Science.gov

Sample records for achieve higher throughput

  1. On the Achievable Throughput Over TVWS Sensor Networks.

    PubMed

    Caleffi, Marcello; Cacciapuoti, Angela Sara

    2016-01-01

    In this letter, we study the throughput achievable by an unlicensed sensor network operating over TV white space spectrum in presence of coexistence interference. Through the letter, we first analytically derive the achievable throughput as a function of the channel ordering. Then, we show that the problem of deriving the maximum expected throughput through exhaustive search is computationally unfeasible. Finally, we derive a computational-efficient algorithm characterized by polynomial-time complexity to compute the channel set maximizing the expected throughput and, stemming from this, we derive a closed-form expression of the maximum expected throughput. Numerical simulations validate the theoretical analysis. PMID:27043565

  2. On the Achievable Throughput Over TVWS Sensor Networks.

    PubMed

    Caleffi, Marcello; Cacciapuoti, Angela Sara

    2016-03-30

    In this letter, we study the throughput achievable by an unlicensed sensor network operating over TV white space spectrum in presence of coexistence interference. Through the letter, we first analytically derive the achievable throughput as a function of the channel ordering. Then, we show that the problem of deriving the maximum expected throughput through exhaustive search is computationally unfeasible. Finally, we derive a computational-efficient algorithm characterized by polynomial-time complexity to compute the channel set maximizing the expected throughput and, stemming from this, we derive a closed-form expression of the maximum expected throughput. Numerical simulations validate the theoretical analysis.

  3. On the Achievable Throughput Over TVWS Sensor Networks

    PubMed Central

    Caleffi, Marcello; Cacciapuoti, Angela Sara

    2016-01-01

    In this letter, we study the throughput achievable by an unlicensed sensor network operating over TV white space spectrum in presence of coexistence interference. Through the letter, we first analytically derive the achievable throughput as a function of the channel ordering. Then, we show that the problem of deriving the maximum expected throughput through exhaustive search is computationally unfeasible. Finally, we derive a computational-efficient algorithm characterized by polynomial-time complexity to compute the channel set maximizing the expected throughput and, stemming from this, we derive a closed-form expression of the maximum expected throughput. Numerical simulations validate the theoretical analysis. PMID:27043565

  4. EUV scanner throughput considerations for the higher mask magnification

    NASA Astrophysics Data System (ADS)

    Takehisa, Kiwamu

    2013-06-01

    EUVL scanner throughputs are calculated considering a higher mask magnification. The calculation results show that the throughput of 8X mask system is 60-70% of that of 4X mask system. However the relative throughput compared to the 4X is higher if the duty cycle is considered as the input EUV power. The throughput is also estimated considering a 450mm wafer. Additionally the throughput for a twin reticle stage system using two 8X 6" masks is estimated for the case of stitching exposure.

  5. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  6. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.

    PubMed

    Bolton, Glen R; Basha, Jonida; Lacasse, Daniel P

    2010-01-01

    Parvovirus retentive filters that assure removal of viruses and virus-like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size-based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass-throughput values of 7.3, 26.4, and 76.2 kg/m(2) were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass-throughput values of 73, 137, and 192 kg/m(2) were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large-scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small-scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large-scale filter capacity.

  7. Using Records of Achievement in Higher Education.

    ERIC Educational Resources Information Center

    Assiter, Alison, Ed.; Shaw, Eileen, Ed.

    This collection of 22 essays examines the use of records of achievement (student profiles or portfolios) in higher and vocational education in the United Kingdom. They include: (1) "Records of Achievement: Background, Definitions, and Uses" (Alison Assiter and Eileen Shaw); (2) "Profiling in Higher Education" (Alison Assiter and Angela Fenwick);…

  8. Microfluidic heart on a chip for higher throughput pharmacological studies

    PubMed Central

    Agarwal, Ashutosh; Goss, Josue Adrian; Cho, Alexander; McCain, Megan Laura; Parker, Kevin Kit

    2013-01-01

    We present the design of a higher throughput “heart on a chip” which utilizes a semi-automated fabrication technique to process sub millimeter sized thin film cantilevers of soft elastomers. Anisotropic cardiac microtissues which recapitulate the laminar architecture of the heart ventricle are engineered on these cantilevers. Deflection of these cantilevers, termed Muscular Thin Films (MTFs), during muscle contraction allows calculation of diastolic and systolic stresses generated by the engineered tissues. We also present the design of a reusable one channel fluidic microdevice completely built out of autoclavable materials which incorporates various features required for an optical cardiac contractility assay: metallic base which fits on a heating element for temperature control, transparent top for recording cantilever deformation and embedded electrodes for electrical field stimulation of the tissue. We employ the microdevice to test the positive inotropic effect of isoproterenol on cardiac contractility at dosages ranging from 1 nM to 100 μM. The higher throughput fluidic heart on a chip has applications in testing of cardiac tissues built from rare or expensive cell sources and for integration with other organ mimics. These advances will help alleviate translational barriers for commercial adoption of these technologies by improving the throughput and reproducibility of readout, standardization of the platform and scalability of manufacture. PMID:23807141

  9. Higher Education Is Key To Achieving MDGs

    ERIC Educational Resources Information Center

    Association of Universities and Colleges of Canada, 2004

    2004-01-01

    Imagine trying to achieve the Millennium Development Goals (MGDs) without higher education. As key institutions of civil society, universities are uniquely positioned between the communities they serve and the governments they advise. Through the CIDA-funded University Partnerships in Cooperation and Development program, Canadian universities have…

  10. Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput

    SciTech Connect

    Jin, Guojun; Tierney, Brian

    2003-01-31

    Distinguishing available bandwidth and achievable throughput is essential for improving network applications' performance. Achievable throughput is the throughput considering a number of factors such as network protocol, host speed, network path, and TCP buffer space, where as available bandwidth only considers the network path. Without understanding this difference, trying to improve network applications' performance is like ''blind men feeling the elephant'' [4]. In this paper, we define and distinguish bandwidth and throughput, and debate which part of each is achievable and which is available. Also, we introduce and discuss a new concept - Maximum Burst Size that is crucial to the network performance and bandwidth sharing. A tool, netest, is introduced to help users to determine the available bandwidth, and provides information to achieve better throughput with fairness of sharing the available bandwidth, thus reducing misuse of the network.

  11. Higher Education Counts: Achieving Results. 2006 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2006

    2006-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The measures…

  12. Higher Education Counts: Achieving Results. 2008 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2008

    2008-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The measures…

  13. Higher Education Counts: Achieving Results. 2007 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2007

    2007-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The measures…

  14. Higher Education Counts: Achieving Results. 2009 Report

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2009

    2009-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's state system of higher education, as required under Connecticut General Statutes Section 10a-6a. The report contains accountability measures developed through the Performance Measures Task Force and approved by the Board of Governors for Higher Education. The measures…

  15. Higher throughput high resolution multi-worm tracker

    NASA Astrophysics Data System (ADS)

    Javer, Avelino; Li, Kezhi; Gyenes, Bertalan; Brown, Andre; Behavioural Genomics Team

    2015-03-01

    We have developed a high throughput imaging system for tracking multiple nematode worms at high resolution. The tracker consists of 6 cameras mounted on a motorized gantry so that up to 48 plates (each with approximately 30 worms) can be imaged without user intervention. To deal with the high data rate of the cameras we use real time processing to find worms and only save the immediately surrounding pixels. The system is also equipped with automatic oxygen and carbon dioxide control for observing stimulus response behaviour. We will describe the design and performance of the new system, some of the challenges of truly high throughput behaviour recording, and report preliminary results on inter-individual variation in behaviour as well as a quantitative analysis of C. elegans response to hypoxia, oxygen reperfusion, and carbon dioxide. Funding provided by the Medical Research Council.

  16. Achieving Quality Learning in Higher Education.

    ERIC Educational Resources Information Center

    Nightingale, Peggy; O'Neil, Mike

    This volume on quality learning in higher education discusses issues of good practice particularly action learning and Total Quality Management (TQM)-type strategies and illustrates them with seven case studies in Australia and the United Kingdom. Chapter 1 discusses issues and problems in defining quality in higher education. Chapter 2 looks at…

  17. Multiradio Resource Management: Parallel Transmission for Higher Throughput?

    NASA Astrophysics Data System (ADS)

    Bazzi, Alessandro; Pasolini, Gianni; Andrisano, Oreste

    2008-12-01

    Mobile communication systems beyond the third generation will see the interconnection of heterogeneous radio access networks (UMTS, WiMax, wireless local area networks, etc.) in order to always provide the best quality of service (QoS) to users with multimode terminals. This scenario poses a number of critical issues, which have to be faced in order to get the best from the integrated access network. In this paper, we will investigate the issue of parallel transmission over multiple radio access technologies (RATs), focusing the attention on the QoS perceived by final users. We will show that the achievement of a real benefit from parallel transmission over multiple RATs is conditioned to the fulfilment of some requirements related to the kind of RATs, the multiradio resource management (MRRM) strategy, and the transport-level protocol behaviour. All these aspects will be carefully considered in our investigation, which will be carried out partly adopting an analytical approach and partly by means of simulations. In this paper, in particular, we will propose a simple but effective MRRM algorithm, whose performance will be investigated in IEEE802.11a-UMTS and IEEE802.11a-IEEE802.16e heterogeneous networks (adopted as case studies).

  18. Higher Education Counts: Achieving Results. 2009 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2009

    2009-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with elementary…

  19. Higher Education Counts: Achieving Results, 2008. Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2008

    2008-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with elementary…

  20. Higher Education Counts: Achieving Results. 2006 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2006

    2006-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the principle vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  1. Improving Student Achievement: A Study of High-Poverty Schools with Higher Student Achievement Outcomes

    ERIC Educational Resources Information Center

    Butz, Stephen D.

    2012-01-01

    This research examined the education system at high-poverty schools that had significantly higher student achievement levels as compared to similar schools with lower student achievement levels. A multischool qualitative case study was conducted of the educational systems where there was a significant difference in the scores achieved on the…

  2. Genotoxicity testing in vitro - development of a higher throughput analysis method based on the comet assay.

    PubMed

    Ritter, Detlef; Knebel, Jan

    2009-12-01

    Higher throughput methods, high content analysis and automated screening methods are of highest demand in drug development today. In toxicology, these strategies are becoming increasingly important, as well. Therefore, an integrated higher throughput method for the comet assay is addressed by the development presented here. The sensitivity, specificity and relevance of the comet assay as a method for determination of DNA damage in vivo and in vitro have been highlighted in many studies. Actually, efforts are made to include it in a panel of genotoxicity tests for regulatory purposes. However, the standard comet assay is a time consuming procedure due to the specific methods needed. The improvements presented here lead to a faster and easier slide-production, a smaller amount of cells needed, a higher amount of comets quantified, a fully automated analysis of comets including reanalysis, storing, visualisation and documentation possibilities using standard comet quantification models such as tail length or tail moment, and - by introduction of clearly definable selection criteria based on image analysis algorithms - clearly improve objectivity and standardization of the analysis procedure. Results prove the high reproducibility, flexibility, efficiency and suitability of the procedure as a fully automated analysis method in higher throughput genotoxicity testing in vitro. PMID:19595757

  3. Achieving Equity in Higher Education: The Unfinished Agenda

    ERIC Educational Resources Information Center

    Astin, Alexander W.; Astin, Helen S.

    2015-01-01

    In this retrospective account of their scholarly work over the past 45 years, Alexander and Helen Astin show how the struggle to achieve greater equity in American higher education is intimately connected to issues of character development, leadership, civic responsibility, and spirituality. While shedding some light on a variety of questions…

  4. Using space and time to encode vibrotactile information: toward an estimate of the skin's achievable throughput.

    PubMed

    Novich, Scott D; Eagleman, David M

    2015-10-01

    explains the poor identification performance of spatially encoded patterns. Hence, when using an array of vibrational motors, spatiotemporal sweeps can overcome the limitations of vibrotactile two-tacton resolution. The results provide the first steps toward obtaining a realistic estimate of the skin's achievable throughput, illustrating the best ways to encode data to the skin (using as many dimensions as possible) and how far such interfaces would need to be separated if using multiple arrays in parallel.

  5. Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. SLM stands poised to revolutionize propulsion manufacturing, but there are a number of technical questions that must be addressed in order to achieve rapid, efficient fabrication and ensure adequate performance of parts manufactured using this process in safety-critical flight applications. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this work is to characterize the impact of higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. In phase I of this work, density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, hatch spacing, and layer thickness) and material consolidation (assessed in terms of as-built density and porosity). Phase II additionally considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the same higher energy parameter regime considered in the phase I work. Density and microstructure represent the "first-gate" metrics for determining the adequacy of the SLM process in this parameter range and, as a critical initial indicator of material quality, will factor into a follow-on DOE that assesses the impact of these parameters on mechanical properties. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid

  6. A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.

    PubMed

    Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E

    2015-11-20

    Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms.

  7. A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.

    PubMed

    Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E

    2015-11-20

    Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms. PMID:26155738

  8. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  9. Achieving Fair Throughput among TCP Flows in Multi-Hop Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Hou, Ting-Chao; Hsu, Chih-Wei

    Previous research shows that the IEEE 802.11 DCF channel contention mechanism is not capable of providing throughput fairness among nodes in different locations of the wireless mesh network. The node nearest the gateway will always strive for the chance to transmit data, causing fewer transmission opportunities for the nodes farther from the gateway, resulting in starvation. Prior studies modify the DCF mechanism to address the fairness problem. This paper focuses on the fairness study when TCP flows are carried over wireless mesh networks. By not modifying lower layer protocols, the current work identifies TCP parameters that impact throughput fairness and proposes adjusting those parameters to reduce frame collisions and improve throughput fairness. With the aid of mathematical formulation and ns2 simulations, this study finds that frame transmission from each node can be effectively controlled by properly controlling the delayed ACK timer and using a suitable advertised window. The proposed method reduces frame collisions and greatly improves TCP throughput fairness.

  10. Study of Material Densification of In718 in the Higher Throughput Parameter Regime

    NASA Technical Reports Server (NTRS)

    Cordner, Samuel

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this project is to characterize how heat treatment affects density and porosity from a microscopic point of view. This is performs using higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. Density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, and hatch spacing) and material consolidation (assessed in terms of density and porosity). The study also considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the higher energy parameter regime. Metallurgical evaluation of specimens will also be presented. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  11. Charting the course for nurses' achievement of higher education levels.

    PubMed

    Kovner, Christine T; Brewer, Carol; Katigbak, Carina; Djukic, Maja; Fatehi, Farida

    2012-01-01

    To improve patient outcomes and meet the challenges of the U.S. health care system, the Institute of Medicine recommends higher educational attainment for the nursing workforce. Characteristics of registered nurses (RNs) who pursue additional education are poorly understood, and this information is critical to planning long-term strategies for U.S. nursing education. To identify factors predicting enrollment and completion of an additional degree among those with an associate or bachelor's as their pre-RN licensure degree, we performed logistic regression analysis on data from an ongoing nationally representative panel study following the career trajectories of newly licensed RNs. For associate degree RNs, predictors of obtaining a bachelor's degree are the following: being Black, living in a rural area, nonnursing work experience, higher positive affectivity, higher work motivation, working in the intensive care unit, and working the day shift. For bachelor's RNs, predictors of completing a master's degree are the following: being Black, nonnursing work experience, holding more than one job, working the day shift, working voluntary overtime, lower intent to stay at current employer, and higher work motivation. Mobilizing the nurse workforce toward higher education requires integrated efforts from policy makers, philanthropists, employers, and educators to mitigate the barriers to continuing education.

  12. Charting the course for nurses' achievement of higher education levels.

    PubMed

    Kovner, Christine T; Brewer, Carol; Katigbak, Carina; Djukic, Maja; Fatehi, Farida

    2012-01-01

    To improve patient outcomes and meet the challenges of the U.S. health care system, the Institute of Medicine recommends higher educational attainment for the nursing workforce. Characteristics of registered nurses (RNs) who pursue additional education are poorly understood, and this information is critical to planning long-term strategies for U.S. nursing education. To identify factors predicting enrollment and completion of an additional degree among those with an associate or bachelor's as their pre-RN licensure degree, we performed logistic regression analysis on data from an ongoing nationally representative panel study following the career trajectories of newly licensed RNs. For associate degree RNs, predictors of obtaining a bachelor's degree are the following: being Black, living in a rural area, nonnursing work experience, higher positive affectivity, higher work motivation, working in the intensive care unit, and working the day shift. For bachelor's RNs, predictors of completing a master's degree are the following: being Black, nonnursing work experience, holding more than one job, working the day shift, working voluntary overtime, lower intent to stay at current employer, and higher work motivation. Mobilizing the nurse workforce toward higher education requires integrated efforts from policy makers, philanthropists, employers, and educators to mitigate the barriers to continuing education. PMID:23158196

  13. Strategies for Increasing Academic Achievement in Higher Education

    ERIC Educational Resources Information Center

    Ensign, Julene; Woods, Amelia Mays

    2014-01-01

    Higher education today faces unique challenges. Decreasing student engagement, increasing diversity, and limited resources all contribute to the issues being faced by students, educators, and administrators alike. The unique characteristics and expectations that students bring to their professional programs require new methods of addressing…

  14. Linking Emotional Intelligence to Achieve Technology Enhanced Learning in Higher Education

    ERIC Educational Resources Information Center

    Kruger, Janette; Blignaut, A. Seugnet

    2013-01-01

    Higher education institutions (HEIs) increasingly use technology-enhanced learning (TEL) environments (e.g. blended learning and e-learning) to improve student throughput and retention rates. As the demand for TEL courses increases, expectations rise for faculty to meet the challenge of using TEL effectively. The promises that TEL holds have not…

  15. High-throughput analysis pipeline for achieving simple low-copy wheat and barley transgenics.

    PubMed

    Kovalchuk, Nataliya

    2014-01-01

    Transgenic (or genetically modified-GM) plant breeding is increasingly being used as a supplementary tool to many classical plant-breeding programs. Currently the range of transgenic traits accepted for commercial use is largely restricted to herbicide and pest resistance. Given the fact that transgenics can offer an alternative and novel source of genetic variation, pre-breeding research is now increasingly exploiting this technology to tackle a greater spectrum of traits. These traits range from abiotic stress tolerance to improved product quality and nutritional characteristics. Likewise there is an increasing demand for high-throughput methodologies for transgenic plant generation, characterization and phenotyping. Selecting simple low-copy number transgenic events that are both heritable and stably expressed "in planta" is considered a prerequisite to systematic phenotyping for traits of interest. Furthermore, this assessment relies heavily on comparisons to appropriate control plants, in the case of wheat and barley transgenics this is both wild-type and null siblings. This chapter presents a general scheme on which to base selection of transgenics and respective null siblings using wheat and barley as an example. This scheme can be adapted to other similar crop species. Overall this strategy reduces the total number of plants to be genotyped and phenotyped at each generational step, and therefore resulting in significant savings in time, effort, and resources. PMID:24816672

  16. High-throughput pesticide residue quantitative analysis achieved by tandem mass spectrometry with automated flow injection.

    PubMed

    Nanita, Sergio C; Pentz, Anne M; Bramble, Frederick Q

    2009-04-15

    The use of automated flow injection with MS/MS detection for fast quantitation of agrochemicals in food and water samples was demonstrated in this study. Active ingredients from the sulfonylurea herbicide and carbamate insecticide classes were selected as model systems. Samples were prepared using typical procedures from residue methods, placed in an autosampler, and injected directly into a triple quadrupole instrument without chromatographic separation. The technique allows data acquisition in 15 s per injection, with samples being injected every 65 s, representing a significant improvement from the 15-30 min needed in typical HPLC/MS/MS methods. The availability of HPLC systems is an advantage since they can be used in flow-injection mode (bypassing the column compartment). Adequate accuracy, linearity, and precision (R(2) > 0.99 and RSD < 20%) were obtained using external standards prepared in each control matrix. The limit of quantitation (LOQ) achieved for all analytes was 0.01 mg/kg in food samples and 0.1 ng/mL in water; while limits of detection (LOD) were estimated to be about 0.003 mg/kg and 0.03 ng/mL in food and water, respectively. The advantages and limitations of flow injection MS/MS for ultratrace-level quantitative analysis in complex matrixes are discussed.

  17. High-throughput pesticide residue quantitative analysis achieved by tandem mass spectrometry with automated flow injection.

    PubMed

    Nanita, Sergio C; Pentz, Anne M; Bramble, Frederick Q

    2009-04-15

    The use of automated flow injection with MS/MS detection for fast quantitation of agrochemicals in food and water samples was demonstrated in this study. Active ingredients from the sulfonylurea herbicide and carbamate insecticide classes were selected as model systems. Samples were prepared using typical procedures from residue methods, placed in an autosampler, and injected directly into a triple quadrupole instrument without chromatographic separation. The technique allows data acquisition in 15 s per injection, with samples being injected every 65 s, representing a significant improvement from the 15-30 min needed in typical HPLC/MS/MS methods. The availability of HPLC systems is an advantage since they can be used in flow-injection mode (bypassing the column compartment). Adequate accuracy, linearity, and precision (R(2) > 0.99 and RSD < 20%) were obtained using external standards prepared in each control matrix. The limit of quantitation (LOQ) achieved for all analytes was 0.01 mg/kg in food samples and 0.1 ng/mL in water; while limits of detection (LOD) were estimated to be about 0.003 mg/kg and 0.03 ng/mL in food and water, respectively. The advantages and limitations of flow injection MS/MS for ultratrace-level quantitative analysis in complex matrixes are discussed. PMID:19296591

  18. iPSC-derived neurons as a higher-throughput readout for autism: Promises and pitfalls

    PubMed Central

    Prilutsky, Daria; Palmer, Nathan P.; Smedemark-Margulies, Niklas; Schlaeger, Thorsten M.; Margulies, David M.; Kohane, Isaac S.

    2014-01-01

    The elucidation of disease etiologies and establishment of robust, scalable, high-throughput screening assays for autism spectrum disorders (ASDs) have been impeded by both inaccessibility of disease-relevant neuronal tissue and the genetic heterogeneity of the disorder. Neuronal cells derived from induced pluripotent stem cells (iPSCs) from autism patients may circumvent these obstacles and serve as relevant cell models. To date, derived cells are characterized and screened by assessing their neuronal phenotypes. These characterizations are often etiology-specific or lack reproducibility and stability. In this manuscript, we present an overview of efforts to study iPSC-derived neurons as a model for autism, and we explore the plausibility of gene expression profiling as a reproducible and stable disease marker. PMID:24374161

  19. iPSC-derived neurons as a higher-throughput readout for autism: promises and pitfalls.

    PubMed

    Prilutsky, Daria; Palmer, Nathan P; Smedemark-Margulies, Niklas; Schlaeger, Thorsten M; Margulies, David M; Kohane, Isaac S

    2014-02-01

    The elucidation of disease etiologies and establishment of robust, scalable, high-throughput screening assays for autism spectrum disorders (ASDs) have been impeded by both inaccessibility of disease-relevant neuronal tissue and the genetic heterogeneity of the disorder. Neuronal cells derived from induced pluripotent stem cells (iPSCs) from autism patients may circumvent these obstacles and serve as relevant cell models. To date, derived cells are characterized and screened by assessing their neuronal phenotypes. These characterizations are often etiology-specific or lack reproducibility and stability. In this review, we present an overview of efforts to study iPSC-derived neurons as a model for autism, and we explore the plausibility of gene expression profiling as a reproducible and stable disease marker. PMID:24374161

  20. Stable Same-Sex Friendships with Higher Achieving Partners Promote Mathematical Reasoning in Lower Achieving Primary School Children

    PubMed Central

    DeLay, Dawn; Laursen, Brett; Kiuru, Noona; Poikkeus, Anna-Maija; Aunola, Kaisa; Nurmi, Jari-Erik

    2015-01-01

    This study is designed to investigate friend influence over mathematical reasoning in a sample of 374 children in 187 same-sex friend dyads (184 girls in 92 friendships; 190 boys in 95 friendships). Participants completed surveys that measured mathematical reasoning in the 3rd grade (approximately 9 years old) and one year later in the 4th grade (approximately 10 years old). Analyses designed for dyadic data (i.e., longitudinal Actor-Partner Interdependence Models) indicated that higher achieving friends influenced the mathematical reasoning of lower achieving friends, but not the reverse. Specifically, greater initial levels of mathematical reasoning among higher achieving partners in the 3rd grade predicted greater increases in mathematical reasoning from 3rd grade to 4th grade among lower achieving partners. These effects held after controlling for peer acceptance and rejection, task avoidance, interest in mathematics, maternal support for homework, parental education, length of the friendship, and friendship group norms on mathematical reasoning. PMID:26402901

  1. Stable same-sex friendships with higher achieving partners promote mathematical reasoning in lower achieving primary school children.

    PubMed

    DeLay, Dawn; Laursen, Brett; Kiuru, Noona; Poikkeus, Anna-Maija; Aunola, Kaisa; Nurmi, Jari-Erik

    2015-11-01

    This study was designed to investigate friend influence over mathematical reasoning in a sample of 374 children in 187 same-sex friend dyads (184 girls in 92 friendships; 190 boys in 95 friendships). Participants completed surveys that measured mathematical reasoning in the 3rd grade (approximately 9 years old) and 1 year later in the 4th grade (approximately 10 years old). Analyses designed for dyadic data (i.e., longitudinal actor-partner interdependence model) indicated that higher achieving friends influenced the mathematical reasoning of lower achieving friends, but not the reverse. Specifically, greater initial levels of mathematical reasoning among higher achieving partners in the 3rd grade predicted greater increases in mathematical reasoning from 3rd grade to 4th grade among lower achieving partners. These effects held after controlling for peer acceptance and rejection, task avoidance, interest in mathematics, maternal support for homework, parental education, length of the friendship, and friendship group norms on mathematical reasoning. PMID:26402901

  2. Validity of Assessment and Recognition of Non-Formal and Informal Learning Achievements in Higher Education

    ERIC Educational Resources Information Center

    Kaminskiene, Lina; Stasiunaitiene, Egle

    2013-01-01

    The article identifies the validity of assessment of non-formal and informal learning achievements (NILA) as one of the key factors for encouraging further development of the process of assessing and recognising non-formal and informal learning achievements in higher education. The authors analyse why the recognition of non-formal and informal…

  3. Soy Mujer!: A Case Study for Understanding Latina Achievement in Higher Education

    ERIC Educational Resources Information Center

    Stephens, Elizabeth

    2012-01-01

    Latinas are one of fastest growing segments of the population in the United States, which clearly shows a need to better understand and support education for Latinas within higher education. This study sought to understand the process for and experience of Latinas' academic achievement within higher education. The study focused particularly…

  4. Latina/o Student Achievement: A Collaborative Mission of Professional Associations of Higher Education

    ERIC Educational Resources Information Center

    Arredondo, Patricia; Castillo, Linda G.

    2011-01-01

    Latina/o student achievement is a priority for the American Association of Hispanics in Higher Education (AAHHE). To date, AAHHE has worked deliberately on this agenda. However, well-established higher education associations such as the Association of American Universities (AAU) and the Association of Public and Land-grant Universities (APLU) are…

  5. Relationship between Study Habits and Academic Achievement of Higher Secondary School Students

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul

    2014-01-01

    The present study was probed to find the significant relationship between study habits and academic achievement of higher secondary school students with reference to the background variables. Survey method was employed. Data for the study were collected from 300 students in 13 higher secondary schools using Study Habits Inventory by V.G. Anantha…

  6. Technology's Effect on Achievement in Higher Education: A Stage I Meta-Analysis of Classroom Applications

    ERIC Educational Resources Information Center

    Schmid, Richard F.; Bernard, Robert M.; Borokhovski, Eugene; Tamim, Rana; Abrami, Philip C.; Wade, C. Anne; Surkes, Michael A.; Lowerison, Gretchen

    2009-01-01

    This paper reports the findings of a Stage I meta-analysis exploring the achievement effects of computer-based technology use in higher education classrooms (non-distance education). An extensive literature search revealed more than 6,000 potentially relevant primary empirical studies. Analysis of a representative sample of 231 studies (k = 310)…

  7. Leveraging Quality Improvement to Achieve Student Learning Assessment Success in Higher Education

    ERIC Educational Resources Information Center

    Glenn, Nancy Gentry

    2009-01-01

    Mounting pressure for transformational change in higher education driven by technology, globalization, competition, funding shortages, and increased emphasis on accountability necessitates that universities implement reforms to demonstrate responsiveness to all stakeholders and to provide evidence of student achievement. In the face of the demand…

  8. The Effects of Learning Strategies on Mathematical Literacy: A Comparison between Lower and Higher Achieving Countries

    ERIC Educational Resources Information Center

    Magen-Nagar, Noga

    2016-01-01

    The purpose of the current study is to explore the effects of learning strategies on Mathematical Literacy (ML) of students in higher and lower achieving countries. To address this issue, the study utilizes PISA2002 data to conduct a multi-level analysis (HLM) of Hong Kong and Israel students. In PISA2002, Israel was rated 31st in Mathematics,…

  9. An Analysis of Factors Influencing the Achievement of Higher Education by Chief Fire Officers

    ERIC Educational Resources Information Center

    Ditch, Robert L.

    2012-01-01

    The leadership of the United States Fire Service (FS) believes that higher education increases the professionalism of FS members. The research problem at the research site, which is a multisite fire department located in southeastern United States, was the lack of research-based findings on the factors influencing the achievement of higher…

  10. Automated higher-throughput compound screening on ion channel targets based on the Xenopus laevis oocyte expression system.

    PubMed

    Pehl, Ulrich; Leisgen, Christine; Gampe, Kristine; Guenther, Elke

    2004-10-01

    As numerous diseases have been shown to be related to dysfunction of ion channels and neurotransmitter receptors and to affect regulatory pathways, ion channels have attracted increasing attention as a target class for drug discovery. The concomitant demand of the pharmaceutical industry for adequate electrophysiological methods to investigate drug effects on specific ion channels in secondary and safety screening has resulted in the development of electrophysiological instrumentation that allows automated monitoring of ion channel function with a higher throughput. Here we tested a fully automated screening system based on the Xenopus laevis oocyte expression system. We addressed the questions of data quality and reproducibility obtained by automated oocyte injection and two-electrode voltage-clamp (TEVC) recording using the Roboocyte (Multi Channel Systems GmbH, Reutlingen, Germany) technology compared to conventional oocyte recording. A gamma-aminobutyric acid (GABA)A-receptor subtype (alpha(1)beta(2)) was chosen as an example for a ligand-gated ion channel, and the slowly activating potassium current I(Ks) as a voltage-activated ion channel. Oocytes were injected with cDNA or cRNA via the Roboocyte injection stage. Ion channel currents were successfully recorded after 2-7 days in about 40% of the oocytes injected with GABA(A) receptor cDNA, and after 2-4 days in about 60% of the oocytes injected with KCNE1 cRNA. EC(50) values for the GABA(A) receptor and IC(50) values for blockers of I(Ks) were comparable to values obtained with conventional TEVC recording techniques. In conclusion, our results show that the Roboocyte is a valuable automated tool for oocyte injection and TEVC recording that can be used in drug screening and target validation to enhance the number of compounds and oocytes tested per day.

  11. Ewe lambs with higher breeding values for growth achieve higher reproductive performance when mated at age 8 months.

    PubMed

    Nieto, C A Rosales; Ferguson, M B; Macleay, C A; Briegel, J R; Wood, D A; Martin, G B; Thompson, A N

    2013-09-15

    We studied the relationships among growth, body composition and reproductive performance in ewe lambs with known phenotypic values for depth of eye muscle (EMD) and fat (FAT) and Australian Sheep Breeding Values for post-weaning live weight (PWT) and depth of eye muscle (PEMD) and fat (PFAT). To detect estrus, vasectomized rams were placed with 190 Merino ewe lambs when on average they were 157 days old. The vasectomized rams were replaced with entire rams when the ewe lambs were, on average, 226 days old. Lambs were weighed every week and blood was sampled on four occasions for assay of ghrelin, leptin and ß-hydroxybutyrate. Almost 90% of the lambs attained puberty during the experiment, at an average live weight of 41.4 kg and average age of 197 days. Ewe lambs with higher values for EMD (P < 0.001), FAT (P < 0.01), PWT (P < 0.001), PEMD (P < 0.05) and PFAT (P < 0.05) were more likely to achieve puberty by 251 days of age. Thirty-six percent of the lambs conceived and, at the estimated date of conception, the average live weight was 46.9 ± 0.6 kg and average age was 273 days. Fertility, fecundity and reproductive rate were positively related to PWT (P < 0.05) and thus live weight at the start of mating (P < 0.001). Reproductive performance was not correlated with blood concentrations of ghrelin, leptin or ß-hydroxybutyrate. Many ewe lambs attained puberty, as detected by vasectomized rams, but then failed to become pregnant after mating with entire rams. Nevertheless, we can conclude that in ewe lambs mated at 8 months of age, higher breeding values for growth, muscle and fat are positively correlated with reproductive performance, although the effects of breeding values and responses to live weight are highly variable.

  12. Discrepancies between academic achievement and intellectual ability in higher-functioning school-aged children with autism spectrum disorder.

    PubMed

    Estes, Annette; Rivera, Vanessa; Bryan, Matthew; Cali, Philip; Dawson, Geraldine

    2011-08-01

    Academic achievement patterns and their relationships with intellectual ability, social abilities, and problem behavior are described in a sample of 30 higher-functioning, 9-year-old children with autism spectrum disorder (ASD). Both social abilities and problem behavior have been found to be predictive of academic achievement in typically developing children but this has not been well studied in children with ASD. Participants were tested for academic achievement and intellectual ability at age 9. Problem behaviors were assessed through parent report and social functioning through teacher report at age 6 and 9. Significant discrepancies between children's actual academic achievement and their expected achievement based on their intellectual ability were found in 27 of 30 (90%) children. Both lower than expected and higher than expected achievement was observed. Children with improved social skills at age 6 demonstrated higher levels of academic achievement, specifically word reading, at age 9. No relationship was found between children's level of problem behavior and level of academic achievement. These results suggest that the large majority of higher-functioning children with ASD show discrepancies between actual achievement levels and levels predicted by their intellectual ability. In some cases, children are achieving higher than expected, whereas in others, they are achieving lower than expected. Improved social abilities may contribute to academic achievement. Future studies should further explore factors that can promote strong academic achievement, including studies that examine whether intervention to improve social functioning can support academic achievement in children with ASD. PMID:21042871

  13. Discrepancies between academic achievement and intellectual ability in higher-functioning school-aged children with autism spectrum disorder.

    PubMed

    Estes, Annette; Rivera, Vanessa; Bryan, Matthew; Cali, Philip; Dawson, Geraldine

    2011-08-01

    Academic achievement patterns and their relationships with intellectual ability, social abilities, and problem behavior are described in a sample of 30 higher-functioning, 9-year-old children with autism spectrum disorder (ASD). Both social abilities and problem behavior have been found to be predictive of academic achievement in typically developing children but this has not been well studied in children with ASD. Participants were tested for academic achievement and intellectual ability at age 9. Problem behaviors were assessed through parent report and social functioning through teacher report at age 6 and 9. Significant discrepancies between children's actual academic achievement and their expected achievement based on their intellectual ability were found in 27 of 30 (90%) children. Both lower than expected and higher than expected achievement was observed. Children with improved social skills at age 6 demonstrated higher levels of academic achievement, specifically word reading, at age 9. No relationship was found between children's level of problem behavior and level of academic achievement. These results suggest that the large majority of higher-functioning children with ASD show discrepancies between actual achievement levels and levels predicted by their intellectual ability. In some cases, children are achieving higher than expected, whereas in others, they are achieving lower than expected. Improved social abilities may contribute to academic achievement. Future studies should further explore factors that can promote strong academic achievement, including studies that examine whether intervention to improve social functioning can support academic achievement in children with ASD.

  14. Leveraging People-Related Maturity Issues for Achieving Higher Maturity and Capability Levels

    NASA Astrophysics Data System (ADS)

    Buglione, Luigi

    During the past 20 years Maturity Models (MM) become a buzzword in the ICT world. Since the initial Crosby's idea in 1979, plenty of models have been created in the Software & Systems Engineering domains, addressing various perspectives. By analyzing the content of the Process Reference Models (PRM) in many of them, it can be noticed that people-related issues have little weight in the appraisals of the capabilities of organizations while in practice they are considered as significant contributors in traditional process and organizational performance appraisals, as stressed instead in well-known Performance Management models such as MBQA, EFQM and BSC. This paper proposes some ways for leveraging people-related maturity issues merging HR practices from several types of maturity models into the organizational Business Process Model (BPM) in order to achieve higher organizational maturity and capability levels.

  15. Virtual Laboratories to Achieve Higher-Order Learning in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Gooseff, M. N.; Toto, R.

    2009-12-01

    Bloom’s higher-order cognitive skills (analysis, evaluation, and synthesis) are recognized as necessary in engineering education, yet these are difficult to achieve in traditional lecture formats. Laboratory components supplement traditional lectures in an effort to emphasize active learning and provide higher-order challenges, but these laboratories are often subject to the constraints of (a) increasing student enrollment, (b) limited funding for operational, maintenance, and instructional expenses and (c) increasing demands on undergraduate student credit requirements. Here, we present results from a pilot project implementing virtual (or online) laboratory experiences as an alternative to a traditional laboratory experience in Fluid Mechanics, a required third year course. Students and faculty were surveyed to identify the topics that were most difficult, and virtual laboratory and design components developed to supplement lecture material. Each laboratory includes a traditional lab component, requiring student analysis and evaluation. The lab concludes with a design exercise, which imposes additional problem constraints and allows students to apply their laboratory observations to a real-world situation.

  16. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight.

    PubMed

    Essenberg, Margaret; Bayles, Melanie B; Pierce, Margaret L; Verhalen, Laval M

    2014-10-01

    Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control. PMID:24655289

  17. Is Equal Access to Higher Education in South Asia and Sub-Saharan Africa Achievable by 2030?

    ERIC Educational Resources Information Center

    Ilie, Sonia; Rose, Pauline

    2016-01-01

    Higher education is back in the spotlight, with post-2015 sustainable development goals emphasising equality of access. In this paper, we highlight the long distance still to travel to achieve the goal of equal access to higher education for all, with a focus on poorer countries which tend to have lower levels of enrolment in higher education.…

  18. Inclusion and Achievement: Student Achievement in Secondary Schools with Higher and Lower Proportions of Pupils Designated as Having Special Educational Needs

    ERIC Educational Resources Information Center

    Rouse, Martyn; Florian, Lani

    2006-01-01

    This paper reports on a multi-method study that examined the effects of including higher and lower proportions of students designated as having special educational needs on student achievement in secondary schools. It explores some of the issues involved in conducting such research and considers the extent to which newly available national data in…

  19. Factors Influencing Successful Achievement in Contrasting Design and Technology Activities in Higher Education

    ERIC Educational Resources Information Center

    Atkinson, Stephanie

    2006-01-01

    The aim of the study was to investigate the relationship between such factors as learning style, gender, prior experience, and successful achievement in contrasting modules taken by a cohort of thirty design and technology trainee teachers during their degree programme at a University in the North East of England. Achievement data were collected…

  20. Teacher Quality and Educational Equality: Do Teachers with Higher Standards-Based Evaluation Ratings Close Student Achievement Gaps?

    ERIC Educational Resources Information Center

    Borman, Geoffrey D.; Kimball, Steven M.

    2005-01-01

    Using standards-based evaluation ratings for nearly 400 teachers, and achievement results for over 7,000 students from grades 4-6, this study investigated the distribution and achievement effects of teacher quality in Washoe County, a mid-sized school district serving Reno and Sparks, Nevada. Classrooms with higher concentrations of minority,…

  1. Discrepancies between Academic Achievement and Intellectual Ability in Higher-Functioning School-Aged Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Estes, Annette; Rivera, Vanessa; Bryan, Matthew; Cali, Philip; Dawson, Geraldine

    2011-01-01

    Academic achievement patterns and their relationships with intellectual ability, social abilities, and problem behavior are described in a sample of 30 higher-functioning, 9-year-old children with autism spectrum disorder (ASD). Both social abilities and problem behavior have been found to be predictive of academic achievement in typically…

  2. What Is the Best Way to Achieve Broader Reach of Improved Practices in Higher Education?

    ERIC Educational Resources Information Center

    Kezar, Adrianna

    2011-01-01

    This article examines a common problem in higher education--how to create more widespread use of improved practices, often commonly referred to as innovations. I argue that policy models of scale-up are often advocated in higher education but that they have a dubious history in community development and K-12 education and that higher education…

  3. Diversity and Achievement: Is Success in Higher Education a Transformative Experience?

    ERIC Educational Resources Information Center

    Benson, Robyn; Heagney, Margaret; Hewitt, Lesley; Crosling, Glenda; Devos, Anita

    2014-01-01

    This paper reports on a longitudinal project examining how a group of students from diverse backgrounds succeeded in higher education. The project explored participants' pathways into higher education, how they managed their studies, and their reflections at course completion. In this paper, the concept of perspective transformation is used…

  4. Colonialism on Campus: A Critique of Mentoring to Achieve Equity in Higher Education.

    ERIC Educational Resources Information Center

    Collins, Roger L.

