O`Uchi, Toshihiro; Watabe, Tsuneya; Shiga, Hayao

    1994-10-01

    To assess the accuracy of three-dimensional, Fourier transform, time-of-flight magnetic resonance (MR) angiography in the identification of intracranial aneurysms. MR angiograms of 126 patients (59 male and 67 female patients, aged 12-77 years) with various intracranial vascular lesions were evaluated. Seventy-eight aneurysms, including 60 less than 5 mm in diameter, in 61 patients were depicted at conventional angiography. Eight projection images, as well as one axial collapsed MR angiogram obtained with a maximum-intensity projection algorithm, were used for evaluation. Sensitivity for the five observers ranged from 58% to 68% (mean, 63%). Higher sensitivity was achieved for anterior communicating and middle cerebral artery aneurysms, while that for internal carotid artery aneurysms was poor. Sensitivities for small and medium aneurysms ranged from 50% to 60% (mean, 56%) and from 77% to 94% (mean, 85%), respectively. MR angiography can depict intracranial aneurysms 5 mm or larger with good accuracy but is less useful for the identification of smaller aneurysms. 12 refs., 5 figs., 5 tabs.

  8. On the geolocation accuracy of COSMO-SkyMed products

    NASA Astrophysics Data System (ADS)

    Nitti, Davide O.; Nutricato, Raffaele; Lorusso, Rino; Lombardi, Nunzia; Bovenga, Fabio; Bruno, Maria F.; Chiaradia, Maria T.; Milillo, Giovanni

    2015-10-01

    Accurate geolocation of SAR data is nowadays strongly required because of the increasing number of high resolution SAR sensors available as for instance from TerraSAR-X / TanDEM-X and COSMO-SkyMed space-borne missions. Both stripmap and spotlight acquisition modes provide from metric to sub metric spatial resolution which demands the ability to ensure a geolocation accuracy of the same order of magnitude. Geocoding quality depends on several factors and in particular on the knowledge of the actual values of the satellite position along the orbit, and the delay introduced by the additional path induced by changes in the refractivity index due to the presence of the atmosphere (the so called Atmospheric Path Delay or APD). No definitive results are reported yet in the scientific literature, concerning the best performances achievable by the COSMO-SkyMed constellation in terms of geolocation accuracy. Preliminary studies have shown that sub-pixel geolocation accuracies are hardly achievable with COSMO-SkyMed data. The present work aims at inspecting the origin of the geolocation error sources in COSMO-SkyMed Single-look Complex Slant (SCS) products, and to investigate possible strategies for their compensation or mitigation. Five different test sites have been selected in Italy and Argentina, where up to 30 corner reflectors are installed, pointing towards ascending or descending passes. Experimental results are presented and discussed.

  9. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  10. A Comparison of Accelerometer Accuracy in Older Adults.

    PubMed

    Phillips, Lorraine J; Petroski, Gregory F; Markis, Natalie E

    2015-01-01

    Older adults' gait disorders present challenges for accurate activity monitoring. The current study compared the accuracy of accelerometer-detected to hand-tallied steps in 50 residential care/assisted living residents. Participants completed two walking trials wearing a Fitbit® Tracker and waist-, wrist-, and ankle-mounted Actigraph GT1M. Agreement between accelerometer and observed counts was calculated using concordance correlation coefficients (CCC), accelerometer to observed count ratios, accelerometer and observed count differences, and Bland-Altman plots. Classification and Regression Tree analysis identified minimum gait speed thresholds to achieve accelerometer accuracy ≥0.80. Participants' mean age was 84.2 and gait speed was 0.64 m/s. All accelerometers underestimated true steps. Only the ankle-mounted GT1M demonstrated positive agreement with observed counts (CCC = 0.205). Thresholds for 0.80 accuracy were gait speeds ≥0.56 m/s for the Fitbit and gait speeds ≥0.71 m/s for the ankle-mounted GT1M. Gait speed and accelerometer placement affected activity monitor accuracy in older adults.

  11. Achieving Small School Success in Washington State

    ERIC Educational Resources Information Center

    Boyle, Martin

    2003-01-01

    Of Washington State's 296 school districts, two-thirds have 2,000 or fewer students. These small school districts provide unique learning opportunities for Washington's children, but also present special challenges to achieving the higher standards called for in the state education reform bill and recent federal legislation. This report provides…

  12. A Human Achievement: Mathematics without Boundaries.

    ERIC Educational Resources Information Center

    Terzioglu, Tosun

    This paper describes three fundamental principles, dictated by Wilhelm von Humboldt, that were widely adapted as the basic philosophy of higher education in the United States, and proposes to revise the unfulfilled dream of von Humboldt to make it come true. This paper stresses the achievements of humanity not only in technology, health, or the…

  13. Achievement in Boys' Schools 2010-12

    ERIC Educational Resources Information Center

    Wylie, Cathy; Berg, Melanie

    2014-01-01

    This report explores the achievement of school leavers from state and state-integrated boys' schools. The analysis from 2010 to 2012 shows school leavers from state boys' schools had higher qualifications than their male counterparts who attended state co-educational schools. The research was carried out for the Association of Boys' Schools of New…

  14. Academic Freedom, Achievement Standards and Professional Identity

    ERIC Educational Resources Information Center

    Sadler, D. Royce

    2011-01-01

    The tension between the freedom of academics to grade the achievements of their students without interference or coercion and the prerogative of higher education institutions to control grading standards is often deliberated by weighing up the authority and rights of the two parties. An alternative approach is to start with an analysis of the…

  15. The Virginia Plan for Higher Education, 1989.

    ERIC Educational Resources Information Center

    Virginia State Council of Higher Education, Richmond.

    The Council of Higher Education, in this state-mandated biennial plan, sets four goals for Virginia's state-supported system of higher education to achieve: access, excellence, accountability, and placement among the best systems of higher education in the United States. The plan concentrates on the 84 degree-granting institutions that have been…

  16. The effects of domain knowledge on metacomprehension accuracy.

    PubMed

    Griffin, Thomas D; Jee, Benjamin D; Wiley, Jennifer

    2009-10-01

    In the present research, we examined the relationship between readers' domain knowledge and their ability to judge their comprehension of novel domain-related material. Participants with varying degrees of baseball knowledge read five texts on baseball-related topics and five texts on non-baseball-related topics, predicted their performance, and completed tests for each text. Baseball knowledge was positively related to absolute accuracy within the baseball domain but was unrelated to relative accuracy within the baseball domain. Also, the readers showed a general underconfidence bias, but the bias was less extreme for higher knowledge readers. The results challenge common assumptions that experts' metacognitive judgments are less accurate than novices'. Results involving topic familiarity ratings and a no-reading control group suggest that higher knowledge readers are not more likely to ignore text-specific cues in favor of a domain familiarity heuristic, but they do appear to make more effective use of domain familiarity in predicting absolute performance levels.

  17. Accuracy of Measurements in Oblique Aerial Images for Urban Environment

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.

    2016-10-01

    Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology). To control the accuracy, check points were used (which were also measured with GPS RTK technology). As reference data for the whole study, an area of the city-based map was used. The archived results

  18. Improving the accuracy of the discrete gradient method in the one-dimensional case.

    PubMed

    Cieśliński, Jan L; Ratkiewicz, Bogusław

    2010-01-01

    We present two numerical schemes of high accuracy for one-dimensional dynamical systems. They are modifications of the discrete gradient method and keep its advantages, including stability and conservation of the energy integral. However, their accuracy is higher by several orders of magnitude.

  19. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    PubMed Central

    2010-01-01

    Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls

  20. Stereotype Accuracy: Toward Appreciating Group Differences.

    ERIC Educational Resources Information Center

    Lee, Yueh-Ting, Ed.; And Others

    The preponderance of scholarly theory and research on stereotypes assumes that they are bad and inaccurate, but understanding stereotype accuracy and inaccuracy is more interesting and complicated than simpleminded accusations of racism or sexism would seem to imply. The selections in this collection explore issues of the accuracy of stereotypes…

  1. [Upon scientific accuracy scheme at clinical specialties].

    PubMed

    Ortega Calvo, M

    2006-11-01

    Will be medical specialties like sciences in the future? Yes, progressively they will. Accuracy in clinical specialties will be dissimilar in the future because formal-logic mathematics, quantum physics advances and relativity theory utilities. Evidence based medicine is now helping to clinical specialties on scientific accuracy by the way of decision theory.

  2. Sound source localization identification accuracy: bandwidth dependencies.

    PubMed

    Yost, William A; Zhong, Xuan

    2014-11-01

    Sound source localization accuracy using a sound source identification task was measured in the front, right quarter of the azimuth plane as rms (root-mean-square) error (degrees) for stimulus conditions in which the bandwidth (1/20 to 2 octaves wide) and center frequency (250, 2000, 4000 Hz) of 200-ms noise bursts were varied. Tones of different frequencies (250, 2000, 4000 Hz) were also used. As stimulus bandwidth increases, there is an increase in sound source localization identification accuracy (i.e., rms error decreases). Wideband stimuli (>1 octave wide) produce best sound source localization accuracy (~6°-7° rms error), and localization accuracy for these wideband noise stimuli does not depend on center frequency. For narrow bandwidths (<1 octave) and tonal stimuli, accuracy does depend on center frequency such that highest accuracy is obtained for low-frequency stimuli (centered on 250 Hz), worse accuracy for mid-frequency stimuli (centered on 2000 Hz), and intermediate accuracy for high-frequency stimuli (centered on 4000 Hz).

  3. Accuracy of Parent Identification of Stuttering Occurrence

    ERIC Educational Resources Information Center

    Einarsdottir, Johanna; Ingham, Roger

    2009-01-01

    Background: Clinicians rely on parents to provide information regarding the onset and development of stuttering in their own children. The accuracy and reliability of their judgments of stuttering is therefore important and is not well researched. Aim: To investigate the accuracy of parent judgements of stuttering in their own children's speech…

  4. Increasing Deception Detection Accuracy with Strategic Questioning

    ERIC Educational Resources Information Center

    Levine, Timothy R.; Shaw, Allison; Shulman, Hillary C.

    2010-01-01

    One explanation for the finding of slightly above-chance accuracy in detecting deception experiments is limited variance in sender transparency. The current study sought to increase accuracy by increasing variance in sender transparency with strategic interrogative questioning. Participants (total N = 128) observed cheaters and noncheaters who…

  5. The Accuracy of Gender Stereotypes Regarding Occupations.

    ERIC Educational Resources Information Center

    Beyer, Sylvia; Finnegan, Andrea

    Given the salience of biological sex, it is not surprising that gender stereotypes are pervasive. To explore the prevalence of such stereotypes, the accuracy of gender stereotyping regarding occupations is presented in this paper. The paper opens with an overview of gender stereotype measures that use self-perceptions as benchmarks of accuracy,…

  6. Evaluating the accuracy of selenodesic reference grids

    NASA Technical Reports Server (NTRS)

    Koptev, A. A.

    1974-01-01

    Estimates were made of the accuracy of reference point grids using the technique of calculating the errors from theoretical analysis. Factors taken into consideration were: telescope accuracy, number of photographs, and libration amplitude. To solve the problem, formulas were used for the relationship between the coordinates of lunar surface points and their images on the photograph.

  7. Accuracy of multi-look geo-coding

    NASA Astrophysics Data System (ADS)

    Weidaw, E. M.; Roth, M. W.; Brown, M. Z.; Scheck, A. E.

    2010-04-01

    Very accurate geo-location (geo-coding) of imagery taken at long range is a very large challenge. Whereas GPS can supply a very accurate sensor position, the hardware for the required precision pointing can have a very large cost. Roth, et al (2005) showed that because of the accuracy of lidar range-data, a tri-lateration method (called Multi-Look Lidar or Multi-Look Geo-Coding) can achieve very accurate geocoding at very long ranges and very low cost by using data-driven processing. This paper presents extensive flight-testing results using commercial airborne lidar. Because the tri-lateration method produces a large number of control points, the resulting accuracy of the geo-coded lidar data is somewhat better than that predicted for a single control point due to control-point averaging.

  8. Calibration, linearity, precision, and accuracy of a PIXE system

    NASA Astrophysics Data System (ADS)

    Richter, F.-W.; Wätjen, U.

    1984-04-01

    An accuracy and precision of better than 10% each can be achieved with PIXE analysis, with both thin and thick samples. Measures we took to obtain these values for routine analyses in the Marburg PIXE system are discussed. The advantages of an experimental calibration procedure, using thin evaporated standard foils, over the "absolute" method of employing X-ray production cross sections are outlined. The importance of X-ray line intensity ratios, even of weak transitions, for the accurate analysis of interfering elements of low mass content is demonstrated for the Se K α-Pb L ηline overlap. Matrix effects including secondary excitation can be corrected for very well without degrading accuracy under certain conditions.

  9. High-accuracy user identification using EEG biometrics.

    PubMed

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  10. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer.

    PubMed

    Liang, Shang-Qing; Yang, Guo-Qing; Xu, Yun-Fei; Lin, Qiang; Liu, Zhi-Heng; Chen, Zheng-Xiang

    2014-03-24

    A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

  11. The Role of Feedback on Studying, Achievement and Calibration.

    ERIC Educational Resources Information Center

    Chu, Stephanie T. L.; Jamieson-Noel, Dianne L.; Winne, Philip H.

    One set of hypotheses examined in this study was that various types of feedback (outcome, process, and corrective) supply different information about performance and have different effects on studying processes and on achievement. Another set of hypotheses concerned students' calibration, their accuracy in predicting and postdicting achievement…

  12. Lifting Minority Achievement: Complex Answers. The Achievement Gap.

    ERIC Educational Resources Information Center

    Viadero, Debra; Johnston, Robert C.