    In order to reconceptualize the mentoring relationship in higher education, parallels to colonialist strategies of subordination are drawn. The objective is to stimulate renewed thinking and action more consistent with stated policy goals in higher education. One of the primary functions of a mentor or sponsor is to exercise personal power to…

  5. Beyond Virtual Equality: Liberatory Consciousness as a Path to Achieve Trans* Inclusion in Higher Education

    ERIC Educational Resources Information Center

    Catalano, D. Chase J.

    2015-01-01

    Trans* men have not, as yet, received specific research attention in higher education. Based on intensive interviews with 25 trans* men enrolled in colleges or universities in New England, I explore their experiences in higher education. I analyze participants' descriptions of supports and challenges in their collegiate environments, as well as…

  6. Achievement Investment Prowess: Identifying Cost Efficient Higher Performing Maine Public Schools

    ERIC Educational Resources Information Center

    Batista, Ida A.

    2006-01-01

    Throughout the United States the debate has been frequent, intense, and at times adversarial over how to fund education adequately. Maine has been trying to identify higher performing schools in the hope that practices that contribute to success at higher performing schools can be adapted at similar schools throughout the state. The 1997…

  7. The Effects of Higher Education/Military Service on Achievement Levels of Police Academy Cadets.

    ERIC Educational Resources Information Center

    Johnson, Thomas Allen

    This study compared levels of achievement of three groups of Houston (Texas) police academy cadets: those with no military service but with 60 or more college credit hours, those with military service and 0 hours of college credit, and those with military service and 1 to 59 hours of college credit. Prior to 1991, police cadets in Houston were…

  8. Correlation of Conditional Admittance and Student Achievement in an Undergraduate Higher Education Setting

    ERIC Educational Resources Information Center

    Parisi, Joe

    2012-01-01

    This paper explores several research questions that identify differences between conditionally admitted students and regularly admitted students in terms of achievement results at one institution. The research provides specific variables as well as relationships including historical and comparative aggregate data from 2009 and 2010 that indicate…

  9. Gender Disparity Analysis in Academic Achievement at Higher Education Preparatory Schools: Case of South Wollo, Ethiopia

    ERIC Educational Resources Information Center

    Eshetu, Amogne Asfaw

    2015-01-01

    Gender is among the determinant factors affecting students' academic achievement. This paper tried to investigate the impact of gender on academic performance of preparatory secondary school students based on 2014 EHEECE result. Ex post facto research design was used. To that end, data were collected from 3243 students from eight purposively…

  10. The Relationship between Epistemological Beliefs, Learning Strategies and Achievement in Higher Education

    ERIC Educational Resources Information Center

    Mc Beth, Maureen

    2010-01-01

    This study provides important insights into the relationship between the epistemological beliefs of community college students, the selection of learning strategies, and academic achievement. This study employed a quantitative survey design. Data were collected by surveying students at a community college during the spring semester of 2010. The…

  11. The Little District that Could: Literacy Reform Leads to Higher Achievement in California District

    ERIC Educational Resources Information Center

    Kelly, Patricia R.; Budicin-Senters, Antoinette; King, L. McLean

    2005-01-01

    This article describes educational reform developed over a 10-year period in California's Lemon Grove School District, which resulted in a steady and remarkable upward shift in achievement for the students of this multicultural district just outside San Diego. Six elements of literacy reform emerged as the most significant factors affecting…

  12. Increasing Access to Higher Education among Low-Income Students: The Washington State Achievers Program

    ERIC Educational Resources Information Center

    Myers, Carrie B.; Brown, Doreen E.; Pavel, D. Michael

    2010-01-01

    The purpose of this study was to assess how a comprehensive precollege intervention and developmental program among low-income high school students contributed to college enrollment outcomes measured in 2006. Our focus was on the Fifth Cohort of the Washington State Achievers (WSA) Program, which provides financial, academic, and college…

  13. Success in Higher Education: The Challenge to Achieve Academic Standing and Social Position

    ERIC Educational Resources Information Center

    Life, James

    2015-01-01

    When students look at their classmates in the classroom, consciously or unconsciously, they see competitors both for academic recognition and social success. How do they fit in relation to others and how do they succeed in achieving both? Traditional views on the drive to succeed and the fear of failure are well known as motivators for achieving…

  14. EM-21 HIGHER WASTE LOADING GLASSES FOR ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES - 10194

    SciTech Connect

    Raszewski, F.; Peeler, D.; Edwards, T.

    2009-11-18

    Supplemental validation data has been generated that will be used to determine the applicability of the current Defense Waste Processing Facility (DWPF) liquidus temperature (T{sub L}) model to expanded DWPF glass regions of interest based on higher waste loadings. For those study glasses which had very close compositional overlap with the model development and/or model validation ranges (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values, even though the TiO{sub 2} contents were above the 2 wt% upper limit. The results indicate that the current T{sub L} model is applicable in these compositional regions. As the compositional overlap between the model validation ranges diverged from the target glass compositions, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or their combinations that were outside of the model development and/or validation range over which the model was previously assessed. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data is required to fill in these anticipated DWPF compositional regions so that the model coefficients could be refit to account for these differences.

  15. Achieving Canadian Excellence in and for the World: Leveraging Canada's Higher Education and Research

    ERIC Educational Resources Information Center

    Association of Universities and Colleges of Canada, 2004

    2004-01-01

    As Canada's opportunities to claim international leadership are assessed, the best prospects lie in a combination of our impressive higher education and research commitments, civic and institutional values, and quality of life. This paper concludes that as an exporting country, the benefits will come in economic growth. As citizens of the world,…

  16. Goals, Strategies, and Achievements in the Internationalization of Higher Education in Japan and Taiwan

    ERIC Educational Resources Information Center

    Ho, Hsuan-Fu; Lin, Ming-Huang; Yang, Cheng-Cheng

    2015-01-01

    International knowledge and skills are essential for success in today's highly competitive global marketplace. As one of the key providers of such knowledge and skills, universities have become a key focus of the internationalization strategies of governments throughout the world. While the internationalization of higher education clearly has…

  17. Identifying Factors That Affect Higher Educational Achievements of Jamaican Seventh-Day Adventists

    ERIC Educational Resources Information Center

    Campbell, Samuel P.

    2011-01-01

    This mixed-method explanatory research examined factors that influenced Jamaican Seventh-day Adventist (SDA) members to pursue higher education. It sought to investigate whether the source of the motivation is tied to the Church's general philosophy on education or to its overall programs as experienced by the membership at large. The question of…

  18. Personality Factors and Achievement Motivation of Women in Higher Education Administration.

    ERIC Educational Resources Information Center

    Lester, Patricia; Chu, Lily

    Female and male higher education administrators in Texas and New Mexico were compared in terms of their sex role orientation, motivational factors, and administrative styles. In addition to individual interviews of the 68 administrators, a questionnaire was developed that included items from the Bem Sex Role Inventory, Work and Family Orientation…

  19. Maryland Higher Education Commission Data Book 2008. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2008

    2008-01-01

    This document presents statistics about the higher education in Maryland for 2008. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues and Expenditures; (6) Tuition and Fees; (7) Financial Aid; (8) Private Career Schools; and (9)…

  20. Maryland Higher Education Commission Data Book 2010. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2010

    2010-01-01

    This document presents statistics about the higher education in Maryland for 2010. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues and Expenditures; (6) Tuition and Fees; (7) Financial Aid; (8) Private Career Schools; and (9)…

  1. Maryland Higher Education Commission Data Book 2009. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2009

    2009-01-01

    This document presents statistics about the higher education in Maryland for 2009. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues and Expenditures; (6) Tuition and Fees; (7) Financial Aid; (8) Private Career Schools; and (9)…

  2. Maryland Higher Education Commission Data Book 2011. Creating a State of Achievement

    ERIC Educational Resources Information Center

    Maryland Higher Education Commission, 2011

    2011-01-01

    This document presents statistics about higher education in Maryland for 2011. The tables in this document are presented according to the following categories: (1) Students; (2) Retention and Graduation; (3) Degrees; (4) Faculty; (5) Revenues and Expenditures; (6) Tuition and Fees; (7) Financial Aid; (8) Private Career Schools; and (9) Distance…

  3. Students' Commitment, Engagement and Locus of Control as Predictor of Academic Achievement at Higher Education Level

    ERIC Educational Resources Information Center

    Sarwar, Muhammad; Ashrafi, Ghulam Muhammad

    2014-01-01

    The purpose of this study was to analyze Students' Commitment, Engagement and Locus of Control as predictors of Academic Achievement at Higher Education Level. We used analytical model and conclusive research approach to conduct study and survey method for data collection. We selected 369 students using multistage sampling technique from…

  4. Differences in General Cognitive Abilities and Domain-Specific Skills of Higher-and Lower-Achieving Students in Stoichiometry

    ERIC Educational Resources Information Center

    Gulacar, Ozcan; Eilks, Ingo; Bowman, Charles R.

    2014-01-01

    This paper reports a comparison of a group of higher-and lower-achieving undergraduate chemistry students, 17 in total, as separated on their ability in stoichiometry. This exploratory study of 17 students investigated parallels and differences in the students' general and domain-specific cognitive abilities. Performance, strategies, and…

  5. Does Higher Quality Early Child Care Promote Low-Income Children's Math and Reading Achievement in Middle Childhood?

    ERIC Educational Resources Information Center

    Dearing, Eric; McCartney, Kathleen; Taylor, Beck A.

    2009-01-01

    Higher quality child care during infancy and early childhood (6-54 months of age) was examined as a moderator of associations between family economic status and children's (N = 1,364) math and reading achievement in middle childhood (4.5-11 years of age). Low income was less strongly predictive of underachievement for children who had been in…

  6. What Educational Initiatives Contribute to Higher than Expected Achievement in Student Performance for Public Schools in the State of Indiana?

    ERIC Educational Resources Information Center

    Keeley, Thomas Allen

    2010-01-01

    The purpose of this study was to determine whether the areas of teaching methods, teacher-student relationships, school structure, school-community partnerships or school leadership were significantly embedded in practice and acted as a change agent among school systems that achieve higher than expected results on their state standardized testing…

  7. Parental Level of Education: Associations with Psychological Well-Being, Academic Achievement and Reasons for Pursuing Higher Education in Adolescence

    ERIC Educational Resources Information Center

    Schlechter, Melissa; Milevsky, Avidan

    2010-01-01

    The purpose of the current study is to determine the interconnection between parental level of education, psychological well-being, academic achievement and reasons for pursuing higher education in adolescents. Participants included 439 college freshmen from a mid-size state university in the northeastern USA. A survey, including indices of…

  8. Higher Achieved Mean Arterial Pressure During Therapeutic Hypothermia is Not Associated with Neurologically Intact Survival Following Cardiac Arrest

    PubMed Central

    Young, Michael N.; Hollenbeck, Ryan D.; Pollock, Jeremy S.; Giuseffi, Jennifer L.; Wang, Li; Harrell, Frank E.; McPherson, John A.

    2015-01-01

    Introduction To determine if higher achieved mean arterial blood pressure (MAP) during treatment with therapeutic hypothermia (TH) is associated with neurologically intact survival following cardiac arrest. Methods Retrospective analysis of a prospectively collected cohort of 188 consecutive patients treated with TH in the cardiovascular intensive care unit of an academic tertiary care hospital. Results Neurologically intact survival was observed in 73/188 (38.8%) patients at hospital discharge and in 48/162 (29.6%) patients at a median follow up interval of 3 months. Patients in shock at the time of admission had lower baseline MAP at the initiation of TH (81 versus 87 mmHg; p=0.002), but had similar achieved MAP during TH (80.3 versus 83.7 mmHg; p=0.11). Shock on admission was associated with poor survival (18% versus 52%; p<0.001). Vasopressor use among all patients was common (84.6%) and was not associated with increased mortality. A multivariable analysis including age, initial rhythm, time to return of spontaneous circulation, baseline MAP and achieved MAP did not demonstrate a relationship between MAP achieved during TH and poor neurologic outcome at hospital discharge (OR 1.28, 95% CI 0.40–4.06; p=0.87) or at outpatient follow up (OR 1.09, 95% CI 0.32–3.75; p=0.976). Conclusion We did not observe a relationship between higher achieved MAP during TH and neurologically intact survival. However, shock at the time of admission was clearly associated with poor outcomes in our study population. These data do not support the use of vasopressors to artificially increase MAP in the absence of shock. There is a need for prospective, randomized trials to further define the optimum blood pressure target during treatment with TH. PMID:25541429

  9. Leadership and culture of data governance for the achievement of higher education goals (Case study: Indonesia University of Education)

    NASA Astrophysics Data System (ADS)

    Putro, Budi Laksono; Surendro, Kridanto; Herbert

    2016-02-01

    Data is a vital asset in a business enterprise in achieving organizational goals. Data and information affect the decision-making process on the various activities of an organization. Data problems include validity, quality, duplication, control over data, and the difficulty of data availability. Data Governance is the way the company / institution manages its data assets. Data Governance covers the rules, policies, procedures, roles and responsibilities, and performance indicators that direct the overall management of data assets. Studies on governance data or information aplenty recommend the importance of cultural factors in the governance of research data. Among the organization's leadership culture has a very close relationship, and there are two concepts turn, namely: Culture created by leaders, leaders created by culture. Based on the above, this study exposure to the theme "Leadership and Culture Of Data Governance For The Achievement Of Higher Education Goals (Case Study: Indonesia University Of Education)". Culture and Leadership Model Development of on Higher Education in Indonesia would be made by comparing several models of data governance, organizational culture, and organizational leadership on previous studies based on the advantages and disadvantages of each model to the existing organizational business. Results of data governance model development is shown in the organizational culture FPMIPA Indonesia University Of Education today is the cultural market and desired culture is a culture of clan. Organizational leadership today is Individualism Index (IDV) (83.72%), and situational leadership on selling position.

  10. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    NASA Astrophysics Data System (ADS)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the

  11. Multidimensional profiling of CSF1R screening hits and inhibitors: assessing cellular activity, target residence time, and selectivity in a higher throughput way.

    PubMed

    Uitdehaag, Joost C M; Sünnen, Cecile M; van Doornmalen, Antoon M; de Rouw, Nikki; Oubrie, Arthur; Azevedo, Rita; Ziebell, Michael; Nickbarg, Elliott; Karstens, Willem-Jan; Ruygrok, Simone

    2011-10-01

    Over the past years, improvements in high-throughput screening (HTS) technology and compound libraries have resulted in a dramatic increase in the amounts of good-quality screening hits, and there is a growing need for follow-on hit profiling assays with medium throughput to further triage hits. Here the authors present such assays for the colony-stimulating factor 1 receptor (CSF1R, Fms), including tests for cellular activity and a homogeneous assay to measure affinity for inactive CSF1R. They also present a high-throughput assay to measure target residence time, which is based on competitive binding kinetics. To better fit k(off) rates, they present a modified mathematical model for competitive kinetics. In all assays, they profiled eight reference inhibitors (imatinib, sorafenib, sunitinib, tandutinib, dasatinib, GW2580, Ki20227, and J&J's pyrido[2,3-d]pyrimidin-5-one). Using the known biochemical selectivities of these inhibitors, which can be quantified using metrics such as the selectivity entropy, the authors have determined which assay readout best predicts hit selectivity. Their profiling shows surprisingly that imatinib has a preference for the active form of CSF1R and that Ki20227 has an unusually slow target dissociation rate. This confirms that follow-on hit profiling is essential to ensure that the best hits are selected for lead optimization.

  12. Aptitude Tests Versus School Exams as Selection Tools for Higher Education and the Case for Assessing Educational Achievement in Context

    ERIC Educational Resources Information Center

    Stringer, Neil

    2008-01-01

    Advocates of using a US-style SAT for university selection claim that it is fairer to applicants from disadvantaged backgrounds than achievement tests because it assesses potential, not achievement, and that it allows finer discrimination between top applicants than GCEs. The pros and cons of aptitude tests in principle are discussed, focusing on…

  13. Study of the Relationship between Study Habits and Academic Achievement of Students: A Case of Spicer Higher Secondary School, India

    ERIC Educational Resources Information Center

    Siahi, Evans Atsiaya; Maiyo, Julius K.

    2015-01-01

    The studies on the correlation of academic achievement have paved way for control and manipulation of related variables for quality results in schools. In spite of the facts that schools impart uniform classroom instructions to all students, wide range of difference is observed in their academic achievement. The study sought to determine the…

  14. A Study to Assess the Achievement Motivation of Higher Secondary Students in Relation to Their Noise Sensitivity

    ERIC Educational Resources Information Center

    Latha, Prema

    2014-01-01

    Disturbing sounds are often referred to as noise, and if extreme enough in degree, intensity or frequency, it is referred to as noise pollution. Achievement refers to a change in study behavior in relation to their noise sensitivity and learning in the educational sense by achieving results in changed responses to certain types of stimuli like…

  15. American Indian and Alaska Native Higher Education: Toward a New Century of Academic Achievement and Cultural Integrity.

    ERIC Educational Resources Information Center

    Wright, Bobby

    This paper reviews the history of higher education for Native Americans and proposes change strategies. Assimilation was the primary goal of higher education from early colonial times to the 20th century. Tribal response ranged from resistance to support of higher education. When the Federal Government began to dominate Native education in the…

  16. Boosting K-12 Student Achievement: How Corporate America and Higher Ed Can Help. Forum Focus. Fall 2006

    ERIC Educational Resources Information Center

    Ehrlich, Jenifer, Ed.

    2006-01-01

    "Forum Focus" was a semi-annual magazine of the Business-Higher Education Forum (BHEF) that featured articles on the role of business and higher education on significant issues affecting the P-16 education system. The magazine typically focused on themes featured at the most recently held semi-annual Forum meeting at the time of publication.…

  17. Ubiquitous Laptop Usage in Higher Education: Effects on Student Achievement, Student Satisfaction, and Constructivist Measures in Honors and Traditional Classrooms

    ERIC Educational Resources Information Center

    Wurst, Christian; Smarkola, Claudia; Gaffney, Mary Anne

    2008-01-01

    Three years of graduating business honors cohorts in a large urban university were sampled to determine whether the introduction of ubiquitous laptop computers into the honors program contributed to student achievement, student satisfaction and constructivist teaching activities. The first year cohort consisted of honors students who did not have…

  18. Using Valid and Invalid Experimental Designs to Teach the Control of Variables Strategy in Higher and Lower Achieving Classrooms

    ERIC Educational Resources Information Center

    Lorch, Robert F., Jr.; Lorch, Elizabeth P.; Freer, Benjamin Dunham; Dunlap, Emily E.; Hodell, Emily C.; Calderhead, William J.

    2014-01-01

    Students (n = 1,069) from 60 4th-grade classrooms were taught the control of variables strategy (CVS) for designing experiments. Half of the classrooms were in schools that performed well on a state-mandated test of science achievement, and half were in schools that performed relatively poorly. Three teaching interventions were compared: an…

  19. Implications of the Bologna Process for Throughput in the Higher Education Sector: An Empirical Illustration Based on a Finnish-British Comparison

    ERIC Educational Resources Information Center

    Lindberg, Matti

    2014-01-01

    This study illustrates the differences between Finnish and British graduates in the higher education-to-work transition and related market mechanisms in the year 2000. Specifically, the differences between the Finnish and British students' academic careers and ability to find employment after graduation were evaluated in relation to the…

  20. Going Green: A Comparative Case Study of How Three Higher Education Institutions Achieved Progressive Measures of Environmental Sustainability

    ERIC Educational Resources Information Center

    James, Matthew R.

    2009-01-01

    Leal Filho, MacDermot, and Padgam (1996) contended that post-secondary institutions are well suited to take on leadership responsibilities for society's environmental protection. Higher education has the unique academic freedom to engage in critical thinking and bold experimentation in environmental sustainability (Cortese, 2003). Although…

  1. Achievements and Consequences of Two Decades of Quality Assurance in Higher Education: A Personal View from the Edge

    ERIC Educational Resources Information Center

    Houston, Don

    2010-01-01

    While the past two decades have seen significant expansion and harmonisation of quality assurance mechanisms in higher education, there is limited evidence of positive effects on the quality of core processes of teaching and learning. The paradox of the separation of assurance from improvement is explored. A shift in focus from surveillance to…

  2. A Fresh Perspective on Progress Files--A Way of Representing Complex Learning and Achievement in Higher Education

    ERIC Educational Resources Information Center

    Jackson, Norman; Ward, Rob

    2004-01-01

    This article addresses the challenge of developing new conceptual knowledge to help us make better sense of the way that higher education is approaching the "problem" of representing (documenting, certifying and communicating by other means) students' learning for the super-complex world described by Barnett (2000b). The current UK solution to…

  3. Women in Leadership: Factors That Affect the Achievement of Women in Higher Education Administration at Four-Year Public and Private Universities in Texas

    ERIC Educational Resources Information Center

    Ramirez, Dawn Marie

    2012-01-01

    The purpose of this quantitative study was to examine the factors that affect women administrators in higher education at four-year public and private universities in Texas. By comparing private and public universities, the research provided an assessment of similarities and differences of the factors impacting achievement of women in higher…

  4. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    PubMed

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.

  5. High-throughput proteomics

    NASA Astrophysics Data System (ADS)

    Lesley, Scott A.; Nasoff, Marc; Kreusch, Andreas; Spraggon, Glen

    2001-04-01

    Proteomics has become a major focus as researchers attempt to understand the vast amount of genomic information. Protein complexity makes identifying and understanding gene function inherently difficult. The challenge of studying proteins in a global way is driving the development of new technologies for systematic and comprehensive analysis of protein structure and function. We are addressing this challenge through instrumentation and approaches to rapidly express, purify, crystallize, and mutate large numbers of human gene products. Our approach applies the principles of HTS technologies commonly used in pharmaceutical development. Genes are cloned, expressed, and purified in parallel to achieve a throughput potential of hundreds per day. Our instrumentation allows us to produce tens of milligrams of protein from 96 separate clones simultaneously. Purified protein is used for several applications including a high-throughput crystallographic screening approach for structure determination using automated image analysis. To further understand protein function, we are integrating a mutagenesis and screening approach. By combining these key technologies, we hope to provide a fundamental basis for understanding gene function at the protein level.

  6. Effects of tactual and kinesthetic instructional resources on simple recall and higher-level cognitive science achievement and attitudes toward science of third-grade suburban students

    NASA Astrophysics Data System (ADS)

    Searson, Robert Francis

    This researcher investigated the effects of tactual and kinesthetic instructional resources on the simple recall and higher-level cognitive science achievement and attitudes toward science of third-grade suburban students in a northern New Jersey school district. The Learning Style Inventory (LSI) (Dunn, Dunn, & Price, 1996) was administered to ascertain the identity of the learning-style perceptual preferences of all 59 third-graders who completed the three science units. Each of the three classes was presented two science units using learning-style instructional resources; one science unit was taught using traditional methods. All three science units were completed in a six-week period. Students were administered a pretest and posttest for each science unit and the Semantic Differential Scale (Pizzo, 1981) at the conclusion of each science unit. Analysis of variance (ANOVA) assessed the effects of treatments and attitudes toward science. The statistical analysis of this study revealed a significant difference (p < 0.0001) between students' simple recall science achievement posttest scores when taught tactually and/or kinesthetically compared to when they were taught science traditionally. Furthermore, the Contingency Table analysis, using Fisher's Exact Test indicated a significant difference (p = 0.00008) between the higher-level cognitive science achievement posttest scores when students are taught science tactually and/or kinesthetically compared to when they are taught science traditionally. The findings of this study supported the view when tactual and/or kinesthetic methods were employed, higher achievement gains were realized for simple recall and higher-level cognitive science achievement. Further recommendations called for a reexamination of science instructional methods employed in our elementary classroom.

  7. Examining the integrity of measurement of cognitive abilities in the prediction of achievement: Comparisons and contrasts across variables from higher-order and bifactor models.

    PubMed

    Benson, Nicholas F; Kranzler, John H; Floyd, Randy G

    2016-10-01

    Prior research examining cognitive ability and academic achievement relations have been based on different theoretical models, have employed both latent variables as well as observed variables, and have used a variety of analytic methods. Not surprisingly, results have been inconsistent across studies. The aims of this study were to (a) examine how relations between psychometric g, Cattell-Horn-Carroll (CHC) broad abilities, and academic achievement differ across higher-order and bifactor models; (b) examine how well various types of observed scores corresponded with latent variables; and (c) compare two types of observed scores (i.e., refined and non-refined factor scores) as predictors of academic achievement. Results suggest that cognitive-achievement relations vary across theoretical models and that both types of factor scores tend to correspond well with the models on which they are based. However, orthogonal refined factor scores (derived from a bifactor model) have the advantage of controlling for multicollinearity arising from the measurement of psychometric g across all measures of cognitive abilities. Results indicate that the refined factor scores provide more precise representations of their targeted constructs than non-refined factor scores and maintain close correspondence with the cognitive-achievement relations observed for latent variables. Thus, we argue that orthogonal refined factor scores provide more accurate representations of the relations between CHC broad abilities and achievement outcomes than non-refined scores do. Further, the use of refined factor scores addresses calls for the application of scores based on latent variable models. PMID:27586067

  8. Examining the integrity of measurement of cognitive abilities in the prediction of achievement: Comparisons and contrasts across variables from higher-order and bifactor models.

    PubMed

    Benson, Nicholas F; Kranzler, John H; Floyd, Randy G

    2016-10-01

    Prior research examining cognitive ability and academic achievement relations have been based on different theoretical models, have employed both latent variables as well as observed variables, and have used a variety of analytic methods. Not surprisingly, results have been inconsistent across studies. The aims of this study were to (a) examine how relations between psychometric g, Cattell-Horn-Carroll (CHC) broad abilities, and academic achievement differ across higher-order and bifactor models; (b) examine how well various types of observed scores corresponded with latent variables; and (c) compare two types of observed scores (i.e., refined and non-refined factor scores) as predictors of academic achievement. Results suggest that cognitive-achievement relations vary across theoretical models and that both types of factor scores tend to correspond well with the models on which they are based. However, orthogonal refined factor scores (derived from a bifactor model) have the advantage of controlling for multicollinearity arising from the measurement of psychometric g across all measures of cognitive abilities. Results indicate that the refined factor scores provide more precise representations of their targeted constructs than non-refined factor scores and maintain close correspondence with the cognitive-achievement relations observed for latent variables. Thus, we argue that orthogonal refined factor scores provide more accurate representations of the relations between CHC broad abilities and achievement outcomes than non-refined scores do. Further, the use of refined factor scores addresses calls for the application of scores based on latent variable models.

  9. High-throughput theoretical design of lithium battery materials

    NASA Astrophysics Data System (ADS)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  10. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    SciTech Connect

    Koo, John Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  11. WWC Review of the Report "Staying on Track: Testing Higher Achievement's Long-Term Impact on Academic Outcomes and High School Choice." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    This study of 952 fifth and sixth graders in Washington, DC, and Alexandria, Virginia, found that students who were offered the "Higher Achievement" program had higher test scores in mathematical problem solving and were more likely to be admitted to and attend private competitive high schools. "Higher Achievement" is a…

  12. Uplink Downlink Rate Balancing and Throughput Scaling in FDD Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Bergel, Itsik; Perets, Yona; Shamai, Shlomo

    2016-05-01

    In this work we extend the concept of uplink-downlink rate balancing to frequency division duplex (FDD) massive MIMO systems. We consider a base station with large number antennas serving many single antenna users. We first show that any unused capacity in the uplink can be traded off for higher throughput in the downlink in a system that uses either dirty paper (DP) coding or linear zero-forcing (ZF) precoding. We then also study the scaling of the system throughput with the number of antennas in cases of linear Beamforming (BF) Precoding, ZF Precoding, and DP coding. We show that the downlink throughput is proportional to the logarithm of the number of antennas. While, this logarithmic scaling is lower than the linear scaling of the rate in the uplink, it can still bring significant throughput gains. For example, we demonstrate through analysis and simulation that increasing the number of antennas from 4 to 128 will increase the throughput by more than a factor of 5. We also show that a logarithmic scaling of downlink throughput as a function of the number of receive antennas can be achieved even when the number of transmit antennas only increases logarithmically with the number of receive antennas.

  13. Nanoliter high throughput quantitative PCR

    PubMed Central

    Morrison, Tom; Hurley, James; Garcia, Javier; Yoder, Karl; Katz, Arrin; Roberts, Douglas; Cho, Jamie; Kanigan, Tanya; Ilyin, Sergey E.; Horowitz, Daniel; Dixon, James M.; Brenan, Colin J.H.

    2006-01-01

    Understanding biological complexity arising from patterns of gene expression requires accurate and precise measurement of RNA levels across large numbers of genes simultaneously. Real time PCR (RT-PCR) in a microtiter plate is the preferred method for quantitative transcriptional analysis but scaling RT-PCR to higher throughputs in this fluidic format is intrinsically limited by cost and logistic considerations. Hybridization microarrays measure the transcription of many thousands of genes simultaneously yet are limited by low sensitivity, dynamic range, accuracy and sample throughput. The hybrid approach described here combines the superior accuracy, precision and dynamic range of RT-PCR with the parallelism of a microarray in an array of 3072 real time, 33 nl polymerase chain reactions (RT-PCRs) the size of a microscope slide. RT-PCR is demonstrated with an accuracy and precision equivalent to the same assay in a 384-well microplate but in a 64-fold smaller reaction volume, a 24-fold higher analytical throughput and a workflow compatible with standard microplate protocols. PMID:17000636

  14. If I Read Better, Will I Score Higher ?: The Relationship between Oral Reading Fluency Instruction and Standardized Reading Achievement Test Outcomes

    ERIC Educational Resources Information Center

    Waldron, Chad H.

    2008-01-01

    The research study examined whether a difference existed between the reading achievement scores of an experimental group and a control group in standardized reading achievement. This difference measured the effect of systematic oral reading fluency instruction with repeated readings. Data from the 4Sight Pennsylvania Benchmark Reading Assessments…

  15. MAMA Spectroscopic Throughputs

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2009-07-01

    This activity sets new baseline post-SM4 sensitivity/throughput measurements for all the STIS/MAMA spectroscopic modes, and establishes if there changes with respect to perfomance prior to the LVPS failure. It also checks the NUV focus of STIS and its dependence on wavelength.

  16. High resolution hyperspectral imaging with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  17. The Agony and the Ecstasy: Current Status of Hispanic Individuals' Achievement in Higher Education and Earnings - With a Glimpse to the Future

    ERIC Educational Resources Information Center

    De Los Santos, Gilberto; Asgary, Nader; Nazemzadeh, Asghar; DeShields, Jr., Oscar W.

    2005-01-01

    Some projections about Hispanic individuals point to a rosy picture regarding gains in higher educational enrollment. Other studies lament that these gains are, at best, minimal. Although the so-called higher education pie is undoubtedly expanding, this article concludes that Hispanic adults are losing, rather than gaining, educational attainment…

  18. Think about It: Volume III, Part I. A Collection of Articles on Higher Order Thinking Skills. REACH: Realistic Educational Achievement Can Happen.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Twenty-three papers on the use of higher order thinking approaches to improve basic skills education are presented. The key note article is (1) "A Case for Higher Order Thinking" (G. Garcia, Jr.). Under the heading "English Language Arts" are: (2) "Developing an Elementary Writing Program" (K. Contreras); (3) "Revision in the Writing Process" (L.…

  19. State Test Score Trends through 2007-08. Part 1: Is the Emphasis on "Proficiency" Shortchanging Higher- and Lower-Achieving Students?

    ERIC Educational Resources Information Center

    Chudowsky, Naomi; Chudowsky, Victor; Kober, Nancy

    2009-01-01

    This report is the first in a series of reports describing results from the Center on Education Policy's (CEP's) third annual analysis of state testing data. The report provides an update on student performance at the proficient level of achievement, and for the first time, includes data about student performance at the advanced and basic levels.…

  20. Think about It, Too: Volume III, Part II. A Collection of Articles on Higher Order Thinking Skills. REACH: Realistic Educational Achievement Can Happen.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    This volume presents 22 papers that discuss thinking in the context of subjects taught in general education, special and vocational education, educational technology, and special programs. The key note article is: (1) "A Case for Higher Order Thinking" (G. Garcia Jr.). Under the heading "Educational Technology" are: (2) "Designing a Successful…

  1. The Elephant in the Hall: Motivating the Study of Student Motivation and Self-Regulation in Studies of Academic Achievement and Persistence in Higher Education

    ERIC Educational Resources Information Center

    Kennedy, Gary J.

    2013-01-01

    This essay proposes that much of what constitutes the quality of an institution of higher education is the quality of the students attending the institution. This quality, however, is conceptualized to extend beyond that of academic ability. Specifically, three propositions are considered. First, it is proposed that a core construct of student…

  2. Missing in Action: Writing Process-Based Instructional Practices and Measures of Higher-Order Literacy Achievement in Predominantly Urban Elementary Schools

    ERIC Educational Resources Information Center

    Briddell, Andrew

    2013-01-01

    This study of 1,974 fifth grade students investigated potential relationships between writing process-based instruction practices and higher-order thinking measured by a standardized literacy assessment. Writing process is defined as a highly complex, socio-cognitive process that includes: planning, text production, review, metacognition, writing…

  3. A Stronger Nation through Higher Education: How and Why Americans Must Achieve a Big Goal for College Attainment. A Special Report from Lumina Foundation

    ERIC Educational Resources Information Center

    Matthews, Dewayne

    2012-01-01

    In 2009, Lumina Foundation officially adopted its Big Goal that 60 percent of Americans obtain a high-quality postsecondary degree or credential by 2025. That same year, Lumina began reporting on progress toward the Big Goal in a series of reports titled "A Stronger Nation through Higher Education". The core of the reports is Census data on the…

  4. High throughput screening informatics.

    PubMed

    Ling, Xuefeng Bruce

    2008-03-01

    High throughput screening (HTS), an industrial effort to leverage developments in the areas of modern robotics, data analysis and control software, liquid handling devices, and sensitive detectors, has played a pivotal role in the drug discovery process, allowing researchers to efficiently screen millions of compounds to identify tractable small molecule modulators of a given biological process or disease state and advance them into high quality leads. As HTS throughput has significantly increased the volume, complexity, and information content of datasets, lead discovery research demands a clear corporate strategy for scientific computing and subsequent establishment of robust enterprise-wide (usually global) informatics platforms, which enable complicated HTS work flows, facilitate HTS data mining, and drive effective decision-making. The purpose of this review is, from the data analysis and handling perspective, to examine key elements in HTS operations and some essential data-related activities supporting or interfacing the screening process, and outline properties that various enabling software should have. Additionally, some general advice for corporate managers with system procurement responsibilities is offered.

  5. Microfabricated high-throughput electronic particle detector.

    PubMed

    Wood, D K; Requa, M V; Cleland, A N

    2007-10-01

    We describe the design, fabrication, and use of a radio frequency reflectometer integrated with a microfluidic system, applied to the very high-throughput measurement of micron-scale particles, passing in a microfluidic channel through the sensor region. The device operates as a microfabricated Coulter counter [U.S. Patent No. 2656508 (1953)], similar to a design we have described previously, but here with significantly improved electrode geometry as well as including electronic tuning of the reflectometer; the two improvements yielding an improvement by more than a factor of 10 in the signal to noise and in the diametric discrimination of single particles. We demonstrate the high-throughput discrimination of polystyrene beads with diameters in the 4-10 microm range, achieving diametric resolutions comparable to the intrinsic spread of diameters in the bead distribution, at rates in excess of 15 x 10(6) beads/h.

  6. High throughput continuous cryopump

    SciTech Connect

    Foster, C.A.

    1986-01-01

    A cryocondensation pump with a unique regeneration mechanism that allows continuous operation has been constructed and tested. The pump features a device referred to as the ''Snail'' which removes the cryofrost layer as it is moved over the pumping surfaces. A forepump pumps the sublimed gas generated inside the Snail. The compression ratio of the pump is the ratio of the cryopump speed to the leakage conductance of the Snail. Deuterium had been pumped continuously at 30 torr.L/s at a speed of 2000 L/s and a compression ratio of 100. The pump, being all metal sealed and free of lubricating fluids, has many potential applications where untraclean high throughput pumping is desirable. Since the pump regenerates on a time scale of 60 seconds, the inventory in the pump is minimized - an important consideration when pumping radioactive materials such as tritium. Test data and a videotape of the Snail removing the cryofrost will be shown.

  7. High-Throughput Proteomics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaorui; Wu, Si; Stenoien, David L.; Paša-Tolić, Ljiljana

    2014-06-01

    Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.

  8. A general approach for discriminative de novo motif discovery from high-throughput data

    PubMed Central

    Grau, Jan; Posch, Stefan; Grosse, Ivo; Keilwagen, Jens

    2013-01-01

    De novo motif discovery has been an important challenge of bioinformatics for the past two decades. Since the emergence of high-throughput techniques like ChIP-seq, ChIP-exo and protein-binding microarrays (PBMs), the focus of de novo motif discovery has shifted to runtime and accuracy on large data sets. For this purpose, specialized algorithms have been designed for discovering motifs in ChIP-seq or PBM data. However, none of the existing approaches work perfectly for all three high-throughput techniques. In this article, we propose Dimont, a general approach for fast and accurate de novo motif discovery from high-throughput data. We demonstrate that Dimont yields a higher number of correct motifs from ChIP-seq data than any of the specialized approaches and achieves a higher accuracy for predicting PBM intensities from probe sequence than any of the approaches specifically designed for that purpose. Dimont also reports the expected motifs for several ChIP-exo data sets. Investigating differences between in vitro and in vivo binding, we find that for most transcription factors, the motifs discovered by Dimont are in good accordance between techniques, but we also find notable exceptions. We also observe that modeling intra-motif dependencies may increase accuracy, which indicates that more complex motif models are a worthwhile field of research. PMID:24057214

  9. Investing in Instruction for Higher Student Achievement.

    ERIC Educational Resources Information Center

    Bray, Judy

    2003-01-01

    This policy brief presents findings from Southwest Educational Development Laboratory research on resource allocation in 1,504 independent school districts in Arkansas, Louisiana, New Mexico, and Texas. Using 5 years' data from the federal Common Core of Data and the Census Bureau along with 3 years of student performance data from each state…

  10. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  11. High-throughput protein crystallization.

    PubMed

    Stevens, R C

    2000-10-01

    The combinatorial chemistry industry has made major advances in the handling and mixing of small volumes, and in the development of robust liquid-handling systems. In addition, developments have been made in the area of material handling for the high-throughput drug screening and combinatorial chemistry fields. Lastly, improvements in beamline optics at synchrotron sources have enabled the use of flash-frozen micron-sized (10-50 microm) crystals. The combination of these and other recent advances will make high-throughput protein crystallography possible. Further advances in high-throughput methods of protein crystallography will require application of the above developments and the accumulation of success/failure data in a more systematic manner. Major changes in crystallography technology will emerge based on the data collected by first-generation high-throughput systems.

  12. Development of high-throughput silicon lens and grism with moth-eye anti-reflection structure

    NASA Astrophysics Data System (ADS)

    Kamizuka, Takafumi; Miyata, Takashi; Sako, Shigeyuki; Imada, Hiroaki; Ohsawa, Ryou; Asano, Kentaro; Uchiyama, Mizuho; Okada, Kazushi; Uchiyama, Masahito; Wada, Takehiko; Nakagawa, Takao; Nakamura, Tomohiko; Sakon, Itsuki; Onaka, Takashi

    2014-07-01

    Anti-reflection (AR) is very important for high-throughput optical elements. The durability against cooling is required for the AR structure in the cryogenic optics used for mid-infrared astronomical instruments. Moth-eye structure is a promising AR technique strong against cooling. The silicon lens and grism with the moth-eye structure are being developed to make high-throughput elements for long-wavelength mid-infrared instruments. A double-sided moth-eye plano-convex lens (Effective diameter: 33 mm, Focal length: 188 mm) was fabricated. By the transmittance measurement, it was confirmed that its total throughput is 1.7+/- 0.1 times higher than bare silicon lenses in a wide wavelength range of 20{45 μm. It suggests that the lens can achieve 83+/-5% throughput in the cryogenic temperature. It was also confirmed that the moth-eye processing on the lens does not modify the focal length. As for the grism, the homogeneous moth-eye processing on blaze pattern was realized by employing spray coating for the resist coating in EB lithography. The silicon grism with good surface roughness was also developed. The required techniques for completing moth-eye grisms have been established.

  13. High-throughput continuous cryopump

    SciTech Connect

    Foster, C.A.

    1986-01-01

    A cryopump with a unique method of regeneration which allows continuous operation at high throughput has been constructed and tested. Deuterium was pumped continuously at a throughput of 30 Torr.L/s at a speed of 2000 L/s and a compression ratio of 200. Argon was pumped at a throughput of 60 Torr.L/s at a speed of 1275 L/s. To produce continuous operation of the pump, a method of regeneration that does not thermally cycle the pump is employed. A small chamber (the ''snail'') passes over the pumping surface and removes the frost from it either by mechanical action with a scraper or by local heating. The material removed is topologically in a secondary vacuum system with low conductance into the primary vacuum; thus, the exhaust can be pumped at pressures up to an effective compression ratio determined by the ratio of the pumping speed to the leakage conductance of the snail. The pump, which is all-metal-sealed and dry and which regenerates every 60 s, would be an ideal system for pumping tritium. Potential fusion applications are for mpmp limiters, for repeating pneumatic pellet injection lines, and for the centrifuge pellet injector spin tank, all of which will require pumping tritium at high throughput. Industrial applications requiring ultraclean pumping of corrosive gases at high throughput, such as the reactive ion etch semiconductor process, may also be feasible.

  14. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery.

    PubMed

    Hayes, Christopher J; Dalton, Tara M

    2015-06-01

    PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits. PMID:27077035

  15. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery

    PubMed Central

    Hayes, Christopher J.; Dalton, Tara M.

    2015-01-01

    PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits. PMID:27077035

  16. Combinatorial and high-throughput screening approaches for strain engineering.

    PubMed

    Liu, Wenshan; Jiang, Rongrong

    2015-03-01

    Microbes have long been used in the industry to produce valuable biochemicals. Combinatorial engineering approaches, new strain engineering tools derived from inverse metabolic engineering, have started to attract attention in recent years, including genome shuffling, error-prone DNA polymerase, global transcription machinery engineering (gTME), random knockout/overexpression libraries, ribosome engineering, multiplex automated genome engineering (MAGE), customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER), and library construction of "tunable intergenic regions" (TIGR). Since combinatorial approaches and high-throughput screening methods are fundamentally interconnected, color/fluorescence-based, growth-based, and biosensor-based high-throughput screening methods have been reviewed. We believe that with the help of metabolic engineering tools and new combinatorial approaches, plus effective high-throughput screening methods, researchers will be able to achieve better results on improving microorganism performance under stress or enhancing biochemical yield.

  17. Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory.

    PubMed

    Suram, Santosh K; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-04-13

    High-throughput experimental methodologies are capable of synthesizing, screening and characterizing vast arrays of combinatorial material libraries at a very rapid rate. These methodologies strategically employ tiered screening wherein the number of compositions screened decreases as the complexity, and very often the scientific information obtained from a screening experiment, increases. The algorithm used for down-selection of samples from higher throughput screening experiment to a lower throughput screening experiment is vital in achieving information-rich experimental materials genomes. The fundamental science of material discovery lies in the establishment of composition-structure-property relationships, motivating the development of advanced down-selection algorithms which consider the information value of the selected compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment. Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions from each field or selection of compositions that span the composition space of the highest performing field. Such strategies would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-property functional relationships using a combination of information theory and multitree genetic programming concepts for identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429 catalyst compositions in a

  18. High Throughput Optimization of Stem Cell Microenvironments

    PubMed Central

    Yang, Fan; Mei, Ying; Langer, Robert; Anderson, Daniel G.

    2009-01-01

    Stem cells have great potential as cell sources for regenerative medicine due to both their self-renewal and multi-lineage differentiation capacity. Despite advances in the field of stem cell biology, major challenges remain before stem cells can be widely used for therapeutic purposes. One challenge is to develop reproducible methods to control stem cell growth and differentiation. The niche in which stem cells reside is a complex, multi-factorial environment. In contrast to using cells alone, biomaterials can provide initial structural support, and allow cells to adhere, proliferate and differentiate in a three-dimensional environment. Researchers have incorporated signals into the biomaterials that can promote desired cell functions in a spatially and temporally controlled manner. Despite progress in biomaterial design and methods to modulate cellular behavior, many of the complex signal networks that regulate cell-material interactions remain unclear. Due to the vast numbers of material properties to be explored and the complexity of cell-surface interactions, it is often difficult to optimize stem cell microenvironments using conventional, iterative approaches. To address these challenges, high throughput screening of combinatorial libraries has emerged as a novel approach to achieve rapid screening with reduced materials and costs. In this review, we discuss recent research in the area of high throughput approaches for characterization and optimization of cellular interactions with their microenvironments. In contrast to conventional approaches, screening combinatorial libraries can result in the discovery of unexpected material solutions to these complex problems. PMID:19601753

  19. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The Al

  20. Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes.

    PubMed

    Sahin, Sami; Schroën, Karin

    2015-06-01

    We present a novel microfluidic EDGE (Edge based Droplet GEneration) device with regularly spaced micron-sized partitions, which is aimed at upscaling of o/w emulsion preparation. By this means, remarkably higher pressure stability was obtained, and two orders of magnitude higher droplet formation frequency was achieved compared to regular EDGE devices. Interestingly, we observed two different monodisperse droplet formation regimes for plateaus that were 2 micrometres in height, and to the best of our knowledge, no other microfluidic device has this ability. The average diameters of the droplets were 9 and 28 μm, both with a coefficient of variation (CV) below 5%. Based on the experimental throughput and a plausible mass parallelization scenario, the amount of hexadecane that can be emulsified is estimated to be between 6 and 25 m(3) m(-2) h(-1) depending on the required droplet size. With its high throughput potential and ability to produce uniform droplets of two different sizes, the partitioned EDGE device is promising for industrial emulsion production. PMID:25953515

  1. Maximizing SB3 Waste Throughput Melt Rate Tests

    SciTech Connect

    Smith, M. E.; Miller, D. H.

    2005-09-01

    The Defense Waste Processing Facility (DWPF) is presently vitrifying Sludge Batch 3 (SB3) and preparing to process Sludge Batch 4 (SB4) in late 2006 or early 2007. Previous laboratory testing and DWPF operational experience has indicated that the maximum waste throughput peak for the Sludge Batch 2 (SB2) system occurs at a waste loading in the mid-30's. This trend has been shown as well for SB3 on a lab-scale basis. These SB3 tests used SRAT product that targeted a REDuction/OXidation (REDOX) of 0.2 and an acid stoichiometry of 135%. Acid stoichiometry, however, has been shown to impact melt rate of MRF tests at one waste loading (35%). Due to the impact of acid stoichiometry on melt rate, it is possible that the current target acid stoichiometry (155%) with SB3 may not exhibit the same maximum waste throughput peak, or there may not even be a discernable peak. In fact, current DWPF operational experience with SB3 and Frit 418 has not shown the same drop off in melt rate and hence waste throughput as was observed with SB2 and Frit 320. The objective of this testing is to determine if increasing the overall alkali content in the feed (via using the higher alkali Frit 320 versus Frit 418) will either result in a shift in the waste throughput to higher waste loadings or an increase in the overall waste throughput at waste loadings of interest (31 to 41%). For these tests, the target Sludge Receipt and Adjustment Tank (SRAT) product REDOX was 0.2 and the target acid stoichiometry was 155%. The incentive for this series of tests stems from a previous Slurry-Fed Melt Rate Furnace (SMRF) test with SB3/Frit 320 feed which showed an increase in melt rate versus SB3/Frit 418 at 35% waste loading. This single data point suggests that overall waste throughput for the SB3/Frit 320 system is higher at 35% waste loading (i.e., the melt rate versus waste loading curve has potentially shifted upward). To address the potential shift in waste throughput, the strategy was to fully

  2. High throughput optoelectronic smart pixel systems using diffractive optics

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hao

    1999-12-01

    algorithm to design Diffractive Optical Elements (DOEs) having higher uniformity and better signal-to-noise ratio. The algorithm is based on nonlinear least-square optimization procedures and phase-shifting quantization scheme to minimize the reconstruction error of DOEs. We also describe a modified diffractive microlens design algorithm to overcome linewidth limitations in fabrication while achieving higher numerical aperture and better power efficiency. Several diffractive optical devices used in our smart pixel systems, including microlens arrays and spot array generators, are designed by these algorithms, and have been fabricated and characterized for system integration.

  3. Does achievement motivation mediate the semantic achievement priming effect?

    PubMed

    Engeser, Stefan; Baumann, Nicola

    2014-10-01

    The aim of our research was to understand the processes of the prime-to-behavior effects with semantic achievement primes. We extended existing models with a perspective from achievement motivation theory and additionally used achievement primes embedded in the running text of excerpts of school textbooks to simulate a more natural priming condition. Specifically, we proposed that achievement primes affect implicit achievement motivation and conducted pilot experiments and 3 main experiments to explore this proposition. We found no reliable positive effect of achievement primes on implicit achievement motivation. In light of these findings, we tested whether explicit (instead of implicit) achievement motivation is affected by achievement primes and found this to be the case. In the final experiment, we found support for the assumption that higher explicit achievement motivation implies that achievement priming affects the outcome expectations. The implications of the results are discussed, and we conclude that primes affect achievement behavior by heightening explicit achievement motivation and outcome expectancies. PMID:24820250

  4. Continuous flow electrophoresis: The effect of sample concentration on throughput and resolution in an upward flowing system

    NASA Technical Reports Server (NTRS)

    Jandebeur, T. S.

    1980-01-01

    The effect of sample concentration on throughput and resolution in a modified continuous particle electrophoresis (CPE) system with flow in an upward direction is investigated. Maximum resolution is achieved at concentrations ranging from 2 x 10 to the 8th power cells/ml to 8 x 10 to the 8th power cells/ml. The widest peak separation is at 2 x 10 to the 8th power cells/ml; however, the sharpest peaks and least overlap between cell populations is at 8 x 10 to the 8th power cells/ml. Apparently as a result of improved electrophoresis cell performance due to coasting the chamber with bovine serum albumin, changing the electrode membranes and rinse, and lowering buffer temperatures, sedimentation effects attending to higher concentrations are diminished. Throughput as measured by recovery of fixed cells is diminished at the concentrations judged most likely to yield satisfactory resolution. The tradeoff appears to be improved recovery/throughput at the expense of resolution.

  5. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells.

    PubMed

    Murlidhar, Vasudha; Zeinali, Mina; Grabauskiene, Svetlana; Ghannad-Rezaie, Mostafa; Wicha, Max S; Simeone, Diane M; Ramnath, Nithya; Reddy, Rishindra M; Nagrath, Sunitha

    2014-12-10

    Circulating tumor cells (CTCs) are believed to play an important role in metastasis, a process responsible for the majority of cancer-related deaths. But their rarity in the bloodstream makes microfluidic isolation complex and time-consuming. Additionally the low processing speeds can be a hindrance to obtaining higher yields of CTCs, limiting their potential use as biomarkers for early diagnosis. Here, a high throughput microfluidic technology, the OncoBean Chip, is reported. It employs radial flow that introduces a varying shear profile across the device, enabling efficient cell capture by affinity at high flow rates. The recovery from whole blood is validated with cancer cell lines H1650 and MCF7, achieving a mean efficiency >80% at a throughput of 10 mL h(-1) in contrast to a flow rate of 1 mL h(-1) standardly reported with other microfluidic devices. Cells are recovered with a viability rate of 93% at these high speeds, increasing the ability to use captured CTCs for downstream analysis. Broad clinical application is demonstrated using comparable flow rates from blood specimens obtained from breast, pancreatic, and lung cancer patients. Comparable CTC numbers are recovered in all the samples at the two flow rates, demonstrating the ability of the technology to perform at high throughputs. PMID:25074448

  6. High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry.

    PubMed

    Jagannadh, Veerendra Kalyan; Bhat, Bindu Prabhath; Nirupa Julius, Lourdes Albina; Gorthi, Sai Siva

    2016-03-01

    In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer. PMID:26781098

  7. High-throughput spectrometer designs in a compact form-factor: principles and applications

    NASA Astrophysics Data System (ADS)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  8. New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints

    NASA Astrophysics Data System (ADS)

    Ng, Hoi-Tou; Shen, Yu-Tian; Chen, Sheng-Yung; Liu, Chun-Hung; Ng, Philip C. W.; Tsai, Kuen-Yu

    2012-07-01

    Low-energy electron beam lithography is one of the promising next-generation lithography technology solutions for the 21-nm half-pitch node and beyond because of fewer proximity effects, higher resist sensitivity, and less substrate damage compared with high-energy electron beam lithography. To achieve high-throughput manufacturing, low-energy electron beam lithography systems with writing parameters of larger beam size, larger grid size, and lower dosage are preferred. However, electron shot noise can significantly increase critical dimension deviation and line edge roughness. Its influence on patterning prediction accuracy becomes nonnegligible. To effectively maximize throughput while meeting patterning fidelity requirements according to the International Technology Roadmap for Semiconductors, a new method is proposed in this work that utilizes a new patterning prediction algorithm to rigorously characterize the patterning variability caused by the shot noise and a mathematical optimization algorithm to determine optimal writing parameters. The new patterning prediction algorithm can achieve a proper trade-off between computational effort and patterning prediction accuracy. Effectiveness of the new method is demonstrated on a static random-access memory circuit. The corresponding electrical performance is analyzed by using a gate-slicing technique and publicly available transistor models. Numerical results show that a significant improvement in the static noise margin can be achieved.

  9. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis

    SciTech Connect

    Casaburi, A.; Ejrnaes, M.; Cristiano, R.; Zen, N.; Ohkubo, M.; Pagano, S.

    2011-01-10

    Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1x1 mm{sup 2} NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.

  10. Small planar packaging system for high-throughput ATM switching systems

    NASA Astrophysics Data System (ADS)

    Kishimoto, T.; Yasuda, K.; Oka, H.; Kaneko, Y.; Kawauchi, M.

    1995-03-01

    A small planar packaging (SPP) system is described that can be combined with card-on-board (COB) packaging in ATM switching systems with throughputs of over 40 Gbit/s. Using a newly developed quasicoaxial zero-insertion-force connector, point-to-point 311 Mbit/s of 8 bit parallel signal transmission is achieved in an arbitrary location on the SPP system's shelf. Also 5400 I/O connections in the region of the planar packaging system are made, and thus the SPP system eliminates the I/O pin count limitation. Furthermore, the heat flux of the SPP system is five times higher than that of conventional COB packaging because of its air flow control structure.

  11. High throughput protein production screening

    DOEpatents

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  12. High-Throughput Sequencing Technologies

    PubMed Central

    Reuter, Jason A.; Spacek, Damek; Snyder, Michael P.

    2015-01-01

    Summary The human genome sequence has profoundly altered our understanding of biology, human diversity and disease. The path from the first draft sequence to our nascent era of personal genomes and genomic medicine has been made possible only because of the extraordinary advancements in DNA sequencing technologies over the past ten years. Here, we discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them as well as the challenges facing current sequencing platforms and their clinical application. PMID:26000844

  13. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding

    PubMed Central

    Tattaris, Maria; Reynolds, Matthew P.; Chapman, Scott C.

    2016-01-01

    Remote sensing (RS) of plant canopies permits non-intrusive, high-throughput monitoring of plant physiological characteristics. This study compared three RS approaches using a low flying UAV (unmanned aerial vehicle), with that of proximal sensing, and satellite-based imagery. Two physiological traits were considered, canopy temperature (CT) and a vegetation index (NDVI), to determine the most viable approaches for large scale crop genetic improvement. The UAV-based platform achieves plot-level resolution while measuring several hundred plots in one mission via high-resolution thermal and multispectral imagery measured at altitudes of 30–100 m. The satellite measures multispectral imagery from an altitude of 770 km. Information was compared with proximal measurements using IR thermometers and an NDVI sensor at a distance of 0.5–1 m above plots. For robust comparisons, CT and NDVI were assessed on panels of elite cultivars under irrigated and drought conditions, in different thermal regimes, and on un-adapted genetic resources under water deficit. Correlations between airborne data and yield/biomass at maturity were generally higher than equivalent proximal correlations. NDVI was derived from high-resolution satellite imagery for only larger sized plots (8.5 × 2.4 m) due to restricted pixel density. Results support use of UAV-based RS techniques for high-throughput phenotyping for both precision and efficiency. PMID:27536304

  14. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding.

    PubMed

    Tattaris, Maria; Reynolds, Matthew P; Chapman, Scott C

    2016-01-01

    Remote sensing (RS) of plant canopies permits non-intrusive, high-throughput monitoring of plant physiological characteristics. This study compared three RS approaches using a low flying UAV (unmanned aerial vehicle), with that of proximal sensing, and satellite-based imagery. Two physiological traits were considered, canopy temperature (CT) and a vegetation index (NDVI), to determine the most viable approaches for large scale crop genetic improvement. The UAV-based platform achieves plot-level resolution while measuring several hundred plots in one mission via high-resolution thermal and multispectral imagery measured at altitudes of 30-100 m. The satellite measures multispectral imagery from an altitude of 770 km. Information was compared with proximal measurements using IR thermometers and an NDVI sensor at a distance of 0.5-1 m above plots. For robust comparisons, CT and NDVI were assessed on panels of elite cultivars under irrigated and drought conditions, in different thermal regimes, and on un-adapted genetic resources under water deficit. Correlations between airborne data and yield/biomass at maturity were generally higher than equivalent proximal correlations. NDVI was derived from high-resolution satellite imagery for only larger sized plots (8.5 × 2.4 m) due to restricted pixel density. Results support use of UAV-based RS techniques for high-throughput phenotyping for both precision and efficiency. PMID:27536304

  15. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding.

    PubMed

    Tattaris, Maria; Reynolds, Matthew P; Chapman, Scott C

    2016-01-01

    Remote sensing (RS) of plant canopies permits non-intrusive, high-throughput monitoring of plant physiological characteristics. This study compared three RS approaches using a low flying UAV (unmanned aerial vehicle), with that of proximal sensing, and satellite-based imagery. Two physiological traits were considered, canopy temperature (CT) and a vegetation index (NDVI), to determine the most viable approaches for large scale crop genetic improvement. The UAV-based platform achieves plot-level resolution while measuring several hundred plots in one mission via high-resolution thermal and multispectral imagery measured at altitudes of 30-100 m. The satellite measures multispectral imagery from an altitude of 770 km. Information was compared with proximal measurements using IR thermometers and an NDVI sensor at a distance of 0.5-1 m above plots. For robust comparisons, CT and NDVI were assessed on panels of elite cultivars under irrigated and drought conditions, in different thermal regimes, and on un-adapted genetic resources under water deficit. Correlations between airborne data and yield/biomass at maturity were generally higher than equivalent proximal correlations. NDVI was derived from high-resolution satellite imagery for only larger sized plots (8.5 × 2.4 m) due to restricted pixel density. Results support use of UAV-based RS techniques for high-throughput phenotyping for both precision and efficiency.

  16. Powerful DMD-based light sources with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Hajian, Arsen R.; Gooding, Ed; Gunn, Thomas; Bradbury, Steven

    2016-02-01

    Many DMD-based programmable light sources consist of a white light source and a pair of spectrometers operating in subtractive mode. A DMD between the two spectrometers shapes the delivered spectrum. Since both spectrometers must (1) fit within a small volume, and (2) provide significant spectral resolution, a narrow intermediary slit is required. Another approach is to use a spectrometer designed around a High Throughput Virtual Slit, which enables higher spectral resolution than is achievable with conventional spectroscopy by manipulating the beam profile in pupil space. Conventional imaging spectrograph designs image the entrance slit onto the exit focal plane after dispersing the spectrum. Most often, near 1:1 imaging optics are used in order to optimize both entrance aperture and spectral resolution. This approach limits the spectral resolution to the product of the dispersion and the slit width. Achieving high spectral resolution in a compact instrument necessarily requires a narrow entrance slit, which limits instrumental throughput (étendue). By reshaping the pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane without altering the NA, typically delivering 5X or better spectral resolution than is achievable with a conventional design. This approach works equally well in DMD-based programmable light sources as in single stage spectrometers. Assuming a 5X improvement in étendue, a 500 W source can be replaced by a 100 W equivalent, creating a cooler, more efficient tunable light source with equal power density over the desired bandwidth without compromising output power.

  17. High-Throughput Optical Sensing Immunoassays on Smartphone.

    PubMed

    Wang, Li-Ju; Sun, Rongrong; Vasile, Tina; Chang, Yu-Chung; Li, Lei

    2016-08-16

    We present an optical sensing platform on a smartphone for high-throughput screening immunoassays. For the first time, a designed microprism array is utilized to achieve a one-time screening of 64 samples. To demonstrate the capability and the reliability of this optical sensing platform on smartphone, human interleukin 6 (IL-6) protein and six types of plant viruses are immunoassayed. The ability of quantification is shown by a sigmoidal dose-response curve fitting to analyze IL-6 protein. The accuracy in measuring the concentrations of IL-6 protein achieves 99.1%. On the other hand, to validate on-field immunoassays by our device, a total of 1030 samples are assayed using three immunoassay methods to detect six types of plant viruses. The accuracy is up to 96.2-99.9%; in addition, there is a high degree of agreement with lab instruments. The total cost for this high-throughput optical screening platform is ∼$50 USD. The reading time is only 2 s for 64 samples. The size is just as big as a portable hard drive. Our optical sensing platform on the smartphone offers a route toward in situ high-throughput screening immunoassays for viruses, pathogens, biomarkers, and toxins by decentralizing laboratory tests. With this mobile point-of-care optical platform, the spread of disease can be timely stopped within a very short turnaround time. PMID:27434250

  18. Portable thermo-powered high-throughput visual electrochemiluminescence sensor.

    PubMed

    Hao, Nan; Xiong, Meng; Zhang, Jia-dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    This paper describes a portable thermo-powered high-throughput visual electrochemiluminescence (ECL) sensor for the first time. This sensor is composed of a tiny power supply device based on thermal-electrical conversion and a facile prepared array electrode. The ECL detection could be conducted with thermo-power, which is easily accessible. For example, hot water, a bonfire, or a lighted candle enables the detection to be conducted. And the assay can be directly monitored by the naked eye semiquantitatively or smart phones quantitatively. Combined with transparent electrode and array microreactors, a portable high-throughput sensor was achieved. The portable device, avoiding the use of an electrochemical workstation to generate potential and a photomultiplier tube to receive the signal, is not only a valuable addition for traditional methods but also a suitable device for field operation or point-of-care testing. PMID:24215560

  19. Direct assembling methodologies for high-throughput bioscreening

    PubMed Central

    Rodríguez-Dévora, Jorge I.; Shi, Zhi-dong; Xu, Tao

    2012-01-01

    Over the last few decades, high-throughput (HT) bioscreening, a technique that allows rapid screening of biochemical compound libraries against biological targets, has been widely used in drug discovery, stem cell research, development of new biomaterials, and genomics research. To achieve these ambitions, scaffold-free (or direct) assembly of biological entities of interest has become critical. Appropriate assembling methodologies are required to build an efficient HT bioscreening platform. The development of contact and non-contact assembling systems as a practical solution has been driven by a variety of essential attributes of the bioscreening system, such as miniaturization, high throughput, and high precision. The present article reviews recent progress on these assembling technologies utilized for the construction of HT bioscreening platforms. PMID:22021162

  20. Achieving All Our Ambitions

    ERIC Educational Resources Information Center

    Hartley, Tricia

    2009-01-01

    National learning and skills policy aims both to build economic prosperity and to achieve social justice. Participation in higher education (HE) has the potential to contribute substantially to both aims. That is why the Campaign for Learning has supported the ambition to increase the proportion of the working-age population with a Level 4…

  1. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting.

    PubMed

    Tseng, Hubert; Gage, Jacob A; Haisler, William L; Neeley, Shane K; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G; Wagoner, Matthew; Souza, Glauco R

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  2. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    PubMed Central

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  3. High-throughput insect cell protein expression applications.

    PubMed

    Buchs, Mirjam; Kim, Ernie; Pouliquen, Yann; Sachs, Michael; Geisse, Sabine; Mahnke, Marion; Hunt, Ian

    2009-01-01

    The Baculovirus Expression Vector System (BEVS) is one of the most efficient systems for production of recombinant proteins and consequently its application is wide-spread in industry as well as in academia. Since the early 1970s, when the first stable insect cell lines were established and the infectivity of bacu-lovirus in an in vitro culture system was demonstrated (1, 2), virtually thousands of reports have been published on the successful expression of proteins using this system as well as on method improvement. However, despite its popularity the system is labor intensive and time consuming. Moreover, adaptation of the system to multi-parallel (high-throughput) expression is much more difficult to achieve than with E. coli due to its far more complex nature. However, recent years have seen the development of strategies that have greatly enhanced the stream-lining and speed of baculovirus protein expression for increased throughput via use of automation and miniaturization. This chapter therefore tries to collate these developments in a series of protocols (which are modifications to standard procedure plus several new approaches) that will allow the user to expedite the speed and throughput of baculovirus-mediated protein expression and facilitate true multi-parallel, high-throughput protein expression profiling in insect cells. In addition we also provide a series of optimized protocols for small and large-scale transient insect cell expression that allow for both the rapid analysis of multiple constructs and the concomitant scale-up of those selected for on-going analysis. Since this approach is independent of viral propagation, the timelines for this approach are markedly shorter and offer a significant advantage over standard bacu-lovirus expression approach strategies in the context of HT applications.

  4. Review article: high-throughput affinity-based technologies for small-molecule drug discovery.

    PubMed

    Zhu, Zhengrong; Cuozzo, John

    2009-12-01

    High-throughput affinity-based technologies are rapidly growing in use as primary screening methods in drug discovery. In this review, their principles and applications are described and their impact on small-molecule drug discovery is evaluated. In general, these technologies can be divided into 2 groups: those that detect binding interactions by measuring changes to the protein target and those that detect bound compounds. Technologies detecting binding interactions by focusing on the protein have limited throughput but can reveal mechanistic information about the binding interaction; technologies detecting bound compounds have very high throughput, some even significantly higher than current high-throughput screening technologies, but offer limited information about the binding interaction. In addition, the appropriate use of affinity-based technologies is discussed. Finally, nanotechnology is predicted to generate a significant impact on the future of affinity-based technologies. PMID:19822881

  5. High-throughput approaches for evaluating absorption, distribution, metabolism and excretion properties of lead compounds.

    PubMed

    Tarbit, M H; Berman, J

    1998-06-01

    Combinatorial chemistry methods and high-throughput screening for leads in industrial drug discovery have generated a potential bottleneck in the optimisation processes that seek to align potency with good pharmacokinetics in order to produce good medicines. This has resulted in the need for higher throughput methods of screening for absorption, distribution, metabolism and excretion properties. Significant progress has been made in throughput of in vivo pharmacokinetic studies, with the introduction of cassette, or multiple-in-one, protocols. In this technique, typically up to ten compounds are administered in one dose and analysed concomitantly on the mass spectrometer. High-throughput methods in in vitro absorption, distribution, metabolism and excretion are less well-developed as yet, and current approaches comprise automation of well-established methods for absorption using cell lines and metabolism using liver microsomes.

  6. High-Throughput Nonlinear Optical Microscopy

    PubMed Central

    So, Peter T.C.; Yew, Elijah Y.S.; Rowlands, Christopher

    2013-01-01

    High-resolution microscopy methods based on different nonlinear optical (NLO) contrast mechanisms are finding numerous applications in biology and medicine. While the basic implementations of these microscopy methods are relatively mature, an important direction of continuing technological innovation lies in improving the throughput of these systems. Throughput improvement is expected to be important for studying fast kinetic processes, for enabling clinical diagnosis and treatment, and for extending the field of image informatics. This review will provide an overview of the fundamental limitations on NLO microscopy throughput. We will further cover several important classes of high-throughput NLO microscope designs with discussions on their strengths and weaknesses and their key biomedical applications. Finally, this review will close with a perspective of potential future technological improvements in this field. PMID:24359736

  7. High-Resolution and High-Throughput Plasmonic Photopatterning of Complex Molecular Orientations in Liquid Crystals.

    PubMed

    Guo, Yubing; Jiang, Miao; Peng, Chenhui; Sun, Kai; Yaroshchuk, Oleg; Lavrentovich, Oleg; Wei, Qi-Huo

    2016-03-23

    A plasmonic photopatterning technique is proposed and demonstrated for aligning the molecular orientation in liquid crystals (LCs) in patterns with designer complexity. Using plasmonic metamasks in which target molecular directors are encoded, LC alignments of arbitrary planar patterns can be achieved in a repeatable and scalable fashion withunprecedentedly high spatial resolution and high throughput.

  8. Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening.

    PubMed

    Giese, Heiner; Kruithof, Paulien; Meier, Kristina; Sieben, Michaela; Antonov, Elena; Hommes, Ronald W J; Büchs, Jochen

    2014-12-01

    Nowadays, high-throughput screening is essential for determining the best microbial strains and fermentation conditions. Although microtiter plates allow higher throughput in screening than shake flasks, they do not guarantee sufficient oxygen supply if operated at unsuitable conditions. This is especially the case in viscous fermentations, potentially leading to poor liquid movement and surface growth. Therefore, in this study, two aims were pursued. First, an industrial Trichoderma reesei shake flask protocol is improved with respect to oxygen supply and production. Second, this improved shake flask protocol is scaled down into microtiter plate under consideration of similar oxygen supply. For this purpose, the respiration activity monitoring system (RAMOS) was applied. An approach based on a sulfite system was introduced to ensure equal maximum oxygen transfer capacities (OTRmax) in microtiter plates and shake flasks. OTRmax-values of 250 mL shake flasks and 24-well microtiter plates were determined in a wide range of operating conditions. These sulfite datasets were used to identify operating conditions leading to the same oxygen supply for T. reesei in shake flasks and 24-well microtiter plates. For 24-well microtiter plates, the shake flask OTRmax of 20 mmol/L/h of an industrial protocol was obtained under the following optimal operating conditions: 1 mL filling volume per well, 200 rpm shaking frequency and 50 mm shaking diameter. With these conditions almost identical oxygen transfer rates and product concentrations were measured in both scales. The proposed approach is a fast and accurate means to scale-down established screening procedures into microtiter plates to achieve high-throughput.

  9. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    PubMed

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  10. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    PubMed Central

    Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  11. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    PubMed

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved.

  12. Parental Involvement and Academic Achievement

    ERIC Educational Resources Information Center

    Goodwin, Sarah Christine

    2015-01-01

    This research study examined the correlation between student achievement and parent's perceptions of their involvement in their child's schooling. Parent participants completed the Parent Involvement Project Parent Questionnaire. Results slightly indicated parents of students with higher level of achievement perceived less demand or invitations…

  13. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes

    PubMed Central

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-01-01

    Motivation: In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. Results: In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Availability: Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license. Contact: epruesse@mpi-bremen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22556368

  14. High-throughput DNA sequencing: a genomic data manufacturing process.

    PubMed

    Huang, G M

    1999-01-01

    The progress trends in automated DNA sequencing operation are reviewed. Technological development in sequencing instruments, enzymatic chemistry and robotic stations has resulted in ever-increasing capacity of sequence data production. This progress leads to a higher demand on laboratory information management and data quality assessment. High-throughput laboratories face the challenge of organizational management, as well as technology management. Engineering principles of process control should be adopted in this biological data manufacturing procedure. While various systems attempt to provide solutions to automate different parts of, or even the entire process, new technical advances will continue to change the paradigm and provide new challenges.

  15. A low-jitter and high-throughput scheduling based on genetic algorithm in slotted WDM networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Jin, Yaohui; Su, Yikai; Xu, Buwei; Zhang, Chunlei; Zhu, Yi; Hu, Weisheng

    2005-02-01

    Slotted WDM, which achieves higher capacity compared with conventional WDM and SDH networks, has been discussed a lot recently. The ring network for this architecture has been demonstrated experimentally. In slotted WDM ring network, each node is equipped with a wavelength-tunable transmitter and a fixed receiver and assigned with a specific wavelength. A node can send data to every other node by tuning wavelength accordingly in a time slot. One of the important issues for it is scheduling. Scheduling of it can be reduced to input queued switch when synchronization and propagation are solved and many schemes have been proposed to solve these two issues. However, it"s proved that scheduling of such a network taking both jitter and throughput into consideration is NP hard. Greedy algorithm has been proposed to solve it before. The main contribution of this paper lies in a novel genetic algorithm to obtain optimal or near optimal value of this specific NP hard problem. We devise problem specific chromosome codes, fitness function, crossover and mutation operations. Experimental results show that our GA provides better performances in terms of throughput and jitter than a greedy heuristic.

  16. A paper-based microbial fuel cell array for rapid and high-throughput screening of electricity-producing bacteria.

    PubMed

    Choi, Gihoon; Hassett, Daniel J; Choi, Seokheun

    2015-06-21

    There is a large global effort to improve microbial fuel cell (MFC) techniques and advance their translational potential toward practical, real-world applications. Significant boosts in MFC performance can be achieved with the development of new techniques in synthetic biology that can regulate microbial metabolic pathways or control their gene expression. For these new directions, a high-throughput and rapid screening tool for microbial biopower production is needed. In this work, a 48-well, paper-based sensing platform was developed for the high-throughput and rapid characterization of the electricity-producing capability of microbes. 48 spatially distinct wells of a sensor array were prepared by patterning 48 hydrophilic reservoirs on paper with hydrophobic wax boundaries. This paper-based platform exploited the ability of paper to quickly wick fluid and promoted bacterial attachment to the anode pads, resulting in instant current generation upon loading of the bacterial inoculum. We validated the utility of our MFC array by studying how strategic genetic modifications impacted the electrochemical activity of various Pseudomonas aeruginosa mutant strains. Within just 20 minutes, we successfully determined the electricity generation capacity of eight isogenic mutants of P. aeruginosa. These efforts demonstrate that our MFC array displays highly comparable performance characteristics and identifies genes in P. aeruginosa that can trigger a higher power density.

  17. La Hague Continuous Improvement Program: Enhancement of the Vitrification Throughput

    SciTech Connect

    Petitjean, V.; De Vera, R.; Hollebecque, J.F.; Tronche, E.; Flament, T.; Pereira Mendes, F.; Prod'homme, A.

    2006-07-01

    The vitrification of high-level liquid waste produced from nuclear fuel reprocessing has been carried out industrially for over 25 years by AREVA/COGEMA, with two main objectives: containment of the long lived fission products and reduction of the final volume of waste. At the 'La Hague' plant, in the 'R7' and 'T7' facilities, vitrified waste is obtained by first evaporating and calcining the nitric acid feed solution-containing fission products in calciners. The product-named calcinate- is then fed together with glass frit into induction-heated metallic melters to produce the so-called R7/T7 glass, well known for its excellent containment properties. Both facilities are equipped with three processing lines. In the near future the increase of the fuel burn-up will influence the amount of fission product solutions to be processed at R7/T7. As a consequence, in order to prepare these changes, it is necessary to feed the calciner at higher flow-rates. Consistent and medium-term R and D programs led by CEA (French Atomic Energy Commission, the AREVA/COGEMA's R and D and R and T provider), AREVA/COGEMA (Industrial Operator) and AREVA/SGN (AREVA/COGEMA's Engineering), and associated to the industrial feed back of AREVA/COGEMA operations, have allowed continuous improvement of the process since 1998: - The efficiency and limitation of the equipment have been studied and solutions for technological improvements have been proposed whenever necessary, - The increase of the feeding flow-rate has been implemented on the improved CEA test rig (so called PEV, Evolutional Prototype of Vitrification) and adapted by AREVA/SGN for the La Hague plant using their modeling studies; the results obtained during this test confirmed the technological and industrial feasibility of the improvements achieved, - After all necessary improved equipments have been implemented in R7/T7 facilities, and a specific campaign has been performed on the R7 facility by AREVA/COGEMA. The flow-rate to the

  18. Dynamic evaluation and control of blood clotting using a microfluidic platform for high-throughput diagnostics

    NASA Astrophysics Data System (ADS)

    Combariza, Miguel E.; Yu, Xinghuo; Nesbitt, Warwick; Tovar-Lopez, Francisco; Rabus, Dominik G.; Mitchell, Arnan

    2015-12-01

    Microfluidic technology has the potential to revolutionise blood-clotting diagnostics by incorporating key physiological blood flow conditions like shear rate. In this paper we present a customised dynamic microfluidic system, which evaluates the blood clotting response to multiple conditions of shear rate on a single microchannel. The system can achieve high-throughput testing through use of an advanced fluid control system, which provides with rapid and precise regulation of the blood flow conditions in the platform. We present experimental results that demonstrate the potential of this platform to develop into a high-throughput, low-cost, blood-clotting diagnostics device.

  19. High throughput network for multiprocessor interconnections

    NASA Astrophysics Data System (ADS)

    Raatikainen, Pertti; Zidbeck, Juha

    1993-05-01

    Multiprocessor architectures are needed to support modern broadband applications, since traditional bus structures are not capable of providing high throughput. New bus structures are needed, especially in the area of network components and terminals. A study to find an efficient and cost effective interconnection topology for the future high speed products is presented. The most common bus topologies are introduced, and their characteristics are estimated to decide which one of them offers best performance and lowest implementation cost. The ring topology is chosen to be studied in more detail. Four competing bus access schemes for the high throughput ring are introduced as well as simulation models for each of them. Using transfer delay and throughput results, as well as keeping the implementation point of view in mind, the best candidate is selected to be studied and experimented in the succeeding research project.

  20. High-throughput phenotyping of plant shoots.

    PubMed

    Berger, Bettina; de Regt, Bas; Tester, Mark

    2012-01-01

    Advances in automated plant handling and image acquisition now make it possible to use digital imaging for the high-throughput phenotyping of plants. Various traits can be extracted from individual images. However, the potential of this technology lies in the acquisition of time series. Since whole shoot imaging is nondestructive, plants can now be monitored throughout their lifecycle, and dynamic traits such as plant growth and development can be captured and quantified. The technique is applicable to a wide range of plants and research areas and makes high-throughput screens possible, reducing the time and labor needed for the phenotypic characterization of plants.

  1. Graphene oxide-based micropatterns via high-throughput multiphoton-induced reduction and ablation.

    PubMed

    Li, Yi-Cheng; Yeh, Te-Fu; Huang, Hsin-Chieh; Chang, Hsin-Yu; Lin, Chun-Yu; Cheng, Li-Chung; Chang, Chia-Yuan; Teng, Hsisheng; Chen, Shean-Jen

    2014-08-11

    In this study, a developed temporal focusing-based femtosecond laser system provides high-throughput multiphoton-induced reduction and ablation of graphene oxide (GO) films. Integrated with a digital micromirror device to locally control the laser pulse numbers, GO-based micropatterns can be quickly achieved instantly. Furthermore, the degree of reduction and ablation can be precisely adjusted via controlling the laser wavelength, power, and pulse number. Compared to point-by-point scanning laser direct writing, this approach offers a high-throughput and multiple-function approach to accomplish a large area of micro-scale patterns on GO films. The high-throughput micropatterning of GO via the temporal focusing-based femtosecond laser system fulfills the requirement of mass production for GO-based applications in microelectronic devices. PMID:25321055

  2. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  3. Higher Education or Higher Skilling?

    ERIC Educational Resources Information Center

    Muller, Steven

    1974-01-01

    Higher education may return to education for a minority, an unlikely course; concentrate on higher skilling, the road we are on today; or restore general education, the most attractive possibility, which can be implemented by restoring basic education in literacy, history, human biology, and language. (JH)

  4. High-throughput GPU-based LDPC decoding

    NASA Astrophysics Data System (ADS)

    Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin

    2010-08-01

    Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.