    2000-01-01

    This fourth in a four-part series on why academic achievement gaps exist describes the Minority Achievement Committee scholars program at Shaker Heights High School in Cleveland, Ohio, a powerful antidote to the achievement gap between minority and white and Asian American students. It explains the need to break down stereotypes about academic…

  13. Attitude Towards Physics and Additional Mathematics Achievement Towards Physics Achievement

    ERIC Educational Resources Information Center

    Veloo, Arsaythamby; Nor, Rahimah; Khalid, Rozalina

    2015-01-01

    The purpose of this research is to identify the difference in students' attitude towards Physics and Additional Mathematics achievement based on gender and relationship between attitudinal variables towards Physics and Additional Mathematics achievement with achievement in Physics. This research focused on six variables, which is attitude towards…

  14. The Impact of Reading Achievement on Overall Academic Achievement

    ERIC Educational Resources Information Center

    Churchwell, Dawn Earheart

    2009-01-01

    This study examined the relationship between reading achievement and achievement in other subject areas. The purpose of this study was to determine if there was a correlation between reading scores as measured by the Standardized Test for the Assessment of Reading (STAR) and academic achievement in language arts, math, science, and social studies…

  15. TH-A-9A-05: Initial Setup Accuracy Comparison Between Frame-Based and Frameless Stereotactic Radiosurgery

    SciTech Connect

    Tseng, T; Sheu, R; Todorov, B; Green, S; Blacksburg, S; Lo, Y

    2014-06-15

    Purpose: To evaluate initial setup accuracy for stereotactic radiosurgery (SRS) between Brainlab frame-based and frameless immobilization system, also to discern the magnitude frameless system has on setup parameters. Methods: The correction shifts from the original setup were compared for total 157 SRS cranial treatments (69 frame-based vs. 88 frameless). All treatments were performed on a Novalis linac with ExacTrac positioning system. Localization box with isocenter overlay was used for initial setup and correction shift was determined by ExacTrac 6D auto-fusion to achieve submillimeter accuracy for treatment. For frameless treatments, mean time interval between simulation and treatment was 5.7 days (range 0–13). Pearson Chi-Square was used for univariate analysis. Results: The correctional radial shifts (mean±STD, median) for the frame and frameless system measured by ExacTrac were 1.2±1.2mm, 1.1mm and 3.1±3.3mm, 2.0mm, respectively. Treatments with frameless system had a radial shift >2mm more often than those with frames (51.1% vs. 2.9%; p<.0001). To achieve submillimeter accuracy, 85.5% frame-based treatments did not require shift and only 23.9% frameless treatment could succeed with initial setup. There was no statistical significant system offset observed in any direction for either system. For frameless treatments, those treated ≥ 3 days from simulation had statistically higher rates of radial shifts between 1–2mm and >2mm compared to patients treated in a shorter amount of time from simulation (34.3% and 56.7% vs. 28.6% and 33.3%, respectively; p=0.006). Conclusion: Although image-guided positioning system can also achieve submillimeter accuracy for frameless system, users should be cautious regarding the inherent uncertainty of its capability of immobilization. A proper quality assurance procedure for frameless mask manufacturing and a protocol for intra-fraction imaging verification will be crucial for frameless system. Time interval between

  16. Student academic achievement in college chemistry

    NASA Astrophysics Data System (ADS)

    Tabibzadeh, Kiana S.

    General Chemistry is required for variety of baccalaureate degrees, including all medical related fields, engineering, and science majors. Depending on the institution, the prerequisite requirement for college level General Chemistry varies. The success rate for this course is low. The purpose of this study is to examine the factors influencing student academic achievement and retention in General Chemistry at the college level. In this study student achievement is defined by those students who earned grades of "C" or better. The dissertation contains in-depth studies on influence of Intermediate Algebra as a prerequisite compared to Fundamental Chemistry for student academic achievement and student retention in college General Chemistry. In addition the study examined the extent and manner in which student self-efficacy influences student academic achievement in college level General Chemistry. The sample for this part of the study is 144 students enrolled in first semester college level General Chemistry. Student surveys determined student self-efficacy level. The statistical analyses of study demonstrated that Fundamental Chemistry is a better prerequisite for student academic achievement and student retention. The study also found that student self-efficacy has no influence on student academic achievement. The significance of this study will be to provide data for the purpose of establishing a uniform and most suitable prerequisite for college level General Chemistry. Finally the variables identified to influence student academic achievement and enhance student retention will support educators' mission to maximize the students' ability to complete their educational goal at institutions of higher education.

  17. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  18. The limitations of wind measurement accuracy for balloon systems

    NASA Technical Reports Server (NTRS)

    Luers, J. K.; Macarthur, C. D.

    1974-01-01

    The error in horizontal wind field measurements as computed from the trajectory of balloons with linear and quadratic rise rates (as functions of altitude) has been derived. Balloon trajectories through light, moderate, and severe wind fields have been considered. Figures are presented which show the wind error vs altitude for various rise rates in each wind field, assuming linear smoothing of the trajectory data. The rise rate profile of the Jimsphere is analyzed as a special case. The results and figures presented are useful in determining the ultimate capability of rising balloon systems in general and for the Jimsphere system in particular for measuring wind from the surface to 18 km. Using the figures presented, it is possible to estimate the wind accuracy that can be achieved by any type of rising balloon by knowing only its rise rate behavior vs altitude. In addition, the results can be used in balloon design to determine what rise rate function is needed to achieve specified wind accuracies. A table is presented which shows the balloon radius for smooth and roughened spheres needed to achieve 2 to 20 m/sec rise rates at 10 and 14 km altitudes.

  19. Complex higher order derivative theories

    SciTech Connect

    Margalli, Carlos A.; Vergara, J. David

    2012-08-24

    In this work is considered a complex scalar field theory with higher order derivative terms and interactions. A procedure is developed to quantize consistently this system avoiding the presence of negative norm states. In order to achieve this goal the original real scalar high order field theory is extended to a complex space attaching a complex total derivative to the theory. Next, by imposing reality conditions the complex theory is mapped to a pair of interacting real scalar field theories without the presence of higher derivative terms.

  20. Achievements in Stratospheric Ozone Protection

    EPA Pesticide Factsheets

    This report describes achievements in protecting the ozone layer, the benefits of these achievements, and strategies involved (e.g., using alternatives to ozone-depleting substances, phasing out harmful substances, and creating partnerships).

  1. Achievement motivation and memory: achievement goals differentially influence immediate and delayed remember-know recognition memory.

    PubMed

    Murayama, Kou; Elliot, Andrew J

    2011-10-01

    Little research has been conducted on achievement motivation and memory and, more specifically, on achievement goals and memory. In the present research, the authors conducted two experiments designed to examine the influence of mastery-approach and performance-approach goals on immediate and delayed remember-know recognition memory. The experiments revealed differential effects for achievement goals over time: Performance-approach goals showed higher correct remember responding on an immediate recognition test, whereas mastery-approach goals showed higher correct remember responding on a delayed recognition test. Achievement goals had no influence on overall recognition memory and no consistent influence on know responding across experiments. These findings indicate that it is important to consider quality, not just quantity, in both motivation and memory, when studying relations between these constructs.

  2. Anatomy-aware measurement of segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Tizhoosh, H. R.; Othman, A. A.

    2016-03-01

    Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.

  3. The Social Accuracy Model of Interpersonal Perception: Assessing Individual Differences in Perceptive and Expressive Accuracy

    ERIC Educational Resources Information Center

    Biesanz, Jeremy C.

    2010-01-01

    The social accuracy model of interpersonal perception (SAM) is a componential model that estimates perceiver and target effects of different components of accuracy across traits simultaneously. For instance, Jane may be generally accurate in her perceptions of others and thus high in "perceptive accuracy"--the extent to which a particular…

  4. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    NASA Astrophysics Data System (ADS)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  5. Investigating the Effects of Higher Spatial Resolution on Benthic Classification Accuracy at Midway Atoll

    DTIC Science & Technology

    2008-09-01

    monospecific F. DEEP ESCARPMENT massive branching mixed G. LAGOON e. other invertebrates- sea urchins , sponges H. BACK REEF f. artificial- North South West...et al., 2004). When this technique is applied to describing the features of the sea bottom, it is called a benthic classification. Unfortunately...Stamnes, 1999). The effects of atmospheric attenuation and scattering, the air- sea interface, and elements in the water column must all be

  6. Higher Landing Accuracy in Expert Pilots is Associated with Lower Activity in the Caudate Nucleus

    PubMed Central

    Adamson, Maheen M.; Taylor, Joy L.; Heraldez, Daniel; Khorasani, Allen; Noda, Art; Hernandez, Beatriz; Yesavage, Jerome A.

    2014-01-01

    The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20–66) were asked to “fly” a series of simulated “cockpit view” instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog–legally unsafe to land) or low risk (medium fog–legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a “land” versus “do not land” decision (CFII: d′ = 3.62±2.52; IFR: d′ = 0.98±1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a “land” versus “do not land” decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97±0.80) compared to Moderate Expertise pilots (1.91±1.16) (p<.05). These findings provide evidence for increased “neural efficiency” in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the “expertise” effect was observed. These data provide evidence that performing “real world” aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it. PMID:25426935

  7. The Accuracy of Point-of-Care Glucose Measurements

    PubMed Central

    Rebel, Annette; Rice, Mark A.; Fahy, Brenda G.

    2012-01-01

    Control of blood glucose (BG) in an acceptable range is a major therapy target for diabetes patients in both the hospital and outpatient environments. This review focuses on the state of point-of-care (POC) glucose monitoring and the accuracy of the measurement devices. The accuracy of the POC glucose monitor depends on device methodology and other factors, including sample source and collection and patient characteristics. Patient parameters capable of influencing measurements include variations in pH, blood oxygen, hematocrit, changes in microcirculation, and vasopressor therapy. These elements alone or when combined can significantly impact BG measurement accuracy with POC glucose monitoring devices (POCGMDs). In general, currently available POCGMDs exhibit the greatest accuracy within the range of physiological glucose levels but become less reliable at the lower and higher ranges of BG levels. This issue raises serious safety concerns and the importance of understanding the limitations of POCGMDs. This review will discuss potential interferences and shortcomings of the current POCGMDs and stress when these may impact the reliability of POCGMDs for clinical decision-making. PMID:22538154

  8. Accuracy of point-of-care glucose measurements.

    PubMed

    Rebel, Annette; Rice, Mark A; Fahy, Brenda G

    2012-03-01

    Control of blood glucose (BG) in an acceptable range is a major therapy target for diabetes patients in both the hospital and outpatient environments. This review focuses on the state of point-of-care (POC) glucose monitoring and the accuracy of the measurement devices. The accuracy of the POC glucose monitor depends on device methodology and other factors, including sample source and collection and patient characteristics. Patient parameters capable of influencing measurements include variations in pH, blood oxygen, hematocrit, changes in microcirculation, and vasopressor therapy. These elements alone or when combined can significantly impact BG measurement accuracy with POC glucose monitoring devices (POCGMDs). In general, currently available POCGMDs exhibit the greatest accuracy within the range of physiological glucose levels but become less reliable at the lower and higher ranges of BG levels. This issue raises serious safety concerns and the importance of understanding the limitations of POCGMDs. This review will discuss potential interferences and shortcomings of the current POCGMDs and stress when these may impact the reliability of POCGMDs for clinical decision-making.

  9. Evaluation of clinical thermometers for accuracy and reliability.

    PubMed

    Latman, N S; Hans, P; Nicholson, L; DeLee Zint, S; Lewis, K; Shirey, A

    2001-01-01

    The purpose of this study was to examine the accuracy and reliability of a wide range of clinical thermometry instruments and technologies. In a historical sense, the purpose of this study was to determine if the improvements in speed, ease of use, and safety realized in the last 100 years have been offset by a loss of accuracy and/or reliability. In view of current events, the purpose was to determine if the new generation of electronic, digital clinical thermometers could be used to replace the traditional glass/mercury thermometers. Nine clinical thermometers representing electronic, digital oral, and predictive oral; electronic, digital infrared tympanic; and liquid crystal urinary technologies were evaluated. Accuracy was determined by comparing the temperatures obtained from these test instruments with those of the reference, glass/mercury oral thermometer. Reliability was determined by test-retest evaluation. All of the thermometers evaluated were significantly less accurate when compared with the reference thermometer in this study. All of the test instruments significantly underestimated higher temperatures and overestimated lower temperatures. This study indicated that the improvements in safety, speed, and ease of use of the newer clinical thermometers have been offset by a loss in accuracy and reliability. It also indicated that the current generation of electronic, digital clinical thermometers, in general, may not be sufficiently accurate or reliable to replace the traditional glass/mercury thermometers.

  10. Assessing accuracy in citizen science-based plant phenology monitoring

    NASA Astrophysics Data System (ADS)

    Fuccillo, Kerissa K.; Crimmins, Theresa M.; de Rivera, Catherine E.; Elder, Timothy S.

    2015-07-01

    In the USA, thousands of volunteers are engaged in tracking plant and animal phenology through a variety of citizen science programs for the purpose of amassing spatially and temporally comprehensive datasets useful to scientists and resource managers. The quality of these observations and their suitability for scientific analysis, however, remains largely unevaluated. We aimed to evaluate the accuracy of plant phenology observations collected by citizen scientist volunteers following protocols designed by the USA National Phenology Network (USA-NPN). Phenology observations made by volunteers receiving several hours of formal training were compared to those collected independently by a professional ecologist. Approximately 11,000 observations were recorded by 28 volunteers over the course of one field season. Volunteers consistently identified phenophases correctly (91 % overall) for the 19 species observed. Volunteers demonstrated greatest overall accuracy identifying unfolded leaves, ripe fruits, and open flowers. Transitional accuracy decreased for some species/phenophase combinations (70 % average), and accuracy varied significantly by phenophase and species ( p < 0.0001). Volunteers who submitted fewer observations over the period of study did not exhibit a higher error rate than those who submitted more total observations. Overall, these results suggest that volunteers with limited training can provide reliable observations when following explicit, standardized protocols. Future studies should investigate different observation models (i.e., group/individual, online/in-person training) over subsequent seasons with multiple expert comparisons to further substantiate the ability of these monitoring programs to supply accurate broadscale datasets capable of answering pressing ecological questions about global change.

  11. Accuracy of Small Base Metal Dental Castings,

    DTIC Science & Technology

    1980-07-10

    aCCURACY OF SMALL BASE METAL DENTAL CASTINGS,(U) M JUL 80 E A HUBET, S 6 VERMILYEA, M .J KUFFLER UNCLASSIFIED NE7 hhhhh *EN UN~CLASSIFIED SECURITY...TPCCSI70NO. 3. RECIPIENT’S .CATALOG NUMBER I _% dSutte 5. TYPE OF REPORT & PERIOD COVERED Accuracy of Small Base Metal Dental Castings Manuscript S...base metal- alloys is countered by their inadequate casting accuracy . Until this problem can be overcome, the acceptance of such alloys for routine use

  12. Discrimination in measures of knowledge monitoring accuracy

    PubMed Central

    Was, Christopher A.