  5. Compressed data organization for high throughput parallel entropy coding

    NASA Astrophysics Data System (ADS)

    Said, Amir; Mahfoodh, Abo-Talib; Yea, Sehoon

    2015-09-01

    The difficulty of parallelizing entropy coding is increasingly limiting the data throughputs achievable in media compression. In this work we analyze what are the fundamental limitations, using finite-state-machine models for identifying the best manner of separating tasks that can be processed independently, while minimizing compression losses. This analysis confirms previous works showing that effective parallelization is feasible only if the compressed data is organized in a proper way, which is quite different from conventional formats. The proposed new formats exploit the fact that optimal compression is not affected by the arrangement of coded bits, but it goes further in exploiting the decreasing cost of data processing and memory. Additional advantages include the ability to use, within this framework, increasingly more complex data modeling techniques, and the freedom to mix different types of coding. We confirm the parallelization effectiveness using coding simulations that run on multi-core processors, and show how throughput scales with the number of cores, and analyze the additional bit-rate overhead.

  6. A High-Throughput Screen for Antibiotic Drug Discovery

    PubMed Central

    Scanlon, Thomas C.; Dostal, Sarah M.; Griswold, Karl E.

    2014-01-01

    We describe an ultra-high-throughput screening platform enabling discovery and/or engineering of natural product antibiotics. The methodology involves creation of hydrogel-in-oil emulsions in which recombinant microorganisms are co-emulsified with bacterial pathogens; antibiotic activity is assayed by use of a fluorescent viability dye. We have successfully utilized both bulk emulsification and microfluidic technology for the generation of hydrogel microdroplets that are size-compatible with conventional flow cytometry. Hydrogel droplets are ~25 pL in volume, and can be synthesized and sorted at rates exceeding 3,000 drops/s. Using this technique, we have achieved screening throughputs exceeding 5 million clones/day. Proof-of-concept experiments demonstrate efficient selection of antibiotic-secreting yeast from a vast excess of negative controls. In addition, we have successfully used this technique to screen a metagenomic library for secreted antibiotics that kill the human pathogen Staphylococcus aureus. Our results establish the practical utility of the screening platform, and we anticipate that the accessible nature of our methods will enable others seeking to identify and engineer the next generation of antibacterial biomolecules. PMID:23955804

  7. Advances, practice, and clinical perspectives in high-throughput sequencing.

    PubMed

    Park, S-J; Saito-Adachi, M; Komiyama, Y; Nakai, K

    2016-07-01

    Remarkable advances in high-throughput sequencing technologies have fundamentally changed our understanding of the genetic and epigenetic molecular bases underlying human health and diseases. As these technologies continue to revolutionize molecular biology leading to fresh perspectives, it is imperative to thoroughly consider the enormous excitement surrounding the technologies by highlighting the characteristics of platforms and their global trends as well as potential benefits and limitations. To date, with a variety of platforms, the technologies provide an impressive range of applications, including sequencing of whole genomes and transcriptomes, identifying of genome modifications, and profiling of protein interactions. Because these applications produce a flood of data, simultaneous development of bioinformatics tools is required to efficiently deal with the big data and to comprehensively analyze them. This review covers the major achievements and performances of the high-throughput sequencing and further summarizes the characteristics of their applications along with introducing applicable bioinformatics tools. Moreover, a step-by-step procedure for a practical transcriptome analysis is described employing an analytical pipeline. Clinical perspectives with special consideration to human oral health and diseases are also covered. PMID:26602181

  8. Improving Data Transfer Throughput with Direct Search Optimization

    SciTech Connect

    Balaprakash, Prasanna; Morozov, Vitali; Kettimuthu, Rajkumar; Kumaran, Kalyan; Foster, Ian

    2016-01-01

    Improving data transfer throughput over high-speed long-distance networks has become increasingly difficult. Numerous factors such as nondeterministic congestion, dynamics of the transfer protocol, and multiuser and multitask source and destination endpoints, as well as interactions among these factors, contribute to this difficulty. A promising approach to improving throughput consists in using parallel streams at the application layer.We formulate and solve the problem of choosing the number of such streams from a mathematical optimization perspective. We propose the use of direct search methods, a class of easy-to-implement and light-weight mathematical optimization algorithms, to improve the performance of data transfers by dynamically adapting the number of parallel streams in a manner that does not require domain expertise, instrumentation, analytical models, or historic data. We apply our method to transfers performed with the GridFTP protocol, and illustrate the effectiveness of the proposed algorithm when used within Globus, a state-of-the-art data transfer tool, on productionWAN links and servers. We show that when compared to user default settings our direct search methods can achieve up to 10x performance improvement under certain conditions. We also show that our method can overcome performance degradation due to external compute and network load on source end points, a common scenario at high performance computing facilities.

  9. Polymer Microarrays for High Throughput Discovery of Biomaterials

    PubMed Central

    Hook, Andrew L.; Chang, Chien-Yi; Yang, Jing; Scurr, David J.; Langer, Robert; Anderson, Daniel G.; Atkinson, Steve; Williams, Paul; Davies, Martyn C.; Alexander, Morgan R.

    2012-01-01

    The discovery of novel biomaterials that are optimized for a specific biological application is readily achieved using polymer microarrays, which allows a combinatorial library of materials to be screened in a parallel, high throughput format1. Herein is described the formation and characterization of a polymer microarray using an on-chip photopolymerization technique 2. This involves mixing monomers at varied ratios to produce a library of monomer solutions, transferring the solution to a glass slide format using a robotic printing device and curing with UV irradiation. This format is readily amenable to many biological assays, including stem cell attachment and proliferation, cell sorting and low bacterial adhesion, allowing the ready identification of 'hit' materials that fulfill a specific biological criterion3-5. Furthermore, the use of high throughput surface characterization (HTSC) allows the biological performance to be correlated with physio-chemical properties, hence elucidating the biological-material interaction6. HTSC makes use of water contact angle (WCA) measurements, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In particular, ToF-SIMS provides a chemically rich analysis of the sample that can be used to correlate the cell response with a molecular moiety. In some cases, the biological performance can be predicted from the ToF-SIMS spectra, demonstrating the chemical dependence of a biological-material interaction, and informing the development of hit materials5,3. PMID:22314927

  10. Technological advances in high-throughput screening.

    PubMed

    Liu, Bailing; Li, Songjun; Hu, Jie

    2004-01-01

    High-throughput screening (HTS) is the process of testing a large number of diverse chemical structures against disease targets to identify 'hits'. Compared to traditional drug screening methods, HTS is characterized by its simplicity, rapidness, low cost, and high efficiency, taking the ligand-target interactions as the principle, as well as leading to a higher information harvest. As a multidisciplinary field, HTS involves an automated operation-platform, highly sensitive testing system, specific screening model (in vitro), an abundant components library, and a data acquisition and processing system. Various technologies, especially the novel technologies such as fluorescence, nuclear-magnetic resonance, affinity chromatography, surface plasmon resonance, and DNA microarray, are now available, and the screening of more than 100,000 samples per day is already possible. Fluorescence-based assays include the scintillation proximity assay, time-resolved energy transfer, fluorescence anisotropy, fluorescence correlation spectroscopy, and fluorescence fluctuation spectroscopy. Fluorescence-based techniques are likely to be among the most important detection approaches used for HTS due to their high sensitivity and amenability to automation, giving the industry-wide drive to simplify, miniaturize, and speed up assays. The application of NMR technology to HTS is another recent trend in drug research. One advantage afforded by NMR technology is that it can provide direct information on the affinity of the screening compounds and the binding location of protein. The structure-activity relationship acquired from NMR analysis can sharpen the library design, which will be very important in furnishing HTS with well-defined drug candidates. Affinity chromatography used for library screening will provide the information on the fundamental processes of drug action, such as absorption, distribution, excretion, and receptor activation; also the eluting curve can give directly the

  11. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  12. Middle Grades: Quality Teaching Equals Higher Student Achievement. Research Brief

    ERIC Educational Resources Information Center

    Bottoms, Gene; Hertl, Jordan; Mollette, Melinda; Patterson, Lenora

    2014-01-01

    The middles grades are critical to public school systems and our nation's economy. It's the make-or-break point in students' futures. Studies repeatedly show when students are not engaged and lose interest in the middle grades, they are likely to fall behind in ninth grade and later drop out of school. When this happens, the workforce suffers, and…

  13. Time Management and Academic Achievement of Higher Secondary Students

    ERIC Educational Resources Information Center

    Cyril, A. Vences

    2015-01-01

    The only thing, which can't be changed by man, is time. One cannot get back time lost or gone Nothing can be substituted for time. Time management is actually self management. The skills that people need to manage others are the same skills that are required to manage themselves. The purpose of the present study was to explore the relation between…

  14. Can We Achieve Our National Higher-Education Goals?

    ERIC Educational Resources Information Center

    Kirwan, William

    2009-01-01

    In several high-profile speeches this year, President Barack Obama has set an ambitious educational goal: By 2020, the United States will have the highest proportion of adults with a college degree in the world. The emphasis on education in both his proposed budget for fiscal 2010 and in the American Recovery and Reinvestment Act of 2009…

  15. High-throughput analysis of total nitrogen content that replaces the classic Kjeldahl method.

    PubMed

    Yasuhara, T; Nokihara, K

    2001-10-01

    A high-throughput method for determination of total nitrogen content has been developed. The method involves decomposition of samples, followed by trapping and quantitative colorimetric determination of the resulting ammonia. The present method is rapid, facile, and economical. Thus, it can replace the classic Kjeldahl method through its higher efficiency for determining multiple samples. Compared to the classic method, the present method is economical and environmentally friendly. Based on the present method, a novel reactor was constructed to realize routine high-throughput analyses of multiple samples such as those found for pharmaceutical materials, foods, and/or excrements.

  16. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  17. High-throughput human metabolism and toxicity analysis.

    PubMed

    Lee, Moo-Yeal; Dordick, Jonathan S

    2006-12-01

    Poor drug candidate safety profiles are often identified late in the drug development process, manifesting themselves in the preclinical and clinical phases and significantly contributing to the high cost and low yield of drug discovery. As a result, new tools are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process, from primary drug candidate screening to lead optimization. Although high-throughput screens exist for much of the discovery phase of drug development, translating such screening techniques into platforms that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology has proven difficult. Nevertheless, some success has been achieved in recent years, which may ultimately yield widespread acceptance in the pharmaceutical industry.

  18. High-throughput process development for biopharmaceutical drug substances.

    PubMed

    Bhambure, Rahul; Kumar, Kaushal; Rathore, Anurag S

    2011-03-01

    Quality by Design (QbD) is gaining industry acceptance as an approach towards development and commercialization of biotechnology therapeutic products that are expressed via microbial or mammalian cell lines. In QbD, the process is designed and controlled to deliver specified quality attributes consistently. To acquire the enhanced understanding that is necessary to achieve the above, however, requires more extensive experimentation to establish the design space for the process and the product. With biotechnology companies operating under ever-increasing pressure towards lowering the cost of manufacturing, the use of high-throughput tools has emerged as a necessary enabler of QbD in a time- and resource-constrained environment. We review this topic for those in academia and industry that are engaged in drug substance process development.

  19. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.

    This eighth chapter of "The Yearbook of School Law, 1986" summarizes and analyzes over 330 state and federal court cases litigated in 1985 in which institutions of higher education were involved. Among the topics examined were relationships between postsecondary institutions and various governmental agencies; discrimination in the employment of…

  20. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.; Gregory, Dennis E.

    Decisions made by federal and state courts during 1983 concerning higher education are reported in this chapter. Issues of employment and the treatment of students underlay the bulk of the litigation. Specific topics addressed in these and other cases included federal authority to enforce regulations against age discrimination and to revoke an…

  1. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.

    Litigation in 1987 was very brisk with an increase in the number of higher education cases reviewed. Cases discussed in this chapter are organized under four major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining and denial of employee benefits; (3)…

  2. Higher Education.

    ERIC Educational Resources Information Center

    Hendrickson, Robert M.; Finnegan, Dorothy E.

    The higher education case law in 1988 is extensive. Cases discussed in this chapter are organized under five major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining, and denial of employee benefits; (3) students, involving admissions, financial aid, First…

  3. Higher Learning.

    ERIC Educational Resources Information Center

    Bok, Derek

    Factors that distinguish the United States higher education system and its performance are considered, with attention to new developments, propsects for change, undergraduate education, and professional schools (especially law, business, and medicine). The way universities change the methods and content of their teaching in response to new…

  4. PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors.

    PubMed

    Almada, Pedro; Culley, Siân; Henriques, Ricardo

    2015-10-15

    Single Molecule Localization Microscopy (SMLM) techniques such as Photo-Activation Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) enable fluorescence microscopy super-resolution: the overcoming of the resolution barrier imposed by the diffraction of light. These techniques are based on acquiring hundreds or thousands of images of single molecules, locating them and reconstructing a higher-resolution image from the high-precision localizations. These methods generally imply a considerable trade-off between imaging speed and resolution, limiting their applicability to high-throughput workflows. Recent advancements in scientific Complementary Metal-Oxide Semiconductor (sCMOS) camera sensors and localization algorithms reduce the temporal requirements for SMLM, pushing it toward high-throughput microscopy. Here we outline the decisions researchers face when considering how to adapt hardware on a new system for sCMOS sensors with high-throughput in mind. PMID:26079924

  5. A High-Throughput Scheduling Technique, With Idle Timeslot Elimination Mechanism

    NASA Astrophysics Data System (ADS)

    Sarigiannidis, Panagiotis G.; Papadimitriou, Georgios I.; Pomportsis, Andreas S.

    2006-12-01

    A new media-access-control protocol is introduced in this paper. The authors consider a wavelength-division-multiplexing (WDM) network with star topology. A single-hop WDM system is considered, so that there is a full connectivity between every node-pair in just one hop. The protocol adopted is pretransmission coordination-based, so the protocol coordinates nodes before the actual transmission. The coordination is achieved with one demand (or traffic) matrix, which saves the predetermination of the timeslots each node transmits. Each transmission frame (or cycle) has two phases: the control phase and the data phase. In order to eliminate the possible delay added by the schedule computation between the two phases of each frame, they consider a traffic prediction scheme, which is based upon the hidden Markov chain model. The control phase functions as a learning period in which the predictor is trained. The training is based on the traffic of the network. During the data phase, each station transmits its packets based on the predicted reservations, which are the predictor's output. In the same frame, the predictor computes the reservations for the next frame. They show that their protocol, although suffering from small packet delay loss, introduces a new method of computing the reservations of the demand matrix and brings some performance improvement in terms of channel utilization and results in higher network throughput, which is proven by extensive simulations.

  6. Design of a high throughput electronics module for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Jie; Liu, Zhen-An; Zhao, Jing-Zhou; Liu, Zhao

    2016-06-01

    High-energy physics experiments enable us to explore and understand particle properties and interactions. An increase in luminosity in the accelerator, which allows us to study particles in higher energy ranges, demands faster data transmission and processing. Aimed at this, a high throughput uTCA-compliant electronics module, based on the latest FPGAs, has been designed. It contains 48 10.0 Gb/s optical fiber input channels and 24 10.0 Gb/s optical fiber output channels, supporting up to 480 Gb/s input bandwidth and 240 Gb/s output bandwidth. It complies with the uTCA standards, providing high speed data exchange capability and functioning as a compact and key module in a trigger and DAQ system for a large experiment. A reliable 10.0 Gb/s data transmission among two boards has been verified and one functionality that merges 6 1.6 Gb/s data channels into one single 10.0 Gb/s channel has been achieved. The hardware, firmware and software together with a performance evaluation are given in this paper. Supported by National Natural Science Foundation of China (11435013, 11461141011)

  7. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    PubMed

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications.

  8. High-throughput analysis of yeast replicative aging using a microfluidic system

    PubMed Central

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-01-01

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  9. High-throughput analysis of yeast replicative aging using a microfluidic system.

    PubMed

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-07-28

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  10. Commercially available high-throughput Dip Pen Nanolithography

    NASA Astrophysics Data System (ADS)

    Haaheim, J. R.; Tevaarwerk, E. R.; Fragala, J.; Shile, R.

    2008-04-01

    Dip Pen Nanolithography ® (DPN ®) is an inherently additive SPM-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Massively parallel two-dimensional nanopatterning with DPN is now commercially available via NanoInk's 2D nano PrintArray TM, making DPN a high-throughput, flexible and versatile method for precision nanoscale pattern formation. By fabricating 55,000 tip-cantilevers across a 1 cm2 chip, we leverage the inherent versatility of DPN and demonstrate large area surface coverage, routinely achieving throughputs of 3x10 7 μm2 per hour. Further, we have engineered the device to be easy to use, wire-free, and fully integrated with the NSCRIPTOR's scanner, stage, and sophisticated lithography routines. In this talk we discuss the methods of operating this commercially available device, subsequent results showing sub-100 nm feature sizes and excellent uniformity (standard deviation < 16%), and our continuing development work. Simultaneous multiplexed deposition of a variety of molecules is a fundamental goal of massively parallel 2D nanopatterning, and we will discuss our progress on this front, including ink delivery methods, tip coating, and patterning techniques to generate combinatorial libraries of nanoscale patterns. Another fundamental challenge includes planar leveling of the 2D nano PrintArray, and herein we describe our successful implementation of device viewports and integrated software leveling routines that monitor cantilever deflection to achieve planarity and uniform surface contact. Finally, we will discuss the results of 2D nanopatterning applications such as: 1) rapidly and flexibly generating nanostructures; 2) chemically directed assembly and 3) directly writing biological materials.

  11. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    PubMed Central

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    amplify signals from bioreactor products. Drops also provide the ability to re-merge drops into larger aqueous samples or with other drops for intercellular signaling studies.1,2 The reduction in dilution implies stronger detection signals for higher accuracy measurements as well as the ability to reduce potentially costly sample and reagent volumes.3 Encapsulation of cells in drops has been utilized to improve detection of protein expression,4 antibodies,5,6 enzymes,7 and metabolic activity8 for high throughput screening, and could be used to improve high throughput cytometry.9 Additional studies present applications in bio-electrospraying of cell containing drops for mass spectrometry10 and targeted surface cell coatings.11 Some applications, however, have been limited by the lack of ability to control the number of cells encapsulated in drops. Here we present a method of ordered encapsulation12 which increases the demonstrated encapsulation efficiencies for one and two cells and may be extrapolated for encapsulation of a larger number of cells. To achieve monodisperse drop generation, microfluidic "flow focusing" enables the creation of controllable-size drops of one fluid (an aqueous cell mixture) within another (a continuous oil phase) by using a nozzle at which the streams converge.13 For a given nozzle geometry, the drop generation frequency f and drop size can be altered by adjusting oil and aqueous flow rates Qoil and Qaq. As the flow rates increase, the flows may transition from drop generation to unstable jetting of aqueous fluid from the nozzle.14 When the aqueous solution contains suspended particles, particles become encapsulated and isolated from one another at the nozzle. For drop generation using a randomly distributed aqueous cell suspension, the average fraction of drops Dk containing k cells is dictated by Poisson statistics, where Dk = λk exp(-λ)/(k!) and λ is the average number of cells per drop. The fraction of cells which end up in the

  12. High-throughput screening for lead optimization: a rational approach.

    PubMed

    Bajpai, M; Adkison, K K

    2000-01-01

    Genetics, combinatorial chemistry and automation have greatly increased the number of therapeutic programs and compounds in the pharmaceutical industry pipeline. The increase in the number of new molecular entities (NMEs) has led to changes in the process by which compounds are evaluated during drug discovery and selected for clinical development. There is a need for the earlier determination of the absorption, distribution and elimination characteristics of NMEs, and drug metabolism scientists are working to develop higher-throughput in vitro screens for absorption, distribution and metabolism of compounds. These screens rely on advancements in analytical technology and molecular biology, and frequently use human or 'humanized' tissues. Throughput to determine in vivo pharmacokinetics has also progressed with the use of mixture dosing and sample pooling methods. The continued refinement of in vitro and in vivo ADME methods will allow the industry to evaluate the absorption and disposition characteristics of larger numbers of molecules and will ultimately allow the prediction of human pharmacokinetics at early stages of the development process.

  13. Viral detection by high-throughput sequencing.

    PubMed

    Motooka, Daisuke; Nakamura, Shota; Hagiwara, Katsuro; Nakaya, Takaaki

    2015-01-01

    We applied a high-throughput sequencing platform, Ion PGM, for viral detection in fecal samples from adult cows collected in Hokkaido, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.25 ml of fecal specimens (N = 8), and more than 5 μg of cDNA was synthesized. Unbiased high-throughput sequencing using the 318 v2 semiconductor chip of these eight samples yielded 57-580 K (average: 270 K, after data analysis) reads in a single run. As a result, viral genome sequences were detected in each specimen. In addition to bacteriophage, mammal- and insect-derived viruses, partial genome sequences of plant, algal, and protozoal viruses were detected. Thus, this metagenomic analysis of fecal specimens could be useful to comprehensively understand viral populations of the intestine and food sources in animals. PMID:25287501

  14. Viral detection by high-throughput sequencing.

    PubMed

    Motooka, Daisuke; Nakamura, Shota; Hagiwara, Katsuro; Nakaya, Takaaki

    2015-01-01

    We applied a high-throughput sequencing platform, Ion PGM, for viral detection in fecal samples from adult cows collected in Hokkaido, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.25 ml of fecal specimens (N = 8), and more than 5 μg of cDNA was synthesized. Unbiased high-throughput sequencing using the 318 v2 semiconductor chip of these eight samples yielded 57-580 K (average: 270 K, after data analysis) reads in a single run. As a result, viral genome sequences were detected in each specimen. In addition to bacteriophage, mammal- and insect-derived viruses, partial genome sequences of plant, algal, and protozoal viruses were detected. Thus, this metagenomic analysis of fecal specimens could be useful to comprehensively understand viral populations of the intestine and food sources in animals.

  15. Comparison of STIS and SNAP spectrograph throughputs

    SciTech Connect

    Aldering, Greg

    2002-06-30

    This is a comparison of the measured throughput of STIS on HST versus what we might expect from the spectrograph on SNAP. The principle reference is Woodgate et al. (1998) PASP, 110, 1183. Additional material was taken from the STIS Handbook, available on-line at www.stsci.edu. The goal is to demonstrate that there are sound reasons to expect better performance for a SNAP spectrograph (even one with a grating) than would be expected by scaling from HST+STIS.

  16. Economic consequences of high throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Hartley, John G.; Govindaraju, Lakshmi

    2005-11-01

    Many people in the semiconductor industry bemoan the high costs of masks and view mask cost as one of the significant barriers to bringing new chip designs to market. All that is needed is a viable maskless technology and the problem will go away. Numerous sites around the world are working on maskless lithography but inevitably, the question asked is "Wouldn't a one wafer per hour maskless tool make a really good mask writer?" Of course, the answer is yes, the hesitation you hear in the answer isn't based on technology concerns, it's financial. The industry needs maskless lithography because mask costs are too high. Mask costs are too high because mask pattern generators (PG's) are slow and expensive. If mask PG's become much faster, mask costs go down, the maskless market goes away and the PG supplier is faced with an even smaller tool demand from the mask shops. Technical success becomes financial suicide - or does it? In this paper we will present the results of a model that examines some of the consequences of introducing high throughput maskless pattern generation. Specific features in the model include tool throughput for masks and wafers, market segmentation by node for masks and wafers and mask cost as an entry barrier to new chip designs. How does the availability of low cost masks and maskless tools affect the industries tool makeup and what is the ultimate potential market for high throughput maskless pattern generators?

  17. High-throughput neuro-imaging informatics

    PubMed Central

    Miller, Michael I.; Faria, Andreia V.; Oishi, Kenichi; Mori, Susumu

    2013-01-01

    This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high-throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high-dimensional neuroinformatic representation index containing O(1000–10,000) discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high-throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high-throughput machine learning methods for supporting (i) cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii) integration of image and personal medical record non-image information for diagnosis and prognosis. PMID:24381556

  18. Network medicine and high throughput screening.

    PubMed

    Smith, Robert E; Tran, Kevin; Vocque, Ralph H

    2013-09-01

    A new paradigm is emerging in modern drug discovery. It is a fusion of traditional and modern medicine, phenotypic and targeted drug discovery, or systems and reductionist thinking. This is exemplified by using a combination of network medicine and high throughput screening. It blends the use of physiologically relevant biological systems with the high throughput and statistical robustness of modern assay technologies. The basic principles of network theory and tools of network medicine are described. Scale-free networks and their organizing principles are discussed. They are emergent properties of living, autopoietic systems. This includes networks of people who do high throughput screening (HTS), and microscopic networks of ions, metabolites, DNA, RNA, proteins, lipids, carbohydrates, viruses, bacteria, fungi, human cells and tissues. Databases have been constructed based on the metabolome, genome, transcriptome, proteome, lipidome, glycocode, virome, bacteriome and many others. Modern HTS can be used to examine the interactions of many parts of the complex human network. High content screening (HCS) can look at perturbations that occur when test compounds are added to single cells. Allo-network drugs can have effects far beyond a single protein and can be transmitted to other cells. Interactions and hidden connections can be revealed, with the goal of developing new drugs that have few, if any harmful side effects and are effective against multi-drug resistant cancer cells or bacteria.

  19. Method and apparatus for maximizing throughput of indirectly heated rotary kilns

    DOEpatents

    Coates, Ralph L; Smoot, L. Douglas; Hatfield, Kent E

    2012-10-30

    An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.

  20. Method and apparatus for maximizing throughput of indirectly heated rotary kilns

    DOEpatents

    Coates, Ralph L; Smoot, Douglas L.; Hatfield, Kent E

    2016-06-21

    An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.

  1. Achieving yield gains in wheat.

    PubMed

    Reynolds, Matthew; Foulkes, John; Furbank, Robert; Griffiths, Simon; King, Julie; Murchie, Erik; Parry, Martin; Slafer, Gustavo

    2012-10-01

    Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.

  2. High-resolution Fourier transform ion cyclotron resonance mass spectrometry with increased throughput for biomolecular analysis.

    PubMed

    Nagornov, Konstantin O; Gorshkov, Mikhail V; Kozhinov, Anton N; Tsybin, Yury O

    2014-09-16

    A multielectrode ion cyclotron resonance (ICR) cell, herein referred to as the "4X cell", for signal detection at the quadruple frequency multiple was implemented and characterized on a commercial 10 T Fourier transform ICR mass spectrometer (FT-ICR MS). Notably, with the 4X cell operating at a 10 T magnetic field we achieved a 4-fold increase in MS acquisition rate per unit of resolving power for signal detection periods typically employed in FTMS, viz., shorter than 6 s. Effectively, the obtained resolution performance represents the limit of the standard measurement principle with dipolar signal detection and FT signal processing at an equivalent magnetic field of 40 T. In other words, the achieved resolving powers are 4 times higher than those provided by 10 T FT-ICR MS with a standard ICR cell. For example, resolving powers of 170,000 and 70,000 were obtained in magnitude-mode Fourier spectra of 768 and 192 ms apodized transient signals acquired for a singly charged fluorinated phosphazine (m/z 1422) and a 19-fold charged myoglobin (MW 16.9 kDa), respectively. In peptide analysis, the baseline-resolved isotopic fine structures were obtained with as short as 768 ms transients. In intact protein analysis, the average resolving power of 340,000 across the baseline-resolved (13)C isotopic pattern of multiply charged ions of bovine serum albumin was obtained with 1.5 s transients. The dynamic range and the mass measurement accuracy of the 4X cell were found to be comparable to the ones obtained for the standard ICR cell on the same mass spectrometer. Overall, the reported results validate the advantages of signal detection at frequency multiples for increased throughput in FT-ICR MS, essential for numerous applications with time constraints, including proteomics.

  3. High-throughput autofluorescence flow cytometry of breast cancer metabolism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Amy T.; Cannon, Taylor M.; Higginbotham, Jim N.; Skala, Melissa C.

    2016-02-01

    Tumor heterogeneity poses challenges for devising optimal treatment regimens for cancer patients. In particular, subpopulations of cells can escape treatment and cause relapse. There is a need for methods to characterize tumor heterogeneity of treatment response. Cell metabolism is altered in cancer (Warburg effect), and cells use the autofluorescent cofactor NADH in numerous metabolic reactions. Previous studies have shown that microscopy measurements of NADH autofluorescence are sensitive to treatment response in breast cancer, and these techniques typically assess hundreds of cells per group. An alternative approach is flow cytometry, which measures fluorescence on a single-cell level and is attractive for characterizing tumor heterogeneity because it achieves high-throughput analysis and cell sorting in millions of cells per group. Current applications for flow cytometry rely on staining with fluorophores. This study characterizes flow cytometry measurements of NADH autofluorescence in breast cancer cells. Preliminary results indicate flow cytometry of NADH is sensitive to cyanide perturbation, which inhibits oxidative phosphorylation, in nonmalignant MCF10A cells. Additionally, flow cytometry is sensitive to higher NADH intensity for HER2-positive SKBr3 cells compared with triple-negative MDA-MB-231 cells. These results agree with previous microscopy studies. Finally, a mixture of SKBr3 and MDA-MB-231 cells were sorted into each cell type using NADH intensity. Sorted cells were cultured, and microscopy validation showed the expected morphology for each cell type. Ultimately, flow cytometry could be applied to characterize tumor heterogeneity based on treatment response and sort cell subpopulations based on metabolic profile. These achievements could enable individualized treatment strategies and improved patient outcomes.

  4. Proteomics equipped with multiplexing toward ultra high throughput.

    PubMed

    Kim, Min-Sik

    2015-01-01

    MS-based quantitative proteomics is a powerful technology to study virtually almost all biological and clinical samples. Although it has been known to be a high-throughput method, an MS analysis of a higher number of samples remains to be challenging practically and economically. In this issue, the use of multiplexing strategy for quantitative analysis of proteomes and phosphoproteomes has been demonstrated by Paulo et al. (Proteomics 2015, 15, 462-473) to better understand in vivo effects of two small molecule inhibitors on a mouse model. Within the short period of drug treatment, it has been found that the protein alteration is minimal in three tissues tested, whereas the phosphorylation level was widely altered. PMID:25522341

  5. High-throughput allogeneic antibody detection using protein microarrays.

    PubMed

    Paul, Jed; Sahaf, Bita; Perloff, Spenser; Schoenrock, Kelsi; Wu, Fang; Nakasone, Hideki; Coller, John; Miklos, David

    2016-05-01

    Enzyme-linked immunosorbent assays (ELISAs) have traditionally been used to detect alloantibodies in patient plasma samples post hematopoietic cell transplantation (HCT); however, protein microarrays have the potential to be multiplexed, more sensitive, and higher throughput than ELISAs. Here, we describe the development of a novel and sensitive microarray method for detection of allogeneic antibodies against minor histocompatibility antigens encoded on the Y chromosome, called HY antigens. Six microarray surfaces were tested for their ability to bind recombinant protein and peptide HY antigens. Significant allogeneic immune responses were determined in male patients with female donors by considering normal male donor responses as baseline. HY microarray results were also compared with our previous ELISA results. Our overall goal was to maximize antibody detection for both recombinant protein and peptide epitopes. For detection of HY antigens, the Epoxy (Schott) protein microarray surface was both most sensitive and reliable and has become the standard surface in our microarray platform. PMID:26902899

  6. High-throughput DNA extraction of forensic adhesive tapes.

    PubMed

    Forsberg, Christina; Jansson, Linda; Ansell, Ricky; Hedman, Johannes

    2016-09-01

    Tape-lifting has since its introduction in the early 2000's become a well-established sampling method in forensic DNA analysis. Sampling is quick and straightforward while the following DNA extraction is more challenging due to the "stickiness", rigidity and size of the tape. We have developed, validated and implemented a simple and efficient direct lysis DNA extraction protocol for adhesive tapes that requires limited manual labour. The method uses Chelex beads and is applied with SceneSafe FAST tape. This direct lysis protocol provided higher mean DNA yields than PrepFiler Express BTA on Automate Express, although the differences were not significant when using clothes worn in a controlled fashion as reference material (p=0.13 and p=0.34 for T-shirts and button-down shirts, respectively). Through in-house validation we show that the method is fit-for-purpose for application in casework, as it provides high DNA yields and amplifiability, as well as good reproducibility and DNA extract stability. After implementation in casework, the proportion of extracts with DNA concentrations above 0.01ng/μL increased from 71% to 76%. Apart from providing higher DNA yields compared with the previous method, the introduction of the developed direct lysis protocol also reduced the amount of manual labour by half and doubled the potential throughput for tapes at the laboratory. Generally, simplified manual protocols can serve as a cost-effective alternative to sophisticated automation solutions when the aim is to enable high-throughput DNA extraction of complex crime scene samples. PMID:27448236

  7. High-throughput DNA extraction of forensic adhesive tapes.

    PubMed

    Forsberg, Christina; Jansson, Linda; Ansell, Ricky; Hedman, Johannes

    2016-09-01

    Tape-lifting has since its introduction in the early 2000's become a well-established sampling method in forensic DNA analysis. Sampling is quick and straightforward while the following DNA extraction is more challenging due to the "stickiness", rigidity and size of the tape. We have developed, validated and implemented a simple and efficient direct lysis DNA extraction protocol for adhesive tapes that requires limited manual labour. The method uses Chelex beads and is applied with SceneSafe FAST tape. This direct lysis protocol provided higher mean DNA yields than PrepFiler Express BTA on Automate Express, although the differences were not significant when using clothes worn in a controlled fashion as reference material (p=0.13 and p=0.34 for T-shirts and button-down shirts, respectively). Through in-house validation we show that the method is fit-for-purpose for application in casework, as it provides high DNA yields and amplifiability, as well as good reproducibility and DNA extract stability. After implementation in casework, the proportion of extracts with DNA concentrations above 0.01ng/μL increased from 71% to 76%. Apart from providing higher DNA yields compared with the previous method, the introduction of the developed direct lysis protocol also reduced the amount of manual labour by half and doubled the potential throughput for tapes at the laboratory. Generally, simplified manual protocols can serve as a cost-effective alternative to sophisticated automation solutions when the aim is to enable high-throughput DNA extraction of complex crime scene samples.

  8. High-throughput microcavitation bubble induced cellular mechanotransduction

    NASA Astrophysics Data System (ADS)

    Compton, Jonathan Lee

    Focused pulsed laser irradiation allows for the deposition of energy with high spatial and temporal resolution. These attributes provide an optimal tool for non-contact manipulation in cellular biology such as laser microsurgery, cell membrane permeabilization, as well as targeted cell death. In this thesis we investigate the direct physical effects produced by laser- generated microcavitation bubbles in adherent cell cultures. We examine how variation in pulse durations (180 ps - 6ns) and pulse energy (0.5 - 40 mu;J) affect microcavitation bubble (mu;CB) generated cell lysis, necrosis, and molecular delivery. To compare the effects of pulse duration we employ classical fluid dynamics modeling to quantify the perturbation caused on cell populations from mu;CB generated microTsunamis (a transient microscale burst of hydrodynamic shear stress). Through time-resolved imaging we capture the mu;CB dynamics at various energies and pulse durations. Moreover, the mathematical modeling provides information regarding the cellular exposure to time varying shear stress and impulse as a function of radial location from the mu;CB center. We demonstrate that the resultant cellular effect can be predicted based on the total impulse across a two order of magnitude span of pulse duration and pulse energy. We also examine the region of cells beyond the zone of molecular delivery to investigate possible cellular reactions to mu;Tsunami exposure. Our studies have shown that cellular mechanotransduction occurs within cell populations spanning an area of up to 1 mm2 surrounding the mu;CB. Visualization of mechanotransduction is achieved through the visualization of intracellular calcium signaling via fluorescence microscopy that occurs due to the ability of the muTsunami generated shear stresses to stimulate G-protein coupled receptors at the apical cell surface. Moreover, we have shown that the observed signaling can be attenuated in a dose-dependent manner using 2-APB which is a known

  9. Throughput Maximization for Sensor-Aided Cognitive Radio Networks with Continuous Energy Arrivals.

    PubMed

    Nguyen, Thanh-Tung; Koo, Insoo

    2015-01-01

    We consider a Sensor-Aided Cognitive Radio Network (SACRN) in which sensors capable of harvesting energy are distributed throughout the network to support secondary transmitters for sensing licensed channels in order to improve both energy and spectral efficiency. Harvesting ambient energy is one of the most promising solutions to mitigate energy deficiency, prolong device lifetime, and partly reduce the battery size of devices. So far, many works related to SACRN have considered single secondary users capable of harvesting energy in whole slot as well as short-term throughput. In the paper, we consider two types of energy harvesting sensor nodes (EHSN): Type-I sensor nodes will harvest ambient energy in whole slot duration, whereas type-II sensor nodes will only harvest energy after carrying out spectrum sensing. In the paper, we also investigate long-term throughput in the scheduling window, and formulate the throughput maximization problem by considering energy-neutral operation conditions of type-I and -II sensors and the target detection probability. Through simulations, it is shown that the sensing energy consumption of all sensor nodes can be efficiently managed with the proposed scheme to achieve optimal long-term throughput in the window. PMID:26633393

  10. Throughput Maximization for Sensor-Aided Cognitive Radio Networks with Continuous Energy Arrivals

    PubMed Central

    Nguyen, Thanh-Tung; Koo, Insoo

    2015-01-01

    We consider a Sensor-Aided Cognitive Radio Network (SACRN) in which sensors capable of harvesting energy are distributed throughout the network to support secondary transmitters for sensing licensed channels in order to improve both energy and spectral efficiency. Harvesting ambient energy is one of the most promising solutions to mitigate energy deficiency, prolong device lifetime, and partly reduce the battery size of devices. So far, many works related to SACRN have considered single secondary users capable of harvesting energy in whole slot as well as short-term throughput. In the paper, we consider two types of energy harvesting sensor nodes (EHSN): Type-I sensor nodes will harvest ambient energy in whole slot duration, whereas type-II sensor nodes will only harvest energy after carrying out spectrum sensing. In the paper, we also investigate long-term throughput in the scheduling window, and formulate the throughput maximization problem by considering energy-neutral operation conditions of type-I and -II sensors and the target detection probability. Through simulations, it is shown that the sensing energy consumption of all sensor nodes can be efficiently managed with the proposed scheme to achieve optimal long-term throughput in the window. PMID:26633393

  11. Throughput Maximization for Sensor-Aided Cognitive Radio Networks with Continuous Energy Arrivals.

    PubMed

    Nguyen, Thanh-Tung; Koo, Insoo

    2015-11-27

    We consider a Sensor-Aided Cognitive Radio Network (SACRN) in which sensors capable of harvesting energy are distributed throughout the network to support secondary transmitters for sensing licensed channels in order to improve both energy and spectral efficiency. Harvesting ambient energy is one of the most promising solutions to mitigate energy deficiency, prolong device lifetime, and partly reduce the battery size of devices. So far, many works related to SACRN have considered single secondary users capable of harvesting energy in whole slot as well as short-term throughput. In the paper, we consider two types of energy harvesting sensor nodes (EHSN): Type-I sensor nodes will harvest ambient energy in whole slot duration, whereas type-II sensor nodes will only harvest energy after carrying out spectrum sensing. In the paper, we also investigate long-term throughput in the scheduling window, and formulate the throughput maximization problem by considering energy-neutral operation conditions of type-I and -II sensors and the target detection probability. Through simulations, it is shown that the sensing energy consumption of all sensor nodes can be efficiently managed with the proposed scheme to achieve optimal long-term throughput in the window.

  12. A synchronous Gigabit Ethernet protocol stack for high-throughput UDP/IP applications

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Lange, B.; Sandmann, J.; Büchner, A.; Enghardt, W.; Kaever, P.

    2016-01-01

    State of the art detector readout electronics require high-throughput data acquisition (DAQ) systems. In many applications, e. g. for medical imaging, the front-end electronics are set up as separate modules in a distributed DAQ. A standardized interface between the modules and a central data unit is essential. The requirements on such an interface are varied, but demand almost always a high throughput of data. Beyond this challenge, a Gigabit Ethernet interface is predestined for the broad requirements of Systems-on-a-Chip (SoC) up to large-scale DAQ systems. We have implemented an embedded protocol stack for a Field Programmable Gate Array (FPGA) capable of high-throughput data transmission and clock synchronization. A versatile stack architecture for the User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) over Internet Protocol (IP) such as Address Resolution Protocol (ARP) as well as Precision Time Protocol (PTP) is presented. With a point-to-point connection to a host in a MicroTCA system we achieved the theoretical maximum data throughput limited by UDP both for 1000BASE-T and 1000BASE-KX links. Furthermore, we show that the random jitter of a synchronous clock over a 1000BASE-T link for a PTP application is below 60 ps.