    2014-01-01

    Knowledge monitoring predicts academic outcomes in many contexts. However, measures of knowledge monitoring accuracy are often incomplete. In the current study, a measure of students’ ability to discriminate known from unknown information as a component of knowledge monitoring was considered. Undergraduate students’ knowledge monitoring accuracy was assessed and used to predict final exam scores in a specific course. It was found that gamma, a measure commonly used as the measure of knowledge monitoring accuracy, accounted for a small, but significant amount of variance in academic performance whereas the discrimination and bias indexes combined to account for a greater amount of variance in academic performance. PMID:25339979

  13. Students’ Achievement Goals, Learning-Related Emotions and Academic Achievement

    PubMed Central

    Lüftenegger, Marko; Klug, Julia; Harrer, Katharina; Langer, Marie; Spiel, Christiane; Schober, Barbara

    2016-01-01

    In the present research, the recently proposed 3 × 2 model of achievement goals is tested and associations with achievement emotions and their joint influence on academic achievement are investigated. The study was conducted with 388 students using the 3 × 2 Achievement Goal Questionnaire including the six proposed goal constructs (task-approach, task-avoidance, self-approach, self-avoidance, other-approach, other-avoidance) and the enjoyment and boredom scales from the Achievement Emotion Questionnaire. Exam grades were used as an indicator of academic achievement. Findings from CFAs provided strong support for the proposed structure of the 3 × 2 achievement goal model. Self-based goals, other-based goals and task-approach goals predicted enjoyment. Task-approach goals negatively predicted boredom. Task-approach and other-approach predicted achievement. The indirect effects of achievement goals through emotion variables on achievement were assessed using bias-corrected bootstrapping. No mediation effects were found. Implications for educational practice are discussed. PMID:27199836

  14. Accuracy assessment of the integration of GNSS and a MEMS IMU in a terrestrial platform.

    PubMed

    Madeira, Sergio; Yan, Wenlin; Bastos, Luísa; Gonçalves, José A

    2014-11-04

    MEMS Inertial Measurement Units are available at low cost and can replace expensive units in mobile mapping platforms which need direct georeferencing. This is done through the integration with GNSS measurements in order to achieve a continuous positioning solution and to obtain orientation angles. This paper presents the results of the assessment of the accuracy of a system that integrates GNSS and a MEMS IMU in a terrestrial platform. We describe the methodology used and the tests realized where the accuracy of the positions and orientation parameters were assessed using an independent photogrammetric technique employing cameras that integrate the mobile mapping system developed by the authors. Results for the accuracy of attitude angles and coordinates show that accuracies better than a decimeter in positions, and under a degree in angles, can be achieved even considering that the terrestrial platform is operating in less than favorable environments.

  15. Accuracy and Resolution in Micro-earthquake Tomographic Inversion Studies

    NASA Astrophysics Data System (ADS)

    Hutchings, L. J.; Ryan, J.

    2010-12-01

    Accuracy and resolution are complimentary properties necessary to interpret the results of earthquake location and tomography studies. Accuracy is the how close an answer is to the “real world”, and resolution is who small of node spacing or earthquake error ellipse one can achieve. We have modified SimulPS (Thurber, 1986) in several ways to provide a tool for evaluating accuracy and resolution of potential micro-earthquake networks. First, we provide synthetic travel times from synthetic three-dimensional geologic models and earthquake locations. We use this to calculate errors in earthquake location and velocity inversion results when we perturb these models and try to invert to obtain these models. We create as many stations as desired and can create a synthetic velocity model with any desired node spacing. We apply this study to SimulPS and TomoDD inversion studies. “Real” travel times are perturbed with noise and hypocenters are perturbed to replicate a starting location away from the “true” location, and inversion is performed by each program. We establish travel times with the pseudo-bending ray tracer and use the same ray tracer in the inversion codes. This, of course, limits our ability to test the accuracy of the ray tracer. We developed relationships for the accuracy and resolution expected as a function of the number of earthquakes and recording stations for typical tomographic inversion studies. Velocity grid spacing started at 1km, then was decreased to 500m, 100m, 50m and finally 10m to see if resolution with decent accuracy at that scale was possible. We considered accuracy to be good when we could invert a velocity model perturbed by 50% back to within 5% of the original model, and resolution to be the size of the grid spacing. We found that 100 m resolution could obtained by using 120 stations with 500 events, bu this is our current limit. The limiting factors are the size of computers needed for the large arrays in the inversion and a

  16. Accuracy Rates of Ancestry Estimation by Forensic Anthropologists Using Identified Forensic Cases.

    PubMed

    Thomas, Richard M; Parks, Connie L; Richard, Adam H

    2017-01-30

    A common task in forensic anthropology involves the estimation of the ancestry of a decedent by comparing their skeletal morphology and measurements to skeletons of individuals from known geographic groups. However, the accuracy rates of ancestry estimation methods in actual forensic casework have rarely been studied. This article uses 99 forensic cases with identified skeletal remains to develop accuracy rates for ancestry estimations conducted by forensic anthropologists. The overall rate of correct ancestry estimation from these cases is 90.9%, which is comparable to most research-derived rates and those reported by individual practitioners. Statistical tests showed no significant difference in accuracy rates depending on examiner education level or on the estimated or identified ancestry. More recent cases showed a significantly higher accuracy rate. The incorporation of metric analyses into the ancestry estimate in these cases led to a higher accuracy rate.

  17. The Economic Value of Higher Teacher Quality

    ERIC Educational Resources Information Center

    Hanushek, Eric A.

    2011-01-01

    Most analyses of teacher quality end without any assessment of the economic value of altered teacher quality. This paper combines information about teacher effectiveness with the economic impact of higher achievement. It begins with an overview of what is known about the relationship between teacher quality and student achievement. This provides…

  18. The use of imprecise processing to improve accuracy in weather & climate prediction

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; McNamara, Hugh; Palmer, T. N.

    2014-08-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and

  19. The use of imprecise processing to improve accuracy in weather and climate prediction

    SciTech Connect

    Düben, Peter D.; McNamara, Hugh; Palmer, T.N.

    2014-08-15

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and

  20. Sun-pointing programs and their accuracy

    SciTech Connect

    Zimmerman, J.C.

    1981-05-01

    Several sun-pointing programs and their accuracy are described. FORTRAN program listings are given. Program descriptions are given for both Hewlett-Packard (HP-67) and Texas Instruments (TI-59) hand-held calculators.

  1. Intra- and inter-laboratory reproducibility and accuracy of the LuSens assay: A reporter gene-cell line to detect keratinocyte activation by skin sensitizers.

    PubMed

    Ramirez, Tzutzuy; Stein, Nadine; Aumann, Alexandra; Remus, Tina; Edwards, Amber; Norman, Kimberly G; Ryan, Cindy; Bader, Jackie E; Fehr, Markus; Burleson, Florence; Foertsch, Leslie; Wang, Xiaohong; Gerberick, Frank; Beilstein, Paul; Hoffmann, Sebastian; Mehling, Annette; van Ravenzwaay, Bennard; Landsiedel, Robert

    2016-04-01

    Several non-animal methods are now available to address the key events leading to skin sensitization as defined by the adverse outcome pathway. The KeratinoSens assay addresses the cellular event of keratinocyte activation and is a method accepted under OECD TG 442D. In this study, the results of an inter-laboratory evaluation of the "me-too" LuSens assay, a bioassay that uses a human keratinocyte cell line harboring a reporter gene construct composed of the rat antioxidant response element (ARE) of the NADPH:quinone oxidoreductase 1 gene and the luciferase gene, are described. Earlier in-house validation with 74 substances showed an accuracy of 82% in comparison to human data. When used in a battery of non-animal methods, even higher predictivity is achieved. To meet European validation criteria, a multicenter study was conducted in 5 laboratories. The study was divided into two phases, to assess 1) transferability of the method, and 2) reproducibility and accuracy. Phase I was performed by testing 8 non-coded test substances; the results showed a good transferability to naïve laboratories even without on-site training. Phase II was performed with 20 coded test substances (performance standards recommended by OECD, 2015). In this phase, the intra- and inter-laboratory reproducibility as well as accuracy of the method was evaluated. The data demonstrate a remarkable reproducibility of 100% and an accuracy of over 80% in identifying skin sensitizers, indicating a good concordance with in vivo data. These results demonstrate good transferability, reliability and accuracy of the method thereby achieving the standards necessary for use in a regulatory setting to detect skin sensitizers.

  2. Fitting magnetic field gradient with Heisenberg-scaling accuracy

    PubMed Central

    Zhang, Yong-Liang; Wang, Huan; Jing, Li; Mu, Liang-Zhu; Fan, Heng

    2014-01-01

    The linear function is possibly the simplest and the most used relation appearing in various areas of our world. A linear relation can be generally determined by the least square linear fitting (LSLF) method using several measured quantities depending on variables. This happens for such as detecting the gradient of a magnetic field. Here, we propose a quantum fitting scheme to estimate the magnetic field gradient with N-atom spins preparing in W state. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cramér-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. Our scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements. PMID:25487218

  3. Techniques for improving overlay accuracy by using device correlated metrology targets as reference

    NASA Astrophysics Data System (ADS)

    Tzai, Wei Jhe; Hsu, Simon C. C.; Chen, Howard; Chen, Charlie; Pai, Yuan Chi; Yu, Chun-Chi; Lin, Chia Ching; Itzkovich, Tal; Yap, Lipkong; Amit, Eran; Tien, David; Huang, Eros; Kuo, Kelly T. L.; Amir, Nuriel

    2014-10-01

    The performance of overlay metrology as total measurement uncertainty, design rule compatibility, device correlation, and measurement accuracy has been challenged at the 2× nm node and below. The process impact on overlay metrology is becoming critical, and techniques to improve measurement accuracy become increasingly important. We present a methodology for improving the overlay accuracy. A propriety quality metric, Qmerit, is used to identify overlay metrology measurement settings with the least process impacts and reliable accuracies. Using the quality metric, a calibration method, Archer self-calibration, is then used to remove the inaccuracies. Accuracy validation can be achieved by correlation to reference overlay data from another independent metrology source such as critical dimension-scanning electron microscopy data collected on a device correlated metrology hybrid target or by electrical testing. Additionally, reference metrology can also be used to verify which measurement conditions are the most accurate. We provide an example of such a case.

  4. Innovative techniques for improving overlay accuracy by using DCM (device correlated metrology) targets as reference

    NASA Astrophysics Data System (ADS)

    Tzai, Wei-Jhe; Hsu, Simon C. C.; Chen, Howard; Chen, Charlie; Pai, Yuan Chi; Yu, Chun-Chi; Lin, Chia Ching; Itzkovich, Tal; Yap, Lipkong; Amit, Eran; Tien, David; Huang, Eros; Kuo, Kelly T. L.; Amir, Nuriel

    2014-04-01

    Overlay metrology performance as Total Measurement Uncertainty (TMU), design rule compatibility, device correlation and measurement accuracy are been challenged at 2x nm node and below. Process impact on overlay metrology becoming critical, and techniques to improve measurement accuracy becomes increasingly important. In this paper, we present an innovative methodology for improving overlay accuracy. A propriety quality metric, Qmerit, is used to identify overlay metrology measurement settings with least process impacts and reliable accuracies. Using the quality metric, an innovative calibration method, ASC (Archer Self Calibration) is then used to remove the inaccuracies. Accuracy validation can be achieved by correlation to reference overlay data from another independent metrology source such as CDSEM data collected on DCM (Device Correlated Metrology) hybrid target or electrical testing. Additionally, reference metrology can also be used to verify which measurement conditions are the most accurate. In this paper we bring an example of such use case.

  5. Towards J/mol Accuracy for the Cohesive Energy of Solid Argon.

    PubMed

    Schwerdtfeger, Peter; Tonner, Ralf; Moyano, Gloria E; Pahl, Elke

    2016-09-26

    The cohesive energies of argon in its cubic and hexagonal closed packed structures are computed with an unprecedented accuracy of about 5 J mol(-1) (corresponding to 0.05 % of the total cohesive energy). The same relative accuracy with respect to experimental data is also found for the face-centered cubic lattice constant deviating by ca. 0.003 Å. This level of accuracy was enabled by using high-level theoretical, wave-function-based methods within a many-body decomposition of the interaction energy. Static contributions of two-, three-, and four-body fragments of the crystal are all individually converged to sub-J mol(-1) accuracy and complemented by harmonic and anharmonic vibrational corrections. Computational chemistry is thus achieving or even surpassing experimental accuracy for the solid-state rare gases.

  6. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  7. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  8. Higher Education Exchange, 2014

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2014-01-01

    Research shows that not only does higher education not see the public; when the public, in turn, looks at higher education, it sees mostly malaise, inefficiencies, expense, and unfulfilled promises. Yet, the contributors to this issue of the "Higher Education Exchange" tell of bright spots in higher education where experiments in working…

  9. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  10. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  11. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  12. Neural Mechanisms of Speed-Accuracy Tradeoff

    PubMed Central

    Heitz, Richard P.; Schall, Jeffrey D.

    2012-01-01

    SUMMARY Intelligent agents balance speed of responding with accuracy of deciding. Stochastic accumulator models commonly explain this speed-accuracy tradeoff by strategic adjustment of response threshold. Several laboratories identify specific neurons in prefrontal and parietal cortex with this accumulation process, yet no neurophysiological correlates of speed-accuracy tradeoff have been described. We trained macaque monkeys to trade speed for accuracy on cue during visual search and recorded the activity of neurons in the frontal eye field. Unpredicted by any model, we discovered that speed-accuracy tradeoff is accomplished through several distinct adjustments. Visually responsive neurons modulated baseline firing rate, sensory gain, and the duration of perceptual processing. Movement neurons triggered responses with activity modulated in a direction opposite of model predictions. Thus, current stochastic accumulator models provide an incomplete description of the neural processes accomplishing speed-accuracy tradeoffs. The diversity of neural mechanisms was reconciled with the accumulator framework through an integrated accumulator model constrained by requirements of the motor system. PMID:23141072

  13. Accuracy comparison among different machine learning techniques for detecting malicious codes

    NASA Astrophysics Data System (ADS)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  14. The energy-speed-accuracy tradeoff in sensory adaptation

    PubMed Central

    Lan, Ganhui; Sartori, Pablo; Neumann, Silke; Sourjik, Victor; Tu, Yuhai

    2012-01-01

    Adaptation is the essential process by which an organism becomes better suited to its environment. The benefits of adaptation are well documented, but the cost it incurs remains poorly understood. Here, by analysing a stochastic model of a minimum feedback network underlying many sensory adaptation systems, we show that adaptive processes are necessarily dissipative, and continuous energy consumption is required to stabilize the adapted state. Our study reveals a general relation among energy dissipation rate, adaptation speed and the maximum adaptation accuracy. This energy-speed-accuracy relation is tested in the Escherichia coli chemosensory system, which exhibits near-perfect chemoreceptor adaptation. We identify key requirements for the underlying biochemical network to achieve accurate adaptation with a given energy budget. Moreover, direct measurements confirm the prediction that adaptation slows down as cells gradually de-energize in a nutrient-poor medium without compromising adaptation accuracy. Our work provides a general framework to study cost-performance tradeoffs for cellular regulatory functions and information processing. PMID:22737175

  15. Evaluation of registration accuracy between Sentinel-2 and Landsat 8

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia

    2016-08-01

    Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).

  16. Accuracy of temperature measurement in the cardiopulmonary bypass circuit.

    PubMed

    Newland, Richard F; Sanderson, Andrew J; Baker, Robert A

    2005-03-01

    Oxygenator arterial outlet blood temperature is routinely measured in the cardiopulmonary bypass (CPB) circuit as a surrogate for the temperature of the arterial blood delivered to sensitive organs such as the brain. The aim of this study was to evaluate the accuracy of the temperature thermistors used in the Terumo Capiox SX25 oxygenator and to compare the temperature measured at the outlet of the oxygenator using the Capiox CX*TL Luer Thermistor with temperatures measured at distal sites. Five experimental stages were performed in vitro to achieve this aim. Under our experimental conditions, the luer thermistors accurately measured the temperature as referenced by a precision thermometer. In the CPB circuit, the difference between arterial outlet and reference thermometer temperature varied with outlet temperature over-reading at low temperatures and under reading at high temperatures. There was negligible heat loss (-0.4+/-0.1degrees C) measured at 4.5 m from the arterial outlet. The Terumo Capiox CX*TL Luer Thermistor is an accurate and reliable instrument for measuring temperature when incorporated into the Capiox Oxygenator. The accuracy in the measurement of temperature using these thermistors is affected by the thermistor immersion depth. Under reading of the arterial blood temperature by approximately 0.5 degrees C should be considered at normothermic temperatures, to avoid exceeding the maximum arterial blood temperature as described by institutional protocols. The accuracy of blood temperature measurements should be considered for all oxygenator arterial outlet temperature probes.

  17. A teledermatological approach to enhance diagnostic accuracy in dermatohistopathology.

    PubMed

    Schiener, R; Pillekamp, H; Weber, L; Hartmann, K; Peter, R U

    2003-01-01

    We determined whether digital photographs of skin lesions could enhance diagnostic accuracy in dermatohistological evaluations. Two dermatohistopathologists examined 375 unsorted consecutive cases. On a standardized questionnaire they recorded whether the final diagnostic interpretation would be improved by the availability of digital images of the skin lesions. In 101 cases (27%) they said that digital photographs would be helpful. Subsequently, 30 histological analyses were performed with and without digital photographs of the skin lesions. Presentation of digital photographs reduced the number of differential diagnoses significantly, from a median of 3 to 2. Ratings of ability to make a single definitive diagnosis increased significantly with the presentation of digital photographs. Enhancement of information given by the digital images was scored a median of 6 (on a scale of 0-10, with higher scores reflecting greater enhancement). Digital photographs of skin lesions are likely to refine diagnostic accuracy in histopathology.

  18. Imputation accuracy is robust to cattle reference genome updates.

    PubMed

    Milanesi, M; Vicario, D; Stella, A; Valentini, A; Ajmone-Marsan, P; Biffani, S; Biscarini, F; Jansen, G; Nicolazzi, E L

    2015-02-01

    Genotype imputation is routinely applied in a large number of cattle breeds. Imputation has become a need due to the large number of SNP arrays with variable density (currently, from 2900 to 777,962 SNPs). Although many authors have studied the effect of different statistical methods on imputation accuracy, the impact of a (likely) change in the reference genome assembly on imputation from lower to higher density has not been determined so far. In this work, 1021 Italian Simmental SNP genotypes were remapped on the three most recent reference genome assemblies. Four imputation methods were used to assess the impact of an update in the reference genome. As expected, the four methods behaved differently, with large differences in terms of accuracy. Updating SNP coordinates on the three tested cattle reference genome assemblies determined only a slight variation on imputation results within method.

  19. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  20. How Accurately Can Older Adults Evaluate the Quality of Their Text Recall? The Effect of Providing Standards on Judgment Accuracy

    PubMed Central

    Baker, Julie; Dunlosky, John; Hertzog, Christopher

    2010-01-01

    Adults have difficulties accurately judging how well they have learned text materials; unfortunately, such low levels of accuracy may obscure age-related deficits. Higher levels of accuracy have been obtained when younger adults make postdictions about which test questions they answered correctly. Accordingly, we focus on the accuracy of postdictive judgments to evaluate whether age deficits would emerge with higher levels of accuracy and whether people’s postdictive accuracy would benefit from providing an appropriate standard of evlauation. Participants read texts with definitions embedded in them, attempted to recall each definition, and then made a postdictive judgment about the quality of their recall. When making these judgments, participants either received no standard or were presented the correct definition as a standard for evaluation. Age-related equivalence was found in the relative accuracy of these term-specific judgments, and older adults’ absolute accuracy benefited from providing standards to the same degree as did younger adults. PMID:20126418

  1. The Mechanics of Human Achievement.

    PubMed

    Duckworth, Angela L; Eichstaedt, Johannes C; Ungar, Lyle H

    2015-07-01

    Countless studies have addressed why some individuals achieve more than others. Nevertheless, the psychology of achievement lacks a unifying conceptual framework for synthesizing these empirical insights. We propose organizing achievement-related traits by two possible mechanisms of action: Traits that determine the rate at which an individual learns a skill are talent variables and can be distinguished conceptually from traits that determine the effort an individual puts forth. This approach takes inspiration from Newtonian mechanics: achievement is akin to distance traveled, effort to time, skill to speed, and talent to acceleration. A novel prediction from this model is that individual differences in effort (but not talent) influence achievement (but not skill) more substantially over longer (rather than shorter) time intervals. Conceptualizing skill as the multiplicative product of talent and effort, and achievement as the multiplicative product of skill and effort, advances similar, but less formal, propositions by several important earlier thinkers.

  2. The Mechanics of Human Achievement

    PubMed Central

    Duckworth, Angela L.; Eichstaedt, Johannes C.; Ungar, Lyle H.

    2015-01-01

    Countless studies have addressed why some individuals achieve more than others. Nevertheless, the psychology of achievement lacks a unifying conceptual framework for synthesizing these empirical insights. We propose organizing achievement-related traits by two possible mechanisms of action: Traits that determine the rate at which an individual learns a skill are talent variables and can be distinguished conceptually from traits that determine the effort an individual puts forth. This approach takes inspiration from Newtonian mechanics: achievement is akin to distance traveled, effort to time, skill to speed, and talent to acceleration. A novel prediction from this model is that individual differences in effort (but not talent) influence achievement (but not skill) more substantially over longer (rather than shorter) time intervals. Conceptualizing skill as the multiplicative product of talent and effort, and achievement as the multiplicative product of skill and effort, advances similar, but less formal, propositions by several important earlier thinkers. PMID:26236393

  3. Accuracy of the Dinamap 1846 XT automated blood pressure monitor.

    PubMed

    Beaubien, E R; Card, C M; Card, S E; Biem, H J; Wilson, T W

    2002-09-01

    Accurate blood pressure (BP) measurement is important for the detection and treatment of hypertension. Despite widespread use of automated devices, there is limited published evidence for their reliability and accuracy. To determine the reliability and accuracy of the Dinamap 1846XT (Critikon Corporation, Tampa, FL, USA), a commonly used non-invasive oscillometric BP monitor The Dinamap was evaluated against the mercury manometer in 70 randomly selected adult hospitalised medical patients. Each individual underwent three sets of standardised BP measurement by automated method and three sets by mercury manometer by two independent observers. Reliability of BP measurement was assessed by repeated measures analysis. Dinamap accuracy was evaluated according to the American Association of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) guidelines. Most patients were either normotensive or had stage I hypertension. The Dinamap tended to overestimate lower diastolic BP, and displayed poor reliability (P < 0.05). despite meeting aami guidelines, only 59% of systolic and 56% of diastolic dinamap readings were within 5 mm hg of the mercury manometer and 84% of systolic and 80% of diastolic readings were within 10 mm hg (bhs grade c). systolic and diastolic accuracy were worse with pressures >160/90 mm Hg (grade D) although these measures were based on a smaller sample of subjects. In conclusion the Dinamap yields inaccurate estimates of both systolic and diastolic BP even under standardised, and thus optimal conditions. This inaccuracy is exaggerated at higher BP (>160/90 mm Hg), although the number of measurements at higher pressures was small. We recommend that this device not be used when accurate BP measurement is needed for therapeutic decision-making.

  4. Accuracy of Electronic Health Record Data for Identifying Stroke Cases in Large-Scale Epidemiological Studies: A Systematic Review from the UK Biobank Stroke Outcomes Group

    PubMed Central

    Woodfield, Rebecca; Grant, Ian; Sudlow, Cathie L. M.

    2015-01-01

    Objective Long-term follow-up of population-based prospective studies is often achieved through linkages to coded regional or national health care data. Our knowledge of the accuracy of such data is incomplete. To inform methods for identifying stroke cases in UK Biobank (a prospective study of 503,000 UK adults recruited in middle-age), we systematically evaluated the accuracy of these data for stroke and its main pathological types (ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage), determining the optimum codes for case identification. Methods We sought studies published from 1990-November 2013, which compared coded data from death certificates, hospital admissions or primary care with a reference standard for stroke or its pathological types. We extracted information on a range of study characteristics and assessed study quality with the Quality Assessment of Diagnostic Studies tool (QUADAS-2). To assess accuracy, we extracted data on positive predictive values (PPV) and—where available—on sensitivity, specificity, and negative predictive values (NPV). Results 37 of 39 eligible studies assessed accuracy of International Classification of Diseases (ICD)-coded hospital or death certificate data. They varied widely in their settings, methods, reporting, quality, and in the choice and accuracy of codes. Although PPVs for stroke and its pathological types ranged from 6–97%, appropriately selected, stroke-specific codes (rather than broad cerebrovascular codes) consistently produced PPVs >70%, and in several studies >90%. The few studies with data on sensitivity, specificity and NPV showed higher sensitivity of hospital versus death certificate data for stroke, with specificity and NPV consistently >96%. Few studies assessed either primary care data or combinations of data sources. Conclusions Particular stroke-specific codes can yield high PPVs (>90%) for stroke/stroke types. Inclusion of primary care data and combining data sources should

  5. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  6. The Centrality of Engagement in Higher Education

    ERIC Educational Resources Information Center

    Fitzgerald, Hiram E.; Bruns, Karen; Sonka, Steven T.; Furco, Andrew; Swanson, Louis

    2016-01-01

    The centrality of engagement is critical to the success of higher education in the future. Engagement is essential to most effectively achieving the overall purpose of the university, which is focused on the knowledge enterprise. Today's engagement is scholarly, is an aspect of learning and discovery, and enhances society and higher education.…

  7. The Centrality of Engagement in Higher Education

    ERIC Educational Resources Information Center

    Fitzgerald, Hiram E.; Bruns, Karen; Sonka, Steven T.; Furco, Andrew; Swanson, Louis

    2012-01-01

    The centrality of engagement is critical to the success of higher education in the future. Engagement is essential to most effectively achieving the overall purpose of the university, which is focused on the knowledge enterprise. Today's engagement is scholarly, is an aspect of learning and discovery, and enhances society and higher education.…

  8. 2016 Nebraska Higher Education Progress Report

    ERIC Educational Resources Information Center

    Nebraska's Coordinating Commission for Postsecondary Education, 2016

    2016-01-01

    The 2016 Nebraska Higher Education Progress Report is the 12th annual progress report designed to provide the Nebraska Legislature with comparative statistics to monitor and evaluate progress toward achieving three key priorities for Nebraska's postsecondary education system. These priorities were developed by the 2003 LR 174 Higher Education Task…

  9. Higher Education and the State in Cuba.

    ERIC Educational Resources Information Center

    Paulston, Rolland G.

    How and why the expansion and reorientation in Cuban higher education has taken place is noted, and continuing problems and emerging trends are assessed. Few developing countries can match Cuban achievements in higher education, which has advanced to levels characteristic of developed societies. Ideological orientations of historical trends are…

  10. Accuracy of stream habitat interpolations across spatial scales

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Welsh, Stuart

    2013-01-01

    Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.

  11. Accuracy of quantitative visual soil assessment

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; Heuvelink, Gerard; Stoorvogel, Jetse; Wallinga, Jakob; de Boer, Imke; van Dam, Jos; van Essen, Everhard; Moolenaar, Simon; Verhoeven, Frank; Stoof, Cathelijne

    2016-04-01

    Visual soil assessment (VSA) is a method to assess soil quality visually, when standing in the field. VSA is increasingly used by farmers, farm organisations and companies, because it is rapid and cost-effective, and because looking at soil provides understanding about soil functioning. Often VSA is regarded as subjective, so there is a need to verify VSA. Also, many VSAs have not been fine-tuned for contrasting soil types. This could lead to wrong interpretation of soil quality and soil functioning when contrasting sites are compared to each other. We wanted to assess accuracy of VSA, while taking into account soil type. The first objective was to test whether quantitative visual field observations, which form the basis in many VSAs, could be validated with standardized field or laboratory measurements. The second objective was to assess whether quantitative visual field observations are reproducible, when used by observers with contrasting backgrounds. For the validation study, we made quantitative visual observations at 26 cattle farms. Farms were located at sand, clay and peat soils in the North Friesian Woodlands, the Netherlands. Quantitative visual observations evaluated were grass cover, number of biopores, number of roots, soil colour, soil structure, number of earthworms, number of gley mottles and soil compaction. Linear regression analysis showed that four out of eight quantitative visual observations could be well validated with standardized field or laboratory measurements. The following quantitative visual observations correlated well with standardized field or laboratory measurements: grass cover with classified images of surface cover; number of roots with root dry weight; amount of large structure elements with mean weight diameter; and soil colour with soil organic matter content. Correlation coefficients were greater than 0.3, from which half of the correlations were significant. For the reproducibility study, a group of 9 soil scientists and 7

  12. Activity monitor accuracy in persons using canes.

    PubMed

    Wendland, Deborah Michael; Sprigle, Stephen H

    2012-01-01

    The StepWatch activity monitor has not been validated on multiple indoor and outdoor surfaces in a population using ambulation aids. The aims of this technical report are to report on strategies to configure the StepWatch activity monitor on subjects using a cane and to report the accuracy of both leg-mounted and cane-mounted StepWatch devices on people ambulating over different surfaces while using a cane. Sixteen subjects aged 67 to 85 yr (mean 75.6) who regularly use a cane for ambulation participated. StepWatch calibration was performed by adjusting sensitivity and cadence. Following calibration optimization, accuracy was tested on both the leg-mounted and cane-mounted devices on different surfaces, including linoleum, sidewalk, grass, ramp, and stairs. The leg-mounted device had an accuracy of 93.4% across all surfaces, while the cane-mounted device had an aggregate accuracy of 84.7% across all surfaces. Accuracy of the StepWatch on the stairs was significantly less accurate (p < 0.001) when comparing surfaces using repeated measures analysis of variance. When monitoring community mobility, placement of a StepWatch on a person and his/her ambulation aid can accurately document both activity and device use.

  13. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  14. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  15. EDUCATIONAL ACHIEVEMENT AND THE NAVAJO.

    ERIC Educational Resources Information Center

    HAAS, JOHN; MELVILLE, ROBERT

    A STUDY WAS DEVISED TO APPRAISE THE ACADEMIC ACHIEVEMENT OF NAVAJO STUDENTS LIVING IN DORMITORIES AWAY FROM THE INDIAN RESERVATION. THE FOLLOWING SEVEN FACTORS WERE CHOSEN TO BE INVESTIGATED AS BEING DIRECTLY RELATED TO ACHIEVEMENT--(1) INTELLIGENCE, (2) READING ABILITY, (3) ANXIETY, (4) SELF-CONCEPT, (5) MOTIVATION, (6) VERBAL DEVELOPMENT, (7)…

  16. Sociocultural Origins of Achievement Motivation

    ERIC Educational Resources Information Center

    Maehr, Martin L.