  13. A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis.

    PubMed

    Guo, Feng; Lapsley, Michael Ian; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Lin, Sz-Chin Steven; Chen, Yuchao; Yang, Shikuan; Zhao, Xing-Zhong; Huang, Tony Jun

    2012-12-18

    Analysis of chemical or biomolecular contents in a tiny amount of specimen presents a significant challenge in many biochemical studies and diagnostic applications. In this work, we present a single-layer, optofluidic device for real-time, high-throughput, quantitative analysis of droplet contents. Our device integrates an optical fiber-based, on-chip detection unit with a droplet-based microfluidic unit. It can quantitatively analyze the contents of individual droplets in real-time. It also achieves a detection throughput of 2000 droplets per second, a detection limit of 20 nM, and an excellent reproducibility in its detection results. In a proof-of-concept study, we demonstrate that our device can be used to perform detection of DNA and its mutations by monitoring the fluorescent signal changes of the target DNA/molecular beacon complex in single droplets. Our approach can be immediately extended to a real-time, high-throughput detection of other biomolecules (such as proteins and viruses) in droplets. With its advantages in throughput, functionality, cost, size, and reliability, the droplet-based optofluidic device presented here can be a valuable tool for many medical diagnostic applications.

  14. Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    EPA Science Inventory

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...

  15. High-Throughput Methods for Electron Crystallography

    PubMed Central

    Stokes, David L.; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas

    2013-01-01

    Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing the natural environment of a lipid membrane. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, images and diffraction can be recorded by electron microscopy. The corresponding data can be combined to produce a three-dimensional reconstruction which, under favorable conditions, can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative and potentially complementary methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on detergent complexation by cyclodextrin; a specialized pipetting robot has been designed not only to titrate cyclodextrin, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described. PMID:23132066

  16. High-throughput methods for electron crystallography.

    PubMed

    Stokes, David L; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas

    2013-01-01

    Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.

  17. Informatics solutions for high-throughput proteomics.

    PubMed

    Topaloglou, Thodoros

    2006-06-01

    The success of mass-spectrometry-based proteomics as a method for analyzing proteins in biological samples is accompanied by challenges owning to demands for increased throughput. These challenges arise from the vast volume of data generated by proteomics experiments combined with the heterogeneity in data formats, processing methods, software tools and databases that are involved in the translation of spectral data into relevant and actionable information for scientists. Informatics aims to provide answers to these challenges by transferring existing solutions from information management to proteomics and/or by generating novel computational methods for automation of proteomics data processing.

  18. Automated High Throughput Drug Target Crystallography

    SciTech Connect

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  19. High throughput chemical munitions treatment system

    DOEpatents

    Haroldsen, Brent L.; Stofleth, Jerome H.; Didlake, Jr., John E.; Wu, Benjamin C-P

    2011-11-01

    A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

  20. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  1. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  2. Comparing Science Achievement Constructs: Targeted and Achieved

    ERIC Educational Resources Information Center

    Ferrara, Steve; Duncan, Teresa

    2011-01-01

    This article illustrates how test specifications based solely on academic content standards, without attention to other cognitive skills and item response demands, can fall short of their targeted constructs. First, the authors inductively describe the science achievement construct represented by a statewide sixth-grade science proficiency test.…

  3. Mobility and Reading Achievement.

    ERIC Educational Resources Information Center

    Waters, Theresa Z.

    A study examined the effect of geographic mobility on elementary school students' achievement. Although such mobility, which requires students to make multiple moves among schools, can have a negative impact on academic achievement, the hypothesis for the study was that it was not a determining factor in reading achievement test scores. Subjects…

  4. Data Analysis for High-Throughput RNAi Screening.

    PubMed

    Azorsa, David O; Turnidge, Megan A; Arora, Shilpi

    2016-01-01

    High-throughput RNA interference (HT-RNAi) screening is an effective technology to help identify important genes and pathways involved in a biological process. Analysis of high-throughput RNAi screening data is a critical part of this technology, and many analysis methods have been described. Here, we summarize the workflow and types of analyses commonly used in high-throughput RNAi screening. PMID:27581298

  5. High Throughput Screening and Selection Methods for Directed Enzyme Evolution

    PubMed Central

    2015-01-01

    Successful evolutionary enzyme engineering requires a high throughput screening or selection method, which considerably increases the chance of obtaining desired properties and reduces the time and cost. In this review, a series of high throughput screening and selection methods are illustrated with significant and recent examples. These high throughput strategies are also discussed with an emphasis on compatibility with phenotypic analysis during directed enzyme evolution. Lastly, certain limitations of current methods, as well as future developments, are briefly summarized. PMID:26074668

  6. High throughput sample processing and automated scoring.

    PubMed

    Brunborg, Gunnar; Jackson, Petra; Shaposhnikov, Sergey; Dahl, Hildegunn; Azqueta, Amaya; Collins, Andrew R; Gutzkow, Kristine B

    2014-01-01

    The comet assay is a sensitive and versatile method for assessing DNA damage in cells. In the traditional version of the assay, there are many manual steps involved and few samples can be treated in one experiment. High throughput (HT) modifications have been developed during recent years, and they are reviewed and discussed. These modifications include accelerated scoring of comets; other important elements that have been studied and adapted to HT are cultivation and manipulation of cells or tissues before and after exposure, and freezing of treated samples until comet analysis and scoring. HT methods save time and money but they are useful also for other reasons: large-scale experiments may be performed which are otherwise not practicable (e.g., analysis of many organs from exposed animals, and human biomonitoring studies), and automation gives more uniform sample treatment and less dependence on operator performance. The HT modifications now available vary largely in their versatility, capacity, complexity, and costs. The bottleneck for further increase of throughput appears to be the scoring. PMID:25389434

  7. Preliminary High-Throughput Metagenome Assembly

    SciTech Connect

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  8. High-throughput rod-induced electrospinning

    NASA Astrophysics Data System (ADS)

    Wu, Dezhi; Xiao, Zhiming; Teh, Kwok Siong; Han, Zhibin; Luo, Guoxi; Shi, Chuan; Sun, Daoheng; Zhao, Jinbao; Lin, Liwei

    2016-09-01

    A high throughput electrospinning process, directly from flat polymer solution surfaces induced by a moving insulating rod, has been proposed and demonstrated. Different rods made of either phenolic resin or paper with a diameter of 1–3 cm and a resistance of about 100–500 MΩ, has been successfully utilized in the process. The rod is placed approximately 10 mm above the flat polymer solution surface with a moving speed of 0.005–0.4 m s‑1 this causes the solution to generate multiple liquid jets under an applied voltage of 15–60 kV for the tip-less electrospinning process. The local electric field induced by the rod can boost electrohydrodynamic instability in order to generate Taylor cones and liquid jets. Experimentally, it is found that a large rod diameter and a small solution-to-rod distance can enhance the local electrical field to reduce the magnitude of the applied voltage. In the prototype setup with poly (ethylene oxide) polymer solution, an area of 5 cm  ×  10 cm and under an applied voltage of 60 kV, the maximum throughput of nanofibers is recorded to be approximately144 g m‑2 h‑1.

  9. High-throughput rod-induced electrospinning

    NASA Astrophysics Data System (ADS)

    Wu, Dezhi; Xiao, Zhiming; Teh, Kwok Siong; Han, Zhibin; Luo, Guoxi; Shi, Chuan; Sun, Daoheng; Zhao, Jinbao; Lin, Liwei

    2016-09-01

    A high throughput electrospinning process, directly from flat polymer solution surfaces induced by a moving insulating rod, has been proposed and demonstrated. Different rods made of either phenolic resin or paper with a diameter of 1-3 cm and a resistance of about 100-500 MΩ, has been successfully utilized in the process. The rod is placed approximately 10 mm above the flat polymer solution surface with a moving speed of 0.005-0.4 m s-1 this causes the solution to generate multiple liquid jets under an applied voltage of 15-60 kV for the tip-less electrospinning process. The local electric field induced by the rod can boost electrohydrodynamic instability in order to generate Taylor cones and liquid jets. Experimentally, it is found that a large rod diameter and a small solution-to-rod distance can enhance the local electrical field to reduce the magnitude of the applied voltage. In the prototype setup with poly (ethylene oxide) polymer solution, an area of 5 cm  ×  10 cm and under an applied voltage of 60 kV, the maximum throughput of nanofibers is recorded to be approximately144 g m-2 h-1.

  10. Thawing the Landscape of the Era of High Throughput: Signs of Spring?

    PubMed

    Brady, Donald W

    2015-09-01

    In his latest book, Dr. Kenneth Ludmerer examines the history of graduate medical education (GME) in the United States, including its "era of high throughput" during which residents admitted more patients for shorter periods of time as hospitals focused on decreasing length of stay secondary to prospective payment reform. The author of this Commentary considers the implications of the era of high throughput and how the U.S. health care system must change to address its lasting effects.The era of high throughput initially had incomplete penetrance across the health care system landscape and a variable effect on GME. Trainees were variably aware of the financial forces bearing down on the health care system. Over time, the pervasiveness of the financial pressures and managed care became more complete, and the ubiquity of information through the Internet and social media ensured that residents became more acutely aware of how the changes to the health care system were affecting their education. There is now an opportunity for GME to be the nidus for ushering in an era of cost consciousness focused on patient needs and higher-quality GME rather than on the financial pressures that characterized the era of high throughput. PMID:26164641

  11. High-Throughput Analysis of Enzyme Activities

    SciTech Connect

    Lu, Guoxin

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  12. Next-Generation High-Throughput Functional Annotation of Microbial Genomes

    PubMed Central

    Baric, Ralph S.; Damania, Blossom; Miller, Samuel I.; Rubin, Eric J.

    2016-01-01

    ABSTRACT Host infection by microbial pathogens cues global changes in microbial and host cell biology that facilitate microbial replication and disease. The complete maps of thousands of bacterial and viral genomes have recently been defined; however, the rate at which physiological or biochemical functions have been assigned to genes has greatly lagged. The National Institute of Allergy and Infectious Diseases (NIAID) addressed this gap by creating functional genomics centers dedicated to developing high-throughput approaches to assign gene function. These centers require broad-based and collaborative research programs to generate and integrate diverse data to achieve a comprehensive understanding of microbial pathogenesis. High-throughput functional genomics can lead to new therapeutics and better understanding of the next generation of emerging pathogens by rapidly defining new general mechanisms by which organisms cause disease and replicate in host tissues and by facilitating the rate at which functional data reach the scientific community. PMID:27703071

  13. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors

    PubMed Central

    Colot, Hildur V.; Park, Gyungsoon; Turner, Gloria E.; Ringelberg, Carol; Crew, Christopher M.; Litvinkova, Liubov; Weiss, Richard L.; Borkovich, Katherine A.; Dunlap, Jay C.

    2006-01-01

    The low rate of homologous recombination exhibited by wild-type strains of filamentous fungi has hindered development of high-throughput gene knockout procedures for this group of organisms. In this study, we describe a method for rapidly creating knockout mutants in which we make use of yeast recombinational cloning, Neurospora mutant strains deficient in nonhomologous end-joining DNA repair, custom-written software tools, and robotics. To illustrate our approach, we have created strains bearing deletions of 103 Neurospora genes encoding transcription factors. Characterization of strains during growth and both asexual and sexual development revealed phenotypes for 43% of the deletion mutants, with more than half of these strains possessing multiple defects. Overall, the methodology, which achieves high-throughput gene disruption at an efficiency >90% in this filamentous fungus, promises to be applicable to other eukaryotic organisms that have a low frequency of homologous recombination. PMID:16801547

  14. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.

    PubMed

    Hood, Renee R; DeVoe, Don L

    2015-11-18

    Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large-scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min(-1) in a simple flow-through process.

  15. A pulse-front-tilt-compensated streaked optical spectrometer with high throughput and picosecond time resolution

    NASA Astrophysics Data System (ADS)

    Katz, J.; Boni, R.; Rivlis, R.; Muir, C.; Froula, D. H.

    2016-11-01

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns the beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.

  16. High-throughput multiphoton-induced three-dimensional ablation and imaging for biotissues

    PubMed Central

    Lin, Chun-Yu; Li, Pei-Kao; Cheng, Li-Chung; Li, Yi-Cheng; Chang, Chia-Yuan; Chiang, Ann-Shyn; Dong, Chen Yuan; Chen, Shean-Jen

    2015-01-01

    In this study, a temporal focusing-based high-throughput multiphoton-induced ablation system with axially-resolved widefield multiphoton excitation has been successfully applied to rapidly disrupt biotissues. Experimental results demonstrate that this technique features high efficiency for achieving large-area laser ablation without causing serious photothermal damage in non-ablated regions. Furthermore, the rate of tissue processing can reach around 1.6 × 106 μm3/s in chicken tendon. Moreover, the temporal focusing-based multiphoton system can be efficiently utilized in optical imaging through iterating high-throughput multiphoton-induced ablation machining followed by widefield optical sectioning; hence, it has the potential to obtain molecular images for a whole bio-specimen. PMID:25780739

  17. High-throughput and multiplexed protein array technology: protein-DNA and protein-protein interactions.

    PubMed

    Sakanyan, Vehary

    2005-02-01

    Miniaturized protein arrays address protein interactions with various types of molecules in a high-throughput and multiplexed fashion. This review focuses on achievements in the analysis of protein-DNA and protein-protein interactions. The technological feasibility of protein arrays depends on the different factors that enable the arrayed proteins to recognize molecular partners and on the specificity of the interactions involved. Proteome-scale studies of molecular interactions require high-throughput approaches for both the production and purification of functionally active proteins. Various solutions have been proposed to avoid non-specific protein interactions on array supports and to monitor low-abundance molecules. The data accumulated indicate that this emerging technology is perfectly suited to resolve networks of protein interactions involved in complex physiological and pathological phenomena in different organisms and to develop sensitive tools for biomedical applications.

  18. A medium-throughput crystallization approach.

    PubMed

    Sulzenbacher, Gerlind; Gruez, Arnaud; Roig-Zamboni, Véronique; Spinelli, Silvia; Valencia, Christel; Pagot, Fabienne; Vincentelli, Renaud; Bignon, Christophe; Salomoni, Aurelia; Grisel, Sacha; Maurin, Damien; Huyghe, Céline; Johansson, Kent; Grassick, Alice; Roussel, Alain; Bourne, Yves; Perrier, Sophie; Miallau, Linda; Cantau, Phillippe; Blanc, Eric; Genevois, Michel; Grossi, Alain; Zenatti, André; Campanacci, Valérie; Cambillau, Christian

    2002-12-01

    The first results of a medium-scale structural genomics program clearly demonstrate the value of using a medium-throughput crystallization approach based on a two-step procedure: a large screening step employing robotics, followed by manual or automated optimization of the crystallization conditions. The structural genomics program was based on cloning in the Gateway vectors pDEST17, introducing a long 21-residue tail at the N-terminus. So far, this tail has not appeared to hamper crystallization. In ten months, 25 proteins were subjected to crystallization; 13 yielded crystals, of which ten led to usable data sets and five to structures. Furthermore, the results using a robot dispensing 50-200 nl drops indicate that smaller protein samples can be used for crystallization. These still partial results might indicate present and future directions for those who have to make crucial choices concerning their crystallization platform in structural genomics programs. PMID:12454472

  19. A medium-throughput crystallization approach.

    PubMed

    Sulzenbacher, Gerlind; Gruez, Arnaud; Roig-Zamboni, Véronique; Spinelli, Silvia; Valencia, Christel; Pagot, Fabienne; Vincentelli, Renaud; Bignon, Christophe; Salomoni, Aurelia; Grisel, Sacha; Maurin, Damien; Huyghe, Céline; Johansson, Kent; Grassick, Alice; Roussel, Alain; Bourne, Yves; Perrier, Sophie; Miallau, Linda; Cantau, Phillippe; Blanc, Eric; Genevois, Michel; Grossi, Alain; Zenatti, André; Campanacci, Valérie; Cambillau, Christian

    2002-12-01

    The first results of a medium-scale structural genomics program clearly demonstrate the value of using a medium-throughput crystallization approach based on a two-step procedure: a large screening step employing robotics, followed by manual or automated optimization of the crystallization conditions. The structural genomics program was based on cloning in the Gateway vectors pDEST17, introducing a long 21-residue tail at the N-terminus. So far, this tail has not appeared to hamper crystallization. In ten months, 25 proteins were subjected to crystallization; 13 yielded crystals, of which ten led to usable data sets and five to structures. Furthermore, the results using a robot dispensing 50-200 nl drops indicate that smaller protein samples can be used for crystallization. These still partial results might indicate present and future directions for those who have to make crucial choices concerning their crystallization platform in structural genomics programs.

  20. High Throughput Screening Tools for Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Wong-Ng, W.; Yan, Y.; Otani, M.; Martin, J.; Talley, K. R.; Barron, S.; Carroll, D. L.; Hewitt, C.; Joress, H.; Thomas, E. L.; Green, M. L.; Tang, X. F.

    2015-06-01

    A suite of complementary high-throughput screening systems for combinatorial films was developed at National Institute of Standards and Technology to facilitate the search for efficient thermoelectric materials. These custom-designed capabilities include a facility for combinatorial thin film synthesis and a suite of tools for screening the Seebeck coefficient, electrical resistance (electrical resistivity), and thermal effusivity (thermal conductivity) of these films. The Seebeck coefficient and resistance are measured via custom-built automated apparatus at both ambient and high temperatures. Thermal effusivity is measured using a frequency domain thermoreflectance technique. This paper will discuss applications using these tools on representative thermoelectric materials, including combinatorial composition-spread films, conventional films, single crystals, and ribbons.

  1. A high-throughput neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  2. High-throughput cellular RNA device engineering.

    PubMed

    Townshend, Brent; Kennedy, Andrew B; Xiang, Joy S; Smolke, Christina D

    2015-10-01

    Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary-interaction RNA devices performed better in terms of gene silencing, activation ratio and ligand sensitivity than optimized RNA devices that rely on secondary-structure changes. We applied our method to build biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292

  3. High throughput assays for analyzing transcription factors.

    PubMed

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  4. Strategic Planning for Higher Education.

    ERIC Educational Resources Information Center

    Kotler, Philip; Murphy, Patrick E.

    1981-01-01

    The framework necessary for achieving a strategic planning posture in higher education is outlined. The most important benefit of strategic planning for higher education decision makers is that it forces them to undertake a more market-oriented and systematic approach to long- range planning. (Author/MLW)

  5. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider

  6. Throughput vs. the M2 quality factor

    NASA Astrophysics Data System (ADS)

    Alda, Javier; Alonso, Jose; Bernabeu, Eusebio

    1998-10-01

    The quality parameter M2 has been accepted as an useful averaged magnitude for comparing and classify laser beams with respect to their behavior in their propagation. Its definition is based on the product of two magnitudes: (the spatial size of the laser beam) X (the angular size of the laser beam). This product resembles very much a characteristic magnitude used in radiometry: the throughput, or etendue. In this work we will relate both concepts in order to identify one to the other. From a radiometry point of view the laser beam propagation can be seen as the transportation of light flux from a given source plane to a receiving plane. In most of the cases the practical situation involving laser beam propagation requires this kind of radiometric calculation for safety and energy delivery purposes. On the other hand the radiance of a laser source has been formally related with the Wigner distribution what show up some close relations between moment parametrization of laser beams and radiometric magnitudes. The description of the laser beam in terms of the moments of its amplitude distribution works very well in the formalism but it finds some difficulties to be reached in an experimental setup. Otherwise, the measurement of the energy of the beam can be easily obtained by several methods, such as the knife edge technique and some other related procedures. Our goal is find out the intrinsic relations between the easy to measure radiometric quantities and the easy to calculate generalized parameters. We will focus our attention in the relation between quality factor and throughput.

  7. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    SciTech Connect

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  8. General Achievement Trends: Oklahoma

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  9. General Achievement Trends: Georgia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  10. General Achievement Trends: Nebraska

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  11. General Achievement Trends: Arkansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  12. General Achievement Trends: Maryland

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  13. General Achievement Trends: Maine

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  14. General Achievement Trends: Iowa

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  15. General Achievement Trends: Texas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  16. General Achievement Trends: Hawaii

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  17. General Achievement Trends: Kansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  18. General Achievement Trends: Florida

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  19. General Achievement Trends: Massachusetts

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  20. General Achievement Trends: Tennessee

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  1. General Achievement Trends: Alabama

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  2. General Achievement Trends: Virginia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  3. General Achievement Trends: Michigan

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  4. General Achievement Trends: Colorado

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  5. Inverting the Achievement Pyramid

    ERIC Educational Resources Information Center

    White-Hood, Marian; Shindel, Melissa

    2006-01-01

    Attempting to invert the pyramid to improve student achievement and increase all students' chances for success is not a new endeavor. For decades, educators have strategized, formed think tanks, and developed school improvement teams to find better ways to improve the achievement of all students. Currently, the No Child Left Behind Act (NCLB) is…

  6. Achievement Test Program.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Trade and Industrial Education Service.

    The Ohio Trade and Industrial Education Achievement Test battery is comprised of seven basic achievement tests: Machine Trades, Automotive Mechanics, Basic Electricity, Basic Electronics, Mechanical Drafting, Printing, and Sheet Metal. The tests were developed by subject matter committees and specialists in testing and research. The Ohio Trade and…

  7. School Effects on Achievement.

    ERIC Educational Resources Information Center

    Nichols, Robert C.

    The New York State Education Department conducts a Pupil Evaluation Program (PEP) in which each year all third, sixth, and ninth grade students in the state are given a series of achievement tests in reading and mathematics. The data accumulated by the department includes achievement test scores, teacher characteristics, building and curriculum…

  8. Heritability of Creative Achievement

    ERIC Educational Resources Information Center

    Piffer, Davide; Hur, Yoon-Mi

    2014-01-01

    Although creative achievement is a subject of much attention to lay people, the origin of individual differences in creative accomplishments remain poorly understood. This study examined genetic and environmental influences on creative achievement in an adult sample of 338 twins (mean age = 26.3 years; SD = 6.6 years). Twins completed the Creative…

  9. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  10. Achieving Public Schools

    ERIC Educational Resources Information Center

    Abowitz, Kathleen Knight

    2011-01-01

    Public schools are functionally provided through structural arrangements such as government funding, but public schools are achieved in substance, in part, through local governance. In this essay, Kathleen Knight Abowitz explains the bifocal nature of achieving public schools; that is, that schools are both subject to the unitary Public compact of…

  11. High-Throughput Baculovirus Expression System for Membrane Protein Production.

    PubMed

    Kalathur, Ravi C; Panganiban, Marinela; Bruni, Renato

    2016-01-01

    The ease of use, robustness, cost-effectiveness, and posttranslational machinery make baculovirus expression system a popular choice for production of eukaryotic membrane proteins. This system can be readily adapted for high-throughput operations. This chapter outlines the techniques and procedures for cloning, transfection, small-scale production, and purification of membrane protein samples in a high-throughput manner. PMID:27485337

  12. High throughput virus plaque quantitation using a flatbed scanner.

    PubMed

    Sullivan, Kate; Kloess, Johannes; Qian, Chen; Bell, Donald; Hay, Alan; Lin, Yi Pu; Gu, Yan

    2012-01-01

    The plaque assay is a standard technique for measuring influenza virus infectivity and inhibition of virus replication. Counting plaque numbers and quantifying virus infection of cells in multiwell plates quickly, accurately and automatically remain a challenge. Visual inspection relies upon experience, is subjective, often time consuming, and has less reproducibility than automated methods. In this paper, a simple, high throughput imaging-based alternative is proposed which uses a flatbed scanner and image processing software to quantify the infected cell population and plaque formation. Quantitation results were evaluated with reference to visual counting and achieved better than 80% agreement. The method was shown to be particularly advantageous in titration of the number of plaques and infected cells when influenza viruses produce a heterogeneous population of small plaques. It was also shown to be insensitive to the densities of plaques in determination of neutralization titres and IC(50)s of drug susceptibility. In comparison to other available techniques, this approach is cost-effective, relatively accurate, and readily available.

  13. Higher order Bezier circles

    NASA Technical Reports Server (NTRS)

    Chou, Jin

    1993-01-01

    Rational Bezier and B-spline representations of circles have been heavily publicized. However, all the literature assumes the rational Bezier segments in the homogeneous space are both planar and (equivalent to) quadratic. This creates the illusion that circles can only be achieved by planar and quadratic curves. Circles that are formed by higher order rational Bezier curves which are nonplanar in the homogeneous space are shown. The problem of whether it is possible to represent a complete circle with one Bezier curve is investigated. In addition, some other interesting properties of cubic Bezier arcs are discussed.

  14. Mining Chemical Activity Status from High-Throughput Screening Assays

    PubMed Central

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare. PMID:26658480

  15. High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array

    PubMed Central

    Colyer, Ryan A.; Scalia, Giuseppe; Rech, Ivan; Gulinatti, Angelo; Ghioni, Massimo; Cova, Sergio; Weiss, Shimon; Michalet, Xavier

    2010-01-01

    We present a novel approach to high-throughput Fluorescence Correlation Spectroscopy (FCS) which enables us to obtain one order of magnitude improvement in acquisition time. Our approach utilizes a liquid crystal on silicon spatial light modulator to generate dynamically adjustable focal spots, and uses an eight-pixel monolithic single-photon avalanche photodiode array. We demonstrate the capabilities of this system by showing FCS of Rhodamine 6G under various viscosities, and by showing that, with proper calibration of each detection channel, one order of magnitude improvement in acquisition speed is obtained. More generally, our approach will allow higher throughput single-molecule studies to be performed. PMID:21258559

  16. Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Flammer, Gordon H.; Mecham, Robert C.

    1974-01-01

    Compares the lecture and self-paced methods of instruction on the basis of student motivation and achieveme nt, comparing motivating and demotivating factors in each, and their potential for motivation and achievement. (Authors/JR)

  17. Maryland's Achievements in Public Education, 2011

    ERIC Educational Resources Information Center

    Maryland State Department of Education, 2011

    2011-01-01

    This report presents Maryland's achievements in public education for 2011. Maryland's achievements include: (1) Maryland's public schools again ranked #1 in the nation in Education Week's 2011 Quality Counts annual report; (2) Maryland ranked 1st nationwide for a 3rd year in a row in the percentage of public school students scoring 3 or higher on…

  18. Mathematics Coursework Regulates Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, Xin; Wilkins, Jesse L. M.

    2007-01-01

    Using data from the Longitudinal Study of American Youth (LSAY), we examined the extent to which students' mathematics coursework regulates (influences) the rate of growth in mathematics achievement during middle and high school. Graphical analysis showed that students who started middle school with higher achievement took individual mathematics…

  19. Throughput analysis for the National Airspace System

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Chandrasekar

    The United States National Airspace System (NAS) network performance is currently measured using a variety of metrics based on delay. Developments in the fields of wireless communication, manufacturing and other modes of transportation like road, freight, etc. have explored various metrics that complement the delay metric. In this work, we develop a throughput concept for both the terminal and en-route phases of flight inspired by studies in the above areas and explore the applications of throughput metrics for the en-route airspace of the NAS. These metrics can be applied to the NAS performance at each hierarchical level—the sector, center, regional and national and will consist of multiple layers of networks with the bottom level comprising the traffic pattern modelled as a network of individual sectors acting as nodes. This hierarchical approach is especially suited for executive level decision making as it gives an overall picture of not just the inefficiencies but also the aspects where the NAS has performed well in a given situation from which specific information about the effects of a policy change on the NAS performance at each level can be determined. These metrics are further validated with real traffic data using the Future Air Traffic Management Concepts Evaluation Tool (FACET) for three en-route sectors and an Air Route Traffic Control Center (ARTCC). Further, this work proposes a framework to compute the minimum makespan and the capacity of a runway system in any configuration. Towards this, an algorithm for optimal arrival and departure flight sequencing is proposed. The proposed algorithm is based on a branch-and-bound technique and allows for the efficient computation of the best runway assignment and sequencing of arrival and departure operations that minimize the makespan at a given airport. The lower and upper bounds of the cost of each branch for the best first search in the branch-and-bound algorithm are computed based on the minimum

  20. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

    PubMed

    Najah, Majdi; Calbrix, Raphaël; Mahendra-Wijaya, I Putu; Beneyton, Thomas; Griffiths, Andrew D; Drevelle, Antoine

    2014-12-18

    Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source. PMID:25525991

  1. Post-high-throughput screening analysis: an empirical compound prioritization scheme.

    PubMed

    Oprea, Tudor I; Bologa, Cristian G; Edwards, Bruce S; Prossnitz, Eric R; Sklar, Larry A

    2005-08-01

    An empirical scheme to evaluate and prioritize screening hits from high-throughput screening (HTS) is proposed. Negative scores are given when chemotypes found in the HTS hits are present in annotated databases such as MDDR and WOMBAT or for testing positive in toxicity-related experiments reported in TOXNET. Positive scores were given for higher measured biological activities, for testing negative in toxicity-related literature, and for good overlap when profiled against drug-related properties. Particular emphasis is placed on estimating aqueous solubility to prioritize in vivo experiments. This empirical scheme is given as an illustration to assist the decision-making process in selecting chemotypes and individual compounds for further experimentation, when confronted with multiple hits from high-throughput experiments. The decision-making process is discussed for a set of G-protein coupled receptor antagonists and validated on a literature example for dihydrofolate reductase inhibition.

  2. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

    PubMed

    Najah, Majdi; Calbrix, Raphaël; Mahendra-Wijaya, I Putu; Beneyton, Thomas; Griffiths, Andrew D; Drevelle, Antoine

    2014-12-18

    Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source.

  3. High-Throughput Single-Molecule Studies of Protein-DNA Interactions

    PubMed Central

    Robison, Aaron D.; Finkelstein, Ilya J.

    2014-01-01

    Fluorescence and force-based single-molecule studies of protein-nucleic acid interactions continue to shed critical insights into many aspects of DNA and RNA processing. As single-molecule assays are inherently low-throughput, obtaining statistically relevant datasets remains a major challenge. Additionally, most fluorescence-based single-molecule particle-tracking assays are limited to observing fluorescent proteins that are in the low-nanomolar range, as spurious background signals predominate at higher fluorophore concentrations. These technical limitations have traditionally limited the types of questions that could be addressed via single-molecule methods. In this review, we describe new approaches for high-throughput and high-concentration single-molecule biochemical studies. We conclude with a discussion of outstanding challenges for the single-molecule biologist and how these challenges can be tackled to further approach the biochemical complexity of the cell. PMID:24859086

  4. High Throughput Analysis of Chiral Compounds Using Capillary Electrochromatography (CEC) and CEC-Mass Spectrometry with Cellulose Based Stationary Phases

    PubMed Central

    Bragg, William; Shamsi, Shahab A.

    2014-01-01

    To fulfill the ever growing demand for rapid chiral analysis, this research presents an approach for highthroughput enantiomeric separations and sensitive detection of model chiral analytes using capillary electrochromatography (CEC) with UV and MS detection. This was achieved utilizing a short 7 cm CEC columns packed with cellulose tris (3,5-dimethyl-phenylcarbamate) (CDMPC) or sulfonated cellulose tris (3,5-dimethylphenylcarbamate) (CDMPC-SO3) chiral stationary phases (CSPs) applying outlet side injections in CEC-UV. The separation performance was compared between CDMPC and CDMPC-SO3 CSPs for rapid enantio-separation in CEC-UV mode. In addition, using a high sensitivity UV-flow cell in combination with outlet side injections, the S/N and hence the limit of detection of chiral drug could be improved. The 7-cm packed column was also used with traditional inlet injections for CEC coupled to a low-cost single-quadrupole MS. While outlet side injection was not possible in CEC-MS due to instrumentation constraints, the combined use of a short 7 cm column packed with CDMPC-SO3 CSP provided several fold higher throughput. Both CEC-UV and CEC-MS with short packed bed has the potential for a simple, sensitive and cost-effective method for enantiomeric drug profiling in biological samples. PMID:25264392

  5. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Li, Fenglei

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  6. Reliability and throughput issues for optical wireless and RF wireless systems

    NASA Astrophysics Data System (ADS)

    Yu, Meng

    The fast development of wireless communication technologies has two main trends. On one hand, in point-to-point communications, the demand for higher throughput called for the emergence of wireless broadband techniques including optical wireless (OW). One the other hand, wireless networks are becoming pervasive. New application of wireless networks ask for more flexible system infrastructures beyond the point-to-point prototype to achieve better performance. This dissertation investigates two topics on the reliability and throughput issues of new wireless technologies. The first topic is to study the capacity, and practical forward error control strategies for OW systems. We investigate the performance of OW systems under weak atmospheric turbulence. We first investigate the capacity and power allocation for multi-laser and multi-detector systems. Our results show that uniform power allocation is a practically optimal solution for paralleled channels. We also investigate the performance of Reed Solomon (RS) codes and turbo codes for OW systems. We present RS codes as good candidates for OW systems. The second topic targets user cooperation in wireless networks. We evaluate the relative merits of amplify-forward (AF) and decode-forward (DF) in practical scenarios. Both analysis and simulations show that the overall system performance is critically affected by the quality of the inter-user channel. Following this result, we investigate two schemes to improve the overall system performance. We first investigate the impact of the relay location on the overall system performance and determine the optimal location of relay. A best-selective single-relay 1 system is proposed and evaluated. Through the analysis of the average capacity and outage, we show that a small candidate pool of 3 to 5 relays suffices to reap most of the "geometric" gain available to a selective system. Second, we propose a new user cooperation scheme to provide an effective better inter-user channel

  7. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.

    PubMed

    Xiang, Nan; Ni, Zhonghua

    2015-12-01

    Herein, we explored the blood cell focusing and plasma isolation using a spiral inertial microfluidic device. First, the flow-rate and concentration effects on the migration dynamics of blood cells were systematically investigated to uncover the focusing mechanisms and steric crowding effects of cells in Dean-coupled inertial flows. A novel phenomenon that the focusing status of discoid red blood cells (RBCs) changes according to the channel height was discovered. These experimental data may provide valuable insights for the high-throughput processing of blood samples using inertial microfluidics. On the basis of the improved understandings on blood cell focusing, efficient isolation of plasma from whole blood with a 20-fold dilution was achieved at a throughput up to 700 μl/min. The purity of the isolated blood plasma was close to 100 %, and the plasma yield was calculated to be 38.5 %. As compared with previously-reported devices, our spiral inertial microfluidic device provides a balanced overall performance, and has overriding advantages in terms of processing throughput and operating efficiency.

  8. High-throughput microplate enzymatic assays for fast sugar and acid quantification in apple and tomato.

    PubMed

    Vermeir, S; Nicolaï, B M; Jans, K; Maes, G; Lammertyn, J

    2007-05-01

    In this article, we report on the use of miniaturized and automated enzymatic assays as an alternative technology for fast sugar and acid quantification in apples and tomatoes. Enzymatic assays for d-glucose, d-fructose, sucrose, D-sorbitol/xylitol, L-malic acid, citric acid, succinic acid, and L-glutamic acid were miniaturized from the standard 3 mL assays in cuvettes into assays of 200 microL or lower in 96 or 384 well microplates. The miniaturization and the automation were achieved with a four channel automatic liquid handling system in order to reduce the dispensing errors and to obtain an increased sample throughput. Performance factors (limit of detection, linearity of calibration curve, and repeatability) of the assays with standard solutions were proven to be satisfactory. The automated and miniaturized assays were validated with high-pressure liquid chromatography (HPLC) analyses for the quantification of sugars and acids in tomato and apple extracts. The high correlation between the two techniques for the different components indicates that the high-throughput microplate enzymatic assays can serve as a fast, reliable, and inexpensive alternative for HPLC as the standard analysis technique in the taste characterization of fruit and vegetables. In addition to the analysis of extracts, the high-throughput microplate enzymatic assays were used for the direct analysis of centrifuged and filtered tomato juice with an additional advantage that the sample preparation time and analysis costs are reduced significantly.

  9. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.

    PubMed

    Xiang, Nan; Ni, Zhonghua

    2015-12-01

    Herein, we explored the blood cell focusing and plasma isolation using a spiral inertial microfluidic device. First, the flow-rate and concentration effects on the migration dynamics of blood cells were systematically investigated to uncover the focusing mechanisms and steric crowding effects of cells in Dean-coupled inertial flows. A novel phenomenon that the focusing status of discoid red blood cells (RBCs) changes according to the channel height was discovered. These experimental data may provide valuable insights for the high-throughput processing of blood samples using inertial microfluidics. On the basis of the improved understandings on blood cell focusing, efficient isolation of plasma from whole blood with a 20-fold dilution was achieved at a throughput up to 700 μl/min. The purity of the isolated blood plasma was close to 100 %, and the plasma yield was calculated to be 38.5 %. As compared with previously-reported devices, our spiral inertial microfluidic device provides a balanced overall performance, and has overriding advantages in terms of processing throughput and operating efficiency. PMID:26553099

  10. Improved workflows for high throughput library preparation using the transposome-based nextera system

    PubMed Central

    2013-01-01

    Background The Nextera protocol, which utilises a transposome based approach to create libraries for Illumina sequencing, requires pure DNA template, an accurate assessment of input concentration and a column clean-up that limits its applicability for high-throughput sample preparation. We addressed the identified limitations to develop a robust workflow that supports both rapid and high-throughput projects also reducing reagent costs. Results We show that an initial bead-based normalisation step can remove the need for quantification and improves sample purity. A 75% cost reduction was achieved with a low-volume modified protocol which was tested over genomes with different GC content to demonstrate its robustness. Finally we developed a custom set of index tags and primers which increase the number of samples that can simultaneously be sequenced on a single lane of an Illumina instrument. Conclusions We addressed the bottlenecks of Nextera library construction to produce a modified protocol which harnesses the full power of the Nextera kit and allows the reproducible construction of libraries on a high-throughput scale reducing the associated cost of the kit. PMID:24256843

  11. Improved-throughput traction microscopy based on fluorescence micropattern for manual microscopy.

    PubMed

    Liu, Kai; Yuan, Yuan; Huang, Jianyong; Wei, Qiong; Pang, Mingshu; Xiong, Chunyang; Fang, Jing

    2013-01-01

    Traction force microscopy (TFM) is a quantitative technique for measuring cellular traction force, which is important in understanding cellular mechanotransduction processes. Traditional TFM has a significant limitation in that it has a low measurement throughput, commonly one per TFM dish, due to a lack of cell position information. To obtain enough cellular traction force data, an onerous workload is required including numerous TFM dish preparations and heavy cell-seeding activities, creating further difficulty in achieving identical experimental conditions among batches. In this paper, we present an improved-throughput TFM method using the well-developed microcontact printing technique and chemical modifications of linking microbeads to the gel surface to address these limitations. Chemically linking the microbeads to the gel surface has no significant influence on cell proliferation, morphology, cytoskeleton, and adhesion. Multiple pairs of force loaded and null force fluorescence images can be easily acquired by means of manual microscope with the aid of a fluorescence micropattern made by microcontact printing. Furthermore, keeping the micropattern separate from cells by using gels effectively eliminates the potential negative effect of the micropattern on the cells. This novel design greatly improves the analysis throughput of traditional TFM from one to at least twenty cells per petri dish without losing unique advantages, including a high spatial resolution of traction measurements. This newly developed method will boost the investigation of cell-matrix mechanical interactions.

  12. Acoustic Droplet Ejection Applications for High-Throughput Screening of Infectious Agents.

    PubMed

    Rasmussen, Lynn; White, E Lucile; Bostwick, James R

    2016-02-01

    When acoustic droplet ejection technology was first introduced for high-throughput applications, it was used primarily for dispensing compounds dissolved in DMSO. The high precision and accuracy achieved for low-volume transfers in this application were noted by those working outside of the compound management area, and interest was generated in expanding the scope of the technology to include other liquid types. Later-generation instruments included calibrations for several aqueous buffers that were applicable to the life sciences. The High Throughput Screening Center at Southern Research has made use of this range of liquid calibrations for the Infectious Disease Program. The original calibration for DMSO has allowed the preparation of assay-ready plates that can be sent to remote locations. This process was used as part of the collaboration between Southern Research and Galveston National Laboratory, University of Texas Medical Branch, to develop high-throughput screening for biological safety level 4 containment and to provide compounds for two pilot screens that were run there with BSL-4-level pathogens. The aqueous calibrations have been instrumental in miniaturizing assays used for infectious disease, such as qPCR, tissue culture infectious dose 50, and bacterial motility, to make them compatible with HTS operations. PMID:26663786

  13. Subnuclear foci quantification using high-throughput 3D image cytometry

    NASA Astrophysics Data System (ADS)

    Wadduwage, Dushan N.; Parrish, Marcus; Choi, Heejin; Engelward, Bevin P.; Matsudaira, Paul; So, Peter T. C.