    1977-01-01

    Presents a theoretical review of work on sociocultural influences on achievement, focusing on a critical evaluation of the work of David McClellan. Offers an alternative conception of achievement motivation which stresses the role of contextual and situational factors in addition to personality factors. Available from: Transaction Periodicals…

  17. Raising Boys' Achievement in Schools.

    ERIC Educational Resources Information Center

    Bleach, Kevan, Ed.

    This book offers insights into the range of strategies and good practice being used to raise the achievement of boys. Case studies by school-based practitioners suggest ideas and measures to address the issue of achievement by boys. The contributions are: (1) "Why the Likely Lads Lag Behind" (Kevan Bleach); (2) "Helping Boys Do…

  18. Teaching the Low Level Achiever.

    ERIC Educational Resources Information Center

    Salomone, Ronald E., Ed.

    1986-01-01

    Intended for teachers of the English language arts, the articles in this issue offer suggestions and techniques for teaching the low level achiever. Titles and authors of the articles are as follows: (1) "A Point to Ponder" (Rachel Martin); (2) "Tracking: A Self-Fulfilling Prophecy of Failure for the Low Level Achiever" (James Christopher Davis);…

  19. Early Intervention and Student Achievement

    ERIC Educational Resources Information Center

    Hormes, Mridula T.

    2009-01-01

    The United States Department of Education has been rigorous in holding all states accountable with regard to student achievement. The No Child Left Behind Act of 2001 clearly laid out federal mandates for all schools to follow. K-12 leaders of public schools are very aware of the fact that results in terms of student achievement need to improve…

  20. Asperger Syndrome and Academic Achievement.

    ERIC Educational Resources Information Center

    Griswold, Deborah E.; Barnhill, Gena P.; Myles, Brenda Smith; Hagiwara, Taku; Simpson, Richard L.

    2002-01-01

    A study focused on identifying the academic characteristics of 21 children and youth who have Asperger syndrome. Students had an extraordinary range of academic achievement scores, extending from significantly above average to far below grade level. Lowest achievement scores were shown for numerical operations, listening comprehension, and written…

  1. Perils of Standardized Achievement Testing

    ERIC Educational Resources Information Center

    Haladyna, Thomas M.

    2006-01-01

    This article argues that the validity of standardized achievement test-score interpretation and use is problematic; consequently, confidence and trust in such test scores may often be unwarranted. The problem is particularly severe in high-stakes situations. This essay provides a context for understanding standardized achievement testing, then…

  2. Stress Correlates and Academic Achievement.

    ERIC Educational Resources Information Center

    Bentley, Donna Anderson; And Others

    An ongoing concern for educators is the identification of factors that contribute to or are associated with academic achievement; one such group of variables that has received little attention are those involving stress. The relationship between perceived sources of stress and academic achievement was examined to determine if reactions to stress…

  3. School Size and Student Achievement

    ERIC Educational Resources Information Center

    Riggen, Vicki

    2013-01-01

    This study examined whether a relationship between high school size and student achievement exists in Illinois public high schools in reading and math, as measured by the Prairie State Achievement Exam (PSAE), which is administered to all Illinois 11th-grade students. This study also examined whether the factors of socioeconomic status, English…

  4. India's Higher Education Challenges

    ERIC Educational Resources Information Center

    Altbach, Philip G.

    2014-01-01

    India, with the world's second largest higher education system and a rapidly growing economy as one of the BRIC nations, faces significant challenges in building both capacity and excellence in higher education. India's higher education system is characterized by "islands of excellence in a sea of mediocrity." The mainstream universities…

  5. Disorders in Higher Education.

    ERIC Educational Resources Information Center

    Walton, Clarence C.; Bolman, Frederick deW.

    Conditions affecting the moral and intellectual integrity of American colleges and universities are discussed in a series of papers collected from the 56th American Assembly on "The Integrity of Higher Education." An erosion of public confidence in higher education is noted and it is suggested that the expectations of higher education have not…

  6. An automated method for the evaluation of the pointing accuracy of sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz

    2016-04-01

    The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.

  7. Measurement accuracies in band-limited extrapolation

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.

    1982-01-01

    The problem of numerical instability associated with extrapolation algorithms is addressed. An attempt is made to estimate the bounds for the acceptable errors and to place a ceiling on the measurement accuracy and computational accuracy needed for the extrapolation. It is shown that in band limited (or visible angle limited) extrapolation the larger effective aperture L' that can be realized from a finite aperture L by over sampling is a function of the accuracy of measurements. It is shown that for sampling in the interval L/b absolute value of xL, b1 the signal must be known within an error e sub N given by e sub N squared approximately = 1/4(2kL') cubed (e/8b L/L')(2kL') where L is the physical aperture, L' is the extrapolated aperture, and k = 2pi lambda.

  8. The measurement accuracy of passive radon instruments.

    PubMed

    Beck, T R; Foerster, E; Buchröder, H; Schmidt, V; Döring, J

    2014-01-01

    This paper analyses the data having been gathered from interlaboratory comparisons of passive radon instruments over 10 y with respect to the measurement accuracy. The measurement accuracy is discussed in terms of the systematic and the random measurement error. The analysis shows that the systematic measurement error of the most instruments issued by professional laboratory services can be within a range of ±10 % from the true value. A single radon measurement has an additional random measurement error, which is in the range of up to ±15 % for high exposures to radon (>2000 kBq h m(-3)). The random measurement error increases for lower exposures. The analysis especially applies to instruments with solid-state nuclear track detectors and results in proposing criteria for testing the measurement accuracy. Instruments with electrets and charcoal have also been considered, but the low stock of data enables only a qualitative discussion.

  9. Increasing Accuracy and Increasing Tension in Ho

    NASA Astrophysics Data System (ADS)

    Freedman, Wendy L.

    2017-01-01

    The Hubble Constant, Ho, provides a measure of the current expansion rate of the universe. In recent decades, there has been a huge increase in the accuracy with which extragalactic distances, and hence Ho, can be measured. While the historical factor-of-two uncertainty in Ho has been resolved, a new discrepancy has arisen between the values of Ho measured in the local universe, and that estimated from cosmic microwave background measurements, assuming a Lambda cold dark matter model. I will review the advances that have led to the increase in accuracy in measurements of Ho, as well as describe exciting future prospects with the James Webb Space Telescope (JWST) and Gaia, which will make it feasible to measure extragalactic distances at percent-level accuracy in the next decade.

  10. The effects of video-taped feedback on form, accuracy, and latency in an open and closed environment.

    PubMed

    Del Rey, P

    1971-12-01

    40 college women performed a modification of the classical fencing lunge against 2 laterally-arranged targets, under closed and open environmental conditions. Form (rating scale), accuracy (proximity to target center), and response latency were taken to measure the effects of video-taped feedback (VT). Administration of VT with specific instructions to direct S's attention to parts of the display resulted in closer approximation of the externally-imposed form, higher accuracy, and shorter response latency. Performing the skill in the closed environmental condition resulted in less deviation from the imposed form, higher accuracy scores, and longer response latency. No significant correlations were found between imposed form and accuracy.

  11. The accuracy of Halley's cometary orbits

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.

    The accuracy of a scientific computation depends in the main on the data fed in and the analysis method used. This statement is certainly true of Edmond Halley's cometary orbit work. Considering the 420 comets that had been seen before Halley's era of orbital calculation (1695 - 1702) only 24, according to him, had been observed well enough for their orbits to be calculated. Two questions are considered in this paper. Do all the orbits listed by Halley have the same accuracy? and, secondly, how accurate was Halley's method of calculation?

  12. Size-Dependent Accuracy of Nanoscale Thermometers.

    PubMed

    Alicki, Robert; Leitner, David M

    2015-07-23

    The accuracy of two classes of nanoscale thermometers is estimated in terms of size and system-dependent properties using the spin-boson model. We consider solid state thermometers, where the energy splitting is tuned by thermal properties of the material, and fluorescent organic thermometers, in which the fluorescence intensity depends on the thermal population of conformational states of the thermometer. The results of the theoretical model compare well with the accuracy reported for several nanothermometers that have been used to measure local temperature inside living cells.

  13. Estimation and Accuracy after Model Selection

    PubMed Central

    Efron, Bradley

    2013-01-01

    Classical statistical theory ignores model selection in assessing estimation accuracy. Here we consider bootstrap methods for computing standard errors and confidence intervals that take model selection into account. The methodology involves bagging, also known as bootstrap smoothing, to tame the erratic discontinuities of selection-based estimators. A useful new formula for the accuracy of bagging then provides standard errors for the smoothed estimators. Two examples, nonparametric and parametric, are carried through in detail: a regression model where the choice of degree (linear, quadratic, cubic, …) is determined by the Cp criterion, and a Lasso-based estimation problem. PMID:25346558

  14. Predictive accuracy in the neuroprediction of rearrest

    PubMed Central

    Aharoni, Eyal; Mallett, Joshua; Vincent, Gina M.; Harenski, Carla L.; Calhoun, Vince D.; Sinnott-Armstrong, Walter; Gazzaniga, Michael S.; Kiehl, Kent A.

    2014-01-01

    A recently published study by the present authors (Aharoni et al., 2013) reported evidence that functional changes in the anterior cingulate cortex (ACC) within a sample of 96 criminal offenders who were engaged in a Go/No-Go impulse control task significantly predicted their rearrest following release from prison. In an extended analysis, we use discrimination and calibration techniques to test the accuracy of these predictions relative to more traditional models and their ability to generalize to new observations in both full and reduced models. Modest to strong discrimination and calibration accuracy were found, providing additional support for the utility of neurobiological measures in predicting rearrest. PMID:24720689

  15. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  16. Morphological Awareness and Children's Writing: Accuracy, Error, and Invention.

    PubMed

    McCutchen, Deborah; Stull, Sara

    2015-02-01

    This study examined the relationship between children's morphological awareness and their ability to produce accurate morphological derivations in writing. Fifth-grade U.S. students (n = 175) completed two writing tasks that invited or required morphological manipulation of words. We examined both accuracy and error, specifically errors in spelling and errors of the sort we termed morphological inventions, which entailed inappropriate, novel pairings of stems and suffixes. Regressions were used to determine the relationship between morphological awareness, morphological accuracy, and spelling accuracy, as well as between morphological awareness and morphological inventions. Linear regressions revealed that morphological awareness uniquely predicted children's generation of accurate morphological derivations, regardless of whether or not accurate spelling was required. A logistic regression indicated that morphological awareness was also uniquely predictive of morphological invention, with higher morphological awareness increasing the probability of morphological invention. These findings suggest that morphological knowledge may not only assist children with spelling during writing, but may also assist with word production via generative experimentation with morphological rules during sentence generation. Implications are discussed for the development of children's morphological knowledge and relationships with writing.

  17. Impact of Orthodontic Brackets on the Intraoral Scan Data Accuracy

    PubMed Central

    Park, Ji-Man; Choi, Shin-Ae; Myung, Ji-Yun; Chun, Youn-Sic

    2016-01-01

    This study aims to compare the impact of buccal and lingual brackets on the accuracy of dental arch data acquired by 4 different digital intraoral scanners. Two pairs of dental casts, one with buccal brackets and the other with lingual brackets, were used. Digital measurements of the 3D images were compared to the actual measurements of the dental models, which were considered standard values. The horizontal measurements included intercanine widths and intermolar widths. The Mann–Whitney U test was performed for comparisons. iTero® and Trios® both showed high accuracy with relatively small maximum deviation of measurements. iTero showed a significantly higher accuracy in most of the arch width measurements on the buccal bracket model than on the lingual model (P < 0.05). Zfx IntraScan® and E4D Dentist® produced maximum deviations of more than 2 mm from both the buccal and the lingual bracket models. After comparing the degree of distortion of the arch on the digital scans with actual measurements of the same models, iTero and Trios proved to be excellent in terms of trueness and precision. Nevertheless, digital intraoral scanners should be used more cautiously in arches with lingual brackets than in those with buccal brackets. PMID:27999798

  18. Radiometric and Geometric Accuracy Analysis of Rasat Pan Imagery

    NASA Astrophysics Data System (ADS)

    Kocaman, S.; Yalcin, I.; Guler, M.

    2016-06-01

    RASAT is the second Turkish Earth Observation satellite which was launched in 2011. It operates with pushbroom principle and acquires panchromatic and MS images with 7.5 m and 15 m resolutions, respectively. The swath width of the sensor is 30 km. The main aim of this study is to analyse the radiometric and geometric quality of RASAT images. A systematic validation approach for the RASAT imagery and its products is being applied. RASAT image pair acquired over Kesan city in Edirne province of Turkey are used for the investigations. The raw RASAT data (L0) are processed by Turkish Space Agency (TUBITAK-UZAY) to produce higher level image products. The image products include radiometrically processed (L1), georeferenced (L2) and orthorectified (L3) data, as well as pansharpened images. The image quality assessments include visual inspections, noise, MTF and histogram analyses. The geometric accuracy assessment results are only preliminary and the assessment is performed using the raw images. The geometric accuracy potential is investigated using 3D ground control points extracted from road intersections, which were measured manually in stereo from aerial images with 20 cm resolution and accuracy. The initial results of the study, which were performed using one RASAT panchromatic image pair, are presented in this paper.

  19. A Framework for the Objective Assessment of Registration Accuracy

    PubMed Central

    Simonetti, Flavio; Foroni, Roberto Israel

    2014-01-01

    Validation and accuracy assessment are the main bottlenecks preventing the adoption of image processing algorithms in the clinical practice. In the classical approach, a posteriori analysis is performed through objective metrics. In this work, a different approach based on Petri nets is proposed. The basic idea consists in predicting the accuracy of a given pipeline based on the identification and characterization of the sources of inaccuracy. The concept is demonstrated on a case study: intrasubject rigid and affine registration of magnetic resonance images. Both synthetic and real data are considered. While synthetic data allow the benchmarking of the performance with respect to the ground truth, real data enable to assess the robustness of the methodology in real contexts as well as to determine the suitability of the use of synthetic data in the training phase. Results revealed a higher correlation and a lower dispersion among the metrics for simulated data, while the opposite trend was observed for pathologic ones. Results show that the proposed model not only provides a good prediction performance but also leads to the optimization of the end-to-end chain in terms of accuracy and robustness, setting the ground for its generalization to different and more complex scenarios. PMID:24659997

  20. Longitudinal effects of educational expectations and achievement attributions on adolescents' academic achievements.

    PubMed

    Liu, Kun-Shia; Cheng, Ying-Yao; Chen, Yi-Ling; Wu, Yuh-Yih

    2009-01-01

    This study used nationwide data from the Taiwan Education Panel Survey (TEPS) to examine the longitudinal effects of educational expectations and achievement attributions on the academic achievements of adolescents. The sample included 2,000 Taiwanese secondary school students, each of whom completed three waves of questionnaires and cognitive tests: the first in grade 7 (in 2001), the second in grade 9 (in 2003), and the third in grade 11 (in 2005). Through multilevel longitudinal analysis, the results showed: (1) educational expectations accounted for a moderate amount of the variance in academic achievements; (2) students with high educational expectations and effort attribution exhibited higher growth rates in their academic achievements; and (3) studentswith lower educational expectations and those attributing success to others showed significantly fewer academic achievements and significantly lower growth rates in such achievements. The results demonstrated that adolescents' educational expectations and achievement attributions play crucial roles in the long-term course of academic accomplishments. Implications for educational practice and further studies are also discussed.

  1. Data supporting the high-accuracy haplotype imputation using unphased genotype data as the references.

    PubMed

    Li, Wenzhi; Xu, Wei; He, Shaohua; Ma, Li; Song, Qing

    2016-09-01

    The data presented in this article is related to the research article entitled "High-accuracy haplotype imputation using unphased genotype data as the references" which reports the unphased genotype data can be used as reference for haplotyping imputation [1]. This article reports different implementation generation pipeline, the results of performance comparison between different implementations (A, B, and C) and between HiFi and three major imputation software tools. Our data showed that the performances of these three implementations are similar on accuracy, in which the accuracy of implementation-B is slightly but consistently higher than A and C. HiFi performed better on haplotype imputation accuracy and three other software performed slightly better on genotype imputation accuracy. These data may provide a strategy for choosing optimal phasing pipeline and software for different studies.

  2. Effects of autocorrelation upon LANDSAT classification accuracy. [Richmond, Virginia and Denver, Colorado

    NASA Technical Reports Server (NTRS)

    Craig, R. G. (Principal Investigator)

    1983-01-01

    Richmond, Virginia and Denver, Colorado were study sites in an effort to determine the effect of autocorrelation on the accuracy of a parallelopiped classifier of LANDSAT digital data. The autocorrelation was assumed to decay to insignificant levels when sampled at distances of at least ten pixels. Spectral themes developed using blocks of adjacent pixels, and using groups of pixels spaced at least 10 pixels apart were used. Effects of geometric distortions were minimized by using only pixels from the interiors of land cover sections. Accuracy was evaluated for three classes; agriculture, residential and "all other"; both type 1 and type 2 errors were evaluated by means of overall classification accuracy. All classes give comparable results. Accuracy is approximately the same in both techniques; however, the variance in accuracy is significantly higher using the themes developed from autocorrelated data. The vectors of mean spectral response were nearly identical regardless of sampling method used. The estimated variances were much larger when using autocorrelated pixels.

  3. Parametric Characterization of SGP4 Theory and TLE Positional Accuracy

    NASA Astrophysics Data System (ADS)

    Oltrogge, D.; Ramrath, J.

    2014-09-01

    Two-Line Elements, or TLEs, contain mean element state vectors compatible with General Perturbations (GP) singly-averaged semi-analytic orbit theory. This theory, embodied in the SGP4 orbit propagator, provides sufficient accuracy for some (but perhaps not all) orbit operations and SSA tasks. For more demanding tasks, higher accuracy orbit and force model approaches (i.e. Special Perturbations numerical integration or SP) may be required. In recent times, the suitability of TLEs or GP theory for any SSA analysis has been increasingly questioned. Meanwhile, SP is touted as being of high quality and well-suited for most, if not all, SSA applications. Yet the lack of truth or well-known reference orbits that haven't already been adopted for radar and optical sensor network calibration has typically prevented a truly unbiased assessment of such assertions. To gain better insight into the practical limits of applicability for TLEs, SGP4 and the underlying GP theory, the native SGP4 accuracy is parametrically examined for the statistically-significant range of RSO orbit inclinations experienced as a function of all orbit altitudes from LEO through GEO disposal altitude. For each orbit altitude, reference or truth orbits were generated using full force modeling, time-varying space weather, and AGIs HPOP numerical integration orbit propagator. Then, TLEs were optimally fit to these truth orbits. The resulting TLEs were then propagated and positionally differenced with the truth orbits to determine how well the GP theory was able to fit the truth orbits. Resultant statistics characterizing these empirically-derived accuracies are provided. This TLE fit process of truth orbits was intentionally designed to be similar to the JSpOC process operationally used to generate Enhanced GP TLEs for debris objects. This allows us to draw additional conclusions of the expected accuracies of EGP TLEs. In the real world, Orbit Determination (OD) programs aren't provided with dense optical

  4. Speed-Accuracy Response Models: Scoring Rules Based on Response Time and Accuracy

    ERIC Educational Resources Information Center

    Maris, Gunter; van der Maas, Han

    2012-01-01

    Starting from an explicit scoring rule for time limit tasks incorporating both response time and accuracy, and a definite trade-off between speed and accuracy, a response model is derived. Since the scoring rule is interpreted as a sufficient statistic, the model belongs to the exponential family. The various marginal and conditional distributions…

  5. Accuracy of Digital vs. Conventional Implant Impressions

    PubMed Central

    Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.

    2015-01-01

    The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423

  6. Seasonal Effects on GPS PPP Accuracy

    NASA Astrophysics Data System (ADS)

    Saracoglu, Aziz; Ugur Sanli, D.

    2016-04-01

    GPS Precise Point Positioning (PPP) is now routinely used in many geophysical applications. Static positioning and 24 h data are requested for high precision results however real life situations do not always let us collect 24 h data. Thus repeated GPS surveys of 8-10 h observation sessions are still used by some research groups. Positioning solutions from shorter data spans are subject to various systematic influences, and the positioning quality as well as the estimated velocity is degraded. Researchers pay attention to the accuracy of GPS positions and of the estimated velocities derived from short observation sessions. Recently some research groups turned their attention to the study of seasonal effects (i.e. meteorological seasons) on GPS solutions. Up to now usually regional studies have been reported. In this study, we adopt a global approach and study the various seasonal effects (including the effect of the annual signal) on GPS solutions produced from short observation sessions. We use the PPP module of the NASA/JPL's GIPSY/OASIS II software and globally distributed GPS stations' data of the International GNSS Service. Accuracy studies previously performed with 10-30 consecutive days of continuous data. Here, data from each month of a year, incorporating two years in succession, is used in the analysis. Our major conclusion is that a reformulation for the GPS positioning accuracy is necessary when taking into account the seasonal effects, and typical one term accuracy formulation is expanded to a two-term one.

  7. Adult Metacomprehension: Judgment Processes and Accuracy Constraints

    ERIC Educational Resources Information Center

    Zhao, Qin; Linderholm, Tracy

    2008-01-01

    The objective of this paper is to review and synthesize two interrelated topics in the adult metacomprehension literature: the bases of metacomprehension judgment and the constraints on metacomprehension accuracy. Our review shows that adult readers base their metacomprehension judgments on different types of information, including experiences…

  8. Task Speed and Accuracy Decrease When Multitasking

    ERIC Educational Resources Information Center

    Lin, Lin; Cockerham, Deborah; Chang, Zhengsi; Natividad, Gloria

    2016-01-01

    As new technologies increase the opportunities for multitasking, the need to understand human capacities for multitasking continues to grow stronger. Is multitasking helping us to be more efficient? This study investigated the multitasking abilities of 168 participants, ages 6-72, by measuring their task accuracy and completion time when they…

  9. Accuracy Assessment for AG500, Electromagnetic Articulograph

    ERIC Educational Resources Information Center

    Yunusova, Yana; Green, Jordan R.; Mefferd, Antje

    2009-01-01

    Purpose: The goal of this article was to evaluate the accuracy and reliability of the AG500 (Carstens Medizinelectronik, Lenglern, Germany), an electromagnetic device developed recently to register articulatory movements in three dimensions. This technology seems to have unprecedented capabilities to provide rich information about time-varying…

  10. Least squares polynomial fits and their accuracy

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1977-01-01

    Equations are presented which attempt to fit least squares polynomials to tables of date. It is concluded that much data are needed to reduce the measurement error standard deviation by a significant amount, however at certain points great accuracy is attained.

  11. A microwave position sensor with submillimeter accuracy

    NASA Astrophysics Data System (ADS)

    Stelzer, A.; Diskus, C. G.; Lubke, K.; Thim, H. W.

    1999-12-01

    Design and characteristics of a prototype distance sensor are presented in this paper. The radar front-end operates at 35 GHz and applies six-port technology and direct frequency measurement. The sensor makes use of both frequency-modulated continuous wave and interferometer principles and is capable of measuring distance with a very high accuracy of ±0.1 mm.

  12. Vowel Space Characteristics and Vowel Identification Accuracy

    ERIC Educational Resources Information Center

    Neel, Amy T.

    2008-01-01

    Purpose: To examine the relation between vowel production characteristics and intelligibility. Method: Acoustic characteristics of 10 vowels produced by 45 men and 48 women from the J. M. Hillenbrand, L. A. Getty, M. J. Clark, and K. Wheeler (1995) study were examined and compared with identification accuracy. Global (mean f0, F1, and F2;…

  13. Statistical Parameters for Describing Model Accuracy

    DTIC Science & Technology

    1989-03-20

    mean and the standard deviation, approximately characterizes the accuracy of the model, since the width of the confidence interval whose center is at...Using a modified version of Chebyshev’s inequality, a similar result is obtained for the upper bound of the confidence interval width for any

  14. Direct Behavior Rating: Considerations for Rater Accuracy

    ERIC Educational Resources Information Center

    Harrison, Sayward E.; Riley-Tillman, T. Chris; Chafouleas, Sandra M.

    2014-01-01

    Direct behavior rating (DBR) offers users a flexible, feasible method for the collection of behavioral data. Previous research has supported the validity of using DBR to rate three target behaviors: academic engagement, disruptive behavior, and compliance. However, the effect of the base rate of behavior on rater accuracy has not been established.…

  15. Accuracy of Depth to Water Measurements

    EPA Pesticide Factsheets

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge or discharge, the hydraulic characteristics of...

  16. Bullet trajectory reconstruction - Methods, accuracy and precision.

    PubMed

    Mattijssen, Erwin J A T; Kerkhoff, Wim

    2016-05-01

    Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement.

  17. Bayesian Methods for Medical Test Accuracy

    PubMed Central

    Broemeling, Lyle D.

    2011-01-01

    Bayesian methods for medical test accuracy are presented, beginning with the basic measures for tests with binary scores: true positive fraction, false positive fraction, positive predictive values, and negative predictive value. The Bayesian approach is taken because of its efficient use of prior information, and the analysis is executed with a Bayesian software package WinBUGS®. The ROC (receiver operating characteristic) curve gives the intrinsic accuracy of medical tests that have ordinal or continuous scores, and the Bayesian approach is illustrated with many examples from cancer and other diseases. Medical tests include X-ray, mammography, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine and tests based on biomarkers, such as blood glucose values for diabetes. The presentation continues with more specialized methods suitable for measuring the accuracies of clinical studies that have verification bias, and medical tests without a gold standard. Lastly, the review is concluded with Bayesian methods for measuring the accuracy of the combination of two or more tests. PMID:26859485

  18. 47 CFR 65.306 - Calculation accuracy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Calculation accuracy. 65.306 Section 65.306 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.306 Calculation...

  19. Navigation Accuracy Guidelines for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2004-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  20. Accuracy of References in Five Entomology Journals.

    ERIC Educational Resources Information Center

    Kristof, Cynthia

    ln this paper, the bibliographical references in five core entomology journals are examined for citation accuracy in order to determine if the error rates are similar. Every reference printed in each journal's first issue of 1992 was examined, and these were compared to the original (cited) publications, if possible, in order to determine the…

  1. Method for measuring centroid algorithm accuracy

    NASA Technical Reports Server (NTRS)

    Klein, S.; Liewer, K.

    2002-01-01

    This paper will describe such a method for measuring the accuracy of centroid algorithms using a relatively inexpensive setup consisting of a white light source, lenses, a CCD camea, an electro-strictive actuator, and a DAC (Digital-to-Analog Converter), and employing embedded PowerPC, VxWorks, and Solaris based software.

  2. High accuracy gaseous x-ray detectors

    SciTech Connect

    Smith, G.C.

    1983-11-01

    An outline is given of the design and operation of high accuracy position-sensitive x-ray detectors suitable for experiments using synchrotron radiation. They are based on the gas proportional detector, with position readout using a delay line; a detailed examination is made of factors which limit spatial resolution. Individual wire readout may be used for extremely high counting rates.

  3. Observed Consultation: Confidence and Accuracy of Assessors

    ERIC Educational Resources Information Center

    Tweed, Mike; Ingham, Christopher

    2010-01-01

    Judgments made by the assessors observing consultations are widely used in the assessment of medical students. The aim of this research was to study judgment accuracy and confidence and the relationship between these. Assessors watched recordings of consultations, scoring the students on: a checklist of items; attributes of consultation; a…

  4. Childhood Obesity and Cognitive Achievement.

    PubMed

    Black, Nicole; Johnston, David W; Peeters, Anna

    2015-09-01

    Obese children tend to perform worse academically than normal-weight children. If poor cognitive achievement is truly a consequence of childhood obesity, this relationship has significant policy implications. Therefore, an important question is to what extent can this correlation be explained by other factors that jointly determine obesity and cognitive achievement in childhood? To answer this question, we exploit a rich longitudinal dataset of Australian children, which is linked to national assessments in math and literacy. Using a range of estimators, we find that obesity and body mass index are negatively related to cognitive achievement for boys but not girls. This effect cannot be explained by sociodemographic factors, past cognitive achievement or unobserved time-invariant characteristics and is robust to different measures of adiposity. Given the enormous importance of early human capital development for future well-being and prosperity, this negative effect for boys is concerning and warrants further investigation.

  5. Using Design To Achieve Sustainability

    EPA Science Inventory

    Sustainability is defined as meeting the needs of this generation without compromising the ability of future generations to meet their needs. This is a conditional statement that places the responsibility for achieving sustainability squarely in hands of designers and planners....