    2015-07-01

    Ionising radiation causes various types of DNA damages including double strand breaks (DSBs). DSBs are often recognized by DNA repair protein ATM which forms gamma-H2AX foci at the site of the DSBs that can be visualized using immunohistochemistry. However most of such experiments are of low throughput in terms of imaging and image analysis techniques. Most of the studies still use manual counting or classification. Hence they are limited to counting a low number of foci per cell (5 foci per nucleus) as the quantification process is extremely labour intensive. Therefore we have developed a high throughput instrumentation and computational pipeline specialized for gamma-H2AX foci quantification. A population of cells with highly clustered foci inside nuclei were imaged, in 3D with submicron resolution, using an in-house developed high throughput image cytometer. Imaging speeds as high as 800 cells/second in 3D were achieved by using HiLo wide-field depth resolved imaging and a remote z-scanning technique. Then the number of foci per cell nucleus were quantified using a 3D extended maxima transform based algorithm. Our results suggests that while most of the other 2D imaging and manual quantification studies can count only up to about 5 foci per nucleus our method is capable of counting more than 100. Moreover we show that 3D analysis is significantly superior compared to the 2D techniques.

  14. Protocols and Programs for High-Throughput Growth and Aging Phenotyping in Yeast

    PubMed Central

    Jung, Paul P.; Christian, Nils; Kay, Daniel P.; Skupin, Alexander; Linster, Carole L.

    2015-01-01

    In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting “Colony Forming Units”. To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens. PMID:25822370

  15. Throughput optimization for laser micro structuring

    NASA Astrophysics Data System (ADS)

    Hoppius, Jan S.; Kanitz, A.; Gurevich, E. L.; Ostendorf, A.

    2016-03-01

    Laser pulses in the picosecond and femtosecond regime enable nearly non-thermal material processing where heat effects like molten pools and thermal tensions are often significantly reduced. However, a residual amount of laser energy transforms into heat. As a consequence cumulative multiple shot processing leads to heat accumulation and subsequently lower manufacturing accuracy. To increase the processing throughput without losing quality, it is important to optimize the laser pulse properties and the ablation strategy to further reduce thermal effects. Due to a low heat capacity in small structures, it is necessary to consider the substrate dimensions while performing micro- and nanoprocessing. In contrast to bulk material ablation, the heat dissipation is confined by the small heat capacity of microstructures. Especially for complex structures, it is time-consuming to find efficient processing parameters manually. For this reason, an in-situ evaluation system based on electrical resistivity measurements for on-line control of the ablation process was developed to optimize the laser parameters. In the work presented, the efficiency of 35 femtosecond pulsed laser ablation was evaluated on copper structures in the micrometer range. Furthermore, these results have been compared and evaluated with surface profiles measured by white-light interferometry.

  16. Systems Analysis of High–Throughput Data

    PubMed Central

    Braun, Rosemary

    2015-01-01

    Modern high–throughput assays yield detailed characterizations of the genomic, transcriptomic, and proteomic states of biological samples, enabling us to probe the molecular mechanisms that regulate hematopoiesis or give rise to hematological disorders. At the same time, the high dimensionality of the data and the complex nature of biological interaction networks present significant analytical challenges in identifying causal variations and modeling the underlying systems biology. In addition to identifying significantly disregulated genes and proteins, integrative analysis approaches that allow the investigation of these single genes within a functional context are required. This chapter presents a survey of current computational approaches for the statistical analysis of high–dimensional data and the development of systems–level models of cellular signaling and regulation. Specifically, we focus on multi–gene analysis methods and the integration of expression data with domain knowledge (such as biological pathways) and other gene–wise information (e.g., sequence or methylation data) to identify novel functional modules in the complex cellular interaction network. PMID:25480641

  17. High-Throughput Enzyme Kinetics Using Microarrays

    SciTech Connect

    Guoxin Lu; Edward S. Yeung

    2007-11-01

    We report a microanalytical method to study enzyme kinetics. The technique involves immobilizing horseradish peroxidase on a poly-L-lysine (PLL)- coated glass slide in a microarray format, followed by applying substrate solution onto the enzyme microarray. Enzyme molecules are immobilized on the PLL-coated glass slide through electrostatic interactions, and no further modification of the enzyme or glass slide is needed. In situ detection of the products generated on the enzyme spots is made possible by monitoring the light intensity of each spot using a scientific-grade charged-coupled device (CCD). Reactions of substrate solutions of various types and concentrations can be carried out sequentially on one enzyme microarray. To account for the loss of enzyme from washing in between runs, a standard substrate solution is used for calibration. Substantially reduced amounts of substrate solution are consumed for each reaction on each enzyme spot. The Michaelis constant K{sub m} obtained by using this method is comparable to the result for homogeneous solutions. Absorbance detection allows universal monitoring, and no chemical modification of the substrate is needed. High-throughput studies of native enzyme kinetics for multiple enzymes are therefore possible in a simple, rapid, and low-cost manner.

  18. Orthogonal NGS for High Throughput Clinical Diagnostics.

    PubMed

    Chennagiri, Niru; White, Eric J; Frieden, Alexander; Lopez, Edgardo; Lieber, Daniel S; Nikiforov, Anastasia; Ross, Tristen; Batorsky, Rebecca; Hansen, Sherry; Lip, Va; Luquette, Lovelace J; Mauceli, Evan; Margulies, David; Milos, Patrice M; Napolitano, Nichole; Nizzari, Marcia M; Yu, Timothy; Thompson, John F

    2016-04-19

    Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly.

  19. Orthogonal NGS for High Throughput Clinical Diagnostics

    PubMed Central

    Chennagiri, Niru; White, Eric J.; Frieden, Alexander; Lopez, Edgardo; Lieber, Daniel S.; Nikiforov, Anastasia; Ross, Tristen; Batorsky, Rebecca; Hansen, Sherry; Lip, Va; Luquette, Lovelace J.; Mauceli, Evan; Margulies, David; Milos, Patrice M.; Napolitano, Nichole; Nizzari, Marcia M.; Yu, Timothy; Thompson, John F.

    2016-01-01

    Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly. PMID:27090146

  20. High-Throughput Screening in Primary Neurons

    PubMed Central

    Sharma, Punita; Ando, D. Michael; Daub, Aaron; Kaye, Julia A.; Finkbeiner, Steven

    2013-01-01

    Despite years of incremental progress in our understanding of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), there are still no disease-modifying therapeutics. The discrepancy between the number of lead compounds and approved drugs may partially be a result of the methods used to generate the leads and highlights the need for new technology to obtain more detailed and physiologically relevant information on cellular processes in normal and diseased states. Our high-throughput screening (HTS) system in a primary neuron model can help address this unmet need. HTS allows scientists to assay thousands of conditions in a short period of time which can reveal completely new aspects of biology and identify potential therapeutics in the span of a few months when conventional methods could take years or fail all together. HTS in primary neurons combines the advantages of HTS with the biological relevance of intact, fully differentiated neurons which can capture the critical cellular events or homeostatic states that make neurons uniquely susceptible to disease-associated proteins. We detail methodologies of our primary neuron HTS assay workflow from sample preparation to data reporting. We also discuss our adaptation of our HTS system into high-content screening (HCS), a type of HTS that uses multichannel fluorescence images to capture biological events in situ, and is uniquely suited to study dynamical processes in living cells. PMID:22341232

  1. Blocking Filters with Enhanced Throughput for X-Ray Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Grove, David; Betcher, Jacob; Hagen, Mark

    2012-01-01

    New and improved blocking filters (see figure) have been developed for microcalorimeters on several mission payloads, made of high-transmission polyimide support mesh, that can replace the nickel mesh used in previous blocking filter flight designs. To realize the resolution and signal sensitivity of today s x-ray microcalorimeters, significant improvements in the blocking filter stack are needed. Using high-transmission polyimide support mesh, it is possible to improve overall throughput on a typical microcalorimeter such as Suzaku s X-ray Spectrometer by 11%, compared to previous flight designs. Using polyimide to replace standard metal mesh means the mesh will be transparent to energies 3 keV and higher. Incorporating polyimide s advantageous strength-to-weight ratio, thermal stability, and transmission characteristics permits thinner filter materials, significantly enhancing through - put. A prototype contamination blocking filter for ASTRO-H has passed QT-level acoustic testing. Resistive traces can also be incorporated to provide decontamination capability to actively restore filter performance in orbit.

  2. High-Throughput FRET Assay Yields Allosteric SERCA Activators

    PubMed Central

    Cornea, Razvan L.; Lockamy, Elizabeth L.; Gruber, Simon J.; Muretta, Joseph M.; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M.; Gillispie, Gregory D.; Thomas, David D.

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarco-/endoplasmic reticulum Ca-ATPase (SERCA) by its endogenous regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca2+ regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20,000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 primary hits (0.2%), 31 (72%) were found to be false positives upon more thorough testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and pre-clinical testing. We were concerned about the high rate of false positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HT. PMID:22923787

  3. High-throughput FRET assay yields allosteric SERCA activators.

    PubMed

    Cornea, Razvan L; Gruber, Simon J; Lockamy, Elizabeth L; Muretta, Joseph M; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M; Gillispie, Gregory D; Thomas, David D

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarcoplasmic reticulum Ca-ATPase (SERCA) by its cardiac regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca(2+) regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20 000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 hits (0.2%), 31 (72%) were found to be false-positives upon more thorough FRET testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and preclinical testing. We were concerned about the high rate of false-positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HTS.

  4. New Lung Cancer Panel for High-Throughput Targeted Resequencing

    PubMed Central

    Kim, Eun-Hye; Lee, Sunghoon; Park, Jongsun; Lee, Kyusang; Bhak, Jong

    2014-01-01

    We present a new next-generation sequencing-based method to identify somatic mutations of lung cancer. It is a comprehensive mutation profiling protocol to detect somatic mutations in 30 genes found frequently in lung adenocarcinoma. The total length of the target regions is 107 kb, and a capture assay was designed to cover 99% of it. This method exhibited about 97% mean coverage at 30× sequencing depth and 42% average specificity when sequencing of more than 3.25 Gb was carried out for the normal sample. We discovered 513 variations from targeted exome sequencing of lung cancer cells, which is 3.9-fold higher than in the normal sample. The variations in cancer cells included previously reported somatic mutations in the COSMIC database, such as variations in TP53, KRAS, and STK11 of sample H-23 and in EGFR of sample H-1650, especially with more than 1,000× coverage. Among the somatic mutations, up to 91% of single nucleotide polymorphisms from the two cancer samples were validated by DNA microarray-based genotyping. Our results demonstrated the feasibility of high-throughput mutation profiling with lung adenocarcinoma samples, and the profiling method can be used as a robust and effective protocol for somatic variant screening. PMID:25031567

  5. High-throughput acoustic separation of platelets from whole blood.

    PubMed

    Chen, Yuchao; Wu, Mengxi; Ren, Liqiang; Liu, Jiayang; Whitley, Pamela H; Wang, Lin; Huang, Tony Jun

    2016-09-21

    Platelets contain growth factors which are important in biomedical and clinical applications. In this work, we present an acoustic separation device for high-throughput, non-invasive platelet isolation. In particular, we separated platelets from whole blood at a 10 mL min(-1) throughput, which is three orders of magnitude greater than that of existing acoustic-based platelet separation techniques. Without sample dilution, we observed more than 80% RBC/WBC removal and platelet recovery. High throughput, high separation efficiency, and biocompatibility make this device useful for many clinical applications. PMID:27477388

  6. High-throughput acoustic separation of platelets from whole blood.

    PubMed

    Chen, Yuchao; Wu, Mengxi; Ren, Liqiang; Liu, Jiayang; Whitley, Pamela H; Wang, Lin; Huang, Tony Jun

    2016-09-21

    Platelets contain growth factors which are important in biomedical and clinical applications. In this work, we present an acoustic separation device for high-throughput, non-invasive platelet isolation. In particular, we separated platelets from whole blood at a 10 mL min(-1) throughput, which is three orders of magnitude greater than that of existing acoustic-based platelet separation techniques. Without sample dilution, we observed more than 80% RBC/WBC removal and platelet recovery. High throughput, high separation efficiency, and biocompatibility make this device useful for many clinical applications.

  7. C. elegans in high-throughput drug discovery

    PubMed Central

    O’Reilly, Linda P.; Luke, Cliff J.; Perlmutter, David H.; Silverman, Gary A.; Pak, Stephen C.

    2014-01-01

    C. elegans has proven to be a useful model organism for investigating molecular and cellular aspects of numerous human diseases. More recently, investigators have explored the use of this organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data analysis software have made C. elegans a viable option for automated high-throughput drug screens. This review will outline the evolution of C. elegans-based drug screening, discuss the inherent challenges of using C. elegans, and highlight recent technological advances that have paved the way for future drug screens. PMID:24333896

  8. Towards A Fully Automated High-Throughput Phototransfection System

    PubMed Central

    Cappelleri, David J.; Halasz, Adam; Sul, Jai-Yoon; Kim, Tae Kyung; Eberwine, James; Kumar, Vijay

    2010-01-01

    We have designed and implemented a framework for creating a fully automated high-throughput phototransfection system. Integrated image processing, laser target position calculation, and stage movements show a throughput increase of > 23X over the current manual phototransfection method while the potential for even greater throughput improvements (> 110X) is described. A software tool for automated off-line single cell morphological measurements, as well as real-time image segmentation analysis, has also been constructed and shown to be able quantify changes in the cell before and after the process, successfully characterizing them, using metrics such as cell perimeter, area, major and minor axis length, and eccentricity values. PMID:20706617

  9. A GUINIER CAMERA FOR SR POWDER DIFFRACTION: HIGH RESOLUTION AND HIGH THROUGHPUT.

    SciTech Connect

    SIDDONS,D.P.; HULBERT, S.L.; STEPHENS, P.W.

    2006-05-28

    The paper describe a new powder diffraction instrument for synchrotron radiation sources which combines the high throughput of a position-sensitive detector system with the high resolution normally only provided by a crystal analyzer. It uses the Guinier geometry which is traditionally used with an x-ray tube source. This geometry adapts well to the synchrotron source, provided proper beam conditioning is applied. The high brightness of the SR source allows a high resolution to be achieved. When combined with a photon-counting silicon microstrip detector array, the system becomes a powerful instrument for radiation-sensitive samples or time-dependent phase transition studies.

  10. High-Throughput DNA Array for SNP Detection of KRAS Gene Using a Centrifugal Microfluidic Device.

    PubMed

    Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    Here, we describe detection of single nucleotide polymorphism (SNP) in genomic DNA samples using a NanoBioArray (NBA) chip. Fast DNA hybridization is achieved in the chip when target DNAs are introduced to the surface-arrayed probes using centrifugal force. Gold nanoparticles (AuNPs) are used to assist SNP detection at room temperature. The parallel setting of sample introduction in the spiral channels of the NBA chip enables multiple analyses on many samples, resulting in a technique appropriate for high-throughput SNP detection. The experimental procedure, including chip fabrication, probe array printing, DNA amplification, hybridization, signal detection, and data analysis, is described in detail.

  11. Achieving Diversity in Academia: A Dream Deferred?

    ERIC Educational Resources Information Center

    Leonard, Jacqueline; Horvat, Erin McNamara; Riley-Tillman, T. Chris

    Attempts to achieve diversity in the faculty in institutions of higher education have increased in recent years. Despite these attempts, faculty of color and women are still underrepresented in the higher ranks. This paper presents autobiographies focusing on the career trajectories of three junior faculty members at one institution: a divorced…

  12. Iowa Women of Achievement.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This issue of the Goldfinch highlights some of Iowa's 20th century women of achievement. These women have devoted their lives to working for human rights, education, equality, and individual rights. They come from the worlds of politics, art, music, education, sports, business, entertainment, and social work. They represent Native Americans,…

  13. Achieving Peace through Education.

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    While it is generally agreed that peace is desirable, there are barriers to achieving a peaceful world. These barriers are classified into three major areas: (1) an erroneous view of human nature; (2) injustice; and (3) fear of world unity. In a discussion of these barriers, it is noted that although the consciousness and conscience of the world…

  14. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  15. Leadership Issues: Raising Achievement.

    ERIC Educational Resources Information Center

    Horsfall, Chris, Ed.

    This document contains five papers examining the meaning and operation of leadership as a variable affecting student achievement in further education colleges in the United Kingdom. "Introduction" (Chris Horsfall) discusses school effectiveness studies' findings regarding the relationship between leadership and effective schools, distinguishes…

  16. Achievements or Disasters?

    ERIC Educational Resources Information Center

    Goodwin, MacArthur

    2000-01-01

    Focuses on policy issues that have affected arts education in the twentieth century, such as: interest in discipline-based arts education, influence of national arts associations, and national standards and coordinated assessment. States that whether the policy decisions are viewed as achievements or disasters are for future determination. (CMK)

  17. Achieving True Consensus.

    ERIC Educational Resources Information Center

    Napier, Rod; Sanaghan, Patrick

    2002-01-01

    Uses the example of Vermont's Middlebury College to explore the challenges and possibilities of achieving consensus about institutional change. Discusses why, unlike in this example, consensus usually fails, and presents four demands of an effective consensus process. Includes a list of "test" questions on successful collaboration. (EV)

  18. School Students' Science Achievement

    ERIC Educational Resources Information Center

    Shymansky, James; Wang, Tzu-Ling; Annetta, Leonard; Everett, Susan; Yore, Larry D.

    2013-01-01

    This paper is a report of the impact of an externally funded, multiyear systemic reform project on students' science achievement on a modified version of the Third International Mathematics and Science Study (TIMSS) test in 33 small, rural school districts in two Midwest states. The systemic reform effort utilized a cascading leadership strategy…

  19. Essays on Educational Achievement

    ERIC Educational Resources Information Center

    Ampaabeng, Samuel Kofi

    2013-01-01

    This dissertation examines the determinants of student outcomes--achievement, attainment, occupational choices and earnings--in three different contexts. The first two chapters focus on Ghana while the final chapter focuses on the US state of Massachusetts. In the first chapter, I exploit the incidence of famine and malnutrition that resulted to…

  20. Assessing Handwriting Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Teachers in the school setting need to emphasize quality handwriting across the curriculum. Quality handwriting means that the written content is easy to read in either manuscript or cursive form. Handwriting achievement can be assessed, but not compared to the precision of assessing basic addition, subtraction, multiplication, and division facts.…

  1. Intelligence and Educational Achievement

    ERIC Educational Resources Information Center

    Deary, Ian J.; Strand, Steve; Smith, Pauline; Fernandes, Cres

    2007-01-01

    This 5-year prospective longitudinal study of 70,000+ English children examined the association between psychometric intelligence at age 11 years and educational achievement in national examinations in 25 academic subjects at age 16. The correlation between a latent intelligence trait (Spearman's "g"from CAT2E) and a latent trait of educational…

  2. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.

  3. NCLB: Achievement Robin Hood?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2008-01-01

    In his "Wall Street Journal" op-ed on the 25th of anniversary of "A Nation At Risk", former assistant secretary of education Chester E. Finn Jr. applauded the report for turning U.S. education away from equality and toward achievement. It was not surprising, then, that in mid-2008, Finn arranged a conference to examine the potential "Robin Hood…

  4. INTELLIGENCE, PERSONALITY AND ACHIEVEMENT.

    ERIC Educational Resources Information Center

    MUIR, R.C.; AND OTHERS

    A LONGITUDINAL DEVELOPMENTAL STUDY OF A GROUP OF MIDDLE CLASS CHILDREN IS DESCRIBED, WITH EMPHASIS ON A SEGMENT OF THE RESEARCH INVESTIGATING THE RELATIONSHIP OF ACHIEVEMENT, INTELLIGENCE, AND EMOTIONAL DISTURBANCE. THE SUBJECTS WERE 105 CHILDREN AGED FIVE TO 6.3 ATTENDING TWO SCHOOLS IN MONTREAL. EACH CHILD WAS ASSESSED IN THE AREAS OF…

  5. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  6. Appraising Reading Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    To determine quality sequence in pupil progress, evaluation approaches need to be used which guide the teacher to assist learners to attain optimally. Teachers must use a variety of procedures to appraise student achievement in reading, because no one approach is adequate. Appraisal approaches might include: (1) observation and subsequent…

  7. High-Throughput Sequencing in Mitochondrial DNA Research

    PubMed Central

    Ye, Fei; Samuels, David C.; Clark, Travis; Guo, Yan

    2014-01-01

    Next-generation sequencing, also known as high-throughput sequencing, has greatly enhanced researchers’ ability to conduct biomedical research on all levels. Mitochondrial research has also benefitted greatly from high-throughput sequencing; sequencing technology now allows for screening of all 16569 base pairs of the mitochondrial genome simultaneously for SNPs and low level heteroplasmy and, in some cases, the estimation of mitochondrial DNA copy number. It is important to realize the full potential of high-throughput sequencing for the advancement of mitochondrial research. To this end, we review how high-throughput sequencing has impacted mitochondrial research in the categories of SNPs, low level heteroplasmy, copy number, and structural variants. We also discuss the different types of mitochondrial DNA sequencing and their pros and cons. Based on previous studies conducted by various groups, we provide strategies for processing mitochondrial DNA sequencing data, including assembly, variant calling, and quality control. PMID:24859348

  8. High-Throughput Pharmacokinetics for Environmental Chemicals (SOT)

    EPA Science Inventory

    High throughput screening (HTS) promises to allow prioritization of thousands of environmental chemicals with little or no in vivo information. For bioactivity identified by HTS, toxicokinetic (TK) models are essential to predict exposure thresholds below which no significant bio...

  9. High-throughput sequencing in mitochondrial DNA research.

    PubMed

    Ye, Fei; Samuels, David C; Clark, Travis; Guo, Yan

    2014-07-01

    Next-generation sequencing, also known as high-throughput sequencing, has greatly enhanced researchers' ability to conduct biomedical research on all levels. Mitochondrial research has also benefitted greatly from high-throughput sequencing; sequencing technology now allows for screening of all 16,569 base pairs of the mitochondrial genome simultaneously for SNPs and low level heteroplasmy and, in some cases, the estimation of mitochondrial DNA copy number. It is important to realize the full potential of high-throughput sequencing for the advancement of mitochondrial research. To this end, we review how high-throughput sequencing has impacted mitochondrial research in the categories of SNPs, low level heteroplasmy, copy number, and structural variants. We also discuss the different types of mitochondrial DNA sequencing and their pros and cons. Based on previous studies conducted by various groups, we provide strategies for processing mitochondrial DNA sequencing data, including assembly, variant calling, and quality control.

  10. Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks

    PubMed Central

    Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif

    2015-01-01

    Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902

  11. MIPHENO: Data normalization for high throughput metabolic analysis.

    EPA Science Inventory

    High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...

  12. AOPs & Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making.

    EPA Science Inventory

    As high throughput screening (HTS) approaches play a larger role in toxicity testing, computational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models for this purpose are becoming increasingly more sophisticated...

  13. Development of A High Throughput Method Incorporating Traditional Analytical Devices

    PubMed Central

    White, C. C.; Embree, E.; Byrd, W. E; Patel, A. R.

    2004-01-01

    A high-throughput (high throughput is the ability to process large numbers of samples) and companion informatics system has been developed and implemented. High throughput is defined as the ability to autonomously evaluate large numbers of samples, while an informatics system provides the software control of the physical devices, in addition to the organization and storage of the generated electronic data. This high throughput system includes both an ultra-violet and visible light spectrometer (UV-Vis) and a Fourier transform infrared spectrometer (FTIR) integrated with a multi sample positioning table. This method is designed to quantify changes in polymeric materials occurring from controlled temperature, humidity and high flux UV exposures. The integration of the software control of these analytical instruments within a single computer system is presented. Challenges in enhancing the system to include additional analytical devices are discussed. PMID:27366626

  14. Multiple-injection high-throughput gas chromatography analysis.

    PubMed

    Schafer, Wes; Wang, Heather; Welch, Christopher J

    2016-08-01

    Multiple-injection techniques have been shown to be a simple way to perform high-throughput analysis where the entire experiment resides in a single chromatogram, simplifying the data analysis and interpretation. In this study, multiple-injection techniques are applied to gas chromatography with flame ionization detection and mass detection to significantly increase sample throughput. The unique issues of implementing a traditional "Fast" injection mode of multiple-injection techniques with gas chromatography and mass spectrometry are discussed. Stacked injections are also discussed as means to increase the throughput of longer methods where mass detection is unable to distinguish between analytes of the same mass and longer retentions are required to resolve components of interest. Multiple-injection techniques are shown to increase instrument throughput by up to 70% and to simplify data analysis, allowing hits in multiple parallel experiments to be identified easily. PMID:27292909

  15. HIGH THROUGHPUT ASSESSMENTS OF CONVENTIONAL AND ALTERNATIVE COMPOUNDS

    EPA Science Inventory

    High throughput approaches for quantifying chemical hazard, exposure, and sustainability have the potential to dramatically impact the pace and nature of risk assessments. Integrated evaluation strategies developed at the US EPA incorporate inherency,bioactivity,bioavailability, ...

  16. High throughput growth and characterization of thin film materials

    NASA Astrophysics Data System (ADS)

    Mao, Samuel S.

    2013-09-01

    It usually takes more than 10 years for a new material from initial research to its first commercial application. Therefore, accelerating the pace of discovery of new materials is critical to tackling challenges in areas ranging from clean energy to national security. As discovery of new materials has not kept pace with the product design cycles in many sectors of industry, there is a pressing need to develop and utilize high throughput screening and discovery technologies for the growth and characterization of new materials. This article presents two distinctive types of high throughput thin film material growth approaches, along with a number of high throughput characterization techniques, established in the author's group. These approaches include a second-generation "discrete" combinatorial semiconductor discovery technology that enables the creation of arrays of individually separated thin film semiconductor materials of different compositions, and a "continuous" high throughput thin film material screening technology that enables the realization of ternary alloy libraries with continuously varying elemental ratios.

  17. Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)

    EPA Science Inventory

    High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...

  18. A simple model of throughput calculation for single screw

    NASA Astrophysics Data System (ADS)

    Béreaux, Yves; Charmeau, Jean-Yves; Moguedet, Maël

    2007-04-01

    To be able to predict the throughput of a single-screw extruder or the metering time of an injection moulding machine for a given screw geometry, set of processing conditions and polymeric material is important both for practical and designing purposes. Our simple model show that the screw geometry is the most important parameter, followed by polymer rheology and processing conditions. Melting properties and length seem to intervene to a lesser extent. The calculations hinges on the idea of viewing the entire screw as a pump, conveying a solid and a molten fraction. The evolution of the solid fraction is the essence of the plastication process, but under particular circumstances, its influence on the throughput is nil. This allows us to get a very good estimate on the throughput and pressure development along the screw. Our calculations are compared to different sets of experiments available from the literature. We have consistent agreement both in throughput and pressure with published data.

  19. High Throughput Bent-Pipe Processor Demonstrator

    NASA Astrophysics Data System (ADS)

    Tabacco, P.; Vernucci, A.; Russo, L.; Cangini, P.; Botticchio, T.; Angeletti, P.

    2008-08-01

    The work associated to this article is a study initiative sponsored by ESA/ESTEC that responds to the crucial need of developing new Satellite payload aimed at making rapid progresses in handling large amounts of data at a competitive price with respect to terrestrial one in the telecommunication field. Considering the quite limited band allowed to space communications at Ka band, reusing the same band in a large number of beams is mandatory: therefore beam-forming is the right technological answer. Technological progresses - mainly in the digital domain - also help greatly in increasing the satellite capacity. Next Satellite payload target are set in throughput range of 50Gbps. Despite the fact that the implementation of a wideband transparent processor for a high capacity communication payload is a very challenging task, Space Engineering team in the frame of this ESA study proposed an intermediate step of development for a scalable unit able to demonstrate both the capacity and flexibility objectives for different type of Wideband Beamforming antennas designs. To this aim the article describes the features of Wideband HW (analog and digital) platform purposely developed by Space Engineering in the frame of this ESA/ESTEC contract ("WDBFN" contract) with some preliminary system test results. The same platform and part of the associated SW will be used in the development and demonstration of the real payload digital front end Mux and Demux algorithms as well as the Beam Forming and on Board channel switching in frequency domain. At the time of this article writing, despite new FPGA and new ADC and DAC converters have become available as choices for wideband system implementation, the two HW platforms developed by Space Engineering, namely WDBFN ADC and DAC Boards, represent still the most performing units in terms of analog bandwidth, processing capability (in terms of FPGA module density), SERDES (SERiliazer DESerializers) external links density, integration form

  20. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Amiruddha

    2005-01-01

    cost optics, further increasing throughput at synchrotrons. Preliminary experiments show that the presence of the fluorescent probe does not affect the nucleation process or the quality of the X-ray data obtained.

  1. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2004-01-01

    cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  2. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2005-01-01

    , further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  3. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Minamitani, Elizabeth Forsythe; Pusey, Marc L.

    2004-01-01

    using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  4. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.

    PubMed

    Song, Yongxin; Yang, Jiandong; Pan, Xinxiang; Li, Dongqing

    2015-02-01

    High-throughput particle counting by a differential resistive pulse sensing method in a microfluidic chip is presented in this paper. A sensitive differential microfluidic sensor with multiple detecting channels and one common reference channel was devised. To test the particle counting performance of this chip, an experimental system which consists of the microfluidic chip, electric resistors, an amplification circuit, a LabView based data acquisition device was developed. The influence of the common reference channel on the S/N of particle detection was investigated. The relationship between the hydraulic pressure drop applied across the detecting channel and the counting throughput was experimentally obtained. The experimental results show that the reference channel designed in this work can improve the S/N by ten times, thus enabling sensitive high-throughput particle counting. Because of the greatly improved S/N, the sensing gate with a size of 25 × 50 × 10 μm (W × L × H) in our chips can detect and count particles larger than 1.5 μm in diameter. The counting throughput increases with the increase in the flowing velocity of the sample solution. An average throughput of 7140/min under a flow rate of 10 μL/min was achieved. Comparing with other methods, the structure of the chip and particle detecting mechanism reported in this paper is simple and sensitive, and does not have the crosstalking problem. Counting throughput can be adjusted simply by changing the number of the detecting channels.

  5. Wide-field single metal nanoparticle spectroscopy for high throughput localized surface plasmon resonance sensing.

    PubMed

    Chen, Kok Hao; Hobley, Jonathan; Foo, Yong Lim; Su, Xiaodi

    2011-06-01

    Noble metal nanoparticles (mNPs) have a distinct extinction spectrum arising from their ability to support Localized Surface Plasmon Resonance (LSPR). Single-particle biosensing with LSPR is label free and offers a number of advantages, including single molecular sensitivity, multiplex detection, and in vivo quantification of chemical species etc. In this article, we introduce Single-particle LSPR Imaging (SLI), a wide-field spectral imaging method for high throughput LSPR biosensing. The SLI utilizes a transmission grating to generate the diffraction spectra from multiple mNPs, which are captured using a Charge Coupled Device (CCD). With the SLI, we are able to simultaneously image and track the spectral changes of up to 50 mNPs in a single (∼1 s) exposure and yet still retain a reasonable spectral resolution for biosensing. Using the SLI, we could observe spectral shift under different local refractive index environments and demonstrate biosensing using biotin-streptavidin as a model system. To the best of our knowledge, this is the first time a transmission grating based spectral imaging approach has been used for mNPs LSPR sensing. The higher throughput LSPR sensing, offered by SLI, opens up a new possibility of performing label-free, single-molecule experiments in a high-throughput manner. PMID:21359329

  6. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    SciTech Connect

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  7. Liquid gradient in two-dimensional matrix for high throughput screening.

    PubMed

    Hu, Shan-Wen; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-01-01

    Based on the ingenious combination of two different gradient generation mechanisms, this work reports a novel approach for a high throughput linear liquid gradient in a two-dimensional (2D) matrix. Specifically, a typical Christmas Tree structure with two inlets was designed as the first mixture gradient generator, upon which the second diffusion gradient generator was coupled to produce the desired concentration series on the basis of the distance difference. Rather than a simple 1D line, the integration of the two generators would result in an innovative 2D matrix of reservoirs, which was then characterized both theoretically and experimentally. Theoretically, calculation of fluid field demonstrated the formation of a concentration gradient, which was then confirmed by the dye solution visualization analysis. For high throughput screening application, doxorubicin (Dox) was then selected as model medicine to treat the acute myeloblastic leukemia (HL-60) cells. Cell viability displayed that cell death rate enhanced with the increase of drug concentration, and this result was higher than that on a 96-well plate, and the corresponding mechanism was properly discussed. Subsequently, Dox and quercetin were employed simultaneously to generate an overlapping gradient and its effect on HL-60 cells was investigated. Due to the automatic formation of concentration gradient that could improve the work efficiency, this work provides a promising tool for future high throughput drug screening.

  8. Microfluidic hydrodynamic focusing for high-throughput applications

    NASA Astrophysics Data System (ADS)

    Zhao, Jingjing; You, Zheng

    2015-12-01

    Microfluidic hydrodynamic focusing is critical for chip-based bioanalytical systems to increase throughput and sensitivity, especially for microflow cytometers, enabling a sample flow to be confined to the center of a microchannel with a narrow cross-section. Current microfluidic hydrodynamic focusing designs are usually unable to maintain stable focusing in high flow velocity conditions, resulting in a large cross-section or even failed focusing. To overcome this challenge, this paper aims to develop a design that can achieve effective microfluidic hydrodynamic focusing at high velocity with favorable performance. For this purpose, specially designed structures and arc-shaped channels are used. Two focusing regions are modeled and optimized mathematically, and flow behavior is investigated using numerical simulations. The functional relationship between flow rates and the cross-sectional dimensions of the focused sample flow is explored, and a measurement method for testing the dimensions is developed. The design is implemented in glass chips and characterized experimentally. In a rectangular channel with a cross-section of 300 μm  ×  150 μm the sample flow can be focused down to 5-11 μm horizontally and 10-21 μm vertically at a roughly constant velocity of 4.4 m s-1 when the sample flow rate varies between 10 and 60 μl min-1. Effective focusing is accessible within a wide velocity range from 0.7 to 10 m s-1. The experimental results validate that the focusing design performs better than existing microfluidic designs at high velocities, while its performance is close to that of the designs used in conventional flow cytometers with much less volume and a simpler structure. The focusing design can serve as the basis for microflow cytometers or it can be integrated into various microfluidic systems where complete focusing is needed.

  9. Project ACHIEVE final report

    SciTech Connect

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  10. The FlyCatwalk: A High-Throughput Feature-Based Sorting System for Artificial Selection in Drosophila

    PubMed Central

    Medici, Vasco; Vonesch, Sibylle Chantal; Fry, Steven N.; Hafen, Ernst

    2015-01-01

    Experimental evolution is a powerful tool for investigating complex traits. Artificial selection can be applied for a specific trait and the resulting phenotypically divergent populations pool-sequenced to identify alleles that occur at substantially different frequencies in the extreme populations. To maximize the proportion of loci that are causal to the phenotype among all enriched loci, population size and number of replicates need to be high. These requirements have, in fact, limited evolution studies in higher organisms, where the time investment required for phenotyping is often prohibitive for large-scale studies. Animal size is a highly multigenic trait that remains poorly understood, and an experimental evolution approach may thus aid in gaining new insights into the genetic basis of this trait. To this end, we developed the FlyCatwalk, a fully automated, high-throughput system to sort live fruit flies (Drosophila melanogaster) based on morphometric traits. With the FlyCatwalk, we can detect gender and quantify body and wing morphology parameters at a four-old higher throughput compared with manual processing. The phenotyping results acquired using the FlyCatwalk correlate well with those obtained using the standard manual procedure. We demonstrate that an automated, high-throughput, feature-based sorting system is able to avoid previous limitations in population size and replicate numbers. Our approach can likewise be applied for a variety of traits and experimental settings that require high-throughput phenotyping. PMID:25556112

  11. Creating an Infrastructure for High-Throughput High-Resolution Cryogenic Electron Microscopy

    PubMed Central

    Shrum, Donald C.; Woodruff, Brent W.

    2012-01-01

    New instrumentation for three-dimensional electron microscopy is facilitating an increase in the throughput of data collection and reconstruction. The increase in throughput creates bottlenecks in the workflow for storing and processing the image data. Here we describe the creation and quantify the throughput of a high-throughput infrastructure supporting collection of three-dimensional data collection. PMID:22842049

  12. Creating an infrastructure for high-throughput high-resolution cryogenic electron microscopy.

    PubMed

    Shrum, Donald C; Woodruff, Brent W; Stagg, Scott M

    2012-10-01

    New instrumentation for three-dimensional electron microscopy is facilitating an increase in the throughput of data collection and reconstruction. The increase in throughput creates bottlenecks in the workflow for storing and processing the image data. Here we describe the creation and quantify the throughput of a high-throughput infrastructure supporting collection of three-dimensional data collection.

  13. Asian Americans and Higher Education.

    ERIC Educational Resources Information Center

    Endo, Russell

    1980-01-01

    Problems that Asian Americans face in higher education include poor communications skills; stress resulting from family and community pressure to achieve; and universities' reluctance to hire Asian American staff, recruit and provide financial support for Asian American students, and provide relevant curriculum. Various programs have begun to…

  14. 2011 Higher Education Sustainability Review

    ERIC Educational Resources Information Center

    Wagner, Margo, Ed.

    2012-01-01

    Looking through the lens of AASHE Bulletin stories in 2011, this year's review reveals an increased focus on higher education access, affordability, and success; more green building efforts than ever before; and growing campus-community engagement on food security, among many other achievements. Contributors include James Applegate (Lumina…

  15. High throughput Jet and Flash Imprint Lithography for semiconductor memory applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Fletcher, Brian; Thompson, Ecron; Liu, Weijun; Stachowiak, Tim; Khusnatdinov, Niyaz; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Truskett, Van; LaBrake, Dwayne; Ye, Zhengmao

    2016-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 15 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.5 seconds. For a throughput of 20 wph, fill time must be reduced to only one second. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to enable a 1.50 second filling process for a sub-20nm device like pattern and have demonstrated this capability

  16. Higher harmonic generation microscopy.

    PubMed

    Sun, Chi-Kuang

    2005-01-01

    Higher harmonic-generation, including second harmonic generation and third harmonic generation, leaves no energy deposition to the interacted matters due to its virtual-level transition characteristic, providing a truly non-invasive modality and is ideal for in vivo imaging of live specimens without any preparation. Second harmonic generation microscopy provides images on stacked membranes and arranged proteins with organized nano-structures due to the bio-photonic crystalline effect. Third harmonic generation microscopy provides general cellular or subcellular interface imaging due to optical inhomogeneity. Due to their virtual-transition nature, no saturation or bleaching in the generated signal is expected. With no energy release, continuous viewing without compromising sample viability can thus be achieved. Combined with its nonlinearity, higher harmonic generation microscopy provides sub-micron three-dimensional sectioning capability and millimeter penetration in live samples without using fluorescence and exogenous markers, offering morphological, structural, functional, and cellular information of biomedical specimens without modifying their natural biological and optical environments.

  17. A high-throughput nanofibers mat-based micro-solid phase extraction for the determination of cationic dyes in wastewater.