  6. Analyzing thematic maps and mapping for accuracy

    USGS Publications Warehouse

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by

  7. Medial Patellofemoral Ligament Reconstruction Femoral Tunnel Accuracy

    PubMed Central

    Hiemstra, Laurie A.; Kerslake, Sarah; Lafave, Mark

    2017-01-01

    Background: Medial patellofemoral ligament (MPFL) reconstruction is a procedure aimed to reestablish the checkrein to lateral patellar translation in patients with symptomatic patellofemoral instability. Correct femoral tunnel position is thought to be crucial to successful MPFL reconstruction, but the accuracy of this statement in terms of patient outcomes has not been tested. Purpose: To assess the accuracy of femoral tunnel placement in an MPFL reconstruction cohort and to determine the correlation between tunnel accuracy and a validated disease-specific, patient-reported quality-of-life outcome measure. Study Design: Case series; Level of evidence, 4. Methods: Between June 2008 and February 2014, a total of 206 subjects underwent an MPFL reconstruction. Lateral radiographs were measured to determine the accuracy of the femoral tunnel by measuring the distance from the center of the femoral tunnel to the Schöttle point. Banff Patella Instability Instrument (BPII) scores were collected a mean 24 months postoperatively. Results: A total of 155 (79.5%) subjects had adequate postoperative lateral radiographs and complete BPII scores. The mean duration of follow-up (±SD) was 24.4 ± 8.2 months (range, 12-74 months). Measurement from the center of the femoral tunnel to the Schöttle point resulted in 143 (92.3%) tunnels being categorized as “good” or “ideal.” There were 8 failures in the cohort, none of which occurred in malpositioned tunnels. The mean distance from the center of the MPFL tunnel to the center of the Schöttle point was 5.9 ± 4.2 mm (range, 0.5-25.9 mm). The mean postoperative BPII score was 65.2 ± 22.5 (range, 9.2-100). Pearson r correlation demonstrated no statistically significant relationship between accuracy of femoral tunnel position and BPII score (r = –0.08; 95% CI, –0.24 to 0.08). Conclusion: There was no evidence of a correlation between the accuracy of MPFL reconstruction femoral tunnel in relation to the Schöttle point and

  8. Achieving Efficiencies in Army Installations.

    DTIC Science & Technology

    2007-11-02

    34" ’■■"■" 1 USAWC STRATEGY RESEARCH PROJECT Achieving Efficiencies in Army Installations by Richard Fliss Col. Richard M. Meinhart Project...government agency. STRATEGY RESEARCH PROJECT ACHIEVING EFFICIENCIES IN ARMY INSTALLATIONS BY RICHARD FLISS DISTRIBUTION STATEMENT A: Approved...for public release. Distribution is unlimited. DTIC QUALITY INSPECTED & USAWC CLASS OF 1998 U.S. ARMY WAR COLLEGE, CARLISLE BARRACKS, PA 17013-5050

  9. Assessing accuracy in citizen science-based plant phenology monitoring.

    PubMed

    Fuccillo, Kerissa K; Crimmins, Theresa M; de Rivera, Catherine E; Elder, Timothy S

    2015-07-01

    In the USA, thousands of volunteers are engaged in tracking plant and animal phenology through a variety of citizen science programs for the purpose of amassing spatially and temporally comprehensive datasets useful to scientists and resource managers. The quality of these observations and their suitability for scientific analysis, however, remains largely unevaluated. We aimed to evaluate the accuracy of plant phenology observations collected by citizen scientist volunteers following protocols designed by the USA National Phenology Network (USA-NPN). Phenology observations made by volunteers receiving several hours of formal training were compared to those collected independently by a professional ecologist. Approximately 11,000 observations were recorded by 28 volunteers over the course of one field season. Volunteers consistently identified phenophases correctly (91% overall) for the 19 species observed. Volunteers demonstrated greatest overall accuracy identifying unfolded leaves, ripe fruits, and open flowers. Transitional accuracy decreased for some species/phenophase combinations (70% average), and accuracy varied significantly by phenophase and species (p < 0.0001). Volunteers who submitted fewer observations over the period of study did not exhibit a higher error rate than those who submitted more total observations. Overall, these results suggest that volunteers with limited training can provide reliable observations when following explicit, standardized protocols. Future studies should investigate different observation models (i.e., group/individual, online/in-person training) over subsequent seasons with multiple expert comparisons to further substantiate the ability of these monitoring programs to supply accurate broadscale datasets capable of answering pressing ecological questions about global change.

  10. Analysis of deformable image registration accuracy using computational modeling

    SciTech Connect

    Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.

    2010-03-15

    Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results show that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter

  11. Audiovisual biofeedback improves motion prediction accuracy

    PubMed Central

    Pollock, Sean; Lee, Danny; Keall, Paul; Kim, Taeho

    2013-01-01

    Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients’ respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. Methods: An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. Results: Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. Conclusions: This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion

  12. Predictors of Academic Achievement and Their Possible Applications

    ERIC Educational Resources Information Center

    Lockshin, Jeffrey; Zamkov, Oleg

    2009-01-01

    A significant amount of attention has been given to the predictors of academic achievement in higher education. However, the vast majority of articles have centred on entrance criteria and the learning approaches or personal habits of students. Investigations into how achievement depends on student efforts, being almost invariably based on…

  13. Status Value, Group Learning, and Minority Achievement in College.

    ERIC Educational Resources Information Center

    Beilin, Robert; Rabow, Jerome

    1981-01-01

    Tested the relationship between interracial group learning and academic achievement in college. Results indicated White students participating in Learning Through Discussion (LTD) groups scored higher on the final essay. There was no difference in minority achievement. Findings support the proposition that status equalization is an essential…

  14. Social Deprivation, School-Level Achievement and Special Educational Needs.

    ERIC Educational Resources Information Center

    Croll, Paul

    2002-01-01

    Data from interviews with 299 teachers in 46 English primary schools revealed that the correlation between free school meals and achievement and between free school meals and special educational needs may stem from teacher judgments. The very poorest schools with the lowest achievement have substantially higher levels of special needs identified…

  15. Ethiopian New Public Universities: Achievements, Challenges and Illustrative Case Studies

    ERIC Educational Resources Information Center

    van Deuren, Rita; Kahsu, Tsegazeab; Mohammed, Seid; Woldie, Wondimu

    2016-01-01

    Purpose: This paper aims to analyze and illustrate achievements and challenges of Ethiopian higher education, both at the system level and at the level of new public universities. Design/methodology/approach: Achievements and challenges at the system level are based on literature review and secondary data. Illustrative case studies are based on…

  16. Flipping College Algebra: Effects on Student Engagement and Achievement

    ERIC Educational Resources Information Center

    Ichinose, Cherie; Clinkenbeard, Jennifer

    2016-01-01

    This study compared student engagement and achievement levels between students enrolled in a traditional college algebra lecture course and students enrolled in a "flipped" course. Results showed that students in the flipped class had consistently higher levels of achievement throughout the course than did students in the traditional…

  17. Promoting Student Academic Achievement through Faculty Development about Inclusive Teaching

    ERIC Educational Resources Information Center

    Schmid, Megan E.; Gillian-Daniel, Donald L.; Kraemer, Sara; Kueppers, Mark

    2016-01-01

    The achievement gap, disparities in the academic achievement of marginalized students (e.g., underrepresented minority, first generation in their family to attend college, and low socio-economic status undergraduate students) relative to their non-minority peers is a pervasive problem in higher education. It impacts student access to the major and…

  18. Analysis of proctor marking accuracy in a computer-aided personalized system of instruction course.

    PubMed

    Martin, Toby L; Pear, Joseph J; Martin, Garry L

    2002-01-01

    In a computer-aided version of Keller's personalized system of instruction (CAPSI), students within a course were assigned by a computer to be proctors for tests. Archived data from a CAPSI-taught behavior modification course were analyzed to assess proctor accuracy in marking answers as correct or incorrect. Overall accuracy was increased by having each test marked independently by two proctors, and was higher on incorrect answers when the degree of incorrectness was larger.

  19. The Role of Visual Mental Imagery in the Speed-Accuracy Tradeoff: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Hodes, Carol L.

    This study investigates the relationship between speed of recognition and accuracy of the responses when visual mental imagery is controlled through imagery instructions. The procedure was to compare the achievement of learners where the independent variable was imagery instructions. The subjects were two 20-person groups of undergraduates from a…

  20. Teaching High-Accuracy Global Positioning System to Undergraduates Using Online Processing Services

    ERIC Educational Resources Information Center

    Wang, Guoquan

    2013-01-01

    High-accuracy Global Positioning System (GPS) has become an important geoscientific tool used to measure ground motions associated with plate movements, glacial movements, volcanoes, active faults, landslides, subsidence, slow earthquake events, as well as large earthquakes. Complex calculations are required in order to achieve high-precision…

  1. A note on the accuracy of spectral method applied to nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Wong, Peter S.

    1994-01-01

    Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.

  2. Camera Sensor Arrangement for Crop/Weed Detection Accuracy in Agronomic Images

    PubMed Central

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-01-01

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects. PMID:23549361

  3. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  4. Accuracy of syndrome definitions based on diagnoses in physician claims

    PubMed Central

    2011-01-01

    Background Community clinics offer potential for timelier outbreak detection and monitoring than emergency departments. However, the accuracy of syndrome definitions used in surveillance has never been evaluated in community settings. This study's objective was to assess the accuracy of syndrome definitions based on diagnostic codes in physician claims for identifying 5 syndromes (fever, gastrointestinal, neurological, rash, and respiratory including influenza-like illness) in community clinics. Methods We selected a random sample of 3,600 community-based primary care physicians who practiced in the fee-for-service system in the province of Quebec, Canada in 2005-2007. We randomly selected 10 visits per physician from their claims, stratifying on syndrome type and presence, diagnosis, and month. Double-blinded chart reviews were conducted by telephone with consenting physicians to obtain information on patient diagnoses for each sampled visit. The sensitivity, specificity, and positive predictive value (PPV) of physician claims were estimated by comparison to chart review. Results 1,098 (30.5%) physicians completed the chart review. A chart entry on the date of the corresponding claim was found for 10,529 (95.9%) visits. The sensitivity of syndrome definitions based on diagnostic codes in physician claims was low, ranging from 0.11 (fever) to 0.44 (respiratory), the specificity was high, and the PPV was moderate to high, ranging from 0.59 (fever) to 0.85 (respiratory). We found that rarely used diagnostic codes had a higher probability of being false-positives, and that more commonly used diagnostic codes had a higher PPV. Conclusions Future research should identify physician, patient, and encounter characteristics associated with the accuracy of diagnostic codes in physician claims. This would enable public health to improve syndromic surveillance, either by focusing on physician claims whose diagnostic code is more likely to be accurate, or by using all physician

  5. Higher-order force gradient symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  6. PHOENIX. Higher Wage Careers.

    ERIC Educational Resources Information Center

    Bismarck State Coll., ND.

    This document outlines the curriculum plan for the one-semester vocational-technical training component of PHOENIX: A Model Program for Higher-Wage Potential Careers offered by Bismarck State College (North Dakota) which prepares and/or retrains individuals for higher-wage technical careers. The comprehensive model for the program is organized…

  7. Reinventing Higher Education

    ERIC Educational Resources Information Center

    Hayes, Dianne

    2012-01-01

    Higher education institutions are in the battle of a lifetime as they are coping with political and economic uncertainties, threats to federal aid, declining state support, higher tuition rates and increased competition from for-profit institutions. Amid all these challenges, these institutions are pressed to keep up with technological demands,…

  8. Reinventing Continuing Higher Education

    ERIC Educational Resources Information Center

    Walshok, Mary Lindenstein

    2012-01-01

    Re-inventing continuing higher education is about finding ways to be a more central player in a region's civic, cultural, and economic life as well as in the education of individuals for work and citizenship. Continuing higher education will require data gathering, analytical tools, convening authority, interpretive skills, new models of delivery,…

  9. Hypermedia and Higher Education.

    ERIC Educational Resources Information Center

    Lemke, Jay L.

    1993-01-01

    Discusses changes in higher education that are resulting from the use of hypermedia. Topics addressed include the structure of traditional texts; a distributed model for academic communication; independent learning as a model for higher education; skills for hypermedia literacy; database searching; information retrieval; authoring skills; design…

  10. Chicanos in Higher Education.

    ERIC Educational Resources Information Center

    Flores, Juan M., Ed.

    1992-01-01

    This "special theme" journal issue focuses on higher education of Chicanos and Latinos. The journal includes the following articles: (1) "Dilemmas of Chicano and Latino Professors in U.S. Universities" (Hisauro Garza); (2) "Analysis of Tenure Among Hispanic Higher Education Faculty" (Richard R. Verdugo); (3)…

  11. Higher Education in California

    ERIC Educational Resources Information Center

    Public Policy Institute of California, 2016

    2016-01-01

    Higher education enhances Californians' lives and contributes to the state's economic growth. But population and education trends suggest that California is facing a large shortfall of college graduates. Addressing this short­fall will require strong gains for groups that have been historically under­represented in higher education. Substantial…

  12. Reimagining Christian Higher Education

    ERIC Educational Resources Information Center

    Hulme, E. Eileen; Groom, David E., Jr.; Heltzel, Joseph M.

    2016-01-01

    The challenges facing higher education continue to mount. The shifting of the U.S. ethnic and racial demographics, the proliferation of advanced digital technologies and data, and the move from traditional degrees to continuous learning platforms have created an unstable environment to which Christian higher education must adapt in order to remain…

  13. Higher Education's Caste System

    ERIC Educational Resources Information Center

    Iannone, Ron

    2004-01-01

    In this article, the author discusses the history of the present caste system in higher education. He shows how the public's perception of this caste system is based on image and not usually on the quality of teaching and curriculum in colleges and universities. Finally, he discusses a model for accessibility to higher education and how higher…

  14. Comparative Higher Education: Bibliography

    ERIC Educational Resources Information Center

    Cardozier, V. R.

    This comparative higher education bibliography from the graduate program in Higher Education at University of Texas at Austin provides references with publication dates through 1990 under the following categories: "General and Canada" (85); "Africa (Sub-Sahara)" (23); "Asia" (122); "Australia and New…

  15. Gender and Higher Education

    ERIC Educational Resources Information Center

    Bank, Barbara J., Ed.

    2011-01-01

    This comprehensive, encyclopedic review explores gender and its impact on American higher education across historical and cultural contexts. Challenging recent claims that gender inequities in U.S. higher education no longer exist, the contributors--leading experts in the field--reveal the many ways in which gender is embedded in the educational…

  16. Higher Education Exchange

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological conundrum of "knowledge…

  17. Quality in Higher Education.

    ERIC Educational Resources Information Center

    Ruben, Brent D., Ed.