    PubMed

    Qi, Feifei; Qian, Liangliang; Liu, Jingjing; Li, Xiaoqing; Lu, Lingeng; Xu, Qian

    2016-08-19

    This study used nanofibers mat (NFsM)-based micro-SPE (μ-SPE) in 96-well plate format as a novel high-throughput sample preparation technique prior to the determination of cationic dyes in wastewater using HPLC-DAD. P-Toluene sulfonate (PTS(-)) doped polypyrrole (PPy) functionalized NFsM (PTS-PPy NFsM) was optimized as SPE sorbent in aspects of PPy form (particles and NFsM) and its doped anions (Cl(-) and PTS(-)), which showed good extraction efficiency and adsorption capacity for cationic dyes (Auramine-O, Chrysoidine and Rhodamine-B). Under the optimal conditions, the limits of detection (LODs) were between 0.3 and 0.5μg/L, and the linearity was achieved in the concentration ranging from 1.0 to 150.0μg/L with correlation coefficients (R) between 0.992 and 0.999. Compared with the published SPE methods, this approach demonstrated its advantages such as shorter extraction time (0.3min per sample), lower requirement sorbent (2.0mg), lower volume of organic solvent (0.7mL), higher recovery (90.1-99.1%) and precision (RSDs<6.9%). With this developed method, we have successfully analyzed the dyeing industry wastewater, which meets the Discharge Standards of Water Pollutants for Dyeing and Finishing of Textile Industry in China. The concentrations of three analyzed cationic dyes were from 2.9 to 13.9μg/L. The NFsM-based μ-SPE technique is practically a high-throughput sample preparation procedure that can accurately assess the pollutants in the wastewater from dyeing industry. PMID:27435684

  18. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    PubMed

    Frémont, Marc; Coomans, Danny; Massart, Sebastien; De Meirleir, Kenny

    2013-08-01

    Human intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Intestinal dysfunction is a frequent complaint in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, and previous reports suggest that dysbiosis, i.e. the overgrowth of abnormal populations of bacteria in the gut, is linked to the pathogenesis of the disease. We used high-throughput 16S rRNA gene sequencing to investigate the presence of specific alterations in the gut microbiota of ME/CFS patients from Belgium and Norway. 43 ME/CFS patients and 36 healthy controls were included in the study. Bacterial DNA was extracted from stool samples, PCR amplification was performed on 16S rRNA gene regions, and PCR amplicons were sequenced using Roche FLX 454 sequencer. The composition of the gut microbiota was found to differ between Belgian controls and Norwegian controls: Norwegians showed higher percentages of specific Firmicutes populations (Roseburia, Holdemania) and lower proportions of most Bacteroidetes genera. A highly significant separation could be achieved between Norwegian controls and Norwegian patients: patients presented increased proportions of Lactonifactor and Alistipes, as well as a decrease in several Firmicutes populations. In Belgian subjects the patient/control separation was less pronounced, however some abnormalities observed in Norwegian patients were also found in Belgian patients. These results show that intestinal microbiota is altered in ME/CFS. High-throughput sequencing is a useful tool to diagnose dysbiosis in patients and could help designing treatments based on gut microbiota modulation (antibiotics, pre and probiotics supplementation).

  19. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery

    PubMed Central

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V.

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery. PMID:25729356

  20. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.

    PubMed

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery. PMID:25729356

  1. Monte Carlo Analysis of Airport Throughput and Traffic Delays Using Self Separation Procedures

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Sturdy, James L.

    2006-01-01

    This paper presents the results of three simulation studies of throughput and delay times of arrival and departure operations performed at non-towered, non-radar airports using self-separation procedures. The studies were conducted as part of the validation process of the Small Aircraft Transportation Systems Higher Volume Operations (SATS HVO) concept and include an analysis of the predicted airport capacity using with different traffic conditions and system constraints under increasing levels of demand. Results show that SATS HVO procedures can dramatically increase capacity at non-towered, non-radar airports and that the concept offers the potential for increasing capacity of the overall air transportation system.

  2. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.

    PubMed

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery.

  3. Towards high throughput screening of electrochemical stability of battery electrolytes.

    PubMed

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E; Leiter, Kenneth W; Knap, Jaroslaw

    2015-09-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5-2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi0.5Mn1.5O4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen. PMID:26266636

  4. Towards high throughput screening of electrochemical stability of battery electrolytes

    NASA Astrophysics Data System (ADS)

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E.; Leiter, Kenneth W.; Knap, Jaroslaw

    2015-09-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5-2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi0.5Mn1.5O4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen.

  5. Towards high throughput screening of electrochemical stability of battery electrolytes.

    PubMed

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E; Leiter, Kenneth W; Knap, Jaroslaw

    2015-09-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5-2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi0.5Mn1.5O4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen.

  6. MISER chiral supercritical fluid chromatography for high throughput analysis of enantiopurity.

    PubMed

    Zawatzky, Kerstin; Biba, Mirlinda; Regalado, Erik L; Welch, Christopher J

    2016-01-15

    MISER chromatographic analysis (Multiple Injections in a Single Experimental Run) using supercritical fluid chromatography (SFC) with pressurized carbon dioxide-based eluents is well suited to the high throughput analysis of enantiopurity. SFC is currently the preferred method for fast enantiopurity analysis, with analysis times of only a few seconds achievable in some cases. Injector programming using both the Agilent Infinity and Shimadzu Nexera UC instruments permitted MISER SFC experiments to be performed. Several case studies are presented, showcasing the power and versatility of the technique, with 'plate analysis times' (the time required for analysis of enantiopurity of 96 samples) of less than 33-34 min achievable in the best cases. PMID:26747691

  7. Music training and mathematics achievement.

    PubMed

    Cheek, J M; Smith, L R

    1999-01-01

    Iowa Tests of Basic Skills (ITBS) mathematics scores of eighth graders who had received music instruction were compared according to whether the students were given private lessons. Comparisons also were made between students whose lessons were on the keyboard versus other music lessons. Analyses indicated that students who had private lessons for two or more years performed significantly better on the composite mathematics portion of the ITBS than did students who did not have private lessons. In addition, students who received lessons on the keyboard had significantly higher ITBS mathematics scores than did students whose lessons did not involve the keyboard. These results are discussed in relation to previous research on music training and mathematics achievement.

  8. Leadership, self-efficacy, and student achievement

    NASA Astrophysics Data System (ADS)

    Grayson, Kristin

    This study examined the relationships between teacher leadership, science teacher self-efficacy, and fifth-grade science student achievement in diverse schools in a San Antonio, Texas, metropolitan school district. Teachers completed a modified version of the Leadership Behavior Description Question (LBDQ) Form XII by Stogdill (1969), the Science Efficacy and Belief Expectations for Science Teaching (SEBEST) by Ritter, Boone, and Rubba (2001, January). Students' scores on the Texas Assessment of Knowledge and Skills (TAKS) measured fifth-grade science achievement. At the teacher level of analysis multiple regressions showed the following relationships between teachers' science self-efficacy and teacher classroom leadership behaviors and the various teacher and school demographic variables. Predictors of teacher self efficacy beliefs included teacher's level of education, gender, and leadership initiating structure. The only significant predictor of teacher self-efficacy outcome expectancy was gender. Higher teacher self-efficacy beliefs predicted higher leadership initiating structure. At the school level of analysis, higher school levels of percentage of students from low socio-economic backgrounds and higher percentage of limited English proficient students predicted lower school student mean science achievement. These findings suggest a need for continued research to clarify relationships between teacher classroom leadership, science teacher self-efficacy, and student achievement especially at the teacher level of analysis. Findings also indicate the importance of developing instructional methods to address student demographics and their needs so that all students, despite their backgrounds, will achieve in science.

  9. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  10. New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site

    SciTech Connect

    Bhave, Ramesh R

    2012-01-01

    New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site R. Bhave (Oak Ridge National Laboratory. Oak Ridge, TN) and M. R. Poirier* (Savannah River National Laboratory, Aiken SC) Solid-liquid separation is the limiting step for many waste treatment processes at the Savannah River Site. SRNL researchers have identified the rotary microfilter as a technology to improve the rate of solid-liquid separation processes. SRNL is currently developing the rotary microfilter for radioactive service and plans to deploy the technology as part of the small column ion exchange process. The rotary microfilter can utilize any filter media that is available as a flat sheet. The current baseline membrane is a 0.5 micron (nominal) porous metal filter (Pall PMM050). Previous testing with tubular filters showed that filters composed of a ceramic membrane on top of a stainless steel support produce higher flux than filters composed only of porous metal. The authors are working to develop flat sheet filter media composed of a ceramic membrane and/or ceramic-metal composite on top of a porous stainless steel support that can be used with the rotary microfilter to substantially increase filter flux resulting in a more compact, energy efficient and cost-effective high level radioactive waste treatment system. Composite membranes with precisely controlled pore size distribution were fabricated on porous metal supports. High quality uniform porous metal (316SS) supports were fabricated to achieve high water permeability. Separative layers of several different materials such as ultrafine metal particles and ceramic oxides were used to fabricate composite membranes. The fabrication process involved several high temperature heat treatments followed by characterization of gas and liquid permeability measurements and membrane integrity analysis. The fabricated composite membrane samples were evaluated in a static test cell manufactured by SpinTek. The

  11. Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections

    NASA Technical Reports Server (NTRS)

    Tchorowski, Nicole; Murawski, Robert

    2014-01-01

    New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option

  12. Accurate high-throughput identification of parallel G-quadruplex topology by a new tetraaryl-substituted imidazole.

    PubMed

    Hu, Ming-Hao; Chen, Shuo-Bin; Wang, Yu-Qing; Zeng, You-Mei; Ou, Tian-Miao; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2016-09-15

    G-quadruplex nucleic acids are four-stranded DNA or RNA secondary structures that are formed in guanine-rich sequences. These structures exhibit extensive structural polymorphism and play a pivotal role in the control of a variety of cellular processes. To date, diverse approaches for high-throughput identification of G-quadruplex structures have been successfully developed, but high-throughput methods for further characterization of their topologies are still lacking. In this study, we report a new tetra-arylimidazole probe psIZCM-1, which was found to display significant and distinctive changes in both the absorption and the fluorescence spectra in the presence of parallel G-quadruplexes but show insignificant changes upon interactions with anti-parallel G-quadruplexes or other non-quadruplex oligonucleotides. In view of this dual-output feature, we used psIZCM-1 to identify the parallel G-quadruplexes from a large set of 314 oligonucleotides (including 300 G-quadruplex-forming oligonucleotides and 14 non-quadruplex oligonucleotides) via a microplate reader and accordingly established a high-throughput method for the characterization of parallel G-quadruplex topologies. The accuracy of this method was greater than 95%, which was much higher than that of the commercial probe NMM. To make the approach more practical, we further combined psIZCM-1 with another G-quadruplex probe IZCM-7 to realize the high-throughput classification of parallel, anti-parallel G-quadruplexes and non-quadruplex structures.

  13. High throughput quantitative colorimetric microneutralization assay for the confirmation and differentiation of West Nile Virus and St. Louis encephalitis virus.

    PubMed

    Taketa-Graham, Michael; Powell Pereira, Jaime L; Baylis, Elizabeth; Cossen, Cynthia; Oceguera, Leopoldo; Patiris, Peter; Chiles, Robert; Hanson, Carl V; Forghani, Bagher; Forghani, BagHer

    2010-03-01

    An automated colorimetric micro-neutralization assay (CmNt) was developed for confirmation and differentiation of West Nile Virus (WNV)-positive human sera as a higher throughput alternative to the standard six-well plaque-reduction neutralization test (PRNT). CmNt was performed in high-capacity 96-well micro-titer plates and required 4-6 days to complete. Inhibition of infection was determined by reduced neutral red-dye retention and conveniently recorded by a colorimetric plate reader. Human sera previously confirmed by PRNT as either negative (N = 52), WNV positive (N = 81), or St. Louis encephalitis virus positive (N = 12) were tested by CmNt; interpreted results were virtually identical to PRNT with a reduced turnaround time and higher throughput. Additionally, a handful of dengue virus positive and negative specimens (four each) were tested by CmNt; interpreted results were identical to PRNT.

  14. Inkjet printing for high-throughput cell patterning.

    PubMed

    Roth, E A; Xu, T; Das, M; Gregory, C; Hickman, J J; Boland, T

    2004-08-01

    The adaptation of inkjet printing technology to the complex fields of tissue engineering and biomaterial development presents the potential to increase progress in these emerging technologies through the implementation of this high-throughput capability via automated processes to enable precise control and repeatability. In this paper, a method of applying high-throughput inkjet printing to control cellular attachment and proliferation by precise, automated deposition of collagen is presented. The results indicate that commercial inkjet printing technology can be used to create viable cellular patterns with a resolution of 350 microm through the deposition of biologically active proteins. This method demonstrates a combination of off-the-shelf inkjet printing and biomaterials and has potential to be adapted to tissue engineering and colony patterning applications. Adapting this method into the three-dimensional construction of cellular structures for eventual high-throughput tissue engineering using a bottom-up approach is possible.

  15. Flux analysis in plant metabolic networks: increasing throughput and coverage.

    PubMed

    Junker, Björn H

    2014-04-01

    Quantitative information about metabolic networks has been mainly obtained at the level of metabolite contents, transcript abundance, and enzyme activities. However, the active process of metabolism is represented by the flow of matter through the pathways. These metabolic fluxes can be predicted by Flux Balance Analysis or determined experimentally by (13)C-Metabolic Flux Analysis. These relatively complicated and time-consuming methods have recently seen significant improvements at the level of coverage and throughput. Metabolic models have developed from single cell models into whole-organism dynamic models. Advances in lab automation and data handling have significantly increased the throughput of flux measurements. This review summarizes advances to increase coverage and throughput of metabolic flux analysis in plants.

  16. A high-throughput label-free nanoparticle analyser

    NASA Astrophysics Data System (ADS)

    Fraikin, Jean-Luc; Teesalu, Tambet; McKenney, Christopher M.; Ruoslahti, Erkki; Cleland, Andrew N.

    2011-05-01

    Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10-6 l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.

  17. Achievement Goals and Achievement Emotions: A Meta-Analysis

    ERIC Educational Resources Information Center

    Huang, Chiungjung

    2011-01-01

    This meta-analysis synthesized 93 independent samples (N = 30,003) in 77 studies that reported in 78 articles examining correlations between achievement goals and achievement emotions. Achievement goals were meaningfully associated with different achievement emotions. The correlations of mastery and mastery approach goals with positive achievement…

  18. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    PubMed

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  19. The Virginia Plan for Higher Education, 1989.

    ERIC Educational Resources Information Center

    Virginia State Council of Higher Education, Richmond.

    The Council of Higher Education, in this state-mandated biennial plan, sets four goals for Virginia's state-supported system of higher education to achieve: access, excellence, accountability, and placement among the best systems of higher education in the United States. The plan concentrates on the 84 degree-granting institutions that have been…

  20. Entrepreneur achievement. Liaoning province.

    PubMed

    Zhao, R

    1994-03-01

    This paper reports the successful entrepreneurial endeavors of members of a 20-person women's group in Liaoning Province, China. Jing Yuhong, a member of the Family Planning Association at Shileizi Village, Dalian City, provided the basis for their achievements by first building an entertainment/study room in her home to encourage married women to learn family planning. Once stocked with books, magazines, pamphlets, and other materials on family planning and agricultural technology, dozens of married women in the neighborhood flocked voluntarily to the room. Yuhong also set out to give these women a way to earn their own income as a means of helping then gain greater equality with their husbands and exert greater control over their personal reproductive and social lives. She gave a section of her farming land to the women's group, loaned approximately US$5200 to group members to help them generate income from small business initiatives, built a livestock shed in her garden for the group to raise marmots, and erected an awning behind her house under which mushrooms could be grown. The investment yielded $12,000 in the first year, allowing each woman to keep more than $520 in dividends. Members then soon began going to fairs in the capital and other places to learn about the outside world, and have successfully ventured out on their own to generate individual incomes. Ten out of twenty women engaged in these income-generating activities asked for and got the one-child certificate.

  1. Insights to transcriptional networks by using high throughput RNAi strategies

    PubMed Central

    Mattila, Jaakko

    2010-01-01

    RNA interference (RNAi) is a powerful method to unravel the role of a given gene in eukaryotic cells. The development of high throughput assay platforms such as fluorescence plate readers and high throughput microscopy has allowed the design of genome wide RNAi screens to systemically discern members of regulatory networks around various cellular processes. Here we summarize the different strategies employed in RNAi screens to reveal regulators of transcriptional networks. We focus our discussion in experimental approaches designed to uncover regulatory interactions modulating transcription factor activity. PMID:19952073

  2. Advances in high throughput DNA sequence data compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz

    2016-06-01

    Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted. PMID:26846812

  3. CHALLENGES IN SECONDARY ANALYSIS OF HIGH THROUGHPUT SCREENING DATA

    PubMed Central

    BLUCHER, AURORA S.; MCWEENEY, SHANNON K.

    2014-01-01

    Repurposing an existing drug for an alternative use is not only a cost effective method of development, but also a faster process due to the drug's previous clinical testing and established pharmokinetic profiles. A potentially rich resource for computational drug repositioning approaches is publically available high throughput screening data, available in databases such as PubChem Bioassay and ChemBank. We examine statistical and computational considerations for secondary analysis of publicly available high throughput screening (HTS) data with respect to metadata, data quality, and completeness. We discuss developing methods and best practices that can help to ameliorate these issues. PMID:24297539

  4. High-throughput screening to identify inhibitors of lysine demethylases.

    PubMed

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  5. High-throughput screening for modulators of cellular contractile force†

    PubMed Central

    Park, Chan Young; Zhou, Enhua H.; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J.; Marinkovic, Aleksandar; Tschumperlin, Daniel J.; Burger, Stephanie; Frykenberg, Matthew; Butler, James P.; Stamer, W. Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J.

    2015-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signalling intermediates with poorly defined relationships to such a physiological endpoint. Using cellular force as the target, here we report a new screening technology and demonstrate its applications using human airway smooth muscle cells in the context of asthma and Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery. PMID:25953078

  6. Screening and synthesis: high throughput technologies applied to parasitology.

    PubMed

    Morgan, R E; Westwood, N J

    2004-01-01

    High throughput technologies continue to develop in response to the challenges set by the genome projects. This article discusses how the techniques of both high throughput screening (HTS) and synthesis can influence research in parasitology. Examples of the use of targeted and phenotype-based HTS using unbiased compound collections are provided. The important issue of identifying the protein target(s) of bioactive compounds is discussed from the synthetic chemist's perspective. This article concludes by reviewing recent examples of successful target identification studies in parasitology.

  7. The synergy between combinatorial chemistry and high-throughput screening.

    PubMed

    Diller, David J

    2008-05-01

    Despite the initial promise of combinatorial chemistry, particularly large library combinatorial chemistry, to greatly accelerate drug discovery, this approach has not been fully utilized as a means to build the compound collections of pharmaceutical and biotechnology companies. This review highlights some of the strengths of large library combinatorial chemistry as a means of generating molecules for lead discovery, such as providing rich and robust structure-activity relationships around each hit series. The challenges and concepts emerging from traditional high-throughput screening and fragment-based drug design, how these methods influence the design of large combinatorial libraries and the interpretation of the ensuing high-throughput screening data are also highlighted.

  8. Perspective: Data infrastructure for high throughput materials discovery

    NASA Astrophysics Data System (ADS)

    Pfeif, E. A.; Kroenlein, K.

    2016-05-01

    Computational capability has enabled materials design to evolve from trial-and-error towards more informed methodologies that require large amounts of data. Expert-designed tools and their underlying databases facilitate modern-day high throughput computational methods. Standard data formats and communication standards increase the impact of traditional data, and applying these technologies to a high throughput experimental design provides dense, targeted materials data that are valuable for material discovery. Integrated computational materials engineering requires both experimentally and computationally derived data. Harvesting these comprehensively requires different methods of varying degrees of automation to accommodate variety and volume. Issues of data quality persist independent of type.

  9. Substrate independent ATPase activity may complicate high throughput screening.

    PubMed

    Tuntland, Micheal L; Fung, L W-M

    2016-10-01

    Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening. PMID:27430931

  10. High throughput combinatorial screening of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Mao, Samuel S.

    2011-11-01

    This article provides an overview of an advanced combinatorial material discovery platform developed recently for screening semiconductor materials with properties that may have applications ranging from radiation detectors to solar cells. Semiconductor thin-film libraries, each consisting of 256 materials of different composition arranged into a 16×16 matrix, were fabricated using laser-assisted evaporation process along with a combinatorial mechanism to achieve variations. The composition and microstructure of individual materials on each thin-film library were characterized with an integrated scanning micro-beam x-ray fluorescence and diffraction system, while the band gaps were determined by scanning optical reflection and transmission of the libraries. An ultrafast ultraviolet photon-induced charge probe was devised to measure the mobility and lifetime of individual thin-film materials on semiconductor libraries. Selected results on the discovery of semiconductors with desired band gaps and transport properties are illustrated.

  11. Qualifying high-throughput immune repertoire sequencing.

    PubMed

    Niklas, Norbert; Pröll, Johannes; Weinberger, Johannes; Zopf, Agnes; Wiesinger, Karin; Krismer, Konstantin; Bettelheim, Peter; Gabriel, Christian

    2014-01-01

    Diversity of B and T cell receptors, achieved by gene recombination and somatic hypermutation, allows the immune system for recognition and targeted reaction against various threats. Next-generation sequencing for assessment of a cell's gene composition and variation makes deep analysis of one individual's immune spectrum feasible. An easy to apply but detailed analysis and visualization strategy is necessary to process all sequences generated. We performed sequencing utilizing the 454 system for CLL and control samples, utilized the IMGT database and applied the presented analysis tools. With the applied protocol, malignant clones are found and characterized, mutational status compared to germline identity is elaborated in detail showing that the CLL mutation status is not as monoclonal as generally thought. On the other hand, this strategy is not solely applicable to the 454 sequencing system but can easily be transferred to any other next-generation sequencing platform. PMID:24607567

  12. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  13. Wireless communications under QoS constraints: Energy efficiency, power and rate control, and throughput

    NASA Astrophysics Data System (ADS)

    Qiao-fu, Zhang

    This dissertation deals with various issues in wireless communications under statistical quality of service (QoS) constraints. Effective capacity, which provides the maximum constant arrival rate that a wireless channel can sustain while satisfying statistical QoS constraints, is adopted as the performance metric. Energy efficiency of point-to-point links is first studied by characterizing the spectral efficiency-bit energy tradeoff in the low-power and wideband regimes. Different transmission strategies (with variable or fixed rate) and power policies are studied. Then, the effective capacity region for fading multiple-access channels (MAC) is investigated for different transmission strategies: Superposition coding with successive decoding and time division multiple acess (TDMA). With fixed power, it is shown that varying the decoding order with respect to the channel states can significantly increase the achievable throughput region. In the two-user case, the optimal decoding strategy is determined for the scenario in which the users have the same QoS constraints. The optimal power allocation policies for any partition of the channel state space are identified. With the characterization of effective capacity regions, the energy efficiency of MAC is investigated by quantizing the minimum bit energy and wideband slope regions for different transmission strategies. In addition, the throughput for the two-hop wireless communication links with individual QoS constraints at the source and relay nodes is determined as a function of the QoS parameters and signal-to-noise ratios at the source and relay, and the fading distributions of the links. The analysis is performed for both full-duplex and half-duplex relaying. Finally, the throughput with finite blocklength channel codes is analyzed for variable-rate and fixed-rate transmissions in single-user settings. The optimum error probability for variable-rate transmission and the optimum coding rate for fixed

  14. High-throughput double quantitative competitive polymerase chain reaction for determination of genetically modified organisms.

    PubMed

    Mavropoulou, Anastasia K; Koraki, Theodora; Ioannou, Penelope C; Christopoulos, Theodore K

    2005-08-01

    Quantitative competitive polymerase chain reaction (PCR), especially the double competitive PCR methods (DC-PCR), have evolved as reliable approaches to quantification of genetically modified organisms (GMO) in food. However, DC-PCR is a low-throughput method because it requires titration of each sample with various amounts of a competitive internal standard, a protocol that involves several PCRs per sample followed by electrophoresis and densitometry. To address this drawback, we have developed a new method for GMO quantification, namely, a high-throughput double quantitative competitive PCR (HT-DCPCR). In HT-DCPCR, electrophoresis and densitometry are replaced by a rapid, microtiter well-based bioluminometric hybridization assay and there is no need for titration of each sample. The determination of GM soya was chosen as a model. We have constructed internal standards (DNA competitors) both for the 35S promoter sequence and for a plant-specific reference gene (lectin). The competitors have identical size and share the same primer binding sites with the target sequences but differ in a 24-bp internal segment. Each target sequence (35S and lectin) is coamplified with a constant amount (1000 copies) of the respective competitor. The four amplified fragments are hybridized with specific probes and captured on a universal solid phase to achieve simplicity and high throughput. The hybrids are determined by using streptavidin conjugated to the photoprotein aequorin. The ratio of the luminescence values obtained for the target and the competitor is linearly related to the starting amount of target DNA. The limit of quantification for the 35S promoter is 24 copies. The proposed method was evaluated by determining the GMO content of soybean powder certified reference materials. Also HT-DCPCR was compared to real-time PCR in a variety of real samples.

  15. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

    PubMed Central

    Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.

    2015-01-01

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy. PMID:26525906

  16. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

    NASA Astrophysics Data System (ADS)

    Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.

    2015-11-01

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.

  17. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.

    PubMed

    Wen, X; Datta, A; Traverso, L M; Pan, L; Xu, X; Moon, E E

    2015-11-03

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.

  18. High-throughput measurements of thermochromic behavior in V(1-x)Nb(x)O(2) combinatorial thin film libraries.

    PubMed

    Barron, S C; Gorham, J M; Patel, M P; Green, M L

    2014-10-13

    We describe a high-throughput characterization of near-infrared thermochromism in V1-xNbxO2 combinatorial thin film libraries. The oxide thin film library was prepared with a VO2 crystal structure and a continuous gradient in composition with Nb concentrations in the range of less than 1% to 45%. The thermochromic phase transition from monoclinic to tetragonal was characterized by the accompanying change in near-infrared reflectance. With increasing Nb substitution, the transition temperature was depressed from 65 to 35 °C, as desirable for smart window applications. However, the magnitude of the reflectance change across the thermochromic transition was also reduced with increasing Nb film content. Data collection, handling, and analysis supporting thermochromic characterization were fully automated to achieve high throughput. Using this system, in 14 h, temperature-dependent infrared reflectances were measured at 165 arbitrary locations on a thin film combinatorial library; these measurements were analyzed for thermochromic transitions in minutes.

  19. HEPEX - achievements and challenges!

    NASA Astrophysics Data System (ADS)

    Pappenberger, Florian; Ramos, Maria-Helena; Thielen, Jutta; Wood, Andy; Wang, Qj; Duan, Qingyun; Collischonn, Walter; Verkade, Jan; Voisin, Nathalie; Wetterhall, Fredrik; Vuillaume, Jean-Francois Emmanuel; Lucatero Villasenor, Diana; Cloke, Hannah L.; Schaake, John; van Andel, Schalk-Jan

    2014-05-01

    HEPEX is an international initiative bringing together hydrologists, meteorologists, researchers and end-users to develop advanced probabilistic hydrological forecast techniques for improved flood, drought and water management. HEPEX was launched in 2004 as an independent, cooperative international scientific activity. During the first meeting, the overarching goal was defined as: "to develop and test procedures to produce reliable hydrological ensemble forecasts, and to demonstrate their utility in decision making related to the water, environmental and emergency management sectors." The applications of hydrological ensemble predictions span across large spatio-temporal scales, ranging from short-term and localized predictions to global climate change and regional modeling. Within the HEPEX community, information is shared through its blog (www.hepex.org), meetings, testbeds and intercompaison experiments, as well as project reportings. Key questions of HEPEX are: * What adaptations are required for meteorological ensemble systems to be coupled with hydrological ensemble systems? * How should the existing hydrological ensemble prediction systems be modified to account for all sources of uncertainty within a forecast? * What is the best way for the user community to take advantage of ensemble forecasts and to make better decisions based on them? This year HEPEX celebrates its 10th year anniversary and this poster will present a review of the main operational and research achievements and challenges prepared by Hepex contributors on data assimilation, post-processing of hydrologic predictions, forecast verification, communication and use of probabilistic forecasts in decision-making. Additionally, we will present the most recent activities implemented by Hepex and illustrate how everyone can join the community and participate to the development of new approaches in hydrologic ensemble prediction.

  20. The Homogeneity of School Achievement.

    ERIC Educational Resources Information Center

    Cahan, Sorel

    Since the measurement of school achievement involves the administration of achievement tests to various grades on various subjects, both grade level and subject matter contribute to within-school achievement variations. To determine whether achievement test scores vary most among different fields within a grade level, or within fields among…

  1. Motivation and academic achievement in medical students

    PubMed Central

    Yousefy, Alireza; Ghassemi, Gholamreza; Firouznia, Samaneh

    2012-01-01

    Background: Despite their ascribed intellectual ability and achieved academic pursuits, medical students’ academic achievement is influenced by motivation. This study is an endeavor to examine the role of motivation in the academic achievement of medical students. Materials and Methods: In this cross-sectional correlational study, out of the total 422 medical students, from 4th to final year during the academic year 2007–2008, at School of Medicine, Isfahan University of Medical Sciences, 344 participated in completion of the Inventory of School Motivation (ISM), comprising 43 items and measuring eight aspects of motivation. The gold standard for academic achievement was their average academic marks at pre-clinical and clinical levels. Data were computer analyzed by running a couple of descriptive and analytical tests including Pearson Correlation and Student's t-student. Results: Higher motivation scores in areas of competition, effort, social concern, and task were accompanied by higher average marks at pre-clinical as well as clinical levels. However, the latter ones showed greater motivation for social power as compared to the former group. Task and competition motivation for boys was higher than for girls. Conclusion: In view of our observations, students’ academic achievement requires coordination and interaction between different aspects of motivation. PMID:23555107

  2. A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus

    PubMed Central

    Cai, Wei; Tang, Zi-Min; Wen, Gui-Ping; Wang, Si-Ling; Ji, Wen-Fang; Yang, Min; Ying, Dong; Zheng, Zi-Zheng; Xia, Ning-Shao

    2016-01-01

    Hepatitis E virus (HEV) is the aetiological agent of enterically transmitted hepatitis. The traditional methods for evaluating neutralizing antibody titres against HEV are real-time PCR and the immunofluorescence foci assay (IFA), which are poorly repeatable and operationally complicated, factors that limit their applicability to high-throughput assays. In this study, we developed a novel high-throughput neutralizing assay based on biotin-conjugated p239 (HEV recombinant capsid proteins, a.a. 368–606) and staining with allophycocyanin-conjugated streptavidin (streptavidin APC) to amplify the fluorescence signal. A linear regression analysis indicated that there was a high degree of correlation between IFA and the novel assay. Using this method, we quantitatively evaluated the neutralization of sera from HEV-infected and vaccinated macaques. The anti-HEV IgG level had good concordance with the neutralizing titres of macaque sera. However, the neutralization titres of the sera were also influenced by anti-HEV IgM responses. Further analysis also indicated that, although vaccination with HEV vaccine stimulated higher anti-HEV IgG and neutralization titres than infection with HEV in macaques, the proportions of neutralizing antibodies in the infected macaques’ sera were higher than in the vaccinated macaques with the same anti-HEV IgG levels. Thus, the infection more efficiently stimulated neutralizing antibody responses. PMID:27122081

  3. Achievement in Boys' Schools 2010-12

    ERIC Educational Resources Information Center

    Wylie, Cathy; Berg, Melanie

    2014-01-01

    This report explores the achievement of school leavers from state and state-integrated boys' schools. The analysis from 2010 to 2012 shows school leavers from state boys' schools had higher qualifications than their male counterparts who attended state co-educational schools. The research was carried out for the Association of Boys' Schools of New…

  4. Interactions Between Teaching Performance and Student Achievement.

    ERIC Educational Resources Information Center

    Hsu, Yi-Ming; White, William F.

    There are two purposes for this study: first, to examine the relationship between college students' achievement and their ratings of instructors; second, to validate the two selected evaluation instruments that were designed specially for assessing teaching performance at the higher education level. Two evaluation inventories were selected for…

  5. Academic Freedom, Achievement Standards and Professional Identity

    ERIC Educational Resources Information Center

    Sadler, D. Royce

    2011-01-01

    The tension between the freedom of academics to grade the achievements of their students without interference or coercion and the prerogative of higher education institutions to control grading standards is often deliberated by weighing up the authority and rights of the two parties. An alternative approach is to start with an analysis of the…

  6. X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: The benefits of synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Bukowiecki, Nicolas; Lienemann, Peter; Zwicky, Christoph N.; Furger, Markus; Richard, Agnes; Falkenberg, Gerald; Rickers, Karen; Grolimund, Daniel; Borca, Camelia; Hill, Matthias; Gehrig, Robert; Baltensperger, Urs

    2008-09-01

    The determination of trace element mass concentrations in ambient air with a time resolution higher than one day represents an urgent need in atmospheric research. It involves the application of a specific technique both for the aerosol sampling and the subsequent analysis of the collected particles. Beside the intrinsic sensitivity of the analytical method, the sampling interval and thus the quantity of collected material that is available for subsequent analysis is a major factor driving the overall trace element detection power. This is demonstrated for synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) of aerosol samples collected with a rotating drum impactor (RDI) in hourly intervals and three particle size ranges. The total aerosol mass on the 1-h samples is in the range of 10 µg. An experimental detection of the nanogram amounts of trace elements with the help of synchrotron X-rays was only achievable by the design of a fit-for-purpose sample holder system, which considered the boundary conditions both from particle sampling and analysis. A 6-µm polypropylene substrate film has evolved as substrate of choice, due to its practical applicability during sampling and its suitable spectroscopic behavior. In contrast to monochromatic excitation conditions, the application of a 'white' beam led to a better spectral signal-to-background ratio. Despite the low sample mass, a counting time of less than 30 s per 1-h aerosol sample led to sufficient counting statistics. Therefore the RDI-SR-XRF method represents a high-throughput analysis procedure without the need for any sample preparation. The analysis of a multielemental mass standard film by SR-XRF, laboratory-based wavelength-dispersive XRF spectrometry and laboratory-based micro XRF spectrometry showed that the laboratory-based methods were no alternatives to the SR-XRF method with respect to sensitivity and efficiency of analysis.

  7. High-throughput screening, predictive modeling and computational embryology - Abstract

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  8. Accounting For Uncertainty in The Application Of High Throughput Datasets

    EPA Science Inventory

    The use of high throughput screening (HTS) datasets will need to adequately account for uncertainties in the data generation process and propagate these uncertainties through to ultimate use. Uncertainty arises at multiple levels in the construction of predictors using in vitro ...

  9. High Throughput Assays and Exposure Science (ISES annual meeting)

    EPA Science Inventory

    High throughput screening (HTS) data characterizing chemical-induced biological activity has been generated for thousands of environmentally-relevant chemicals by the US inter-agency Tox21 and the US EPA ToxCast programs. For a limited set of chemicals, bioactive concentrations r...

  10. High Throughput Exposure Estimation Using NHANES Data (SOT)

    EPA Science Inventory

    In the ExpoCast project, high throughput (HT) exposure models enable rapid screening of large numbers of chemicals for exposure potential. Evaluation of these models requires empirical exposure data and due to the paucity of human metabolism/exposure data such evaluations includ...

  11. High-throughput glycoanalytical technology for systems glycobiology.

    PubMed

    Liu, Li; Telford, Jayne E; Knezevic, Ana; Rudd, Pauline M

    2010-10-01

    The development of glycoanalytical HPLC-based high-throughput technology has greatly enhanced the study of glycobiology, facilitating the discovery of disease-related solutions and providing an informative view of glycosylation and its relationship with other biological disciplines in a systems biology approach.

  12. New High Throughput Methods to Estimate Chemical Exposure

    EPA Science Inventory

    EPA has made many recent advances in high throughput bioactivity testing. However, concurrent advances in rapid, quantitative prediction of human and ecological exposures have been lacking, despite the clear importance of both measures for a risk-based approach to prioritizing an...

  13. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  14. High-throughput production of two disulphide-bridge toxins.

    PubMed

    Upert, Grégory; Mourier, Gilles; Pastor, Alexandra; Verdenaud, Marion; Alili, Doria; Servent, Denis; Gilles, Nicolas

    2014-08-01

    A quick and efficient production method compatible with high-throughput screening was developed using 36 toxins belonging to four different families of two disulphide-bridge toxins. Final toxins were characterized using HPLC co-elution, CD and pharmacological studies.

  15. High-Throughput Screening for Streptomyces Antibiotic Biosynthesis Activators

    PubMed Central

    Chen, Li; Wang, Yemin; Guo, Hang; Xu, Min; Deng, Zixin

    2012-01-01

    A genomic cosmid library of Streptomyces clavuligerus was constructed and transferred efficiently by conjugation to Streptomyces lividans, and 12 distinct groups of overlapping cosmid clones that activated the silent actinorhodin biosynthesis gene cluster were identified. This generally applicable high-throughput screening procedure greatly facilitates the identification of antibiotic biosynthesis activators. PMID:22504805

  16. Low inlet gas velocity high throughput biomass gasifier

    DOEpatents

    Feldmann, Herman F.; Paisley, Mark A.

    1989-01-01

    The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

  17. High-Throughput Sequencing and Rare Genetic Diseases

    PubMed Central

    Makrythanasis, P.; Antonarakis, S.E.

    2012-01-01

    High-throughput sequencing has drastically changed the research of genes responsible for genetic disorders and is now gradually introduced as an additional genetic diagnostic testing in clinical practice. The current debates on the emerging technical, medical and ethical issues as well as the potential optimum use of the available technology are discussed. PMID:23293577

  18. High-throughput screening, predictive modeling and computational embryology

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to profile thousands of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition to projects worldwide,...

  19. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  20. Getting the whole picture: combining throughput with content in microscopy.

    PubMed

    Rimon, Nitzan; Schuldiner, Maya

    2011-11-15

    The increasing availability and performance of automated scientific equipment in the past decades have brought about a revolution in the biological sciences. The ease with which data can now be generated has led to a new culture of high-throughput science, in which new types of biological questions can be asked and tackled in a systematic and unbiased manner. High-throughput microscopy, also often referred to as high-content screening (HCS), allows acquisition of systematic data at the single-cell level. Moreover, it allows the visualization of an enormous array of cellular features and provides tools to quantify a large number of parameters for each cell. These features make HCS a powerful method to create data that is rich and biologically meaningful without compromising systematic capabilities. In this Commentary, we will discuss recent work, which has used HCS, to demonstrate the diversity of applications and technological solutions that are evolving in this field. Such advances are placing HCS methodologies at the frontier of high-throughput science and enable scientists to combine throughput with content to address a variety of cell biological questions.

  1. High-Throughput Screening and Optimization of Binary Quantum Dots Cosensitized Solar Cell.

    PubMed

    Yuan, Ding; Xiao, Lina; Luo, Jianheng; Luo, Yanhong; Meng, Qingbo; Mao, Bing-Wei; Zhan, Dongping

    2016-07-20

    Quantum dots (QDs) are considered as the alternative of dye sensitizers for solar cells. However, interfacial construction and evaluation of photocatalytic nanomaterials still remains challenge through the conventional methodology involving demo devices. We propose here a high-throughput screening and optimizing method based on combinatorial chemistry and scanning electrochemical microscopy (SECM). A homogeneous TiO2 catalyst layer is coated on a FTO substrate, which is then covered by a dark mask to expose the photocatalyst array. On each photocatalyst spot, different successive ionic layer adsorption and reaction (SILAR) processes are performed by a programmed solution dispenser to load the binary PbxCd1-xS QDs sensitizers. An optical fiber is employed as the scanning tip of SECM, and the photocatalytic current is recorded during the imaging experiment, through which the optimized technical parameters are figured out. To verify the validity of the combinatorial SECM imaging results, the controlled trials are performed with the corresponding photovoltaic demo devices. The harmonious accordance proved that the methodology based on combinatorial chemistry and SECM is valuable for the interfacial construction, high-throughput screening, and optimization of QDSSCs. Furthermore, the PbxCd1-xS/CdS QDs cosensitized solar cell optimized by SECM achieves a short circuit current density of 24.47 mA/cm(2), an open circuit potential of 421 mV, a fill factor of 0.52, and a photovoltaic conversion efficiency of 5.33%. PMID:27355523

  2. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices

    NASA Astrophysics Data System (ADS)

    Liu, Kaihui; Hong, Xiaoping; Zhou, Qin; Jin, Chenhao; Li, Jinghua; Zhou, Weiwei; Liu, Jie; Wang, Enge; Zettl, Alex; Wang, Feng

    2013-12-01

    Single-walled carbon nanotubes are uniquely identified by a pair of chirality indices (n,m), which dictate the physical structures and electronic properties of each species. Carbon nanotube research is currently facing two outstanding challenges: achieving chirality-controlled growth and understanding chirality-dependent device physics. Addressing these challenges requires, respectively, high-throughput determination of the nanotube chirality distribution on growth substrates and in situ characterization of the nanotube electronic structure in operating devices. Direct optical imaging and spectroscopy techniques are well suited for both goals, but their implementation at the single nanotube level has remained a challenge due to the small nanotube signal and unavoidable environment background. Here, we report high-throughput real-time optical imaging and broadband in situ spectroscopy of individual carbon nanotubes on various substrates and in field-effect transistor devices using polarization-based microscopy combined with supercontinuum laser illumination. Our technique enables the complete chirality profiling of hundreds of individual carbon nanotubes, both semiconducting and metallic, on a growth substrate. In devices, we observe that high-order nanotube optical resonances are dramatically broadened by electrostatic doping, an unexpected behaviour that points to strong interband electron-electron scattering processes that could dominate ultrafast dynamics of excited states in carbon nanotubes.

  3. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-12-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.

  4. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing.

    PubMed

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688

  5. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.

    PubMed

    Brown, Arick; Bechtel, Charity; Bill, Jerome; Liu, Hui; Liu, Jun; McDonald, Dan; Pai, Satyan; Radhamohan, Asha; Renslow, Ryan; Thayer, Brooke; Yohe, Stefan; Dowd, Chris

    2010-07-01

    Pre-filtration using ion exchange membrane adsorbers can improve parvovirus filter throughput of monoclonal antibodies (mAbs). The membranes work by binding trace foulants, and although some antibody product also binds, yields > or =99% are easily achieved by overloading. Results show that foulant adsorption is dependent on pH and conductivity, but independent of scale and adsorber brand. The ability to use ion exchange membranes as pre-filters is significant because it provides a clean, well defined, chemically stable option for enhancing throughput. Additionally, ion exchange membranes facilitate characterization of parvovirus filter foulants. Examination of adsorber elution samples using sedimentation velocity analysis and SEC-MALS/QELS revealed the presence of high molecular weight species ranging from 8 to 13 nm in hydrodynamic radius, which are similar in size to parvoviruses and thus would be expected to plug the pores of a parvovirus filter. A study of two identical membranes in-series supports the hypothesis that the foulants are soluble, trace level aggregates in the feed. This study's significance lies in a previously undiscovered application of membrane chromatography, leading to a more cost effective and robust approach to parvovirus filtration for the production of monoclonal antibodies.

  6. Development of a semi-automated high throughput transient transfection system.

    PubMed

    Bos, Aaron B; Duque, Joseph N; Bhakta, Sunil; Farahi, Farzam; Chirdon, Lindsay A; Junutula, Jagath R; Harms, Peter D; Wong, Athena W

    2014-06-20

    Transient transfection of mammalian cells provides a rapid method of producing protein for research purposes. Combining the transient transfection protein expression system with new automation technologies developed for the biotechnology industry would enable a high throughput protein production platform that could be utilized to generate a variety of different proteins in a short amount of time. These proteins could be used for an assortment of studies including proof of concept, antibody development, and biological structure and function. Here we describe such a platform: a semi-automated process for PEI-mediated transient protein production in tubespins at a throughput of 96 transfections at a time using a Biomek FX(P) liquid handling system. In one batch, 96 different proteins can be produced in milligram amounts by PEI transfection of HEK293 cells cultured in 50 mL tubespins. Methods were developed for the liquid handling system to automate the different processes associated with transient transfections such as initial cell seeding, DNA:PEI complex activation and DNA:PEI complex addition to the cells. Increasing DNA:PEI complex incubation time resulted in lower protein expression. To minimize protein production variability, the methods were further optimized to achieve consistent cell seeding, control the DNA:PEI incubation time and prevent cross-contamination among different tubespins. This semi-automated transfection process was applied to express 520 variants of a human IgG1 (hu IgG1) antibody. PMID:24704608

  7. Development of a semi-automated high throughput transient transfection system.

    PubMed

    Bos, Aaron B; Duque, Joseph N; Bhakta, Sunil; Farahi, Farzam; Chirdon, Lindsay A; Junutula, Jagath R; Harms, Peter D; Wong, Athena W

    2014-06-20

    Transient transfection of mammalian cells provides a rapid method of producing protein for research purposes. Combining the transient transfection protein expression system with new automation technologies developed for the biotechnology industry would enable a high throughput protein production platform that could be utilized to generate a variety of different proteins in a short amount of time. These proteins could be used for an assortment of studies including proof of concept, antibody development, and biological structure and function. Here we describe such a platform: a semi-automated process for PEI-mediated transient protein production in tubespins at a throughput of 96 transfections at a time using a Biomek FX(P) liquid handling system. In one batch, 96 different proteins can be produced in milligram amounts by PEI transfection of HEK293 cells cultured in 50 mL tubespins. Methods were developed for the liquid handling system to automate the different processes associated with transient transfections such as initial cell seeding, DNA:PEI complex activation and DNA:PEI complex addition to the cells. Increasing DNA:PEI complex incubation time resulted in lower protein expression. To minimize protein production variability, the methods were further optimized to achieve consistent cell seeding, control the DNA:PEI incubation time and prevent cross-contamination among different tubespins. This semi-automated transfection process was applied to express 520 variants of a human IgG1 (hu IgG1) antibody.

  8. High-throughput measurement of polymer film thickness using optical dyes

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien

    2005-01-01

    Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.

  9. High throughput ion-channel pharmacology: planar-array-based voltage clamp.

    PubMed

    Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk

    2003-02-01

    Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs. PMID:15090139

  10. Development of high-throughput glass inkjet devices for pharmaceutical applications.

    PubMed

    Ehtezazi, Touraj; Dempster, Nicola M; Martin, Graham D; Hoath, Stephen D; Hutchings, Ian M

    2014-11-01

    The application of the inkjet method to pharmaceutical products is promising. To make this realistic, not only does the throughput of this method need to be increased, but also the components should be inert to pharmaceutical preparations. We present designs of glass-based inkjet devices that are capable of producing droplets at high rates. To achieve this, inkjet devices from glass capillary tubes were manufactured with orifice diameters of 5, 10 and 20 μm and were actuated with diaphragm piezoelectric disks. Also, a pressure capsule was formed by creating a manifold at a distance from the orifice tip. Placing the piezoelectric disk at 0.5 mm distance from the tip allowed the formation of a jet at 3.2 MHz in certain designs, but for a short period of time because of overheating. The length of the pressure capsule, its inlet diameter, and the nozzle tip geometry were crucial to lower the required power. Actuating an inkjet device with 10 μm orifice diameter comfortably at 900 kHz and drying the droplets from 1% salbutamol sulphate solution allowed the formation of particles with diameters of 1.76 ± 0.15 μm and the geometric standard deviation of 1.08. In conclusion, optimising internal design of glass inkjet devices allowed the production of high-throughput droplet ejectors.

  11. A fluorescent hydrogel-based flow cytometry high-throughput screening platform for hydrolytic enzymes.

    PubMed

    Pitzler, Christian; Wirtz, Georgette; Vojcic, Ljubica; Hiltl, Stephanie; Böker, Alexander; Martinez, Ronny; Schwaneberg, Ulrich

    2014-12-18

    Screening throughput is a key in directed evolution experiments and enzyme discovery. Here, we describe a high-throughput screening platform based on a coupled reaction of glucose oxidase and a hydrolase (Yersinia mollaretii phytase [YmPh]). The coupled reaction produces hydroxyl radicals through Fenton's reaction, acting as initiator of poly(ethyleneglycol)-acrylate-based polymerization incorporating a fluorescent monomer. As a consequence, a fluorescent hydrogel is formed around Escherichia coli cells expressing active YmPh. We achieve five times enrichment of active cell population through flow cytometry analysis and sorting of mixed populations. Finally, we validate the performance of the fluorescent polymer shell (fur-shell) technology by directed phytase evolution that yielded improved variants starting from a library containing 10(7) phytase variants. Thus, fur-shell technology represents a rapid and nonlaborious way of identifying the most active variants from vast populations, as well as a platform for generation of polymer-hybrid cells for biobased interactive materials. PMID:25525992

  12. An acousto-optic image correlator with a throughput rate of 1000 templates per second

    SciTech Connect

    Molley, P.A.

    1990-03-28

    A two dimensional image correlator based on acousto-optic (AO) and charge-coupled devices (CCDs) is described that can be built with existing technology to provide 1000 frames per second operation. In recent years, architectures have been developed that perform the two dimensional correlation utilizing one dimensional input devices. The input scene is loaded into the acousto-optic device (AOD) one line at time. This line is then correlated against all of the rows of a reference template introduced into the optical system using a one dimensional array of LEDs or laser diodes. However, it generally takes a much greater time to load the AO cell than it does to process the information. this latency time severely limits the maximum throughput rate of the processor. This paper introduces a new acousto-optic correlator implementation that overcomes this bottleneck so that processing can occur close to 100% of the time. A grayscale image correlator is proposed that can be built using present technology that can realistically achieve throughput rates on the order of 10{sup 12} operations per second. This translates to over 1000 correlations per second for input scenes with dimensions of 512 {times} 512 pixels and reference templates of size 64 {times} 64 pixels. 10 refs., 4 figs.

  13. Microchip zone electrophoresis for high-throughput analysis of monoclonal antibody charge variants.

    PubMed

    Wheeler, Tobias D; Sun, Jing Lucy; Pleiner, Sina; Geier, Holger; Dobberthien, Philine; Studts, Joey; Singh, Rajendra; Fathollahi, Bahram

    2014-06-01

    A high-throughput screening assay on a microfluidic chip was developed for the determination of charge variants of monocolonal antibodies (mAbs) in pI range of 7-10. This method utilizes microchip zone electrophoresis for rapid separation (<90 s) of mAb charge variants that are labeled fluorescently without altering the overall charge. The microfluidic assay achieves between 8- and 90-fold times faster separation time over conventional methods while maintaining comparable resolution and profiles of charge variant distributions. We further characterized the assay with respect to (i) the effect of pH on resolution, (ii) the effect of excipients and buffering agents, (iii) the performance of the assay compared to conventional methods, and (vi) the reproducibility of charge variant profiles. Finally, we explored the utility of the assay with four case studies: (i) monitoring C-terminal lysine modification of a mAb, (ii) quantifying the extent of deamidation of a mAb, (iii) providing charge variant information on which to base clone selection, and (iv) making process parameter-related decisions from a "design of experiment" (DoE) study. The results of these case studies demonstrate the applicability of the microfluidic assay for high-throughput monitoring of mAb quality in process development of biopharmaceuticals.

  14. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Zhou, Qin; Jin, Chenhao; Li, Jinghua; Zhou, Weiwei; Liu, Jie; Wang, Enge; Zettl, Alex; Wang, Feng

    2013-12-01

    Single-walled carbon nanotubes are uniquely identified by a pair of chirality indices (n,m), which dictate the physical structures and electronic properties of each species. Carbon nanotube research is currently facing two outstanding challenges: achieving chirality-controlled growth and understanding chirality-dependent device physics. Addressing these challenges requires, respectively, high-throughput determination of the nanotube chirality distribution on growth substrates and in situ characterization of the nanotube electronic structure in operating devices. Direct optical imaging and spectroscopy techniques are well suited for both goals, but their implementation at the single nanotube level has remained a challenge due to the small nanotube signal and unavoidable environment background. Here, we report high-throughput real-time optical imaging and broadband in situ spectroscopy of individual carbon nanotubes on various substrates and in field-effect transistor devices using polarization-based microscopy combined with supercontinuum laser illumination. Our technique enables the complete chirality profiling of hundreds of individual carbon nanotubes, both semiconducting and metallic, on a growth substrate. In devices, we observe that high-order nanotube optical resonances are dramatically broadened by electrostatic doping, an unexpected behaviour that points to strong interband electron-electron scattering processes that could dominate ultrafast dynamics of excited states in carbon nanotubes.

  15. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria

    PubMed Central

    2016-01-01

    In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei, and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12–13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 μM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages. PMID:27275010

  16. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    PubMed Central

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688

  17. MATRIX 1 RESULTS OF THE FY07 ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    SciTech Connect

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-09-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). It has been proposed that a team of glass formulation and processing experts at the Pacific Northwest National Laboratory (PNNL), Savannah River National Laboratory (SRNL), and Vitreous State Laboratory (VSL) at Catholic University of America develop a systematic approach to increase HLW throughput (by increasing WL with minimal or positive impacts on melt rate). Programmatically, this task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. The following four specific tasks have been proposed to meet this programmatic objective: (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. The details of these tasks can be found in the associated task plan WSRC-STI-2007-00483. The current study is focused on Task 2 (crystal accumulation modeling and higher waste loading glasses) and involves glass formulation and physical property testing by both PNNL and SRNL (as defined in the PNNL and SRNL test plans). The intent of this report is to document the chemical composition and Product Consistency Test (PCT) results and statistical analysis of PNNL's Test Matrix 1 glasses. Note that this document is only a compilation of the data collected by SRNL for PNNL's glasses in support of this task and no conclusions will be drawn.

  18. Student academic achievement in college chemistry

    NASA Astrophysics Data System (ADS)

    Tabibzadeh, Kiana S.

    General Chemistry is required for variety of baccalaureate degrees, including all medical related fields, engineering, and science majors. Depending on the institution, the prerequisite requirement for college level General Chemistry varies. The success rate for this course is low. The purpose of this study is to examine the factors influencing student academic achievement and retention in General Chemistry at the college level. In this study student achievement is defined by those students who earned grades of "C" or better. The dissertation contains in-depth studies on influence of Intermediate Algebra as a prerequisite compared to Fundamental Chemistry for student academic achievement and student retention in college General Chemistry. In addition the study examined the extent and manner in which student self-efficacy influences student academic achievement in college level General Chemistry. The sample for this part of the study is 144 students enrolled in first semester college level General Chemistry. Student surveys determined student self-efficacy level. The statistical analyses of study demonstrated that Fundamental Chemistry is a better prerequisite for student academic achievement and student retention. The study also found that student self-efficacy has no influence on student academic achievement. The significance of this study will be to provide data for the purpose of establishing a uniform and most suitable prerequisite for college level General Chemistry. Finally the variables identified to influence student academic achievement and enhance student retention will support educators' mission to maximize the students' ability to complete their educational goal at institutions of higher education.

  19. Attitude Towards Physics and Additional Mathematics Achievement Towards Physics Achievement

    ERIC Educational Resources Information Center

    Veloo, Arsaythamby; Nor, Rahimah; Khalid, Rozalina

    2015-01-01

    The purpose of this research is to identify the difference in students' attitude towards Physics and Additional Mathematics achievement based on gender and relationship between attitudinal variables towards Physics and Additional Mathematics achievement with achievement in Physics. This research focused on six variables, which is attitude towards…

  20. The Impact of Reading Achievement on Overall Academic Achievement

    ERIC Educational Resources Information Center

    Churchwell, Dawn Earheart

    2009-01-01

    This study examined the relationship between reading achievement and achievement in other subject areas. The purpose of this study was to determine if there was a correlation between reading scores as measured by the Standardized Test for the Assessment of Reading (STAR) and academic achievement in language arts, math, science, and social studies…

  1. Demonstration of submersible high-throughput microfluidic immunosensors for underwater explosives detection.

    PubMed

    Adams, André A; Charles, Paul T; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2011-11-15

    Significant security threats posed by highly energetic nitroaromatic compounds in aquatic environments and the demilitarization and pending cleanup of areas previously used for munitions manufacture and storage represent a challenge for less expensive, faster, and more sensitive systems capable of analyzing groundwater and seawater samples for trace levels of explosive materials. Presented here is an inexpensive high throughput microfluidic immunosensor (HTMI) platform intended for the rapid, highly selective quantitation of nitroaromatic compounds in the field. Immunoaffinity and fluorescence detection schemes were implemented in tandem on a novel microfluidic device containing 39 parallel microchannels that were 500 μm tall, 250 μm wide, and 2.54 cm long with covalently tethered antibodies that was engineered for high-throughput high-volume sample processing. The devices were produced via a combination of high precision micromilling and hot embossing. Mass transfer limitations were found in conventional microsystems and were minimized due to higher surface area to volume ratios that exceeded those possessed by conventional microdevices and capillaries. Until now, these assays were limited to maximum total volume flow rates of ~1 mL/min due in part to kinetics and high head pressures of single microchannels. In the design demonstrated here, highly parallelized microchannels afforded up to a 100-fold increase in total volume flow rate while maintaining favorable kinetic constraints for efficient antigen-antibody interaction. The assay employed total volume throughput of up to 6 mL/min while yielding signal-to-noise ratios of >15 in all cases. In addition to samples being processed up to 60 times faster than in conventional displacement-based immunoassays, the current system was capable of quantitating 0.01 ng/mL TNT samples without implementing offline preconcentration, thereby, demonstrating the ability to improve sensitivity by as much as 2 orders of magnitude

  2. Demonstration of submersible high-throughput microfluidic immunosensors for underwater explosives detection.

    PubMed

    Adams, André A; Charles, Paul T; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2011-11-15

    Significant security threats posed by highly energetic nitroaromatic compounds in aquatic environments and the demilitarization and pending cleanup of areas previously used for munitions manufacture and storage represent a challenge for less expensive, faster, and more sensitive systems capable of analyzing groundwater and seawater samples for trace levels of explosive materials. Presented here is an inexpensive high throughput microfluidic immunosensor (HTMI) platform intended for the rapid, highly selective quantitation of nitroaromatic compounds in the field. Immunoaffinity and fluorescence detection schemes were implemented in tandem on a novel microfluidic device containing 39 parallel microchannels that were 500 μm tall, 250 μm wide, and 2.54 cm long with covalently tethered antibodies that was engineered for high-throughput high-volume sample processing. The devices were produced via a combination of high precision micromilling and hot embossing. Mass transfer limitations were found in conventional microsystems and were minimized due to higher surface area to volume ratios that exceeded those possessed by conventional microdevices and capillaries. Until now, these assays were limited to maximum total volume flow rates of ~1 mL/min due in part to kinetics and high head pressures of single microchannels. In the design demonstrated here, highly parallelized microchannels afforded up to a 100-fold increase in total volume flow rate while maintaining favorable kinetic constraints for efficient antigen-antibody interaction. The assay employed total volume throughput of up to 6 mL/min while yielding signal-to-noise ratios of >15 in all cases. In addition to samples being processed up to 60 times faster than in conventional displacement-based immunoassays, the current system was capable of quantitating 0.01 ng/mL TNT samples without implementing offline preconcentration, thereby, demonstrating the ability to improve sensitivity by as much as 2 orders of magnitude

  3. A high throughput droplet based electroporation system

    NASA Astrophysics Data System (ADS)

    Yoo, Byeongsun; Ahn, Myungmo; Im, Dojin; Kang, Inseok

    2014-11-01

    Delivery of exogenous genetic materials across the cell membrane is a powerful and popular research tool for bioengineering. Among conventional non-viral DNA delivery methods, electroporation (EP) is one of the most widely used technologies and is a standard lab procedure in molecular biology. We developed a novel digital microfluidic electroporation system which has higher efficiency of transgene expression and better cell viability than that of conventional EP techniques. We present the successful performance of digital EP system for transformation of various cell lines by investigating effects of the EP conditions such as electric pulse voltage, number, and duration on the cell viability and transfection efficiency in comparison with a conventional bulk EP system. Through the numerical analysis, we have also calculated the electric field distribution around the cells precisely to verify the effect of the electric field on the high efficiency of the digital EP system. Furthermore, the parallelization of the EP processes has been developed to increase the transformation productivity. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number: 2013R1A1A2011956).

  4. The Economic Value of Higher Teacher Quality

    ERIC Educational Resources Information Center

    Hanushek, Eric A.

    2011-01-01

    Most analyses of teacher quality end without any assessment of the economic value of altered teacher quality. This paper combines information about teacher effectiveness with the economic impact of higher achievement. It begins with an overview of what is known about the relationship between teacher quality and student achievement. This provides…

  5. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  6. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  7. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  8. Higher Education Exchange, 2014

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2014-01-01

    Research shows that not only does higher education not see the public; when the public, in turn, looks at higher education, it sees mostly malaise, inefficiencies, expense, and unfulfilled promises. Yet, the contributors to this issue of the "Higher Education Exchange" tell of bright spots in higher education where experiments in working…

  9. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  10. Higher Education Exchange, 2005

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2005-01-01

    The "Higher Education Exchange" is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  11. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  12. Attitude versus Aptitude: Is Intelligence or Motivation More Important for Positive Higher-Educational Outcomes?

    ERIC Educational Resources Information Center

    Cote, James E.; Levine, Charles G.

    2000-01-01

    This longitudinal study explored relationships among student input and environmental throughput variables in predicting output human capital skills acquisition and academic achievement at a large Canadian university. Surprisingly, input intelligence quotient was negatively related to output human capital skills and to various adjustment measures.…

  13. Cherokee Culture and School Achievement.

    ERIC Educational Resources Information Center

    Brown, Anthony D.

    1980-01-01

    Compares the effect of cooperative and competitive behaviors of Cherokee and Anglo American elementary school students on academic achievement. Suggests changes in teaching techniques and lesson organization that might raise academic achievement while taking into consideration tribal traditions that limit scholastic achievement in an…

  14. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    SciTech Connect

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-08-03

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  15. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    PubMed

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach.

  16. Data mining approaches to high-throughput crystal structure and compound prediction.

    PubMed

    Hautier, Geoffroy

    2014-01-01

    Predicting unknown inorganic compounds and their crystal structure is a critical step of high-throughput computational materials design and discovery. One way to achieve efficient compound prediction is to use data mining or machine learning methods. In this chapter we present a few algorithms for data mining compound prediction and their applications to different materials discovery problems. In particular, the patterns or correlations governing phase stability for experimental or computational inorganic compound databases are statistically learned and used to build probabilistic or regression models to identify novel compounds and their crystal structures. The stability of those compound candidates is then assessed using ab initio techniques. Finally, we report a few cases where data mining driven computational predictions were experimentally confirmed through inorganic synthesis.

  17. Inertio-elastic focusing of bioparticles in microchannels at high throughput

    PubMed Central

    Lim, Eugene J.; Ober, Thomas J.; Edd, Jon F.; Desai, Salil P.; Neal, Douglas; Bong, Ki Wan; Doyle, Patrick S.; McKinley, Gareth H.; Toner, Mehmet

    2015-01-01

    Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re ≈ 10,000 with corresponding flow rates and particle velocities up to 50 ml min−1 and 130 ms−1. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved. PMID:24939508

  18. Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation

    PubMed Central

    Hegab, Hanaa M.; ElMekawy, Ahmed; Stakenborg, Tim

    2013-01-01

    Microbial fermentation process development is pursuing a high production yield. This requires a high throughput screening and optimization of the microbial strains, which is nowadays commonly achieved by applying slow and labor-intensive submerged cultivation in shake flasks or microtiter plates. These methods are also limited towards end-point measurements, low analytical data output, and control over the fermentation process. These drawbacks could be overcome by means of scaled-down microfluidic microbioreactors (μBR) that allow for online control over cultivation data and automation, hence reducing cost and time. This review goes beyond previous work not only by providing a detailed update on the current μBR fabrication techniques but also the operation and control of μBRs is compared to large scale fermentation reactors. PMID:24404006

  19. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    PubMed

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach. PMID:27186664

  20. Test bed for a high throughput supersonic chemical oxygen - iodine laser

    SciTech Connect

    Singhal, Gaurav; Mainuddin; Rajesh, R; Varshney, A K; Dohare, R K; Kumar, Sanjeev; Singh, V K; Kumar, Ashwani; Verma, Avinash C; Arora, B S; Chaturvedi, M K; Tyagi, R K; Dawar, A L

    2011-05-31

    The paper reports the development of a test bed for a chemical oxygen - iodine laser based on a high throughput jet flow singlet oxygen generator (JSOG). The system provides vertical singlet oxygen extraction followed by horizontal orientation of subsequent subsystems. This design enables the study of flow complexities and engineering aspects of a distributed weight system as an input for mobile and other platform-mounted systems developed for large scale power levels. The system under consideration is modular and consists of twin SOGs, plenum and supersonic nozzle modules, with the active medium produced in the laser cavity. The maximal chlorine flow rate for the laser is {approx}1.5 mole s{sup -1} achieving a typical chemical efficiency of about 18%. (lasers)

  1. High-Throughput Sequencing-Based Immune Repertoire Study during Infectious Disease.

    PubMed

    Hou, Dongni; Chen, Cuicui; Seely, Eric John; Chen, Shujing; Song, Yuanlin

    2016-01-01

    The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases, which were achieved by traditional techniques and high-throughput sequencing (HTS) techniques. HTS techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge and also provides a basis for further development of novel diagnostic markers, immunotherapies, and vaccines. PMID:27630639

  2. High-Throughput, Liquid-Based Genome-Wide RNAi Screening in C. elegans.

    PubMed

    O'Reilly, Linda P; Knoerdel, Ryan R; Silverman, Gary A; Pak, Stephen C

    2016-01-01

    RNA interference (RNAi) is a process in which double-stranded RNA (dsRNA) molecules mediate the inhibition of gene expression. RNAi in C. elegans can be achieved by simply feeding animals with bacteria expressing dsRNA against the gene of interest. This "feeding" method has made it possible to conduct genome-wide RNAi experiments for the systematic knockdown and subsequent investigation of almost every single gene in the genome. Historically, these genome-scale RNAi screens have been labor and time intensive. However, recent advances in automated, high-throughput methodologies have allowed the development of more rapid and efficient screening protocols. In this report, we describe a fast and efficient, liquid-based method for genome-wide RNAi screening. PMID:27581291

  3. High-Throughput Sequencing-Based Immune Repertoire Study during Infectious Disease

    PubMed Central

    Hou, Dongni; Chen, Cuicui; Seely, Eric John; Chen, Shujing; Song, Yuanlin

    2016-01-01

    The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases, which were achieved by traditional techniques and high-throughput sequencing (HTS) techniques. HTS techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge and also provides a basis for further development of novel diagnostic markers, immunotherapies, and vaccines.

  4. Characterization of Cell Lysis Events on a Microfluidic Device for High-Throughput Single Cell Analysis

    PubMed Central

    Hargis, Amy D; Alarie, JP; Ramsey, J.M.

    2012-01-01

    A microfluidic device capable of rapidly analyzing cells in a high-throughput fashion using electrical cell lysis is further characterized. In the experiments performed, cell lysis events were studied using an EMCCD camera with high frame rate (> 100 fps) data collection. It was found that, with this microfluidic design, the path that a cell follows through the electric field affects the amount of lysate injected into the analysis channel. Elimination of variable flow paths through the electric field was achieved by coating the analysis channel with a polyamine compound to reverse the electroosmotic flow (EOF). EOF reversal forced the cells to take the same path through the electric field. The improved control of the cell trajectory will reduce device-imposed bias on the analysis and maximizes the amount of lysate injected into the analysis channel for each cell, resulting in improved analyte detection capabilities. PMID:22025127

  5. Inertio-elastic focusing of bioparticles in microchannels at high throughput

    NASA Astrophysics Data System (ADS)

    Lim, Eugene J.; Ober, Thomas J.; Edd, Jon F.; Desai, Salil P.; Neal, Douglas; Bong, Ki Wan; Doyle, Patrick S.; McKinley, Gareth H.; Toner, Mehmet

    2014-06-01

    Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min-1 and 130 m s-1. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.

  6. PI-ping - Benchmark Tool for Testing Latencies and Throughput in Operating Systems

    NASA Astrophysics Data System (ADS)

    Abaffy, J.; Krajčovič, T.

    In this paper we present a benchmark tool called PI-ping that can be used to compare real-time performance of operating systems. It uses two types of processes that are common in operating systems - interactive tasks demanding low latencies and also processes demanding high CPU utilization. Most operating systems have to perform well in both conditions and the goal is to achieve the highest throughput when keeping the latencies within a reasonable interval. PI-ping measures the latencies of an interactive process when the system is under heavy computational load. Using PI-ping benchmark tool we are able to compare different operating systems and we attest the functionality of it using two very common operating systems - Linux and FreeBSD.

  7. High-Throughput Sequencing-Based Immune Repertoire Study during Infectious Disease

    PubMed Central

    Hou, Dongni; Chen, Cuicui; Seely, Eric John; Chen, Shujing; Song, Yuanlin

    2016-01-01

    The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases, which were achieved by traditional techniques and high-throughput sequencing (HTS) techniques. HTS techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge and also provides a basis for further development of novel diagnostic markers, immunotherapies, and vaccines. PMID:27630639

  8. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-08-01

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  9. A high-throughput, homogeneous microplate assay for agents that kill mammalian tissue culture cells.

    PubMed

    Pierce, Michael; Wang, Chunwei; Rebentisch, Matt; Endo, Mark; Stump, Mark; Kamb, Alexander

    2003-06-01

    Screens for cytostasis/cytoxicity have considerable value for the discovery of therapeutic agents and the investigation of the biology of apoptosis. For instance, genetic screens for proteins, protein fragments, peptides, RNAs, or chemicals that kill tissue culture cells may aid in identifying new cancer therapeutic targets. A microplate assay for cell death is needed to achieve throughputs sufficient to sift through thousands of agents from expression or chemical libraries. The authors describe a homogeneous assay for cell death in tissue culture cells compatible with 96- or 384-well plates. In combination with a previously described system for retroviral packaging and transduction, nearly 6000 expression library clones could be screened per week in a 96-well plate format. The screening system may also prove useful for chemical screens.

  10. Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening.

    PubMed

    Boissart, C; Poulet, A; Georges, P; Darville, H; Julita, E; Delorme, R; Bourgeron, T; Peschanski, M; Benchoua, A

    2013-01-01

    Cortical neurons of the superficial layers (II-IV) represent a pivotal neuronal population involved in the higher cognitive functions of the human and are particularly affected by psychiatric diseases with developmental manifestations such as schizophrenia and autism. Differentiation protocols of human pluripotent stem cells (PSC) into cortical neurons have been achieved, opening the way to in vitro modeling of neuropsychiatric diseases. However, these protocols commonly result in the asynchronous production of neurons typical for the different layers of the cortex within an extended period of culture, thus precluding the analysis of specific subtypes of neurons in a standardized manner. Addressing this issue, we have successfully captured a stable population of self-renewing late cortical progenitors (LCPs) that synchronously and massively differentiate into glutamatergic cortical neurons of the upper layers. The short time course of differentiation into neurons of these progenitors has made them amenable to high-throughput assays. This has allowed us to analyze the capability of LCPs at differentiating into post mitotic neurons as well as extending and branching neurites in response to a collection of selected bioactive molecules. LCPs and cortical neurons of the upper layers were successfully produced from patient-derived-induced PSC, indicating that this system enables functional studies of individual-specific cortical neurons ex vivo for disease modeling and therapeutic purposes. PMID:23962924

  11. Students’ Achievement Goals, Learning-Related Emotions and Academic Achievement

    PubMed Central

    Lüftenegger, Marko; Klug, Julia; Harrer, Katharina; Langer, Marie; Spiel, Christiane; Schober, Barbara

    2016-01-01

    In the present research, the recently proposed 3 × 2 model of achievement goals is tested and associations with achievement emotions and their joint influence on academic achievement are investigated. The study was conducted with 388 students using the 3 × 2 Achievement Goal Questionnaire including the six proposed goal constructs (task-approach, task-avoidance, self-approach, self-avoidance, other-approach, other-avoidance) and the enjoyment and boredom scales from the Achievement Emotion Questionnaire. Exam grades were used as an indicator of academic achievement. Findings from CFAs provided strong support for the proposed structure of the 3 × 2 achievement goal model. Self-based goals, other-based goals and task-approach goals predicted enjoyment. Task-approach goals negatively predicted boredom. Task-approach and other-approach predicted achievement. The indirect effects of achievement goals through emotion variables on achievement were assessed using bias-corrected bootstrapping. No mediation effects were found. Implications for educational practice are discussed. PMID:27199836

  12. Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system.

    PubMed

    Gaynor, P; Wells, D N; Oback, B

    2005-01-01

    Mammalian cloning by somatic nuclear transfer has great potential for developing medical applications such as biopharmaceuticals and generation of tissues for transplantation. For agricultural applications, it allows the rapid dissemination of genetic gain in livestock breeding. The maximisation of that potential requires improvements to overall cloning technology, especially with respect to increasing cloning efficiency and throughput rates in cloned embryo production. A zona-free embryo reconstruction system was developed to increase cloning throughput and ease of operation. Central to this system is a modified electrofusion procedure for nuclear transfer. Cytoplast-donor cell couplets were placed in a custom-designed 'parallel plate' electrode chamber. A 1 MHz sinusoidal AC dielectrophoresis alignment electric field of 6-10 kV m(-1) was applied for 5-10s. The couplets were then fused using 2 x 10 micros rectangular DC-field pulses (150-200 kV m(-1)), followed by application of the AC field (6-10 kV m(-1)) for another 5-10 s. Fusion was performed in hypoosmolar buffer (210 mOsm). Automated alignment of up to 20 couplets at a time has been achieved, resulting in greatly improved fusion throughput rates (2.5-fold increase) and improved fusion yields (1.3-fold increase), compared with commonly followed zona-intact protocols.

  13. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines.

    PubMed

    Yang, Yunyun; Deng, Jiewei; Yao, Zhong-Ping

    2015-08-01

    This study demonstrates the first application of field-induced wooden-tip electrospray ionization (ESI) mass spectrometry (MS) for high-throughput analysis of herbal medicines. By application of an opposite and sample-contactless high voltage on the MS inlet rather than wooden tips, a high-throughput analysis device is easily set up, and a relatively fast analysis speed of 6 s per sample was successfully achieved. In addition, fast polarity switching between positive and negative ion detection mode is readily accomplished, which provides more complete chemical information for quality assessment and control of herbal medicines. By using the proposed method, various active ingredients present in different herbal medicines were rapidly detected, and the obtained mass spectra were served as the samples' fingerprints for tracing the origins, establishing the authenticity, and assessing the quality consistency and stability of herbal medicines. Our experimental results demonstrated that field-induced wooden-tip ESI-MS is a desirable method for high-throughput analysis of herbal medicines, with promising prospects for rapidly differentiating the origin, determining the authenticity, and assessing the overall quality of pharmaceuticals.

  14. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines.

    PubMed

    Yang, Yunyun; Deng, Jiewei; Yao, Zhong-Ping

    2015-08-01

    This study demonstrates the first application of field-induced wooden-tip electrospray ionization (ESI) mass spectrometry (MS) for high-throughput analysis of herbal medicines. By application of an opposite and sample-contactless high voltage on the MS inlet rather than wooden tips, a high-throughput analysis device is easily set up, and a relatively fast analysis speed of 6 s per sample was successfully achieved. In addition, fast polarity switching between positive and negative ion detection mode is readily accomplished, which provides more complete chemical information for quality assessment and control of herbal medicines. By using the proposed method, various active ingredients present in different herbal medicines were rapidly detected, and the obtained mass spectra were served as the samples' fingerprints for tracing the origins, establishing the authenticity, and assessing the quality consistency and stability of herbal medicines. Our experimental results demonstrated that field-induced wooden-tip ESI-MS is a desirable method for high-throughput analysis of herbal medicines, with promising prospects for rapidly differentiating the origin, determining the authenticity, and assessing the overall quality of pharmaceuticals. PMID:26320794

  15. Identification of influenza virus inhibitors targeting NS1A utilizing fluorescence polarization-based high-throughput assay.

    PubMed

    Cho, Eun Jeong; Xia, Shuangluo; Ma, Li-Chung; Robertus, Jon; Krug, Robert M; Anslyn, Eric V; Montelione, Gaetano T; Ellington, Andrew D

    2012-04-01

    This article describes the development of a simple and robust fluorescence polarization (FP)-based binding assay and adaptation to high-throughput identification of small molecules blocking dsRNA binding to NS1A protein (nonstructural protein 1 from type A influenza strains). This homogeneous assay employs fluorescein-labeled 16-mer dsRNA and full-length NS1A protein tagged with glutathione S-transferase to monitor the changes in FP and fluorescence intensity simultaneously. The assay was optimized for high-throughput screening in a 384-well format and achieved a z' score greater than 0.7. Its feasibility for high-throughput screening was demonstrated using the National Institutes of Health clinical collection. Six of 446 small molecules were identified as possible ligands in an initial screening. A series of validation tests confirmed epigallocatechine gallate (EGCG) to be active in the submicromolar range. A mechanism of EGCG inhibition involving interaction with the dsRNA-binding motif of NS1A, including Arg38, was proposed. This structural information is anticipated to provide a useful basis for the modeling of antiflu therapeutic reagents. Overall, the FP-based binding assay demonstrated its superior capability for simple, rapid, inexpensive, and robust identification of NS1A inhibitors and validation of their activity targeting NS1A.

  16. Screening of monoclonal antibody formulations based on high-throughput thermostability and viscosity measurements: design of experiment and statistical analysis.

    PubMed

    He, Feng; Woods, Christopher E; Trilisky, Egor; Bower, Keith M; Litowski, Jennifer R; Kerwin, Bruce A; Becker, Gerald W; Narhi, Linda O; Razinkov, Vladimir I

    2011-04-01

    The purpose of this study was to demonstrate the utility of combining a design of experiment (DOE) approach with high-throughput formulation screening to identify the main factors affecting protein thermostability and solution viscosity. The optimization of buffer compositions was guided by statistical analysis of the data to obtain the targeted combination of low viscosity and high thermostability. Different monoclonal antibody (mAb) formulation variables were evaluated in the study to achieve optimization of two parameters: (i) thermostability characterized by temperature of hydrophobic exposure and (ii) viscosity. High-throughput measurements were employed to characterize both parameters. The significance of each factor and the two-way interactions between them was studied by multivariable regression analysis. An experimental design was used to estimate the significance of all factors, including interaction effects. The range of optimal buffer compositions that maximized thermostability and minimized viscosity of a mAb formulation was determined. The described high-throughput methods are well suited for characterization of multiple protein formulation compositions with minimized resources such as time and material. The DOE approach can be successfully applied to the screening of mAb formulations early in the development lifecycle.

  17. Delay-Throughput Performance the Deep-Space Ka-Band Link

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin

    2008-01-01

    In this paper, performance of a first-in, first-out (FIFO), selective retransmission scheme for the deep-space Ka-band link is presented and compared to the performance of a comparable X-band link. In this analysis, 16 months of water vapor radiometer (WVR) and advanced water vapor radiometer (AWVR) data from the three Deep Space Network (DSN) Communication Complexes (DSCC) were used to emulate weather effects on X-band and Ka-band links from Mars. Mars Reconnaissance Orbiter (MRO) X-band and Ka-band telecommunications parameters were used for spacecraft telecommunications capabilities. One pass per week per complex was selected from MRO's Deep Space Network (DSN) schedule from April 1, 2006 to August 31, 2007 for a total of 207 passes (69 passes per complex) for this analysis. For each pass both X-band and Ka-band links were designed using at most two data rates so that the expected pass capacity would be maximized subject to a minimum availability requirement (MAR). In conjunction with the WVR/AWVR data, elevation profiles of the selected passes and models for the performance of the antennas in the DSN were used to emulate the performance of both links. It was assumed that the retransmission of the data takes place not on the same pass as the original transmission but during subsequent passes. The data collected before a pass was assumed to be a fraction of the expected capacity of the pass as calculated through the link design process. Infinite spacecraft storage was assumed to obtain an upper bound on the spacecraft storage requirement. The independent parameters of this analysis were MAR and the ratio of data collected before a pass to the expected pass capacity. Since the selected passes did not occur at regular intervals, the delay in this analysis was measured in terms of number of passes. The throughput was measured in terms of number of bits received successfully on the ground. The results indicate that reasonable delay performance could be achieved with

  18. Delay-Throughput Performance of the Deep-Space Ka-band Link

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin

    2008-01-01

    In this paper, performance of a first-in, first-out (FIFO), selective retransmission scheme for the deep-space Ka-band link is presented and compared to the performance of a comparable X-band link. In this analysis, 16 months of water vapor radiometer (WVR) and advanced water vapor radiometer (AWVR) data from the three Deep Space Network (DSN) Communication Complexes (DSCC) were used to emulate weather effects on X-band and Ka-band links from Mars. Mars Reconnaissance Orbiter (MRO) X-band and Ka-band telecommunications parameters were used for spacecraft telecommunications capabilities. One pass per week per complex was selected from MRO's Deep Space Network (DSN) schedule from April 1, 2006 to August 31, 2007 for a total of 207 passes (69 passes per complex) for this analysis. For each pass both X-band and Ka-band links were designed using at most two data rates so that the expected pass capacity would be maximized subject to a minimum availability requirement (MAR). In conjunction with the WVR/AWVR data, elevation profiles of the selected passes and models for the performance of the antennas in the DSN were used to emulate the performance of both links. It was assumed that the retransmission of the data takes place not on the same pass as the original transmission but during subsequent passes. The data collected before a pass was assumed to be a fraction of the expected capacity of the pass as calculated through the link design process. Infinite spacecraft storage was assumed to obtain an upper bound on the spacecraft storage requirement. The independent parameters of this analysis were MAR and the ratio of data collected before a pass to the expected pass capacity. Since the selected passes did not occur at regular intervals, the delay in this analysis was measured in terms of number of passes. The throughput was measured in terms of number of bits received successfully on the ground. The results indicate that reasonable delay performance could be achieved with

  19. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    NASA Astrophysics Data System (ADS)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  20. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647