    This volume contains 21 new and classic papers and readings on quality philosophies and concepts, first, as they have been applied in business and industry but primarily as they relate to and can be applied in higher education. The introduction is titled "The Quality Approach in Higher Education: Context and Concepts for Change" by Brent…

  18. Minorities in Higher Education.

    ERIC Educational Resources Information Center

    Justiz, Manuel J., Ed.; And Others

    This book presents 19 papers on efforts to increase the participation of members of minority groups in higher education. The papers are: (1) "Demographic Trends and the Challenges to American Higher Education" (Manuel Justiz); (2) "Three Realities: Minority Life in the United States--The Struggle for Economic Equity (adapted by Don…

  19. Higher Education Exchange 2006

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2006-01-01

    Contributors to this issue of the Higher Education Exchange debate the issues around knowledge production, discuss the acquisition of deliberative skills for democracy, and examine how higher education prepares, or does not prepare, students for citizenship roles. Articles include: (1) "Foreword" (Deborah Witte); (2) "Knowledge,…

  20. New accuracy estimators for genomic selection with application in a cassava (Manihot esculenta) breeding program.

    PubMed

    Azevedo, C F; Resende, M D V; Silva, F F; Viana, J M S; Valente, M S F; Resende, M F R; Oliveira, E J

    2016-10-05

    Genomic selection is the main force driving applied breeding programs and accuracy is the main measure for evaluating its efficiency. The traditional estimator (TE) of experimental accuracy is not fully adequate. This study proposes and evaluates the performance and efficiency of two new accuracy estimators, called regularized estimator (RE) and hybrid estimator (HE), which were applied to a practical cassava breeding program and also to simulated data. The simulation study considered two individual narrow sense heritability levels and two genetic architectures for traits. TE, RE, and HE were compared under four validation procedures: without validation (WV), independent validation, ten-fold validation through jacknife allowing different markers, and with the same markers selected in each cycle. RE presented accuracies closer to the parametric ones and less biased and more precise ones than TE. HE proved to be very effective in the WV procedure. The estimators were applied to five traits evaluated in a cassava experiment, including 358 clones genotyped for 390 SNPs. Accuracies ranged from 0.67 to 1.12 with TE and from 0.22 to 0.51 with RE. These results indicated that TE overestimated the accuracy and led to one accuracy estimate (1.12) higher than one, which is outside of the parameter space. Use of RE turned the accuracy into the parameter space. Cassava breeding programs can be more realistically implemented using the new estimators proposed in this study, providing less risky practical inferences.

  1. Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure

    PubMed Central

    Chao, Lidia S.

    2014-01-01

    A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. PMID:24672402

  2. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    SciTech Connect

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-21

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C{sub 6} alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C{sub 8} and C{sub 10} between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C{sub 8} and 7% for C{sub 10}. Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

  3. Using Transponders on the Moon to Increase Accuracy of GPS

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso

    2008-01-01

    It has been proposed to place laser or radio transponders at suitably chosen locations on the Moon to increase the accuracy achievable using the Global Positioning System (GPS) or other satellite-based positioning system. The accuracy of GPS position measurements depends on the accuracy of determination of the ephemerides of the GPS satellites. These ephemerides are determined by means of ranging to and from Earth-based stations and consistency checks among the satellites. Unfortunately, ranging to and from Earth is subject to errors caused by atmospheric effects, notably including unpredictable variations in refraction. The proposal is based on exploitation of the fact that ranging between a GPS satellite and another object outside the atmosphere is not subject to error-inducing atmospheric effects. The Moon is such an object and is a convenient place for a ranging station. The ephemeris of the Moon is well known and, unlike a GPS satellite, the Moon is massive enough that its orbit is not measurably affected by the solar wind and solar radiation. According to the proposal, each GPS satellite would repeatedly send a short laser or radio pulse toward the Moon and the transponder(s) would respond by sending back a pulse and delay information. The GPS satellite could then compute its distance from the known position(s) of the transponder(s) on the Moon. Because the same hemisphere of the Moon faces the Earth continuously, any transponders placed there would remain continuously or nearly continuously accessible to GPS satellites, and so only a relatively small number of transponders would be needed to provide continuous coverage. Assuming that the transponders would depend on solar power, it would be desirable to use at least two transponders, placed at diametrically opposite points on the edges of the Moon disk as seen from Earth, so that all or most of the time, at least one of them would be in sunlight.

  4. Spatial augmented reality based high accuracy human face projection

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  5. Researching the technology of high-accuracy camshaft measurement

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Yong-Le; Wang, Hong; Liao, Hai-Yang

    1996-10-01

    This paper states the cam's data processing algorithm in detail in high accurate camshaft measurement system. It contains: 1) using minimum error of curve symmetry to seek the center position of the key slot; 2) Calculating the minimum error by cam's curve in theory to search top area; 3) According to cam's tolerance E(i) function and minimum angle error at cam top, seeking the best position of cam top and getting the best angle value and error curve. The algorithm is suitable for measuring all kinds of symmetry or asymmetry cam, and plain push-rod or spherical push-rod cam, for example, bus camshaft, car camshaft, motor camshaft, etc. Using the algorithm, high accuracy measurement can be achieved.

  6. Sustainability and Higher Education

    ERIC Educational Resources Information Center

    Hales, David

    2008-01-01

    People face four fundamental dilemmas, which are essentially moral choices: (1) alleviating poverty; (2) removing the gap between rich and poor; (3) controlling the use of violence for political ends; and (4) changing the patterns of production and consumption and achieving the transition to sustainability. The world in which future generations…

  7. Improving Student Achievement in Math and Science

    NASA Technical Reports Server (NTRS)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  8. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems.

    PubMed

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality.

  9. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  10. On the Accuracy Potential in Underwater/Multimedia Photogrammetry.

    PubMed

    Maas, Hans-Gerd

    2015-07-24

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions.

  11. Evaluation of DEM generation accuracy from UAS imagery

    NASA Astrophysics Data System (ADS)

    Santise, M.; Fornari, M.; Forlani, G.; Roncella, R.

    2014-06-01

    The growing use of UAS platform for aerial photogrammetry comes with a new family of Computer Vision highly automated processing software expressly built to manage the peculiar characteristics of these blocks of images. It is of interest to photogrammetrist and professionals, therefore, to find out whether the image orientation and DSM generation methods implemented in such software are reliable and the DSMs and orthophotos are accurate. On a more general basis, it is interesting to figure out whether it is still worth applying the standard rules of aerial photogrammetry to the case of drones, achieving the same inner strength and the same accuracies as well. With such goals in mind, a test area has been set up at the University Campus in Parma. A large number of ground points has been measured on natural as well as signalized points, to provide a comprehensive test field, to check the accuracy performance of different UAS systems. In the test area, points both at ground-level and features on the buildings roofs were measured, in order to obtain a distributed support also altimetrically. Control points were set on different types of surfaces (buildings, asphalt, target, fields of grass and bumps); break lines, were also employed. The paper presents the results of a comparison between two different surveys for DEM (Digital Elevation Model) generation, performed at 70 m and 140 m flying height, using a Falcon 8 UAS.

  12. Accuracy Assessment of a Uav-Based Landslide Monitoring System

    NASA Astrophysics Data System (ADS)

    Peppa, M. V.; Mills, J. P.; Moore, P.; Miller, P. E.; Chambers, J. E.

    2016-06-01

    Landslides are hazardous events with often disastrous consequences. Monitoring landslides with observations of high spatio-temporal resolution can help mitigate such hazards. Mini unmanned aerial vehicles (UAVs) complemented by structure-from-motion (SfM) photogrammetry and modern per-pixel image matching algorithms can deliver a time-series of landslide elevation models in an automated and inexpensive way. This research investigates the potential of a mini UAV, equipped with a Panasonic Lumix DMC-LX5 compact camera, to provide surface deformations at acceptable levels of accuracy for landslide assessment. The study adopts a self-calibrating bundle adjustment-SfM pipeline using ground control points (GCPs). It evaluates misalignment biases and unresolved systematic errors that are transferred through the SfM process into the derived elevation models. To cross-validate the research outputs, results are compared to benchmark observations obtained by standard surveying techniques. The data is collected with 6 cm ground sample distance (GSD) and is shown to achieve planimetric and vertical accuracy of a few centimetres at independent check points (ICPs). The co-registration error of the generated elevation models is also examined in areas of stable terrain. Through this error assessment, the study estimates that the vertical sensitivity to real terrain change of the tested landslide is equal to 9 cm.

  13. Generalized and Heuristic-Free Feature Construction for Improved Accuracy

    PubMed Central

    Fan, Wei; Zhong, Erheng; Peng, Jing; Verscheure, Olivier; Zhang, Kun; Ren, Jiangtao; Yan, Rong; Yang, Qiang

    2010-01-01

    State-of-the-art learning algorithms accept data in feature vector format as input. Examples belonging to different classes may not always be easy to separate in the original feature space. One may ask: can transformation of existing features into new space reveal significant discriminative information not obvious in the original space? Since there can be infinite number of ways to extend features, it is impractical to first enumerate and then perform feature selection. Second, evaluation of discriminative power on the complete dataset is not always optimal. This is because features highly discriminative on subset of examples may not necessarily be significant when evaluated on the entire dataset. Third, feature construction ought to be automated and general, such that, it doesn't require domain knowledge and its improved accuracy maintains over a large number of classification algorithms. In this paper, we propose a framework to address these problems through the following steps: (1) divide-conquer to avoid exhaustive enumeration; (2) local feature construction and evaluation within subspaces of examples where local error is still high and constructed features thus far still do not predict well; (3) weighting rules based search that is domain knowledge free and has provable performance guarantee. Empirical studies indicate that significant improvement (as much as 9% in accuracy and 28% in AUC) is achieved using the newly constructed features over a variety of inductive learners evaluated against a number of balanced, skewed and high-dimensional datasets. Software and datasets are available from the authors. PMID:21544257

  14. Climate Change Observation Accuracy: Requirements and Economic Value

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce; Cooke, Roger; Golub, Alexander; Baize, Rosemary; Mlynczak, Martin; Lukashin, Constantin; Thome, Kurt; Shea, Yolanda; Kopp, Greg; Pilewskie, Peter; Revercomb, Henry; Best, Fred

    2016-01-01

    This presentation will summarize a new quantitative approach to determining the required accuracy for climate change observations. Using this metric, most current global satellite observations struggle to meet this accuracy level. CLARREO (Climate Absolute Radiance and Refractivity Observatory) is a new satellite mission designed to resolve this challenge is by achieving advances of a factor of 10 for reflected solar spectra and a factor of 3 to 5 for thermal infrared spectra. The CLARREO spectrometers can serve as SI traceable benchmarks for the Global Satellite Intercalibration System (GSICS) and greatly improve the utility of a wide range of LEO and GEO infrared and reflected solar satellite sensors for climate change observations (e.g. CERES, MODIS, VIIIRS, CrIS, IASI, Landsat, etc). A CLARREO Pathfinder mission for flight on the International Space Station is included in the U.S. Presidentâ€"TM"s fiscal year 2016 budget, with launch in 2019 or 2020. Providing more accurate decadal change trends can in turn lead to more rapid narrowing of key climate science uncertainties such as cloud feedback and climate sensitivity. A new study has been carried out to quantify the economic benefits of such an advance and concludes that the economic value is $9 Trillion U.S. dollars. The new value includes the cost of carbon emissions reductions.

  15. On the Accuracy Potential in Underwater/Multimedia Photogrammetry

    PubMed Central

    Maas, Hans-Gerd

    2015-01-01

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell’s Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions. PMID:26213942

  16. Does DFT-SAPT method provide spectroscopic accuracy?

    SciTech Connect

    Shirkov, Leonid; Makarewicz, Jan

    2015-02-14

    Ground state potential energy curves for homonuclear and heteronuclear dimers consisting of noble gas atoms from He to Kr were calculated within the symmetry adapted perturbation theory based on the density functional theory (DFT-SAPT). These potentials together with spectroscopic data derived from them were compared to previous high-precision coupled cluster with singles and doubles including the connected triples theory calculations (or better if available) as well as to experimental data used as the benchmark. The impact of midbond functions on DFT-SAPT results was tested to study the convergence of the interaction energies. It was shown that, for most of the complexes, DFT-SAPT potential calculated at the complete basis set (CBS) limit is lower than the corresponding benchmark potential in the region near its minimum and hence, spectroscopic accuracy cannot be achieved. The influence of the residual term δ(HF) on the interaction energy was also studied. As a result, we have found that this term improves the agreement with the benchmark in the repulsive region for the dimers considered, but leads to even larger overestimation of potential depth D{sub e}. Although the standard hybrid exchange-correlation (xc) functionals with asymptotic correction within the second order DFT-SAPT do not provide the spectroscopic accuracy at the CBS limit, it is possible to adjust empirically basis sets yielding highly accurate results.

  17. Optimal diving maneuver strategy considering guidance accuracy for hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Jianwen; Liu, Luhua; Tang, Guojian; Bao, Weimin

    2014-11-01

    An optimal maneuver strategy considering terminal guidance accuracy for hypersonic vehicle in dive phase is investigated in this paper. First, it derives the complete three-dimensional nonlinear coupled motion equation without any approximations based on diving relative motion relationship directly, and converts it into linear decoupled state space equation with the same relative degree by feedback linearization. Second, the diving guidance law is designed based on the decoupled equation to meet the terminal impact point and falling angle constraints. In order to further improve the interception capability, it constructs maneuver control model through adding maneuver control item to the guidance law. Then, an integrated performance index consisting of maximum line-of-sight angle rate and minimum energy consumption is designed, and optimal control is employed to obtain optimal maneuver strategy when the encounter time is determined and undetermined, respectively. Furthermore, the performance index and suboptimal strategy are reconstructed to deal with the control capability constraint and the serous influence on terminal guidance accuracy caused by maneuvering flight. Finally, the approach is tested using the Common Aero Vehicle-H model. Simulation results demonstrate that the proposed strategy can achieve high precision guidance and effective maneuver at the same time, and the indices are also optimized.

  18. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  19. Response time accuracy in Apple Macintosh computers.

    PubMed

    Neath, Ian; Earle, Avery; Hallett, Darcy; Surprenant, Aimée M

    2011-06-01

    The accuracy and variability of response times (RTs) collected on stock Apple Macintosh computers using USB keyboards was assessed. A photodiode detected a change in the screen's luminosity and triggered a solenoid that pressed a key on the keyboard. The RTs collected in this way were reliable, but could be as much as 100 ms too long. The standard deviation of the measured RTs varied between 2.5 and 10 ms, and the distributions approximated a normal distribution. Surprisingly, two recent Apple-branded USB keyboards differed in their accuracy by as much as 20 ms. The most accurate RTs were collected when an external CRT was used to display the stimuli and Psychtoolbox was able to synchronize presentation with the screen refresh. We conclude that RTs collected on stock iMacs can detect a difference as small as 5-10 ms under realistic conditions, and this dictates which types of research should or should not use these systems.

  20. Accuracy control in Monte Carlo radiative calculations

    NASA Technical Reports Server (NTRS)

    Almazan, P. Planas

    1993-01-01

    The general accuracy law that rules the Monte Carlo, ray-tracing algorithms used commonly for the calculation of the radiative entities in the thermal analysis of spacecraft are presented. These entities involve transfer of radiative energy either from a single source to a target (e.g., the configuration factors). or from several sources to a target (e.g., the absorbed heat fluxes). In fact, the former is just a particular case of the latter. The accuracy model is later applied to the calculation of some specific radiative entities. Furthermore, some issues related to the implementation of such a model in a software tool are discussed. Although only the relative error is considered through the discussion, similar results can be derived for the absolute error.